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CRR Capital Requirements Regulation
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EBA European Banking Authority

ECB European Central Bank
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LR likelihood ratio
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OLS ordinary least squares

PD probability of default

pmf probability mass function

RF random forest

ROC receiver operating characteristics

SSM Single Supervisory Mechanism

TNR true negative rate

TPR true positive rate
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Nomenclature

A active set

β̂A
Lasso

adaptive Lasso

β̂Lasso Lasso

L(·) likelihood function

L(·) objective function in an optimization problem

l(·) log-likelihood function

λmax minimum value of λ which yields β̂Lasso(λ) = 0.

n number of observations

p number of covariates

p̂ predicted probabilities

sgn sign function

ŷ predicted values
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Chapter 1

Introduction

Assessing the risk that a borrower will not be able to repay his debt or fail to meet his interest

payment obligations is as old a task as money lending itself. The general interest in quantify-

ing this risk by building internal probability of default (PD) models, however, only increased

considerably when the Basel Comittee on Banking Supervision (BCBS) proposed its banking

regulation framework Basel II in 2004, which allows banks to assess capital requirements

according to the internally estimated credit risk of their counterparts. While discriminating

between financially stable and unstable clients was the top priority for regulators during the

time before the financial crisis 2008-09, recent developments shift their attention towards model

calibration for performance in different times in the macroeconomic cycle. This has been influ-

enced by the European Central Bank (ECB) and European Banking Authority (EBA) in the

form of regular obligatory stress testing exercises for a large number of banks1, which test banks

on capital requirement sensitivity during strong downturns of the macroeconomic environment.

In addition, the introduction of the new IFRS 9 accounting standard encourages many banks

to incorporate macroeconomic variables into their PD model frameworks.

Due to these historical developments, drivers for credit defaults are frequently examined in a

two-step approach. First, qualitative information on the borrower is used to create a rank –

the credit score – according to characteristics of the individual. The current credit score should

reflect the probability for the borrower to be unable to meet their payment obligation in the

following year and therefore is the tool for measuring the average credit risk of the counterpart.

In addition, there is clear evidence on the dependence of the PD on the macroeconomic envi-

ronment, meaning that the probability to default during a macroeconomic downturn period is

higher even if the credit scores do not change. This has not only been extensively tested in

literature (for credit card holders e.g. in Bellotti & Crook, 2009), but also acknowledged as a

fact by the EBA as well as the ECB and therefore part of the regular stress testing exercises

1All banks subject to the Single Supervisory Mechanism (SSM) are part of the stress testing exercises con-
ducted by the EBA or the ECB.

1
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for SSM-banks conducted by both EBA and ECB. Therefore, in the second step, PDs are as-

signed to the individuals depending on their current credit score as well as the macroeconomic

environment.

Scoring models are based on the data available on the corresponding counterpart. For example,

if the borrower is a private individual, this score can depend on socio-demographic (Oesterre-

ichische Nationalbank, 2004, page 30) information such as age, profession or place of residence,

but also on behavioral factors such as past due status and amounts thereof (Wang et al., 2015).

The methodology to develop a scoring model reaches from expert judgment-based score cards

to the usage of more complex forms of regression models, multivariate discriminant analysis,

but also more computationally intensive models such as artificial neural networks. Based on the

obtained credit score, borrowers are categorized into homogeneous buckets: the rating classes.

One of the industry standard statistical methods of quantifying default probabilities is logistic

regression (Abdou & Pointon, 2011). Its advantage lies mostly in the straight-forwardness of

the interpretation of its result – for each observation, the outcome can be easily explained by

looking at the characteristics of the individual and the values of the corresponding coefficients

in the regression model. Furthermore, from a more technical point of view, the maximum like-

lihood (ML) function can be easily derived, which is why the whole statistical toolkit for ML

estimation can be applied. As a final point, it should not be left unmentioned that it is possible

to incorporate macroeconomic influence as well as the drivers for a credit score at the same time.

However, the ML estimator in the logistic regression model struggles with the typical diffi-

culties in ML estimation. First, there needs to be a procedure to establish model selection,

since all explanatory variables included in the model are assigned a certain contribution to

the result. This leads to a risk of overfitting the current data and, as a consequence, poor

performance on test data sets. Typically, in order to solve this issue, best subset selection is

used in order to select significant variables. However, best subset selection is computationally

highly intensive and, additionally, academic research shows that it leads to extremely variable

solutions (as stated e.g. in Zou, 2006). Second, multicollinearity in the explanatory variables

leads to unreasonable statistical inference on the corresponding coefficients, since the estima-

tion method cannot decide which one of the collinear variables explains the variance in the data.

A modern statistical estimation method, the least absolute shrinkage and selection operator

(Lasso), attempts to tackle these issues. It was first introduced by Tibshirani (1996) for the

ordinary least squares (OLS) regression model; since then, significant amount of research has

been conducted on the Lasso due to its popularity resulting from its automatic model selection

feature. The extension to general ML models is viewed as only one of the achievements of the

past years. The Lasso incorporates a tuning parameter λ as well as a penalty on the size of the
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coefficients which shrinks some of them towards zero. In fact, some of the coefficient estimates

then obtain the exact value of zero.

β̂Lasso(λ) = argmin
β∈Rp

(

f(β;X, y) + λ

p
∑

i=1

|βi|
)

(1.1)

The automatic model selection feature of the Lasso means that if the contribution of a specific

factor to the dependent variable is neglectably small, the value of its estimated contribution

is set to zero. The number of variables with contribution set to zero, however, depends on

the size of the tuning parameter λ. The model selection procedure therefore breaks down to a

one-dimensional problem of optimizing the tuning parameter to its optimal value.

It is shown in Zou (2006) that certain small adaptions to the Lasso – resulting in the adaptive

Lasso – lead to a consistent estimation of the parameter in generalized linear models. Fur-

thermore, the Lasso can always be computed, even if the column rank of the matrix does not

equal the number of explanatory variables, e.g. when the number of variables included in the

regression exceeds the number of observations. As a consequence, it is possible to include a

high number of explanatory variables in the model – even if linear dependence between the

explanatory variables is not even in this case truly advisable.

Fast algorithms have already been implemented to compute the Lasso path (1.1), which pro-

vide a possibility to conduct model selection even when the number of explanatory variables is

large. Therefore, it is possible to include a high number of desired variables into the regression

and detect influence of those possible explanatory variables on the dependent variable, which

have not been considered influential before. The insignificant variables are ruled out during the

model selection process.

The assumption of a linear influence of the explanatory variables on the log-odds of the proba-

bilities is one of the greatest criticisms of logistic regression. Variable transformations may be

used to tackle this issue, however, any function could be used for transforming the variables

and therefore it is not clear, which transformation would yield the best results. Discretizing the

covariates and applying the fused Lasso, a useful modification of the Lasso, allows an analysis

of the influence. This avoids arbitrary transformations of the variables, conversely, the influence

of the explanatory variables are tested and non-linearities captured.

This work uses credit bureau data from kaggle and attempts to find significant credit default

drivers by using the logistic Lasso (Chapter 2). The data are transformed and discretized in

order to check for non-linear influences (Chapter 4) using the fused Lasso (Section 2.3.3). Model

selection is conducted via cross-validation using the AUC as the performance measure on out-

of-sample data or via AIC/BIC on in-sample data (Chapter 3). Results of model selection and
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comparison between selected estimators are presented in Chapter 5.
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Chapter 2

Estimating Credit Default Drivers

via the Lasso

In its original form as introduced by Tibshirani (1996), the Lasso refers to a shrinkage estimator

in the linear regression model. However, its application can be extended to more general types

of models, e.g. all parametrized statistical models where parameter estimation is based on the

optimization of a function. This includes for example generalized linear model (GLM) such

as logistic regression as well as models descending from survival analysis techniques1. The

methodology to use the Lasso within the logistic regression model will be outlined in Section

2.2.

2.1 Preliminary Work

Although Lasso regression is a relatively new method for estimating the coefficients in the linear

regression model, it has already been thoroughly studied in hundreds of publications. Conse-

quently, algorithms for the calculation of tuning parameter paths were developed for the logistic

regression model (e.g. in Park & Hastie (2007) for several types of GLM). Applications can be

found in many types of classification problems, encompassing a wide range of fields, such as

medicine efficiency assessment, genome (Wu et al., 2009), image (Sun et al., 2014) or text clas-

sification (Genkin et al., 2007).

In credit scoring literature, classical logistic regression is probably the most wide-spread method

for estimating models and may be considered as the industry standard (Thomas et al., 2002).

However, logistic Lasso methods have only been sporadically applied in the context of estimat-

ing credit scoring models so far, mostly in the context of general machine learning algorithms

and in comparison with other algorithms.

1For a textbook treatment of these methods, see e.g. Cameron & Trivedi (2005).
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Wang et al. (2015) compare simple Lasso-logistic regression to an ensemble of Lasso-logistic

base learners created by bagging (Breiman, 1996) and other tree-based algorithms like classi-

fication and regression tree (CART) and random forest (RF) using the same data set as this

work. They find that the ensemble does not significantly outperform the single Lasso-logistic

regression algorithm as well as the RF in terms of area under the curve (AUC), but outperforms

them in terms of F-measure. Choi et al. (2015) use the fused Lasso (Tibshirani et al., 2005)

on simulated data as well as on the German credit data available on the UCI machine learning

repository especially in order to deal with categorical and ordinal variables. They find that the

fused Lasso outperforms the Lasso in terms of misclassification rate.

2.2 Logistic Regression

2.2.1 Overview

From the perspective of the credit lender, at the beginning of a year, two possible outcomes

may occur at the end of the same year: either, the client i is unable to repay his debt or else

fails to meet his interest payment obligations, the default event, or he is able to do so, the

non-default event. Considering the credit default as a random variable Y with two possible

outcomes and coding it accordingly, i.e., [Y = 1] corresponds to a default event and [Y = 0]

to a non-default event, it can be seen as a non-degenerate Bernoulli distributed variable with

parameter p := P (Y = 1) ∈ (0, 1).2

A regression model arises when the probability of a default event is set into relationship with

a set of attributes x = (x1, . . . , xp)
′ ∈ R

p of the client, the covariates or explanatory variables.

The link between the covariates x and the outcome Y is established through the probability

p, which is connected to the set of covariates by using a link function F : R → [0, 1] and an

unknown parameter β ∈ R
p:

p = F (x′β) = F (x1β1 + . . .+ xpβp). (2.1)

In the case of logistic regression, the link function is chosen as F (z) = Λ(z) := 1
1+exp(−z) and is

therefore strictly monotonically increasing. The choice of the link function is important for the

interpretation of the result, which can be conducted by considering the marginal effects ∂p
∂xj

.

They measure the dependence of the probabilities on the covariates by capturing the change of

probability, if the j-th explanatory variable is increased by a unit. For the logistic regression

2The assumption of a PD equal to zero is highly unrealistic – history has shown that even states, which are
considered one of the safest investments, can default. In fact, even the EBA prescribes a minimum PD of 0.03%
in the Capital Requirements Regulation (CRR). Conversely, application of a PD value of 1 is unnecessary; in this
case, the client may as well be assumed as already in default, while we focus solely on the prediction of default
probabilities for non-defaulted clients.
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model, the effects are as follows:

∂p

∂xj
= Λ(x′β)(1− Λ(x′β))βj = p(1− p)βj . (2.2)

For low values of p ≈ 0, as is typical in credit scoring, βj can therefore be interpreted as the

percentage change of p, if the j-th covariate xj is increased by a unit.

∂ log p

∂xj
=

1

p

∂p

∂xj
= (1− p)βj ≈ βj .

In case of logistic regression, the linear term z := x′β from Equation (2.1) corresponds to the

log-odds between probabilities and counter-probabilities log(p/(1− p)), because

log
p(z)

1− p(z)
= − log





1
1+exp(−z)

exp(−z)
1+exp(−z)



 = − log(exp(−z)) = z.

Therefore we can conclude that the log-odds are linearly dependent on the covariates and this

term is given special attention when it comes to the analysis of results in logistic regression.

2.2.2 Parameter Estimation

If the parameter β is already known, the logistic regression model provides default probabili-

ties for all counterparties with given covariates x. However, in practice, this is not the case,

which is why β needs to be estimated from default data y = (y1, . . . , yn) ∈ {0, 1}n and their

respective covariates X = (x1, . . . ,xn)
′ ∈ R

n×p. For that, we need to assume that the data are

realizations of independent Bernoulli distributed random variables (Y1, . . . , Yn) with parameters

pi := P (Yi = 1|xi).

The most wide-spread method for parameter estimation in the logistic regression model is

Maximum-Likelihood (ML). The ML estimator β̂ML is thereby defined as the solution of the

optimization problem of maximizing the likelihood function L(·).

β̂ML := argmax
β∈Rp

L(β; y,X)

The likelihood function L : Rp → R is defined as the joint probability mass function (pmf) of

the random variables (Y1, . . . , YN ) depending on the parameter β evaluated at the data y and X.

In the following, we will deduct L for the logistic regression model. Since the Yi are independent,

the joint pmf is equal to the product of the marginal pmfs of the Yi, which are Bernoulli

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

distributed by definition. The pmf of a Bernoulli distributed variable can be written as follows:

P (Yi = yi) = pi1{yi=1} + (1− pi)1{yi=0} = pyii · (1− pi)
1−yi .

As a consequence, the likelihood function is as follows:

L(β; y,X) = P (Y = y|X) =
n∏

i=1

pyii (1− pi)
1−yi =

n∏

i=1

Λ(x′
iβ)

yi(1− Λ(x′
iβ))

1−yi .

However, for improved numerical conditioning, easier assessment of the scores (the first deriva-

tive) and because of its statistical properties, the log-likelihood function l(·) is usually considered

instead of the likelihood function.

l(β; y,X) = logL(β; y,X) =
n∑

i=1

{
yi log Λ(x

′
iβ) + (1− yi) log(1− Λ(x′

iβ)
}

=
n∑

i=1

{

yi log
Λ(x′

iβ)

1− Λ(x′
iβ)

+ log(1− Λ(x′
iβ)

}

=
n∑

i=1

{
yix

′
iβ − log(1 + exp(x′

iβ)
}

Existence and Uniqueness

If the ML estimator exists, i.e., there is β ∈ R
p, which maximizes the likelihood function,

uniqueness is given if the matrix X has full column rank, since the likelihood function is strictly

concave in this case.

However, the existence of an optimal value is not easily guaranteed for any continuous and

strictly monotonically increasing F : R → (0, 1). In fact, ML estimation in logistic regression

is not possible if the respective covariates of the default and non-default observations can be

discriminated with a linear hyperplane (a detailed discussion of this can be found in Albert &

Anderson, 1984). In this case, the orthogonal vector v to the hyperplane fulfills that v · xi ≤ 0

for all i with yi = 0 as well as v · xi ≥ 0 for all i with yi = 1.3 In this case, the value of

the objective function can always be increased by moving into the direction of v increasing the

scores xi · (β + v) for all observations with yi = 1 and decreasing the scores for all observations

with yi = 0. Since F is strictly monotonically increasing, i.e., increasing scores always lead to

increasing probabilities and vice versa, but never actually reaches the values of {0, 1}, the ML

estimator does not exist.

3If the model contains an intercept, the property of perfect linear discrimination needs to be tested only with
the remaining variables and the hyperplane can be affine, i.e., zero in the inequalities above can be replaced by
a constant η ∈ R, because (−η, v′)′ · (1,x′

i)
′ = −η + v · xi.
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X1

X2

Figure 2.1: Example of a case where the ML estimator does not exist. The red dots denote
the default observations, the blue dots the non-default observations. The model
contains an intercept and v is the red arrow.

In Silvapulle (1981), a slightly different but equivalent formulation has been proven. It has

been shown that the ML estimator exists if and only if the positive half cones spanned by the

line vectors of all observations with yi = 1 and those with observations yi = 0 intersect. The

following formalization holds true:

Theorem 1 (Silvapulle, 1981):

A: Let y,X be the realizations in a logistic regression model, J := {i ∈ {1, . . . , n} : yi =

1} the set of all indices i where yi = 1, xi = (xi1, . . . , xip)
′ the i-th row vector of

X, S := {∑i∈J kixi : ki > 0}, F := {∑i∈Jc kixi : ki > 0} the positive half cones

spanned by the row vectors of X ∈ R
n×p with indices in J and Jc, respectively, and

let xi1 = 1, i = 1, . . . , n, such that the model includes an intercept.

S: Then, β̂ML exists and the set of optimal values is bounded if and only if S ∩ F 6= ∅.
Furthermore, β̂ML is unique if rk(X) = p.

In this work, all variables are transformed into indicator variables (see Section 4.3). Therefore,

the consequences of the theorem above will be analyzed for matrixes X consisting of an intercept

and indicator variables X = (1, δ2, . . . , δp), δj ∈ {0, 1}n, j = 2, . . . , p in detail. The theorem in
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Silvapulle (1981) implies that each level of each indicator variable necessarily needs to contain

observations with y = 0 as well as y = 1. If this is not the case for any variable δj , j = 1, . . . , p,

e.g. δj = 1 implies that y = 1, then any increase in βj implies an increase in the value of the

likelihood function and the ML estimator does not exist.

However, the condition above is not sufficient for the existence of the ML estimator. For

example, consider the case with p = 3 and n = 6 and the following data:

y =














1

1

1

0

0

0














, X =














1 1 1

1 0 0

1 0 1

1 1 1

1 0 0

1 1 0














, β =






β0

β1

β2




 .

In this case, every level of each variable individually contains observations with both y = 1 and

y = 0, however, β̂ML does not exist, since the respective sets F = {(a, b, c)′ : a > c > b > 0}
and S = {(a, b, c)′ : a > b > c > 0} do not intersect.

Obviously, a sufficient condition for the existence of β̂ML is that for every row x′
i with yi = 1

there exists a corresponding index j(i) with yj(i) = 0 and xi = xj(i) and vice versa. However,

this condition is not necessary, as it is very strong. A specific rule for the existence of the

ML estimator could not be found in this work. The explanations in this chapter shall indicate

that existence is not always guaranteed in logistic regression and should therefore always be

individually checked for in the estimation process.

Consistency and Asymptotic Normality

The most important reason for the popularity of ML estimation is the availability of an ex-

tensive statistical toolkit that has been especially developed for these types of estimators. In

particular, asymptotic properties have been of strong interest and therefore have been thor-

oughly studied e.g. in Amemiya (1985). It was shown that ML estimators require only mild

regularity conditions in order to achieve consistency and asymptotic normality.

A sequence of estimators β̂n is called consistent, if it converges in probability to the true pa-

rameter, i.e.,

∀ε > 0 : lim
n→∞

P
(∥
∥
∥β̂n − β

∥
∥
∥ > ε

)

= 0.

β̂n is called asymptotically normally distributed if its difference to the true parameter multiplied
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by
√
n converges in distribution to a non-degenerate normal distribution.

lim
n→∞

√
n(β̂n − β)

d−−−→
n→∞

N(0,Ω), Ω > 0.

For the logistic regression model in particular, consistency and asymptotic normality are already

achieved with restrictions made only on the regressor matrix X. The following formulation can

be shown:

Theorem 2

A: In a logistic regression model, with the regressor matrix X = (x1, . . . ,xn)
′ ∈ R

n×p

having the following properties:

❼ rk(X) = p, i.e., X has full column rank

❼ ∃η > 0 : ‖xi‖ < η for all i = 1, . . . , n, i.e., the xi are uniformly bounded

❼
1
nX

′X → C for a positive definite matrix C ∈ R
p×p

❼ Gn(x) := 1
n

∑n
i=1 1(−∞,x](xi) converges to a non-degenerate cumulative distri-

bution function G.

S: Then, the ML estimator β̂ML is consistent and asymptotically normal.

Further Properties

If the ML estimator exists and is unique, the estimator can be derived from the scores ∂l
∂β of

the log-likelihood function.

∂l(β; y,X)

∂β
=

n∑

i=1

{

yixi −
exp(x′

iβ)

1 + exp(x′
iβ)

xi

}

=

n∑

i=1

(
yi − Λ(x′

iβ)
)
xi = 0. (2.3)

In the logistic regression model, the predicted probabilities p̂ are equal to Λ(x′
iβ̂). Therefore,

the scores in Equation (2.3) can be interpreted as a weighted average of residuals. If the model

includes an intercept (i.e., xi1 = 1, i = 1, . . . , n), the residuals sum up to zero, which results in

the well-known fact that the average of predicted probabilities is equal to the average default

rate in the data.

1

n

n∑

i=1

yi =
1

n

n∑

i=1

p̂i. (2.4)

Equation (2.4) is one of the reasons to prefer the logistic link function to any other distribution

function, where this identity does not necessarily hold true.
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2.3 The Lasso Estimator

2.3.1 Lasso Estimation in Generalized Linear Models (GLMs)

In its original form, the Lasso estimator was introduced for the linear regression model. Its

general idea is to shrink the parameters β1, . . . , βp by introducing a constraint directly on their

size. Ideally, the coefficients of non-significant4 variables obtain the exact value of zero, which

excludes them from the model. In order to reach this, the size of the parameter vector is

measured in its l1-norm

‖β‖1 :=
p
∑

j=1

|βj | .

For estimating the parameter in GLM, pairs of data (yi,x
′
i)
′ ∈ R

p+1, i = 1, . . . , n are given,

where the yi are viewed as realizations of random variables Yi having the same conditional

distribution as a random variable Y ∈ Θy ⊆ R and xi ∈ R
p, where the following relationship is

assumed between the random variable and the predictors:

g (E[Yi|xi]) = x′
iβ, i = 1, . . . , n. (2.5)

g : R → R is the so-called link function between the mean of the random variable Y and the

predictors. The distribution of Y is assumed to be part of the exponential family. Therefore,

its density function, or pmf, can be expressed as

fY (y|θ, φ) = exp

(
yθ − b(θ)

a(φ)
+ c(y, φ)

)

.

Parameter estimation in its most wide-spread form is performed by maximizing an objective

function −L(·), which in many cases corresponds to the log-likelihood function (e.g. in the

logistic regression model) or partial likelihood functions (e.g. in the Cox regression model),

which yield the ML estimator β̂ML.

β̂ML = argmax
β∈Rp

−L(β) = argmin
β∈Rp

L(β). (2.6)

Similarly to the ML estimator, the Lasso-estimator is the solution of an optimization problem

using the same objective function L(·). However, as opposed to ML-estimation, a constraint

on the parameter size is imposed. The Lasso estimate β̂Lasso is therefore defined as the optimal

solution of the optimization problem

β̂Lasso(t) := argmin
β∈Rp

L(β), s.t. ‖β‖1 ≤ t. (2.7)

The introduction of the tuning parameter t ≥ 0 is convenient, since it generates a transition

4In this context, ”significant” is not to be interpreted in a classical statistical way, but in the sense that it is
significantly improving the value of an objective function.
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from β̂Lasso(0) = 0 ∈ R
p to the ML estimator β̂Lasso(t) = β̂ML, which is true for any t ≥

∥
∥
∥β̂ML

∥
∥
∥
1
.

This is obvious, since for any t ≥
∥
∥
∥β̂ML

∥
∥
∥
1
, the global solution of problem (2.6) lies within the

bounds imposed in problem (2.7).

Tibshirani (1996) lists two main reasons to use the Lasso instead of the OLS estimator in the

linear regression model. First, prediction accuracy of the coefficients can be improved by in-

creasing the bias, but decreasing the estimator variance at the same time. Second, the Lasso

can set the value of rather insiginificant coefficients to zero (as illustrated in Figure 2.25), which

results in a smaller subset of variables included in the model and makes it easier to interpret.

The set of variables with coefficients set to a value different from zero is called the active set

and grows with t towards the set of all explanatory variables. It can be shown that the tran-

sition from 0 to the OLS estimator is piecewise linear in t (Rosset & Zhu, 2007, page 1017).

More specifically, on intervals of t, on which the active set does not change, β̂Lasso(t) is a linear

function in t.

β̂LASSO(t)-

{
β ∈ R

2 : ‖β‖1 ≤ t
}

β̂ML

β1

β2

Figure 2.2: Illustration of the Lasso solution for a given t. In this
case, β̂1 = 0

5In fact, β̂1 obtains a value of exactly zero, in this example. This is possible, because the set of admissible
values (the shaded area) has non-differentiable corners at the values of zero. The ellipses around the OLS
estimator represent sets of parameters β, where the value of the objective function in problem (2.7) is constant.
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Typically, the Lasso is analyzed by using its reformulation by its Kuhn-Tucker conditions (see

e.g. Rockafellar, 1996, Theorem 28.1). In this case, the Lagrange function L̃ is written as

L̃ : Rp×R+ → R, (β, λ) 7→ L(β)+λ ‖β‖1. The Lasso can therefore also be viewed as a function

of the tuning parameter λ.

β̂Lasso(λ) := argmin
β∈Rp

L̃(β, λ) = argmin
β∈Rp

{L(β) + λ ‖β‖1} . (2.8)

The notation β̂Lasso(λ) will also be used to indicate the use of the formulation in (2.8).

As expected, there are no huge differences in these fomulations. In fact, the following theorem

can be shown:

Theorem 3 (Osborne et al., 2000):

A: In a logistic regression model, denote with β̂A(t) the solution of problem (2.7) and

with β̂B(λ) the solution of problem (2.8).

S: Then these problems are equivalent in the following sense:

❼ For any t <
∥
∥
∥β̂LS

∥
∥
∥
1
, there is λ0 > 0 such that β̂B(λ0) = β̂A(t).

❼ For any λ > 0, there is t0 =
∥
∥
∥β̂(λ)

∥
∥
∥
1
such that β̂A(t0) = β̂B(λ).

We can therefore use both formulations in order to analyze the properties of the Lasso solution

path.

Since the objective function of problem (2.8) is only piecewise differentiable, it is useful to

reformulate it by introducing new variables β+, β− ≥ 0 and replacing β with the term β+−β−.

This increases the dimension of the optimization problem and the number of constraints6,

but makes the problem globally differentiable such that equalities hold in the Kuhn-Tucker

conditions. The transformed problem yields the following Lagrange function L̃:

L̃(β+ − β−, λ) = L(β+ − β−) + λ1 · (β+ + β−)− λ+β+ − λ−β−. (2.9)

The Kuhn-Tucker conditions of problem (2.9) are as follows:

s(β) :=
∂L
∂β

= −λ+ λ+ ≥ −λ (2.10a)

s(β) :=
∂L
∂β

= λ− λ− ≤ λ (2.10b)

6For the replacement of β to make sense, β+ and β− need to be componentwise nonnegative. In order to omit
the constraints, additional Lagrange parameter vectors λ+ and λ− are introduced, respectively.
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λ+, λ− ≥ 0, λ+β+ = λ−β− = 0. (2.11)

The inequalities in Equation (2.10) hold componentwise and hold true because of the inequalities

in Equation (2.11). The conditions yield that the scores s(β) therefore fulfill the following

constraint:

|s(β)| ≤ λ, (2.12)

where the absolute value is again to be understood componentwise. Equality in (2.12) holds for

the j-th component if |βj | > 0 and the score s(β)j is positive if and only if βj < 0. The set A of

all indices j such that |βj | > 0 is called the active set. Its components naturally depend on the

value of λ – the notation βA(λ) will therefore be used to indicate those indices of β that belong

to A at λ. For A, Equation (2.10) can be rewritten as follows:

s(β)A =
∂L
∂βA

= − sgn(βA)λ. (2.13)

The sign function sgn is again to be understood componentwise.

If we interpret β in Equation (2.13) as an implicitly defined function of λ, we can determine

the first derivative β′(λ) as

∂2L
∂βA∂β

′
A

β′
A
(λ) = − sgn(βA) =⇒ β′

A
(λ) =

(
∂2L

∂βA∂β
′
A

)−1

sgn(βA). (2.14)

From Equation (2.14), we can deduce that β′
A
(λ) is constant as long as the active set or the

sign of the parameter does not change if the objective function is quadratic, as for the OLS

estimator in the linear regression model.

This is a result from Rosset & Zhu (2007), who found that solution paths for Lagrange functions

L̃ having the form L+ λ · Pλ are piecewise constant if and only if L is piecewise quadratic and

the penalty function Pλ – which in the case of the Lasso equals λ ‖β‖1 – is piecewise linear in

the components of β.

2.3.2 Adaptive Lasso

From formulation (2.8), it can be deduced that the Lasso is not independent from the scale of the

explanatory variables. A sensible estimator in a model fulfills the condition that the rescaling

of any single variable (i.e., the multiplication of the variable by a constant c 6= 0) yields the

same predicted values ŷ. This is fulfilled for any estimator that is defined as a solution of an

optimization problem, where the objective function is not explicitly based on β, but on Xβ7,

7In this case, the notation L(Xβ) will be used.
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because

Xβ = XD
︸︷︷︸

=:X̃

D−1β
︸ ︷︷ ︸

=:β̃

= X̃β̃, (2.15)

where D = diag(d1, . . . , dp) is any diagonal matrix with entries di 6= 0. As can be seen from

Equation (2.15), the scaling of X results solely in a reparametrization of the optimization prob-

lem and therefore does not change the objective function and thus the result.

For the Lasso, however, the objective function does not solely depend on Xβ, but also explicitly

on β. This can be observed in Equation (2.8), where a multiplicative transformation of X relates

to the original problem as follows:

L(X̃β̃) + λ
∥
∥
∥β̃
∥
∥
∥
1
= L(Xβ) + λ

p
∑

j=1

|dj |−1 |βj | . (2.16)

Problems (2.8) and (2.16) therefore differ and in general also result in two different solutions. In

essence, the Lasso is not a scale-independent estimator if used like in Equation (2.8). In order to

show the effects of this property, assume that the Xi are centered and have unit variance, such

that the coefficients |di| can be interpreted as the standard deviations in X̃i. From Equation

(2.16), we can deduce that variables with high standard deviations are less penalized than those

with relatively small ones.

In order to correct that, two solutions have been proposed. Both solutions introduce adaptive

weights wj ≥ 0, j = 1, . . . , p, which scale the penalty on the coefficient differently for every

coefficient.

β̂A
Lasso(λ) :=






argmin
β∈Rp

L(β) + λ

p
∑

j=1

wj |βj |






. (2.17)

The obvious choice for the weights w are the respective standard deviations of the variables

Xi. Zou (2006) proposed to use the inverse absolute values of the OLS estimator as weights

and named β̂A
Lasso the adaptive Lasso. He proved the following asymptotic statement for the

adaptive Lasso using any root-n-consistent8 estimator as weights.

8A root-n-consistent estimator is defined as a consistent and asymptotically normal distributed estimator with

convergence factor
√
n, i.e.,

√
n(β̂ − β)

d−−−−→
n→∞

N(0,Σ) for a positive definite matrix Σ.
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Theorem 4 (Special case of Zou (2006, Theorem 2) with γ = 1):

A: Let β̂ a root-n-consistent estimator for β in the linear regression model, assume that

X ′X
n→∞−−−→ C, where C is a positive definite matrix (i.e., C > 0) and choose a sequence

λn with the properties λn/
√
n → 0 and λn → ∞. Define A as the set of indices with

true coefficient different from zero and A
∗
n the indices with Lasso estimates different

from zero.

S: Then the adaptive Lasso estimates β̂∗(n) := β̂A
Lasso(λn) with weights 1/

∣
∣
∣β̂i

∣
∣
∣ satisfy:

1. limn→∞ P (A∗
n = A) = 1

2.
√
n(β̂

∗(n)
A

− β∗
A
)

d−→ N(0, C11)

for a positive definite matrix C11 ∈ R
|A|×|A|.

β̂A
LASSO

(t)-

{

β ∈ R
2 : ‖β/β̂LS‖1 ≤ t

}

β̂ML

β1

β2

Figure 2.3: Illustration of the adaptive Lasso solution for a given

t. In this case, t = 1 and β̂1
A

= 0
.

2.3.3 Fused Lasso

GLMs are designed to be applied using a set of numerical, especially continuous covariates

X1, . . . , Xp, since Equation (2.5) is undefined for non-numerical variables. In order to include

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

a non-numerical, especially categorical explanatory variable Xj in the regression, as an obvious

choice, indicator variables are created for each level {l1, . . . , lk} of Xj and included in the re-

gression instead of Xj . While this is a valid approach, its usage has a major limitation: some of

the categories might have similar influence on the dependent variable, but the Lasso can only

identify that if this influence is zero.

As for ordinal variables, similar drawbacks can be observed: While it is possible to treat them as

continuous variables, it is not advisable, since their influence might be highly non-linear, which

leads to bad estimation results. Another solution is to treat them as categorical variables, ac-

cepting the drawback that the approach does not account for the order of the categories. In

order to eliminate both limitations, Tibshirani et al. (2005) propose the fused Lasso, which is a

slight modification of the Lasso that is designed to include ordinal variables into the model.

In order to introduce the fused Lasso for a single ordinal explanatory variable X with levels

1, . . . , k, create variables X1, . . . , Xk with Xj = 1{X=j} and define β0 := 0. In this case, the

fused Lasso estimator is defined by

β̂Lasso(λ) := argmin
β∈Rk

{

L(Xβ) + λ
k∑

i=1

|βi − βi−1|
}

. (2.18)

Note that this penalty can also be reached with the regular Lasso optimization algorithm by

using a transformation of the variables X1, . . . , Xk. Define β̃i := βi − βi−1, i = 1, . . . , k. Then,

β̃ is a linear transformation of β; in matrix notation, β̃ = Uβ, with

U =









1 0 · · · 0

−1 1 · · · 0
...

. . .
. . .

...

0 · · · −1 1









, U−1 =









1 0 · · · 0

1 1 · · · 0
...

. . .
. . .

...

1 · · · 1 1









,

such that the optimization problem in (2.18) can be viewed as a regular Lasso problem with

parameter β̃ and variables X̃j :=
∑k

i=j Xi = 1{X≥j}.

Finally, it is important to state that the fused Lasso is also appropriate to study non-linear

dependencies on continuous variables. For such a variable X, define k breakpoints9 xi, i =

1, . . . , k and define variables Xi := 1{X≥xi}. Then the resulting coefficient sequence βi can be

interpreted as the values of a piecewise constant function on the increments [xi, xi+1).

9For a detailed description of possible approaches to define breakpoints see Section 4.3.1.
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{
β ∈ R

2 : |β1|+ |β1 − β2| ≤ t
}

β̂LASSO(t)-

β̂ML

β1

β2

Figure 2.4: Illustration of the fused Lasso solution for a given t.
In this case, β̂1 = 0

.

2.4 Lasso in the Logistic Regression Model

After introducing the Lasso for the linear regression model, significant research was conducted

on its introduction for GLMs. Earlier works include Lokhorst (1999), Roth (2004) and Shevade

& Keerthi (2003). Since then, faster and more efficient algorithms were developed for calculating

the Lasso solution path.

2.4.1 Definitions

The Lasso in the logistic regression model is a penalized ML estimator, such that – continuing

with the notation from Section 2.2 and 2.3 – L(β) = −l(β; y,X) and

β̂Lasso(λ) = argmin
β∈Rp

{−l(β; y,X) + λ ‖β‖1} . (2.19)

In logistic regression, the intercept is approximately equal to the logit transformed average

probability to default, if the matrix X has standardized columns. Since standardization of y

is not possible, an intercept is therefore typically included in the regression, but excluded from

penalization.
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2.4.2 Properties

As opposed to the Lasso in the linear regression model, the solution paths β̂Lasso(λ) are not

piecewise linear in general. This can be directly deduced from formula (2.14), since the Hessian

matrix of the log-likelihood function is not independent of the parameter β.

∂2L
∂β∂β′

=

n∑

i=1

Λ(xiβ)(1− Λ(xiβ))xix
′
i.

In Section 2.2.2, we could see that the ML estimator has the property that the average probabili-

ties equal the average observations. This property remains intact if the intercept is unpenalized.

This can be seen by a combination of equations (2.3) and (2.10), using that the first score is

unpenalized and is therefore equal to zero.

Furthermore, existence of the Lasso estimator is provided easier than in the case of standard

ML estimation. This is because the objective function is convex10 and the set of admissible

values is a convex and compact subset of Rp. However, this justification does not hold true for

the intercept, since it is unpenalized and therefore has any admissible value in R. It has been

shown in Meier et al. (2008, page 55), however, that the Lasso exists and is unique if there are

i, j with yi = 0 and yj = 1 and λ > 0 and if X has full column rank.

Finally, asymptotic normality and consistency have also been proved for the adaptive Lasso in

the logistic regression model in Zou (2006, Theorem 4). They can be achieved with almost the

same assumptions as for the linear regression model (see Section 2.3.2). The only additionally

needed assumptions are mild regularity conditions, which are merely required for the asymptotic

normality of the ML estimator.

10The objective function is of course strictly convex if X has full column rank.
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Chapter 3

Model Performance Criteria

The measurement of model performance is an integral part in choosing a suitable model for

estimating credit scores. Especially in the assessment of the optimal value of the tuning pa-

rameter λ and hence the selection of the model, the methodology to measure the performance

decides which explanatory variables will be included in the final model.

At this point, it is important to emphasize that there is a huge difference, whether performance

is analyzed on data that the model was built upon (development sample) or data that it was not

(validation sample). A model might fit the development sample well (i.e. have good in-sample

performance) and at the same time estimate strongly biased scores for the validation sample

(i.e. poor out-of-sample performance). This happens especially in case when the contribution

of a certain explanatory variable is overestimated during model development due to a random

variation in the development sample (i.e. the data are overfitted), which is not present in the

validation sample.

In Chapter 2 we saw that estimation of the parameter β is based on the maximization of the

log-likelihood function restricting the parameter space to a subset of Rp, see Equation (2.7).

Considering the log-likelihood function as an in-sample performance criterion is therefore not

senseful as such – since its restrictions are stronger, the smaller one of two nested models1 will

always yield worse performance on data that it is estimated upon than the other. In reality,

the difference in performance may not be statistically significant; For the likelihood-function,

criteria based on information theory (e.g. AIC, BIC, see Section 3.1) attempt to quantify when

this difference becomes statistically significant by penalizing model size (i.e. the number of in-

cluded variables) and thus make it suitable as in-sample performance measure.

For binary target variables, there might be more suitable conditions for measuring performance

1Two models are nested, if and only if one model is a special case of the other. This is especially the case, if
the set of variables in one model is a subset of the variables included in the larger model.
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than the value of the log-likelihood function. Typically, these cannot be adjusted easily in

order to provide meaningful in-sample measures as the AIC and the BIC. However, any crite-

rion that indicates good model performance may be applied on the validation sample, i.e. as

out-of-sample performance measure. As the most straight-forward criterion, the value of the

log-likelihood function already provides an appropriate measure. For binary models, however,

more sophisticated methods have been developed using measures of discriminatory power. In

particular, the ROC and modifications thereof (see Section 3.2) established themselves in credit

scoring literature.

One of the most important decisions in this work is whether to use an in-sample or an out-

of-sample performance measure in order to select the optimal value of the tuning parameter.

In literature, both approaches are established and neither is preferred to the other in terms

of number of appearances: Zhang et al. (2010); Fan & Tang (2013); Choi et al. (2015) use

information theory-based criteria, while Genkin et al. (2007); Meier et al. (2008); Wu et al.

(2009) use cross-validation (see Section 3.3.1) to create validation samples with different criteria

to choose an optimal model.

3.1 In-Sample Performance

As mentioned in the introduction of this chapter, in-sample performance is traditionally mea-

sured using information theory. The most widely used criteria are the Akaike information crite-

rion (AIC) proposed by Akaike (1973) and the Bayesian information criterion (BIC) (Schwarz,

1978). They will be further discussed in Section 3.1.1.

In order to test significant differences in model performance of two nested models, the likelihood

ratio test will be introduced in Section 3.1.2.

3.1.1 Akaike and Bayesian Criteria

The field of information theory in general considers available data as realizations of a random

vector and attempts to extract information on the distribution of the vector by using the data. In

order to measure the distance between the true distribution f(x) and the estimated distribution

f̂(x), the Kullback-Leibler information criterion (KLIC) has been introduced:

KLIC = E

[

log

(

f(x)

f̂(x)

)]

. (3.1)

If the family of possible distributions f̂ is parametrized, i.e., f̂(x) = g(x|θ) and the expected

value in Equation (3.1) is omitted, the minimization of the KLIC is equivalent to the maximiza-

tion of the log-likelihood function, yielding the ML estimator.
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One of the more famous derivations of the AIC is attributed to Amemiya (1980). Attempting

to improve the approximation of the KLIC, Amemiya (1980) conducted a Taylor-expansion

of the KLIC around the ML estimator θ̂ML and showed asymptotically, that under general

assumptions, the average improvement attainable in terms of model fit measured by the value

of the log-likelihood function by using K1 additional variables with true parameter 0 (i.e., not

belonging to the true model) amounts to exactly K1. For p covariates, the value of the criterion

is therefore defined as

AIC = −2 (logL− p) .

Using a Bayesian approach, Schwarz (1978) proposed the BIC under the assumption that the

random variable belongs to the exponential family2. Under general assumptions of prior dis-

tributions, Schwarz (1978) arrives at the result that, as the number of observations n → ∞,

selecting the model that is a posteriori most probable is equivalent to maximizing the following

criterion:

BIC = −2

(

logL− p · log n
2

)

.

The difference between AIC and BIC is solely the size of the penalties: The BIC also depends

on the number of observations n used for estimating the models, imposing a less conservative

penalty on the number of parameters included in the model.

3.1.2 Likelihood Ratio (LR) Test

In the case of testing significant fit differences in two nested models, ML theory provides a useful

test. As the name suggests, the likelihood ratio (LR) test is based on the ratio of the values

of the two models’ respective likelihood functions and uses this ratio to evaluate statistically

significant differences.

Formalizing this concept, we have f̂(x) = g(x|θ) with θ ∈ Θ, where Θ is a convex subset of Rp

and write θ = (θ′1, θ
′
2)

′ with θ′1 ∈ R
p1 . In the context of Lasso estimation, the LR test is an

asymptotic test for the following hypothesis:

H0 : θ2 = 0

H1 : θ2 6= 0
, T̂ = −2 log

(

supθ∈Θ{L(θ; y,X); θ2 = 0}
L(θ̂ML; y,X)

)

.

It can be shown that, under H0 and certain assumptions, the likelihood ratio converges to a χ2
p2

distribution, where p2 = p− p1.

Since the LR test provides a useful method to evaluate significant differences in model fits,

it is possible to use it for model selection. Denoting two models M1, M2 with the respective

2as e.g. the dependent variable in the logistic regression model
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maximum values of the likelihood functions L1 and L2 having p1 and p2 covariates, with p1 > p2

without loss of generality, the test statistic T̂ suggests that M1 is preferred over M2, if

T̂ = 2 logL1 − 2 logL2 > χ2
p1−p2(0.95).

The statistic T̂ makes use of the log-likelihood functions li := logLi, i = 1, 2, similar to the AIC

and the BIC. In fact, T̂ can be expressed as a function of both criteria.

T̂ = 2(l1 − p1)− 2(l2 − p2) + 2(p1 − p2) = AIC(M1)−AIC(M2) + 2(p1 − p2).

For the BIC, similar deductions can be made:

T̂ = BIC(M1)− BIC(M2) + log(n)(p1 − p2).

We can see that all three criteria of choosing M1 over M2 can be reduced to the value of T as

well as differences in model size. In fact, preferring M1 over M2 using any of these criteria is

equivalent to T̂ exceeding the following thresholds:

LR : T̂ > χ2
p1−p2(1− α)

AIC : T̂ > 2(p1 − p2)

BIC : T̂ > log(n)(p1 − p2).

3.2 Measures of Discriminatory Power

In particular in the context of the development and validation of rating models, discriminatory

measures are used in order to examine the ability of the model to distinguish between clients

who are able to meet their payment obligations and those who are not3.

3.2.1 Definitions

All of the discriminatory measures discussed in this work are based on the so-called classification

table, which describes the relationship between predicted and observed defaults4.

In the following, using the terminology from Table 3.1, some important terms will be defined.

The true positive rate (TPR), also referred to as “sensitivity”, is defined as the share of predicted

good customers in all non-defaulting customers, i.e., the correctly positively classified customers.

3For a detailed discussion of rating model validation see e.g. Chapter 6 of Oesterreichische Nationalbank (2004)
4In Table 3.1 the defaulted customers are classified as “bad”, non-defaults are depicted as “good”
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observed good observed bad

predicted good true positive (TP) false positive (FP)

predicted bad false negative (FN) true negative (TN)

Sensitivity
TP / (TP+FN)

Specificity
TN / (TN+FP)

Table 3.1: Confusion matrix, terminology from Siddiqi (2006, Exhibit 6.19)

The false negative rate (FNR), or “false alarm ratio”, which is equal to 1-TPR, is defined as

the predicted bad customers as a share of all good customers.

The true negative rate (TNR) or “specificity”, is defined as the share of predicted bad customers

in all defaulting customers, i.e., the ratio of correctly specified bad customers.

The false positive rate (FPR) (1-TNR) is defined as the share of predicted good, but defaulting

customers, i.e., the wrongly classified bad customers.

Finally, the accuracy ratio (AR) is defined as the share of all correctly classified customers, and

the error rate (ER) equals 1-AR.

Logistic regression does not classify the customers as “good” or “bad” as in Table 3.1, but

assigns probabilities to each customer. In order to achieve a classification into these classes,

a cutoff point is chosen – customers having default probabilities above the cutoff point are

regarded as “predicted bad” and, conversely, customers with default probabilities below the

cutoff point are regarded as “predicted good”. Typically, the selected cutoff point is 0.5. More

sophisticated methods will be outlined in Section 3.2.2.

3.2.2 Receiver Operating Characteristics Curve

The market-standard method (Oesterreichische Nationalbank, 2004) for analyzing the discrim-

inatory power of a rating system is the receiver operating characteristics (ROC) curve5. The

idea behind the ROC curve is that choosing a single probability cutoff point for achieving a

confusion matrix as in Table 3.1 provides a very limited view on the true discriminatory power

of the rating system. Therefore, the ROC curve depicts the relationship between Sensitivity

and Specificity as a function of the cutoff point c.

In order to formally define the ROC curve, it is necessary to formalize some concepts. From

5The name of this curve can be traced back to World War II, where it was used to quantify the ability of a
radar receiver operator to correctly detect Japanese aircraft from their radar signal (Green & Swets, 1966).
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Section 2.2, we know that Yi|Xi = x ∼ B(p(x)), where p(x) = F (xβ) and S := xβ is called the

credit score of customer i. This implies that customers with high credit score have a high PD.

We define FN as the distribution function of the scores of all “observed good” customers, and

FD as the distribution function of the scores of all “observed bad” customers.

For some theoretical concepts in this section, we have to assume that the theoretical distributions

of the scores FN and FD are continuous. In order to use the ROC curve on real data, we

introduce the empirical counterparts of the distribution functions as well:

F̂N : R → [0, 1]

s 7→
∑n

i=1
1{Yi=0,Si≤s}∑n

i=1
1{Yi=0}

,

F̂D : R → [0, 1]

s 7→
∑n

i=1
1{Yi=1,Si≤s}∑n

i=1
1{Yi=1}

.

Denoting the quantile functions of the theoretical distribution functions with F−1
N and F−1

D ,

0%

10%

20%

30%

40%

−6 −4 −2 0 2

Score

de
ns

ity

Clients

Bad

Good

Client Distribution by Estimated Credit Score

Figure 3.1: Client distributions by estimated credit score
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respectively, the ROC curve is defined as follows:

ROC : [0, 1] → [0, 1]

p 7→ FN (F−1
D (p)).

The value s := F−1
D (p) can be interpreted as one of the cutoff-points6 used to create a confusion

matrix as in Table 3.1. The value p = FD(F
−1
D (p)) = FD(s) is then the probability that a

defaulting customer’s credit score is smaller than s, which is the theoretical counterpart of the

false positive rate. Finally, FN (s) is the probability of non-defaulting customers to have credit

scores smaller than s, i.e., the counterpart of the true positive rate (sensitivity).

The ROC curve is typically plotted as in Figure 3.2, where the cumulative good cases (sensi-

tivity) are plotted on the y axis and the cumulative bad cases7 (1− specificity) are plotted on

the x axis. One point (x, y) on the ROC curve can be interpreted as follows: if the cutoff-value

corresponding to this point is chosen, a share x of the bad cases will not be identified as bad

and the share 1−y of good cases will not be identified as good. Therefore, the ideal point would

be (0, 1), which of course cannot be reached in realistic cases.

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

1−Specificity

S
en

si
tiv

ity Legend

ROC Curve

45 Degree Line

Figure 3.2: Example of an ROC curve

The ROC curve also provides a suitable method to analyze the relationship between the credit

6Earlier, we defined cutoff-points as probabilities p. In case the population distribution is continuous, this is
equivalent to the concept of using scores s as cutoff-values, because p = FD(s) is fulfilled in this case.

7The cumulative good and bad cases are to be understood as the share of the respective observed cases
positively predicted for the same cutoff point.
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score and the PD. In the logistic regression model, this relationship is implicitly assumed to

be strictly monotonically increasing, since p = Λ(s). However, this is not necessarily true

for any resulting model and can be tested in the following way for continuous populations:

If the relationship is strictly monotonous, the function PD(s) := P (Y = 1|S = s) is strictly

monotonous in s. For this analysis, we need to assume that S is a continuous random variable.

Using Bayes’ theorem for densities and defining PD := P (Y = 1), we can see that

P (Y = 1|S = s) =
fD(s)P (Y = 1)

fN+D(s)
=

fD PD

fD PD+(1− PD)fN
=

1

1 + 1−PD
PD

fN
fD

.

Since x 7→
(
1 + x1−PD

PD

)−1
is a strictly monotonically decreasing function in x, PD(s) is strictly

monotonically increasing if and only if s 7→ fD(s)/fN (s) is a strictly monotonically increasing

function.

On the other hand, the first derivative of the ROC curve is as follows:

ROC′(u) =
d

du
FN (F−1

D (u)) = fN (F−1
D (u))

d

du
F−1
D (u) =

fN (F−1
D (u))

fD(F
−1
D (u))

.

Since x 7→ F−1
D (x) is a strictly monotonically increasing function, we can see that the first

derivative of the ROC curve is therefore strictly monotonically decreasing, if and only if s 7→
fD(s)/fN (s) is a strictly monotonically increasing function in s. This is the case, if and only if

the ROC curve is strictly concave.

Summarizing the explanation above, we can conclude that the relationship between the credit

scores and the PD is strictly monotonically increasing, if and only if the ROC curve is strictly

concave. This is of course a result only applicable for infinite observations, since it was con-

ducted for densities8.

A further interpretation of the ROC curve can be provided in terms of depicting the relationship

of α- and β-errors. For this, let Si be the credit score of an individual i, for whom it is unknown

whether he belongs to the population of the defaulted or the non-defaulted. Given the test

H0 : Si ∈ FN

H1 : Si ∈ FD

, T̂ (s) =







0 Si < s

1 else
(3.2)

then the α-error is defined as P (T̂ (s) = 1|H0) and the β-error equals, conversely, P (T̂ (s) =

8Remark: Strict concavity of the ROC curve as a definition only makes sense for densities, since otherwise
the ROC curve is an empirical distribution function, which is piecewise constant. In real applications, a grid of
ordered quantiles q1, . . . , qm is defined to check the assumption of concavity.
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0|H1). Transforming these expressions leads to

α(s) = P (T̂ (s) = 1|H0) = P (S ≥ s|H0) = 1− FN (s)

β(s) = P (T̂ (s) = 0|H1) = P (S < s|H1) = FD(s).

We can therefore conclude that the ROC curve depicts the relationship between β-error and

(1− α)-error.

In case the credit score of an individual is used in order to decide whether a loan will be granted

to him based on a decision rule as in (3.2), the α-error can be interpreted as the proportion of

lost business to the bank, while the β-error is the proportion of defaulting cases. In such sense,

the β-error is much more costly for the bank.

3.2.3 The Area Under the Curve (AUC)

As the most wide-spread measure for discriminatory power, the area under the ROC curve –

the AUC – is used. It measures the probability that a randomly chosen good customer has a

better score than a randomly chosen bad customer. For the proof, let N ∼ FN and D ∼ FD be

two independent random variables on a probability space (Ω,A, P )9, then

AUC =

∫ 1

0
ROC(u)du =

∫ 1

0
FN (F−1

D (u))du. (3.3)

We can see that AUC can be interpreted as an expected value of a uniformly distributed variable.

Let U ∼ U[0,1], then F−1
D (U) ∼ FD, which leads to

AUC = E
[
FN (F−1

D (U))
]
= E [FN (D)] =

∫

Ω
FN (D)dP =

∫

D(Ω)
FN (sd)dP

D(sd). (3.4)

Now, we have to expand FN (s) in order to evaluate the value of the integral above.

FN (sd) = P (N ≤ sd) =

∫

Ω
1{N≤sd}dP =

∫

N(Ω)
1{sn≤sd}dP

N (sn). (3.5)

Combining equations (3.4) and (3.5) as well as taking into account thatX and Y are independent

leads to the final result

AUC =

∫ ∫

1{sn≤sd}dP
NdPD =

∫

D(Ω)×N(Ω)
1{sn≤sd}d(P

D ⊗ PN ) = P (D ≤ N). (3.6)

Using the result from Equation (3.6), we can conclude that the following properties hold true:

❼ In case the model cannot separate well between defaulted and non-defaulted cases, i.e.,

9Remark: For this proof, FN and FD do not have to be continuous.
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there is a significant overlap between the credit score distributions of D and N , the model

will provide an AUC close to 50%.

❼ In case the model separates well between defaulted and non-defaulted cases, the AUC will

be close to 100%.10

In this sense, the AUC measures the level of discrimination between the score distributions of

D and N .

Another interpretation of the AUC is provided using the term FN (sd) = P (N ≤ sd) from Equa-

tion (3.4): sd can be interpreted as a cutoff-value, below which clients are predicted good and

above which they are predicted bad. Fixing this point, we observe that the term FN (sd) denotes

the proportion of good clients classified as good by the model. For the AUC, the cutoff-point

is varied and weighted by the probabilities of a bad client to be above the cutoff-point, i.e.,

classified as bad by the model. In such a sense, the AUC is a probability-weighted average over

a goodness-of-fit measure depending on cutoff-points.

While the AUC is probably established as the most important discriminatory measure in rating

validation, as its use is e.g. recommended by Oesterreichische Nationalbank (2004), sole reliance

on it should be viewed with caution, since it does not account for the shape of the ROC curve.

For example, as already discussed, it does not measure, whether the monotony in the relationship

between the credit scores and the PD is intact.

3.2.4 Further Discriminatory Measures

All of the discriminatory measures described in this work are based on the ROC curve. Three

further measures will be discussed in this section because of their economic relevance and appli-

cations in fields other than statistical modeling of credit risk. These measures are all summarized

from Oesterreichische Nationalbank (2004, Chapter 6.2).

First, the Gini Coefficient – which is also referred to as the Accuracy Ratio (AR) – is equivalent

to the AUC and can be calculated as

AR = 2 ·AUC−1. (3.7)

It is therefore twice the area between the ROC curve and the 45 degree line as shown in Figure

3.2. The Gini Coefficient is also used in economics to analyze differences in the distributions

of wealth. For this, the values of every individual’s assets a1, . . . , an are ordered such that

ai ≤ ai+1 for all i = 1, . . . , n− 1. Furthermore, two distributions on the interval [0, 1] are gen-

erated: F1 describes the empirical distribution function of { 1
n , . . . ,

n
n}, whereas F2 describes the

10According to Oesterreichische Nationalbank (2004, chart 60), most credit rating systems relying on multi-
variate binary logit models reach values between 0.8 and 0.9.
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empirical distribution function of { a1
an
, . . . , anan }. The Gini coefficient in economics is then defined

by using Formula (3.7) and the ROC curve generated by these two distribution functions, i.e.,

ROC(u) = F2(F
−1
1 (u)).

Another important measure is the Pietra Index11, which is based on the ROC curve as well. It

measures the maximum distance between the ROC curve and the 45 Degree line, or, equivalently,

the minimum sum of α and β-errors generated by the model.

Pietra := max
x∈[0,1]

(ROC(x)− x) = max
x∈[0,1]

(FN (F−1
D (x))− x)

=max
s∈R

(FN (s)− FD(s)) = max
s∈R

1− α(s)− β(s). (3.8)

A slightly more sophisticated measure is the Bayesian error rate (BER), which is the minimum

of the weighted averages of the α and β errors, respectively.

BER := min
s∈R

[(1− p) · α(s) + p · β(s)] . (3.9)

By defining p as the overall default rate within the sample, the BER can be interpreted as

follows: For any threshold s, the term (1− p)α(s) denotes the proportion of individuals within

the sample who do not default but are classified as bad by the model. In addition, the term

pβ(s) is the share of individuals within the sample that do default but are classified as good

by the model. The BER therefore minimizes the share of individuals within the sample that is

misclassified by the model by application of a decision rule as in (3.2).

3.3 Out-of-sample Performance

As mentioned in the introduction of this chapter, it is not advisable to use information theory

for measuring out-of-sample performance. However, any other performance measure may be

used. For binary logit models, the most wide spread measure for out-of-sample performance is

the AUC (see Section 3.2.3). In literature, those models are regarded as useful, which maximize

the out-of-sample AUC. However, in order to measure out-of-sample performance, a data set

with observations not contained in the original data set would be needed. One solution could be

to use only a subset of the original data for estimating the model and validate the model based

on the remaining data points. However, in this case, the final model does not incorporate the

whole information attainable from the data set, which is a drawback for the validity of the model.

Therefore, more ways of generating out-of-sample data sets were developed. The most common

method is Cross-validation, which will be discussed in Section 3.3.1.

11In economics, the Pietra Index is sometimes also referred to as the Robin Hood Index.
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3.3.1 Cross-Validation (CV)

Avoiding the implementation of a model that is suitable for the selected data subset but works

poor on test data sets, on the basis of which the model was not developed on, is one of the key

challenges in model selection. A well-established statistical technique to avoid such biases is

cross-validation (CV). CV is a random sampling technique used in order to assess the out-of-

sample predictive power of a model. It is commonly used due to its flexibility, since any types

of models can be compared in terms of performance in case a suitable performance measure for

the dependent variable’s type has been defined.

The most wide-spread type of CV is the so-called k-fold cross-validation. It essentially consists

of randomly splitting the data set into k approximately equally sized parts (folds) and using

all folds except for one for estimating a model. The data which the model was estimated on

is called the training data, the remaining part is called the test data. The model generated by

the training data provides predictions for the test data set. The predictions are then compared

to the outcome and performance is measured choosing any suitable performance measure. This

iteration is repeated until all folds have been declared as the test data set. The cross-validated

model performance is then calculated as

PCV =
1

k

k∑

i=1

P (ytest(i), ŷtest(i)). (3.10)

In case of logistic regression, P is any performance measure discussed in Section 3.2. Fur-

thermore, specifically for tuning parameter selection in Lasso problems, performance will be

evaluated for a sequence of tuning parameter values such that PCV is a function of λ. As al-

ready mentioned, in literature, the AUC is mostly used as the performance measure. However,

any type of measurement is applicable and Formula (3.10) will not change.
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Chapter 4

Data Description & Software

The analyses were conducted on data available on kaggle’s Competition “GiveMeSomeCredit”1

that was launched on 19 September 2011. The competition consisted of modeling two-year de-

fault probabilities of retail customers with different types of loans (mortgage loans, credit cards

and other revolving loans). The provided explanatory dataset consists of 150.000 observations

containing socio-demographic variables such as age and number of dependents as well as quan-

titative variables such as debt and income, and finally qualitative variables like the number of

times that the customer was past due in the past. The complete variable list can be found in

the Appendix in Table A.1.

4.1 Detailed Data Description

In this section, a detailed description of each variable and the manner of its treatment is pro-

vided.

4.1.1 The Dependent Variable

We model predictors of default events and their measured influence on the invocation of such

an event. However, the definition of a serious delinquency can be formulated in different ways

and has therefore not been unique throughout the history of regulatory requirements. This

is because the failure of a bank’s client to keep up with his redemption or interest payment

until the due date does not always imply that he is not able to do so, and, conversely, a bank

may not always be able to identify whether a creditor is unable to meet his payment obligations.

In fact, the definition of the default of a counterparty has recently been updated and imple-

mented in EU law within Article 178 of Regulation (EU) No 575/2013. Within this regulation

and especially concerning retail lending, the established criterion in declaring a client as de-

faulted is the number of days he is past due with his interest payments or his redemption plan,

1This data set has also been analyzed in Wang et al. (2015).
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where the cutoff-date is defined after 90 days2. The kaggle data also refers to the same definition

of default, i.e., if a client is past due more than 90 days, he is considered as defaulted in the

data set.

The data per se is imbalanced concerning the distribution of the clients in the defaulted and

non-defaulted classes, since only 6.68% of the clients experienced a serious delinquency event in

the past two years – this is typical in the case of modeling credit defaults. In such a case, the

discrimination between good and bad cases is conducted in the tails of the distribution function

Λ, which however is more linear3 in that area – this might lead to worse discrimination between

good and bad cases. Therefore, defaulted observations will be weighted (1−6.68%)/6.68% ≈ 14

times higher than non-defaulted observations. This leads to a miscalibration of probabilities4,

but makes sure that those properties that are leading to default events are considered equally

strongly in the course of the selection of variables.

4.1.2 The Predictors

For easier readability, the variables present in the data are categorized into three different buck-

ets in the following sub-section: sociodemographic variables, characteristics of the loan or loans

and behavioral variables. These buckets are designed and ordered according to the likeliness for

these properties to change throughout the observation period, i.e., sociodemographic variables

such as age and income are less likely to change than properties of the client reflecting his

behavior in the recent months. Choosing explanatory variables that are stable throughout time

is desirable for a credit analyst, since it makes the credit score for a selected client and thus his

rating more stable by design. In this work, however, this differentiation is not made within the

estimation.

Figure 4.1: Age distribution in the dataset split at the age of 80.

2Here, materiality thresholds are defined, meaning that if the client missed a payment that is immaterial, he
is not considered as defaulted.

3Meaning that the second derivative Λ′′ = Λ(1− Λ)(1− 2Λ) is closer to zero.
4On average, the model will assign PDs of 50%, while the average estimated PD should be equal to the average

default rate in the data set, which is 6.68%.
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Sociodemographic Variables

The kaggle data contains information on retail clients such as the age (variable name: age) as

well as the gross income (MonthlyIncome) of the client and the number of their dependents

(NumberOfDependents), which refers to all members of the family excluding themselves, who

the borrower has to provide for.

Figure 4.2: Income distribution in the dataset split into three income regions (low, middle,
high, total).

Concerning age, the majority of the observations are located between ages 21 and 80, even

though still a significant number of observations can be found in the upper tail from 80 to 110

(see Figure 4.1).

MonthlyIncome is present mostly in the interval [1.000, 20.000] (see Figure 4.2), while extreme

values can be found with a low of zero and highs up to income of 2 Million USD. Unknown

values will be replaced with the value of zero and a separate indicator variable will be introduced

for those (see Section 4.2.1).

The majority of clients in the data set has no dependents, and if so, only a negligible number

of observations have more than five. There is, however, a considerable number of clients, where

this figure is unknown – they will again be replaced with the standard value of zero. The values

of 13 and 20, while certainly almost unrealistically high, will not be interpreted as missing, since

there is no evidence to use them as such.
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Figure 4.3: Distribution of variable NumberOfDependents.

Loan Characteristics

The data contains variables on the debt to income ratio of the client (DebtRatio, see Fig-

ure 4.4), which in fact does not solely refer to the debt to the bank, but adds up monthly

debt payments, alimony and living costs as a share of the monthly gross income of the bor-

rower. Additionally, the data contains information on the total number of credit loans or lines

(NumberOfOpenCreditLinesAndLoans, Figure 4.5) as well as the number of real estate loans or

lines (NumberRealEstateLoansOrLines, Figure 4.6), which is a subset thereof.

Figure 4.4: Distribution of variable DebtRatio (low, high).
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Figure 4.5: Distribution of variable NumberOfOpenCreditLinesAndLoans.

Figure 4.6: Distribution of variable NumberRealEstateLoansOrLines.

As expected, the majority of observations in the variable DebtRatio are located in the interval

[0,1], however, quite a significant number of observations are located above 1. The missing

values are replaced with zero.

As can be deduced from Figure 4.5 and Figure 4.6, the high number of loans and lines are

mainly driven by non-real estate covered loans. These variables also do not contain missing

values.
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Behavioral Variables

Outstanding predictors of default are variables which depict the client’s behavior in the past.

In this context, this especially means payment behavior, i.e., the past due status of these clients

in the past, but also variables which depict usage of unsecured credit lines5.

Figure 4.7: Distribution of variable NumberOfTime30-59DaysPastDueNotWorse.

Figure 4.8: Distribution of variable NumberOfTime60-89DaysPastDueNotWorse.

In the kaggle data, especially payment behavioral variables are present with the number of times

5Credit lines are products, which allow the borrower to withdraw money up to a certain threshold – comparable
to loans, they can also be secured by collateral. The most wide-spread form of credit lines for retail customers
are credit cards.
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Figure 4.9: Distribution of variable NumberOfTimes90DaysLate.

past due for a certain number of days but not worse. More precisely, the number of times the

client has been past due 30-59 days (NumberOfTime30-59DaysPastDueNotWorse), 60-89 days

(NumberOfTime60-89DaysPastDueNotWorse) as well as more than 90 days (NumberOfTimes90DaysLate)

are present in the data set.

We can see in Figures 4.7, 4.8 and 4.9 that while no missing observations are present, all of these

variables contain values of 96 and 98, which appear to be a code for missing values. Therefore,

they are replaced by the standard value of zero and treated as missing once again.

Additionally, line usage is also present (RevolvingUtilizationOfUnsecuredLines), which uses

the total balance on all credit cards and other personal lines of credit excluding real estate loans

and installment debt as a share of the sum of total credit limits.

4.2 Data Cleansing

4.2.1 Missing Value Treatment

Although the dependent variable SeriousDlqin2yrs is complete, some of the explanatory vari-

ables used in the data set contain missing values. In practical applications, if the model is

already developed, some of the information will again not be available, but a credit score will

have to be assigned to the client, nevertheless. Therefore, it is necessary to find a possibility to

also include observations into the estimation process, even if there are missing values in some

explanatory variables.

In the literature, different ways are proposed with different drawbacks: One possibility is to
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Figure 4.10: Distribution of variable RevolvingUtilizationOfUnsecuredLines (low, mid-
dle, high) – total in the bottom right corner.

replace the missing values in the explanatory variables with some average calculated by the

remaining (non-missing) values. However, additional information will thus be ignored, which

may result in a worse model fit and therefore validity.

As an alternative, standard values can be defined variable by variable and missing values can

be replaced by these. Additionally, new indicator variables are generated for missing values in

the respective variable. This procedure may, however, lead to an overfit and in some cases it

may be the reason that the ML estimator does not exist (see Section 2.2.2).

Since this work uses the Lasso, however, overfitting and existence of the estimator is not an

issue in the logistic regression model (see Section 2.4.2). Therefore, the second possibility is

adopted. This is also the more convenient procedure for a regular application of the model,

since the standard values are not data dependent in this case as opposed to the first possibility.

4.2.2 Coded Values

The behavioral variables denoting the number of times that a client was past due in the past

two years contain coded values {96, 98}, which cannot actually denote the number of times past

due, because there simply is not enough time to be 30 to 90 days past due that often in two

years. Therefore, it is assumed to be an indicator of missing values and is treated as such.
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Additionally, the variable RevolvingUtilizationOfUnsecuredLines contains a high number

of observations with a value of “0.999999”. Since it is unrealistic that such a high number

of clients obtain this particular value it is again treated as missing and, as a consequence, an

indicator variable is generated for its treatment.

4.3 Variable Transformation & Generation

The reasons for transforming existing variables or generating additional ones and including them

in the regression are wide-ranged.

The assumption of a linear relationship between the explanatory variables and the log-odds

of default probabilities is quite restrictive and hence one of the greatest criticisms of logistic

regression. Therefore, continuous variables were transformed into ordinal ones and the result

can be viewed as a piecewise constant function f of the original variable. This will be outlined

in Section 4.3.1.

In Section 4.3.2, we provide an overview of further possible reasons to include additional vari-

ables. For example, simple economic reasoning leads to the replacement of the monthly income

by the monthly disposable income, which might explain default risk more accurately.

Finally, as already explained in Section 4.2, the data consists of variables containing missing

and coded values that cannot be included without treatment into the regression.

4.3.1 Variable Discretization

The treatment of explanatory variable types only distinguishes between ordinal and continuous

variables.

Ordinal variables

Ordinal variables v are characterized by the property that they can be ordered in a certain sense,

while the difference between the values does not provide information on the true difference

between the values6. They are treated using the fused Lasso estimator (see Section 2.3.3)

in the following way: The variables are coded according to their sizes with levels {1, . . . ,m}
and additional (cumulative) variables ṽ2, . . . , ṽm are created, which are then included into the

regression instead of the initial variable v. The variables are generated according to the following

6A typical example for an ordinal variable is the rating, which can be ordered in a certain sense. For example,
the Standard & Poor’s rating AAA is better than AA as well as AA is better than A, but the difference between
AAA and AA in terms of PD may be much smaller than the difference between AA and A.
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formula:

ṽj =







1 v ≥ j

0 else
, j = 2, . . . ,m. (4.1)

Note that only m−1 variables are generated, because, if ṽ1 was generated according to formula

(4.1), it would be equal to the intercept, the columns of the design matrix X would be linearly

dependent and the Lasso therefore may not be unique (see e.g. Section 2.4.2).

This approach ensures that the influence of the original variable v on the dependent variable is

piecewise constant and therefore allows for a full flexibility of modeling possible nonlinearities.

The relationship can then be analyzed using an illustration as in Figure 4.11. This Figure de-

picts the coefficients β2, . . . , βm resulting from the fused Lasso estimates β̃2, . . . , β̃m discussed

in Section 2.3.3 according to the formula βj =
∑j

i=2 β̃j and j = 2, . . . ,m.

The value of the coefficient describes the increase in log-odds compared to the base value of 1.

For example, in Figure 4.11 we could derive that the PD of clients with 13 or more open credit

lines and loans is 0.28 higher in log-odds than the PD of those with only one credit line. As

already discussed in Section 2.2.1, this can be approximately viewed as a 28%-increase in PD,

which is a good approximation for PD ≈ 0.

If regarded useful and economically reasonable, the resulting piecewise linear function can still

be approximated and replaced by a nonlinear function of the levels of the original variable,

excluding the newly generated variables ṽ2, . . . , ṽm and once again reducing the number of

variables.

Continuous variables

The differences in the values of continuous variables v have a significance and therefore it is

appropriate to include variables of this type in the regression as is. However, if one does not

believe in a linear influence of the variable on the log-odds ratio, the variable may be discretized

by defining m ordered intervals (xi, xi+1] for i = 0, . . . ,m with x0 := −∞ and xm+1 := ∞ and

defining an ordinal variable vo using the formula

vo :=

m∑

i=1

i1(xi,xi+1](v).

The variable vo is then treated as an ordinal variable and is analyzed with the methods according

to this variable type.

The only question remaining in this Section is how the intervals (xi, xi+1] can be defined. In
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Coefficient Plot: NumberOfOpenCreditLinesAndLoans; lambda = 0.00098

Figure 4.11: Example coefficient plot of an ordinal variable

this work, two possibilities have been tested.

First, variables may be split by empirical quantiles of the distribution of the continuous ex-

planatory variable. This is a very stable method, since even for high m, it is guaranteed with

high probability that in all of the buckets, there exist observations i, j with vi, vj ∈ (xi, xi+1]

and yi = 1 as well as yj = 0. This is important for the existence of the ML estimator, as shown

in Section 2.2.27. However, this approach of course highly depends on the empirical distribution

of the variable and therefore is highly data-driven.

The second approach would be a split-up defined by pre-defined intervals. The intervals are

defined in an equidistant manner, i.e., interval borders of the form xi+1 = xi + c are generated.

If appropriate, a logarithmic transformation is imposed on the variable, such that the interval

borders follow the recursive rule xi+1 = axi for a constant a > 1.

Whichever approach may be chosen, sparsely populated intervals may always be a risk for the

ML estimator not to exist. As a solution, interval borders xi+1 are only used for the generation

of the ordinal variable vo if two conditions are met. First, a minimum number of values is

defined, i.e., at least a minimum number of observations need to be contained in the interval

(xi, xi+1]. Additionally, both default and non-default observations need to be contained in the

7The Lasso estimator still exists for these variables, but for λ → 0, the coefficient converges to ±∞, depending
on whether all yi = 1 or all yi = 0.
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Coefficient Plot: age; lambda = 0.00098

Figure 4.12: Example coefficient plot of a discretized continuous variable

interval in order to guarantee existence of the ML estimator as discussed in Section 2.2.2. If

both conditions are met, xi+1 will be used as an interval border; otherwise, xi+2 will be tested

for compliance with the conditions above and if it passes, the interval (xi, xi+2] is used as the

next ordinal level of the variable.

4.3.2 Creation of Further Variables

The methods applied in Section 4.3.1 aim to tackle the issue that due to the resulting model,

the marginal effects of the explanatory variables on the PD depend on the shape of the logistic

cumulative distribution function (cdf) – the increase in number of regressors is only a side-

effect that is automatically resolved by the variable selection property of the Lasso estimator.

However, it can still be senseful to create additional variables in order to improve the model by

considering the following possible effects:

1. Nonlinear effects of correlations between regressors on the PD

2. Transformations of variables might be more meaningful from economical interpretation

perspective

3. The shape of the empirical distribution function of the explanatory variables might affect

that an approach as in Section 4.3.1 is not sensible.
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In this work, these points are treated exemplarily for some variables – they are described in the

subsequent paragraphs.

The first improvement displayed in the list above is referring to the possibility that the simul-

taneous occurence of two variables increases the PD more than the additive marginal effect

implicitly assumed in the logistic regression model (see Section 2.2.1). For a full assessment,

every pairwise correlation between all variables would need to be analyzed – in this work, this is

treated with the inclusion of additional indicator variables for two specific combinations which

are assessed with economic reasoning.

❼ Well-behaving clients within the last two years, which were never past due in the last two

years of the observation period, i.e.,

NeverPastDue := 1{NumberOfTime30-59DaysPastDueNotWorse=0}

×1{NumberOfTime60-89DaysPastDueNotWorse=0} (4.2)

×1{NumberOfTimes90DaysLate=0}.

❼ Clients, which have a combination of high income and debt ratio over one:

HighDebt HighIncome := 1{MonthlyIncome>2000} × 1{DebtRatio>1} (4.3)

The second improvement can be made on the definition of economically more meaningful vari-

ables. This work includes two examples, where this has been executed:

❼ The disposable income was included, which – opposed to the gross income – takes the

payments that the client has to make per month into account.

DisposableIncome := max(Income− Debt, 0) = Income ·max(1− DebtRatio, 0) (4.4)

❼ Another adjustment to the problem includes separating the number of loans by loan type.

In the data set, the number of real estate loans as well as total loans are available – we

extract the non-real estate loans from the data as follows:

NumberNonRELoansLines := NumberOfOpenCreditLinesAndLoans (4.5)

−NumberRealEstateLoansOrLines

❼ Finally, low income clients are also added an indicator variable:

LowIncome := 1{MonthlyIncome≤1000} (4.6)
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Finally, it might happen that neither of the discretization algorithms are suitable for the full

distribution of the explanatory variable.

❼ For DebtRatio, we can see in Figure 4.4 that while the majority of observations are

between [0, 1], there is still a significant portion of observations between (1, 100.000]. While

the discretization could be performed by using the quantile method as described in Section

4.3.1, it is advantageous to employ a separation of the methodologies within the intervals

referred to above. For this, the variable is simply split into two separate parts:

DebtRatio Low := min(DebtRatio, 1) (4.7)

DebtRatio High := max(DebtRatio, 1). (4.8)

❼ Similar observations can be made for RevolvingUtilizationOfUnsecuredLines (see Fig-

ure 4.10). Here, in addition to the example above, there are many clients with no uti-

lization of their credit lines, which results in a heavy weight at zero. Therefore, three

additional variables are introduced:

No Line Utilization := 1{RevolvingUtilizationOfUnsecuredLines=0} (4.9)

LowUtilization := min(RevolvingUtilizationOfUnsecuredLines, 1) (4.10)

HighUtilization := max(RevolvingUtilizationOfUnsecuredLines, 1). (4.11)

4.4 Algorithms & Software

Since the introduction of the Lasso, various algorithms have been developed for calculating the

coefficient paths β̂Lasso(λ) and implemented in .

Friedman et al. (2010) implemented the package glmnet, which relies on a coordinate-descent

algorithm and uses a pre-defined sequence of λ-values for which it calculates the Lasso solution

path. The pre-defined sequence is based on the minimum value λmax of tuning parameters λ

for which all coefficients are set to zero.

λmax = min{λ ∈ R
+ : β̂Lasso(λ) = 0}.

The existence of this value was proven in Theorem 48. In applications, it can be calculated using

the results from Section 2.3. From Equation (2.13), we conclude that as long as the absolute

value of a given variable’s score at the current estimate is smaller than λ, it will not be included

in the active set A, i.e., ∣
∣
∣
∣
s
(

β̂Lasso(λ)
)

j

∣
∣
∣
∣
< λ ⇐⇒ j /∈ A. (4.12)

8Setting t = 0 in Theorem 4 (i.e., 0 ∈ R
p is the only admissible value in the optimization problem), we can

see that there is λ0 > 0 such that β̂Lasso(λ0) = 0. We conclude that λ > λ0 =⇒ β̂Lasso(λ) = 0 accordingly.
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For λ > λmax, we know that β̂Lasso(λ) = 0 and A = ∅. For λ < λmax, there is j ∈ A, such that

Equation (4.12) gives
∣
∣
∣
∣
s
(

β̂Lasso(λ)
)

j

∣
∣
∣
∣
= λ.

The continuity of this optimization problem finally provides that there is j ∈ {1, . . . , p} fulfilling

∣
∣
∣
∣
s
(

β̂Lasso(λmax)
)

j

∣
∣
∣
∣
= |s(0)j | = λmax. (4.13)

Finally, combining formula (4.12) and Equation (4.13) yields the following formula for calculat-

ing λmax:

λmax = max
j=1,...,p

|s(0)j | .

Based on λmax, a log-scaled sequence for λ is built and the exact values of the solution path at

those values are calculated using coordinate descent.

Further algorithms have been developed e.g. by Park & Hastie (2007) and implemented in

the package glmpath. Starting with λmax, they approximate the values, where the active

set A changes, and linearly interpolate the path at those values. Therefore, they use a slight

modification of the LARS algorithm developed by Efron et al. (2004), which yields the exact

solution path for the linear regression model.
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Chapter 5

Results

We now turn to presenting the results of the methods introduced in Sections 2 and 3 applied

on the data set described in detail in Section 4.

As discussed in aforementioned chapters, a logistic Lasso path was estimated to predict default

probabilities of bank’s clients using the adaptive Lasso estimator. The optimal value of the tun-

ing parameter λ was determined by using three different methods of model selection presented

in Chapter 3, AIC, BIC as well as cross-validation (using K = 10) with the AUC as measure

for model performance. In order to test if cross-validation results are stable, it was repeated

10 times with independent samples. Results will be displayed for all three methods of tuning

parameter selection throughout this chapter.

We find that cross-validation provides the highest value for lambda, such that, for all repetitions,

λ(AIC) < λ(BIC) < λ(CV).

In terms of AUC and in-sample vs. (cross-validated) out-of-sample performance, we find the

following results:

λ In-sample AUC Out-of-sample AUC

AIC 0.0021 86.50% 86.38%

BIC 0.0032 86.47% 86.38%

CV 0.0049 86.42% 86.39%

Table 5.1: Result Overview

We can deduct from Table 5.1 that AIC provides the best in-sample fit, while its cross-validated

AUC is lowest compared to BIC or CV1. Even though CV provides the highest value of λ within

1We will denote the three optimal values of λ with λ(AIC), λ(BIC) and λ(CV), respectively.
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all 10 repetitions of cross-validation, the selection of the tuning parameter seems not to have a

huge influence on the model’s out-of-sample performance – the difference is just slightly more

than one basis point.

As discussed in Chapter 4, several variable transformations, generations and treatments were

conducted. The full list of final variables is displayed in the appendix in Table A.2.

5.1 Multivariate Variable Strength

The measurement of multivariate variable strength will be conducted on two dimensions: The

first dimension is related to the first entry point of the variable xi into the Lasso path, i.e., the

minimum λ > 0, for which β̂i
Lasso(λ) 6= 0, while the second dimension is related to the size of

the parameter at the chosen points λ(AIC), λ(BIC) and λ(CV). As for the first entrance point,

an overview is provided in the appendix in Table A.3. Note that discretized variables might

have more than one entry point depending on the number of components within the model. As

for the parameter size, we will differentiate between discretized and dummy variables as follows:

For dummy variables, we will use the absolute value of their coefficients, as they can already be

interpreted as the percentage change of PD when the dummy switches from zero to one.

For discretized variables, this procedure is not conducive, because each variable is represented

by a set of parameters (see Section 4.3.1). This set, however, does not depend on the size of

the original variables, as they are discretized by using dummy variables in the first place, see

Equation (4.1). For such a variable it is useful to know how well it differentiates between the

best and worst clients, i.e., which range of differentiation it covers. Therefore, the measure

applied for these variables – using explicitly the coefficients β2, . . . , βm from Section 4.3.1 – is

the following:

max
i,j=2,...,m

|βi − βj | . (5.1)

5.2 Dummy Variables

In order to measure the strength of a dummy variable, we draw the Lasso path of the coefficients

on a log-scale (see Figure 5.1). We do this only for these variables, since a representation of all

variables in a single picture would be unclear for the reader.

Measured by the first time that the coefficient is different from zero, we can see that the most

important variable is NeverPastDue, the indicator representing clients that have never been
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Variable AIC BIC CV

LowUtilization 2.12 2.09 2.04
NumberOfTimes90DaysLate 1.53 1.49 1.45
TimesLateCoded9698 1.26 1.21 1.15
NumberOfTime60-89DaysPastDueNotWorse 1.11 1.07 1.02
NeverPastDue 1.06 1.07 1.08
NumberRealEstateLoansOrLines 1.01 1.00 0.97
age 0.80 0.74 0.68
HighUtilization 0.73 0.56 0.29
NumberOfTime30-59DaysPastDueNotWorse 0.73 0.70 0.65
DisposableIncome 0.59 0.53 0.50
NumberNonRELoansLines 0.59 0.53 0.47
LowIncome 0.52 0.53 0.51
Coded Utilization 0.45 0.42 0.37
No Line Utilization 0.42 0.40 0.35
DebtRatio Low 0.33 0.26 0.22
HighDebt HighIncome 0.24 0.22 0.22
DebtRatio High 0.10 0.08 0.05
NumberOfDependents 0.04 0.02 0.00
Income Unknown 0.00 0.00 0.00
NumberOfDependents Unknown 0.00 0.00 0.00

Table 5.2: Range of variable coefficients as in Equation (5.1), evaluated at different estimators
ordered by strength of AIC estimator. For continuous and dummy variables, the
absolute value of the coefficient is displayed.

past due in the past (decreasing the default probability; –).

Measured by the size of the coefficient, all three model selection methods further identify

TimesLateCoded9698, the coded values of the times past due (+) as similarly important.

Weakly important are also HighDebt HighIncome (+), No Line Utilization (+), Coded Utilization

(–) as well as LowIncome (–).

In the whole coefficient path, NumberOfDependents Unknown, the indicator for unknown number

of dependents, does not appear at all. This may have two possible reasons: Either the number

of unknown dependents is too small in the data set, or the categorization to the group of clients

with no dependents is already accurate. Since there are almost 4.000 observations having

unknown number of dependents (out of 150.000, ≈ 2.5%), the first reason may be ruled out.

Therefore, it can be safely assumed that the categorization is accurate in terms of influence on

default probabilities. This claim is also supported by the fact that default probabilities do not

substantially depend on the number of dependents – this will be discussed in Section 5.3.1 in

more details.
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Figure 5.1: The Lasso path for all continuous and dummy variables. The three bold verti-
cal lines denote the places for the optimal lambda values achieved by the three
different model selection techniques.

5.3 Discretized Variables

Due to the chosen methods of including continuous and ordinal variables into the analysis, a

discretized variable is represented by a set of parameters in the Lasso path (see e.g. Section

4.3.1). This means that at every fixed value of λ, a single variable is represented by a set of

parameters displaying the shape of dependence of default probabilities on this variable (see e.g.

Figure 4.12). Therefore, it is not conducive to analyze the full coefficient path for this variable

type – conversely, results for discretized variables will be shown only for the three different

values of lambda achieved by the respective tuning parameter selection methods (see Table

5.1).

5.3.1 Sociodemographic Variables

Age

We can deduce from Figure 5.2 that the age is a significant predictor for the default of a client.

All three model selection techniques predict the relationship to be monotonically decreasing

– the lowest probabilities to default seem to be starting at the age of 66. The AIC and BIC

further discriminates at the ages starting at 81, where the PD starts to rise again.

Since the reasons for the defaults are not available in this data set, it is not possible to provide

a perfect explanation for the outcomes. However, this result seems to correspond to basic

intuition, since it seems plausible that people tend to seek more stability the older they get and
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Figure 5.2: Estimated influence of the client’s age on the default risk

therefore are less under risk to losing their job and thus ceasing to be able to repay their debt.

Another possible explanation could be that banks are less keen to sell risky products to older

clients the closer they get to retirement age. Finally, the increase in PD after the age of 81

could possibly be explained by the rise in death probability. Since this increase is not reflected

by the Lasso estimator chosen by cross-validation, it might appear solely due to the variation

in the data. However, no further analyses were conducted to support this claim.

Disposable Income

The economic intuition behind the inverse relationship between the PD of a client and his dis-

posable income seems clear – the more income is at the disposal of the client, the less will he be

likely to default. This intuition is mostly confirmed by Figure 5.3, except for the existence of a

slight increase at extremely small levels of income within the dependence structure evaluated at

λ(AIC). This small peak between 316$ and 619$ cannot be explained by economic reasoning,

therefore we have to assume that this happens due to variation in the data and possibly by an

overfit by λ(AIC).

Otherwise, the dependence structures for all three estimators look similar – from graphical

inspection, it seems quite linear, i.e., the log-odds of the PD is linearly dependent on the

amount of disposable income. Finally, we can see that the level of discrimination in terms of

range between clients with different income levels is highest for λ(AIC), see also Table 5.2.

Dependents

The a priori economic intuition concerning the number of dependents would dictate that a

higher number of dependents would lead to an increase in PD, since the probability that costs

rise need to include the probability that they rise for every single dependent of the client.
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Figure 5.3: Estimated influence of the client’s disposable income on the default risk

However, we see none of this in the data. The estimator achieved by cross-validation completely

excludes the variable, while the AIC and BIC assign negligibly small contributions with a

positive sign – e.g. λ(BIC) assigns a relative difference in PD of 2% to clients with at least one

dependent.

Figure 5.4: Estimated influence of the number of the client’s dependents on the default risk

5.3.2 Loan Characteristics

Debt to Income Ratio

Economic intuition suggests that a high debt to income ratio – which is probably intuitively the

best proxy for the financial burden of an individual – should lead to higher PDs. This is clearly

fulfilled for the interval [0, 1] (see Figure 5.5), where the PD shows a monotonically increasing
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Figure 5.5: Estimated influence of the client’s debt to income ratio on the default risk.

form. A little surprisingly, however, PDs cease to rise for debt to income ratios higher than one2

and, additionally, decrease starting at the value of 1000. This decrease is quite insignificant,

however, due to the low absolute values of the coefficient.

In order to get a complete picture of the dependency of the PD on the debt to income ra-

tio, Figure 5.5 has to be viewed in conjunction with the coefficient of the dummy variable

HightDebt HighIncome. As can be seen in Figure 5.1, the coefficient of this dummy variable

is assigned a value of around 0.2 for all methods of tuning parameter selection. This means

that individuals with higher debt than one and income over 2000$ are ceteris paribus 20% more

probable to default within two years than others. We can see that the income condition was

necessary to include, because apparently it is much more likely that high debt ratios affect the

PD, when debt is compared to a high enough value of income, such that this ratio becomes

2Notice that due to the design of the newly introduced variables, Figure 5.5 needs to be interpreted cumula-
tively, such that a client with a debt to income ratio in the interval (1, 1000) would have the same default risk if
he had a debt to income ratio of 1.
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meaningful.

This result is somewhat surprising – economic intuition would suggest that high debt payments

are only truly significant in case the income of the client is low or does not exist (e.g. due to

unexpected unemployment). However, it seems that either data quality is poor for clients with

income reported in a low range or, more probably, they have a different source of income that

is not captured in the data – e.g. a spouse that is a co-debtor on the loan. It might also be the

case that these clients only have small revolving loans (e.g. credit cards) that are cancelled by

the bank after cutoff-date of the data set.

Number of Loans and Credit Lines

Figure 5.6: Estimated influence of the number of lines the client holds on the default risk.

Both the number of non-real estate loans3 as well as the number of real estate loans show similar

shapes. Creditors without any of those products have a relatively high default risk. Possessing

3Real estate loans (or mortgages) are loans that are secured by real estate collateral, i.e., in case the client
defaults, the bank is allowed to claim or sell the collateral up to the notional value of the loan.
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a small number of loans (this number is between 1 and 8 for non-real estate loans and between

1 and 2 for real estate loans) decreases the PD, which sharply increases for clients who pur-

chased more products. For example, the default risk of a creditor may double if he increases

the number of real estate secured loans from one to 4.

The shape of dependence between the number of loans and the default risk measured by the

model seems to be highly nonlinear but surprisingly stable to which selection method is used.

Creditors with a low number of loans seem to be less probable to default than those without

any loans, while at some point, default risk rises again. Probably the most suprising result is

the fact that default risk seems to be high in case the client does not have any loans. Observing

this, the question arises on how the client actually goes into default, if he does not have any

loan to default upon. Based on the data this question cannot be evaluated – there might be

some unknown underlying processes (e.g. these clients might have had a revolving loan in the

past that has already been cancelled by the bank) that cause this behavior.

5.3.3 Behavioral Variables

Days Past Due

Quite unsurprisingly, the variables indicating payment behavior in the past are strong predic-

tors for credit defaults as indicated in Figure 5.7. If a client was at least twice 90 days past due

in the past two years, his two-year PD will increase by up to 150%. Although the less serious

delinquency events do not leave space for such a strong increase in default risk, however, twice

experiencing a 30 days past due event will already increase the PD of the client by 50%.

Understandably, these variables are frequently used by banks to discriminate between “good”

and “bad” customers. However, relying on payment behavioral variables also has some draw-

backs:

On the one hand, this information is not available for clients without loans, e.g. those who

only keep their salary account at the bank. While this is not a problem for scoring existing

customers, it becomes problematic in case the bank wants to grant a loan to a new customer,

who it will not be able to score, since no past behavior of that client will be available.

On the other hand, credit scores might become unstable as the number of past due events in

a certain time period can increase or decrease strongly over time. In addition, delinquency

counters are bound to some processes, e.g. in many banks counters are not even triggered in

case the overdue amount is below a certain threshold. Any process change (e.g. changing the

threshold) can distort the meaning of the counter over time.
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Figure 5.7: Influence of the client’s past due behavior on the PD

Credit Line Utilization

Credit cards or other credit lines are products, which usually charge relatively high interest

rates. Therefore, it is not advantageous for a bank’s client to extensively use his line and it
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would be expected that he only does this in case he is financially unstable, such that he has

troubles paying his bills using his current account. As a consequence, the modeller would expect

that higher credit line usage is an indication for a higher probability to default.

Conversely, clients who do have a credit line at their disposal but did not make use of it in

the past are more probable to not making use of it in the future as well and are therefore less

probable to go into default at all on these products. Consequently, economic intuition dictates

that lower credit line usage leads to lower probability to default.

Figure 5.8: Estimated influence of the client’s credit line utilization behavior on the default
risk

This intuition is fully reflected in the data as we can see in Table 5.2 – credit line usage is not

only strongly positively correlated with default probabilities, but also is the strongest driver in

terms of coefficient range. More specifically, we can deduce from Figure 5.8 that the default

risk of a client increases by 200% if his credit line usage reaches 100%.
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Although unclear how it is possible, exceeding this threshold leads to a decrease of default risk

– this is at least reflected in values starting at a utilization of 400%, where the PD bounces back

to the level, which can be observed at the utilization level of 50-70%. As there are no more

details at disposal, the author cannot analyze whether this is a data quality issue or if there

might be a reasoning behind these results. In general, this contradicts economic intuition and

cannot be explained based on the author’s experience.

5.4 Score Distributions

One capability of a well-performing model has to be that as many good customers as possible

are attached a good credit score based on their characteristics, while as many bad customers as

possible should receive a bad score. As already discussed in Section 3.2, it is not straightforward

to define the threshold, below which credit scores are good and above which scores are bad. An

average over different thresholds is provided by the AUC (in the sense as discussed in Section

3.2.3), for which results have already been presented in the beginning of this Section.

Performance Measure AIC BIC CV

Pietra-Index 0.5715 0.5717 0.5718

cutoff-value s -0.1876 -0.1119 -0.1410
fnr (α(s)) 0.2237 0.2086 0.2158
fpr (β(s)) 0.2048 0.2197 0.2124

Bayesian Error Rate 0.0634 0.0635 0.0636

cutoff-value s 2.8956 2.8533 2.8081
fnr (α(s)) 0.0085 0.0087 0.0089
fpr (β(s)) 0.8293 0.8283 0.8266

Zero-Cutoff – – –

cutoff-value s 0.0000 0.0000 0.0000
fnr (α(s)) 0.1866 0.1864 0.1872
fpr (β(s)) 0.2445 0.2441 0.2438

Table 5.3: ROC performance measures of the model – each measure defines a cutoff
point s, for which we display FNR and FPR (α- and β-errors).

If the modeller wants to analyze a specific cutoff-value, he has more natural choices available.

Specifically for this work, s = 0 already provides a natural choice, because it was made sure

that the average in-sample score is zero. Otherwise, the performance measures introduced in

Section 3.2.4, the Pietra-Index, see Equation (3.8), as well as the Bayesian Error Rate, see

Equation (3.9), are both based on a single specific cutoff-value s derived by the solution of an
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optimization problem.

Table 5.3 provides an overview over these values and illustrates the values of the α- and β-errors

at the cutoff-points. For example, we can deduce that s = 0 leads to a misclassification of 24.5%

of bad cases (score below zero) and 18.7% of the good cases (score above zero) in case we use

the model selected by AIC.

Based on this table, we can also deduce that Pietra-Index puts the cutoff-value rather precau-

tiously, i.e., classifies a big proportion of clients as bad, while the BER cuts off at a point,

where almost only defaulted clients are in the sample. This is due to the fact that in this

sample, BER weights α-errors much stronger than β-errors, because the a-priori default rate is

equal to 6.68%. However, any α-error is much more costly for a bank than a β-error4, while

BER weights any event equally, because it only cares about misclassification in the full sam-

ple. For example, it is easy to see that plugging in p = 50% into Equation (3.9) results in the

same cutoff-value as the one resulting by the Pietra-Index – in our sample this would correspond

to a (1−6.68%)/6.68% ≈ 14 times higher weight for a false positive than a false negative event5.

Figure 5.9: Credit score distributions using the AIC as measure for model selection.

In Figure 5.9 we show the credit score distributions from the defaulted (Bad) and the non-

defaulted (Good) sub-sample using λ(AIC). The histogram confirms our insights from Table

5.3 – the majority of good cases (1 − 24.45% = 75.55%) is attached a credit score below zero,

while the majority of bad cases (1 − 18.66% = 81.34%) receives a credit score above zero. We

can also see that the means of the distributions are visibly different from each other. Concerning

4see interpretation of α and β-errors in Section 3.2.2
5It is not straightforward to see, whether this value is realistic or not. Cost of default and cost of missed

new business depend on highly non-linear factors such as national legislation, interest rates or banks processes.
However, some banks do monitor which weight to use in order to determine a suitable cutoff-value.
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in particular the distribution of bad cases, we can see that it is bi-modal – this is caused by the

predictor NeverPastDue, which separates the bad cases into those never past due more than

30 days before their default (i.e., the extremely well-behaving clients) and those, which have

already been in delay with their payments.

Figure 5.10: Final result of the ROC Curve using the AIC as measure for model selection.

Finally, we display the ROC curve of the model chosen by λ(AIC). As already shown in Table

5.1, the area between the ROC curve and the x-axis makes up to over 86% of the total area.

This excellent result is in line with our expectations from Section 3.2.3, where we stated that

binary logit credit score models reach values between 80 − 90%. By visual inspection we can

also deduct that the ROC curve is concave such that the PD is a strictly monotonic function

of the credit score (see Section 3.2.2).

5.5 Discussion of Results

At this point we turn to summarizing the results displayed in the previous sections.

In general, we can state that the shape of dependence between the PD and most variables se-

lected by all three estimators follows economic intuition. Exceptions can appear within small,

poorly populated intervals of some variables, where the estimator chosen by AIC measures some

significant jumps in directions that are economically unexpected, e.g. it measures a drop in de-

fault risk after a certain level of credit line utilization. These inconsistencies are most probably

caused by the variation within the data.

As discussed in Section 5.3.2, the shape of dependence between the number of credit lines and

the probability to default is economically difficult to interpret. A priori, the influence could be
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thought positive in case the portfolio reflects rather risky clients, who might be more keen to ac-

cept many loans because they are in financial difficulties and use them for redemption or interest

payment of other loans. The influence might also be negative, as a client with a huge number of

loans is most probably wealthy, otherwise the bank would not have granted him this number of

loans. However, as there are no more details within the dataset, this cannot be properly justified.

In many applications, modelers would discard a variable having such a shape, because it intro-

duces another level of complication into the model, even though there might be a reason behind

the shape that is not obvious to the author. In order to analyze whether this is a suitable

variable, the modeler would need to evaluate whether its influence shape is stable over time,

which is, however, not possible using this data set.

Based on the results, we can deduct that the strongest variables are those which reflect the past

behavior of the client, i.e., past due status or utilization of credit line. The absolute strongest

variable is NeverPastDue, since it is the first one entering the Lasso path and also provides a

very good discrimination between good bad clients based on its strongly negative coefficient of -1.

While a good separation between strong and weak clients is the goal of any model measuring

default probabilities, it is risky to base a model solely on behavioral variables, because it might

cause strong variation in the estimate of this risk over time. Therefore, it is favorable to include

relatively stable variables such as income or age, which are solid risk drivers, but by far not as

strong as behavioral variables. In addition, it introduces the problem that the model cannot

assign default probabilities to new clients of the bank, about whom no behavioral information

is available.
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Chapter 6

Conclusion

In this work, a binary logistic regression model for two-year default probabilities has been fit-

ted on a data set containing information on 150.000 clients available on kaggle’s competition

“GiveMeSomeCredit”. We have selected the optimal model by choosing a subset of continuous,

categorical and ordinal variables reflecting sociodemographic and behavioral properties of the

client as well as characteristics of their loans using the Lasso estimator. We have tackled the

issue of non-linear dependence of default probabilities on the regressors by their discretization

and graphical evaluation in a multivariate environment.

We find that the model provides an excellent fit of the data by reaching an average out-of-sample

AUC of over 86%, independent of the model selection criterion (AIC, BIC or CV), which lies

in the upper range of the industry standard and in range of more complicated modeling ap-

proaches such as in Wang et al. (2015). We see that the estimator gives the strongest weights

to behavioral variables such as past due status and limit utilization, while sociodemographic

variables and loan properties are much less significant. This is problematic for the application

of the model on credit decisions for counterparts that are not yet clients of the bank, where no

behavioral component can be observed.

The biggest caveat of the model is that only one time snapshot is available and thus no stability

analyses can be conducted over time. This is especially important in order to analyze whether

the variables in the model also perform equally well during an economic crisis.

Further research on this data set may focus on testing interactions between the variables in

order to further discriminate between good and bad clients. Especially, as can be seen in the

bi-modal distribution in Figure 5.9, it might be advantageous to differentiate between well and

worse-behaving clients by separating the data set into clients which were never past due and

the rest and test whether the same coefficients result in these subsegments.
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Chapter A

Appendix

Variable Name Step # Components Selection

(Intercept) 1 -
NeverPastDue 2 1
NumberOfTimes90DaysLate 3 1
LowUtilization 4 1
LowUtilization 5 2
NumberOfTime60-89DaysPastDueNotWorse 6 1
age 7 1
NumberOfTime30-59DaysPastDueNotWorse 7 1
NumberRealEstateLoans 8 1
LowUtilization 9 3
LowIncome 10 1
DisposableIncome 11 1
NumberNonRELoansLines 12 1
TimesLateCoded9698 13 1
LowUtilization 14 4
DisposableIncome 15 2
age 16 2
LowUtilization 17 5
NumberRealEstateLoans 18 2
NumberRealEstateLoans 19 3
DebtRatio Low 20 1
NumberOfTimes90DaysLate 21 2
HighDebt HighIncome 22 1
LowUtilization 23 6
No Line Utilization 24 1
NumberNonRELoansLines 25 2
Coded Utilization 26 1
NumberNonRELoansLines 27 3
NumberRealEstateLoans 28 4
DisposableIncome 29 3
NumberOfTime60-89DaysPastDueNotWorse 30 2
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Variable Name Step # Components Selection

DisposableIncome 31 4
age 32 3
NumberNonRELoansLines 32 4
age 33 4
DebtRatio High 34 1
LowUtilization 34 7
DebtRatio Low 35 2
NumberOfTime30-59DaysPastDueNotWorse 36 2
NumberNonRELoansLines 37 5
DisposableIncome 38 5
LowUtilization 39 8
NumberNonRELoansLines 39 6
DebtRatio Low 40 3
HighUtilization 41 1
age 42 5
DisposableIncome 43 6
age 44 6
NumberNonRELoansLines 45 7 CV

age 46 7
NumberOfDependents 47 1
DisposableIncome 48 7
age 49 8
LowUtilization 50 9 BIC

LowUtilization 51 10
DisposableIncome 52 8
LowUtilization 53 11
age 54 9
DebtRatio Low 55 4
DisposableIncome 56 9
NumberOfTimes90DaysLate 57 3
NumberNonRELoansLines 57 8
NumberOfDependents 58 2
DisposableIncome 59 10 AIC

Table A.3: (Discretized) variables entering the lasso path. Variable Name: Name of variable;
Step: Current step in lasso path; # Components: Number of (discrete) components
in the model at current step; Selection: Selected estimator at current step.
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