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1 Abstract

This thesis shows how blind source separation methods for time-series can be
applied to compositional time series. In many applications data sets are of com-
positional nature, meaning that the relative values of the variables are of interest
instead of the absolute ones. Blind source separation (BSS) is a popular mod-
elling approach for multivariate time-series, since it aims to decompose them
into latent sources on which univariate modelling is possible. Compositional
time-series are per definition multivariate. Moreover, in their isometric-log-
ratio-coordinate representation, on which the BSS models are built, they are
multivariate if the number of compositions is greater than two. Therefore blind
source separation is very useful for compositional time-series. Our methodol-
ogy is illustrated on a real world data set: Absorption data from a stream in
Lower Austria. In the study of dissolved organic matter, ratios of absorption
coeflicients have been used to indicate the quality of dissolved organic matter
in various environments, yielding compositional time series data, on which our
new method can be applied.

2 Introduction

2.1 Introduction

Blind source separation (BSS) is a well established method for analysing mul-
tivariate time series, since it has proven useful in modelling and interpretation,
see for example Miettinen et al. [2017] or Miettinen et al. [2018]. In BSS a mul-
tivariate time series gets decomposed into latent sources, on which for instance
univariate time series models can be fitted. BSS can also be used for dimension
reduction of time series data. Real world application of blind source separation
can be found among others in signal processing [Belouchrani and Amin, 1998].
When the time-series is of compositional nature, the statistical methodology of
BSS and compositional data analysis have to be combined. Compositional data
is data where instead of the absolute values of the variables, the relative ones
are of interest. One of the first works in the field of compositional data analysis
has been Aitchison [1982]. Since then this field has been gaining importance,
see for example Pawlowsky-Glahn and Egozcue [2001], Pawlowsky-Glahn et al.
[2015] and Filzmoser and Templ [2018], leading to an increased awareness that
many multivariate data sets are of compositional nature.

In this thesis we will show how blind source separation can be applied on
compositional data. We will then apply this concept on a concrete data set. In
Section 3 we will describe statistical methodology on compositional data analy-
sis. This will include two log-ratio transformations from the simplex to the Eu-
clidean vector space. Subsection 3.3 will be about principal component analysis
for compositional data. Section 4 will contain an introduction to blind source
separation for time-series. This section will include three different blind source
separation models: the second order source separation model, blind source sep-
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aration for time-series with stochastic volatility and non-stationary source sep-
aration. Detailed descriptions of how sources can be estimated in these blind
source separation models can be found in the subsections of the correspond-
ing models. We will also present the novel blind source separation method by
Nordhausen et al. [2020], that is a hybrid method that can be applied to all
three blind source separation models. Therefore this method is suggested if it is
unclear which blind source separation model to choose. In Section 5 we will ex-
plain how the methodology of compositional data and blind source separation
for time series can be combined by fitting blind source separation models on
the transformed compositions. Subsection 5.1 will further explain how principal
component analysis can be added in order to be able to apply blind source sepa-
ration to highly correlated compositional time series as well. In Section 6 there
will be a detailed description on how we apply the new method on absorption
data. At a stream near Petzenkirchen in Lower Austria absorption coefficients
have been measured every ten minutes in a time period from January 2014 to
December 2014. In the study of dissolved organic matter, ratios of absorption
coefficients are useful to model the quality of dissolved organic matter, making
the data set a compositional time series. This yields the necessity of our new
methodology. Subsection 6.8 will contain a short outlook on how our results can
be interpreted, though a more detailed description will be left to the experts on
the field. In the appendix we will show R-code, that was implemented in order
to apply the methods on the data set.

2.2 Notation

We want to dedicate a short chapter to the notation of this thesis, since a lot of
different vectors and matrices will appear. In order to distinguish the different
vectors and matrices we will use big letters in bold if an object is a matrix,
small letters in bold if the object is a vector and small normal sized letters if
the object is a scalar:

V  matrix
v vector

v scalar.

We use subindices in brackets to indicate elements of vectors and elements, rows
or columns in matrices.

Viij)  (i,j)-th element of the matrix V'
V. i-th column of V'
Vi) i-throwof V

vj;) i-th element of the vector v.

In time series we use the subindex ¢ to indicate the time index in a time series:
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x;,t € T multivariate time-series

In this thesis we deal with matrices that depend on some parameter 7. In these
cases, we will write the matrix with a subindex 7: S,. Hence the notation
with subindices in brackets for elements of a matrix in order not to overload the
subindex notation.

In this thesis we also use transformations of vectors, for example a so called
clr-transformation is applied on a compositional vector . We will use the
abbreviation of the transformation as a subscript to distinguish the original
vector from the transformed vector:

x original vector,

1
2 clr-transformed vector. )

3 Compositional data

3.1 Definition and explanations

In this section we will describe what compositional data is, and what the ap-
proach to such data from a statistics point of view looks like.

A compositional data vector is a vector, where the entries are proportions
of some whole unit. Therefore it is assumed that the sum over the entries is
constant.

Definition 1 (Compositional vector)
A vector is compositional, if its entries sum up to an arbitrary but fived constant

C:

p+1
x € RPHL | T[4 >0 Zx[i]:C’.
=1

In Biology or Chemistry data sets are often of compositional nature, for
instance when a concentration of an element in a liquid is measured. If the
units were measured in mTl the constant C' in Def. 1 would be 1000. Sometimes
the constant is normed to 1. We will soon show, that the exact value of this
constant does not matter at all.

This strict definition is useful, since it provides a sample space for composi-
tional data, which leads to a methodology on how to apply statistical analysis on
compositional data. However, for a definition of a data set to be compositional
this definition is by no means to be taken literally.

Filzmoser and Templ [2018] give the following definition on compositional
data analysis: Compositional data analysis needs to be applied whenever the
relative values of variables in a data set are of interest, instead of the absolute
ones. So whether a data set is compositional or not, depends on the purpose of
the analysis instead of the actual data set.
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The following example illustrates this point. Consider a data set with two
variables: expenses and savings of a household. The sum of both variables repre-
sents the income of a household. The income might not be constant throughout
all households. So the strict definition in Def. 1 does not hold. However, if
one is interested in the proportion of the income a household saves, composi-
tional data analysis needs to be applied. One could divide both variables by
the income, in order to meet Def. 1. But it is important to emphasize that one
does not “make” a data set compositional by doing so. From a compositional
data analysis point of view an observation (1200, 800) would be considered the
same as (2400, 1600). Therefore, a data vector x fulfilling Def. 1 with C' =1
( 5:11 xp) = 1), like (0.6, 0.4), is just a representation of all possible observation
where the expanses are 1.5 times as big as the savings. Two data vectors, where
one is a scaled version of the other one, are called compositionally equivalent.

3.2 Transformations of compositions, Aitchison geometry
on the simplex

As discussed in the previous section, Def. 1 provides a sample space for com-
positional data. A sample space of a (p+1)-dimensional compositional vector is
the (p+1)-dimensional unit simplex SPT1.

Definition 2 (Unit simplex)
The unit simplex SP1! is defined as

p+1
SPFt = {(B S RPHL | T > 0 Zx[i] = 1}.
=1

A lot of methodology in multivariate statistics like principal component
analysis or cluster analysis are based on the Euclidean geometry of the RPT!,
However, the standard Euclidean geometry is a poor choice for compositional
data, since it violates many principles of compositional data analysis, such
as scale invariance, perturbation invariance and subcompositional dominance
(Aitchison et al. [2000]). Scale invariance, perturbation invariance and sub-
compositional dominance are principals of compositional data analysis that ev-
ery statistical method on compositional data should fulfil. Scale invariance
means, that the outcome should not depend on the unit of a compositional
vector © = [z, ..,x[pﬂ]]—r. Therefore any compositional vector & should be
treated the same as a compositionally equivalent vector Az, A > 0. Perturba-
tion invariance means, that the information contained in a compositional vector
x = [zp),. - ,m[p_H]}T should be the same as in a compositional vector where the
compositions have been permuted &P“"™ = [2[(1)],. . - ,x[ﬂ(m_l)}]T, T is a per-
mutation of the integers 1 to p + 1. Subcompositional dominance is a request
on the metric between compositional vectors. Any metric Apiq(x, y) between
two compositional vectors with p 4+ 1 parts should fulfil
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AP+1($7:’*/) > Ab(a"[l,...,b]vy[L...,b])v (2)
where @[; _; contains just the compositions 1 to b from the vector x b <
p+1). Subcompositional dominance can be seen as the equivalent to the triangle
inequality of the Euclidean metric of the R?.

Since most of the time in statistics the methodology is based on the Eu-
clidean metric of the RP*!, one way to deal with compositional data analysis is
to transform the compositional data from SPT! to RP*! or to R?. This transfor-
mation should be consistent with the above defined principles of compositional
data analysis. Since the ratios between the variables is what matters, any rea-
sonable transformation should be a function of the ratios of the compositions.
Aitchison [1982] proposed log-ratios. Due to the property of the natural loga-

rithm In (%) = —In (%), log-ratios are a good choice for building such a
transformation. In contrary to just ratios, log-ratios implement a nice symmetric
structure in the space of the transformed compositions. Consider a composi-
tional vector with just two compositions x[;) and z[y. With the transformation
r = ln(%) the positive real numbers represent the space where z(y) is bigger,
the negative real numbers represent the space where x 3 is bigger. The number
0 represents the point where the two compositions are exactly equal. For every
y € R, —y represents the point where the proportions are the other way around.

If the dimension of the compositional vector is bigger than two, it is not
that trivial to decide which log-ratios to use. One popular transformation is the

centered-log-ratio (clr) transformation.

Definition 3 (Clr-transformation)
The clr-transformation is a mapping from the simplex SP*! to RPTL. The i-th
coordinate of the clr-transformed vector is obtained as

clr: SPT1 5 Retl

xr — xr

clr ’JJ[Z]
zi =In| ————— | .
. <( f;l l‘[i])‘”il>

One advantage of this transformation is its interpretability. The i-th coor-
dinate of the transformed vector is simply the log-ratio between the i-th com-
position and the geometric mean of all compositions. The i-th coordinate of
the clr-transformed vector can also be seen as the average log-ratio of the i-th
composition to all the other ones. Using the properties of the natural logarithm
one can easily verify

T[] 1 T T T[]
In = . = In + In +...+1In .
(T2, ) 7T p+1 T[] T[] Tpt1]

(3)



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

One major drawback of this transformation is that the clr-vector is in RPT1,
but describes something that is really of dimension p. Using the laws of the
natural logarithm yields

pz—i_i xclr _ Zi:l <W> = In Hpill x[z] = ln(l) =0.

p+1 1 p+1
=1 H 7’ 1 :L'[z]) )
(4)

Hence a clr-transformed compositional vector lies on the p-dimensional hy-
perplane in RPH!:

Definition 4 (Clr hyperplane)

The clr-transformed compositional vectors lie on the following hyperplane in
RPHL:

p+1
Hdr = {il: S Rp+1| Zm[i] = 0}.
i=1

Let X be a matrix, whose rows represent observations of compositional
vectors. Furthermore let X" be the clr-transformed matrix, whose rows are
the clr-transformed compositional vectors from X. A consequence of the clr-
transformed compositions laying on H" is that X " does not have full rank.
That can be an issue in many multivariate statistics methods. For example in
classical least squares regression one would need to invert the matrix X" 7 X"
which is not invertible.

A transformation from the unit simplex SP*! to the RP is the isometric
log-ratio transformation. The idea of this transformation is to build an or-
thonormal basis on the p-dimensional hyperplane H" from Def. 4 and express
the clr-transformed compositions within that orthonormal basis. Since there
are infinitely many possibilities for building such a basis, the isometric log-ratio
transformations can be considered a class of transformations. One particular
choice for such an orthonormal basis leads to Def. 5.

Definition 5 (Isometric log-ratio transformation)
The isometric log-ratio transformation is a mapping from SP*L to RP. The i-th
coordinate of the ilr-transformed vector can be obtained as:

ilr: SPYL 5 RP

z — I

N
il = <p+1_z>2lg< U N >
p—i+2 (H§+zl+1mj])”+l_i



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Details on the derivation and interpretation of this orthonormal basis are given
by FiSerova and Hron [2011]. The ilr-transformation avoids the linear de-
pendency at the cost of some interpretability. The i-th coordinate of the ilr-
transformed compositional vector can be seen as the average log-ratio of com-
position z[; to all the “remaining” ones: ;11 ... 2[p41). Note that the compo-
sition x[y) takes a special role here from an interpretation point of view. The
first coordinate of this ilr-transformation represents the average log-ratio be-
tween the composition x[;) and all the other ones. While the second coordinate

for instance does not take into account the log-ratio In <%> Therefore this
type of ilr-transformation is referred to as pivot-coordinates by Filzmoser and
Templ [2018]. One might choose a different “pivot” than the composition T[]
x[g) for instance, and use the first ilr-cooridnate to express the average log-ratio
between composition x[3 and all other compositions. Since every permutation
of the indices {1, ...,p+1} yields a different pivot-coordinates, there are (p+1)!
possibilities for such type of basis.

This is not a contradiction to perturbation invariance. In the ilr-transformation
in Def. 5 the variable x[;) stands out just from an interpretation point of view. In
fact every log-ratio can be expressed as a linear combination of ilr-coordinates.
This also applies to the clr-coefficients:

Theorem 1 (Representation of centered log-ratios with the ilr-basis)
For the ilr-transformation in Def. 5 and the matriz V' defined in Eq. 5 it holds
that

mcl'r‘ _ V:ler
le'r‘ _ V—rwclr'

Let Vi j denote the j-th column of V.= (V[ 11,..., V[ ). V| j is given as

1—j\2 1 1 T

Vi, = (P L 3)2 (o,...,0,1,—7,,...,—7_) NG
p—J+2 p+1—j p+1—j

There is a close link between the isometric log-ratio transformation and the

so-called Aitchinson geometry on the simplex, as it is referred to by Pawlowsky-

Glahn and Egozcue [2001].

Definition 6 (Aitchinson geometry on the simplex)

The following operations: perturbation @& (as addition), powering ® (as multi-
plication) and Aitchinson inner product (.,.)a define a vector space with inner
product on the (unit) simplex.

T DY = (Typ)s o TprYprn) |

a® = (2], a:ﬁ)ﬂ])T
1 p+1p+1 o Y
(£, y)a = —= In () In ()
2D ;; (3] Yis)
9
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Egozcue et al. [2015] for example show that these operations indeed yield a
vector space with inner product.

An interesting observation is that the zero element of this vector space is
the vector where all compositions are the same. Note, that these operations do
not necessarily map onto the unit simplex, for example (0.8,0.2) @ (0.6,0.4) =
(0.48,0.08) which does not lie on the unit simplex. The compositionally equiva-
lent point on the unit simplex is about (0.86,0.14). Since from a compositional
point of view these two vectors are the same, norming the output of the pertur-
bation or powering is not necessary.

Theorem 2 (Isometry of the ilr-transformation)
For two compositional vectors x,y € SP! and o € R it holds that:

ilr(x @ y) = ilr(x) + ilr(y)
ilrla © x) = o ilr(x)

(@, y)a = (ilr(z), ilr(y)),

where (.,.) denotes the Euclidean inner product in R?.
Theorem 2 from Egozcue et al. [2003] is very useful to interpret linear
transformations of the ilr-transformed compositions on the simplex SP+!.

3.3 Principal component analysis for compositional data

One example of a tool from multivariate statistics that is applied on the trans-
formed compositions is principal component analysis (PCA). Once the composi-
tional vectors are transformed form SPT! to either R? with the ilr-transformation
or the RP*! with the clr-transformation, PCA can be applied. As discussed in
the previous section, the Euclidean metric is not the right tool for the composi-
tional data vectors. On the ilr-transformed compositions for instance, PCA can
be applied via an eigenvalue decomposition of the variance covariance matrix
3.

Definition 7 (Variance-covariance matrix)
The variance-covariance matriz for a stochastic vector x = [xm, e a?[p]]T € RP
1s defined as

Y=E [(a: —E(x))(x — E(m))T] )

Since the variance covariance matrix is a symmetric positive (semi)-definit
matrix, it is possible to express it as in Th. 3.

Theorem 3 (Eigenvalue decomposition of X)
The variance-covariance matriz 3 of a stochastic vector x with finite second
moments can be expressed as

10
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> =TDr',

where D is a diagonal matriz containing the non-negative eigenvalues of ¥ in
decreasing order. The matriz T is called the loadings matriz whose columns are
the orthonormal eigenvectors.

Definition 8 (Scores in PCA)
The projections of the vector x on the eigenvectors in ' are called the scores s
which can be obtained via

s=T"z

Due to the fact that the eigenvectors in I" are orthonormal, the variance covari-
ance matrix of the scores, X(s), is diagonal:

S(s)=I''TDr'T = D. (6)

The variance of the scores are the eigenvalues of X, contained in D, which are
sorted such that the first score has the highest variance, the second score has
the second highest variance and so on.

In order to perform PCA on a data matrix, the variance-covariance ma-
trix has to be estimated. In this thesis we used the classical estimator for the
variance-covariance matrix and the robust covariance minimum determinant es-
timator.

Definition 9 (classical estimator of X)
Let X|; ) € R? be the n rows of the data matriz X € R"*P. Then the variance-
covariance matriz can be estimated as

3

M)
||

T

iZ

Definition 10 (Scatter matrix)

Let @ € RP be a stochastic vector. A matriz valued functional S(x) is called
a scatter matriz, iff it is positive definite and for all vectors b and full-rank
(p x p)-matrices A it holds true that

S(Az +b)=AS(x)A". (7)
This property is called the affine equivariance property of the scatter matrix.

The variance-covariance matrix 3 is an example of a scatter matrix. Another
scatter functional is the robust covariance minimum determinant estimator:

11
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Definition 11 (covariance minimum determinant estimator)

Let X € R™ P be a data matriz, whose n rows X|; | represent realisations of
the stochastic vector . The covariance minimum determinant estimator is a
scatter S. It is obtained as the classical variance covariance estimator from Def.
9 using a subset of the data matriz (h < n rows ). That way, for all possible
subsets H of size h one obtains an estimator ﬁ]H . The minimum covariance
determinant estimator is the one with the lowest determinant.

Since this estimator is calculated using only A rows of the data matrix it is
very resistant to outliers. More details on this estimator are discussed in Hubert
and Debruyne [2010].

If the stochastic vector @ follows an elliptical symmetric distribution and the
covariance matrix X of @ exists, then every scatter matrix .S is proportional to
the covariance-matrix [Oja et al., 2006]:

xS VS. (8)

That means in that case, every scatter matrix will have the same eigenvectors
as the covariance matrix. Therefore the estimated scores will be the same if
a scatter matrix is used in PCA. This justifies using the covariance-minimum
determinant estimator in PCA.

When performing PCA, one must not forget that it is performed on the
transformed compositions and not on the actual compositions. Theorem 2 shows
what this linear transformation in the ilr-space looks like on the simplex. In
Filzmoser and Templ [2018] plots of these loadings are shown in the composi-
tional space with the help of a ternary diagram. A ternary diagram is a way
of showing 3-dimensional compositions in a 2D-diagram. Another way of inter-
preting the scores is to transform the loadings to clr-space with the help of the
matrix V from Th. 1:

s=Tz'" =TV g, 9)

4 Blind source separation

4.1 Basic model and explanations

Let o, = [%[1]7 el mt[p]]T € RP,t € T, be a p-variate time-series. In the basic
blind source separation model one assumes that the observable time series x; is
a linear combination of the so called sources z; € RP:

Definition 12 (Blind source separation, basic model)
In the basic blind source separation model one assumes the following relationship
between the observable time series x; and the sources z;:

Tt :H’+ta7 (10)

12
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where the sources z; fulfil certain assumptions, such that they can be estimated
from the observable time series alone. All blind source separation models have
one common assumption on zy:

E(z) =0 and E(z/z)=1I (11)

Apart from ©Q € RP*P having full rank, there are no further assumptions on
the matrix €. Under the assumptions in Eq. 11, the parameter p in Eq. 10 has
to be the mean of the time series x;. Since it has no further influence on the
estimation of the sources, it can also be assumed to be zero.

Definition 13 (Unmixing matrix)
The goal of blind source separation (BSS) is to obtain the sources z; via

2= Q N (x, — p). (12)

However in BSS the matriz Q™" can only be obtained up to permutation and
sign-changes of its rows.
A matriz A that is a solution of

ze = A(zy — ), (13)

such that z; meets all the assumptions on the sources in the model, is called an
unmizing matriz. For an acquired unmizing matriz A yielding z:, see Eq. 13,
changing the signs or permuting the latent time series Zy; does not violate the
assumptions made in the BSS model. Therefore multiplying A with a sign-
change matriz J and or a permutation matrix P,

A =JPA (14)

still gives a valid unmizing matriz. Hence the problem of finding the true un-
mizing matriz Q1 is not uniquely solvable. Every obtained unmizing matriz A
and sources z; will fulfil

Q' = JPA,
Zt:JPE't,

where J is an unknown sign change matriz and P is an unknown permutation
matric.

In order to estimate an unmixing matrix A, further assumptions than the
one in Eq. 11 need to be made on the sources. Different further assumptions
on the sources lead to different BSS models. These assumptions also yield nice
properties for z;, which makes them easier to model and interpret than x;.

13
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4.2 The second order source separation model

The most established approach of BSS models for time series is the second order
source separation (SOS) model. In this model one additional assumption is that
the sources z; are weakly stationary.

Definition 14 (Weakly stationarity)
Let x4, t € T, be a p-variate time-series. Then x; is called weakly stationary if
and only if for all t,s,t+ h,s + h € T the following assumptions hold.

E[z,z/] < oo, (15)
E[mt} = E[wsL (16)
Elziz,] = Elzina, ). (17)

Equations 16 and 17 imply

C’ov(mt,a}s) = COU(ﬂ)t+h,CCS+h), (18)

which means, the auto-covariance-matrix of the random vectors x; and x4 does
not depend on the times ¢ and s, but only on the lag they are apart. That leads
to the following definition:

Definition 15 (Autocovariance-matrix at lag 7)
The autocovariance-matriz S, at lag T of a weakly stationary time-series T, is

defined as

Sr(x:) = E [(x; — E(2)) (@14, — E(a:)) ']
With the above definition the assumptions on the sources in the SOS model can
be stated.

Definition 16 (Second order source separation)

In the second order source separation model the sources z; are assumed to be
weakly stationary. Furthermore the following two assumptions are made on the
sources:

(80S1) E(z)=0 and E(z/z)=1I (19)
(SOS 2) S.(z) is diagonal for T=1,2,3,... (20)

The assumption (SOS1) in Def. 16 means that the sources z; have variance 1

and are uncorrelated at a fixed time. Note that for x5t = »2 (z: — p), where
p and X are the mean and the variance-covariance matrix of x;, =’ fulfils
assumption (SOS1). This process is called whitening of the time series:

Definition 17 (Whitening of the time series)
Let p and X be the mean and the variance covariance matriz of the time-series
x;. Then the whitened time series ;' is obtained as

st __ 1

' =X 2 (2 — p).

14
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Therefore the inverse square root of the variance-covariance matrix is the first
building block for constructing an unmixing matrix A from Def. 13. The
assumption (SOS2) means that there is no correlation between the latent sources
zli), ¢ =1,...,p at any time.

Note that multiplying the whitened time series x5' with any orthonormal
matrix U does not violate assumption (SOS1). Therefore the idea of many
second order source separation methods, and many BSS methods in general,
is to find such a matrix U to meet assumption (SOS2). The final unmixing
matrix is then obtained as

A=UTS"3, (21)

The property of the latent time series z;; being uncorrelated among each
other justifies fitting time series models on each univariate source. This approach
is much easier than modelling complex dependencies on the correlated time
series x.

In this thesis we will present two BSS methods for the SOS model, the
AMUSE (algorithm for multiple unknown signals extraction) [Tong et al., 1990]
and the SOBI (Second order blind identification)-method.

BSS Method 1 (AMUSE)
Let x; be the observable time-series following the second order source separation
model. In the AMUSE method, sources z; are obtained by

Zy = Ar (T — p), (22)
where A fulfils

AZA =1

23
A, S, (x,)A] = D. (23)

D is a diagonal matriz with increasing elements on the diagonal, S, is the auto-
covariance matrix for a chosen lag 7 and X is the variance covariance matrix

Of .

As discussed for instance in Nordhausen et al. [2020], the choice of the
lag 7 has a huge impact on the outcome of the AMUSE method. The SOBI
method from [Belouchrani et al., 1997] tries to avoid this dependency by jointly
diagonalising a set of auto-covariance matrices.

BSS Method 2 (SOBI)
Let x; be the observable time series. The SOBI method first whitens the time
series,

zi' =377 (2 — ).

Then, the orthonormal matriz U is obtained as the matriz whose columns Uy;
maximize

15
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P

D> (U SH(@U, p)? (24)

TeLl i=1

for a chosen set of lags L = {71,...7}. Using the above obtained matriz U,
the SOBI unmizing matrix is then acquired as

A=U"%"=.

Finding the matrix A, in Eq. 23 in the AMUSE method is a joint diagonal-
isation problem for the matrices 3 and S, (x;). Joint diagonalisation problems
are frequently encountered within the BSS framework |Tichavsky and Yeredor,
2009]. In Miettinen et al. [2017] various joint diagonalisation problems in the
BSS framework are presented as well as algorithms for approximate joint diag-
onalisation. Different requirements have to be fulfilled by the matrices whether
there are 2 or more than 2 matrices that have two be diagonalised.

The problem of diagonalising two matrices, like in the AMUSE case, has a
solution, if X is a positive definite and symmetric matrix, and S is a symmetric
matrix. In the SOS model these requirements are fulfilled both for the theoret-
ical matrices X and S, and for their estimators 3 from Def. 9 and S, from
Def. 34. If the diagonal elements in D from Eq. 23 are distinct then the unmixing
matrix A, is unique up to permutation and sign changes of the rows [Miettinen
et al., 2017]. These diagonal elements are the autocovariance-functions of the
latent sources z,[; at lag 7. Therefore a requirement for the AMUSE method is
that no two latent sources z;;; and z;; have the same autocovariance for the
chosen lag 7.

The problem of jointly diagonalising more than two matrices arises in the
SOBI case. In the SOBI method one needs to solve the joint diagonalisation
problem:

US(x)U" =1, (25)
and for T € L

US.(x,)U'" = D,. (26)

Diagonalising a set of k > 2 symmetric matrices is only possible if the ma-
trices commute [Miettinen et al., 2017], meaning

S..S., =8, S,. (27)

In the SOS model this is the case for the true theoretical matrices S, how-
ever for estimated ones, this is not necessarily the case. Therefore in the SOBI
method an approximate joint diagonalisation algorithm is used. The maximi-
sation problem in Method 2 is such an approximate joint diagonalisation ap-
proach, for more details see Miettinen et al. [2017]. This means in the SOBI

method, the estimated autocovariance matrices S, (2;) will not be true diagonal

16
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matrices, but the approximate joint diagonalisation algorithm makes them as
diagonal as possible.

For the SOBI algorithm the variance-covariance matrix 3, the location vec-
tor p and the auto-covariance matrices S, for the lags 7 € L need to be esti-
mated. Estimators for g and 3 have been shown already in the section about
PCA. In the second order source separation model we have to use the symmetri-
sized estimator for the auto-covariance matrix S’ .

Definition 18 (Symmetrisized estimator for S;)

Let X € R"™ P be a data matriz whose n rows, X|; | represent realisations of
the p-variate time-series x;. Then the symmetrisized estimator S’T for S;(x¢)
18 acquired as

R 1 n—rt - -
=1
A 1/~ ~T
5725(A7+AT). (29)

The estimator A, in Eq. 28 is the classical estimator for the auto-covariance
matriz, & s the arithmetic mean. The second calculation in Eq. 29 is called
symmetrisizing the classical estimator for the autocovariance matriz. Since the
matriz S, is symmetric, the estimator for it should also be a symmetric matriz.

A common way to robustify the SOBI-method is to replace the auto-covariance
matrix with the spatial sign auto-covariance matrix, which will be defined in the
following Def. 19, and whiten the data with a robust estimator for the variance-
covariance matrix. For more details on robustification of the SOBI method view
Ilmonen et al. [2015]. Their paper contains a review of robustification of SOBI
as well as suggestions for improvements.

Definition 19 (Spatial sign auto-covariance matrices)
Let x; be a centered time series. The spatial sign auto-covariance matriz is

defined as
R —E {mt Tiir } .
|| [|i-|]

It can be estimated using the following estimator:

Definition 20 (Symmetrisized estimator for R;)

Let X € R"™P be a data matriz whose n rows, X|; | represent realisations of the
centered p-variate time-series xy. Then the classical estimator RT for R, (x;)
18 acquired as

|T|—7 T
1 X Xiivr]
A, = : : (30)
IT| -7 ; X 11X e [
. 1 -
RT_§<AT+AT). (31)
17
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BSS Method 3 (robust SOBI)

In the robust SOBI method the time series x; are robust whitened, using the
robust covariance minimum determinant estimator f)mcd, and the corresponding
location f[i,,.q- Furthermore let U be the orthonormal matriz , whose columns
Uy mazimize

P
SN (U] RA(xHU )% (32)
rel i=1

for a chosen set of lags L = {71,...7}. Once again the final unmizing matriz

18 acquired as

T 1
A=UTS},
It is important to point out, that in this method we need the additional
assumption that the observable time series x; has a symmetrical distribution.

4.3 The stochastic independent component model

The stochastic independent component model, introduced by Matilainen et al.
[2015], was designed to be able to model time series with stochastic volatility
within the BSS framework. In this model the following assumptions are put on
the sources:

Definition 21 (Stochastic independent component model)
Let z; be the sources of the blind source separation model. In the stochastic
independent component model, z; is assumed to fulfil the following assumptions:

E(ziz, ) =1, andE(z;) =0. (33)

Furthermore, each component of z; exhibits stochastic volatility features and has
finite fourth moments and crossmoments. No two components are identical at
all lags.

Time series with stochastic volatility is a class of time series models, where
the variance of the process is a random variable, modelled with a stochastic
process. The basic SV model assumes that the time series z; fulfils the following
assumptions: [Shephard and Andersen, 2009]

Definition 22 (Time series with stochastic volatility )
Let z; be a univariate time-series. The basic stochastic volatility model assumes
that the time series z; fulfils

Zt = Ot€g, (34)

where oy and €; are independent. The process oy is non-negative and the process

€; is an autoregressive process with mean zero and variance o>.

18
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Different SV models come from different modelling of o; and ¢;. A famous
SV model for example is the GARCH(p,q) model, where it is assumed that o
fulfils the difference equation:

o7 =0+ ar; 4 . +agri_,+ Biop .+ Bpoi (35)

and ¢; is an IID-process with mean 0, see Def. 23. For more details, view for
example He and Terésvirta [1999]. An IID-Process is a sequence of identically
distributed random variables:

Definition 23 (IID-Process)

A process €,,t € T, is called an iid-process with mean u and variance o2, iff
for every pairwise different time points ti,...,tx, € T, the random wvariables
€ty .-, €t,, are independent and identically distributed (iid), having a mean of
p and a variance of o2.

One method to estimate sources in a stochastic volatility independent com-
ponent model is with the gFOBI (generalized fourth order blind identification)
method. Instead of the autocovariance matrices as used in SOBI, it uses the
fourth order cross-moments matrices, as defined in the following Def. 24 of the
whitened time series in the joint diagonalisation problem. For more details view
for example [Matilainen et al., 2017].

Definition 24 (Fourth order cross-moment matrix)
Let xt be a p-variate whitened time-series. The fourth order cross-moment
matriz B, at lag T of x5t is defined as

B, = E[mt+TxftTmftmfiTT] (36)

Let mff] be the i-th element of the p-variate time series x3t. The (i,j)-th element
of B, B j 18 given as

7[i,5] = fofﬁ xt+T t+T[ ]) (37)

With the just defined fourth-order cross-moment matrix, the gFOBI-method
from Matilainen et al. [2015] can be described.

BSS Method 4 (gFOBI)

Let x; be the observed time-series. The gFOBI algorithm first whitens the time-
series ¢ and then uses the fourth order cross-moment matrices at lags T € L
of the whitened time-series in the joint diagonalisation problem. Let U be the
orthonormal matriz whose columns U |_; mazimize

> Z Ul yB-(z;)U ) (38)

TeT i=1

for a chosen lag set L = {m,...,7}. The gFOBI unmizing matriz is then
obtained as

19
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A=UTE 3
In order to calculate a gFOBI model one needs to estimate the matrices B..

Definition 25 (Estimator for the fourth order cross-moment matrix)
Let X € R"*P be the data matriz whose n rows Xy; | represent realisations of
the time-series ;. Furthermore let Xt be the whitened data matrix

1

xt=x% 7" (39)
with elements X[Sifj], Then the (k,j)-th element of the estimated fourth order

cross-moment matriz BT[k,j] 18 gilven as

|T|-7 p

I 1 2 s

Brieo = =7 2 QX)) Xirn Xy (40)
=1 =1

4.4 Non-stationary source separation

In the Non-stationary model, the assumption of weakly stationarity is relaxed.
In this model the variance of the sources can change over time.

Definition 26 (Non stationary source separation model)
In the non stationary source separation model the following assumptions on the
sources z; hold:

E(z) =0 W, (41)
E(z:z/]) is positive definite and diagonal Vt, (42)
E(z2,,,) is diagonal Vi, . (43)

Eq. 43 replaces the weakly stationarity assumption and allows for the autoco-
variance matrix to change over time. However, also in this model there should
be no correlation between the sources at any time. In Choi and Cichocki
[2000] three different methods are presented that find an unmixing matrix in
the non-stationary source separation model. One of them is reffered to as NSS-
JD method and involves their whitening approach using the auto-covariance
matrix at a lag 7 # 0 as well as autocovariance matrices St, - at lag 7 and time
period T; C T, which are defined in Def. 27. In this thesis the adjustment of
the method as presented in Nordhausen et al. [2020], where the auto-covariance
matrix is used for whitening.

Definition 27 (Autocovariance matrix for time period T;)
Let it € T, be a p-variate whitened time series and T; C T be a finite time
interval. The autocovariance matriz for x3* at lag T for time period T;: St, -

1s defined as

St ., =K@zl tt+71eT). (44)

i
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With this definition the NSS-JD method can be described:

BSS Method 5 (NSS-JD)
Let x; be the observable time series in a non-stationary blind source separation
model. The NSS-JD method first whitens the time series:

o' =27 (@, - p). (45)

Then for the chosen lag T and K disjunct time intervals T;:

- K
T={J_T. (46)

the auto-covariance matrices ST,  at lag T for each time interval are used in
the joint diagonalisation problem. Let U be the matriz, whose columns U/ ;
maximize

K p
DD (U Sm + (UL (47)

i=1i=1
Then the NSS-JD unmizing matriz A is defined as

A=U"3"3. (48)

4.5 A new BSS method

Nordhausen et al. [2020] recently published a novel BSS method, the NSS-SOBI-
gFOBI-method. It is a hybrid method that can be used for the second order
source separation model, for the stochastic independent component model and
for the non stationary source separation (NSS) model. Therefore it is suggested,
when the underlying BSS model is not known.

The NSS-SOBI-gFOBI-method uses both the autocorrelation matrices S,
and the fourth order cross-moment matrices B, in the joint diagonalisation
problem. It also uses the idea of dividing the time period T into K non-
overlapping time periods:

- K
T={J_T (49)

and uses the autocovariance matrix Sz, » and the fourth order cross-moment
matrix By, » for each time interval T;. The fourth order cross-moment matrix
By, ; at lag 7 and time interval 7T; is defined in a similar way as St, ;:

Definition 28 (Fourth order cross-moment matrix for time period T;)
Let x{',t € T, be a p-variate whitened time series. The fourth order cross-
moment matriz for x3' at lag T for time period T;, Br, ; is defined as

By, = Elaj ) T2l | tt+7eT) (50)

iy
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With the above definition the NSS-SOBI-gFOBI method can be described
as:

BSS Method 6 (NSS-SOBI-gFOBI)

Let x*t be the whitened time-series. Furthermore let Ls = {751,...,7s..} be
the lag set for the autocovariance matrices and Ly, = {Tp1,...,To,1, } be the lag
set for the fourth order cross-moment matrices.
Let
STiTs‘ fO’Fj:L...,LS
VTi»j = v -
Br, 1. forj=Ls+1,...,Ls+ Ly

denote the matrices used in the joint diagonalisation problem. Then the matrix
U can be defined as the orthonormal matriz, whose columns U}, ; maximize

K
=1 j=
The NSS-SOBI-gFOBI-unmizing-matrix is then obtained as

Ls+Ly p
-
U] 4V, Upg) (51)

i=1

=

A=U"x"=.

Nordhausen et al. [2020] introduced weights «; in the maximisation problem.
This is because of the fact that matrices in the joint diagonalisation problem
come from different families. Since the fourth order cross-moment matrices tend
to have a bigger determinant than the auto-covariance matrices, one might run
the risk that the fourth order cross-moment matrices dominate in the maximisa-
tion problem if all matrices are given the same weight. Nordhausen et al. [2020]
suggest

1
aj = —— if Vi, ; is a fourth order cross-moment matrix
p+2 (52)
aj =1 otherwise
or
! if max|V(7}, j)| > 1
o = ———— if max i
T max|V(Ty, )] (53)

aj =1 otherwise

as weights. The weights in Eq. 52 are suggested since scaling the fourth-
moments matrix, By, in a multivariate normal model by p% yields a consistent
estimator for the covariance matrix [Nordhausen et al., 2020]. The idea of the
weights defined in Eq. 53 is to downweight large matrices while not upweighting
zero-matrices. In the recently submitted paper Nordhausen et al. [2020], time
series of different BSS-models were simulated and the sources were estimated
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using the different BSS methods. Then the estimated sources were compared to
the simulated ones using a suitable comparison metric. Even though their new
hybrid method did not beat the method of the corresponding BSS model, it was
significantly better than the methods from the other BSS models. Therefore
this method is suggested if it is unclear which BSS model is suitable.

5 Blind source separation for compositional time
series

In this section we are going to combine the methods of compositional data
analysis and blind source separation.

Definition 29 (Compositional time series)
A time series xy,t € T, is a compositional time series, if for every s € T, xs is
a compositional vector.

In previous papers of compositional time-series, time series models were built
on the log-ratio transformed data. Then the inverse transformation was applied
for instance on the predictions in the transformed space, in order to obtain
predictions in terms of compositional data on the simplex, view for example
Silva and Smith [2001] or Brunsdon and Smith [1998], where repeated surveys
were modelled. More recent work on compositional time series can be found
for instance in Dawson et al. [2014], Bergman and Holmquist [2014] or in
Kynclova et al. [2015].

This is also the approach we suggest for blind source separation for composi-
tional time-series: Apply a log-ratio transformation first and then build a blind
source separation model on the transformed data. We suggest to use the isomet-
ric log-ratio transformation in order to avoid the singularity issue, and to use the
linear relationship between the ilr-transformation and the clr-transformation to
obtain loadings in clr-space which can be interpreted in terms of the original
compositions.

Definition 30 (Ilr- and Clr- transformed time series)
Let ¢, € SPTLt € T, be a compositional time series. By applying the ilr-
ilr
t

transformation from Eq. 5 one obtains the ilr-transformed time-series x}'" as

" = ilr(x,),

and the clr-transformed time series " by using the clr-tranformation from
Eq. 3:
clr

zy" = clr(xy). (54)

Then a blind source separation model can be built using the ilr-transformed
time-series " as the observable time series in the BSS model:

2y = Qzi' + . (55)
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For principal component analysis of compositional data both the ilr- and the
clr-transformation can be used to transform the data from the simplex to the
RP*! or the RP. However, for blind source separation for compositional time-
series, an ilr-transformation has to be used. The reason is, that the whitening
process

xSt = E_%(azt — )
requires the covariance matrix X to be invertible, which is not the case for
the clr-transformed time series. Like in PCA for compositional data one must
not forget that the blind source separation model is built on the transformed
compositions.
Let A be an estimated unmixing matrix from a BSS model yielding

Z, = Azl — o', (56)

where ﬂilr is the estimated mean of the ilr-transformed time series. Using
the linear transformation V between the ilr-transformed time series and the
clr-transformed time series (see Th. 1), we obtain an unmixing matrix for the
clr-transformed time series:

it _ A(mzt'lr o [Lilr) _ AVT(CE;:lT o ﬂclr) — A(wglr o ﬂclr). (57)

The estimated mean ﬂdr of the clr-transformed time-series from Eq. 57 has

to be obtained as

ﬂclr — VTﬂilr (58)

for Eq. 57 to be true. The clr-unmixing matrix A € R@DXP contains the
information of how the clr-transformed time series is linearly combined into the
estimated sources z;. Using the clr-loadings, the estimated sources 2z; are easier
to interpret in terms of the original compositions, since it is easier to trace back
the compositions from the clr-transformation. Recall that the i-th coordinate of
the clr-transformed compositional vector is the average log-ratio of composition
x4 and all the other ones. So for instance, if the (i,j)-th element A[i’j] of
the clr-loadings matrix A has a high absolute value compared to all the other
elements in the i-th row, it means that the latent estimated source z; represents
the relative value between composition x;[; and the other compositions.

We want to emphasise on the fact that the estimated sources z; do not
depend on the chosen ilr-transformation. Every ilr-transformation is just a
representation of the compositions within an orthonormal basis in the R?, and
the results of the BSS methods we described does not depend on the choice of
basis. Let x4,t € T, be a p-variate time series, and let &; be the same time
series expressed within a different basis. Then

it = W(I}t (59)
holds for some full-rank matrix W. For instance, in the SOS model with the

joint diagonalisation approach as in the SOBI or in the JADE method, the
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unmixing matrix A fulfils the affine equivariance property [Miettinen et al.,
2014]. That means, if
it = WiEt, (60)

is a linear transformation of the time series x; with some full-rank matrix W,
the estimated unmixing matrix in the SOS model (using the methods in this
thesis) for the transformed time-series &;, Ay, fulfils

Aw = PTIAW ™!, (61)

where P is a permutation matrix and J is a sign change-matrix. Since in
BSS the unmixing matrix can only be obtained up to a permuation and a sign
change matrix anyway, the choice of basis has no influence on the estimation of
the sources.

5.1 Blind source separation for highly correlated compo-
sitional time series

In blind source separation for compositional time series the ilr-transformation
from the simplex SP! to RP is used to avoid the issue of the singularity of the
variance covariance matrix. In case the ilr-data is highly correlated, a reduction
of dimensionality needs to be applied on the ilr-transformed data before it can
be used as the observable time-series in the BSS models.

Definition 31 (Scores-time-series)

Let i'™ € RP t € T, be an ilr-transformed compositional time-series with a
singular variance covariance matriz X(x!"). Performing PCA on the ilr-time-
series yields the diagonal matriz D and the loading matriz T fulfilling

S(zi") =TDT", (62)

as well as scores time series
s, =T"zil", (63)

Recall that the scores are ordered in such a way that the first score has the
highest variance, the second source has the second highest variance and so on.
In the case that X is singular, there will be scores s;[; that have zero variance. In
order to perform a dimension reduction use only the first [ < p scores, such that
the used scores have a positive variance. There are certain rules for choosing
I < p components in PCA. Let di > d» > ... > d, be the diagonal elements of
D. A popular rule of choosing [ components is to choose them in a way, such
that the cummulative explained variance is bigger than a threshold ¢, i.e.

l
. d;
2;,;1 > c. (64)
j=1 dj
Let s be the first [ < p scores series chosen and I'; € RP*! = [T y,..., T y]
be the matrix that contains only the first [ eigenvectors of the loadings matrix

fulfilling
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sl =1, zil". (65)

These [ scores can now be used as the observable time series in the BSS models:

Si =K + tav (66)

since the singularity issue is resolved because det(X(sl)) = H§:1 d; > 0. Now
applying a BSS-method of choice leads to an estimated unmixing matrix A as
well as estimated sources z;:

z, = A(sl — pl), (67)

where fi' is an estimated mean of the first [ scores s}. The loadings matrix T';
can be used to obtain an unmixing matrix in terms of the ilr-transformed time
series:

z, = A(st — pt) = AT 27 (68)

Using the matrix V' from Eq. 5 we obtain the unmixing matrix in terms of
the clr-tranformed time series:

2= As) — pl) = AT/ (& — p'7) )
_ A].-‘ZTVT (mglr o [Lilr) — A(mglr o ﬂilr)'

Again, the clr-unmixing matrix A can be used for an easier interpretation of

the sources z;.

6 Application on spectrometric data

In this section we explain how we apply our new methodology to absorption
data measured at a small stream in Lower Austria.

6.1 Data acquisition

The data was collected in 2014 by Matthias Pucher from the University of
Natural Resources and Life Sciences in Vienna. Employees of the department for
water management installed a spectrometer (s::can spectro::lyser by Messtechnik
GmbH in Austria) at a stream near Petzenkrichen in Lower Austria, see figure
1, taken with permission from Eder et al. [2010]. The device contains a light
source and a sensor. Between them there is a 15 cm wide gap. The light source
emits light of different wavelengths. The water in the stream running through
the gap absorbs a fraction of the emitted light and the sensor records what is
left. The physical units used to describe the absorbed fraction of the light are
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the absorbance A and the absorption coefficient a. The absorbance A is defined
as

A =logy(lo/1), (70)

where I is the omitted radiation and I is the radiation measured at the reflector.
The variable A is non-dimensional since the units of Iy and I cancel each other
out. The absorption coefficient a is defined as

In(10)A

a=—— (71)

where [ is the distance between the light source and the sensor in meters (0.15
in our case). Hence the unit of a is m™!. In Eq. 71 the constant In(10) has the
effect that the ratio is in terms of the natural logarithm. With the absorption
coefficient, measurements can be compared more easily between different stud-
ies, since the absorption coefficient does not depend on the length of the gap
between the light source and the sensor. A more detailed discussion of these
physical units is given by Hu et al. [2002].

6.2 Dissolved organic matter

Spectrometric data is used to model dissolved organic matter (DOM). DOM is
defined as the fraction of organic matter that passes through a 0.45 nm filter
(Perdue and Ritchie [2003]). DOM has a massive influence on various aspects of
freshwater eco-systems, for example on microbial communities (Docherty et al.
[2006]) or on optical properties of the water (Li and Hur [2017]). From a data
analysis point of view, a lot of things have been done to model DOM with
spectrometric data. You et al. [1999] use absorption ratios (ratios of absorption
coefficients of different wavelengths) to analyse the molecular weight of dissolved
organic carbon in soil. In Ikeya and Watanabe [2003] absorbance ratios were
used to model the degree of humification in humic acids. For more applications
of absorption coefficients and absorption ratios to analyse DOM view Li and
Hur [2017].

6.3 Data preparation

In our case, the spectrometer measured the absorption coefficient a, see Eq. 71,
every ten minutes with light of different wavelengths in the range of 200 nm to
750 nm. The precise wavelengths used were w = (200, 202.5, 205, ....., 597.5, 750).
This yields a realisation of a 221-variate time series xy, summarized in a data
matrix X € R"*221 With the help of the vector w containing the used wave-
lengths, the elements of X, X t,i] can be described as the absorption coefficient
measured with wavelength wr,;) at time ¢( ¢t € T, i = 1...221). Lag one in the
time series means a time interval of 10 minutes between x; and ;1. The first
measurement was taken on January 14th 2014 at 2:20 PM, the last measure-
ment was on December 31st 2014 at 11:50 PM. This means in theory, the time
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Figure 1: Map of the area near the stream. Reprinted with the permission from
Eder and Hoesl, it first appeard in their paper: Eder et al. [2010].

index ¢ of the time series @; runs through ¢t € T = {1,...,50614}. However, due
to maintenance of the device and technical errors, the original data set consists
of only 44296 observations. Furthermore the original data set has a column
encoding the quality of a measurement. Valid measurements were encoded with
the level Ok. The data set has 42785 valid measurements.

Keeping only observations marked with OF, the data set still has 39 missing
values. With these we proceeded as follows: If an observation had more than
3 missing values, we removed the entire observation from the data set. This
was the case for one observation, the measurement from May 28th, 12:30 PM.
For the other observations, having 3 missing values or less, we replaced the
missing value with the mean of the absorption coeflicients of the five nearest
wavelengths. Missing values occurred at wavelengths 200, 202.5 and 205 nm.
The missing value for wavelength 200 for example was replaced with the mean
of the absorption coefficients of the wavelengths 202.5 to 212.5.

Values less or equal than 0 required some attention too. Looking at Eq. 71,

28


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

a negative or 0 value of @ means that the the output radiation I is bigger or
equal than the input radiation I;. That makes no sense, so these had to be
treated as measurement errors as well. Also our methodology requires the data
to have strictly positive values. In reconciliation with Matthias Pucher, we used
only the variables from the wavelengths 200 to 600 nm for our analysis because
for wavelengths 602.5 to 750 nm the absorption coefficient is very small which
might skew the results. Also due to inaccuracy of the measurement device there
are 70 values less or equal than zero in that wavelength range. In the wavelength
range from 200 to 600 all values are strictly positive.

Having removed all variables above 600 nm and the one observation with 4
missing values we arrived at our cleaned time series data matrix X, with 42784
rows and 161 columns .

6.4 Visualisation of the data

Figure 2 shows the absorption spectrum of the first observation. In the ultra-
violet to visible (UV-Vis) part of the spectrum (about 200 nm to 700 nm) the
absorption coefficients for DOM decrease approximately exponential with in-
creasing frequency (see for example Massicotte and Markager [2016] ). Figure
3 shows the absorption spectra of 2000 about equidistant observations, where
clearly some outliers to this exponential trend can be seen. In fact, deviations
from this exponential trend is caused by DOM in the stream. The thick black
curve is the mean over all observations in the data set. Figure 4 shows the time
series for the wavelength 200 nm. Gaps in the graph represent missing values
in the data set for that time.

6.5 Dimension reduction via PCA

In our case the ilr-data matrix X*" turns out to contain very high linear cor-
relations. The determinant of the estimated variance covariance matrix is zero.
This suggests that we are in the situation of highly correlated compositional
time series. Therefore, first PCA is performed on the ilr-data matrix and only
the first few principal components are used as the observable time series in the
BSS models.

Definition 32 (Ilr- and Clr- data matrix)

Let X € R"*P be the data matriz representing realisations of the time series
x:. Applying the ilr-tranformation from Def. 5 on the rows of the data matrix
X1, yields the ilr-transformed data matriz X

Xi = itr(X )

X (X X
In a similar fashion the clr- data matrixz is obtained:

X)) = cr(X,))

X = (X, X

n.]
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Figure 2: Absorption coefficients of the first observation.
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Figure 3: Absorption coefficients for 2000 observations, thick black curve rep-
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Figure 4: Time series of a for wavelength 200 nm.

We performed both a classical and a robust principal component analysis.
In the classical PCA we used the classical estimator for the variance covariance
matrix of the ilr- data matrix, see Def. 9. And in the robust one we used the
robust minimum covariance determinant as the scatter estimator, see Def. 11.

The clr-loadings of the first four classically estimated principal components
can be seen in Fig. 5. The clr-loadings of the first four robust estimated com-
ponents are shown in Fig. 7. The loadings of these two different principal
component analysis look very similar, indicating no significant outliers in the
data. Looking at the clr-loadings of the first principal component indicates that
the highest variability in the data lies in the relative value between the compo-
nents from wavelengths 230 to 350 and 500 to 600. The signs of the loadings
230 to 350 being the same for instance means, that absorption coefficients of
wavelengths 230 to 350 tend to be either all high or all low. The clr-loading
of the second principal component shows that there is also some variability in
the absorption coefficients of the wavelengths 200 to 220. Figure 6 shows the
eigenvalues of the classical estimated covariance matrix, Fig. 8 shows the eigen-
values of the robust estimated covariance matrix. These plots show that quite
a big dimension reduction can be done on the data. In the classical PCA the
first four principal components explained 99.96 % of the variance, and in the
robust PCA 99.91 % of the variance is explained by the the first four principal
components. Therefore we only used the first four principal components as the
observable time series in the blind source separation models.

6.6 Adjusting the estimators of S, and B, in the BSS
models

One thing we have to adjust to apply BSS for CTS to our data are the estimators
of the autocovariance matrix at lag 7, S,, and the fourth order cross moment
matrix B,. Looking at the estimator of S in Def. 34 for instance, this estimator
assumes that for every observation X|; ; in the data matrix, the observation 7
rows down in the data matrix, X4, , is indeed a measurement taken 7 lags
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later. Due to missing values and measurement errors, this is not always the case
in our data matrix. Therefore we have to make sure that the two rows Xy, ;
and X |;4, ] in the sum

1 n—r

T
A; = Z X[t,.]X[t+T,.] (72)
t=1

n—rT

are indeed measurements with a time difference of lag 7. Each row X, ; in the
data matrix has a time stamp #; in the form of “14.01.2014 14:20” attached to
it. We designed a function that takes two such time stamps as an input, and
outputs the time difference in terms of lags between those two measurements.

Function 1 (Lag-function)

The lag-function f; takes two time stamps 0y, and 8¢, as an input and outputs
the time difference in terms of the lag T at which the corresponding observations
are apart, keeping in mind that a lag of T = 1 means a time difference of ten
minutes between two measurements:

fl(9t1,9t2) =T. (73)

For instance,
f1(%14.01.2014 14:207,%14.01.2014 14:50”) = 3. (74)

Using this lag-function we calculated lag matrices L., containing the infor-
mation of all possible pairs of row-indices in the data matrix that are indeed
measurements with a time difference of lag 7:

Definition 33 (Lag-matrix L.)
Let L, € R™7*2 be the matriz whose rows L., € R? contain all possible n(T)
pairs of rows in the data matriz X being a time difference of lag T apart.

Using this lag matrix, the adjusted estimator of the auto-covariance matrix
at lag 7, S, can be calculated as

Definition 34 (Adjusted symmetrisized estimator of S..)

o T
Ar = n(T) im1 XLy d X Ly, (75)
.1 -
ST_§<AT+AT>. (76)

The estimators for the fourth order cross moment matrix (Def. 25) and
the spacial sign auto-covariance matrix (Def. 20) were adjusted in an analogue
fashion.
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6.7 Fitting the BSS models

Since both in the standard and the robust case the first four principal compo-
nents explain around 99.9% of the variance, we use only the first four principal
components as the observable time series in the BSS models. The robust prin-
cipal components were used in combination with the robust SOBI-method. For
all other BSS methods the classically obtained principal components were used.
We apply the procedure, explained in subsection 5.1. This yields a clr-unmixing
matrix A € R**161 and estimated sources %, € R?* fulfilling

Z = A" — i), (77)

see Eq. 69. In this procedure, one has the choice which BSS method to apply
on the scores. We applied the SOBI-method with the lag sets 77 and T5:

T, = {6,12,...,144}

78
T, = {72,144,...,1008}. (78)

A lag of 6 represents a difference of one hour between two measurements
and a lag of 72 represents a difference of half a day between two measurements.
Therefore T represents a set of lags of 1 hour, 2 hours, ..., 24 hours. Ty
represents a set of lags of half a day, a full day, 36 hours and so on, up to one
week.

Furthermore we applied the robust SOBI method and the gFOBI method,
once for each lag set 17 and T5. We also applied the novel NSS-SOBI-gFOBI-
method. This method requires two lag sets, lag set L; for the autocovariance
matrices and lag set Lo for the fourth order cross-moment matrices, see BSS
method 6. We used T; for lag set Ly and T5 for lag set Ly (Eq. 78). In this
method also weights a; have to be chosen. We fitted three models for this
method: once with o; = 1, and once each with the weights a; described in
Eq. 52 and 53. Additionally we fitted the models with the NSS-SOBI-gFOBI
method with Ly = Ly = 11, also one each with a; = 1 and «; from Eq. 52
and 53.

When comparing the estimated loadings of the different models, one has to
take into account the possible permutations and the sign-changes of the sources.
A sign-change of a source would correspond to mirroring the loadings around the
x-axis. Figure 9 shows the loadings of the sources obtained by the SOBI method
with lag set 77 = {6,12,....,144}, while the loadings obtained by the SOBI
method with lag set Tp = {72,144, ....,1008} are shown in Fig. 11. Comparing
these two figures, one can see that in both methods the estimated loadings for
the sources 1 and 2 are almost identical. Also the loadings of source 3 from
the method with lag-set T} look very similar to the loadings of source 4 in the
method with lag-set T, which showcases that the sources are only obtainable
up to permutations. We continue to compare the loadings of source 4 from the
method with lag-set T; with the loadings from source 3 from the method with
lag-set Ts. Interestingly, there is a small difference notable: In the method with
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lag set T the loadings for wavelengths 200 to 300 are zero, while in the other
method there are some influential negative loadings around wavelength 220.

Figures 13 and 15 show the loadings acquired by the robust SOBI-method
with lag set Th = {6,12,....,144}, and T, = {72,144, ....,1008} respectively. In
the robust case the loadings of the sources look exactly the same, when taking
into account that the sources 3 and 4 switch places. That showcases that in this
specific data set the robust method is a little less dependent on the chosen lag
set. Overall the similarity between the loadings obtained by the robust method
and the ones obtained by the classical method indicate few outliers in the data.

The loadings of the sources obtained by the gFOBI method with the lag-sets
Ty and T5 respectively are displayed in Figures 17 and 19. Also in the gFOBI
case the choice of the lag-set has no huge impact on the output for our concrete
data set. The biggest difference can be seen between the loadings for source 2
when lag-set 77 was used and the loadings for source 3, when lag set To was
used. In the output from lag-set 7o the wavelengths around 220 are not as
important for the source 3 as they are for source 2 in the output from lag-set
T1. On the other side, in the method with lag-set Ty wavelengths from 590 to
600 nm seem to be important for source 3, while for the corresponding source 2
in the output with lag set 71, the loadings for that wavelength range are close
to zero indicating no influence there.

In Figures 21, 23 and 25 the loadings for the sources obtained from the NSS-
SOBI-gFOBI-method with lag set T} = {6,12,...,144} for the auto-covariance
matrices and lag set To = {72,144, ...,1008} for the fourth-order cross moment
matrices are shown for each choice of weights ;. Comparing the loadings from
each choice of a; shows some influence of the weights on the output, although
also here a lot of similarity is present. Interestingly the loadings obtained by
aj =1 and by

1
oj = ——= if V1, ; is a fourth order cross-moment matrix
p+2 . (79)
aj =1 otherwise
are almost identical, while the choice of «; from
! if IV(T;,5)| > 1
o = ———— if max i ]
7 max|V(T;, )| (80)

aj =1 otherwise

yields different loadings for source 1. Note that the loadings with the choice
of o; from Eq. 80 have changed their sign compared to the loadings from the
other choices of o;. In the output from o from Eq. 80 the loadings for source
1 look more similar to the loadings for source 3. Source 1 seems to focus on the
ratio between absorption coefficients in the range of 200 to 210 and absorption
coefficients in the range from 210 to 220. Source 3 also takes absorption ratios
from wavelengths around 300 and 400 into account, which is not the case for
source 1.
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Figures 27, 29 and 31 show the loadings acquired by the NSS-SOBI-gFOBI-
method with the lag sets used for the auto-covariance matrices and the fourth
order cross-moment matrices being identical (L1 = Lo = {6,12,...,144}), for
all three choices of weights respectively. Here a similar picture as in the case
with different lag-sets can be seen. That indicates, that the choice of the lag set
does not have a huge impact on the application to this data set.

Overall the outputs from all methods are very similar which is an indication
for relevant latent sources containing features of all BSS models. Hence all
methods were able to recover them. All methods show that the absorption
coefficients in the wavelength range 200 to 300 are the most important ones for
constructing the estimated sources.
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Figure 9: Loadings in clr-space of the sources from the classical SOBI with lag
set Th = {6,12, ....,144}.
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Figure 10: Sources of the classical SOBI model with lag set 77 = {6, 12, ...., 144}.
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6.8 Interpretation of loadings and sources

In this section we are going to show how the loadings in clr-space can be in-
terpreted, though we leave a more detailed interpretation to the experts on the
field. Both the loadings and the sources of the models can be used for an in-
terpretation of these sources. It is remarkable that the loadings of the sources
are very similar throughout the different models. Therefore we are just going to
pick one output from a model and show how these sources can be interpreted.
One thing that stands out, from the sources point of view, is that one source has
a seasonal high. For instance, in all models of the NSS-SOBI-gFOBI-method,
source 1 has higher values in the summer period than in the rest of the year.
Throughout the rest of the year the source stays more or less constant.

We interpret the clr-loadings with the help of the paper from Li and Hur
[2017]. This paper gives an overview on what has been done to detect DOM
using absorption coefficients. Ratios of absorption coefficients have been used to
characterize the quality of DOM, like molecular weight, humification degree or
aromacity [Li and Hur, 2017]. For instance the absorption ratio o220 has been
used to characterize the molecular weight of DOM [Peuravuori and Pihlaja,
1997].

As discussed in the section about compositional data, the log-ratios lie within
the linear space of the clr-transformed components. The log-ratio between the
i-th and the j-th component can be obtained via the difference of the i-th and
the j-th clr-coordinate, since

log (xi > log <mj ) =
D | D |~
(L2 =) b (ILZ ) b
D 1
log (gjz(nlgl o) ) = log (x>
zj (L= =) Ty
Using this fact, a symmetrical loading around 0 of the clr-loadings for the wave-
lengths 250 and 365 can be interpreted as a loading for molecular weight since

(81)

-

ol~| ©

xSt — azdd = alog <a250) . (82)
azes
The numbers 21 and 67 in Eq. 82 are the indices in w for the wavelengths 250
and 365. Such a symmetric distribution can be seen in the loadings for source
four in the BSS model with the NSS-SOBI-gFOBI-method with «; from Eq.
53, see Fig. 33. Therefore the source 4 in that model can be interpreted as a
source that characterizes the molecular weight of DOM in the stream. According
to Peuravuori and Pihlaja [1997] the ratio log(£222) is negatively correlated
with the molecular weight. In loading four of the model, the clr-loading for
wavelength 365 is positive and the one of wavelength 250 is negative. That
means a positive value of source 4 indicates DOM with high molecular weight
in the stream and a negative value of that source means that the DOM in the
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Figure 11: Loadings in clr-space of the sources from the classical SOBI with lag
set Tp, = {72,144, ....,1008}.
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Figure 12: Sources of the classical SOBI model with lag set Tp =

{72,144, ..., 1008}.
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Figure 13: Loadings in clr-space of the sources from the robust SOBI with lag
set Th = {6,12, ....,144}.
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Figure 14: Sources of the robust SOBI model with lag set 77 = {6,12, ...., 144}.
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Figure 15: Loadings in clr-space of the sources from the robust SOBI with lag
set Tp, = {72,144, ....,1008}.
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Figure 16: Sources of the robust SOBI model with lag set Tp, =

{72,144, ..., 1008}.

42


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

-1.0 0.0 1.0

-2.0

1.0

0.0

-1.0

-2.0

Loadings of source 1

Loadings of source 2

o |
i
9 o
) — e | SN —
o 13
=
S
I
o
< 4
T T T T T ! T T T T T
200 300 400 500 600 200 300 400 500 600
Wavelength Wavelength
Loadings of source 3 Loadings of source 4
o
S1%

c—?‘\.__/\

0.0
%

-1.0
|

T T T T T
200 300 400 500 600

Wavelength

200 300 400 500 600

Wavelength

Figure 17: Loadings in clr-space of the sources from the gFOBI model with lag
set Th = {6,12, ....,144}.
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Figure 18: Sources of the gFOBI model with lag set 77 = {6, 12, ....,144}.
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Figure 19: Loadings in clr-space of the sources from the gFOBI model with lag
set To = {72,144, ....,1008}.
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Figure 20: Sources of the gFOBI model with lag set To = {72,144, ....,1008}.
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Figure 21: Loadings in clr-space of the sources from the NSS-SOBI-gFOBI-
method with o; = 1.
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Figure 22: Sources of the NSS-SOBI-gFOBI-method with a; = 1.
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Figure 23: Loadings in clr-space of the sources from the NSS-SOBI-gFOBI-

method with a; from Eq. 52.
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Figure 25: Loadings in clr-space of the sources from the NSS-SOBI-gFOBI-
method with a; from Eq. 53.
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Figure 26: Sources of the NSS-SOBI-gFOBI-method with o from Eq. 53.
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Figure 27: Loadings in clr-space of the sources from the NSS-SOBI-gFOBI-
method with Ly = Ly = {6,12,....,144} and o = 1.
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Figure 29: Loadings in clr-space of the sources from the NSS-SOBI-gFOBI-
method with Ly = Ly = {6, 12, ....,144} and «; from Eq. 52.
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Figure 31: Loadings in clr-space of the sources from the NSS-SOBI-gFOBI-
method with Ly = Ly = {6, 12, ....,144} and «; from Eq. 53.
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Figure 32: Sources of the NSS-SOBI-gFOBI-method with L; = Lg

{6,12,....,144} and «a; from Eq. 53.

50


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

stream has rather little molecular weight. Looking at the path of source 4 in Fig.
25, in the spring period the stream tends to contain DOM of higher molecular
weight. Also there are interesting peaks downwards in May, June, September
and November indicating DOM with very little molecular weight in the stream
for a very short time period.

Figure 33 shows the loadings of the four sources obtained by the NSS-SOBI-
gFOBI-method with «; from Eq. 53. The loadings corresponding to the wave-
lengths 250 and 365 have been highlighted and their six neighbouring loadings
have been removed. The continuous line is at zero and the dashed lines are at
the values of the loadings corresponding to the wavelengths 250 and 365. The
corresponding loadings for source 2 are close to zero. The corresponding load-
ings for source 1 and 3 are not zero, but they are not symmetrical around zero.
The loadings for source 4 are symmetrical around zero, which gives a loading to
indicate the molecular weight.
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Figure 33: clr-laodings for wavelengths 250 and 365 in the model from the
NSS-SOBI-gFOBI-method with «a; from 53.

7 Conclusion

Blind source separation is a popular modelling approach for time-series. In this
thesis we showed how the modelling approach can be extended to compositional
time series.

We therefore reviewed three different blind source separation models for
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time-series together with methods on how sources can be estimated in each
model respectively. These methods include among others the novel method
from Nordhausen et al. [2020]. We further discussed the two main log-ratio
transformations for compositions: the clr-transformation, which is used for inter-
pretability, and the ilr-transformation, which expresses the compositions within
an orthonormal basis in the Euclidean vector space. Finally we showed how
these transformations and the linear relationship between them can be used in
the blind source separation framework in order to apply BSS on compositional
data, and interpret the loadings in terms of the original compositions. More-
over we showed how principal component analysis can be added to make the
important extension to highly correlated compositional time series. This exten-
sion proved to be very useful in the application of our new methodology on a
real world data set. We showed how various BSS-methods can be applied to
the absorption data from a small stream in Lower Austria. Additionally we
sketched how the loadings and sources can be interpreted. Besides, we suggest
the methodology of compositional data analysis, when absorption ratios are
used to model DOM.

Since blind source separation has proven to be useful for modelling and
interpreting multivariate time series, and many data sets are of compositional
nature, we are confident there will be many more applications for our new
method. An extension of our method could be to fit time-series models on
the obtained sources. Additionally other blind source separation models and
methods could be used for compositional time series.
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A R-Codes

A.1 Codes for fixing the issue with the lags

# Here we code functions for finding the true lag of two
# observations

#The following functions are used to calculate the true
#lag between two measurements. We need to extract the
#information of month, day, hour and minute from the time
#stamp in the form of "DD.MM.JJJ HH:MM"

Get.Day <- function(x){char <- substr(x,1,2)
int <- strtoi(char,base = 10 ) #Conversion from string
# to integer
return(int)}

Get.Month <- function(x){char <- substr(x,4,5)
int <- strtoi(char,base = 10 )
return(int)}

Get.Hour <- function(x){char <- substr(x,12,13)
int <- strtoi(char,base = 10 )
return(int)?}

Get.Minute <- function(x){char <- substr(x,15,16)
int <- strtoi(char,base = 10 )
return(int)}

Days.0f .Month<- function(mon){ #This function outputs the
#days of a month
if (mon %in% ¢(1,3,5,7,8,10,12) ){return(31)}
if (mon %in% c(4,6,9,11)){return(30)}
if (mon == 2){return(28)}
}
Get.DayDifference <- function(dayl,day2,monthl,month2){
if (monthl == month2)
{return(day2-day1)}
else{return(Days.0f.Month(monthl) -dayl+day2)}
}This function only works if the difference between the

# months is utmost 1. If the difference is bigger than one,

# the days of the missed months are
#missed which is fixed with the next function
Get.Days.0f .Missed.Months <- function(monthl,month2){
daysofmissedmonths <- 0
for(i in (month1+1): (month2-1) ){
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daysofmissedmonths <- daysofmissedmonths+Days.O0f.Month(i)
}
return(daysofmissedmonths)
}
#This following function calculates the lag between two
#time stamps
Calculate.Lag <- function(datel,date2){
monthl <- Get.Month(datel)
dayl <- Get.Day(datel)
hourl <- Get.Hour(datel)
minutel <- Get.Minute(datel)

month2 <- Get.Month(date2)
day2 <- Get.Day(date2)

hour2 <- Get.Hour(date2)
minute2 <- Get.Minute(date2)

daydiff <- Get.DayDifference(dayl,day2,monthl,month2)

if (month2-monthl > 1){

daydiff <- daydiff +

Get.Days.0f .Missed.Months (monthl,month2)
}

lag <- daydiffx144 + (hour2-hourl)*6 +
(minute2 - minutel)/10

#Here the true lag is calulated and output
return(lag)

#The function Calculate.lLag is used to obtain a vector
#containing the true lag between two consecutive rows
#in the data matrix (scanl15mm.2014)

nr <- nrow(scanlbmm.2014)

lag.vector15mm.2014 <- rep(0,nr-1)

for(i in 1:(nr-1)){
lag.vector15mm.2014[i]
<-Calculate.Lag(rownames(scan15mm.2014) [i],
rownames (scanl15mm.2014) [i+1])

}

# A function for finding all pairs of indices in the
#data matrix that are indeed measurements with a time
#difference of the desired lag
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#Inputs: lag.vector (vector containing the true lags
# between consecutive
#observation, calculated in previous function)
# lag (lag for which the indices want to be found)
get.vectors.with.true.lag.indices <- function(lag.vector,lag){
nrow <- length(lag.vector)+1
x1 <- rep(NaN,nrow-1)
x2 <- rep(NaN,nrow-1)
ne <- 1
for(i in 1:(mrow-1)){
for(j in 1:lag){
if (sum(lag.vector[i: (min(i+j-1,nrow-1))]1) == lag){
x1[ne] <- i
x2[nel] <- i+j
ne <- ne +1
break
}
if (sum(lag.vector[i: (min(i+j-1,nrow-1))]1) > lag){
break
}
}
}

x1 <- x1[!'is.na(x1)]
x2 <- x2['is.na(x2)]

return(cbind(x1,x2))

3

A.2 Adjusting the SOBI-function

The following codes describe adjustments of the R-function SOBI in the R-
package JADE [Miettinen et al., 2017], in order for it to be applicable to our
concrete data set.

#The following function is an adjustment of the SOBI function
SOBI.dif.lags <- function (X, k = 12, method = "frjd",
eps = le-06, maxiter = 100,
lagvector = rep(l,nrow(X)-1))
#Here the lag-vector containing the true lags between two
#consecutive rows is an additional input
{

if (length(k) == 1)

k <- 1:k
nk <- length(k)
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method <- match.arg(method, c("rjd", "djd", "frjd"))
#Here between different joint diagonalisation methods can
#be chosen
MEAN <- colMeans(X)
COV <- cov(X)
EVD <- eigen(COV, symmetric = TRUE)
COV.sqrt.i <- EVD$vectors %*%
tcrossprod(diag(EVD$values~(-0.5)), EVD$vectors)
X.C <- sweep(X, 2, MEAN, "-")
Y <- tcrossprod(X.C, COV.sqrt.i) #Here the whitening of
#the data matrix happens
p <- ncol(X)
R <- array(0, dim = c(p, p, nk))
n <- nrow(X)
lag.matrix.array <- list()
for (i in 1:nk) {
lag.matrix <-
get.vectors.with.true.lag.indices(lagvector,k[i])
#the vector k contains the chosen lags for the SOBI
#method
#Here our adjustment of the estimator of the
#auto-covariance matrix is implemented. The rows of
# the contains all pairs of observations in
#the data matrix with a time difference of lag k[i]
Yt <- Y[lag.matrix[,1],]
Yti <- Y[lag.matrix[,2],]
Ri <- crossprod(Yt, Yti)/nrow(Yt)
R[, , i] <- (R1i + t(R1))/2
lag.matrix.array[[i]] <- lag.matrix
}
JDoutput <- switch(method, frjd = {
#Here the joint diagonalisation is done
frjd(R, eps = eps, maxiter = maxiter)

}, rjd = {

rjd(R, eps = eps, maxiter = maxiter)
}, djd = {

djd(R, eps = eps, maxiter = maxiter, ...)
b

JD <- JDoutput$V

W <- crossprod(JD, COV.sqrt.i)

#Calcualtion of the final unmixing matrix

W <- sweep(W, 1, sign(rowMeans(W)), "x")

S <- tcrossprod(X.C, W) #Calculation of the sources
ssq_ac <- rep(0,p)
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#Here the sum of the squared auto-correlations for each
#latent source is calculated. This information could be
#used for dimension reduction, which was not
#needed in our case
for(j in 1:p){
for(i in 1:nk){
ssq_ac[j] <- ssq_ac[jl+JDoutput$D[j,j,i]"2
}
}

#
ord <- order(ssq_ac, decreasing = TRUE)
P <- matrix(0, p, p)
for (j in 1:p) {
P[j, ord[jl] <- 1
b
#Here the sources get ordered according to the
#above calculated sum of squared auto-correlatioms,
# usually used for dimension reduction,
#but was not needed in our case

S <- S[, ordl]

W <- P %% W

S <- ts(S, names = paste("Series", 1:p))

RES <- 1list(W = W, k = k, method = method, S = S)
class(RES) <- "bss"

RES

The following code is an implementation of the additional robustification
adjustment as described in BSS-method 3.

SOBI.dif.lags.rob <- function (X, k = 12, method = "frjd",
eps = le-06, maxiter = 100,
lagvector = rep(l,nrow(X)-1))

#Also here the lagvector is patched as an additional input
{

if (length(k) == 1)

k <- 1:k
nk <- length(k)
method <- match.arg(method, c("rjd", "djd", "frjd"))

robustscaleandcenter <- robustbase::covMcd(X,cor=FALSE)

MEAN <- robustscaleandcenter$center
COV <- robustscaleandcenter$cov
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EVD <- eigen(COV, symmetric = TRUE)
COV.sqrt.i <- EVD$vectors %*%
tcrossprod(diag(EVD$values~(-0.5)),
EVD$vectors)
#Here the robust whitening is performed using the
#robust MCD for location and scatter
X.C <- sweep(X, 2, MEAN, "-")
Y <- tcrossprod(X.C, COV.sqrt.i)
p <- ncol(X)
R <- array(0, dim = c(p, p, nk))
n <- nrow(X)
lag.matrix.array <- 1list()
for (i in 1:nk) {
lag.matrix <-
get.vectors.with.true.lag.indices(lagvector,k[i])
Yt <- Y[lag.matrix[,1],]
Yti <- Y[lag.matrix[,2],]
#Here the estimator of the spatial sign
#auto-covriance matrix is
#adjusted using the true lags
for(i in 1:(nrow(Yt))){
Yt[i,] <- Yt[i,]/norm_vec(Yt[i,])
Yti[i,] <- Ytil[i,]/norm_vec(Yti[i,])
}
#the function norm_vec outputs the
#Euklidean norm of a vector
Ri <- crossprod(Yt, Yti)/nrow(Yt)

R[, , i] <- (Ri + t(R1))/2
lag.matrix.array[[i]] <- lag.matrix

}
#The rest of the function is the same as in the
#adjustment of the classical SOBI

JDoutput <- switch(method, frjd = {
frjd(R, eps = eps, maxiter = maxiter)

}, rjd = {
rjd(R, eps = eps, maxiter = maxiter)
}, djd = {
djd(R, eps = eps, maxiter = maxiter, ...)
b
JD <- JDoutput$V
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W <- crossprod(JD, COV.sqrt.i)

W <- sweep(W, 1, sign(rowMeans(W)), "*")
S <- tcrossprod(X.C, W)

ssq_ac <- rep(0,p)

#
for(j in 1:p){
for(i in 1:nk){
ssq_ac[j] <- ssq_ac[jl+JDoutput$D[j,j,i]"2
}
}

#
ord <- order(ssq_ac, decreasing = TRUE)
P <- matrix(0, p, p)
for (j in 1:p) {
P[j, ord[j]] <- 1

}
S <- S[, ord]
W<-P YxhW

S <- ts(S, names = paste("Series", 1:p))

RES <- 1list(W = W, k = k, method = method, S = S)
class(RES) <- "bss"

RES

A.3 Adjusting the gFOBI-function

The following code shows an adjustment of the R-function gFOBI from the
package tsBSS [Matilainen et al., 2019].

gFOBI.dif.lags <- function (X, k = 0:12, eps = 1e-06,
maxiter = 100, method = "frjd",
na.action = na.fail, weight = NULL, ordered = FALSE,
acfk = NULL, original = TRUE, alpha = 0.05,lagvector)
{# like in the adjusted SOBI functions, additionally
#the vector containing the

#true lags is patched

nk <- length(k)

method <- match.arg(method, c("rjd", "frjd"))

MEAN <- colMeans(X)

COV <- cov(X)

EVD <- eigen(COV, symmetric = TRUE)

COV.sqrt.i <- EVD$vectors %x*%

tcrossprod(diag(EVD$values~(-0.5)), EVD$vectors)
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#Here the whitening of the data matrix happens

X.C <- sweep(X, 2, MEAN, "-")
Y <- tcrossprod(X.C, COV.sqrt.i)
p <- ncol(X)

R <- array(0, dim = c(p, p, nk))
n <- nrow(X)
for (i in 1:nk) {

lag.matrix <-
get.vectors.with.true.lag.indices(lagvector,k[i])
Yt <- Y[lag.matrix[,1],]

Yti <- Y[lag.matrix[,2],]

#Here the estimator of the fourth order-crossmoment-
#matrix is calculated

r <- sqrt(rowSums(Yt~2))

Yu <- r * Yti

Ri <- crossprod(Yu)/nrow(Yt)

R[, , i] <- Ri

}
JD <- switch(method, frjd = {
#Here the joint diagonalisation is done
frjd(R, eps = eps, maxiter = maxiter,
na.action = na.action,
weight = weight)$V
}, rjd = {
rjd(R, eps = eps, maxiter = maxiter, na.action =
na.action)$Vv
B
W <- crossprod(JD, COV.sqrt.i)
#Calculation of the final unmixing matrix
W <- diag(sign(rowMeans(W))) %*} W
S <- tcrossprod(X.C, W) #Calculation of the sources
if (ordered == TRUE) {
if (is.null(acfk) == TRUE) {
acfk <- k
}
ord <- ordf(S, acfk, p, W, alpha, ...)
W <- ord$wW
if (original == TRUE) {
S <- ord$s
}
else {
S <- ord$RS
Sraw <- ord$S
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Sraw <- ts(Sraw, names = paste("Series", 1:p))
if (is.ts(X))
attr(Sraw, "tsp") <- attr(X, "tsp")
}
}
S <- ts(S, names = paste("Series", 1:p))
RES <- list(W = W, k = k, S = S, MU = MEAN)
if (ordered == TRUE) {
if (original == FALSE) {
RES$Sraw <- Sraw
}
RES$fits <- ord$fits
RES$armaeff <- ord$armaeff
RES$1inTS <- ord$1inTS
RES$1inP <- ord$linP
RES$volTS <- ord$volTS
RES$volP <- ord$volP
}
class(RES) <- c("bssvol", "bss")
RES
}

A.4 Code for the NSS-SOBI-gFOBI-method

This subsection contains the code for the NSS-SOBI-gFOBI-method from Nord-
hausen et al. [2020], also adjusted for our data-set.

MS.x <-
function (X, Tau = 0, lagvector)
#This function returns the estimated auto-covariance matrix
# for a chosen lag using the lagvector containing the
#information about the true lags

{

lag.matrix <-
get.vectors.with.true.lag.indices(lagvector,Tau)

n <- nrow(X)
Xt <- X[lag.matrix[,1],]

Xti <- X[lag.matrix[,2],]

Ri <- crossprod(Xt, Xti)/nrow(Xt)
return((Ri + t(Ri))/2)
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MF.x <-

function (X, Tau = 0,lagvector)

{
#This function returns the estimated
#fourth-order-cross-moment-matrix for a chosen lag
#using the lagvector containing the information about
#the true lags
lag.matrix <-
get.vectors.with.true.lag.indices(lagvector,Tau)

n <- nrow(X)

Xt <- X[lag.matrix[,1],]
Xti <- X[lag.matrix[,2],]

r <- sqrt(rowSums(Xt~2))

Xu <- r * Xti

Ri <- crossprod(Xu)/nrow(Xt)
return(Ri)

}

SM <- function(M)
{ # This function is used to implement the weights
# with the maximum element in the joint
#diagonalisation

maxM <- max(abs(M))

if (maxM > 1) M <- M/maxM

return (M)

3

BSSmix <- function(X, tauS, tauF, K = 12, n.cuts = NULL,

eps = le-06, maxiter = 100, lagvector)

{#tauS is the lag-set for the auto-covariance matrices
#tauF is the lag-set for the fourth-order cross-moment
#matrices
#per default the time-period is divided into 12 equal
#parts also the lagvector is used for adjusting the
#estimators
n <- nrow(X)

MEAN <- colMeans(X)

COV <- cov(X)

EVD.COV <- eigen(COV, symmetric = TRUE)

COV.sqrt.inv <- EVD.COV$vectors %x*%

tcrossprod(diag(sqrt (1/EVD.COV$values)),
EVD.COV$vectors)
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X.C <- sweep(X, 2, MEAN, "-")
Y <- tcrossprod(X.C, COV.sqrt.inv)
# Here the whitening of the data matrix is done
p <- ncol(X)
if (is.null(n.cuts))
n.cuts <- ceiling(seq(l, n, length = K + 1))
else K <- length(n.cuts) - 1
N.cuts <- n.cuts + c(rep(0, K), 1)
LS <- length(tauS)
LF <- length(tauF)
R <- array(0, dim = c(p, p, (LS + LF) * K))
R1 <- R

R2 <- R
NAMES <- character((LS + LF) * K)
ii <- 1

for (i in 1:K) {
#Here the data matrix is divided into 12 equaly
#sized parts
Y.i <- Y[N.cuts[i]: (N.cuts[i + 1] - 1), ]
lagvector.i <- lagvector[N.cuts[i]:(N.cuts[i+1]-2)]
for (j in 1:LS) {
R[, , ii] <- MS.x(Y.i, Tau = tauS[j],lagvector.i)
R1[, , iil] <- R[, , iil
R2[, , ii] <- SM(RI[, , iil)
NAMES[ii] <- pasteO("ACOV_lag_",tauS[j]l,"_int_",i)
ii <-dii + 1
}
for (k in 1:LF) {
R[, , ii] <- MF.x(Y.i, Tau = tauF[k],lagvector.i)
# Here the different weights are implemented
R1[, , ii] <- R[, , iil/(p+2)
R2[, , ii] <- SM(R[, , iil)
NAMES[ii] <- pasteO("FCOV_lag_",tauF[k],"_int_",i)
ii <-dii + 1
}
}
JD <- frjd(R, eps = eps, maxiter = maxiter)
#Here the joint diagonalisation is done
#for each of the weights
JD1 <- frjd(R1l, eps = eps, maxiter = maxiter)
JD2 <- frjd(R2, eps = eps, maxiter = maxiter)
D <- t(apply(JD$D,3,diag))
D1 <- t(apply(JD1$D,3,diag))
D2 <- t(apply(JD2$D,3,diag))
colnames (D) <- pasteO("p",1:p)
rownames (D) <- NAMES
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colnames(D1) <- pasteO("p",1:p)
rownames (D1) <- NAMES
colnames(D2) <- pasteO("p",1:p)
rownames (D2) <- NAMES
W <- crossprod(JD$V, COV.sqrt.inv)
#Calculation of the final unmixing matrix
#for each of the weights
W1l <- crossprod(JD1$V, COV.sqrt.inv)
W2 <- crossprod(JD2$V, COV.sqrt.inv)
S <- tcrossprod(X.C, W)
#Calculation of the sources for each of the weights
S <- ts(S, names = paste("Series", 1:p))
RES <- 1list(W = W, D=D, tauS =tauS, tauF=tauF,
n.cut = n.cuts, K =K, S =8,
Wi = Wi, D1=D1,W2 = W2, D2=D2)
class(RES) <- "bss"
RES

67


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Introduction
	Introduction
	Notation

	Compositional data
	Definition and explanations
	Transformations of compositions, Aitchison geometry on the simplex
	Principal component analysis for compositional data

	Blind source separation
	Basic model and explanations
	The second order source separation model
	The stochastic independent component model
	Non-stationary source separation
	A new BSS method

	Blind source separation for compositional time series
	Blind source separation for highly correlated compositional time series

	Application on spectrometric data
	Data acquisition
	Dissolved organic matter
	Data preparation
	Visualisation of the data
	Dimension reduction via PCA
	Adjusting the estimators of bold0mu mumu SS2005/06/28 ver: 1.3 subfig packageSSSS and bold0mu mumu BB2005/06/28 ver: 1.3 subfig packageBBBB in the BSS models
	Fitting the BSS models
	Interpretation of loadings and sources

	Conclusion
	Acknowledgements
	R-Codes
	Codes for fixing the issue with the lags
	Adjusting the SOBI-function
	Adjusting the gFOBI-function
	Code for the NSS-SOBI-gFOBI-method


