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Abstract

The detection and identification of mineralization in geochemical exploration contains

many tasks that are strongly linked to statistics. A geochemical exploration project

starts with sampling planning in the area under investigation in terms of an optimal

sampling design. There are of course also several other considerations that need to be

taken into account, most importantly the overall costs for sampling, which limits the

number of samples to be collected. Once the samples are available, they are analyzed

in a laboratory resulting in “geochemical data”, which are challenging by their nature.

Typically, they are compositional and thus multivariate, spatially dependent, they usually

come with detection limit issues, and different kinds of uncertainties are inherent in these

data. The last point is particularly addressed with statistical quality control procedures,

and this provides the basis for selecting the data that are finally used for the subsequent

statistical analyses.

Besides the data quality considerations, data preprocessing is the following important

step. Since values below the lower or above the upper detection limit could affect

subsequent multivariate data analyses, it is important to first replace these values by

appropriately estimated numbers. While methods accounting for the compositional

nature of the geochemical data are available to estimate values below the lower detection

limit, a novel method dealing with values exceeding the upper detection limit is proposed.

Since this regression based procedure acts in a multivariate sense, it has advantages over

existing strategies such as replacing right-censored values simply by a constant.

The main statistical task in geochemical exploration is to locate of mineralized zones

and to identify the underlying lithogeochemical source. While exploratory data analysis

techniques may support this process, they are usually not accounting for the compositional

nature of the data. Thus, an unsupervised methodology is introduced which accounts

for the log-ratios of all element pairs. Due to the presence of data uncertainties, not the

original observations are considered for the log-ratios, but values obtained from smooth

fits, derived from Generalized Additive Models (GAMs). A measure incorporating the
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overall curvature of a log-ratio pair is introduced to rank the pairs, and to indicate

pathfinder elements vectoring towards the mineralization. The procedure is developed for

cases where samples located on linear transects, and also extended to cases where samples

are taken on a plane. Real geochemical exploration data sets are used to demonstrate

the performance of the methods.
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Kurzfassung

Die Erkennung von Mineralisation in der geochemischen Exploration ist an viele Aufgaben

mit starkem Bezug zur Statistik gekoppelt. Das beginnt bereits bei der Planung der Proben

im zu untersuchenden Gebiet, nämlich beim Erstellen eines optimalen Stichprobenplans.

Natürlich gilt es dabei auch viele andere Aspekte zu berücksichtigen, zu allererst die

gesamten Kosten für die Probennahmen, was die Anzahl der Proben limitiert. Wenn

die Proben dann genommen sind, können sie im Labor analysiert werden, und man

erhält “geochemische Daten”, die aufgrund ihrer Besonderheiten herausfordernd sind.

Typischerweise sind das Kompositionsdaten und daher multivariate Daten, sie sind

räumlich abhängig, sie haben normalerweise Probleme mit der Nachweisgrenze, und sie

sind geprägt von verschiedenen Arten von Unsicherheiten. Speziell der letzte Punkt wird

mit den Methoden der statistischen Qualitätskontrolle adressiert, und das liefert die

Grundlage für die Selektion der Daten, die letztlich für die weiterführende statistische

Analyse herangezogen werden.

Neben Datenqualität spielt auch die Datenaufbereitung eine zentrale Rolle. Nachdem

Werte unterhalb oder oberhalb einer Nachweisgrenze nachfolgende multivariate Datenana-

lysen beeinflussen können, ist es wichtig, solche Werte zuerst durch geeignete Schätzungen

zu ersetzen. Während Methoden existieren zur Schätzung von Werten unterhalb einer

unteren Nachweisgrenze, auch solche die den kompositionellen Aspekt der Daten berück-

sichtigen, wird hier eine neuartige Methode vorgestellt, die mit Werten umgehen kann, die

eine obere Nachweisgrenze überschreiten. Nachdem diese Methode auf Regression aufbaut

und daher multivariat arbeitet, hat sie Vorteile gegenüber herkömmlichen Strategien, wie

z.B. das Ersetzen von rechts-zensierten Werten einfach durch eine Konstante.

Die wichtigste statistische Aufgabe bei der geochemischen Exploration ist die Pro-

gnose der Lokation von mineralisierten Zonen. Während Techniken der explorativen

Datenanalyse diesen Prozess unterstützen, berücksichtigen sie normalerweise nicht den

kompositionellen Charakter der Daten. Daher wird eine Methode vorgestellt, welche

die Information der log-Verhältnisse aller Paare von Elementen berücksichtigt. Nach-
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dem Datenunsicherheiten vorliegen, werden nicht die originalen Beobachtungen für die

log-Verhältnisse genommen, sondern Werte, die von glatten Approximationen, hier von

Verallgemeinerten Additiven Modellen, kommen. Ein Maß, das die gesamte Krümmung

der log-Verhältnisse miteinbezieht, wird zum Ordnen der Paare verwendet, um so Elemen-

te zu identifizieren, die Mineralisation anzeigen können. Diese Prozedur wird entwickelt

für den Fall, dass die Proben entlang eines linearen Transektes angeordnet sind, und

erweitert auf den Fall der Probennahme in zwei Dimensionen. Echtdaten zur geochemi-

schen Exploration werden verwendet, um die Performanz dieser Methoden in der Praxis

zu veranschaulichen.
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CHAPTER 1
Introduction

When designing a study for target scale mineral exploration based on data from surface

geochemical sampling media, there are several aspects that need to be considered. The

success of the study will heavily depend on a selected study area, and in an ideal case

there is some pre-knowledge about potential mineralization available. The first step

is a carefully designed sampling plan. Obviously, the more samples need to be taken,

the more expensive is the study. Thus, there is a natural boundary of the maximum

number of samples to be considered, and these need to be placed carefully in order to

allow for an accurate prediction of the mineralization. Provided that the sampling has

been carried out accordingly, the samples need to be analyzed in a laboratory, yielding

concentration data for a number of different chemical elements. Note that usually also

different sample media are considered, not only mineral soil samples (from different soil

horizon), but also samples from organic materials (leaves, needles, bark, etc.). Once the

concentration data are available, a careful quality check of the statistical data needs to

be carried out. There are different aspects that are important, such as a high precision

of the measurements, of the sampling procedure and sampling material. For subsequent

statistical analyses it will also be important that the measurement repeatability is high

compared to the spatial variability of the concentration values. Once the elements with

reasonable data quality have been selected, the statistical analysis can start. One frequent

problem in geochemistry are values below or above a detection limit. There are methods

available that allow to replace those values by reasonable estimates. Preprocessing

of the data by replacing the censored values is required to repair data structure for

multivariate data processing and can lead to a significant improvement of the data

quality, with consequences on the resulting multivariate data distribution. After this

1
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1. Introduction

step, the processed data are ready for a statistical analysis. Since the interest here is in

mineral exploration, appropriate methods need to be considered that allow to predict

locations of mineralization.

The first chapter presents general consideration for the sampling design in this context

(Section 1.1). Once the samples are available, data quality check have to be carried out,

and an overview of such methods is provided in Section 1.2. Geochemical data, like

many other data sets as well, are special in a sense that the main interest is in relative

rather than in absolute information. This means that these data need to be treated as

compositional data. A brief introduction to this subject is provided in Section 1.3. The

final Section 1.4 of the chapter gives an overview of the contents of this thesis, and refers

to publications that resulted from this work.

1.1 Considerations in sampling design

Sampling design is part of the sampling planning process. In Webster and Lark (2012)

and De Geoffroy and Wu (1970) a definition of the distinction between sampling design

and sampling planning is found. Sampling design influences data collection and represents

determining of sample size and density, location of the sampling stations, analytical

strategies in such a way to be able to analyze the data spatially. Using the statistical

methods in conjunction with geological and geochemical information we are talking about

sampling design. However, the sampling design varies depending on the research question.

Therefore, as a first step, before any sampling planning is done, the aim of the planned

geochemical research must be clear. Once this is clear one can start with sampling

planning. It is a process which should ensure that the initial sample sizes are large

enough to yield the required number of assessments. Sampling planning should solve also

the question about selection of sampling media and sampling procedure. The next goal

is to obtain unbiased information which requires replicated observations according to

an appropriate design, in other words, the desire is to avoid investigating nonsignificant

sections and conversely, overlooking significant sections. The optimum sampling plan gives

a trade-off between those two cases while keeping the cost-effectiveness of geochemical

surveys (De Geoffroy and Wu, 1970). While searching for a distinction between both

terms, sometimes the difference of these terms may diverge in literature.

Sampling design is the key for a successful target scale surface geochemical project.

For the operational geochemical surveying the lack of optimal sampling design procedures

is a major bottleneck. Sampling design is a crucial step of any geochemical study but

especially in surface geochemical exploration which may produce very local anomalies.

2
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1.1. Considerations in sampling design

Therefore, a mineralization may be missed if sample density does not reach the minimum

spatial variability caused by the potential underlying mineralisation. To detect these

types of anomalies, samples have to be placed such that mineralization will not be

missed because of too sparse sampling. At the same time, budget is a constraint for

projects and oversampling should be avoided not to create unnecessary costs. Background

should be well covered spatially because background lithologies may be very variable

and also include unknown mineralized lodes. Thus optimal sampling design would be

preferred. If the sampling design is poor it may jeopardize the entire project. Although

the issue is relevant from the perspective of successful geochemical exploration, it is

not discussed very extensively in the literature. Garrett (1983) approaches it from the

statistical point of view and Matthews (1996) from the practical point of view. Statistical

theories on sampling design are available but often a practical approach (considering

budget constraints) is taken which ignores the natural spatial variability of the underlying

geochemistry (Gonzalez and Eltinge, 2010).

A limited amount of information is usually available for optimization the sampling

design. The sampling design can be aided by:

• Geophysical exploration survey data which are acquired prior to target scale

geochemistry. The magnetic, electromagnetic, gravity and radiometric data may,

in special cases, be utilized to roughly divide the survey area into lithological units:

geophysical exploration target, alteration around the target and lithological units

at the background.

• Soil pH and/or self potential measurements (see, e.g., Hamilton, 2007) which may

already indicate the location of an underlying mineralization as spatial anomaly

patterns in the surface geochemical data. Possibly also electrical conductivity to

the depth of 0-30 cm of terrain surface may be helpful to reveal the frequency of

the spatial variance.

• Geochemical orientation surveys are conducted to choose the most appropriate

surface geochemical sampling media, sample pre-treatment and analytics. With the

available orientation survey data it is possible to employ the concepts of geostatistics

to optimize sample density. Samples which are acquired with high enough frequency

are spatially correlated, and the spatial variance can be estimated with a semi-

variogram analysis. The lag distance revealed by a semi-variogram allows estimation

of a minimum sampling distance.

3
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1. Introduction

Sampling design in practice is becoming increasingly popular especially amongst

environmental scientists dealing with agriculture, forestry, environmental monitoring but

also amongst geochemists. There is a demand for geochemists to be able to determine

the chemical composition at not previously sampled locations, not only for the purpose

of mineral exploration, but also for environmental geochemistry.

In these nearby sciences of geochemistry, a lot of literature is available on optimal

sampling design. However, these proposed methods usually consider idealized situations,

and require certain pre-knowledge. For the purpose of optimal sampling design for

mineral exploration there is rarely any literature available. The theoretical background

for optimal sampling design was developed during 1930s. One of the key books referring to

sampling are Cochran (1977) and De Gruijter et al. (2006). In this literature, however, the

methodologies are not devoted particularly to mineral exploration, where prior knowledge

such as the length and orientation of the mineralization and the dispersion should be

considered.

When designing a surface geochemical survey, a 2D surface projection of the geo-

chemical dispersion patterns should be first conceptualized. Depending on the geological,

topographic and climatic factors, the geometry of dispersal patterns may be more com-

plex than imagined. Besides the geochemical deposit halo, also the secondary halo and

the alteration halo should be taken into account. The difficulty in conceptualizing the

dispersion patterns is caused by lack of geological subsurface knowledge, i.e. stratigraphy,

ground water flow, information on bedrock fractures, etc. Any pre-existing data should

be recovered, utilized and discussed amongst the exploration crew already at this point.

1.1.1 Geological considerations

Mineralization refers to a bedrock unit where chemical elements with potential economic

interest are abnormally abundant in comparison to most common lithologies, forming

mineralized bodies or “lodes”. An exploration target in detailed scale may be an anomaly

in geophysical data or more sparse geochemical data (least commonly an intuition based

target), which is considered to be verified by bedrock drilling.

Sampling design is strongly dependent on the target type, i.e. its geochemistry and

geometry. Geometrical properties of mineralization types vary considerably and it is

difficult to reduce this diversity to simple models. Mineralization is rarely a homogeneous

body with sharp contacts with host-rock. In some cases, it corresponds to dissemination

at low concentration but in relatively large volume (high tonnage). Dissemination can be

relatively homogeneous (e.g. mafic and ultramafic deposits or greisens) or heterogeneous

(e.g. stockwork of quartz veins related to magmatic intrusions). In some other cases,

4
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1.1. Considerations in sampling design

mineralization corresponds to continuous ore bodies that can be represented as layers,

beds, strata-bounds or lenses, like banded iron formations, chromite or bauxite deposits

or massive sulphide mineralization. The last principal type is related to veins, lodes, pipes

or dykes (e.g. gold lode, pegmatites, etc.). Projection at surface of these morphologies

is dependent to their extension, strike and dip. It is also important that a mineralizing

system often affects the mineralization host-rocks, which results to alteration of lithologies

with specific geochemical signatures that can be a leading feature towards an exploration

target.

The sampling density and placing of the sampling stations should be adjusted accord-

ing to the size of the explored mineralization type. A cost-benefit procedure would be to

increase the sample density on top of the potential target as well as the surrounding halo,

to give a higher resolution of the geochemical anomaly, and to decrease sample density

away from the target in the background. This is challenging when no prior information

is available. One would need a large amount of samples in order to be sure to have one

placed on top of the target. That is often the case for vein type deposits, such as orogenic

gold, that may be only a few meters thick. For large deposit such as a porphyry copper

deposit, the target may be several kilometers wide (Robb, 2013), meaning the sample

grid must be increasingly large to accommodate the geochemical background.

The target population is considered as the entity covering the predefined target area,

with all available sample materials (soil types, plant species), and all available elements

that can be measured. One of the key questions is the number and placement of the

samples. Due to logistic issues, financial costs and efficiency, only a pre-determined portion

of the target area can be sampled, that is called the sample population. Afterwards,

statistical approaches may be used for appropriate statistical analysis and predictions.

From a practical perspective it is be desirable to have at least two sample points on

the underlying mineralization. Because of uncertainties related to sampling (and several

other factors), a better option would be to have at least three samples on the anomaly

pattern. In order to get sufficient contrast, about two thirds of the samples should be

on the background. These rules should be considered for sampling planning. Thus, the

existence of pre-knowledge is already very important at this stage, and it would help to

optimize costs. Moreover, if something is known about the size of the anomaly, or even

on the dispersion pattern, this information can be successfully used to place samples on

the target and at the background.

Once exploratory data analysis is provided which is looking at the concentrations

after the lab data is received, a threshold for the upper limit of the local background

variation can be determined. If this threshold is known, then the goal would be to obtain

5
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1. Introduction

e.g. three samples for which the concentration of the corresponding element exceeds this

threshold. Consider grid sampling, either regular or samples located randomly in the

grid. The expectation that a grid sample intersects with a target mineral resource is

proportional to the area of the resource relative to the area of the grid. A practical

approach for random sampling (within the grid) might be to inflate the effective area of

the grid by a factor of 1.088 (Garrett, 2012).

The orientation of the geological structures affects the survey design such that the

survey lines or grids are oriented so that they cross the strike of the expected target

at right angles. If the results of an airborne geophysical survey or low, moderate or

semi-detailed geochemical survey data are available, then the orientation of the geological

structures can be estimated and the lines or grids can be oriented to cross the interesting

anomalies at right angles.

1.1.2 Practical survey design considerations

There is a practical issue in the geochemical context. In exploration geochemistry, besides

using the commodity elements, element identification of a mineralized body can be

facilitated by using so-called pathfinder elements. Pathfinder elements can be trace

elements which are often associated with commodity elements. For instance, pathfinder

elements of gold deposits are empirically observed to be Cu, Ag, Zn, Cd, As, Bi, Pb,

Sb, Hg, W, Mo and Se. Unfortunately, it is not clear yet which sample media and

their leaches behold those elements in quantities measurable by commercially available

laboratory analytics. The strategy in an orientation study is thus to sample different

surface geochemical media, to obtain measurements for various chemical elements, and

to investigate if statistically significant differences are observed.

Infrastructure and anthropogenic limitations to sampling area are significant consid-

erations in surface geochemical exploration. Sampling in surface geochemical exploration

should be restricted outside of the influence of roads, railways and other significant traffic

infrastructure, habited areas, industrial areas and quarries for rock and gravel. The

emissions through air and subsurface from the infrastructure vary case specifically. So

does also the distance they affect the surface geochemical sampling media, thus buffers

of different distances should be constructed in geographic information systems (GIS) to

exclude them from the sampling area. All sources of contamination which may overprint

the subtle surface geochemical signatures have to be considered.

Besides the infrastructure digital topographic databases can also be used to exclude

landscape areas from the suitable survey area for mineral soil and plant samples. Water-

bodies, bedrock outcrops, dense boulder fields and peatlands are not suitable sites for
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1.1. Considerations in sampling design

sampling of these materials and can be similarly buffered and removed from the suitable

sampling area using GIS. In this instance, logistical limitations should also be taken into

account. On demanding terrains, access to sites because of water courses or ability to

traverse on peatlands, it may be more cost-efficient to exclude areas from the suitable

sampling area. In remote areas, one may also want to restrict the accessible area within

a certain distance to roads to avoid excessive hiking in the field. In helicopter surveys

the accessibility on foot is not a limitation though. When restricting the sampling area

by logistical reason, it has to be ensured that the purpose of the geochemical survey will

not be jeopardized. Even the most expensive samples (in terms of time or/and money)

should be acquired to fulfill the goals of the sampling campaign.

For distinguishing a target from background it is important to consider some issues.

Assume that preliminary experiments have already been carried out in the area of interest.

Ideally, an orientation survey is available, which provides some details about element

concentrations and their spatial variability. The element concentration of a (target)

element under consideration for a mineral deposit will decrease with increasing distance

from the target. Therefore, a plot of concentration versus distance from the target will be

interesting to determine an average distance from the target, where the signal due to the

mineral occurrence is lost in the geochemical noise of the background. This determines a

threshold for the element concentration. However, the determination of the threshold is

often difficult as even for a single occurrence type it will vary according to bedrock type

and physical environment.

A further difficulty is the definition of background, since the background may vary

with different type of media, location, size of the survey area and physical environment.

According to Garrett (1983), the background represents an area below a particular

threshold, resulting from an element concentration which separates the background from

mineralization occurrence, more generally from the anomaly, where anomaly refers to a

deviation from the norm.

A general assumption is that the main interest in mineral exploration is on unusually

‘high’ values. However, we should not forget another anomaly patter which occur –

negative anomaly, and the so-called rabbit’s ear anomaly (Hamilton, 2000). One needs

to consider, however, that

• in the background there is always a lot of natural geological variability, also resulting

in false high values from the perspective of the mineral exploration;

• thus it is important that the sampling is guided such that the variability of the

background will be covered.
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1. Introduction

1.1.3 Statistical survey design considerations

Simple random sampling is inefficient. The reason is that especially for small areas of

mineralization one would need many observations in order to obtain at least 3 samples on

top of the mineralization when placing the samples purely in a random manner. Therefore,

guidelines for sampling are needed which increase the probability of sampling on the

target. We are looking for a trade-off which ensures reasonable costs for sampling and

also reaching the target. Of course, this heavily depends on the size of the mineralization

type under investigation, but also on its orientation and shape.

Number of sampling locations

Plentiful literature is available on selecting appropriate sample size for a survey, for

example in Webster and Lark (2012); Garrett (1983). However, most of the literature

refers to clearly controlled experiments, and typically to independent observations meaning

two samples taken from the same population but with no relation to each other such that

presence of one observation does not have effect on the other one and conversely. In the

context of spatially dependent data, meaning that dependency is linked to influence of

locations placed in neighborhood, these theoretical approaches have clear limitations. On

top of that, budget constraints usually give an upper bound on the number of samples.

Existing data can guide the sampling in a way that sampling density is higher on the

exploration target and its expected geochemical halo, and in the background it is lower.

In the following it is established known principles how to get an estimation of the

number of samples. It brings us to the following question: how many samples should

one take? The question is commonly passed to statisticians, therefore let us define N as

the desired sample size. Considering a population from a normal distribution with mean

µ and standard deviation σ. Then the distribution of the sample mean is normal with

mean µ and variance σ2/N . The variance of the mean, or its square root – the standard

error – decreases only slowly if N ≥ 30. Thus it can be argued that N = 30 might be

sufficient. This has been standard practice for many years in geochemistry studies in

the past. However, Stanley et al. (2010) proposed to consider the coefficient of variation

(CV%) to have a more appropriate estimate of the N . Their assumption is that there

is an estimate of CV% based on a pre-study conducted in the study area or obtained

from a similar geological environment. Then a tolerance level ε (in %) is fixed for the

estimation of the mean in the new study. Then the estimated minimum sample size is

N = (CV%/ε)/2.

The coefficient of variation is based on classical estimators, i.e. the sample mean

and the sample variance (standard deviation). These estimators are very sensitive to
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1.1. Considerations in sampling design

outlying observations. Thus, in presence of outliers, which is likely in studies concerning

mineral exploration, one should use more robust estimates. A robust counterpart to

the arithmetic mean is the median, and a robust counterpart to the classical standard

deviation is the MAD (Median Absolute Deviation).

A further reason for outliers can be skewed distributions. Geochemical concentration

data are typically right-skewed, and a log-transformation can make the distribution more

symmetric.

A completely different approach is based on the concept of compositional data

analysis (Filzmoser et al., 2018). Here, the main interest is not in the concentration

values themselves, but in the ratios between different elements, taken at the same location.

In the simplest case, one would consider only one pair of variables (elements), and use

the log-ratio of this pair. If one of these elements is a pathfinder element and the other

one is a reference element being more stable in the area, the log-ratio would in the ideal

case lead to a peak on top of the mineralization, and more or less constant values on the

background. Again, it will be crucial to have sufficiently many observations on top of the

mineralization (at least 3), and sufficiently many on the background (1/3 or 1/4). A rule

of having at least N = 30 is thus again the lower minimum.

Geometric survey configurations When planning a sample survey, there are two

basic options: line sampling and grid sampling. When designing a geometric survey

configuration of sampling location, the purpose of the survey is the most determining

factor. Line surveys are most commonly used in the orientation stage of the exploration

project and set up perpendicular to geological structures. Line surveys, i.e. transect

sampling, a limited number of transects are used to estimate the properties of the entire

region. Thus, the disadvantage of line sampling is that they provide only a limited view

on the spatial geochemical patterns. To compensate for this it is possible to use several

(parallel) lines, again depending on financial restrictions. Line sampling has the appeal

that the results can be easily presented in a two-dimensional plot, with the distance

between sampling stations on one axis, and the concentration on the other axis.

An orientation survey which is conducted to choose the appropriate sampling density,

sample material and analytical method can be recommended to be done as a line survey.

Orientation surveys may be conducted in a geochemical project prior to the collection of

the survey samples. The purpose of an orientation survey is to optimize the sampling

density and decide what geochemical sampling media to collect if any or which analytical

methods to apply on the samples. An orientation survey is most often conducted prior to

large projects. In small projects they are not cost-efficient. The problem of conducting
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1. Introduction

an orientation survey is that it delays the beginning of the survey. In climate zones with

very short sampling seasons this might even delay the project by one year. However,

conducting an orientation survey may be the only efficient way of determining the optimal

sampling density. In addition, orientation surveys may be crucial for finding the correct

sampling media/analytical technique.

In the real exploration cases, the samples are mostly planned on grids to visualize

the spatial patterns better. The density of samples on a line has to be high enough (over-

sampled) to catch the spatial variation in a semi-variogram. In target scale exploration

it is often advantageous to understand the spatial anomaly patterns not only along a line

but in a 2D map space. The samples are then planned on grids to visualize shape of the

geochemical anomalies better. A properly conducted grid design requires usually a much

higher number of samples than a line survey. Budget constraints may be the first issue

when deciding between line and grid sampling for an exploration crew but it should be

always carefully considered if a line survey will really answer the question to be looked

for.

In a grid survey, the samples can be placed either on a regular grid, any variation

of unaligned grids, clustered designs or random sampling design. Stratified sampling

approaches can be used, including unbalanced sampling designs which allow to significantly

reduce the number of required samples. The usual strategy for grid sampling is to

determine the maximum number of samples (usually based on financial restrictions),

to place a regular grid with as many grid cells as the number of samples, and then to

randomly select a location in the grid (or select that location which is feasible for being

sampled).

Line surveys

Line surveys refer to a sampling arrangement that follows a line, not necessarily a

straight line. The results of a line sampling campaign can be conveniently presented in

2D plots to illustrate the variation in the data. Examples can be seen in Figures 1.1

and 1.2 where Co concentrations in crowberry twigs from the Juomasuo Au-Co deposit

acquired in the year 2013 are illustrated (Torppa and Middleton, 2017). In Figure 1.1, Co

concentrations are illustrated on a map, i.e. x and y coordinates are displayed for each

sampled point for a particular location. Colors refer to clusters computed by quantiles.

A rainbow color palette was chosen such that red color represents high concentrations

and blue low concentrations. In the Figure 1.2 we can see a 2D plot for the same data.

In order to extract the 2D plot one needs to compute distances between two points and

for this purpose the Euclidean distance calculation in R was performed. The distance in

meters can be seen on top of the map and on the x-axis the sampled points and their
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1.1. Considerations in sampling design

numbers, such that the subsequent points are always closest to each other. Colored lines

at the bottom of the plot refer to known mineralized lodes of the Juomasuo Au-Co ore

situated at different depths. The advantage of the 2D plotting is that the fine variation

in the data and the spatial patterns the data may contain can be better visualized than

in a clustered map presentation (see in Figure 1.1).

Figure 1.1: Map presentation of cobalt concentrations in Cowberry-twig (modified from
Torppa and Middleton, 2017). Concentration values are clustered according to quantiles
in the data. Low concentrations are presented with blue and high with red.

Visualizing the variation in the data, which might be significant information caused

by geochemical variation or insignificant noise in data, requires a display of the data

either in 2D or, in case of grid sampling, in 3D draped surfaces (such as elevation data is

often presented), without loosing information. However, grid sampling better brings out

geometry of the spatial geochemical anomaly patterns. A compromise is that the parallel

lines are combined to compose grid sampling design. A grid is composed of lines which
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1. Introduction

Figure 1.2: Line plot for cobalt, Cowberry-twig/stem (Ultra-LIM project), see Torppa
and Middleton (2017).

can be illustrated as single line plots.

As mentioned above, the orientation of the target can be very crucial for sampling

design. The orientation can be obtained from geophysical data, geological mapping and

geological observations of bedrock outcrops. When line sampling is carried out, the lines

should be placed orthogonal to the orientation of the mineralization. Strike and dip of

the expected mineralized structures have also an importance for sample location as they

should control the shape of the anomaly pattern. This information can be deduced from

the local tectonic and structural settings (from geophysical survey or field maping).

Grid sampling

Grid sampling is a favored method for site specific soil because it is unbiased, simple,

relatively quick and software exists to facilitate it. It is important that the grid covers the

whole are of interest. However, in order to be effective (also concerning costs), a strategy

should be used which ideally gives higher priority to regions of potential mineralization

as sample locations.

Grid samples can be designed by ellipses, square, rectangular, triangular and hexagonal

grids. For better understanding the grid designs are illustrated in Figure 1.3, which show

the three types of grid sampling. On the left side the random sampling is examined, in

the middle is systematic regular sampling and on the right side of the figure stratified

sampling is plotted.

Simple random sampling ensures that every member of the population has an equal

chance of being chosen. The disadvantage of this method is that important sample

points may not included, and not all of the samples may be representative. Further,
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1.1. Considerations in sampling design

Figure 1.3: Three types of sampling designs (Humboldt State University, 2018).

simple random sampling is inefficient. The reason is that especially for small areas of

mineralization one would need many observations in order to obtain at least 3 samples

on top of the mineralization when placing the samples purely randomly. Therefore,

guidelines for sampling are needed which increase the probability of sampling on the

target. We are looking for a trade-off which ensures reasonable costs for sampling and

also reaching the target. Of course, this heavily depends on the size of the mineralization,

but also on its orientation and shape.

Since simple random sampling following a Poisson distribution brings less efficiency, it

is desirable to use other sampling techniques, such as cluster sampling where the sample

density at a potential mineralization is increased, leading probably to highly correlated

samples. Systematic sampling is considered to be more efficient, but this might require

a lot of pre-knowledge, and the resulting estimates might be biased. Finally, stratified

random sampling provides a break for sub-regions, and gives unbiased estimates of known

variance.

In stratified random sampling the potential area is divided into several small sub-

regions of pre-determined size, so called strata. Then a random sample is taken from

each stratum. This method requires prior knowledge for defining the strata.

Systematic random sampling is defined as being ideally randomly ordered, providing

the most even cover. It preserves the maximum distance between sampling locations

and the nearest grid node is the least for a given density of sampling. The disadvantage

might be that small mineralization areas are undersampled.

Sampling on a regular grid belongs to a group of systematic sampling, with regularly

defined intervals of transects, and within these intervals one sampling point is not

randomly placed. This type might be used to achieve target precision of predictions by
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1. Introduction

kriging. Regular grids are not considered as optimal but still provide spatial coverage.

Stratified random grid differs mainly because of randomness of the placed sampling

locations within regularly set intervals. Regular sampling and stratified sampling are

according to Gallego (2005) more efficient than simple random sampling.

Three grid survey designs have been recommended for mineral exploration purposes:

regular grids, stratified random within a grid (Garrett, 2012) and offset grids (Heberlein

and Dunn, 2011).

Optimal sampling density

For small mineralization one has to make sure that there are at the very least 3 samples

on top of the exploration target. For large scale ones it must be ensured that enough

samples will be in the background.

Spatial covariances and the variogram play crucial roles in the description of regional-

ized variables and in their prediction by kriging. The sampling for kriging should provide

an even coverage of a region and can be designed to be efficient once the variogram is

known. Kriging, or in other words Gaussian process regression, is a method of inter-

polation where the interpolated values are modeled by a Gaussian process determined

by prior covariances. Following particular assumptions, kriging gives the best linear

unbiased prediction of the intermediate values. Sampling for estimation of the variogram

requires some degree of spatial nesting. The joint objectives of efficiency for kriging and

variogram estimation can be met by a single sampling plan.

The (semi)-variogram which is the basis for kriging provides the information of spatial

dependency. The worst situation from perspective of interpolation is a pure nugget

effect, which means that even at very small distances, the variance is large – probably

as large as for a longer distances. Generally, the prediction will work reasonably well

if the variance is small at a small distance, and gradually increases up to a certain

higher distance, and at higher distances it remains unchanged. Clearly, the shape of the

estimated semi-variogram depends on the sample locations. If the locations are too far

from each other, local variability cannot be identified, and the variogram provides an

impression of a pure nugget effect. Geochemical knowledge of element distributions shall

be studied here, and several elements typically should not show a pure nugget effect.

Consequently, the sampling density needs to be increased in order to cover small-scale

variability. This strategy can also be used for specific directions, since variograms can

be computed along certain directions. Thus, variogram estimation, e.g. based on an

orientation survey results, is a very appropriate tool to guide sampling planning and to

identify the optimal sample density.
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1.2. Quality assurance and quality control (QAQC) methods

One should also consider that a lot of costs are devoted to reaching a sample location,

and the costs for analyzing an additional sample are comparably low. Thus, it is advisable

to collect more samples during the field survey, and to analyze them only if the variogram

is not sufficiently covering local variability.

Conclusions

Most geochemical surveys are compromises: resources for survey execution are finite.

Use of the above described approaches allows various sampling designs to be investigated

and evaluated for cost efficiency and geochemical effectiveness prior to implementation.

In all geochemical surveys there are costs in financial and human resources and time,

there is the area to be covered, and there is the confidence with which a statement

concerning the objective can be made following the survey. Any two of those can be

fixed.

There is a lot of literature available on sampling design. However, the theoretical

approaches are based on quite strict model assumptions, which are typically not met in

exploration geochemistry (spatial dependency, not normally distributed, compositional

data, measurement errors, etc.). Moreover, the task is very specific, since one is looking

for a design such that a potential target in space (in 3 dimensions) with unknown form,

width and orientation would not be missed. The only way to avoid taking hundreds of

samples is to incorporate prior knowledge, and it very much depends on the kind of prior

knowledge how to proceed. In this section, some ideas and recommendations depending

on the type of prior knowledge have been provided.

The ultimately final sample design is the choice of the project geochemist.

1.2 Quality assurance and quality control (QAQC)

methods

For carrying out geochemical survey, many steps are involved including sampling, sampling

planning, collecting samples, analyzing samples, treating and analyzing data, and finally

interpreting the results. The success of the study requires intensive communication

between the experts responsible for each individual stage, i.e. mainly between geochemists,

analyst in the laboratory, and statisticians/data analysts. Including a good professional

practice is necessary to come up with reliable outcome with reasonable quality. One

could argue that there is no need to examine and assess the quality of the geochemical

data since nowadays most laboratories are nationally accredited, meaning they have

the technical competence to perform specific types of measurements following strict
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1. Introduction

quality control procedures. However, the geochemists and environmental scientist should

still be concerned about the quality of their collected data, and also externally monitor

the quality of the laboratory results. It is always possible that at some stage in this

process mistakes are made, and the source of mistakes can be various, e.g. lack of time

or resources to adequately examine data quality, inadequate information given to the

laboratory, human fault/error, software mistake, etc. Therefore, any project in applied

geochemistry should be subject to the quality check done externally, and not only by the

laboratory.

This procedure of checking the data quality, namely Quality Assurance and Quality

Control (QAQC), is nowadays a standard practice in all geochemical data handling and

should be performed carefully to get an assessment of the quality. A simple definition

of quality control can by summarized as efficient, cost-effective and legally defensible.

Moreover, the data analysis can only be as good as the quality of the data. The aim

of building this protocol is to mainly understand the limitations of the data, quantify

the uncertainties, build the confidence on the geochemical data and select elements with

reliable quality. The QAQC procedure is the first step of the data analysis followed by

the statistical data analysis and interpretation of the results. The technical bottleneck

for a complete geochemical consulting business is currently still the incomplete QAQC

procedures applicable to surface geochemical techniques. The procedures are routinely

applied in large geochemical projects but the concept in medium and small projects needs

to be refined and streamlined. Therefore, one of the goals of this work is to develop these

analysis techniques. It is crucial that the general overview of the data quality is not

just based on statistics, but also on expert knowledge of professionals in geochemistry.

Nowadays, a lot of data can be measured, which generally leads to the problem that large

amounts of data are available for the statistical analysis. However, any statistical analysis

might be misleading if data with low data quality are entered. Therefore, there is an

even more urgent need for a thorough quality assurance. This can be done by reporting

statistical numbers, but also by displaying/visualizing the data by several appropriate

plots.

The QAQC can be an automatic process but the interpretation of the outcome

requires the expertise of geochemists. An overview of whole QAQC procedure can be

found e.g. in Reimann et al. (2008). We claim that it is really important to view the

data in different ways to understand the data quality, structure and content. Measures of

uncertainty provide deeper insights of the data, and this is revealed by measuring data

accuracy versus precision. Accuracy gives an overview if the results are comparable over

time, and precision – how good the repeatability of the results is. Moreover, this analysis
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1.2. Quality assurance and quality control (QAQC) methods

gives an output selection of elements useful for further statistical analysis. Note that

each kind of further analysis may require a different choice of elements.

The core part of this procedure is a fast production of the standard QAQC measures

and figures in order to devote time also to data interpretation. The guidelines are

presented in stepwise order beginning with pre-processing of the data and providing the

first overview of the data. A quality control procedure of a project itself should include

the following steps:

1. Data overview

2. Process quality

3. Laboratory precision, accuracy and trend

4. Laboratory contamination

5. Field precision

1.2.1 Data overview (QAQC 0)

For each chemical element of a particular sample medium, information about the measure-

ments as well as descriptive statistics are provided. Basic characteristics are, for instance,

the measurement unit, the amount of censored data, and the detection limit(s), the

number of discretized samples, mean and standard deviation, but also robust counterparts.

Depending on the type of measurement, other quantities can be of interest as well.

1.2.2 Process quality (QAQC 1)

The main purpose of this phase is to detect blockiness, i.e. abrupt changes, analytical

periodicity, trends, i.e. drifts, outliers by sample mix-ups, censoring and discretization.

The plotting of concentrations is done in the same order as samples have been analyzed

in the laboratory. Blockiness can be an alarming mistake done by the laboratory,

because it would point at time-dependent measurement differences. Outliers can indicate

contamination. This phase answers the question how repeatable is a measurement.

Routine samples and field duplicates are included in this stage. Requirements for the

laboratory are: the samples must be analyzed in a random order (the order should not be

changed by the laboratory) and it should also be required that all samples are measured

on just one instrument. Figure 1.4 shows an example of a Shewhart chart (right) together

with the legend (left) – the concentration of an element in the order of the analysis.
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1. Introduction

Displayed data are taken as an example from UltraLIM (Torppa and Middleton, 2017)

data set, location Saivel is selected, samples of these plant species are acquired in 2013.

QAQC 1 − Process quality
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Analysis sequence

Figure 1.4: Legend for QAQC 1 phase, different colors are used for different plants
(left). QAQC 1 plot shows potential blockiness or periodicity (right). Samples were not
randomized for the analysis. Thus periodicity cannot be estimated.

1.2.3 Accuracy (QAQC 2)

The purpose of external monitoring of laboratory analytics is monitoring of laboratory

precision, laboratory accuracy, i.e. reduction of bias, and analytical trends. When

evaluating laboratory precision we compute the relative standard deviation (RSD%) of

the reference samples and compare it with the preanalysed project samples. The RSD%

is the standard deviation divided by the mean, expressed in percent. A standard rule of

thumb is usually used, such as RSD% should be less than 20%. It allows us to compare

the variation among all variables. Then, laboratory accuracy can be quantified in term of

bias% which compares the mean of the reference samples analyzed along with the project

samples to the “real” mean of the reference samples. Note that absolute values are not

critical in mineral exploration, therefore the accuracy has a secondary importance. In

other words, QAQC 2 monitors how close a result is to a true or accepted value if an

appropriate SRMs are available to be inserted into the analysis sequence. Possible sources

of error originate from the laboratory analysis. The sample types which can be included in

the analysis are CRMs (certified reference materials), SRMs (standard reference materials)

and PRMs (project reference materials). Good laboratory precision usually means that

most samples fall within the limits of 1st SD calculated of the aliquots taken from a
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1.2. Quality assurance and quality control (QAQC) methods

homogenized SRM bulk. Poor laboratory accuracy can be seen as a systematic error,

i.e. bias, however it is not crucial from the perspective of surface geochemical exploration.

We are rather interested in the relative differences of concentrations. It is alarming when

analytical trends occur; in that case the laboratory should be contacted. The example in

Figure 1.5 shows rather good laboratory precision. Selected data are the same as for 1.4,

only different element is show, namely strontium (Sr).

QAQC 2 − Standard reference material
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Mean +/− 2 * SD
Analysed PRM/SRM
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QAQC 2 − Sr, Reference material: ASH−1, 
 PRM/SRM = 44

Analysis sequence

pp
m

Figure 1.5: Legend for QAQC 2 (left) – Lines indicate measures of standard reference
samples (SRM). Plot for QAQC 2 – Analysis sequence versus measured standard reference
samples (right).

1.2.4 Laboratory contamination (QAQC 3)

The purpose of QAQC 3 is to estimate the relative impact of the possible element specific

laboratory contamination on the analysis results by plotting the analysis results of blank

samples in relation to the project sample concentrations. If project sample concentrations

are small, even slight deviations of blank samples from zero indicate relatively large

contamination. Blank (zero-concentration) samples are inserted by the laboratory and

used at this stage of the procedure. Figure 1.6 shows an example of a boxplot comparison

for the concentration values of the project samples in comparison to blank samples.

Similarly to previous examples, selected subset is chosen for Saivel location, year 2013

and chemical element is mercury.
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Figure 1.6: QAQC 3 boxplots of the routine sample and blank sample analytical results
in a chart for the element Pb for original data (left) and for log-transformed data (right).
Blue line indicates lower detection limit.

1.2.5 Field precision (QAQC 4)

The purpose of field precision is to monitor sampling collection quality, and depending

how the field duplicate samples were collected, also spatial variance of the sampling

media. The intention is to identify how repeatable the sample collection is, and also

the geochemical spatial natural variability can be investigated. The goal is then to

investigate the relative difference in concentrations of duplicate field samples and quantify

the added uncertainty caused in all phases of material handling. Possible sources of error

might be caused by sampling, sample handling or laboratory analytics. The example

in Figure 1.7 shows the modified Thompson-Howarth plot, where the y-axis shows the

absolute difference of the concentration values of a sample pair, divided by the mean of

the sample pair. The lines refer to precisions of 10% and 20%. In this example we see

good field precision – the S values of sampling material plant are below 20% difference and

above the LDL. In this case a subset originating from UltraLIM data refers to Juomasuo

location.

1.2.6 Laboratory precision (QAQC 5)

The goal is to monitor laboratory data quality externally. QAQC 5 tells us how repeatable

the laboratory analysis is, including milling, ashing, sieving, digestion and analytics. The

procedure enables detecting repeatability of analytical routines and another purpose is

investigation the relative difference in concentration of duplicate laboratory analyses.
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Figure 1.7: QAQC 4 for field precision.

Source of error may appear within a phase in the analytical procedure in the laboratory,

e.g. ICP-MS analytics. Note that large enough samples have to be collected to make a

split in the lab. The samples have to be labeled in the electronic sample list in order

for the lab to make the split on predefined samples. The same type of visualization

is used as for QAQC 4, see Figure 1.8. Here, the sample material is not plant but

soil, namely for analytical method Bioleach ICP-MS. This example shows the modified

Thompson-Howarth plot with good precision.

1.3 Introduction to compositional data analysis

Not only in geochemistry, but also in many other fields, for instance in chemometrics,

economics, geology, etc., it is natural to consider the data as compositions. Due to

their representation, such data commonly occur in proportions, percentages, ppm (parts

per million), ppb (parts per billion), or other units which refer to relative information

with respect to some underlying whole or total. Thus, it is natural to deal with these

data as compositional data, where only the ratios between the variables, so called

compositional parts, contain the relevant information. This leads to a different way how

to statistically process the data, namely to Compositional Data analysis (CoDa). This

type of multivariate data analysis represents relative contributions of parts on a whole.

In other words, absolute values do not carry the important information, but it is the
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Figure 1.8: QAQC 5 for laboratory precision.

relative information that is of major interest. Using classical statistical methods when

the data are compositional by its nature can lead to invalid conclusions.

In fact, the majority of methods for CoDa is based on the so called log-ratio approach,

which is mathematically and geometrically concise and easier to handle. The log-ratio

methodology was initiated by Aitchison (Aitchison, 1986), and this concept led to a

special type of geometry, named as the Aitchison geometry. It was proven that the

usual Euclidean geometry is not appropriate for compositional data (Aitchison, 1986;

Pawlowsky-Glahn et al., 2015). Note that closure of the data, i.e. the sum of the parts

is equal to a constant, is not important. This is because of the property of log-ratios

which avoid the phenomena of a constrained sample space. The use of log-ratios makes

it necessary that compositional data are positive by definition, although there also exist

approaches to deal with zeros in the compositions (see, e.g., Filzmoser et al., 2018).

Consider a composition x = (x1, . . . , xD)t with D parts. The sample space of a

composition is the simplex SD, given by

SD =







x = (x1, . . . , xD)t ∈ IRD|xi > 0,
D
∑

j=1

xj = κ







, (1.1)

where κ can be any arbitrary positive real number. The idea of the log-ratio approach is

to represent the compositions in the usual Euclidean geometry. The basic information are

pairwise log-ratios ln(xk/xl), for k, l ∈ {1, . . . , D} and k 6= l, and thus the sum of parts,

κ, does not carry important information. There are several advantages of using log-ratios,
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1.3. Introduction to compositional data analysis

such as the equality of their variances by exchanging numerator and denominator, thus

var(log(xk/xl) = var(log(xl/xk)). This property is not possible when only ratios of the

parts are applied. Further properties of log-ratios, such as scale invariance, are described

for instance in Filzmoser et al. (2018).

The log-ratio approach is the basis for building up different transformations to

represent compositions in the Euclidean space. A first transformation introduced in

Aitchison (1986) is the additive log-ratio (alr) transformation, defined as

alr(x) =

(

ln
x1

xD
, ln

x2

xD
, . . . , ln

xD−1

xD

)t

. (1.2)

For the denominator one can also use a different part, and Aitchison (1986) discussed

possible choices from an application point of view. The alr transformation is not

isometric, thus distances in the original data space are not preserved, which excludes

this transformation for many statistical purposes (Pawlowsky-Glahn et al., 2015).

Another transformation which is frequently applied is the centered log-ratio (clr)

transformation, defined as

clr(x) =
(

xclr
1 , . . . , xclr

D

)t
=

(

ln
x1

g(x)
, . . . , ln

xD
g(x)

)t

, (1.3)

where g(x) = D

√

∏D
j=1 xj represents the geometric mean of the composition. In contrast

to alr, the clr transformation preserves distances, and thus it is an isometric mapping.

Further, it also preserves the same dimension D as the original data set but leads

singularity, because the new D components sum up to zero,
∑D
j=1 x

clr
j = 0. This is

undesirable for many statistical methods, because the resulting covariance matrix does

not have full rank D. Nonetheless, the new clr variables are useful for the interpretation

because they refer to a dominance of the corresponding compositional part on an average

behavior (geometric mean) of the values in the composition.

Another conceivable transformation is the so called isometric log-ratio (ilr) trans-

formation, which represents the information from the simplex in the usual Euclidean

geometry by constructing orthonormal coordinates (Egozcue et al., 2003). As the name

suggests, this transformation is an isometric mapping from SD to IRD−1. In fact, there

are infinitely many possibilities to construct such orthonormal coordinates, and one

specific choice are so called pivot (log-ratio) coordinates, defined as

ilr(x) = z = (z1, . . . , zD−1)t (1.4)
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1. Introduction

with

zj =

√

D − j

D − j + 1
ln

xj

D−j

√

√

√

√

D
∏

k=j+1

xk

, j = 1, . . . , D − 1. (1.5)

Specifically, the first coordinate z1 has a clear interpretation for x1, as it is proportional

to the respective clr variable for x1. Further, x1 is only contained in z1, but in none

of the other coordinates, which is different from the clr transformation, where each

part is contained in each clr variable by the geometric mean. The coordinate z1 thus

extracts all relative information about x1, and can therefore be interpreted “in terms

of” x1. If another part should be in focus for the interpretation, this part needs to be

reordered to the first position. An interpretation of the remaining coordinates is not

always straightforward. More discussion on the use of pivot and related coordinates can

be found in Filzmoser et al. (2018).

The chapters 3, 4 and 5 build on pairwise log-ratios, which are also the building

blocks of the transformations described above. Pairwise log-ratios ln(xk/xl) refer to

relative information, and all different (and relevant) D(D − 1)/2 pairwise log-ratios can

be expressed by the (D − 1) ilr coordinates without any loss of information. The ilr

coordinates, however, aggregate the pairwise log-ratio, because for instance

z1 =

√

D − 1

D
ln

x1

D−1

√

∏D
k=2 xk

=

√

1

D(D − 1)

(

ln
x1

x2
+ ln

x1

x3
+ . . .+ ln

x1

xD

)

.

The pairwise log-ratios thus have no geometrical meaning like in terms of coordinates, but

they are very easy to interpret. This was also the main motivation for their consideration,

because methods for mineral exploration in geochemistry need to result in a clear meaning

and interpretation in terms of the involved chemical elements.

1.4 Outline of this thesis

The main part of the thesis is devoted to data preprocessing and prediction of miner-

alization. Chapter 2 presents a new methodology to estimate values above an upper

detection limit. While methods exist to estimate left-censored values, i.e. values below a

lower detection limit, this is a novel multivariate approach to estimate right-censored

values. Chapters 3–5 propose and test a new methodology to predict mineralization.

This method makes use of the information of pairwise log-ratios, i.e. the logarithm of

the ratio of the concentration values of element pairs in a specific sample medium. The

methodology is able to identify so-called pathfinder elements, which are variables that are
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1.4. Outline of this thesis

indicative for a particular mineralization, it points at the location of mineralized zones,

and it allows to rank the different sample media according to their predictive power to

identify mineralization.

Chapter 2: A regression based procedure for imputation of values above an upper

detection limit is proposed. This method takes into account the compositional nature of

the data. Comparisons with traditional procedures are given, and R code for the new

method is provided.

D.M. worked out the theory, did the R implementation and the numerical experiments,

and wrote the essential parts of the paper.

D. Mikšová, P. Filzmoser, and M. Middleton. Imputation of values above an up-

per detection limit in compositional data. Computers and Geosciences. To appear.

doi.org/10.1016/j.cageo.2019.104383

Chapter 3: A novel methodology for identifying mineralization is proposed. The

samples have to be taken on a linear transect. The method uses all variable pairs and

approximates the values of the pairwise log-ratios with fits from generalized additive

models. Peaks in the resulting curvature indicate mineralized zones.

D.M. contributed to the theoretical development, implemented the methodology, did all

the numerical experiments, and wrote the essential parts of the paper.

D. Mikšová, C. Rieser, and P. Filzmoser. Identification of mineralization in geochemistry

along a transect based on the spatial curvature of log-ratios. arXiv, (1912.02867), 2019.

Chapter 4: The methodology proposed in Chapter 3 is applied to two data sets from

Greenland and France that have been sampled for the purpose of detecting geochemical

mineralization.

D.M. contributed to the theoretical development, implemented the methodology, did all

the numerical experiments, and wrote the essential parts of the paper.

D. Mikšová, C. Rieser, P. Filzmoser, S. M. Thaarup and J. Melleton. A method to

identify geochemical mineralization on linear transects. Accepted in Austrian Journal of

Statistics. To appear, 2020.

Chapter 5: An extension of Chapter 3 to samples taken from a grid is proposed. The

methodology is presented, and numerical challenges in this context are described. The

experiments based on real geochemical data show that this approach indeed points at

areas with mineralization.
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1. Introduction

D.M. contributed to the theoretical development, implemented the methodology, did all

the numerical experiments, and wrote the essential parts of the paper.

D. Mikšová, C. Rieser, P. Filzmoser, M. Middleton, and R. Sutinen. Identification of

mineralization in geochemistry for grid sampling using Generalized Additive Models.

Submitted.

Chapter 6 provides a summary of the thesis.

Further publications in the framework of this thesis:

• B. Lemiere, J. Melleton, P. Auger, V. Derycke, E. Gloaguen, L. Bouat, D. Mikšová,

P. Filzmoser, and M. Middleton. pXRF measurements on soil samples for the

exploration of an antimony deposit: example from the Vendean antimony district

(France). Submitted.
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CHAPTER 2
Imputation of values above an

upper detection limit in

compositional data

Geochemical data frequently contain censored values. An imputation method for right-

censored compositional data is proposed, based on the Tobit model, in order to get

a complete and reliable data set. An algorithm is developed and implemented using

regressions in an iterative scheme, where the imputed values are updated step-by-step.

Optionally, classical least-squares or robust regressions can be carried out, with or

without variable selection. The performance of the algorithm is evaluated using two

real geochemical data sets, blackconsidering various different scenarios. Compared to

commonly used substitution methods, the proposed method leads to an improved data

quality. The procedure is available in the R package robCompositions.

2.1 Introduction

Detection limits typically occur in measurement processes where the measurement

instrument is reliable up to a certain minimal or maximal value. In the first case,

this refers to the lower detection limit (LDL), while the upper boundary is called the

upper detection limit (UDL). Observations with values below the LDL or above the

UDL are called (left/right) censored values, and they lead to a truncated distribution

of the considered variable (Helsel, 2012; Millard et al., 2012). Naturally, this creates
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2. Imputation of values above an upper detection limit in compositional data

difficulties for the statistical analysis, for estimating parameters, and in particular for

the multivariate analysis if several variables have been measured simultaneously.

In fact, the problem even starts before doing statistics, since laboratories are reporting

values below the LDL or above the UDL by non-numeric entries, for example as “< 0.01”

for a value which is lower than the LDL value 0.01 for this variable. Reading a data table

with such entries in a statistical software package will cause inappropriate data types. For

instance, in R (R Development Core Team, 2018) one would obtain a factor variable, and

each distinct value would create an own factor level, which makes any deeper statistical

analysis impossible. As a simple way out, one can substitute these entries by meaningful

numbers. For values below the LDL it is common to replace these values by half of the

corresponding detection limit. Martín-Fernández et al. (2003) have shown that a better

choice is a replacement by 65% of the detection limit, since this minimizes the distortion

of the covariance structure (Martín-Fernández et al., 2011). Also for substituting values

above the UDL there are different proposals, such as using a factor of 1.7 times the UDL

value, or alternatively a factor of 4/3 (Sanford et al., 1993). In the following, such a

replacement will be denoted as “simple method”, and here the factor 1.2 is considered

for comparison.

All these proposals for replacements do not make use of possibly available multivariate

data information. This is typically the case for geochemical data, where a plant or soil

sample is analyzed for the concentration of several chemical elements. It would then be

natural to use non-censored information of other variables to estimate the censored values,

if there exists a statistical dependency of the censored variables with the non-censored.

Here the focus is on a specific type of multivariate data, called compositional data

(CoDa), which consist of strictly positive values, and where the interest is in the relative

information between the variables rather than directly in the reported data values

(Pawlowsky-Glahn et al., 2015). Data with element concentrations can be considered

as CoDa, since already the data unit (mg/kg, pbb, etc.) refers to relative contributions

of a certain whole (Egozcue, 2009). Aitchison (1986) introduced the log-ratio approach

for the statistical analysis of CoDa. Based on these ideas, an elegant mathematical way

for the analysis of CoDa has been established in the last decades (see Pawlowsky-Glahn

et al., 2015; Filzmoser et al., 2018, for recent books on this subject). As examples of R

packages dealing with CoDa can be mentioned these compositions (van den Boogaart

and Tolosana-Delgado, 2008) and robCompositions (Templ et al., 2011).

In the literature around CoDa, values below the LDL are called rounded zeros. Several

proposals for replacing rounded zeros by meaningful numbers are available (e.g. Palarea-

Albaladejo and Martín-Fernández, 2015, and references therein). Palarea-Albaladejo
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2.2. The log-ratio approach for CoDa

and Martín-Fernández (2008) developed a model-based approach for this purpose, where

Tobit regression is used within an iterative algorithm to estimate the rounded zeros.

Martín-Fernández et al. (2012) extended this approach, where traditional least-squares

regression, but also robust regression is employed and compared based on simulated and

real data. In this paper we will modify the method of Martín-Fernández et al. (2012) to

estimate values above the UDL. To the best of our knowledge, this is the first proposal

for a model-based imputation of values above the UDL for CoDa.

This paper is organized as follows: Section 2.2 provides more detailed information on

the concepts of the log-ratio approach for CoDa. Section 2.3 introduces the methodology

for model-based imputation of values exceeding the UDL. An algorithm for the imputation

procedure is proposed in Section 2.4. A real data example from geochemistry with UDL

problems is shown in Section 2.5. Section 2.6 presents numerical experiments based on

real geochemical data, and Section 2.7 summarizes and concludes.

2.2 The log-ratio approach for CoDa

Consider a multivariate observation x = (x1, . . . , xD)t. In the context of CoDa, x is

called a composition with D parts, which are all strictly positive. For a composition,

the relevant information is included in the ratios between the parts. Historically, a

composition is represented in the D-part simplex SD, which is defined as

SD =







x = (x1, . . . , xD)t ∈ IRD|xi > 0,
D
∑

j=1

xj = κ







. (2.1)

The sum κ can be any positive real value because a composition is an equivalence class

(Barceló-Vidal and Martín-Fernández, 2016). For the log-ratio approach, which is based

on pairwise log-ratios ln(xk/xl), for k, l ∈ {1, . . . , D} and k 6= l, this sum is irrelevant,

because if one would multiply the composition by any positive number c, the resulting

log-ratio would be unchanged. Thus, one could also express any composition with sum 1,

without any loss of information.

It is possible to define a Euclidean linear vector space structure of the simplex, with

all the basic operations that are necessary (Pawlowsky-Glahn and Egozcue, 2001; Egozcue

et al., 2003). With this geometrical structure, referred to as the Aitchison geometry, the

simplex SD has dimension D − 1.

Using this geometry, a composition is represented by D − 1 orthonormal coordinates

in the real Euclidean geometry. This may complicate the interpretation of results later on

in terms of the original compositions, but it will simplify the use with standard statistical
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2. Imputation of values above an upper detection limit in compositional data

methods which are based on this Euclidean geometry. One possible approach which

became very popular in the last years are so-called isometric log-ratio (ilr) coordinates

(Egozcue et al., 2003), and often used for geochemical data because of the compositional

nature of the data (Talebi et al., 2019). One particular definition of ilr coordinates are

so-called pivot coordinates (Fišerová and Hron, 2011):

z
(l)
j =

√

D − j

D − j + 1
ln

x
(l)
j

D−j

√

√

√

√

D
∏

k=j+1

x
(l)
k

, j = 1, . . . , D − 1 (2.2)

Here, x(l) = (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )t = (xl, x1, . . . , xl−1, xl+1, . . . , xD)t stands

for the reordered composition, where the l-th part is moved to the first position, for

l ∈ {1, . . . , D}. From this construction one can see that the first part x
(l)
1 (or xl) appears

in the numerator of the first coordinate z
(l)
1 , but in no other coordinate. Thus, this first

coordinate expresses all relative information about part xl in the composition, and it

can be interpreted in terms of a dominance of this part with respect to the other parts,

which are aggregated by the geometric mean.

Pivot coordinates represent a one-to-one mapping, and thus it is possible to come

back to the original compositional parts by computing

x̃
(l)
1 = κ̃ exp

(√
D − 1√
D

z
(l)
1

)

,

x̃
(l)
j = κ̃ exp



−
j−1
∑

k=1

1
√

(D − k + 1)(D − k)
z

(l)
k +

√
D − j√

D − j + 1
z

(l)
j



 , j = 2, . . . , D − 1,

x̃
(l)
D = κ̃ exp

(

−
D−1
∑

k=1

1
√

(D − k + 1)(D − k)
z

(l)
k

)

, (2.3)

which are normalized by a constant κ̃ to sum up to one, i.e.
∑D
j=1 x̃

(l)
j =

∑D
j=1 x̃j = 1,

where the x̃j refer to the back-permuted version of the x̃
(l)
j . Thus, in order to obtain the

original sum, the re-expressed compositions are

x
(re)
j = x̃j · κ with κ =

D
∑

j=1

xj for j = 1, . . . , D. (2.4)

Pivot coordinates are appropriate for a model-based approach to estimate censored

values, because the censoring variable can be isolated into one coordinate, for which a

model can be established based on the remaining parts in the composition. Note that ilr

coordinates are preferable over other representations, in particular if robust methods are

applied (Martín-Fernández et al., 2012).
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2.3. Method

2.3 Method

The Tobit model (Tobin, 1958) described below has been used in Palarea-Albaladejo and

Martín-Fernández (2008) and Martín-Fernández et al. (2012) in the context of estimating

values below a LDL (left-censored data). In the context of right-censored data, where

values above an UDL are not available, the Tobit model introduced in Tobin (1958)

describes the relationship between a non-negative censored variable y and p non-censored

explanatory variables ξ = (ξ1, . . . , ξp)
t. An unobservable latent variable y∗ is assumed,

and the observable variable y gives

y =

{

y∗ if y∗ ≤ ψ

τ if y∗ > ψ
, (2.5)

where ψ represents the value of the UDL, and τ is a so-called truncation point, which

is a particular value of the UDL. Denoting the observations of the above variables as

yi, y
∗
i , and ξi, respectively, for i = 1, . . . , n, a regression model y∗

i = ξtiβ + εi is used for

all non-censored observations, with the regression coefficients β, and the error terms εi,

assumed to be independent N(0, σ2) distributed. Using likelihood estimation as in the

truncated regression model, one obtains (Schnedler, 2005)

E[yi | yi > ψ] = ξtiβ + σ





φ(
ψ−ξt

i
β

σ
)

1 − Φ(
ψ−ξt

i
β

σ
)



 , (2.6)

where φ and Φ are the density and distribution function, respectively, of the standard

normal distribution.

For CoDa, values above an UDL can appear in one or more parts of the composition.

For now we assume that they only appear in the l-th part xl. In that case, the pivot

coordinates defined in Equation (2.2) are appropriate, because the first coordinate isolates

the censored part from the remaining composition. In other words, the first coordinate

will be used as the response, and the remaining coordinates as explanatory variables in

the previously discussed model.

Assume a CoDa matrix X with n observations arranged in the rows, and D columns for

the compositional parts. Denote x
(l)
ij as the element (i, j) of the compositional data matrix

with the l-th part arranged as the first column. After applying Equation (2.2) one obtains

the matrix of coordinates Z(l), with n rows and D − 1 columns. Denote the elements of

this matrix by z
(l)
ij , for i = 1, . . . , n and j = 1, . . . , D − 1, and z

(l)
i,−1 = (z

(l)
i2 , . . . , z

(l)
i,D−1)t

the i-th observation with the first entry excluded.

Further, denote the value of the UDL for the l-th compositional part as τ (l), the set

U (l) as the index set containing the indexes of observations of part xl which exceed τ (l),

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. Imputation of values above an upper detection limit in compositional data

and O(l) = {1, . . . , n} \ U (l) the set with the remaining indexes. The UDL needs to be

expressed in the same coordinate system using Equation (2.2), and one obtains

ψ
(l)
i =

√

D − 1

D
ln

τ (l)

D−1

√

√

√

√

D
∏

j=2

x
(l)
ij

. (2.7)

Note that the re-expressed UDL is an individual value for each observation, thus depending

on the index i.

The regression problem for the non-censored observations is

z
(l)
i1 = z

(l)t

i,−1 · β(l) + εi for i ∈ O(l). (2.8)

After employing an appropriate regression method, one obtains the estimated regression

coefficients β̂(l), as well as the estimated standard deviation of the residuals σ̂(l). Following

Equation (2.6), these estimates are used to predict the values above the UDL,

ẑ
(l)
i1 = z

(l)t

i,−1 · β̂(l) + σ̂(l)













φ

(

ψ
(l)
i

−z
(l)t

i,−1·β̂(l)

σ̂(l)

)

1 − Φ

(

ψ
(l)
i

−z
(l)t

i,−1·β̂(l)

σ̂(l)

)













for i ∈ U (l). (2.9)

Finally, the estimated values from Equation (2.9) need to be represented in terms

of the original composition, which is done by using Equation (2.3) for all observations

with index in U (l). An important issue is the choice of the appropriate factor κ according

to Equation (2.4), which in fact is now an individual value κi, with i ∈ U (l). Since

the total sum for these observations is not available because of the values exceeding

the UDL, one can first apply Equation (2.3) for all i ∈ U (l) to obtain values x̃
(l)
ij , for

j = 1, . . . , D. Then the factors are obtained by comparing the total sum of the original

and the back-transformed compositions, the l-th part excluded,

κ
(l)
i =

∑D
j=2 x

(l)
ij

∑D
j=2 x̃

(l)
ij

. (2.10)

Finally, the re-expressed estimated right-censored values of the l-th part are obtained by

x
(re)
il = κ

(l)
i x̃il for i ∈ U (l), (2.11)

see Equation (2.4).
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2.4. Algorithm

2.4 Algorithm

Section 2.3 has outlined a methodology to estimate right-censored values, i.e. values that

exceed an UDL in one compositional part. In practice it might happen that right-censoring

appears in several compositional parts. For example, when analyzing concentrations

of chemical elements in plants using ashed samples, right-censoring typically happens

in elements such as K, Mn, P, or Rb (Beinrohr et al., 1991). Therefore, the following

algorithm based on iterative updating is proposed:

Step 1 Assume that right-censoring is present in r compositional parts, with 1 ≤ r ≤
D. To simplify notation, assume that the compositional parts are arranged in a way that

the part with the highest amount of right-censored data is at the first position, the part

with the second highest amount at the second position, etc. Parts without right-censored

values are arranged at the last positions in their original order, although this is not

relevant for the method. Initialize all right-censored values by 1.2 times the UDL of the

corresponding part. The following steps intend to improve the initially imputed values.

Start with part l = 1.

Step 2 Consider the corresponding value τ (l) of the UDL. Represent the composition

with the l-th part reordered to the first position in coordinates using Equation (2.2), and

use Equation (2.7) for a coordinate representation of τ (l).

Step 3 Estimate the regression coefficients in the model Equation (2.8) and the

censored observations in coordinates by Equation (2.9). Express these estimated values in

the simplex using Equation (2.3) to obtain the values x̃
(l)
ij , for i ∈ U (l) and j = 1, . . . , D.

Step 4 Compute the constants κ
(l)
i not as in Equation (2.10), but as

κ
(l)
i =

∑

j∈Ai
xij

∑

j∈Ai
x̃ij

for i ∈ U (l), (2.12)

where Ai denotes the indexes of parts without right-censored values for the i-th observa-

tion. Use Equation (2.11) to re-express the right-censored values in this part with the

appropriate total sum.

Step 5 Apply Steps 2-4 in turn for l = 2, . . . , r. Denote the resulting values of the

re-expressed composition by x
[1]
ij , for i = 1, . . . , n and j = 1, . . . , D.

Step 6 Iterate Steps 2-5 until the relative squared error

n
∑

i=1

D
∑

j=1





x
[m]
ij − x

[m+1]
ij

x
[m+1]
ij





2

(2.13)

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. Imputation of values above an upper detection limit in compositional data

is smaller than a given threshold, or until a maximum number of iterations has been

reached. Here, x
[m]
ij are the values of the re-expressed composition after the m-th iteration.

Note that this criterion would not appropriately reflect a relative distance in CoDa sense,

but it turned out to be useful as a convergence criterion.

Variable selection:

Templ et al. (2016) have introduced an imputation method for rounded zeros for high-

dimensional data, with an option for variable selection. We are not particularly dealing

with high-dimensional data, but for data with smaller numbers of samples this might

still give an advantage. Consider the regression model in Equation (2.8) where for the

prediction of right-censored values in the l-th part all remaining parts in the composition

are used. One could select fewer predictors as well in order to get a more stable regression

model. This can be done by computing the variation matrix elements between xl and all

remaining parts, var(ln xl

xj
), for j ∈ {1, . . . , D}, j 6= l (see e.g. Pawlowsky-Glahn et al.,

2015). Small values indicate stronger association with xl, larger values point at weaker

association. The predictor variables are sorted according to these values in ascending

order, and regression models according to Equation (2.8) with only the first k predictors

are considered, for k ∈ {2, . . . , D − 1}. Using a cross-validation scheme, that model will

be selected which leads to the smallest cross-validated prediction error.

This algorithm has been implemented in the software environment R and is available

as the function imputeUDLs() in the package robCompositions (Templ et al., 2011).

2.5 Example

Within the project Mineral potential of northern Finland, carried out by the Geological

Survey of Finland (GTK), mountain birch twig samples on an iron oxide-copper-gold

mineral deposit Lätäseno norhernmost Finnish Lapland, were collected, ashed in 475◦C

and elemental concentrations were measured with inductively coupled plasma mass

spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES) at the Acme

Analytical Laboratories (Vancouver, Canada) from a dissolution of 0.25 g aliquot of

ash digested in 1:1:1 HCl:HNO3:H2. This resulted in data of 99 observations and 64

elements, which after quality check was reduced to 27 variables (element concentrations).

Two of the variables, phosphorus (P) and zinc (Zn) have values above the UDL, which

typically happens when the samples are ashed. For P 20% of the values were above

the UDL, and for Zn 26%. Usually, the laboratory would only report the UDL. In this

case, however, the laboratory also unofficially provided the ICP calibrated values >UDL.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.6. Numerical experiments

Usually, the laboratory would not provide access to these data because the values could

be unreliable. In the following we will estimate the values which exceed the UDL, but use

the “unofficially” reported values for comparison, with a caution that the “true” values

might not be very accurate.

We will compare the following procedures:

• Simple method: Values above the UDL are substituted by 1.2 times the UDL.

• Classical method: The regression coefficients in the model in Equation (2.8) are

estimated by the classical least-squares estimator.

• Robust method: The regression coefficients in the model in Equation (2.8) are

estimated by the robust MM-estimator (Yohai, 1987), as it is implemented in the

function lmrob of the R package robustbase (Rousseeuw et al., 2009). The

MM-estimator is highly robust against outliers and highly efficient at the same

time.

Figure 2.1 shows the results of the three methods, and they are compared to the

values reported by the laboratory. The dashed lines in the plots represent the value of

the UDL. The simple method seems inappropriate, especially if one would have to use

these estimated values in a subsequent (multivariate) statistical analysis. There is not

too much difference between the results of the classical and the robust method, perhaps

because there were no severe outliers present, and both correspond to the trend of the

reported values (Filzmoser et al., 2009, 2012). For the classical as well as for the robust

method, the algorithm converged after 3 iterations, in a fraction of a second.

Any of the above methods should be taken with care if the values above the UDL

are originating from a different process. In that case, a structural break in the element

distribution will be visible, typically in a QQ-plot. Figure 2.2 shows the QQ-plots for the

reported values of P (left) and Zn (right), with a comparison against the quantiles of

a standard normal distribution (horizontal axes). The dashed lines indicate the UDL.

There is no break visible, and thus a regression-based replacement seems useful.

2.6 Numerical experiments

We will demonstrate the performance of the imputation procedure by using simulations

based on a real data set. This data set originates from a project of the Geological

Survey of Norway (NGU) in a 100 km transect in Gjøvik, Norway (Reimann et al.,

2018). In total, 41 sample sites have been investigated in an area where four zones of
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2. Imputation of values above an upper detection limit in compositional data
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Figure 2.1: Plots of measured versus estimated values for P and Zn for the Lätäseno
data set.
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Figure 2.2: QQ-plots of the reported values for P and Zn for the Lätäseno data set.
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2.6. Numerical experiments

mineralization are crossing. At each site, 15 different sample materials (birch, spruce,

cowberry, mushroom, O- and C-horizon for soil, etc.) have been collected and analyzed

for the concentration of 53 chemical elements. The data are made available in the R

package robCompositions as data set gjovik. In this data set, no right-censored

values occurred, and therefore we will simulate such scenarios and compare with the

available information. In order to avoid any data problems, we use 13 selected elements

with sufficiently good data quality in all the sampled media (reasonably small proportions

of left-censored or rounded values). From a statistical point of view it is now of interest

if the quality of the imputation differs among the sample media, if it depends on the size

of the data set, etc.

For the comparison of the simple, the classical and the robust imputation method,

we will consider two evaluation measures that focus on two aspects, on the covariance

structure and on the distances between the observations (see also Martín-Fernández et al.,

2012; Buccianti, 2013):

• Relative difference in covariance matrix (RDCM): Denote X(re) the imputed (re-

expressed) data set, as returned from the algorithm described in Section 2.4. Then

the original data set X and the re-expressed data are represented in coordinates, say

Z and Z(re), respectively, using the same ilr representation. The sample covariance

matrix S of Z with elements sjk, and the sample covariance matrix S(re) of Z(re)

with elements s
(re)
jk are computed, for j, k ∈ {1, . . . , D− 1}. The measure RDCM is

defined as

‖S − S(re)‖F
‖S‖F

=

√

D−1
∑

j,k=1

(

sjk − s
(re)
jk

)2

√

D−1
∑

j,k=1
s2
jk

, (2.14)

where ‖ · ‖F denotes the Frobenius norm.

• Compositional error deviation (CED): Denote the observations of Z by zi, and

those of Z(re) by z
(re)
i , for i = 1, . . . , n. Further, call C the index set referring to

observations where at least one part has been imputed, and the number of those

observations by nC . The measure CED is defined as

1
nC

∑

i∈C
d(zi, z

(re)
i )

max
{zr,zs∈Z}

{d(zr, zs)}
, (2.15)

where d(·, ·) stands for the Euclidean distance. The denominator is the maximum

distance of any two observations in the original data set.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. Imputation of values above an upper detection limit in compositional data

2.6.1 Example with R code

In order to be more specific, the 41 observations from the plant species “SPR” (spruce)

from the Gjøvik data set are used for the selected 13 variables. Initially, a detection limit

problem is introduced in the variable “Fe”: the value of the UDL is set to the quantile

0.8 of this variable, and thus the upper 20% of the values of Fe are right-censored. All

remaining variables will not have any values above an UDL, and thus the UDL is set to

the maximum for these variables. The R code looks as follows.

R> library(robCompositions) # load package

R> data(gjovik) # load data set

R> sv <- c("Al","Ba","Cd","Ce","Co","Cs","Cu","Fe","Mn","Mo",

"Na","Ni","Zn")

R> dat <- gjovik[gjovik$MAT=="SPR",sv] # select species SPR

# and variables

R> UDL <- apply(dat,2,max) # UDL value for each

# variable

R> names(UDL) <- names(dat)

R> UDL["Fe"] <- quantile(dat[,"Fe"], probs = 0.8)

R> whichudl <- dat[,"Fe"] > UDL["Fe"] # which cells are > UDL

As mentioned above, the simple imputation method is replacing UDL values in Fe by

1.2 times the corresponding UDL:

R> imp.simple <- dat

R> imp.simple[whichudl,"Fe"] <- UDL["Fe"]*1.2

For the imputation using the function imputeUDLs, values above the UDL need to

be set to infinity (Inf):

R> imp.lm <- dat

R> imp.lm[whichudl,"Fe"] <- Inf

R> res.lm <- imputeUDLs(imp.lm,dl=UDL,method="lm",

variation=TRUE)

R> imp.lm <- res.lm$x

In the above code, the classical method using least-squares regression is applied,

and variable selection is carried out with variation=TRUE. In the resulting object
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2.6. Numerical experiments

res.lm$x, the whole data matrix is saved, but only the cells which have been set to

Inf are modified.

Imputation with the robust regression method, using again variable selection, can be

done as follows:

R> imp.lmrob <- dat

R> imp.lmrob[whichudl,"Fe"] <- Inf

R> res.lmrob <- imputeUDLs(imp.lmrob,dl=UDL,method="lmrob",

variation=TRUE)

R> imp.lmrob <- res.lmrob$x

Figure 2.3 shows a visual comparison of the measured values of Fe versus the estimated

(imputed) values for the three different methods, together with the “artificial” UDL of 100

mg/kg as dashed lines. The simple imputation seems to destroy the data structure much

more than the regression-based imputations. In this case, there is almost no difference

visible between the classical and the robust regression method.
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Figure 2.3: Plot of measured versus estimated values for Fe when the UDL is equal to
the quantile 0.8 (subset spruce from the Gjøvik data).

For each imputation method, both error measurements can be computed. For instance,

for the classical least-squared imputation, the measures RDCM and CED are computed

as follows:

R> rdcm(dat,imp.lm)

R> ced(dat[whichudl,], imp.lm[whichudl,], sum(whichudl)) /

max(dist(pivotCoord(dat)))
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2. Imputation of values above an upper detection limit in compositional data

The results for all three methods are shown in Table 2.1. While the regression-based

methods are indeed quite comparable, the simple method performs worse, and the

imputed data show a larger error in the covariance structure and for the distances.

Table 2.1: Resulting error measurements for the three imputation methods after imputing
the upper 20% of the values of Fe.

Error measurement Simple method Classical method Robust method

RDCM 0.031 0.0158 0.0060
CED 0.024 0.0166 0.0168

Figure 2.4 shows for the same data set another imputation example where the upper

20% of the values of the variables Ce and Cs have been imputed by the simple and the

classical regression method. The resulting data structure is represented by log-ratio

biplots (Aitchison and Greenacre, 2002) of the first two principal components for the

original data (left), for the simple method (middle) and for the classical method (right).

The explained variance in these presentations is around 60%, and for better readability

the original variable names are plotted. Although there are not big changes, one can see

that the data structure is somehow distorted with the simple method, compared to the

classical one.

2.6.2 Convergence of the algorithm

The algorithm as presented in Section 2.4 stops after the relative squared error in

Equation (2.13) is smaller than a given threshold, or after a maximum number of

iterations has been reached. The following experiment should provide more detailed

insights into the convergence behavior, and for this purpose the threshold is set to 0.01,

and the maximum number of iterations to 100. As in the previous section, the spruce

data from the Gjøvik data set is considered with the 13 selected variables. To mimic a

right-censored situation, variables are randomly selected, and the UDL of these variables is

set to the quantile 0.8. This is done simultaneously for an increasing number of variables,

starting from 1 until 10. Higher numbers can lead to instabilities of the algorithm in

terms of much higher numbers of iterations – depending on the position of the values

above UDL. Figure 2.5 shows the resulting numbers of iterations of the algorithm for 100

replications of this simulation, using the classical and the robust method, respectively,

for imputation.
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2.6. Numerical experiments
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Figure 2.4: Log-ratio biplots for the original data, and for data based on imputation with
the simple and the classical method in the variables Ce and Cs, where the UDL is equal
to the quantile 0.8 (subset spruce from the Gjøvik data).
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Figure 2.5: Classical and robust imputation for the spruce data of Gjøvik with 13
variables. The UDL is set to the quantile 0.8 for each of the 1 to 10 randomly selected
variables. The plots show the numbers of iterations of the algorithm for the imputation,
for 100 simulation replications.
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2. Imputation of values above an upper detection limit in compositional data

Figure 2.5 reveals a clear difference between the classical and the robust method: in

the latter case, the number of iterations is clearly higher. This can be explained by the

fact that imputed values in one iteration could become outliers in the next one, or the

other way around. Thus, the observations which are downweighted (outliers) would also

vary, leading to a certain instability in the algorithm. Note that the vertical axis of the

plot for the robust method was cut at 30. In rare cases, the number of iterations reaches

almost the maximum 100. It can also be seen from the plots, that the number of iterations

increases if imputation has to be carried out in more and more variables. However, this

increase is still in very limited bounds, in particular for the classical method.

2.6.3 Effect of sample size

The effect of varying sample size is evaluated in Figure 2.6; on the horizontal axes the

considered specific sample sizes are shown. Accordingly, data sets with these sample sizes

are randomly (without replacement) selected from the pool of all observations in the

Gjøvik data set, irrespective of the material (plant species). Then, a UDL is set according

to the quantile 0.8 in one randomly selected variable, and classical and linear regression

(without variable selection) is applied. The boxplots in Figure 2.6 represent the resulting

error measures for 100 simulations. It can be seen that with increasing sample size, the

errors decrease but also stabilize (smaller variability). The error reduction e.g. from

30 to 80 observations is remarkable. Despite both methods may be affected by mixing

observations from different sub-populations together, the robust method clearly shows

poorer performance compared to the classical one. Robust regression will fit only the

data majority corresponding to the common data structure, and treat the remainder as

outliers, which are then not appropriately modeled.

2.6.4 Increasing the number of variables for imputation

In the following simulation experiment, again the subset for plant spruce of the Gjøvik

data set is used with the same 13 selected variables as before. As in the previous section,

the UDL is set to the quantile 0.8 of a specific variable, and the number of such variables is

increased from 1 to 8. Classical and robust regression is compared, both with (TRUE) and

without (FALSE) variables selection. The evaluation of the results is based on the RDCM

and CED measures, and their 10% trimmed means over 100 simulations are presented in

Figure 2.7; trimming is used to suppress the effect of outliers in the evaluation. Clearly,

the more variables have to be imputed the worse the error measures are, since both the

covariance structure and the distances are more and more distorted. However, also the
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2.6. Numerical experiments

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●●●●●

0.
05

0.
10

0.
15

0.
20

0.
25

Sample size

R
D

C
M

30 80 130 180 230 280 330 380 430 480

Classical method Robust method

●

●

●●

●
●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●●●

●●

●

●

●
●
●●●

●
●●

0.
04

0.
08

0.
12

0.
16

Sample size

C
E

D

30 80 130 180 230 280 330 380 430 480

Classical method Robust method

Figure 2.6: Error measurements depending on sample size: Data sets with the indicated
sample size are randomly drawn from the Gjøvik data set, and imputation is done in one
randomly selected variable, where the UDL is set to the quantile 0.8.

difference in the performance for the methods gets more pronounced with increasing

numbers of variables for imputation. If imputation has to be done in more than half of

the 13 variables, the methods using variable selection show some instability. The classical

method without variable selection shows the overall best performance. Depending on the

measure and the situation, variable selection sometimes leads to an advantage. This is

clearly seen for the robust method, for up to 6 imputed variables.

2.6.5 Increasing the proportion of values above the UDL

For the next experiment, again the spruce data subset from the Gjøvik data set with the

13 selected variables is considered. UDL values are generated in one randomly selected

variable, and the quantile (UDL value) is modified between 0.5 and 0.95. The 10%

trimmed average of the RDCM and CED measure over 100 simulations are visualized in

Figure 2.8 for the different methods, also considering variable selection (TRUE/FALSE).
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2. Imputation of values above an upper detection limit in compositional data
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Figure 2.7: Comparison of classical and robust regression imputation with (TRUE) and
without (FALSE) variable selection for the spruce data subset. The number of variables
to be imputed is increased, and imputation needs to be done for the upper 20% of the
values.

In several situations, variable selection leads to better results, and the robust method

is in most cases superior to the classical one. Especially for data with low sample size

(we have 41 spruce samples), the prediction from regression with a larger number of

variables (here 13) leads to an overfit and can become quite unstable, see also Figure 2.7.

Variable selection avoids the effect of overfitting. The simple method leads to a rather

poor performance. It is also interesting to note that for an increasing censoring level

especially the RDCM measure suffers (the covariance structure is destroyed), but the

CED is still quite stable (distances are still reasonable).

We carried out this experiment also for the complete Gjøvik data set with 604

observations (instead of 41 observations for the spruce data), where variable selection

did no longer reveal any advantage. This is also to be expected, since with high numbers

of observations compared to the number of parts, the regression models become more

stable within the iterative scheme.

2.6.6 Comparison for different data subsets

In the following experiment, the imputation is done for each sub data set corresponding

to the different sample materials. Their data structure is potentially very different, which
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2.6. Numerical experiments
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Figure 2.8: Comparison of the simple method, and of classical and robust regression
imputation with (TRUE) and without (FALSE) variable selection for the spruce data from
Gjøvik. Imputation is done in only one randomly selected variable, by modifying the
UDL value from the quantile 0.5 to 0.95.

could also lead to a difference in the performance of the imputation. Out of the considered

13 variables, one variable is randomly picked, and the UDL value is modified between

the quantile 0.5 and 0.95. Then the average of the resulting error measures is computed

for the simple and the regression-based methods (without variable selection). Figure 2.9

shows the results for 100 simulations. The robust method shows some instability, visible

as very right-skewed distributions. Here, the sample size of each plant material was

around 41 (sometimes there were observations with missings which had to be eliminated).

According to Figure 2.6, this small sample size indeed leads to higher instability of the

regression-based methods, and this becomes even more severe if the proportion of values

to be imputed increases, see also Figure 2.8. In this case, the overall recommended

procedure could be the classical method. It is remarkable that the only two soil sample

materials, C- and O-horizon, are ranked among the worst error results.

2.6.7 Comparison in terms of different variables

In this last experiment, all observations from the Gjøvik data set are used, and 30 selected

variables are considered for imputation. Those 30 variables still have reasonable data

quality, because there are reasonably small proportions of left-censored or rounded values.
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2. Imputation of values above an upper detection limit in compositional data
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Figure 2.9: Imputation for each individual sample material (listed on the horizontal axis).
The upper detection limit is modified from the quantile 0.5 to 0.95 of the values for a
randomly selected variable, and the average of the error measures is computed. The
boxplots show the outcomes for 100 simulations. The order of the sample materials is
according to the median performance of the classical method.

Imputation is done only in one variable at a time, and the UDL is modified from the

quantile 0.5 to 0.95. The average error among this range is computed for each individual

variable, and the boxplots in Figure 2.10 show the results for 100 simulations. The

boxplots are sorted according to the median for the classical method. There are quite

large differences among the variables visible. The simple method sometimes leads to very

poor results, e.g. for Pb, Mo, La, Ce or Co. The performance of the classical and robust

method is quite comparable. The reason for the different performance of the variables

has to be based on the strength of the relationship to the other variables, but it could

also be affected by the fact that the different sample materials result in subpopulations

in the data set.
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2.6. Numerical experiments
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Figure 2.10: Imputation for the complete data set. The upper detection limit is modified
from the quantile 0.5 to 0.95 of the values for a particular variable, and the average of the
error measures is computed for each variable separately. The boxplots show the outcomes
for 100 simulations. The order of the variables is according to the median performance
of the classical method.

2.6.8 Summary

The main conclusions from the numerical experiments can be summarized as follows:

• The algorithm is stable and converges in few iterations, but convergence is slower for

the robust method (in few cases there is very slow convergence). The algorithm still

works well for a high fraction of variables to be imputed, and for a high proportion

of censoring.

• Regression-based imputation usually outperforms simple imputation, which is to

be expected since the initialization is done by the simple imputation method. It

depends very much on the data structure and size if robust regression leads to

better results than classical least-squares regression. Often, the results are quite

comparable. In particular, we found that the robust method is preferable when the

number of censored values is high (more than 30%). In most other experiments

there is no clear advantage over the classical method.
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2. Imputation of values above an upper detection limit in compositional data

• For a low number of observations (also compared to the number of variables),

variable selection within the regression method leads to better results than regression

with all the available variables, especially for a high proportion of censoring. The

more observations, the better the imputation results of the classical and robust

regression methods.

• The performance of the imputation can differ a lot for different variables in the

same data set – depending on the data structure.

2.7 Discussion and conclusions

In this paper we proposed a regression-based method for the imputation of right-censored

values in compositional data, making use of the Tobit model. An algorithm was developed

based on the ideas of an algorithm for left-censored data (Palarea-Albaladejo and Martín-

Fernández, 2008; Martín-Fernández et al., 2012), with the option for least-squares or robust

regression with or without variable selection. The algorithm is available in the software

environment R as the function imputeUDLs() in the package robCompositions

(Templ et al., 2011).

The performance of the algorithm was investigated in detail and compared to a simple

imputation method, imputing a value of 1.2 times the value of the upper detection limit.

All experiments were based on two geochemical data sets, one with several data subgroups

which were used in the numerical experiments for comparison (Reimann et al., 2018).

For reproducibility of the presented results in Section 6, the second data set has been

made available as data gjovik in the package robCompositions. This data set did

not contain any censored values, and thus right-censoring was artificially introduced, and

the imputed values could be compared to the reported values.

In real data sets, the proportion of samples above the upper detection limit could

be high for some variables, probably even higher than 80%. In that case, the proposed

algorithm would have to use less than 20% of the observations to estimate the parameters

in the regression model in Equation (2.8), which could become very unstable, in particular

if the data set has many variables. In such cases it might be more advisable to omit such

variables from the analysis.

A further problem which appears with real data is that for some variables one could

have both values above an UDL and values below a LDL. A simple strategy to deal with

this problem could be as follows:

• Determine the proportion of UDL and LDL values separately for each variable.
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2.7. Discussion and conclusions

• Omit variables with proportions higher than e.g. 30% to obtain higher stability in

the iterative algorithm.

• – If the proportion of the remaining variables is “generally” higher for UDL

than for LDL, do UDL model-based imputation by setting the LDL values to

65% of the corresponding LDL (Martín-Fernández et al., 2003). Afterwards,

impute the LDL values using a regression method.

– Otherwise, set UDL values to 1.2 times the corresponding UDL, and do LDL

model-based imputation. Another multiplier such as 4/3 or 1.7 (Sanford et al.,

1993) might work as well. Afterwards, impute the UDL values using the

algorithm of Section 4.

One could iterate the last two steps until some error measure is smaller than a given

threshold, see Section 2.4.

An alternative algorithm could consider the regression problem in Equation (2.8)

only for the non-censored observations, and use the estimated regression coefficients to

estimate the values above the UDL and below the LDL. As outlined in Section 2.4, one

would iterate through all variables for the imputation, and then repeat the procedure

until the results stabilize. The performance of both options will heavily depend on the

pattern of the LDL and UDL values, but also on the number of observations/variables in

the data set. Particularly difficult will be situations where the UDL and LDL values are

present in more or less the same variables.

The above recommendations always depend on the purpose of the analysis. For

instance, in geochemical exploration it would not be desirable to omit a variable which is

considered as pathfinder element for mineralization, just because of a very high proportion

of values above the UDL. In this case it might not even be necessary to estimate the

values above the UDL, because the information of “high” values at specific locations

might be sufficient for the purpose.
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CHAPTER 3
Identification of mineralization in

geochemistry along a transect

based on the spatial curvature of

log-ratios

Detecting subcropping mineralization but also deeply buried mineralization is one im-

portant goal in geochemical exploration. The identification of useful indicators for

mineralization is a difficult task as mineralization might be influenced by many factors,

such as location, investigated media, depth, etc. We propose a statistical method which

indicates chemical elements related to mineralization along a transect. Moreover, the

method determines along a transect the potential area of the deposit. The identification

is based on General Additive Models (GAMs) for the element concentrations across the

spatial coordinate(s). The log-ratios of the GAM fits are taken to compute the curvature,

where high and narrow curvature is supposed to indicate the mineralization area. By

defining a measure for the quantification of high curvature, the log-ratios can be ranked,

and elements can be identified that are indicative of the anomaly patterns.

3.1 Introduction

Identifying geochemical processes as mineralization is defined as the presence of higher

concentrations of particular chemical elements compared to the background concentration.
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

However, it is challenging to define the background concentration, since the threshold

between background and mineralization will in general not be characterized by a single

number (see Reimann and Garrett, 2005). Nevertheless, it would be expected that a

biogeochemical anomaly in mineralization exploration is indicated by a rapid spatial

change in the concentration on top of the mineralization, depending on the type and

extent of the mineralization. Nowadays, identifying geochemical features related to

geochemical signature, and the separation of background and target zones of future local

mineral exploration are becoming popular challenges in geochemistry.

Geochemical data in the form of chemical element concentrations are naturally

compositional data, which are strictly non-negative values, forming parts of a whole. In

this context we talk about compositional data analysis, and the log-ratio methodology

introduced by Aitchison (1986) is the most common approach in this context. The

important information to be analyzed is reflected in the log-ratios between the variables

rather than in the absolute values. This “relative” information is employed for a proper

understanding of the data.

There are two main difficulties with such an approach for practical geochemical data

sets: (a) Nowadays it is possible to measure the concentration of dozens of chemical

elements, and this leads to hundreds (or more) possible pairwise log-ratios. Filtering

out the elements which may indicate mineralization is thus challenging. (b) Especially

for mineral exploration there might not be many observations available, because often

they are the result of a pre-study of the area. This creates further difficulties for the

prediction of the location of a potential mineralization.

Since the identification of mineralization is a very relevant topic in practice, there

are numerous publications available in the literature. This problem is also known under

geochemical anomaly mapping, referring to a map presentation of geochemical uni-element

or multi-element soil or plant data. Related to the log-ratio methodology, the works of

Buccianti et al. (2015), Carranza (2017) and Tolosana-Delgado and van den Boogaart

(2014) aim to predict an anomalous presence of a mineral commodity. In these papers,

a log-ratio transformation is applied, and then different mapping techniques are used

to reveal the mineralization. The first mentioned paper uses centered log-ratio (clr)

coefficients and isometric log-ratio (ilr) coordinates, since these representations preserve

metric properties. Anomalous compositions then originate from the robust barycentre.

Using robust methods, the variables are split into two groups, then the variation of

log-ratios gives ratios being in geochemical relationships, however the interpretation can

be relatively weak and not specific enough. The work Carranza (2017) uses enrichment

factors and log-ratios, where log-ratios are in terms of ilr coordinates. Based on kriging,
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3.1. Introduction

a spatial correlation analysis was performed, where ilr values have much stronger positive

spatial correlation with the known gold deposits. The paper also concludes that for

mapping of significant anomalies, it is better to use ilr-transformed soil geochemical data

than enrichment factors. A limitation is that this procedure is a supervised method,

meaning that the deposits need to be known for the input. Another example, proposed in

Tolosana-Delgado and van den Boogaart (2014), shows that compositional data analysis

is useful as a first step to identify geochemical features linked to natural phenomena.

Logistic regression-like techniques are used to obtain a combination of variables that

favor the presence of mineralization. Geostatistics is used to interpolate the composition

to unsampled locations. However, the two proposed methods – the Fisher method

and Poisson processes – can lead to incomparable results. The methods rather rely on

information about high log-ratios, not in consideration of any spatial changes. However,

this still gives informative results combining potential areas of interest and also relevant

favorability in sense of ratios.

The idea behind the presented method is that pairwise log-ratios would rapidly change

towards a mineralized area. A rapid change would imply that the values of the log-ratio

show strong curvature. However, based on the observation data, “curvature” can only

be computed numerically, and this is infeasible if the rapid change is expressed only

by very few observations. For this reason we will approximate the underlying element

concentration data by smooth values, producing a continuous signal which allows to

extract as many data points as necessary to compute a curvature later on. Smoothness

is important at this stage, because otherwise one could obtain arbitrary jumps in the

log-ratios, leading to artifacts in the curvature. One could also argue that the smoothed

concentration values allow to suppress the effect of measurement uncertainties.

We decided to use Generalized Additive Models (GAMs) for the estimation of a

smooth signal (Wood, 2017) and (Yee, 2015). The smoothness can be regulated by a

tuning parameter, which is selected by cross-validation. A GAM fit is based on natural

cubic splines with knots at every data point. Depending on the tuning parameter, one

can obtain the whole spectrum from the linear fit to the very non-smooth exact fit. Once

the GAM fits for both input variables of the log-ratio are available, the curvature of

the log-ratio of the smoothed concentrations can be computed, and an unsupervised

learning method is employed, leading to a hitlist of log-ratios most suitable for finding

mineralization. The proposed method has been tested on two real data sets, where

the mineralized zones are known, and the results seem to be reliable and carrying out

promising prospects.

The paper is organized as follows: Section 2 introduces the methodology and provides
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

a closer description of GAMs, additional information on the concepts of the curvature and

its measurement. A detailed algorithm for the whole procedure of ranking of log-ratios is

proposed in Section 3. Section 4 demonstrates numerical experiments based on two real

geochemical data sets. The last Section 5 concludes and provides possible extensions of

the proposed method.

3.2 Methodology

3.2.1 Motivating artificial example

The principal idea is to investigate the curvature of log-ratios. The higher an index

involving the curvature, the more likely a point of mineralization has been identified.

For illustration purposes, let us consider the function x 7→ (1 + (x
σ

)2)−1, for fixed

σ > 0. Figure 3.1 shows on the top row the function itself for different values of σ,

and the bottom row presents the corresponding curvatures. An appropriate measure of

curvature will be defined later in Section 2.3. As it can be seen on the top row, the lower

σ becomes, the quicker the spatial change of the function is. Looking at the bottom row,

this translates into a growing value of the curvature at zero. The case of σ → ∞, not

displayed here, corresponds to the function being constant equal to one, thus having

zero curvature. The methodology developed in the following involves the curvature as a

measure of how quick a signal undergoes spatial change. Of course, this measure needs

to be normalized appropriately in case of several peaks with possibly different curvature.

3.2.2 GAMs

Since in many studies only few observations are available, the original concentration

data are approximated by smooth curves originating from Generalized Additive Models

(GAMs), before log-ratios for computing curvature are considered. This is preferable to

computing a curvature measure directly from the log-ratios of the observations, since

with smooth fits one can in principle generate arbitrarily many observations, and derive

a more stable value for the curvature. GAMs have the advantage that the degree of

smoothness of the fit to the data can be tuned.

Denote (x1, y1), . . . , (xn, yn) the n observed data of the measured concentration y at

position x of a certain element, where we assume that x1 ≤ · · · ≤ xn are measured along

a linear transect. At the heart of GAMs is a weighted penalized log-likelihood problem
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3.2. Methodology

Figure 3.1: Top row: function x 7→ (1+(x
σ

)2)−1 for different σ. Bottom row: corresponding
curvature (to be defined in Section 2.3).

over a suitable function space H, estimating the presumably smooth linear predictor η

η̂ = arg max
η∈H

n
∑

i=1

ωil(yi|xi; η) − λ

∫

(η′′(x))2dx, (3.1)

where λ is the so called smoothing parameter, l is the log-likelihood function, and ωi are

predefined weights. To explain this further, we note that in the GAM framework one

necessary assumption is that the response y belongs to the exponential family, thus its

density is of the form

f(y|x) = exp

(

θy|x− b(θ)

a(ψ)
+ c(y|x, ψ)

)

,

with parameters θ, ψ and given functions a(·), b(·) and c(·). It can be shown that with this

assumption we are able to rewrite the log-likelihood in dependence of the conditional mean

E(y|x). Given now a so called link function h(·) – a smooth monotonic function which

the user must normally choose, except in some special cases for which we get a canonical
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

link – we model the composition of the expectation of y with h(·) as h(E(y|x)) = η(x)

and are therefore able to implicitly write the log-likelihood in dependence of the linear

predictor η. Modeling the mean in such a way, we are able, once η is estimated, to make

predictions of y|x through h−1(η(x)). The choice of h(·) is in many cases not crucial as

long as its domain matches with the range of possible values of E(y|x).

The smoothing parameter λ controls the trade-off between smoothness and the fit to

the data; the bigger λ becomes, the smoother the function will be, as in the case λ → ∞
we get η′′ ≡ 0 and therefore η is a linear function. Typically, the smoothing parameter λ

is chosen in a data dependent way by using either Generalized Cross Validation (GCV)

or Restricted Maximum Likelihood (REML).

For fixed λ, the function η solving problem (3.1) can be written in terms of a cubic

B-spline basis, see Friedman et al. (2001), for example. Therefore, η(x) =
∑n
j=1 hj(x)βj ,

where hj are the cubic B-spline basis functions, and βj the coefficients.

For a more thorough introduction to GAMs, GCV, REML and how problem (3.1) is

solved algorithmically, we refer to Wood (2017).

In the applications of our method to the data of Section 4, we decided to model yi|xi
belonging to the family of Tweedie distributions with a log-link function h ≡ log. This

means that we model

h(E(y|x)) = η(x) V(y|x) = E(y|x)p
ψ

ω(x)
(3.2)

for some p ∈ (1, 2). Furthermore, to capture the effect of outliers in the response we use

predetermined weights ωi; for example we took ω̄i := max
(

|yi−µ̂|
σ̂

, 1
)

, where µ̂ and σ̂ are

the sample mean and the sample standard deviation of y, and then put ωi = ω̄i
∑

ω̄i
.

In these particular examples, the choice of this family of distributions and this specific link

function is motivated by the fact that it provides a very flexible range of modelling the

mean-variance relationship – as it comprises many distributions through the additional

parameter p. Furthermore, the predetermined weights have been chosen in a way such

that outliers get upweighted, i.e. if a point yi is bigger than µ̂ + σ̂ then it will get

upweighted proportionally. This seems necessary as the variance will likely be higher on

top of mineralization and thus over- or under-dispersion in our model might otherwise

appear. All in all, inspecting the linear predictor vs. the residuals as well as the fitted

values vs. the response plots show consistency with our choice of link-function and thus

also with model (3.2). Some of these plots are shown in Section 4.
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3.2. Methodology

3.2.3 Curvature of log-ratios

Since we are interested in the log-ratios of two chemical elements, we denote for an

element el1 and an element el2 their respective GAM fits on the response scale f̂el1(x) :=

h−1(η̂el1(x)) and f̂el2(x) := h−1(η̂el2(x)). The log-ratio of the fits

g(x) := log

(

f̂el1(x)

f̂el2(x)

)

= log
(

f̂el1(x)
)

− log
(

f̂el2(x)
)

is then shifted and scaled to c(g(x) − min g(x)), with the scaling constant

c := | maxx∈[x1,xn] g(x) − minx∈[x1,xn] g(x)|−1, whenever g is not constant. This is done

to make our method comparable across different log-ratios. In the special case of g being

constant we can set c to one, as such functions will be ranked lowest by the measure

described below.

As a next step we will define a measure for identifying important log-ratios based on

the curvature. The curvature κ of the shifted and scaled function is defined as

κ(x) :=
|cg′′(x)|

(1 + (cg′(x))2)
3
2

, (3.3)

see Kline (1998), and thus, as

g′(x) =
f̂ ′
el1

f̂el1
(x) −

f̂ ′
el2

f̂el2
(x)

g′′(x) =
f̂ ′′
el1

f̂el1
(x) −

(

f̂ ′
el1

f̂el1
(x)

)2

−
f̂ ′′
el2

f̂el2
(x) +

(

f̂ ′
el2

f̂el2
(x)

)2

holds, this amounts to calculating the first and second derivatives of the GAM fits on

the response scale of the individual elements.

3.2.4 Curvature exceeding a threshold

For each such a combination of elements we calculate the mean and the variance of the

curvature κ, namely

µ =

∫ xn

x1

κ(x)dx (3.4)

σ2 =

∫ xn

x1

(κ(x) − µ)2dx (3.5)

and define the set of crossings with the threshold T := µ+ σ by

C := {x ∈ [x1, xn]|κ(x) = T }
⋃

{x ∈ {x1, xn}|κ(x) ≥ T }, (3.6)

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

where the second set contains x1 and/or xn depending if they are above the threshold

or not. The purpose of defining this set is to detect the points where the curvature κ

crosses the threshold and subsequently exceeds it, so that we are left with only a few

high local maxima – see for example Figure 3.2. Of course these maxima depend on the

definition of the threshold, and it seems reasonable to take the mean plus the standard

deviation over the whole range, because, as it is implied by Chebyshev’s inequality, the

further we get from this threshold the less likely an observation is.

Figure 3.2: Example of a log-ratio plot of the elements Al and Co and the corresponding
curvature plot with the threshold (dashed line). One can see the correspondence between
local maxima above the threshold in the right plot with the peaks in the left plot.

Remark. If the set C is finite it follows that its cardinality is even by definition. For

example, if the second set in (3.6) is empty and the first is non-empty, then the set must

have even cardinality as otherwise before or after the last crossing it must always remain

above the threshold, thus κ(x1) > T or κ(xn) > T .

Instead of analytically solving the equation κ(x) = T we decided to uniformly
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3.3. Algorithm

sample a high number of points N in the interval (x1, xn) - where we always add

{x ∈ {x1, xn}|κ(x) ≥ T } to the set - and then check for each of these points xl if

κ(xl) − T has a change of sign. If so, we add this point to the set and we denote Ĉ the

set constructed in this way. We do the latter so that we can continue to work with a

finite set which is of even cardinality, and one could see the measure constructed in the

following as an approximation to the analytical case.

3.2.5 Measure for comparing curvature

We define the measure to compare the curvature values of the log-ratio of two elements

el1 and el1 as

c(el1, el2) :=
2

L

L
2
∑

l=1

max
x∈[xj2l−1

,xj2l
]
(κ(x) − T )2

+, (3.7)

where (·)+ denotes max(·, 0), and where xj1 < ... < xjl , l = 1, ..., L are the ordered points

of the finite set Ĉ. We will call this measure c-value in the following.

The more the curvature κ exceeds the threshold in [xj2l−1
, xj2l

], the bigger the

maximum and thus also the measure will be. Therefore, a relatively fast change in the

original signal will contribute a lot to this measure. By including the factor 1
2L , the

measure c(el1, el2) becomes the mean, and thus c(el1, el2) is high if the peaks above the

threshold T are high on average.

Since this measure is normalized, it can be used to compare all different pairs of

log-ratios, and it can even be used to compare different data sets taken at the same

locations, such as measurements from different sample materials or soil layers. The

log-ratio pairs can be ordered according to the value of the measure, and the pairs

corresponding to the highest ranking will be most promising for the identification of

mineralization.

3.3 Algorithm

In the following we will describe the algorithm using the methodology above, which

takes as an input the element concentrations for n observations, denoted as the vectors

yel1 , . . . ,yelm of length n, where (yelk)i is the i-th observation of the measured concen-

tration of the k-th element, and the location vectors x of length n, where xi is the i-th

observed location. The output is a matrix C with entries c(elr, els) for different elements

elr and els.
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

Step 1: Before fitting the GAM model we scale the entries of x to the range [0, 1], and

then we calculate the weights (ωelk)i for the element concentrations (here for the k-th

element), see definition below model (3.2).

Step 2: As a next step we fit a GAM model to each element, meaning that for the

measurements (xi, (yelk)i) we solve

max
ηelk

n
∑

i=1

(ωelk)i l((yelk)i|xi; ηelk) − λ

∫

(η′′
elk

(x))2dx.

For the applications presented in Chapter 4 we have decided to use the Tweedie family

and the log-link function. The fitting is done with the help of the R package mgcv (Wood,

2017), and the smoothing parameter λ is tuned automatically by using the implemented

REML criterion.

Step 3: Once all the elements have been fitted, thus once we have computed all η̂el,

we compute for a high number of points x ∈ [x1, xn], typically we used N = 3000,

all the possible shifted and scaled log-ratios at these points. Therefore, denoting X
the ordered set of these points x, we calculate for each possible pair of elements el1

and el2, c := | maxx∈X g(x) − minx∈X g(x)|−1, where g(x) = log(f̂el1(x)) − log(f̂el2(x));

f̂el1(x) := h−1(η̂el1(x)) and f̂el2(x) := h−1(η̂el2(x)). If g is constant we set c = 1.

Step 4: As a next step we calculate the curvature of these log-ratios. Thus, for each

such pair of elements elr and els and all x ∈ X we need to determine g′(x) and g′′(x)

first. This is done numerically. For a small ǫ, say 10−3, we compute the approximate

derivatives for all elements

f̂ ′
el(x) ≈ 1

2ǫ
(f̂el(x+ ǫ) − f̂el(x− ǫ))

f̂ ′′
el(x) ≈ 1

ǫ2
(f̂el(x+ ǫ) − 2f̂el(x) + f̂el(x− ǫ))

and as

g′(x) =
f̂ ′
el1

f̂el1
(x) −

f̂ ′
el2

f̂el2
(x)

g′′(x) =
f̂ ′′
el1

f̂el1
(x) −

(

f̂ ′
el1

f̂el1
(x)

)2

−
f̂ ′′
el2

f̂el2
(x) +

(

f̂ ′
el2

f̂el2
(x)

)2

holds, it is easy to compute κ(x) := |cg′′(x)|

(1+(cg′(x))2)
3
2

for each pair of elements and x ∈ X .
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3.3. Algorithm

Step 5: After this we compute an approximation to the treshold τ by approximating

(3.4) and (3.5). Thus we define

τ :=
1

|X |
∑

x∈X

κ(x) +

√

√

√

√

1

|X |
∑

x∈X

(

κ(x) − 1

|X |
∑

x∈X

κ(x)

)2

.

Step 6: Next we compute an approximation to the set C. We define the set Ĉ as all

the x for which we have κ(x) = τ or for which κ(x) is smaller than τ and then the next

element in X , say x̄, we have κ(x̄) > T . Also we add x1 and/or xn if κ is bigger or equal

than τ there. This seems like a reasonable approximation as long as the cardinality of X
is high enough.

Step 7: Finally, we compute for each pair of elements the measure c(elr, els) :=

2
L

∑

L
2
l=1 maxx∈Il

(κ(x) − T )2
+, where Il := [zj2l−1

, zj2l
], zj is a point of the set Ĉ and

where L is the cardinality of Ĉ.

In short, the steps above can be subsumed into the following algorithm:

Algorithm 1 Log-ratio measures

1: for k = 1,...,m do

2: Calculate weigths, i.e. calculate µ̂ and σ̂ of yelk and set (ωelk)i := max(
(yelk

)i−µ̂

σ̂
, 1)

3: Solve maxηelk

∑n
i=1(ωelk)i l((yelk)i|xi; ηelk) − λ

∫

(η′′
elk

(x))2dx
4: end for
5: for (r,s) in {1,...,m} do

6: Calculate curvature κ for the shifted and scaled log
(

felr

fels

)

7: Compute µ and σ2 as described in (3.4) and (3.5) and set T := µ+ σ
8: Draw uniformly N points from (x1, xn) and add crossing points of κ with T

to Ĉ = {x ∈ {x1, xn}|κ(x) ≥ T }
9: Set c(elr, els) := 2

L

∑

L
2
l=1 maxx∈Il

(κ(x) − T )2
+

10: end for
11: Define matrix C with entries c(elr, els)
12: return Matrix C

Once these values c(elr, els) are obtained for all element combinations, we can compute

a ranked list for the log-ratios from highest to lowest, or a heatmap based on the matrix

C – where we scale the entries by the maximum entry first. As the measure c(elr, els)

is comparable across materials, it is also possible to use these matrices to explore

accumulated heatmaps for a comparison of different plant materials, see next section.
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

The whole algorithm as described above has been implemented in the software

environment R (R Development Core Team, 2018) using mainly the gam() function

implemented in the package mgcv (Wood, 2012). This software is available from the

authors upon request.

3.4 Experimental results

The proposed method has been tested on two real geochemical data sets with known

mineralization. Both data sets are sampled along a (more or less linear) transect. The

known locations of mineralization can be used to evaluate the proposed procedure.

3.4.1 Juomasuo data

The Juomasuo data set is described in detail in Middleton et al. (2018), and it originates

from the UltraLIM project, where biogeochemical samples have been taken in the years

2013 and 2014 in a subarctic region in northern Finland. Juomasuo, among all available

sites, is the largest of the known Au deposits in the area. We take the data from 2013,

where three different sample plant materials have been collected (Crowberry, Bilberry

and Labrador tea). The investigated tissue of the plant species is either twig/stem or

leaf/needle, and they have been analyzed for the concentration of more than 40 chemical

elements. Depending on the plant material, 27 to 30 samples are available, and we

focus on the concentration values of 27 chemical elements with reasonable data quality.

Moreover, plants showed strong positive apical anomaly patterns for cobalt (Co), iron

(Fe), thorium (Th), uranium (U) and rare earth elements (REE), such as cerium (Ce),

lanthanum (La) and neodymium (Nd) in more than one species.

The sample locations are approximately along a line, and as a first step the distances

between the samples are computed. The distance between the most extreme sites is

1271 meters, an on average one sample has been taken per 45 meters. For reasons

of comparability, the distances are normalized from 0 to 1 as an input for the GAM

models (see horizontal axis of Figure 3.3). The known mineralization is at the following

(normalized) distances: 0.3, 0.38, 0.43, 0.48, 0.51, 0.53 and 0.55.

Figure 3.3 shows the GAM fits applied on eight selected variables measured in

Crowberry twigs, together with the original concentration values (dots). The GAM fits

result in a very smooth signal, even around normalized distance 0.75, where a gap in

the sampling procedure occurred due to a peat bog. As mentioned above, the known

mineralization is at distances between 0.3 and 0.55, and this is visible also in Figure 3.3,

where one can clearly see anomaly patterns around these distances. Due to the choice of
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3.4. Experimental results

the weights for the GAM fit, the outliers have a stronger impact on the fits, which is a

desirable effect for the purpose of anomaly detection.

Figure 3.3: GAM fits (lines) for eight selected elements measured in Crowberry twigs
from the Juomasuo data set are displayed together with their original concentrations
(dots).

Once the GAM fits are available for all elements, their log-ratios for all different

element pairs can be computed, together with the curvature measure. Figure 3.4 shows

four examples of such log-ratios, their curvature, and the corresponding thresholds

(dashed lines). These examples indeed reveal some of the known mineralization, shown

by large spatial variability which is reflected by high curvature. Note that due to the use

of log-ratios, we are not necessarily interested in high peaks but also in low ones.

Because of their relatively high curvature values and very narrow peaks, the pairwise

log-ratios shown in Figure 3.4 have high values for our c-value measure defined in

Equation (3.7). In fact, these c-values are assigned to the first top ranked 6 log-ratios

among 351 log-ratios available in total for the particular sample material. Table 3.1
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

Figure 3.4: Upper part: four different log-ratios of GAM fits. Lower part: corresponding
curvature together with the threshold (dashed red line).

presents the pairwise log-ratios for the top ten curvature measures for each sample

material. Here, the measures have been scaled to the interval [0, 1] first (for each sample

material individually) for reasons of comparability. For example, for Crowberry-twig one

can see that cobalt is involved often in the top ranked log-ratios, and thus this element

seems to be a “pathfinder” for mineralization. Indeed, cobalt plays an important role

concerning gold deposits. Depending on their element uptake, different plant materials

can involve different elements in the top log-ratio pairs.

Similarly, the interpretation for individual combinations of plants can be provided.

This information is stored in Table 3.2, where the column “element” provides the first top

10 elements which appear most often in the best ranked log-ratios for the particular plant

media. For example, for plant species Crowberry and plant tissue twig, the elements Co,

As, Cr, Bi, Nd (in this order) most frequently appear among the best ranked log-ratios.

These elements can thus be considered as pathfinder elements.

The information contained in the ranked lists can also be visually summarized in
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3.4. Experimental results

Table 3.1: Top 10 ranked log-ratios and its scaled c-values for the plant materials
Crowberry (CRO), Bilberry (BIL), and Labrador tea (LBT).

CRO-twig CRO-leaf BIL-twig BIL-leaf LBT-twig LBT-leaf

pair c pair c pair c pair c pair c pair c

1 Co/Al 1 Au/As 1 Se/Na 1 La/Th 1 As/Th 1 Se/Ag 1
2 Co/Fe 0.95 As/Sc 0.99 Ba/Se 0.92 U/Fe 0.86 Co/As 0.93 Ag/Al 0.82
3 Co/Ce 0.84 Bi/Pb 0.99 Fe/Se 0.9 U/S 0.81 As/Mo 0.88 Ce/Ag 0.81
4 Co/Th 0.78 As/Ti 0.95 Se/Th 0.83 U/Al 0.79 As/Sc 0.78 La/Ag 0.78
5 Ce/Cr 0.73 Nd/As 0.93 S/Se 0.8 U/Ni 0.77 As/Fe 0.74 Ag/Sc 0.77
6 Nd/Cr 0.73 As/Cr 0.9 Pb/Se 0.76 Cu/U 0.73 U/As 0.74 Ag/Y 0.73
7 Co/Cr 0.72 As/Ce 0.9 Se/Al 0.76 U/V 0.7 Co/Th 0.73 Fe/Ag 0.73
8 La/Cr 0.67 As/Al 0.88 Se/Ti 0.76 U/Na 0.63 As/Ce 0.7 Nd/Ag 0.72
9 Co/V 0.67 As/Na 0.88 Au/Se 0.7 U/La 0.5 As/La 0.67 Cu/Ag 0.7
10 Co/La 0.64 Bi/Ni 0.88 Ce/Se 0.7 U/Th 0.5 As/Y 0.66 Ag/Ti 0.67

Table 3.2: Top 10 ranked log-ratios and its elements for each material.

CRO-twig CRO-leaf BIL-twig BIL-leaf LBT-twig LBT-leaf

element element element element element element

1 Co As Se U As Ag
2 As Bi U Bi Co Y
3 Cr Co W La U Nd
4 Bi Sc Tl Th Fe Ce
5 Nd Cr Ag Cr W Au
6 Ce Fe Co Fe Th Al
7 Fe Al Fe S Se Co
8 La Y Na Ce Al Fe
9 Al La Bi Y Mo La
10 Y Ti Ba Cu Ag U

heatmaps. The scaled c-value measures need to be mapped to colors, where in the following

representation 0 was mapped to white, and 1 to dark blue, with a continuous spectrum

between these extremes. Figure 3.5 shows the resulting heatmaps for the sample media

twigs of the different plant species, as well as a heatmap for the accumulated values of all

sample materials (upper left). The heatmaps represent the different elements in the rows

and columns, with symmetry around the diagonal. Each cell in the heatmap refers to the

scaled c-values of the corresponding pairwise log-ratio. For instance, the upper left plot for

accumulated panel shows that silver (Ag) is involved in many log-ratios with high values

of the c-values. Also arsenic (As), bismuth (Bi), cobalt (Co), selenium (Se) and uranium

(U) are present in many important log-ratios. The interpretation of those mentioned

elements can be partially seen in Middleton et al. (2018). Ag, Bi and Se are elements

verified by lithogeochemistry and also elements exhibiting anomalous spatial patterns
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

over the mineralization. Cobalt creates together with gold the underlying hydrothermal

deposit, where Uranium is one of the elements showing spatial multi-elemental anomaly

patterns for Au-Co deposits. Arsenic is one of the interesting pathfinder elements from the

perspective of geochemical exploration. The heatmaps for the individual plant materials

provide different information, because it depends very much on the plant materials which

elements are enriched by a potential mineralization. The heatmap of the sample medium

Crowberry-twig (upper right) shows a couple of highly ranked log-ratios indicated by dark

blue color, where cobalt seems to be involved in several log-ratios, for instance log(Co/Al),

log(Co/Fe), log(Co/Ce), log(Co/Th), etc. One of the conclusions in Middleton et al.

(2018) is that Crowberry twigs were the most efficient plant tissues for revealing the

location of the mineralized lodes determined as background for Au-Co deposits. Another

investigated plant was Bilberry twig (lower left heatmap) clearly showing two elements

with high c-values, i.e. Selenium and Uranium. In fact, it turned out that Bilberry twig

was rather a poor quality indicator for many elements, forming spatial anomaly patterns

for only a few elements. The last heatmap (lower right) for Labrador tea and its twig

clearly shows Arsenic as the mostly involved in highly ranked log-ratios. Arsenic belongs

to the group of so called pathfinder elements; another important element seems to be

cobalt and Uranium forming the group of ore elements.
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3.4. Experimental results

Figure 3.5: Heatmaps of the c-values per element for all possible log-ratios of the tissue
twig for all plant species, and the accumulated values of all materials (upper left).

3.4.2 Gjøvik Data

As a second application we use the Gjøvik data set, which originates from a project

of the Geological Survey of Norway (NGU) in a 100 km transect in Gjøvik, Norway

(Reimann et al., 2018). In total, 15 different sample materials have been investigated,

soil as well as plants, and approximately 40 samples are available for each subdata set.

They have been sampled more or less on a linear transect, and for our method we first

derived the distances between the samples by projection onto a line. We selected 30

chemical elements with reasonable data quality. The GAM fits have been computed for

each element and each sample material, followed by computing the log-ratios and the

curvature measure.
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

Figure 3.6 shows the resulting heatmaps for four selected sample materials, Birch

leaves (BIL), Blueberry leaves (BLE), Cowberry leaves (CLE), and Spruce needles (SNE).

Three of these plots show that lead (Pb) seems to be a pathfinder element, but also

Tl (thallium), Mo (molybdenum), Sn (tin), and Ti (titanium) result in log-ratios with

high c-values. In fact, the Gjøvik data set has been investigated because there is known

mineralization of lead (Pb) and molybdenum (Mo).

Figure 3.6: Heatmaps of the c-values for all possible log-ratios of four media – BIL, BLE,
CLE, SNE.

Figure 3.7 focuses on the two elements Mo and Tl for the sample material Birch

leaves. Both elements may be relevant for identifying mineralization. The solid line

in the plot is the log-ratio of the GAM fits for these two elements, and the dashed

line corresponds to the threshold used inside the algorithm to compute the curvature

measure. The blue points indicate the predicted areas of mineralization, while the red

points indicate the known mineralization for lead and molybdenum. There is a strong

overlap of the known and predicted areas, and in addition to that there might be new
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3.4. Experimental results

predicted areas worthwhile to be explored.
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Figure 3.7: Curvature of log(Mo/Tl) in sample material Birch leaves, where known
mineralization area (red points) and mineralized points identified by the method (blue
points) are displayed.

Another example of an interesting log-ratio is displayed in Figure 3.8. This log-ratio

of lead (Pb) versus aluminium (Al) is ranked as the second most important log-ratio

(according to our c-value) in sample material BLE. In this figure we also show the original

measured concentrations for Pb and Al, their GAM fits, and the locations of the known

lead anomalies (red points). The log-ratio of the GAM fits clearly indicates the area

around the known mineralization. The second known Pb mineralization around distance

0.9 is not indicated. This is because there is no increased measured Pb value around this

distance, or the sampling survey has missed an appropriate measurement.
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios
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Figure 3.8: Upper part: Log-ratio of lead and aluminium constructed by using GAM fits
of its individual elements – displayed on lower part of plot. Sample material is BLE. The
red points indicate areas of known mineralization.

In order to stress the importance of the individual sample materials, Figure 3.9

displays the 70 top ranked c-values (unscaled) of these materials. Every line in the plot

corresponds to a particular material, and the top-ranked c-values are connected by the

line. The highest c-values are obtained for the O-horizon (OHO) samples. A quick decline

of the curve means that the c-values of lower-ranked log-ratios are clearly smaller than

for the top-ranked ones. One still needs to be careful with the interpretation, because

high c-values can be obtained by few wide peaks in the log-ratios of the GAM fits, and

not necessarily by several sharp peaks. In practice it will be definitely worthwhile to

inspect the top-ranked log-ratios for several sample media, based on the information of

Figure 3.9.
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3.4. Experimental results
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Figure 3.9: Top-ranked 70 (unscaled) c-values for each sample material. The horizontal
axis represents the rank.
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3. Identification of mineralization in geochemistry along a transect based on

the spatial curvature of log-ratios

3.5 Discussion and conclusions

The identification of mineralization is usually based on a pre-study in the prospective

area, where only few sample locations are considered. The sample locations are supposed

to cross the potential mineralized zones, and thus the samples are frequently arranged on

a linear transect. This is the setting which we considered in this paper.

Due to the compositional nature of geochemical data, log-ratios of the element

concentrations are considered as informative. A further important property is the

scale-invariance of log-ratios, which is very important when comparing log-ratios of

different elements. However, analyzing log-ratios of the measurements of only few sample

sample points may lead to a lot of uncertainty and instability. For this reason, the

concentration data have been smoothed first using Generalized Additive Models (GAMs).

The advantage of GAMs is that the smoothness can be tuned with a parameter, and the

tuning parameter is selected using the underlying data (with cross-validation). Thus, the

smoothing is adapted to the data, and once the smoothed signal is available, an arbitrary

number of “concentration” values can be generated. Taking log-ratios of such generated

values allows to compute the curvature, which involves the first and the second derivative,

and these can be numerically obtained. Finally, a measure of “overall” curvature, which

we called c-value, can be obtained. The c-value is not depending on the measurement

units, and it can thus be compared for different element combinations, and even across

different sample media. Moreover, due to the symmetry of log-ratios, an exchange of

nominator and denominator would result in exactly the same c-value, which reduces the

number of potential element combinations for the algorithm significantly.

In the experimental part we have demonstrated using two geochemical mineral

exploration studies, that this methodology is indeed promising to identify pathfinder

elements for mineralization. Those elements that appear in the top-ranked log-ratios

(ranking according to the c-value) are considered as most informative. In addition,

the inspection of the top-ranked log-ratios gives an indication of the location of the

mineralization, and even of the extent of the mineralized areas. Furthermore, it is

informative to inspect the magnitude of the top-ranked c-values for the different sample

media in order to get an idea about their importance for the task of mineral exploration.

It is important to mention that the algorithm is unsupervised. This means that prior

knowledge on the mineralized locations is not necessary. In our studies we only used this

prior knowledge for the verification of the results.

In our future work we will extend this approach to the two-dimensional setting,

i.e. where the samples are not taken along a linear transect but at locations in a two-

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.5. Discussion and conclusions

dimensional (irregular) grid. Although computationally more challenging, GAM fits can

be extended to the two-dimensional case, but curvature also needs to be extended to this

setting, together with an appropriate measure of overall curvature.
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CHAPTER 4
A method to identify geochemical

mineralization on linear transects

Mineral exploration in biogeochemistry is related to the detection of anomalies in soil,

which is driven by many factors and thus a complex problem. Mikšová et al. (2019b)

have introduced a method for the identification of spatial patterns with increased element

concentrations in samples along a linear sampling transect. This procedure is based on

fitting Generalized Additive Models (GAMs) to the concentration data, and computing a

curvature measure from the pairwise log-ratios of these fits. The higher the curvature, the

more likely one or both elements of the pair indicate local mineralization. This method

is applied on two geochemical data sets which have been collected specifically for the

purpose of mineral exploration. The aim is to test the technique for its ability to identify

pathfinder elements to detect mineralized zones, and to verify whether the method can

indicate which sampling material is best suited for this purpose.

4.1 Introduction

The identification of mineralized zones belongs to the important challenges in applied

geochemistry. The difficulty is that the targeted mineralization could be of any arbitrary

size, and in any depth, depending on the type of mineralization. The common procedure

to discover mineralized zones is based on sampling, using strategic sampling designs in

order to be as economic as possible. Samples can be taken from different soil layers,

but also from different trees and plants around the presumed target. Since samples and

their analysis of element concentrations is cost intensive, the sampling is often done on
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4. A method to identify geochemical mineralization on linear transects

linear transects, crossing the presumed mineralized zones. If there is more evidence,

drilling is also used in order to obtain a depth profile of the element concentrations. More

information on different sampling strategies can be found in Mikšová et al. (2019a).

In this work we assume that the sampling has been carried out on a linear transect,

or that the available samples can be aggregated to such linear transects. This means that

the spatial locations can be considered along a line, and thus it is simple to graphically

investigate the spatial variability of the measured elements by simply plotting the element

concentrations against the locations (Torppa and Middleton, 2017). However, in modern

geochemistry, the number of elements that can be reliably measured is in the range of

30-60, and if the samples have been obtained from several different sampling media, it is

a challenging task to study all resulting plots for abrupt changes in the concentration

values. Such changes could indicate mineralized zones, since their signals could lead to

sudden increases of element concentrations. There is, however, the problem that due to

the (economic) sampling procedure, only very few samples might have been taken on

top of the mineralization, and together with measurement and analysis uncertainties,

the resulting concentration changes might not be clearly expressed. The second problem

is that there is an interplay of the concentration values among the elements, because

geochemical data are compositional by their nature (Aitchison, 1986; Filzmoser et al.,

2018).

Consider a composition xm1 , . . . , x
m
Dm

, consisting of Dm chemical elements, measured

in m = 1, . . . ,M different sample materials. For the analysis of compositional data it

has become popular to use the so-called log-ratio methodology, introduced by Aitchison

(1986). This refers to the use of logarithms of ratios, and the basic information are

log-ratio pairs ln(xmj /x
m
l ), for j, l ∈ {1, . . . , Dm}. The use of log-ratios eventually leads

to a sound geometrical concept, referred to as the Aitchison geometry (Pawlowsky-Glahn

et al., 2015). There are, however, also practical reasons why log-ratios are useful, such as

symmetry around zero, and equal variance if numerator and denominator are exchanged.

A further argument for considering (log-)ratios is the assumption that there could

be elements which are stable and thus not affected by a mineralization, and others are

very indicative of mineralized zones. The log-ratio of such elements could even better

express the local change around a mineralization, because measurement and analysis

uncertainties could cancel each other out (Mikšová et al., 2019b).

On the other hand, Dm different elements would lead to Dm(Dm − 1)/2 different

(and relevant) pairwise log-ratios, which makes a visual inspection practically impossible.

For this reason, Mikšová et al. (2019b) have introduced a procedure to rank the list of

log-ratio pairs according to their ability to indicate mineralization. This is done by first
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4.2. Methodology

approximating the individual element concentration by a smooth fit, taking log-ratios

of the smooth fits, and computing a measure of curvature. The higher the curvature,

the more likely (at least) one of the log-ratio pair elements shows sudden changes. In

addition, the visualization of the smooth fits and their log-ratio allows to localize the

presumed mineralized zones.

In this paper we briefly review the method of Mikšová et al. (2019b). Then we

apply this procedure to two geochemical data sets, originating from surveys carried out

in Greenland and France, respectively, in the frame of the ongoing project “UpDeep”

(UpDeep, 2017–2020), which aims at developing and implementing a methodology to

identify mineralization.

4.2 Methodology

As already indicated in the introduction, the main idea of the methodology developed in

Mikšová et al. (2019b) is that at the beginning and end of a transect crossing a potential

mineralization, important log-ratios of an element pair display a very quick spatial change

which can be captured by a measure based on the curvature of the latter.

The first step of the methodology consists in fitting a so called GAM model, see Wood

(2017), to each element, with concentration values yi at locations xi, for i = 1, . . . , n.

After considering the nature of our data and after inspection of the corresponding residual

plots we decided to model the data belonging to the Tweedie family with a log-link and

additional weights. Modelling the element concentrations in such a way means that for

each element the following optimization problem based on the log-likelihood function l is

solved to obtain a linear predictor η

η̂ = arg max
η∈H

n
∑

i=1

ωil(yi|xi; η) − λ

∫

(η′′(x))2dx,

with predefined weights ωi, upweighting certain points, a suitable function space H and

a smoothing parameter λ.

This results in GAM fits f̂el1 and f̂el2 for each pair of elements el1 and el2, and the

log-ratio of the fits for any location x along the transect can be obtained subsequently as

g(x) : = log

(

f̂el1(x)

f̂el2(x)

)

= log
(

f̂el1(x)
)

− log
(

f̂el2(x)
)

= log
(

h−1(η̂el1(x))
)

− log
(

h−1(η̂el2(x))
)

,
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4. A method to identify geochemical mineralization on linear transects

where h(·) stands for link function.

Its curvature is then computed by

κ(x) :=
|kg′′(x)|

(1 + (kg′(x))2)
3
2

,

where k is a scaling factor allowing the curvatures to be comparable amongst different

pairs.

Finally, for each pair of log-ratios, the following quantity is introduced to measure

quantitatively important spatial changes potentially indicating the beginning and the

end of a mineralization, namely:

c(el1, el2) :=
2

L

L
2
∑

l=1

max
x∈[xj2l−1

,xj2l
]
(κ(x) − T )2

+. (4.1)

This measure is denoted as the c-value in the following. Here, (·)+ denotes max(·, 0), and

T is a threshold, L is the number of times that the curvature κ crosses the threshold,

and [xj2l−1
, xj2l

] are the corresponding points where this happens. It is easy to see that

only points x for which the curvature is above the threshold are influencing this measure

c(el1, el2). This avoids any influence of small values of κ(x), meaning that only very high

signal changes of the log-ratio are taken into account. Summing up over all maximum

leads to a quantity measuring the mean number of high signal changes.

For a more detailed description of the weights ωi, the smoothing parameter λ, the

scaling factor k, the threshold T , and the numerical computation of the derivative, as

well as the measure c(el1, el2) we refer to Mikšová et al. (2019b).

Since we are dealing with compositional data, one could argue that not the absolute

element concentrations should be used for the GAM fits, but rather the log-ratios of

all pairs of elements. Although this could be a reasonable approach, there are several

arguments against this idea: (a) The GAM fits may require some manual adjustment

and tuning, which is not feasible for all pairwise log-ratios. (b) Typically, the number of

observations is rather low, and there could be some data quality issues as well. GAM

fits on the raw data could, to some extent, “repair” this effect, particularly if there is

uncertainty in small concentrations, and ideally the data quality after the log-ratios of

the GAM fits increases.

4.3 Results

One important part of the UpDeep project has been to take samples in two countries,

namely in Greenland and France. This sampling procedure was successfully accomplished
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4.3. Results

by the sample providers GEUS (Geological Survey of Denmark and Greenland) and

BRGM (The French Geological Survey), respectively. The sampling was performed

by executing geochemical sampling surveys according to the established protocols in

geologically well-known mineralized areas. The samples in both countries were taken in

the years 2017 and 2018, however in this context we focus on one specific year 2018.

4.3.1 GEUS data

The sampling areas were chosen due to known mineralization and exploration in the

area. The interest is in the area Isortoq, which is situated in the very south of Greenland,

see Figure 4.1 for a detailed map, where the map background is obtained using Google

maps (Kahle and Wickham, 2013). In total, three traverses were sampled which are

300 meters apart. The samples from the different traverses are shown in different color

in the map. Green color refers to the locations of known mineralization. In this case

the deposit is an iron (Fe), vanadium (V), titanium (Ti) deposit. A possible proxy for

V could be scandium (Sc) (since V tends to be analyzed poorly). In our analyses we

merge the samples from the three traverses into one linear transect, which means that all

samples have been taken, but their locations are set to a linear transect in the center

of the three traverses. The individual samples are now at a distance between 50 to 400

meters. The total length of the transect is about 12 km.

Two different plant species and soil samples have been investigated, namely Salix

Glauca and Empetrum Nigrum with 49 samples, and soil comprises 47 observations

containing only so called routine samples.

Following the procedure of Section 2, Figure 4.2 shows the log-ratio pair of the GAM

fits of the elements Ti and Ca (calcium) measured in soil, and Figure 4.3 displays the

resulting log-ratio for Fe and P (phosphorus) in soil. Both log-ratios yield top-ranked

c-values, see Equation (4.1). In these plots, the mineralized zones are shown by red points.

The blue points are the predicted mineralized zones, when the curvature exceeds the

threshold T , which is indicated by the horizontal dashed line. The predictions confirm

the presumed mineralized zones very well, and they do not indicate new mineralized

areas.

A useful tool to display the overall information about meaningful log-ratios is the

heatmap. The input for the heatmap is a matrix of c-values, computed from the GAM

fits of all pairwise log-ratios of a specific sampling material (plants or soil). Figure 4.4

shows the resulting heatmap for Salix Glauca (left), Empetrum Nigrum (right), and soil

(bottom). Obviously, the heatmaps are symmetric due to the symmetry of the log-ratios.

The darker the blue color, the higher is the c-value obtained from the corresponding
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4. A method to identify geochemical mineralization on linear transects
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Figure 4.1: Map of the locations of the samples taken by GEUS in the Isortoq South
Area.

log-ratio. A dark blue row or column in the heatmap indicates so-called pathfinder

elements, which potentially refer to mineralization. From a geochemical point of view,

most of the elements with higher c-values are related to the deposit (Fe-V-Ti).

These heatmaps can also be used to identify potentially interesting pathfinder elements

that could indicate new mineralized zones. For example, the heatmap for soil (bottom

plot in Figure 4.4) shows a high c-value for the pair Na (sodium) and Pb (lead). Figure 4.5

presents the corresponding curvature plot of this log-ratio. Indeed, there are several

locations where abrupt signal changes are visible. One would have to further explore

these locations.

4.3.2 BRGM data

The second data set originates from the Vendée area in middle-west France, which has

been sampled in 2018. The area was investigated because of some historical knowledge

of the occurrence of rare elements. Moreover, an easy access allowed for a valuable
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4.3. Results
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Figure 4.2: Curvature of the log-ratio of the GAM fits of Ti and Ca in soil.
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Figure 4.3: Curvature of the log-ratio of the GAM fits of Fe (iron) and P (phosphorus)
in soil.

recognition of the area prior to sampling. Figure 4.6 shows a satellite map of the area

where the samples have been taken from three different sites. Each of these subareas
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4. A method to identify geochemical mineralization on linear transects
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Figure 4.4: Heatmaps of the c-values for the plant materials and soil.

contains two traverses which are again merged to one transect in our procedure in order

to increase the number of observations per site. The first site in the south-west of

Figure 4.6 holds approximately 30 samples, the second (middle) site about 40, and the

third (north-eastern) site only 18 samples. The presumed mineralization type on all sites

is antimony (Sb) and gold (Au). Due to pre-studies it turned out that the second site has

the highest concentrations of Sb. The element Au is in any case difficult to measure.
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4.3. Results
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Figure 4.5: Curvature of the log-ratio of the GAM fits of Na (sodium) and Pb (lead) in
soil.

This data set provides in total 6 different sample materials, namely Ah horizon with

Aqua Regia leach (AhAQ), Ah with deionized water leach (AhL1), Ah with sodium

pyrophosphate leach (AhL3), Bramble branch (BB), Bramble leaves (BL), and Oak bark

(OB). Rather than investigating again the curvature plots, we focus now on the task

to identify the most promising sample material indicating mineralization. An answer

would be highly relevant, because sampling of the different materials is very time- and

cost-intensive.

Figure 4.7 presents for each sample site the top-ranked 70 c-values from all pairwise

log-ratios of the GAM fits, separated by sample material. Since the log-ratios of the

fitted values are scaled to the interval [0, 1], the c-values are comparable, regardless of

sample site and sample material. We obtain the highest c-values for Site 2, which is the

most reliable sample site due to the higher number of observations. The plot for Site 2

reveals a clear difference in the top ranked c-values for the mineralization, while the soils

seem to be highly informative. All sites show that sample material OB performs worst in

terms of the c-values, and thus this is the least interesting sample material.

The heatmaps in Figure 4.8 confirm our findings. The left plot for the soil material

AhAQ identifies Sb (and to a lesser extent Zn) as important pathfinder element of

mineralization. The right plot for plant BB uses the same color scheme, but represents
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4. A method to identify geochemical mineralization on linear transects
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Figure 4.6: Map with the sample locations taken by BRGM in the Vendée area in 2018

much lower c-values (see Figure 4.7, middle). This heatmap shows a rather inhomogeneous

structure and thus no clear pathfinder elements.

4.4 Summary

Due to the technological developments, mineral exploration nowadays belongs to the most

important tasks in geochemistry. Although many chemical elements can be investigated

for their concentration in different sample materials, sampling is still time- and cost-

intensive, and this is the reason why usually only 20-60 samples are available at a

potentially mineralized zone. The common strategy is to position the samples on (a)

linear transect(s), crossing the mineralized zones, and mineralization would then appear

in terms of increased element concentrations.

Rather than investigating single element concentrations, Mikšová et al. (2019b) have

developed a method based on considering log-ratios of all pairs of elements. Since the

number of possible pairs increases quickly with the number of investigated chemical
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4.4. Summary
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Figure 4.7: Top-ranked 70 c-values, computed for 6 different sample materials and the
three different sample sites.
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Figure 4.8: Heatmaps of the c-values for the BRGM data - soil and plant material.

elements, a strategy has been proposed to rank the element pairs according to their

relevance for mineral exploration. This strategy uses a measure of curvature for log-ratios

of smooth fits of the concentration values. The resulting c-values are normalized and can

be compared across different pairs, and even across different sample materials and sites.

In this paper we have demonstrated the usefulness of this procedure based on two
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4. A method to identify geochemical mineralization on linear transects

data sets that have been collected specifically for the purpose of mineral exploration.

For the first data set originating from Greenland it has been shown that the c-values

indeed identify important pathfinder elements to confirm presumed mineralized zones,

but they seem also promising to point at new locations with potential mineralization.

The second data set from France was employed to investigate which sample material is

most promising to detect mineralization. It turned out that the soil samples are much

more informative than the plant samples, but this may again depend on the type of

mineralization, and probably even on further factors.

In our future work we will extend the methodology of Mikšová et al. (2019b) to the

case where the samples are not necessarily taken along a linear transect, but on a sample

grid with different x- and y-coordinates. This means that the smooth fits as well as the

curvature measure need to be extended to the two-dimensional case.
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CHAPTER 5
Identification of mineralization in

geochemistry for grid sampling

using Generalized Additive

Models

The important goals of mineral exploration geochemistry are detection and identification

of underlying mineralization. This paper deals with element concentration data analyzed

of surface geochemical samples acquired from soil horizons or plants. A new unsupervised

procedure is proposed for this purpose when the samples have been taken on a regular or

irregular grid in the area under investigation. The methodology is based on Generalized

Additive Model (GAM) fits on absolute concentration data. Then new data points are

taken of the surface of the smooth fits across the entire sampling area as a regular grid.

Pairwise log-ratios of elements are then calculated of these points, and curvature of the

log-ratio pairs is computed. High curvature indicates abrupt spatial changes, which

could point at locations of mineralized zones. A measure called c-value evaluates the

overall curvature and thus serves as an importance measure of the log-ratio pair. The

methodology is tested on two real surface geochemical data sets collected in areas with

known underlying mineralization, and the results confirm existing pre-knowledge.
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

5.1 Introduction

Mineral exploration with surface geochemical data, including soil partial extraction and

biogeochemical datasets, is challenging because an underlying significant mineralization

may be observed in absolute concentration data as a multitude of different spatial anomaly

patterns with a variety of characteristics (e.g., Dunn, 2007; Torppa and Middleton,

2017; Taivalkoski et al., 2019). Traditionally, occurrence and type of mineralization is

determined as the presence of an anomaly in a single element or multi-variable element

data. Spatial anomaly patterns appear in a variety of shapes such as symmetric or

skewed, narrow single point or narrow or wide multi point positive or negative apical

anomalies. They may also be so-called ‘rabbit ear’ anomalies located at the flanks

of the mineralization, or alteration indicating halos around the mineralization itself.

In addition, data may be noisy and significant anomalies may be weakly contrasting.

In many cases, anomalies are captured in the data collection phase only from a few

sampling stations because studies are conducted as cost-effectively as possible. One

then deals just with very few samples, typically tens to hundreds. From a practical

point of view, it would be desirable to have at least two sampling stations on top of an

underlying mineralization forming an anomaly pattern. However, this requirement is not

always easy to meet because pre-knowledge of an underlying deposit type can usually

be based on knowledge from other locations or geophysical measurements. Furthermore,

anomaly formation is influenced by many factors including target characteristics such

as type and depth of mineralization. Anomalies in these dataset are not purely related

to underlying exogenic signals from the mineralization but may also be resulting from

lithogeochemical variation, bedrock fracturing, land use, anthropogenic contamination,

environmental factors, characteristics of the sample media, quality of measured chemical

concentrations in the laboratory etc. These factors makes a study for detecting and

identifying potentially mineralized zones from surface geochemical data complex.

Significant anomaly patterns in these datasets however, are mostly local with low

spatial dispersion. Additionally, they may retain information of presence of deep lying

mineralizations which could also be buried under sediment cover (Cheng, 2012). The

confidence in detecting and identifying an underlying mineralization is high when the

anomaly patterns are detected with many coinciding or zonal elemental patterns including

commodity, pathfinder and alteration elements and the anomaly to background contrast

is high. Often pathfinder elements, which may not commonly be associated with the

mineralization type, form more significant anomalies than the commodity elements. For

example, plants may control the uptake of essential elements, thus unexpected pathfinder
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5.1. Introduction

elements form higher contrasting anomalies to background than commodity elements do.

Thus, it is essential to analyze a wide range of elements and pay attention to spatial

patterns to all of them.

In practice, two strategies for the sampling design are commonly used: sampling

along a linear transect, and sampling on a grid (Webster and Lark, 2012). The focus

in this paper is on mineral exploration when the samples have been taken on a grid

on a plane to be plotted as a map. There is a lot of literature available tackling

this problem. Fractal and multi-fractal models are considered (Dahooei et al., 2016),

and machine learning methods are frequently used. For a recent review of different

approaches, see Zuo (2017). Some of the methods are limited to identifying specific types

of mineralization, and some try to incorporate additional information such as geophysics

data as prospectivity models (Darabi golestan et al., 2013). There are also supervised

techniques which need prior information about mineralized areas in order to find other

mineralized zones (Roshani et al., 2013).

A different approach was used in Mikšová et al. (2019b) regarding the compositional

nature of these data. The method was specifically developed for geochemical samples taken

along a linear transect and for cases when no knowledge of an existing mineralization

is available. As a first step, a set of chemical elements containing information of a

potential mineralization are determined. This is based on expert knowledge but also on

quality assurance and quality control of the data in hand. Since the number of samples

is usually low, and variability of the concentration values caused by different kinds of

uncertainties exists, these concentration values are firstly smoothed along the spatial

dimension. For this purpose, Generalized Additive Models (GAMs) are used. Once all

concentration values are smoothed, a much larger number of “artificial” samples can be

generated by using the fitted values on a regular grid. Now pairwise log-ratios of the

smooth fits are computed for all element pairs, and a curvature measure is derived. High

curvature corresponds to strong changes in the signal, which is hypothesized to indicate

presence of an underlying mineralization. Possibly, high curvature may also indicate

other phenomena, not only the mineralization. This method allows for a ranking of the

element pairs, and also a ranking of the sample media for their potential to indicate

mineralization.

This work extends the method of Mikšová et al. (2019b) to grid sampling. For many

studies, the grid sampling strategy might be more useful than line sampling, since the

data may better capture the two-dimensional signal including shape, orientation and size

of an underlying mineralized load in a spatial coordinate space. Again, all concentration

values of the different elements are smoothed, but the smooth fit needs to be bivariate,
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

over the sample locations in the two-dimensional grid. This leads to several computational

and conceptual challenges. Also a modified measure of curvature has to be developed

which takes the log-ratios of the GAM smoothed fits as inputs. Pairwise log-ratios are

derived on a regular grid with higher resolution than the original sampling density. As

a result, the curvature measure should indicate promising element pairs which point

towards the spatial locations of mineralized zones. Moreover, a comparison of different

sample media for their effectiveness for mineral identification is obtained.

The paper is structured as follows. In Sect. 2, the concept of the methodology is

introduced. A detailed algorithm for the whole procedure of ranking log-ratio pairs is

proposed in Sect. 3. This procedure is applied in Sect. 4 to two geochemical data sets,

originating from plant and soil sampling surveys carried out in Finland and Greenland.

The final Sect. 5 summarizes and concludes.

5.2 Methodology

The main idea in Mikšová et al. (2019b) was to take the curvature of log-ratios as a basis

for constructing a measure which helps to identify different kinds of mineralization. The

interesting pairs of log-ratios involved in mineralization should display a sharp spatial

change on top of or in immediate surroundings of an underlying mineralization rather

than exhibiting a flat behavior throughout the area. However, in two dimensions there

are multiple definitions of curvature. The most prominent ones are mean and Gaussian

curvature (Goldman, 2005).

At first, as in the one-dimensional case, before looking at the curvature of log-ratios,

GAMs are fitted to the concentration data (zeli , xi, yi), where zeli is the concentration of a

fixed element el at location (xi, yi) and i = 1, ..., n, for all elements. The motivations for

using GAMs are manifold. Firstly, the goal is to get rid of any noise and excess curvature

in the concentration signal whilst only retaining high curvature to get a good fit. Secondly,

data is typically scarce and non-uniformly sampled over an area. That excludes other

smoothing methods such as LOESS (Cleveland et al., 1992). Thirdly, concentrations are

a positive quantity, and thus the smoothed signal should also have positive values only.

At last, the method presented in this paper requires partial derivatives up to the second

order, which again excludes many other smoothing techniques. Considering all these

requirements, GAMs seem to be a very natural choice.

In one dimension, smoothing splines are widely used for modeling the linear predictor

in GAMs. They are motivated by finding the solution of minimal curvature. However,

instead of curvature usually only the second derivative is considered as an approximation,
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5.2. Methodology

because this makes the optimization problem easier. In the two-dimensional case there is

a multitude of smoothing spline methods, and the generalization is not so clear. It is

known from differential geometry, especially minimal surface theory that, under certain

circumstances, for a function η : Ω ⊂ R
2 → R

3 satisfying

∂

∂x

(

ηx
√

1 + η2
x + η2

y

)

+
∂

∂y

(

ηy
√

1 + η2
x + η2

y

)

= 0, (5.1)

where ηx and ηy denote the partial derivatives, its solution has mean curvature of zero,

see Fomenko and Tuzhilin (2005). Equivalently, this means that Eq. (5.1) describes a

surface locally having a minimal area. Such a property seems to be adequate to exclude

fits with any excess curvature as it was presented in the one-dimensional case (Mikšová

et al., 2019b). The latter ideas lead to so-called soap film smoothers, derived in Wood

et al. (2008) and also allowing complex areas Ω – which might be the case for geographical

areas represented by irregular grids.

Thus, as a first step, a soap film smoother is fit to the concentrations of each element el,

meaning that the following problem is solved,

η̂el = arg max
η∈H

n
∑

i=1

weli l(z
el
i |xi, yi; η) − λ

∫

Ω

(

∂2

∂x2
η(x, y) +

∂2

∂y2
η(x, y)

)2

dxdy, (5.2)

where H is the function space of sufficiently smooth functions such that the penalty

of η exists, λ > 0 is the so-called smoothing parameter, l is an appropriately chosen

log-likelihood function, weli are predefined weights, and Ω is a user chosen area for the fit.

Additionally, one also chooses a link function h such that the fitted concentration for

a fixed element is obtained by f̂el(x, y) = h(η̂el(x, y)). An appropriate choice of weli , l

and h for modeling concentrations in the framework of mineralization detection for line

sampling is discussed in Mikšová et al. (2019b), but it is also case dependent. For a more

thorough introduction to soap film smoothers, see Wood et al. (2008) and Wood (2017).

After producing the GAM fits to the absolute concentration data of all elements and

calculating the log-ratio pairs, curvature should be calculated at each point (x0, y0) –

just as it was done for the one-dimensional case in Mikšová et al. (2019b). However,

for surfaces the notion of curvature is different from that of a curve, because there are

multiple directions to go at each point of the surface. Basically, in the case of curves,

one can define curvature as the length of the vector obtained by differentiating the

unit normal to the curve with respect to the arc length. For surfaces, the same can be

done with respect to any element in the tangent space. More precisely, let S denote

the surface induced by the function g : Ω 7→ R
3, thus g(Ω), and n : S 7→ R

3 its unit
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

normal field, meaning that n is of unit length and is orthogonal to any tangent vector to

the surface, at each point s ∈ S, as well as sufficiently smooth. For any smooth curve

γ : (−ǫ, ǫ) → Ω ⊂ R
2, with γ(0) = (x0, y0) ∈ Ω, the derivative of g(γ(t)) in t = 0 defines

an element in the tangent space at the point g(x0, y0) ∈ S. Thus, if α(t) := g(γ(t)) is

parameterized by arc length, meaning that the norm of its derivative is one at each point,

its curvature in t is obtained as ‖α̈(t)‖, where one dot over α denotes the derivative in t.

As shown in Do Carmo (2016), this leads to

−
(

d

dt
n(α(t))

)′

· α̇(t) = (n(α(t)))′ ·
(

α̈(t)

)

. (5.3)

As the norm of α̈(t) is the curvature of the curve α, this is valid because n(α(t)) is in

the same – or exactly opposite – direction as α̈(t). The left side of Eq. (5.3), called the

second fundamental form, can be seen to contain information of how the surface is curved

at a point g(x0, y0) for any taken curve γ and therefore g(γ). It turns out that Eq. (5.3)

can be expressed as a bilinear form in γ̇(0), see Do Carmo (2016), namely as

(γ̇(0))′

(

1
√

1 + (gx)2 + (gy)2

[

gxx gxy

gxy gyy

])

γ̇(0). (5.4)

The mean curvature is then defined as the mean of the two eigenvalues of the matrix

in Eq. (5.4). However, here the following term

κ(x, y) :=
1

2
(|k1(x, y)| + |k2(x, y)|) (5.5)

is used to construct a measure, where k1 and k2 denote the eigenvalues at (x, y). The

reason for this is that the mean curvature can become zero when the two eigenvalues

cancel each other out. Since the goal is to detect any kind of spatial change, the absolute

values of the latter are taken to avoid this issue.

Once that κ is obtained for the surface defined by the fitted log-ratio g := log(
f̂el1

f̂el2

)

for each fixed pair of elements el1 and el2, we define

µ =
1

|J |
∑

j∈J

κ(xj , yj) (5.6)

σ2 =
1

|J | − 1

∑

j∈J

(κ(xj , yj) − µ)2, (5.7)

denoting J the index set of a fine enough mesh of Ω. These two measures are approxima-

tions to
∫

Ω κ(x, y)dxdy and
∫

Ω(κ(x, y) − µ)2dxdy. Similar to Mikšová et al. (2019b), the
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5.3. Algorithm

total curvature measure, in the following called c-value, for a pair of elements is defined

as

c(el1, el2) :=
1

|J |
∑

j∈J

(κ(xj , yj) − (µ+ σ))+, (5.8)

where (·)+ denotes max(0, ·). Similarly to the univariate case, this measure is high when

κ is high. This means that points at which the signal of log-ratios changes quickly

influence this measure a lot, and small values of κ have no influence at all. It thus serves

to identify pairs of log-ratios which on average have a lot of quick spatial changes over Ω,

therefore identifying interesting pairs.

5.3 Algorithm

This section provides the full algorithm to obtain all the c-values for each pair of elements

el1 and el2. As an input, the algorithm takes the boundary ∂Ω of a set Ω, and the

measured concentrations zeli at (xi, yi) for each element. Also a mesh χ of Ω is provided.

Such a mesh can be obtained by dividing the range of xi and of yi, thus [min(xi),max(xi)]

and [min(yi),max(yi)], for i = 1, . . . , n, into M equidistant parts and only keeping the

grid points contained in Ω. The corresponding index set is denoted by J .

Step 1: As first step, weights are calculated. The following weights for each element el

are used for the specific examples below,

weli :=







2 zi−µ
el

σel if zi−µ
el

σel ≥ 1
2

1 else

where µel and σel are the mean and the standard deviation of the measured concentrations

zeli .

Step 2: Soap film smoothers are fit to each element, i.e. the problem stated in Eq. (5.2)

is solved. We decided to model the data using the Tweedie-family as it contains a big

range of probability distributions for positive responses. For this purpose, the R package

mgcv (Wood, 2012) is used. The smoothing parameter is chosen according to the REML

criterion.

Step 3: Following Step 2, all the log-ratios are now given by g := log

(

f̂el1

f̂el2

)

. To make

things comparable for each element pair, g is scaled by a constant Γ := | max(x,y)∈Ω g(x, y)−
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

min(x,y)∈Ω g(x, y)|−1 if g is not constant, and one otherwise. In the following, g is replaced

by Γ−1g.

Step 4: By choosing ǫ = 10−2, for example, an approximation to all the partial derivatives

in Eq. (5.4) and implicitly also in Eq. (5.5) is computed at the points given by the mesh χ

of Ω, thus (xj , yj) with j ∈ J . As each log-ratio is the difference of individual logarithms

of an element Γ−1 log
(

f̂el
)

, only the latter needs to be considered to obtain all the partial

derivatives involved in a pair. Thus, for example, the first and second partial derivatives

in x and y are given by

(

Γ−1 log
(

f̂el
)

)

x

= Γ−1 (f̂el)x

f̂el
(

Γ−1 log
(

f̂el
)

)

xx

= Γ−1
(

(f̂el)xx

f̂el
−
(

f̂elx

f̂el

)2)

(

Γ−1 log
(

f̂el
)

)

xy

= Γ−1
(

(f̂el)xy

f̂el
− f̂elx f̂ely

f̂2
el

)

,

where the two covariates can be interchanged to obtain the remaining partial derivatives.

Each partial derivative of f̂el is approximated in a finite difference way, meaning that at

a point (xj , yj) for j ∈ J

(f̂el)x ≈ f̂el(xj + ǫ, yj) − f̂el(xj − ǫ, yj)

ǫ

(f̂el)xx ≈ f̂el(xj + ǫ, yj) − 2f̂el(xj , yj) + f̂el(xj − ǫ, yj)

ǫ2

(f̂el)xy ≈ f̂el(xj + ǫ, yj + ǫ) − f̂el(xj + ǫ, yj − ǫ) − f̂el(xj − ǫ, yj + ǫ) + f̂el(xj − ǫ, yj − ǫ)

4ǫ2

and equivalently for interchanged x and y.

Step 6: From Step 4, an approximation to κ is obtained for each pair of elements at the

mesh points (xj , yj). Furthermore, for all the mesh points, mean and standard deviation

are calculated, see Eq. (5.6) and Eq. (5.7). The final c-value for each pair of elements,

namely c(el1, el2) is then obtained by using Eq. (5.8).

Step 7: Finally, a ranked list of important log-ratios can be obtained from the c-values

by sorting them in a descending order. Also, one can plot heatmaps, similar as in Mikšová

et al. (2019b), to obtain a good overview of important elements.
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5.4. Experimental results

5.4 Experimental results

This section presents applications of the proposed methodology on two real data sets

from surface geochemical exploration. The first data set is sampled on an orogenic

Au mineralization in northern Finland. Sampling at this Tiira site was designed as a

stratified random grid with denser sampling on the known lodes. The other dataset was

acquired at Isortoq Fe-Ti-V showings in southern Greenland. The two mineralized lodes

were covered with three parallel lines with rather constant distance between the sampling

stations. In both examples, 3D information about mineralized lodes is available, but it is

only used in a final stage to evaluate the unsupervised methodology.

5.4.1 Tiira data set

The Tiira orogenic gold deposit is located in the Central Lapland Greenstone Belt, 12

km north of the largest gold producer in Europe, the Agnico-Eagle Finland Ltd.’s Kittilä

Mine (25◦ 26’ 2.73" E, 68◦ 1’ 34.63" N), see Härkönen et al. (2000); Molnár et al. (2018);

Geological Survey of Finland. Estimates based on historical resources are 121,000 t

at 2.7 g/t Au for the Tiira ore bodies (Härkönen et al., 2000), not including the most

recent 2018 exploration work (pers. comm. Jukka Välimaa, June 20, 2018). The Tiira

mineralization is situated in the intersection of the NE-trending Kiistala shear zone and

other NE-SW and NW-SE fractures (see Molnár et al., 2018) Gold appears native and

refractory within arsenopyrite and pyrite (Härkönen et al., 2000). Eighty-four drill cores

and their lithogeochemistry and a block deposit model (Agnico Eagle, 2015; Geological

Survey of Finland) were visualized in 3D. The ore zone (app. 100 m x 400 m) consists of

several 10-100 m wide lenses of auriferous quartz–carbonate– sulphide veins and breccias

that strike NE-SW and dip slightly to the east. The mineralization is characterized with

elevated Au, As, Bi and S, and sporadically with Cu, Zn and Pb. They are surrounded by

mafic volcanic host rocks showing intensely altered very narrow zones of carbonatization,

albitization and pyritization around the veins that can be observed as elevated K and

Na. On the basis of the 3D visualization, the plant sampling stations were classified into

the following categories: 1) sample on a subcropping mineralization, 2) sample on deep

penetrating mineralization, depth < 50 m, 3) 50-100 m, 4) 100-150 m, 5) 150-200 m,

6) 200-250 m and 7) sample is not directly above a known mineralization. Figure 5.1

presents the sampling area, together with these different categories of sample locations.

Norway spruce (NS), common juniper (CJ), lingonberry (LB) twig and needle/leaf,

and Norway spruce bark samples were collected on 60 sampling stations across the Tiira

deposit. The stratified grid sampling design was also extended on the background towards
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models
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●
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Location and type of ore zone for Tiira data

Figure 5.1: Left plot shows location (red point) of Tiira data using Google map (Kahle
and Wickham, 2013). Plant sampling stations were placed on top of the known gold
mineralization and covering the surrounding background based on year 2015 3D modeling
data at the Tiira study site, northern Finland (right plot).

the SW to cover only areas where mature (> 100 years) Norway spruce trees were available

for sampling. Lingonberry was sampled within a 10 m radius and juniper 20 m radius

from the Norway spruce trees. Samples were dried (40◦C for 48 h) and needles/leaves

were separated from the twig. Samples were milled (< 1 mm), ashed (475◦C for 24 h),

0.25 g aliquot was digested in hot aqua regia (1:1:1 HCl:HNO3:H2O mixture at 95◦C

for 1 h with a sample-to-acid ratio of 1:6) and analyzed for 64 elements with inductively

coupled plasma mass spectrometry and optical emission spectrometry in Bureau Veritas

Commodities Canada Ltd., AcmeLabs (Vancouver, Canada). Samples were randomized

for analysis, field duplicates were collected (8.7 %) and standard reference materials

(9.4%, CDV1-Ash, eucalyptus foliage from Western Australia, Colin Dunn Consulting,

North Saanich, Canada) were inserted in the analysis sequence.

Before applying the proposed procedure, relevant elements were selected from a data

quality point of view. Elements with a high proportion (more than 40%) of values below

a lower or above an upper detection limit, or discretization (rounded values close to

detection limit) were discarded, which resulted in a total of 25 elements for the analysis.

For the purpose of comparability, the same 25 elements have been selected in each sample
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5.4. Experimental results

material.

GAM fits of original data values

As described in the algorithm in Sect. 5.3, the first two steps perform GAM fits of

the concentration values using predefined weights which emphasize high concentrations.

Some examples of those GAM fits are shown in the following. Figure 5.2 (left) shows

a 3D presentation of the GAM fit for the concentration values of gold (Au) from the

Norway spruce twig samples. The original data are shown in orange, and the values of

the GAM fit surface are according to the color scheme in the legend to the very right.

Two clear peaks are visible in the GAM fit, and they follow the two extreme Au values in

a continuous manner. Figure 5.2 (right) presents this information as contour plot in two

dimensions. The original data values are shown as points by using the same color scheme

as for the surface. This visualization is easier to compare with the map presentation from

Fig. 5.1. It can be seen that the highest Au values can be expected just in the south-west

of the densely sampled area, and in the center of the investigated region.

Figure 5.2: GAM fit for Au with original concentration values (points) of Norway spruce
twig samples from the Tiira data: left plot for 3D fit, right plot for projection into 2D,
using a contour presentation with isolines.

Further GAM fits are shown in Fig. 5.3 as contour plots: arsenic (As) and copper

(Cu) of Norway spruce twig samples (top), and magnesium (Mg) and sulfur (S) of Norway

spruce bark samples (bottom). The plot for S shows that there can be a lot of local

variability of the concentration values, but the GAM fits aim at smoothening those values.

Values with higher concentration receive higher weight for the GAM fit (see Step 1 of

the algorithm), with the aim that upper concentration should also result in clear signals

in the fit.
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

Figure 5.3: GAM fits for the elements As and Cu (Norway spruce twig) and Mg and S
(Norway spruce bark), together with the original concentration values (colored dots).

Log-ratios of GAM fits and curvature

Once the GAM fits are available for all elements and all plant materials, the log-ratios

of the fits for all possible element pairs per material can be computed. Note that the

log-ratios are formed not from the originally measured concentration values, but only

from the GAM fits, which are constructed on a regular grid with 100 horizontal and 100

vertical grid points, thus 10.000 values. This number of “artificial” data points turned

out to be practical for this purpose, also considering computational issues. Since the

GAM fits are smooth, also the log-ratios will appear as smooth surfaces. Examples of

two log-ratio pairs can be seen in Fig. 5.4 (left column). This information is used in

the following to identify mineralized zones, which should be indicated by rapid spatial

changes. A log-ratio shows such local changes if either both elements have local changes,

or one element is stable, reflecting background, and the second element has strong local

variability. In either case, since the logarithm is used, it does not matter which element
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5.4. Experimental results

is used in the numerator, and which in the denominator, as long as a subsequent measure

of local change does not consider the sign. This is indeed the case with the curvature

measure proposed in Eq. (5.5). Figure 5.4 visualizes the resulting curvature values of

the GAM fits for the log-ratios log(Au/Cu) and log(Mg/S), see Fig. 5.3 for the GAM

fits. Note that the curvature values are typically not big at the locations of the log-ratio

peaks, but they are big at locations of abrupt changes of the log-ratios, for instance

around the peaks. Both curvature plots show several local changes, and the next step is

to evaluate the overall local changes in curvature using the c-value of Eq. (5.8).

Figure 5.4: Log-ratios of the GAM fits shown in Fig. 5.3 (left column), and corresponding
curvatures (right column).
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

Comparison of log-ratios and different sample media

Since there are in total 25 elements of interest per sample medium, this results in 300

different pairwise log-ratios, for each of the six sample materials. The c-value of Eq. (5.8)

allows to perform a ranking of the log-ratios, because it neither depends on the scale of

the elements, nor on the scale of the log-ratio, and thus is comparable across all curvature

values of the log-ratios, and even across those from different sample materials.

Table 5.1 shows the top-10 ranked log-ratios, together with the resulting c-values, for

the sample materials twig, needle and bark of Norway spruce (the values of the other

materials are not shown due to shortage of space). It can be seen that there are elements

which are involved in many of the log-ratios, such as As in NS twig, see also Fig. 5.3 (top

left plot). The log-ratio log(As/Cu) from NS twig, which is shown in Fig. 5.4 (top left

plot), thus has a c-value of 16.8×10−5, and is listed with rank 3. It should therefore be

highly informative because of its strong curvature in the area, and As is also referring to

the anomaly. The anomaly is also characterized by S, and the log-ratio log(Mg/S) in NS

bark (see Fig. 5.4 bottom left) also has a high c-value (the value is 9.2×10−5). Since S is

in the denominator of this log-ratio, low values point at the relevant locations.

Table 5.1: Top-10 ranked log-ratios for Norway spruce twig, needle and bark samples of
the Tiira data.

Media NS twig NS needle NS bark

Ranking log-ratio c-value (×10−5) log-ratio c-value (×10−5) log-ratio c-value (×10−5)

1 As/Mg 19.8 Al/Sm 9.0 Pb/Zn 19.5
2 As/Zn 17.1 Nd/Y 9.0 Mg/Pb 17.2
3 As/Cu 16.8 Rb/Sm 8.5 Na/Pb 15.4
4 Nd/Sm 15.4 S/Sm 8.0 Ni/Pb 14.8
5 As/Sb 14.1 Co/Sm 7.8 Cu/Pb 14.7
6 As/S 14.1 Al/Y 7.6 Pb/Rb 13.6
7 As/Ni 14.1 Ni/Y 7.4 Co/Pb 12.1
8 As/Pb 13.5 Ni/Sm 7.2 Mo/Pb 10.9
9 As/La 13.2 Pr/Y 7.2 La/Pb 10.9
10 Ni/Sb 12.9 Cu/Sm 7.0 Sb/Sc 10.0

Figure 5.5 shows the c-values of the top-100 ranked log-ratios as lines, where one line

is used for each sample material. For example, the highest c-value was achieved by a

log-ratio from material NS twig, with a value of about 0.0002, see also Tab. 5.1. The

top-25 log-ratios of this material have higher c-values than any log-ratio pair of material

CJ twig, because the curve for this material generally shows very low values. One would

conclude that NS twig is the most promising sample material to identify mineralization,
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5.4. Experimental results

and CJ twig the least interesting one, provided that this unsupervised procedure indeed

points at the relevant locations.
0.
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Figure 5.5: Comparison of the top-100 ranked c-values for all plant materials.

As a final step, it may be interesting to identify so-called pathfinder elements which

indicate mineralization. For this purpose, one could count how often each element is

involved in all 300 investigated log-ratio pairs, and show the ranked list. This is done in

Tab. 5.2, which provides the top-10 elements per material being involved in all pairwise

log-ratios. This list can be compared with the list of elements that – from a geochemical

point of view – characterize the mineralization, namely Au, As, Bi and S, and also Cu,

Zn and Pb (see beginning of this section). Many of these elements can be found in the

hitlists of the different sample materials. Since NS twig was considered the most relevant

material, As measured in NS twig should be highly indicative as a pathfinder element,

see Fig. 5.3, upper left plot. Lead (Pb), neodym (Nd), yttrium (Y) and praseodymium

(Pr) are in the top-10 list in several plant materials, but also gold (Au) appears as a top

pathfinder element.
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

Table 5.2: Top-10 mostly involved elements in all pairwise log-ratios for each plant
material.

ranking NS twig NS needle NS bark LB twig LB needle CJ twig CJ needle

1 As Sm Pb Co Pb Rb Pb
2 Sb Y Au Pb Pr Au Rb
3 Sm Pr Sb Pr Y Sc Cu
4 Y Nd S Nd Nd Mo Ni
5 Nd Zn Na Au Co Cu Co
6 Pr Sb Y Sm Mo Pr Mo
7 Ce As As Y Au Pb Nd
8 Co Ce Co Sc Ce Mg Sb
9 Pb Mg Mg Nb Nb Co Ti
10 Au Co Ni Ce Rb Ti Nb

5.4.2 Greenland data set

This data set originates from the area Isortoq, situated in the southwest of Greenland, and

it was provided by GEUS, the Geological Survey of Denmark and Greenland. Extensive

exploration by mining companies have confirmed the existence of distinct dykes consisting

of mineralized troctolite with high abundance of titano-magnetite Fe-Ti-V minerals.

Furthermore, the Isortoq area is affected by the Gulf Stream currents which ensure good

conditions for vegetation and thus for sampling. Linear transects have been selected

for sampling in two areas. The first area consisted of three traverses, where each line

was 4 km in length and had 34, 34 and 29 sample stations, respectively. The second

area had two traverses, at 2 km each. Soil samples and two plant species Salix glauca

and Empetrum nigrum were chosen as sample media. After the geochemical analysis, in

total 21 elements have been selected in each sample material, following quality control

considerations. More details on the data are available in Mikšová et al. (2020), where

the analysis for mineral identification for samples along a line has been applied. This

analysis can now be compared to the two-dimensional extension of the methodology.

Figure 5.6 shows GAM fits of the selected elements Fe (iron), Sc (scandium), Ti

(titanium), and Mo (molybdenum) in different sample materials, together with the original

data values. The peaks of the GAM fits in the southern part of the area correspond to

the places of known mineralization, and indeed the known deposits are Fe, Ti and V

(vanadium) mineralization. Since the measurements of V are not very reliable, Sc might

serve as a pathfinder.

Similar to the previous example, the longitude and latitude of the investigated area is

divided into a grid of 100 × 100, and the GAM fits of the grid points are used to compute
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5.4. Experimental results

(a) Fe in Salix glauca (b) Sc in Empetrum nigrum

(c) Ti in Salix glauca (d) Mo in soil

Figure 5.6: GAM fits for the elements iron (Fe), scandium (Sc), titanium (Ti), and
molybdenum (Mo) of the Greenland data.
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

the pairwise log-ratios per sample material. Only those grid points have been taken

which are falling in the colored areas shown in Fig. 5.6. Finally, the c-value is computed,

and Tab. 5.3 shows the top-15 ranked log-ratios for each sample material, together with

the resulting c-values. The element Mo is dominant in many of those log-ratio pairs in

Empetrum nigrum and soil samples, which corresponds to the findings in the univariate

consideration of the problem, see Mikšová et al. (2020).

Table 5.3: Top-15 ranked log-ratios for each sample material for the Greenland data.

Media Salix glauca Empetrum nigrum Soil

Ranking log-ratio c-value log-ratio c-value log-ratio c-value

1 Ba/Zn 20.7 Cs/Mo 38.4 Al/Mo 40.6
2 Al/Sc 19.8 Mo/Pb 36.3 Fe/Mo 40.5
3 La/Ti 13.2 Mo/Ti 35.9 Mo/Ni 38.6
4 Al/Ca 12.6 Mo/Rb 35.8 Mo/Ti 38.6
5 Ba/Ce 12.6 La/Mo 35.5 Mo/Pb 38.6
6 Pb/Rb 12.4 Ba/Mo 35.1 Mo/V 38.6
7 La/Sr 12.3 Mn/Mo 34.9 Mo/Sc 38.5
8 Cs/Pb 12.2 Fe/Mo 34.8 Ce/Mo 38.5
9 La/Sc 11.1 Al/Mo 34.6 La/Mo 38.5
10 Cs/Rb 10.9 Ce/Mo 34.6 Mo/Zn 38.5
11 Ca/K 10.8 Mo/Zn 34.3 Mn/Mo 38.5
12 Cs/Ni 10.8 Mg/Mo 34.1 Cs/Mo 38.5
13 La/P 10.7 Ca/Mo 34.0 Mo/P 38.4
14 K/La 10.6 Mo/Sr 33.9 Mo/Sr 38.4
15 K/Sc 10.3 Co/Mo 33.9 Co/Mo 38.4

Figure 5.7 presents some selected log-ratios: log(Al/Ca) in Salix glauca, shown as

upper left plot, is the second-ranked log-ratio, see Tab. 5.3 in this sample medium. The

red dots are the locations of the known mineralization, and a peak is visible at the

location of the southern mineralized zone. In addition, there is a peak at a new location,

which could be a potentially mineralized area. The remaining three plots in Fig. 5.7

show essentially a quite similar structure. All these log-ratio pairs are in the top ranks

according to their c-value, see Tab. 5.3, and they have a strong peak at the mineralization

higher to the north. The elements involved in these log-ratios are clearly related to the

mineralization (Fe, Ti, Sc). However, there is also a second peak in the southern part of

the area visible, and this could again be a promising location for further investigation.

Finally, the sample materials are compared according to the c-values. Figure 5.8

shows the ranked c-values for all 231 log-ratio pairs of the different sample materials.
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5.4. Experimental results

(a) log(Al/Ca) in Salix glauca (b) log(Mo/Ti) in Empetrum nigrum

(c) log(Fe/Mo) in soil (d) log(Mo/Sc) in soil

Figure 5.7: Plots of some of the log-ratios with high c-values, see Tab. 5.3; red crosses
represent known locations of subcropping mineralization.
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5. Identification of mineralization in geochemistry for grid sampling using

Generalized Additive Models

There is a strong decline of the values for Empetrum nigrum and soil after about 23 ranks.

The few very high values are caused by single elements leading to important log-ratios,

such as Mo, see Tab. 5.3. Salix glauca in general has much lower c-values and thus might

not be considered to have the same importance as the other sampling media.

0
10

20
30

40

0 50 100 150 200
all 231 ranked log−ratios

c
 
−

va
lu

es

Empetrum nigrum Salix glauca Soil

Figure 5.8: Comparison of three sample media of the Greenland data by the ranked
c-values.

5.5 Discussion and conclusions

A completely unsupervised mathematical procedure has been proposed to identify an

underlying mineralization and to point out its location. The methodology is developed

for surface geochemical samples from soil horizons and plants which have been sampled

following a 2D grid design which geometry may be regular or irregular. In a first step,

the absolute element concentration data are approximated by a smooth surface fitted by

a Generalized Additive Model (GAM) in the sampling area. Then, an arbitrary number

of data points is taken from the surface of the smooth fits, representing new artificial

concentration data for an element. Pairwise log-ratios of elements are then computed

on this artificial smoothed data, curvature of the log-ratios is calculated, and finally a

measure called c-value is calculated, reflecting the overall curvature of the log-ratio pair.

The higher the c-value is, the more pronounced spatial changes are present in the specific
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5.5. Discussion and conclusions

log-ratio pair. Regions of abrupt spatial changes can be indicative of an underlying

mineralized zone. The extension of the procedure (Mikšová et al., 2019b) to the 2D case

presented in this paper is not trivial, because there are several technical and numerical

issues which had to be considered.

It is demonstrated with the two real data applications that the procedure is able to

spot at potentially interesting locations and highlight elements which form these abrupt

changes in the pairwise log-ratios. Based on these results of these experiments, the method

can be considered as a first pass data exploration technique which guides the geochemist

towards potentially interesting exploration targets and elements. In each sample medium

where the concentrations for p chemical elements are available, p · (p − 1)/2 pairwise

log-ratios are considered for the methodology, and they are finally ranked according

to their c-values. This does not necessarily mean that only the top-ranked pairs are

interesting or relevant, and others contain no information. Anomalies in these datasets

are also caused by other factors besides exogenic geochemical signals traveling from

underneath the sampling locations. The challenge is to separate these false positive

signals from the true positive drill targets which may lead to mineral discovery. Rather,

the ranking is intended to draw attention and guide the practitioner to possibly interesting

elements and their log-ratio pairs, because manually inspecting p · (p− 1)/2 map plots of

log-ratios is tedious. Practically, one would start looking at the corresponding maps of

the log-ratios from top-rank upwards, and also consider geochemical knowledge for the

validity or relevance of the involved elements in the target at hand. Especially in this

process it is desirable that geochemists do not blindly follow a mathematically optimized

strategy because it may lead to cost-intensive bedrock drilling of false positive targets.

An alternative way applying the algorithm would be a pre-selection of the input elements

not only based on quality standards, such as done in this paper, but by narrowing them

down based on conceptual geological and geochemical models presented by an exploration

geologist and geochemist familiar with the geological environment.
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CHAPTER 6
Summary

The identification of geochemical features related to deposit signature, and the separation

of background and target zones for future local mineral explorations are becoming popular

challenges in geochemistry, since it might lead to ore discoveries which is of high interest.

The main objective of this thesis was to develop statistical methods for mineral

exploration in geochemistry. For this task, the whole process is important, starting

from sampling planning, the collection of the samples, quality control, data processing,

statistical analysis, and interpretation of the results. The first steps, the sampling design

and quality control, were treated in the introduction of the thesis. At least for the

sampling design it turned out that statistical considerations alone would not be useful

in this context; there are many practical aspects that need to be taken into account

as well. Nevertheless, optimal sampling design procedures are the key for a successful

geochemical exploration study. The next step when dealing with geochemical data is

to conduct a thorough quality control procedure to gain confidence in the investigated

geochemical data. For this purpose it is necessary to evaluate the laboratory accuracy

and the field precision. These procedures were improved and completed such that they

are applicable to surface geochemical techniques. The quality control methods are usually

based on the concentration data as they are reported from the laboratory. Subsequent

statistical analyses, however, are (or should be) based on the composition, thus they

need to incorporate the multivariate information. For this reason, a brief introduction to

compositional data analysis is provided in Chapter 1.

Even if the data quality as a result from quality control analyses is appropriate, there

will in general be measurements with censoring, because the concentrations of some

elements are either very low or very high, exceeding a lower or an upper threshold. This
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6. Summary

threshold, called the detection limit, depends on the instrument, and values reported

below/above the detection limit would be very unreliable. Since statistical methods for

compositional data are based on the multivariate information, it is important that values

below/above the detection limit are taken into account appropriately. While several

statistical procedures are available to estimate values below a lower detection limit, also

from a compositional point of view, no multivariate procedures have been proposed so far

to deal with the estimation of values above an upper detection limit. Chapter 2 proposes

a regression based method for the imputation of right-censored values in compositional

data. This methods makes use of the non-censored information of the remaining elements,

and it follows the aspects of compositional data analysis. The replacement of values

above the upper detection limit by this method turns out to be more reasonable than

the widely used rule of multiplying the reported upper detection limit value by a factor.

The main focus of the thesis was on developing methods for identifying mineralized

zones for surface geochemical exploration. The main difficulty is that usually only few

measurements, say 30-40, are available, and only very few of them will be taken on top

of a mineralization such that certain element concentrations clearly deviate from those

which are taken from the background. This makes it difficult to distinguish “true signals”

from values that are somehow deviating due to different kinds of uncertainties. The main

idea is thus to eliminate uncertainties by estimating the “signal”, which is done by fitting

the element concentrations with a smooth curve or surface, here with GAMs (Generalized

Additive Models). Once the GAM fits are available, it is possible to generate a desired

number of grid points in the area under investigation and to compute the fitted values on

the smooth curve/surface. While Chapter 3 and 4 treat the special case of measurements

given on a linear transect, Chapter 5 considers the more general case of measurements

taken on a grid in the plane. Thus, the GAM fits in the former case are smooth curves,

while in the latter case they are surfaces, being computationally more challenging. In

either case, once the GAM fits are available, log-ratios for element pairs are considered,

and a measure of overall curvature is computed. High curvature indicates abrupt signal

changes, which could point at locations of mineralized zones. The measure of overall

curvature allows for a ranking of the log-ratio pairs, which supports the geochemist in

identifying pathfinder elements for mineralization. Several geochemical data sets for

mineral exploration have been used in these chapters as demonstration examples, and

according to experts, the results are reasonable and helpful for the purpose.

An interesting possible extension of the methodology proposed in Chapters 3–5

would be the incorporation of further dimensions. In addition to longitude and latitude,

also the depth of the samples, the depth of drilling cores, the time when the samples
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have been taken, or other significant information could be incorporated. This could lead

to a more accurate prediction of possibly mineralized zones.
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data (right). Blue line indicates lower detection limit. . . . . . . . . . . . . . 20

1.7 QAQC 4 for field precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 QAQC 5 for laboratory precision. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Plots of measured versus estimated values for P and Zn for the Lätäseno data

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 QQ-plots of the reported values for P and Zn for the Lätäseno data set. . . . 36

2.3 Plot of measured versus estimated values for Fe when the UDL is equal to

the quantile 0.8 (subset spruce from the Gjøvik data). . . . . . . . . . . . . . 39

2.4 Log-ratio biplots for the original data, and for data based on imputation with

the simple and the classical method in the variables Ce and Cs, where the

UDL is equal to the quantile 0.8 (subset spruce from the Gjøvik data). . . . . 41
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2.5 Classical and robust imputation for the spruce data of Gjøvik with 13 variables.

The UDL is set to the quantile 0.8 for each of the 1 to 10 randomly selected

variables. The plots show the numbers of iterations of the algorithm for the

imputation, for 100 simulation replications. . . . . . . . . . . . . . . . . . . . 41

2.6 Error measurements depending on sample size: Data sets with the indicated

sample size are randomly drawn from the Gjøvik data set, and imputation is

done in one randomly selected variable, where the UDL is set to the quantile

0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Comparison of classical and robust regression imputation with (TRUE) and

without (FALSE) variable selection for the spruce data subset. The number

of variables to be imputed is increased, and imputation needs to be done for

the upper 20% of the values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Comparison of the simple method, and of classical and robust regression

imputation with (TRUE) and without (FALSE) variable selection for the

spruce data from Gjøvik. Imputation is done in only one randomly selected

variable, by modifying the UDL value from the quantile 0.5 to 0.95. . . . . . 45

2.9 Imputation for each individual sample material (listed on the horizontal axis).

The upper detection limit is modified from the quantile 0.5 to 0.95 of the

values for a randomly selected variable, and the average of the error measures

is computed. The boxplots show the outcomes for 100 simulations. The order

of the sample materials is according to the median performance of the classical

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Imputation for the complete data set. The upper detection limit is modified

from the quantile 0.5 to 0.95 of the values for a particular variable, and the

average of the error measures is computed for each variable separately. The

boxplots show the outcomes for 100 simulations. The order of the variables is

according to the median performance of the classical method. . . . . . . . . 47

3.1 Top row: function x 7→ (1+(x
σ

)2)−1 for different σ. Bottom row: corresponding

curvature (to be defined in Section 2.3). . . . . . . . . . . . . . . . . . . . . . 55

3.2 Example of a log-ratio plot of the elements Al and Co and the corresponding

curvature plot with the threshold (dashed line). One can see the correspon-

dence between local maxima above the threshold in the right plot with the

peaks in the left plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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3.3 GAM fits (lines) for eight selected elements measured in Crowberry twigs from

the Juomasuo data set are displayed together with their original concentrations

(dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Upper part: four different log-ratios of GAM fits. Lower part: corresponding

curvature together with the threshold (dashed red line). . . . . . . . . . . . . 64

3.5 Heatmaps of the c-values per element for all possible log-ratios of the tissue

twig for all plant species, and the accumulated values of all materials (upper

left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Heatmaps of the c-values for all possible log-ratios of four media – BIL, BLE,

CLE, SNE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Curvature of log(Mo/Tl) in sample material Birch leaves, where known min-

eralization area (red points) and mineralized points identified by the method

(blue points) are displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Upper part: Log-ratio of lead and aluminium constructed by using GAM fits

of its individual elements – displayed on lower part of plot. Sample material

is BLE. The red points indicate areas of known mineralization. . . . . . . . . 70

3.9 Top-ranked 70 (unscaled) c-values for each sample material. The horizontal

axis represents the rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Map of the locations of the samples taken by GEUS in the Isortoq South Area. 80

4.2 Curvature of the log-ratio of the GAM fits of Ti and Ca in soil. . . . . . . . . 81

4.3 Curvature of the log-ratio of the GAM fits of Fe (iron) and P (phosphorus) in

soil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Heatmaps of the c-values for the plant materials and soil. . . . . . . . . . . . 82

4.5 Curvature of the log-ratio of the GAM fits of Na (sodium) and Pb (lead) in soil. 83

4.6 Map with the sample locations taken by BRGM in the Vendée area in 2018 . 84

4.7 Top-ranked 70 c-values, computed for 6 different sample materials and the

three different sample sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Heatmaps of the c-values for the BRGM data - soil and plant material. . . . 85

5.1 Left plot shows location (red point) of Tiira data using Google map (Kahle

and Wickham, 2013). Plant sampling stations were placed on top of the

known gold mineralization and covering the surrounding background based on

year 2015 3D modeling data at the Tiira study site, northern Finland (right

plot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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5.2 GAM fit for Au with original concentration values (points) of Norway spruce

twig samples from the Tiira data: left plot for 3D fit, right plot for projection

into 2D, using a contour presentation with isolines. . . . . . . . . . . . . . . . 97

5.3 GAM fits for the elements As and Cu (Norway spruce twig) and Mg and S

(Norway spruce bark), together with the original concentration values (colored

dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Log-ratios of the GAM fits shown in Fig. 5.3 (left column), and corresponding
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5.7 Plots of some of the log-ratios with high c-values, see Tab. 5.3; red crosses
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