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Kurzfassung

Resonanzphänomene können auftreten, wenn ein Wellensystem in gewissen Frequenzen
angeregt wird. Für die mathematische Analysis von Resonanzen werden häufig zeitharmo-
nische Wellen – Wellen mit einer gegebenen Kreisfrequenz – untersucht. In der vorliegenden
Arbeit beschäftigen wir uns mit der numerischen Analysis der Helmholtz Gleichung – ei-
ner partiellen Differentialgleichung, die beispielsweise zeitharmonische akustische Wellen
modelliert – auf unbeschränkten Gebieten und den zugehörigen Resonanzproblemen.
Eine beliebte Methode um solche Probleme zu behandeln ist die sogenannte komplexe

Skalierung. Die Idee dieser Methode ist eine künstliche Dämpfung der Welle außerhalb
eines gewählten Innenraums einzuführen, sodass keine zusätzlichen Reflexionen auftreten.
Wenn sogenannte perfectly matched layers verwendet werden, wird der Außenraum, in
welchem die Dämpfung eingeführt wurde, abgeschnitten und das – nun endliche – Gebiet
beispielsweise mittels finiter Elemente diskretisiert. In der vorliegenden Arbeit analysieren,
implementieren und testen wir einige Adaptierungen der beschriebenen Methode.
Um einen größeren Frequenzbereich mit vergleichbar guten Approximationen zu erhalten,

verwenden wir Methodenparameter, die von der unbekannten Resonanzfrequenz abhängen.
Dieser Ansatz führt zu nichtlinearen Eigenwertproblemen anstatt, wie üblich, zu linearen.

Für die Diskretisierung des Problems verwenden wir eine Methode, die auf der Zerle-
gung einer Welle in einen ausstrahlenden radialen und einen oszillierenden transversalen
Teil basiert. Die Ansatzfunktionen für den ausstrahlenden Teil sind dabei Funktionen mit
unbeschränktem Träger, welche in gewissem Sinne äquivalent zu den Ansatzfunktionen der
Hardyraum infiniten Elemente sind. Durch die Verwendung dieser Funktionen vermeiden
wir eine künstliche Beschränkung des Außenraums und erhalten superalgebraische Appro-
ximationseigenschaften. Außerdem macht es diese Zerlegung einfach die Methode an die
gegebene Problemgeometrie anzupassen.
Schlussendlich präsentieren wir ein effizientes Verfahren um die Eigenwerte der resultie-

renden diskreten, nichtlinearen Eigenwertprobleme zu approximieren. Dieses Verfahren ist,
verglichen mit entsprechenden Methoden für lineare Eigenwertprobleme, in seiner Anwen-
dung nicht signifikant aufwändiger.
Numerische Experimente unterstreichen unsere Ergebnisse und zeigen die oben beschrie-

benen Vorteile unserer Methode.
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Abstract

Resonance phenomena occur, when waves in a given system are excited at certain fre-
quencies. For the mathematical analysis of resonances, time-harmonic waves (i.e., waves
that are periodic in time, with respect to a given angular frequency) can be considered.
In this work we are concerned with the numerical analysis of the Helmholtz equation – a
partial differential equation that models, for example, time-harmonic acoustic waves – on
unbounded domains and the numerical analysis of the according resonance problems.
A popular method for treating such problems is the so-called complex scaling. The

idea of this method is to introduce an artificial damping of the waves outside of a chosen
computational interior domain in a way that no additional reflections are induced. When
so-called perfectly matched layers are used, the exterior domain (i.e., the part of the domain
where the damping is introduced) is truncated to a bounded layer and discretized using, for
instance, finite elements. In the work at hand, we analyze, implement, and test a number
of improvements to the method described above.
To obtain a larger number of equally-well approximated resonances, we use method

parameters that depend on the unknown resonance frequency. This approach leads to
non-linear eigenvalue problems, instead of linear ones.
For the discretization of the problem, we use a method based on the decomposition of

a wave into a propagating radial and an oscillating transversal part. The discrete ansatz
functions for the propagating part are functions with unbounded support and are closely
related to the ansatz functions of Hardy space infinite element methods and spectral el-
ement methods. Due to the use of these functions, we avoid the artificial truncation of
the exterior domain and obtain super-algebraic approximation properties. Moreover, this
decomposition makes it straightforward to adapt the method to the specific geometry of
the given problem.
Lastly, we present an efficient method to approximate the eigenvalues of the resulting

discrete, non-linear eigenvalue problems, which requires no significant extra computational
effort, compared to similar methods for linear eigenvalue problems.
Numerical experiments underline our findings and exhibit the advantages of our method

described above.
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Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne
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1. Introduction

Wave phenomena in physics and engineering can, in many cases, be modeled by hyperbolic
partial differential equations of the form

L(p)(t,x) +
∂2

∂t2
p(t,x) = s(t,x) , (1.1)

where L is a second-order, elliptic differential operator, p is the unknown wave function,
and s is a given source term. The simplest example of an equation along the lines of (1.1)
is the so-called wave equation. This equation is given by

−∆xp(t,x) +
1

c(x)2
∂2

∂t2
p(t,x) = s(t,x) , (1.2)

where c(x) is the wave speed of the medium. An example for an application of the wave
equation is the modelling of acoustic waves, where the function p models the variation of
the pressure.
Other examples of equations along the lines of (1.1) include the curl curl-formulation of

Maxwell’s equations and the elastic wave equation.

1.1. Time-harmonic waves

A classical approach for the analysis of wave-type equations is to use a time-harmonic
ansatz of the form

p(t,x) = Re(u(x) exp(−iωt)) (1.3)

for a fixed frequency ω ∈ R, an amplitude u, and a source term of the form

s(t,x) = Re(f(x) exp(−iωt)) ,

where f is the amplitude of the time-harmonic source. Plugging this ansatz into the wave
equation (1.2), we obtain that the function (1.3) solves (1.2) if the amplitude u fulfills

−∆u(x)− ω2(1 + ρ(x))2u(x) = f(x) (1.4)

for c(x)2 = 1
(1+ρ(x))2

. Equation (1.4) is called the Helmholtz equation. If, for a given domain

Ω, the right-hand side f : Ω → R and the frequency ω of (1.4) are known, one can try
to solve the Helmholtz equation with suitable boundary conditions on ∂Ω and thereby
gather information about the solution of the wave equation (1.2). This problem is called
the Helmholtz scattering problem (cf. Figure 1.1).

1
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1. Introduction

Ωc

Ωincoming wave

scattered wave

Figure 1.1.: Scattering of a wave by an obstacle.

Contrary to the scattering problem, the resonance problem is the task of finding frequen-
cies ω such that the scattering problem is not (uniquely) solvable. Helmholtz resonance
problems are the main objects of research in this thesis. If, for a frequency ω, there exists
a function uω 6= 0 that solves the homogeneous Helmholtz equation

−∆uω(x)− ω2(1 + ρ(x))2uω(x) = 0, (1.5)

this frequency ω and the function uω are called an eigenfrequency and its respective eigen-
function or a resonance frequency and its respective resonance function. Suppose that
there exists a complete orthonormal1 system of eigenfunctions uωn , n ∈ N0 of the operator
−∆ with suitable homogeneous boundary conditions2. Then the solutions of the scattering
problem with ρ = 0 can be written as a superposition of eigenfunctions

u(x) =
∞∑

n=0

(f, uωn)

ω2
n − ω2

uωn(x) . (1.6)

If the given frequency ω is close to a resonance frequency ωn and (f, uωn) 6= 0, the according
resonance function uωn is dominant in the expansion (1.6).

When a resonance ωn ∈ R is excited over a period of time, the oscillation of the wave
in question will increase up to a point where the system breaks down. In mechanics this
phenomenon is known under the term resonance catastrophe. For a more comprehensive
overview of the significance of resonances, we refer to [Zwo99].

Helmholtz problems on unbounded domains

In many applications it is necessary to model the wave propagation in an unbounded
domain (see Figure 1.1). Contrary to the case of bounded domains and non-lossy media,

1with respect to a suitable inner product (·, ·)
2Such orthonormal systems of eigenvectors exist, e.g., for compact operators and analogies can be derived
for more general operators.
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1.2. Existing methods

where the resonance frequencies are real, in the case of unbounded domains we have to
expect complex resonances. In certain configurations it can be shown that the eigenvalues
of (1.5) with suitable boundary and radiation conditions have non-positive imaginary parts
([N0́1, Theorem 2.6.1] and [SZ99]). The imaginary part of an eigenfrequency determines
the decay over time of the wave corresponding to the according eigenfunction, where a
smaller imaginary part results in a faster decay (cf. (1.3)). Therefore, and due to the fact
that resonances close to the given frequency ω dominate the resulting scattered wave (cf.
(1.6)), the physically most interesting eigenvalues are the ones located close to the real axis.

Having to deal with unbounded domains is mathematically challenging for the follow-
ing reasons: Due to the lack of an outer boundary, one has to specify a suitable radia-
tion condition. This radiation condition is responsible for the selection of the physically
meaningful solutions. We will see that, for frequencies with negative imaginary parts, the
radiating eigenfunctions of (1.5) including boundary conditions are exponentially increas-
ing in space for large arguments. Therefore, it is not straightforward to apply a classical
L2(Ω)-framework for the analysis, as well as for the discretization of Helmholtz problems
on unbounded domains.

Moreover, we want to apply finite element methods (see, e.g., [Cia02]) for the discretiza-
tion of the problem, which are, in standard versions, only applicable on bounded domains.
In the following section we briefly discuss several existing methods to overcome these diffi-
culties.

1.2. Existing methods

One method for the treatment of waves in unbounded domains is to use absorbing boundary
conditions on an, artificially chosen, exterior boundary. Such conditions can, for instance,
be obtained by approximating the correct Dirichlet-to-Neumann operator (see [Giv01] for
a review). Another approach is the use of boundary integral representations of the solution
based on fundamental solutions (e.g., [SS11]). Moreover, there exists the relatively new
method of half-space matching ([BBDFT18]), which is based on decomposing the exterior
domain into overlapping half-spaces and constructing the overall solution out of the separate
solutions on the half-spaces respectively.

Due to the fact that in the methods described above the dependency on the frequency
is highly non-linear, applying these methods for resonance problems can be quite intricate
(cf. [SU12] for boundary element methods for resonance problems).

In 1994 Bérenger proposed the so-called perfectly matched layers for time-dependent
problems in [Ber94]. Perfectly matched layers were later recognized to be equivalent to a
complex coordinate stretching or complex scaling when written in the frequency domain,
a technique which was already known since the 1970s (e.g., [Sim79])3. Along the lines
of the methods described above, the unbounded domain is decomposed into a bounded
interior, surrounded by an unbounded exterior domain (cf. Figure 1.2). The complex
scaling is applied to the exterior domain and is chosen in a way that the radiating solutions
in question decay exponentially with respect to the spacial variable in the exterior domain.
Thus, it can be expected that a truncation of the exterior domain will lead to small errors.

3For a more comprehensive historical overview we refer to [Hal19, Section 1.2].
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1. Introduction

Γ
Ωint

Ωext

x̂(x)

x

Ωc

ξ(
x)

Figure 1.2.: The decomposition of the domain Ω into an interior domain Ωint and an exterior
domain Ωext with interface Γ and exterior coordinates ξ(x) , x̂(x) of a point
x ∈ Ωext.

Subsequently, the now both bounded interior and exterior domains are discretized using,
for example, suitable finite elements or finite differences. The perfectly matched layers
have been successfully applied to both, Helmholtz scattering and resonance problems (e.g.,
[Kim09, KP09, Kim14]).

Other methods are the use of Hardy space ([HN09]) or complex-scaled infinite elements
([NW19]). These methods will be discussed in more detail in Section 1.4.

1.3. Methods based on complex scaling

In the work at hand, we use methods based on complex scaling as briefly introduced in
Section 1.2. In general these methods can be decomposed into the three single steps:

1. complex scaling,

2. discretization, and

3. solving the discrete problem.

In the following we discuss the state of the art of these three steps.

Complex scaling

As a preliminary step the unbounded domain Ω is decomposed into a bounded interior
domain Ωint and an unbounded exterior domain Ωext (cf. Figure 1.2). The idea of the
complex scaling is to utilize the fact that the solutions of the homogeneous Helmholtz
equation (1.5) with analytic potential ρ allow an analytic continuation to a complex domain
Θ in a way that the real domain Ωext is a subset of Θ. One chooses a complex domain
Ω̆ext ⊂ Θ that has a one-to-one correspondence to Ωext, so that the analytic continuations of
the radiating solutions decrease exponentially in Ω̆ext for large arguments. Subsequently,

4
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1.3. Methods based on complex scaling

one derives an equation, called the complex-scaled equation, in a way that the analytic
continuations to the complex domain Ω̆ext of the original radiating solutions are solutions
of this new equation.

This procedure is helpful for the following reason: The exponentially decreasing solutions
of the complex-scaled equation are elements of the Hilbert space H1(Ω) on the unbounded
domain Ω. This allows the derivation of a weak formulation which is essential for Galerkin
methods, such as the finite element method.

The success and performance of the complex scaling depends on the choice of the complex
domain Ω̆ext. In applications mostly scalings aligned with the cartesian coordinates are
used ([Kim14, BP13, KP10b, KP10a]). This approach has the benefit of a straightforward
derivation and implementation of the complex-scaled equation. Nevertheless, the analysis
of such cartesian scalings can be quite challenging.

Another possible choice for the complex scaling is to choose the complexification in
radial direction ([Hal19, CM98]). Generalizations of radial scalings include the choice of
curvilinear coordinates ([LS01]) or generalized polar coordinates with respect to star-shaped
interior domains ([Hal16]).

In addition to the scaling direction, a scaling profile has to be specified. This scaling
profile determines the growth of the imaginary part of the complexified variable and there-
fore also the exponential decay of the solutions. Since this decay affects the quality of a
possible approximation of the solution, a suitable choice of the scaling profile is substantial
for the performance of the method. Here the choices range from simple linear scalings (e.g.,
[NW18]) to profiles which involve a singularity ([BHNPRr08]).

For scattering and time-dependent problems, it is common to use a complex coordinate
transformation that depends on the frequency ω. For resonance problems, on the other
hand, this is usually omitted to preserve the linear structure of the resulting eigenvalue
problem. Nevertheless, in [NW18] we successfully applied frequency-dependent scaling
parameters to resonance problems as well, to also profit from the increased robustness and
simplify the choice of parameters.

Discretization

After applying the complex scaling, the resulting complex-scaled equation has to be dis-
cretized to obtain approximations to the solutions of the scattering or resonance problem.

The usual approach of the perfectly matched layer technique is to truncate the unbounded
exterior domain to a bounded one. Since the solutions in question decay exponentially, one
can expect that this truncation causes only an exponentially small error with respect to the
size of the truncated domain. Subsequently the – now finite – domain can be meshed and
standard finite elements can be used to discretize the truncated complex-scaled problem.

A way to avoid the additional truncation error is to remap the unbounded exterior domain
to a bounded one, using a singular mapping, and to discretize the bounded mapped domain.
This approach is related to the ideas in [BHNPRr08], where a scaling profile with singular
imaginary part is used to evade truncation.

The approach we apply in the thesis at hand is to use ansatz functions with unbounded
support, which are elements of H1(Ω), to avoid the truncation of the exterior domain.
For one-dimensional problems, similar ansatz functions are also used in spectral element
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1. Introduction

methods (e.g., [STW11]). The spaces spanned by these ansatz functions exhibit super-
algebraic approximation properties for the solutions of the complex-scaled homogeneous
Helmholtz equation with a linear scaling. Therefore, the use of more involved scaling
profiles is not necessary in this case.

Solvers for non-linear eigenvalue problems

The discretization of the frequency independently complex-scaled equation results in a
large and sparse generalized-linear eigenvalue problem. For problems of this type, efficient
algorithms, such as the Arnoldi algorithm ([Arn51]) or filtered subspace iteration (e.g.,
[TP14, GGO20]), are available for approximating eigenvalues. To obtain approximations
to eigenvalues close to a given complex shift, a so-called shift-and-invert can be applied.
For the application of this technique, in each step of the iteration the factorization of an
inverse matrix has to be applied, which accounts for the main computational effort.
Contrary to the use of frequency-independent complex scalings, the application of fre-

quency-dependent scalings with suitable frequency-dependencies leads to non-linear eigen-
value problems that are rational in the frequency .

Non-linear eigenvalue problems appear in a wide range of applications and numerical
methods have been discussed for a long time (e.g., [Ruh73]). For an extensive collection
of non-linear eigenvalue problems we refer to [BHM+13] and for a more recent overview of
(mostly iterative projection methods) to [MV04]. A newer class of methods for holomor-
phic eigenvalue problems are methods based on contour integrals ([SS03, Bey12]). These
contour-integration-based methods have also been combined with methods based on sub-
space iteration (e.g., [EG15]). Nevertheless, all of the methods above are less efficient
compared to the methods for generalized-linear eigenvalue problems.

1.4. Hardy space and complex-scaled infinite elements

The method of Hardy space infinite elements (e.g., [HN09, Hal16]) is based on a radi-
ation condition called the pole condition. This condition is a condition on the Laplace
transformed solution with respect to the radial spacial variable and was introduced for
time-dependent Schrödinger-type equations ([SD95, SY97]). Besides the method of Hardy
space infinite elements, there exist various other numerical methods based on the pole
condition (e.g., [HSZ03a, HSZ03b, RSS13, GS11]).
The idea of the Hardy space infinite element method is to approximate the Laplace

transformed solution using suitable discrete spaces that are tensor products of discrete
tangential spaces and discretizations of certain Hardy spaces. These Hardy spaces are
chosen in a way that their elements fulfill the pole condition.

Using Hardy space infinite elements has numerous advantages over the standard per-
fectly matched layer method: Since it is based on a decomposition into (generalized) polar
coordinates, it already takes into account the fact that the radial and the tangential part of
the solutions behave differently. Moreover, due to the tensor product approach, no explicit
meshing of the exterior domain is necessary. Since the solutions are approximated in the
Laplace domain, no truncation is needed. Therefore, no additional error is introduced and
the process of choosing a suitable truncation can be omitted. Furthermore, the Hardy
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1.5. Main ideas

space infinite element method exhibits super-algebraic convergence rates with respect to
the number of radial degrees of freedom.

In addition to the first versions of the Hardy space infinite elements from [HN09], there
exist also more involved versions of this method ([HHNS16, HN18]). These modified ver-
sions allow also the treatment of problems that model waves with different signs of the
phase- and group-velocities.

The cost for all these positive aspects is the fact that one has to deal with the unusual set-
ting of Laplace transformed solutions and the according Hardy spaces. Moreover, there are
no quadrature rules available for the numerical computation of the discretization matrices.

Complex-scaled infinite elements ([NW19]) use spaces of functions with unbounded sup-
port to discretize the complex-scaled problem. The radial parts of these ansatz functions
are closely related to the Laguerre functions, which form a complete orthonormal system
of the space L2(R>0).

It can be shown that the complex-scaled infinite elements are, to some extent, equivalent
to standard Hardy space infinite elements4. Thus, the complex-scaled infinite elements
unite all the benefits of the perfectly matched layer method (easy implementation, standard
framework for analysis, numerical integration) with the ones of the Hardy space infinite
element method (tensor product discretization, super-algebraic convergence, no truncation,
only linear scalings necessary).

1.5. Main ideas

In our work we present several additions and improvements to the existing methods for
Helmholtz resonance problems based on complex scaling described in Section 1.3. They
can be summarized under the three headings given below.

Complex scaling in exterior coordinates

We describe a point x in the exterior domain by a generalized-radial coordinate ξ(x) ∈ R>0

and a surface coordinate x̂(x) ∈ Γ, where Γ denotes the interface between the interior and
the exterior domain (see Figure 1.2 and Definition 3.1). The complex scaling is applied
solely in the direction of the generalized-radial coordinate. By using exterior coordinates,
it is possible to geometrically adapt the complex scaling to the given problem and avoid
having to discretize an unnecessary large interior domain.

Moreover, the exterior coordinates can be employed for the discretization in the following
way: We use suitable tensor product spaces of a discrete space on the interface Γ and
generalized-radial ansatz functions defined on R>0 (or on a bounded subset of R>0 as in
Section 6.2). The discrete space on the interface Γ is thereby already given by the Γ-traces
of the discrete ansatz functions in the interior domain Ωint.

4In [GS11] a numerical method based on the pole condition was re-interpreted as a finite difference method.
We emphasize that our approach is different since we construct a correspondence not only between the
discretization matrices, but between the basis functions of the two methods.
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1. Introduction

Frequency-dependent complex scaling

We choose the parameters of the complex scaling dependent on the frequency (Section
7.3). Although this can lead to a non-linearity in the frequency and therefore to non-linear
eigenvalue problems, this approach can make the problem more robust and simplifies the
choice of suitable parameters. We show in Sections 5.3 and 7.3 how the choice of the
frequency-dependency affects the essential spectrum of the problem.

Complex-scaled infinite elements

We discretize the generalized-radial part of the eigenfunctions in the exterior domain by
using complex-scaled infinite elements (Section 6.3). They consist of generalized-radial
ansatz functions that are linear combinations of generalized Laguerre functions. Advantages
of these infinite elements over standard perfectly matched layers include the facts that no
domain truncation is necessary and we obtain super-algebraic approximation properties.

The three concepts described above can be combined at will. It is, for example, possible
to discretize the complex-scaled Helmholtz equation with a frequency-dependent scaling in
exterior coordinates using perfectly matched layers (cf. [NW18]) or to apply complex-scaled
infinite elements without a frequency-dependency (cf. [NW19]).

In addition to the ideas described above, we present a method for approximating rational
eigenvalue problems. We apply an algorithm based on a shift-and-invert where the inverse
matrix that has to be factorized has the same dimensions as the matrix of a corresponding
generalized-linear problem. Since the factorization and application of this inverse matrix
contributes the main computational effort, our method is not significantly more expen-
sive, in terms of the computational costs, than algorithms for generalized-linear problems
(Chapter 8).

1.6. Structure of the thesis

The remainder of this work is structured as follows: In Chapter 2 we properly define the
Helmholtz resonance problems on unbounded domains, where Section 2.2 is dedicated to
the discussion of the radiation condition we make use of.

Chapter 3 gives a definition of the exterior coordinates we employ to generate linear
complex scalings. Moreover, in Section 3.2 we derive necessary assumptions for the eigen-
functions of the Helmholtz resonance problem to allow an analytic continuation to the
complex-scaled domain. Furthermore, we prove in Section 3.3 under which conditions on
the scaling the complex-scaled eigenfunctions are exponentially decreasing for large argu-
ments.

For readers who are not familiar with [NW18], we briefly summarize the most important
results thereof in Chapter 4 to motivate the use of frequency-dependent complex scalings
and already exhibit some effects that will are important for understanding the successive
chapters.
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1.7. Some remarks on notation

In Chapter 5 we analyze the weak formulation of the complex-scaled Helmholtz equation
with a frequency-dependent scaling. We show that the problem is Fredholm for frequencies
in a certain region of the complex plane depending on the given scaling. Moreover, we
prove the existence of two different parts of the essential spectrum.

In Chapter 6 we discuss how the exterior domain is discretized using complex-scaled infi-
nite elements and give some approximation results in Section 6.5. Moreover, we explain the
correspondence between complex-scaled infinite elements and Hardy space infinite elements
in Section 6.4.

For readers who are primarily interested in the implementation of frequency-dependent
complex scalings, we present in Chapter 7 all the relevant weak formulations for some exam-
ples of exterior coordinates (Sections 7.1 and 7.2) and a variety of frequency-dependencies
of the scaling parameter (Section 7.3). We also derive explicit formulas for the possible
location of the essential spectrum.

Chapter 8 describes the algorithms used to efficiently solve the non-linear eigenvalue
problems that result from the frequency-dependent complex scaling.

Chapter 9 gives a number of numerical results that exhibit the properties of our method
derived in Chapters 5–7. Moreover, we perform numerical experiments that indicate that
some results may be generalized and/or refined.

We close with a short conclusion, an outlook on possible applications and extensions,
and address open questions in Chapter 10.

Appendix A contains some results that are necessary for the completeness of this thesis
but are not contained in the main text to maintain a clean presentation.

1.7. Some remarks on notation

We use bold, lower-case letters for vectors and bold, capital letters for matrices. The
entries of matrices/vectors are denoted by the same letter with subscript indices. Families
of matrices/vectors denoted by the same letter are indexed by superscript indices. Thus, a
subscript indexed bold letter mostly indicates a scalar quantity.

For α ∈ C \ {0} and x ∈ C
n, we use the notation

x

α
:=

1

α
x.

The letters n and t usually denote the (outward) normal and tangential vectors to man-
ifolds. The symbol IX denotes the identity on some space X. If X is (a subspace) of Cd

we also write Id. Moreover, we use the symbol 0 for vectors or matrices where all entries
are zero. The dimensions of the zero vector/matrix can be deduced from the context or is
given explicitly.

The Jacobian of a function f : Rm → R
n is denoted by Df : Rm → R

n×m and for n = 1
we denote its gradient by ∇f = (Df)⊤ : Rm → R

m. We use similar notations for functions
on complex domains and complex values. Moreover, we use the notation f(·) to emphasize
that we address the function as an object and not its value at a certain point.

We write N := {1, 2, . . .} and N0 := {0, 1, 2, . . .}. We write R≥0 for all real numbers larger
or equal to zero and use similar notations for other subsets of the real numbers. Similarly
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1. Introduction

we write CIm>0 := {z ∈ C : Im(z) > 0} and so on, where Re(·) and Im(·) denote the real
and the imaginary part of a complex number respectively.
The argument arg(z) of a complex number z is its polar angle and we use the convention

arg(z) ∈ [0, 2π). By default, the symbol
√· denotes the square root that is continuous from

C \R≤0 to CRe>0 and maps negative real values to the positive imaginary axis. Whenever
we want to emphasize the branch-cut of the square root we use the notation

α√
z =

α
√

r exp(iϕ) :=
√
r exp

(
iϕ

2

)

for the square root with the branch-cut at αR≥0, where α ∈ C \ {0}, r ≥ 0, and ϕ ∈
(argα− 2π, argα] such that z = r exp(iϕ).
For vectors x ∈ C

d or x ∈ R
d, the notation ‖·‖, without subscript, denotes the Euclidean

norm
‖x‖ :=

√
x · x,

where · denotes the real inner product without conjugation.
For a Hilbert space X, we use the symbol B(X) for the set of all bounded operators that

map X to itself. For x, y ∈ X, we write (x, y)X and ‖x‖X for the X-inner product and the
X-norm respectively.
We denote the open ball with center 0 and radius R > 0 in R

d by

Bd
R :=

{

x ∈ R
d : ‖x‖ < R

}

.

Moreover, we write

Sd
R = ∂BR =

{

x ∈ R
d : ‖x‖ = R

}

.

Whenever the dimension d is clear, we omit the superscript d. We use the symbol ∼ for
the equivalence relation

f ∼ g, x→ a ⇐⇒ lim
x→a

f(x)

g(x)
= 1

for some functions f, g :M → C on a setM such that the limit x→ a is defined for x ∈M .
For two vectors x,y ∈ R

d, we denote the angle enclosed by x and y by

∢(x,y) := arccos

(
x · y
‖x‖ ‖y‖

)

∈ [0, π].

For a (piecewise) smooth, d − 1-dimensional manifold Γ ⊂ R
d, an integrable function

f : Γ→ C, and an embedding ϕ :M ⊂ R
d−1 → Γ, we write

∫

ϕ(M)
f(x̂) dx̂ :=

∫

M
(f ◦ ϕ)(η)

√

det
(

(Dϕ(η))⊤Dϕ(η)
)

dη (1.7)

for the integration by the surface measure of Γ. Moreover, we write ∇̂ for the surface
gradient

(

∇̂f
)

(ϕ(η)) :=
(

Dϕ(η)†
)⊤
∇η (f ◦ ϕ)(η) . (1.8)
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1.7. Some remarks on notation

Here for a matrix A ⊂ C
n×m with full rank and dimensions m ≤ n,

A† :=
(

A⊤A
)−1

A⊤

denotes the Moore-Penrose pseudo-inverse of a matrix.
The symbol (·)!! denotes the double factorial defined by

(2n+ 1)!! := 1 · 3 · · · (2n− 1) · (2n+ 1)

for n ∈ N0.
For a function f : M → C

n on some set M ⊂ C
m and m,n ∈ N, we denote its support

by
supp(f) := {x ∈M : |f(x)| > 0}.

We use the symbol Pn for the set of polynomials up to the degree n ∈ N0.
Lastly, we use the terms analytic and holomorphic synonymously for complex differen-

tiable functions on open domains.
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2. Problem Setting

This chapter is dedicated to the proper definition of Helmholtz resonance problems on
unbounded domains. We have to pay special attention to the definition of a suitable
radiation condition that replaces the – due to the unboundedness of the given domain –
missing boundary condition. This radiation condition is responsible for selecting physically
meaningful solutions and is defined in Section 2.2.1 for d = 1 and in Section 2.2.2 for higher
dimensions.

2.1. Helmholtz resonance problems on unbounded domains

In the following let d ∈ {1, 2, 3} denote the spacial dimension and Ωint,Ωext,Ω,Ω0,Γ,Γ0 ⊂
R
d. Moreover, we assume that these sets fulfill the following assumptions (see Figure 2.1

for a two-dimensional example):

(D1) Ωint,Ωext,Ω,Ω0 6= ∅ are open domains and Γ,Γ0 are d − 1-dimensional manifolds
without boundary,

(D2) the sets Ωint,Γ and Ωext are pairwise disjoint Ωint ∪ Γ ∪ Ωext = Ω, and Γ = ∂Ωext,

(D3) Ωc and Ωint are bounded and Ωc ⊂ Ωext
c,

(D4) ∂Ω,Γ are locally Lipschitz, and

(D5) Ωc ⊂ Ω0 ⊂ Ωext
c, Γ0 = ∂Ω0 is smooth, and Ω0 ∩ Ωext = ∅.

Γ
Ωint

Ωext

supp(ρ)

Ωc
Γ0

Figure 2.1.: An example of two-dimensional domains that fulfill (D1–5).
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2. Problem Setting

Remark 2.1. For d = 1, the interface Γ consists of two points Γ = {Rl, Rr} for some
Rl, Rr ∈ R such that Rl < Rr. The exterior domain Ωext consists of the two disjoint sets
Ωl
ext,Ω

r
ext with Ωl

ext = (−∞, Rl), Ω
r
ext = (Rr,∞).

Remark 2.2. The conditions on the domains (D1–5) restrict our presentation to domains
that are complements of compact sets. This excludes other interesting configurations, such
as (open) waveguides and half-spaces. We point out that many of the ideas in our work
can be applied to such configurations with, none or little, modifications as well.

On domains that fulfill the assumptions (D1–5), we study the following resonance prob-
lem:

Problem 2.3. Let Ω,Ωint,Ωext,Ω0,Γ,Γ0 ⊂ R
d fulfill (D1–5). Moreover, let ρ ∈ C(Ω) be

such that supp(ρ) ⊂ Ω0 (see Figure 2.1) and ρ(x) > −1 for all x ∈ Ω. Then the problem to
find ω ∈ C and u ∈ C2(Ω) \ {0} such that

−∆u(x) = ω2(ρ(x) + 1)2u(x) , x ∈ Ω, (2.1a)

u fulfills some homogeneous boundary condition, x ∈ ∂Ω, (2.1b)

u is radiating, ‖x‖ → ∞ (2.1c)

is called the strong formulation of the Helmholtz resonance problem. A complex number ω
and a function u that fulfill (2.1) are called an eigenvalue and its corresponding eigenfunc-
tion or a resonance frequency and its corresponding resonance function.

The boundary condition (2.1b) can be a homogeneous Neumann, Dirichlet, or Robin
boundary condition. Also a composition of these three types is possible. Unlike in the
case of scattering problems, where for a given right-hand side and a given frequency the
(unique) solution is sought after, in the case of resonance problems, also the corresponding
eigenvalue or resonance frequency ω is unknown. The eigenvalues of Problem 2.3 are values
of ω where the corresponding scattering problem is not uniquely solvable.

Remark 2.4. To keep the definition of the Helmholtz resonance problem as simple a possible,
we confine ourselves to continuous potential functions ρ in Problem 2.3. Nevertheless, if
suitable additional conditions are provided, more general, for example, piecewise continuous
potentials can be used (cf. the experiments in Chapters 4 and 9).

Remark 2.5. Condition (D5) and the condition on supp(ρ) imply that there is a positive
distance between Γ and Γ0. This assumption ensures a certain regularity of the eigenfunc-
tions of Problem 2.3 on the interface Γ. Sufficient weaker assumptions would be to require,
for example, convexity and a certain regularity of the scatterer Ωc.

Next we have to specify the radiation condition (2.1c), namely, what we mean by the
term radiating.

2.2. Radiating solutions of the Helmholtz equation

We define our radiation condition in the following order: In Section 2.2.1 we discuss the
radiation conditions in one dimension and for positive frequencies ω only. Subsequently,
we extend our definition to complex frequencies. In Section 2.2.2 we define the radiation
condition for d = 2, 3. We close this section with a brief discussion of radiation conditions
(Section 2.2.3).
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2.2. Radiating solutions of the Helmholtz equation

2.2.1. The radiation condition in one dimension

Although we will see that in one dimension the Helmholtz resonance problem behaves, in
some respects, very differently from the problem in higher dimensions, it is, nevertheless,
very instructive to consider this simple case first. Thus, we open this chapter with the
definition and discussion of radiation conditions in one dimension. We focus on the case
ω > 0 first.

In Ωr
ext = (Rr,∞) (see Remark 2.1) all solutions to (2.1a) for ω 6= 0 are given by

u(x) = C1u1(x) + C2u2(x) (2.2)

for some constants C1, C2 ∈ C, where

u1,2(x) := exp(±iωx) .

In Chapter 1 we derived the Helmholtz equation by looking for time-harmonic solutions of
the wave equation given by

p(x, t) = Re(u(x) exp(−iωt)) . (2.3)

By plugging (2.2) into (2.3), we obtain

p(x, t) = Re (C1 exp(iω(x− t)) + C2 exp(iω(−x− t))) .

The first summand is an exponential that moves to the right over time, while the second
summand moves to the left. Assuming that sources occur exclusively in Ωint, the physically
reasonable assumption for radiating solutions is to consider only solutions with C2 = 0 in
Ωr
ext and C1 = 0 in Ωl

ext. A mathematically precise formulation of this is to impose that
the averaged outward energy flux

J(u) := − 1

2ω
Im

(∫

Γ
u(x̂)∇u(x̂) · n(x̂) dx̂

)

(2.4)

is positive for solutions u for every possible source in the interior. This means that the
averaged outward energy flux for both, u1 and u2, has to be positive. Because of

J(exp(±iω·)) = − 1

2ω
Im
(

∓iω |exp(±iωRr)|2
)

= ±1

2
,

this energy flux at Rr is positive for u1 and negative for u2. A similar calculation shows
that it is negative for u1 and positive for u2 at Rl.

Thus, for d = 1, the radiation condition in (2.1c) in Problem 2.3 can be stated as follows:

Definition 2.6. For d = 1 and ω ∈ C\{0}, we call a solution u of (2.1a) radiating, if there
exist constants αl, αr ∈ C \ {0} such that

u(x) = αl exp(−iωx) , x ∈ Ωl
ext,

u(x) = αr exp(iωx) , x ∈ Ωr
ext.
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2. Problem Setting

Note that, although we motivated Definition 2.6 by the use of the averaged outward
energy flux, which is only meaningful for positive real frequencies, Definition 2.6 remains
also valid for complex frequencies.

Definition 2.6 is, by far, not the only way to define a useful radiation condition. In
fact, there are many different ways to do so. While Definition 2.6 explicitly imposes a
condition on the solution in the whole exterior domain, another possibility is to only impose
a condition on the asymptotic behavior of the solution. An example for this is the so-called
Sommerfeld condition ([CK98, Definition 2.3] and (2.9)).

Another way to state a radiation condition is to impose a condition merely at the interface
Γ. For d = 1, this can be done by imposing

u′(Rr)− iωu(Rr) = 0, u′(Rl) + iωu(Rl) = 0. (2.5)

Note that (2.5) is equivalent to the radiation condition from Definition 2.6.

2.2.2. The radiation condition in higher dimensions

Similar to the one-dimensional case, we choose to specify our radiation condition by giving
an explicit representation of the radiating eigenfunctions in Ωext. While for d = 1 the
solutions to the homogeneous Helmholtz equation in Ωext are given by superpositions of
exponentials with positive and negative signs (2.2), for higher dimensions, they can be
written down in terms of (spherical) Hankel functions and cylindrical/spherical harmonics.
Using these special functions (Section A.1.1), we are in the position to properly define

the radiation condition (2.1c) for d = 2, 3 (cf. [CK98, Theorem 2.4]1).

Definition 2.7. For d = 2, 3 and ω ∈ C \ {0}, we call a solution u of (2.1a) radiating if

u(x) =
i

4

∫

Γ0

u(y)∇Gx(y) · n(y)−∇u(y) · n(y)Gx(y) dy (2.6)

for all x ∈ R
d \ Ω0, where

Gx(y) :=

{

H
(1)
0 (ω ‖x− y‖) , d = 2,

ω
πh

(1)
0 (ω ‖x− y‖) , d = 3.

(2.7)

The integration in (2.6) has to be understood as integration with respect to the surface
measure of Γ0 as defined in (1.7).

Proposition 2.8 shows that a function u given by (2.6) allows an expansion in (spherical)
Hankel functions of the first kind and cylindrical/spherical harmonics.

Proposition 2.8. A solution u of (2.1), for d = 2, 3 and ω ∈ C \ {0}, is radiating, in the
sense of Definition 2.7, if there exist αk, βk,j ∈ C, and R > 0 such that

u(x) =







∑∞
k=−∞ αkH

(1)
|k| (ω ‖x‖) Φk

(
x

‖x‖

)

, d = 2,
∑∞

k=0

∑k
j=−k βk,jh

(1)
k (ω ‖x‖)Y j

k

(
x

‖x‖

)

, d = 3
(2.8)

1Note that in [CK98] the Sommerfeld radiation condition is used and (2.6) is derived as a theorem. For
resonance problems, this is not an option since the Sommerfeld condition is not feasible for frequencies
with negative imaginary part (see Remark 2.9).
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2.2. Radiating solutions of the Helmholtz equation

for all ‖x‖ > R. This expansion is valid for all ‖x‖ > max{‖y‖ : y ∈ Γ0}. The sums
converge uniformly on compact subsets of {x ∈ Ω : ‖x‖ > max{‖y‖ : y ∈ Γ0}} .
Proof. This is proven by a transformation of the Helmholtz equation in polar coordinates
and a Fourier decomposition of the solution into spherical/cylindrical harmonics, which
form a complete orthogonal system of H1(S1). For d = 3, see [CK98, Thm. 2.14].

For d = 2, 3, the (spherical) Hankel functions of the first kind adopt the role of the
exponential with the correct sign in one dimension. It can be shown that functions that
satisfy (2.8) have a positive averaged outward energy flux (2.4) through the interface Γ (see
[Nan17]). Functions composed of (spherical) Hankel functions of the second kind, on the
other hand, have a negative energy flux.

2.2.3. A brief discussion of radiation conditions

Apart from the radiation conditions introduced in Section 2.2.1 and Section 2.2.2, there
exist a variety of other radiation conditions. For an overview, we refer to [Nan17].
The so-called Sommerfeld condition ([CK98, Definition 2.3]) imposes a condition on the

asymptotic behavior of the solution for large arguments. It can be stated by

lim
‖x‖→∞

‖x‖(d−1)/2

(
∂

∂ ‖x‖ − iω
)

u(x) = 0, uniformly in
x

‖x‖ . (2.9)

For d = 1, (2.9) is obviously equivalent to the condition defined in Definition 2.6 for all
frequencies ω ∈ C \ {0}. For higher dimensions, Remark 2.9 shows that this is not the case
for frequencies with a negative imaginary part.
A generalization of (2.5) to higher dimensions is given by

∇u(x̂) · n(x̂)− iωu(x̂) = 0, x̂ ∈ Γ, (2.10)

where n is the outward normal of the interface Γ pointing into Ωext. Condition (2.10) is
called the first-order absorbing boundary condition. Although in higher dimensions this con-
dition is not equivalent to other radiation conditions, it is widely used as an approximation
since it is straightforward to implement (cf., e.g., [Ihl98, Giv01, Giv04]).

Remark 2.9. For d = 3 and ω ∈ C \ {0}, plugging u(x) = h
(1)
0 (ω ‖·‖)Y 0

0

(
·

‖·‖

)

into the

expression inside the limit of the left-hand side of (2.9) and using h
(1)
0 (x) = exp(ix)

ix gives

‖x‖
(

∂

∂ ‖x‖ − iω
)

u(x) = ‖x‖Y 0
0

(
x

‖x‖

)

ω

((

h
(1)
0

)′
(ω ‖x‖)− ih(1)0 (ω ‖x‖)

)

= ‖x‖Y 0
0

(
x

‖x‖

)

ω exp(iω ‖x‖)
(

1

ω ‖x‖ +
i

ω2 ‖x‖2
− 1

ω ‖x‖

)

= Y 0
0

(
x

‖x‖

)
i exp(iω ‖x‖)

ω ‖x‖ .

While for Im(ω) ≥ 0 this tends to zero for ‖x‖ → ∞, it is unbounded for Im(ω) < 0.
Therefore, the Sommerfeld radiation condition (2.9) is not equivalent to the radiation
condition specified in Definition 2.7 for frequencies with negative imaginary part.
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2. Problem Setting

The so-called pole condition ([SHK+07]) imposes a condition on the Laplace transformed
solution with respect to the radial variable in Ωext. The Hardy space infinite element
method ([HN09] and Sections 1.4 and 6.4) is based on this condition.
Transparent boundary conditions are conditions on the solution at the interface Γ only

(e.g., [Giv04]). They are often based on representations of the Dirichlet-to-Neumann oper-
ator, which maps the Dirichlet trace of a function on Γ to its Neumann trace.
Nevertheless, many of these transparent boundary conditions are not straightforward to

employ in the context of finite element approximations to Helmholtz resonance problems.
One difficulty here is the fact that the representation of the solution in the exterior and on
the interface Γ depends highly non-linear on the frequency ω. This makes the computation
of discrete resonances very challenging. Moreover, the fact that the eigenfunctions of the
Helmholtz resonance problem are not square-integrable on Ω, due to the unboundedness
of the exterior domain, poses an obstacle in deriving a variational formulation of Problem
2.3. We overcome this by using the technique of complex scaling. In the following chapters,
we will derive the weak formulation of an equation with eigenfunctions that are square-
integrable and the restrictions of analytic continuations of the sought-after eigenfunctions
on a complexified exterior domain.
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3. Complex Scaling

The main topic of this chapter is the proper definition of the complex scaling technique. In
particular we focus on linear scaling functions which are sufficient for the use of complex-
scaled infinite elements. Moreover, we deal with the question of analytic continuation
of radiating eigenfunctions and show under which assumptions such continuations to a
set containing the complex-scaled domain exist. In Section 3.3 we show that the complex-
scaled eigenfunctions decrease exponentially for large arguments and are, therefore, square-
integrable on Ω. Although we will use a frequency-dependent scaling parameter later on,
we omit this dependency in this chapter since all the definitions of this chapter can be
stated without modifications for the frequency-dependent case as well.

3.1. Complex scaling in exterior coordinates

In Chapter 2 we have already imposed the assumptions (D1–5) on the domains in question
to be able to define the Helmholtz resonance problem. We define exterior coordinates for
such domains as follows:

Definition 3.1. Let d ∈ {1, 2, 3} and Ω,Ωint,Ωext,Γ ⊂ R
d be such that (D1–4) are fulfilled.

Moreover, let v : Γ → R
d be continuous and piecewise smooth such that Dv ∈ L∞(Γ).

Additionally, we assume that

(C1) the mapping

Ψ :

{

R>0 × Γ → Ωext,

(ξ, x̂) 7→ x̂+ ξv(x̂)

is a bijection and

(C2)

(x̂− y) · v(x̂) ≥ 0

for all x̂ ∈ Γ,y ∈ Γ0.

Then we call the mapping Ψ an exterior coordinatization of Ωext. The mappings ξ, x̂, given
by

(ξ(x) , x̂(x)) := Ψ−1(ξ, x̂) ,

are called exterior coordinates (see Figure 3.1). Note that, in the following chapters, we
will use the symbol Ψ also for complex and negative arguments ξ.
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3. Complex Scaling

Γ
Ωint

Ωext

Γ0

v(
x̂(
x)
)

x̂(x)

x

ξ(
x)
‖v(

x̂(
x)
)‖

Figure 3.1.: An example of exterior coordinates.

Condition (C1) guarantees that we have indeed a parametrization of Ωext, while we
will see later on that condition (C2) ensures that our eigenfunctions allow an analytic
continuation to a sufficiently large complex domain (Section 3.2). Note that (C2) implies

∢(x̂− y,v(x̂)) ∈
[

0,
π

2

]

and the function (x̂,y) 7→ ∢(x̂− y,v(x̂)) is continuous on the compact set Γ× Γ0. Thus,
we may define

µ := max{∢(x̂− y,v(x̂)) , x̂ ∈ Γ,y ∈ Γ0} ∈
[

0,
π

2

]

. (3.1)

Moreover, by condition (C1) it is clear that

v(x̂) 6= 0

for all x̂ ∈ Γ.

Remark 3.2. For d = 1, we have Γ = {Rl, Rr} with Rl < Rr (as in Remark 2.1). Thus,
v(Rl) = vl ∈ R<0 and v(Rr) = vr ∈ R>0.

Example 3.3. The simplest form of exterior coordinates that comes to mind are polar
coordinates. In the notation of exterior coordinates they correspond to the configuration
Γ = S1 and v(x̂) = x̂. In this case the exterior coordinates of a point x ∈ Ωext are explicitly
given by

ξ(x) = ‖x‖ − 1, x̂(x) =
x

‖x‖ .

In Chapter 5 we will provide an analysis of our method for this case and d = 3.

We use exterior coordinates to define linear complex scalings as follows:
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3.1. Complex scaling in exterior coordinates

Definition 3.4. Let Ω,Ωint,Ωext,Γ and Ψ,v be as in Definition 3.1. Then, for σ ∈ C\{0},
we define the mapping

Ψσ :

{

R>0 × Γ → C
d,

(ξ, x̂) 7→ x̂+ σξv(x̂)
(3.2)

and call Ω̆ext := Ψσ(R>0,Γ) the complex-scaled exterior domain. Moreover, we write Ω̆ :=
Ωint ∪ Γ ∪ Ω̆ext for the whole complex-scaled domain. If we want to emphasize the scaling
parameter σ of a complex-scaled domain, we also write Ω̆σ

ext and Ω̆σ.

The complex-scaled domain is a continuous and piecewise smooth d-dimensional manifold
in C

d with a possible kink at Γ and possible kinks at Ψσ(R>0, x̂) for x̂ where v and/or Γ
is/are not smooth.

We also write

x̆(x) :=

{

x, x ∈ Ωint ∪ Γ,

Ψσ(ξ(x) , x̂(x)) , x ∈ Ωext

for a complex-scaled point x̆(x) ∈ Ω̆ corresponding to the original point x ∈ Ω.

Remark 3.5. In this work we use complex-scaled infinite elements (see Chapter 6) for the
discretization of the exterior domain. For these infinite elements, only linear scalings of the
form (3.2) are necessary. When perfectly matched layers (i.e., standard finite elements for
the complex-scaled problem and potentially a domain truncation) are applied, frequently
more involved scaling profiles are used. In the setting of exterior coordinates, this corre-
sponds to a mapping

Ψτ :

{

R>0 × Γ → C
d,

(ξ, x̂) 7→ x̂+ τ(ξ)v(x̂)

with a suitable smooth scaling function τ : R>0 → C that fulfills limξ→0 τ(ξ) = 0,
Im(τ(ξ)) > 0, and Im(τ(ξ)) and Re(τ(ξ)) are non-decreasing (cf. [Hal19, Assumption
2.10]).

To be able to uniquely map complex-scaled eigenfunctions (3.5) to the original ones and
vice versa, we have to show that the mapping x 7→ x̆(x) is invertible. Therefore, we state
the following theorem:

Theorem 3.6. Let Ω, Ω̆,Γ,Ψ,Ψσ,v, x̆ be as in Definition 3.4 for some σ ∈ C \R≤0. Then
the mapping x 7→ x̆(x) is a bijection from Ω to Ω̆.

Proof. Let x̂, ŷ ∈ Γ and ξ1, ξ2 ∈ R>0 such that

Ψσ(ξ1, x̂) = Ψσ(ξ2, ŷ) .

By the definition of Ψσ given in (3.2), this is equivalent to

x̂− ŷ = −σ (ξ1v(x̂)− ξ2v(ŷ)) .
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3. Complex Scaling

If σ /∈ R, we take the (component-wise) imaginary part and find

0 = Im(x̂− ŷ) = −Im(σ) (ξ1v(x̂)− ξ2v(ŷ)) .

Since Im(σ) 6= 0, this gives ξ1v(x̂)− ξ2v(ŷ) = 0 and thus

0 = −σ (ξ1v(x̂)− ξ2v(ŷ)) = x̂− ŷ.

Therefore, we have x̂ = ŷ. It follows that v(x̂) = v(ŷ) 6= 0 and therefore also ξ1 = ξ2.

For σ ∈ R>0, the mapping x 7→ σx is a bijection from R>0 to itself. Since Ψ is a bijection,
in this case also Ψσ(·, ·) = Ψ(σ·, ·) is a bijection from R>0 × Γ to Ω̆ext (which, in this case,
is identical to Ωext).

A similar reasoning as above gives that the sets Ω̆ext and Ωint are disjoint. We have that
the mapping x 7→ x̆(x) restricted to Ωint ∪ Γ is a bijection since it is the identity. Since we
have just proven that Ψσ is bijective from R>0×Γ to Ω̆ext and Ψ is bijective from R>0×Γ
to Ωext by assumption (C1), we have that

x̆(·) =
(
Ψσ ◦Ψ−1

)
(·)

is a bijection from Ωext to Ω̆ext.

Due to Theorem 3.6 we may also write

x(x̆) :=

{

x̆, x̆ ∈ Ωint ∪ Γ,
(

Ψ ◦ (Ψσ)−1
)

(x̆) , x̆ ∈ Ω̆ext.

The lemma below states that the complex-scaled domains for two parameters coincide if
their polar angles are equal.

Lemma 3.7. Let σ1, σ2 ∈ C \ {0} such that arg(σ1) = arg(σ2). Then we have Ω̆σ1 = Ω̆σ2.

Proof. It follows from arg(σ1) = arg(σ2) that

σ1
σ2
∈ R>0.

Because of

Ψσ1(ξ, x̂) = x̂+ ξσ1v(x̂) = x̂+ ξσ2
σ1
σ2

v(x̂) = Ψσ2

(
σ1
σ2
ξ, x̂

)

and the fact that ξ 7→ σ1
σ2
ξ is a bijection from R>0 to itself, we have

Ω̆σ1 = {Ψσ1(ξ, x̂) , ξ ∈ R>0, x̂ ∈ Γ} = {Ψσ2(ξ, x̂) , ξ ∈ R>0, x̂ ∈ Γ} = Ω̆σ2 .

Since we want to use the analytic continuation of the radiating eigenfunctions of the
Helmholtz resonance problem to the complex-scaled domain, we need to examine under
which conditions such a continuation exists for the complex scalings in question.
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3.2. Analytic continuation of eigenfunctions

3.2. Analytic continuation of eigenfunctions

The representation of the radiating eigenfunctions (2.6) for x ∈ Ωext contains the expression
‖y−x‖ for y ∈ Γ0 and x ∈ Ωext. Thus, we have to study whether an analytic continuation
of this expression in x to a complex set containing Ω̆ext exists. To this end we state the
following two lemmas.

Lemma 3.8. Let x1,x2 ∈ R
d \{0} and θ ∈ [0, 2π) such that x1 ·x2 ≥ 0. Then the function

h :

{

R≥0 → C,

ξ 7→ (x1 + exp(iθ) ξx2) · (x1 + exp(iθ) ξx2)

fulfills
∣
∣
∣
∣

h(ξ)

ξ2
− exp(iθ) ‖x2‖2

∣
∣
∣
∣
≤ ‖x1‖2 + 2x1 · x2

ξ

for all ξ ≥ 1.
If θ ∈ [0, 2π) \ [π − ∢(x1,x2) , π + ∢(x1,x2)], we additionally have

|h(ξ)| > 0

for all ξ ≥ 0.
In this case, if θ ∈ [0, π − ∢(x1,x2)), there exists some δ1 < 2π such that

arg(h(ξ)) /∈ [δ1, 2π)

for all ξ ≥ 0.
If θ ∈ (π + ∢(x1,x2) , 2π) ∪ {0}, there exists some δ2 ∈ R with 0 < δ2 < 2π such that

arg(h(ξ)) /∈ (0, δ2]

for all ξ ≥ 0.

Proof. We restate the definition of h by

h(ξ) = (x1 + exp(iθ) ξx2) · (x1 + exp(iθ) ξx2) (3.3a)

= ‖x1‖2 + 2 exp(iθ) ξx1 · x2 + exp(iθ)2 ξ2‖x2‖2 (3.3b)

= ‖x1‖2 + 2Re(exp(iθ)) ξx1 · x2 + (Re(exp(iθ))2 − Im(exp(iθ))2)ξ2‖x2‖2

+ 2iIm(exp(iθ))
(
ξx1 · x2 +Re(exp(iθ)) ξ2‖x2‖2

)
.

(3.3c)

Because, for all ξ ≥ 1, we have
∣
∣
∣
∣

h(ξ)

ξ2
− exp(iθ) ‖x2‖2

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

‖x1‖2
ξ2

+
2 exp(iθ)x1 · x2

ξ

∣
∣
∣
∣
∣

≤ ‖x1‖2
ξ2

+
|2 exp(iθ)x1 · x2|

ξ

≤ ‖x1‖2 + 2x1 · x2

ξ
,

the first claim is proven.
For the remainder, we begin with the assumption θ ∈ [0, π − ∢(x1,x2)) and distinguish

four cases (cf. Figure 3.2).
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3. Complex Scaling

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

Re(h)

Im(h)

θ = π
4

θ = π
2

θ = 3π
4

θ = 13π
16

θ = 7π
8

exp(iδ1)R≥0

Figure 3.2.: The graph of the function h from Lemma 3.8 in the complex plane, with ‖x1‖ =
1, ‖x2‖ = 0.8, x1 ·x2 = 0.7, and different values of θ. For θ = 7π

8 , the condition
θ < π − ∢(x1,x2) is violated. Therefore, the graph crosses the positive real
axis and the line exp(iδ1)R≥0.

Case 1: θ = 0 :

Then exp(iθ) = 1 and therefore, by (3.3b), h is real-valued and increasing. Thus,

arg(h(ξ)) = 0

and
|h(ξ)| = h(ξ) > ‖x1‖2 > 0

for all ξ ≥ 0, since h(0) = ‖x1‖2.

Case 2: θ ∈
(
0, π2

)
:

Then Re(exp(iθ)), Im(exp(iθ)) > 0 and therefore, by (3.3c),

Im(h(ξ)) = 2Im(exp(iθ))
(
ξx1 · x2 + ξ2Re(exp(iθ)) ‖x2‖2

)

≥ 2Im(exp(iθ)) ξ2Re(exp(iθ)) ‖x2‖2 > 0

for all ξ > 0 since x1 · x2 ≥ 0 and ‖x2‖ > 0 by assumption.
Together with h(0) = ‖x1‖2 > 0, we obtain

0 ≤ arg(h(ξ)) < π

and
|h(ξ)| ≥ Im(h(ξ)) > 0

for all ξ ≥ 0.
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3.2. Analytic continuation of eigenfunctions

Case 3: θ = π
2 :

In this case exp(iθ) = i. If x1 · x2 = 0, we would have θ < π − ∢(x1,x2) =
π
2 which would

contradict the assumption that θ = π
2 . Otherwise,

Im(h(ξ)) = 2ξx1 · x2 > 0

for ξ > 0 and as above
0 ≤ arg(h(ξ)) < π

and
|h(ξ)| ≥ Im(h(ξ)) > 0

for all ξ ≥ 0.

Case 4: θ ∈
(
π
2 , π − ∢(x1,x2)

)
:

Then Re(exp(iθ)) < 0 and Im(exp(iθ)) > 0. Like in the previous case, we can assume that
x1 · x2 > 0 and therefore also ‖x1‖ > 0. Apart from

h(0) = ‖x1‖2,

by (3.3c), the graph of h intersects the real axis only at h(ξ1), with

ξ1 = −
x1 · x2

Re(exp(iθ)) ‖x2‖2
> 0.

Plugging this into (3.3c) gives

h(ξ1) = ‖x1‖2 −
2 (x1 · x2)

2

‖x2‖2
+

(

Re(exp(iθ))2 − Im(exp(iθ))2
)

(x1 · x2)
2

Re(exp(iθ))2 ‖x2‖2

= ‖x1‖2 −
(x1 · x2)

2

‖x2‖2

(

1 +
Im(exp(iθ))2

Re(exp(iθ))2

)

= ‖x1‖2
(

1− cos(∢(x1,x2))
2

cos(θ)2

)

.

Since we assumed that θ ∈
(
π
2 , π − ∢(x1,x2)

)
, we have

|cos(∢(x1,x2))| > |cos(θ)|

and therefore h(ξ1) < 0. Thus, h has no roots and we have

|h(ξ)| > 0

for all ξ ≥ 0.
Due to the fact that

Im
(
h′(0)

)
= 2Im(exp(iθ))x1 · x2 > 0,
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3. Complex Scaling

we have
arg(h(ξ)) ∈ [0, π]

for ξ ∈ [0, ξ1]. Moreover, due to the asymptotic behavior of h given by

lim
ξ→∞

h(ξ)

ξ2
= exp(iθ)2 ‖x2‖2 ,

we can find ξm > ξ1 and β1 < 2π such that

arg(h(ξ)) < β1

for all ξ > ξm. The continuous function arg(h(ξ)) takes a maximum β2 smaller than 2π on
the compact interval [0, ξm]. Thus,

arg(h(ξ)) ∈ [0, δ1)

for max {β1, β2} < δ1 < 2π and all ξ ∈ R≥0.

The proof for θ ∈ (π + ∢(x1,x2) , 2π) ∪ {0} works similarly.

We use Lemma 3.9 to prove that the norm on R
d has an analytic continuation to a

complex set containing Ωext and Ω̆ext.

Lemma 3.9. Let Ωext,Γ,Γ0, and v be as in Definition 3.1 and µ be as in (3.1). Then, for
fixed y ∈ Γ0, the function {

Ωext → R,

x 7→ ‖x− y‖
allows analytic continuations to the sets

Θ+ := {x̂+ σξv(x̂) : x̂ ∈ Γ, σ ∈ C \ {0}, arg(σ) ∈ [0, π − µ), ξ ∈ R>0},
Θ− := {x̂+ σξv(x̂) : x̂ ∈ Γ, σ ∈ C \ {0}, arg(σ) ∈ (π + µ, 2π) ∪ {0}, ξ ∈ R>0}.

Moreover, the images of these analytic continuations are contained in the set C \ R≤0 for
all y ∈ Γ0.

Proof. We treat x ∈ Θ+ first. Because of Lemma 3.7, we have

Θ+ = {x̂+ exp(iθ) ξv(x̂) : x̂ ∈ Γ, θ ∈ [0, π − µ), ξ ∈ R>0}.

We define the function f : Γ0 × Γ× [0, π − µ]× R≥0 → C by

f(y, x̂, θ, ξ) = (x̂+ exp(iθ) ξv(x̂)− y) · (x̂+ exp(iθ) ξv(x̂)− y) .

For fixed y, x̂, θ, this is exactly the function h from Lemma 3.8, with x1 = x̂ − y and
x2 = v(x̂) and Lemma 3.8 gives

∣
∣
∣
∣

f(y, x̂, θ, ξ)

ξ2
− exp(iθ)2 ‖v(x̂)‖2

∣
∣
∣
∣
≤ ‖x̂− y‖2 + 2 (x̂− y) · v(x̂)

ξ
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3.2. Analytic continuation of eigenfunctions

for all ξ ≥ 1. The function (y, x̂) 7→ ‖x̂− y‖2 + 2 (x̂− y) · v(x̂) is continuous and positive
on the compact set Γ0 × Γ. Therefore, it takes a global maximum C > 0 depending only
on the domains and v. Thus, we have

lim
ξ→∞

f(y, x̂, θ, ξ)

ξ2
= exp(iθ)2 ‖v(x̂)‖2 ,

uniformly on Γ0 × Γ× [0, π − µ). It follows that also

lim
ξ→∞

arg(f(y, x̂, θ, ξ)) = 2θ, lim
ξ→∞

|f(y, x̂, θ, ξ)| = +∞,

uniformly on Γ0 × Γ× [0, π − µ). Therefore, we can find ξm > 0 such that

arg(f(y, x̂, θ, ξ)) < 2π − µ

for all y ∈ Γ0, x̂ ∈ Γ, θ ∈ [0, π−µ), and ξ ≥ ξm. Moreover, Lemma 3.8 gives us that |f | > 0
and f does not cross the positive real axis for ξ > 0. Thus, arg(f) is continuous on the
compact set Γ0×Γ×[0, π−µ−ε]×[0, ξm] for arbitrary ε > 0 and therefore takes a maximum
δ < 2π there. Thus, we can pick the branch of the square root that is a continuation of the
positive square root on R>0 and has its branch-cut at αR≥0, with

α := exp

(

imax

{

π +
δ

2
, 2π − µ

})

.

It follows that the function

x 7→ α
√

(x− y) · (x− y)

is analytic on Θ+. Moreover, we have that arg
(

α
√

(x− y) · (x− y)
)

∈ [0, π) for all x ∈ Θ+.

Similar arguments can be repeated for the set Θ−.

Remark 3.10. To distinguish between the Euclidean norm of a vector x ∈ C
d, given by

‖x‖ =
√
x · x̄, and the analytic continuation of the Euclidean norm on R

d to a complex
domain, as in Lemma 3.9, we denote this analytic continuation by r.

Lemma 3.9 immediately leads to the following theorem:

Theorem 3.11. Let Ω,Γ,Γ0,Ωint,Ωext, and v be as in Definition 3.1 and ω ∈ C \ {0}.
Then the Green’s function x 7→ Gx(y) and the function x 7→ ∇Gx(y) allow an analytic
continuation to the sets

Θ+ := {x̂+ σξv(x̂) : x̂ ∈ Γ, σ ∈ C \ {0}, arg(σ) ∈ [0, π − µ), ξ ∈ R>0},
Θ− := {x̂+ σξv(x̂) : x̂ ∈ Γ, σ ∈ C \ {0}, arg(σ) ∈ (π + µ, 2π) ∪ {0}, ξ ∈ R>0},

in a sense that the norm ‖·‖ in (2.7) is continued as in Lemma 3.9. Moreover, a function
u ∈ C1(Ωext) that fulfills

u(x) =
i

4

∫

Γ0

u(y)∇Gx(y) · n(y)−∇u(y) · n(y)Gx(y) dy (3.4)
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3. Complex Scaling

for all x ∈ Ωext, has an analytic continuation U to the sets Θ± given by

U(x̆) =
i

4

∫

Γ0

u(y)∇Gx̆(y) · n(y)−∇u(y) · n(y)Gx̆(y) dy

for all x̆ ∈ Θ±.

Proof. The function Gx is holomorphic on C \ {0}, with a possible branch-cut at 0. Since
the analytic continuations r(· − y) of ‖ · −y‖ from Ωext to the sets Θ± map to C \R≤0 for
all y ∈ Γ0 by Lemma 3.9, the function x 7→ Gx(y) is also analytic. Thus, we can define for
x̆ ∈ Θ±

U(x̆) =
i

4

∫

Γ0

u(y)∇Gx̆(y) · n(y)−∇u(y) · n(y)Gx̆(y) dy.

Clearly, U is a continuation of u. Since U is also complex differentiable by the bounded
convergence theorem, it is an analytic continuation.

Theorem 3.11 states that, as long as σ ∈ {z ∈ C : arg(z) /∈ [π − µ, π + µ]}, radiating
eigenfunctions u of the Helmholtz resonance problem (Problem 2.3) allow an analytic con-
tinuation to a complex set, containing Ω and Ω̆. Moreover, we define the complex-scaled
solution, for fixed σ, by

ŭ :

{

Ω → C,

x 7→ u(x̆(x)) .
(3.5)

Note that, although the complex continuation of u is an analytic function on a superset of
Ω̆ext, the complex-scaled solution ŭ is not smooth at points x with corresponding points
x̆(x), where the complex-scaled domain Ω̆ is not smooth (i.e., at Γ and at points x where
v(x̂(x)) is not smooth or x̂(x) is a kink of Γ).

Remark 3.12. Similar results for the analytic continuation of solutions to the Helmholtz
equation can be found in [Tja19, Chapter 5] for cartesian scalings, where the complex
scaling is combined with the technique of half-space matching.

3.3. Exponential decay of complex-scaled eigenfunctions

Since we want to use the complex scaling to obtain complex-scaled eigenfunctions (3.5)
that are square-integrable on Ω, we need to make sure that they decay sufficiently fast for
‖x‖ → ∞. The lemma below deals with the asymptotic behavior of the Green’s function
Gx for large parameters x.

Lemma 3.13. Let Γ,Γ0,v,Ψ
σ be as in Definition 3.4 and ω, σ ∈ C be such that Im(ωσ) > 0

and arg(σ) /∈ [π − µ, π + µ], with µ given by (3.1).
Then there exist constants C1, C2, ε1, ε2 > 0 such that

∣
∣GΨσ(ξ,x̂)(y)

∣
∣ ,
∣
∣∇yGΨσ(ξ,x̂)(y) · n(y)

∣
∣ ≤ C1 exp(−ε1ξ) ,

∥
∥∇ξ,x̂GΨσ(ξ,x̂)(y)

∥
∥ ,
∥
∥∇ξ,x̂

(
∇yGΨσ(ξ,x̂)(y) · n(y)

)∥
∥ ≤ C2(1 + ξ) exp(−ε2ξ)

for all ξ ∈ R>0, x̂ ∈ Γ,y ∈ Γ0.
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3.3. Exponential decay of complex-scaled eigenfunctions

Proof. From Section 3.2 we know that, under our assumptions, the Green’s function Gx is
analytic in their parameter x.

We have to bound the terms GΨσ(ξ,x̂),∇GΨσ(ξ,x̂) · n,∇ξ,x̂GΨσ(ξ,x̂),∇ξ,x̂

(
∇GΨσ(ξ,x̂) · n

)

uniformly in y, x̂.
The analytic continuation r (Remark 3.10) of the norm ‖·‖ also fulfills

∇r(x) = x

r(x)
. (3.6)

Using (3.6) and

∇ξ,x̂Ψ
σ(ξ, x̂) =

(

σv(x̂)⊤

Id + σξDv(x̂)⊤

)

,

we have, for H = H
(1)
0 , h

(1)
0 , that

∇yH(ωr(Ψσ(ξ, x̂)− y)) = ωH′(ωr(Ψσ(ξ, x̂)− y))
y −Ψσ(ξ, x̂)

r(Ψσ(ξ, x̂)− y)
,

∇ξ,x̂H(ωr(Ψσ(ξ, x̂)− y)) = ωH′(ωr(Ψσ(ξ, x̂)− y))g(ξ, x̂) ,

where we used the notation

g(ξ, x̂) :=

(

σv(x̂)⊤

Id + σξDv(x̂)⊤

)

Ψσ(ξ, x̂)− y

r(Ψσ(ξ, x̂)− y)
.

Moreover, we obtain

∇ξ,x̂ (∇yH(ωr(Ψσ(ξ, x̂)− y)) · n(y)) = ∇ξ,x̂

(

ωH′(ωr(Ψσ(ξ, x̂)− y))
(y −Ψσ(ξ, x̂)) · n(y)
r(Ψσ(ξ, x̂)− y)

)

= −g(ξ, x̂)ωH′(ωr(Ψσ(ξ, x̂)− y))

(

n(y) +
(y −Ψσ(ξ, x̂)) · n(y)

(Ψσ(ξ, x̂)− y) · (Ψσ(ξ, x̂)− y)

)

+ g(ξ, x̂)ω2H′′(ωr(Ψσ(ξ, x̂)− y))
(y −Ψσ(ξ, x̂)) · n(y)
r(Ψσ(ξ, x̂)− y)

.

Because of the (component-wise) asymptotic behavior

r(Ψσ(ξ, x̂)− y) ∼ σξ ‖v(x̂)‖ , ξ →∞,
y −Ψσ(ξ, x̂) ∼ −σξv(x̂) , ξ →∞,
Id + σξDv(x̂) ∼ σξDv(x̂) , ξ →∞,

the fact that ‖v(x̂)‖ and ‖Dv(x̂)‖ are bounded in Γ, and the asymptotic behavior of (the
derivatives) of the (spherical) Hankel functions from Proposition A.3, we obtain

∣
∣GΨσ(ξ,x̂)(y)

∣
∣ ,
∣
∣∇yGΨσ(ξ,x̂)(y) · n(y)

∣
∣ ≤ C1 exp(−ε1ξ) ,

∥
∥∇ξ,x̂GΨσ(ξ,x̂)(y)

∥
∥ ,
∥
∥∇ξ,x̂

(
∇yGΨσ(ξ,x̂)(y) · n(y)

)∥
∥ ≤ C2(1 + ξ) exp(−ε2ξ) ,

uniformly in y, x̂ for some constants C1, C2, ε1, ε2 > 0.
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3. Complex Scaling

Using Lemma 3.13, we can prove the theorem below, which states that complex-scaled
eigenfunctions and their derivatives decay exponentially in the radial variable.

Theorem 3.14. Let Γ,Γ0,v,Ψ,Ψ
σ be as in Definition 3.4 and σ, ω ∈ C such that Im(ωσ) >

0. For d = 2, 3 we additionally assume that arg(σ) /∈ [π − µ, π + µ], with µ as in (3.1).
Then there exist ε1, ε2, C1, C2 > 0 such that, for a complex-scaled radiating eigenfunction
ŭ given by (3.5) of Problem 2.3, we have

|ŭ ◦Ψ(ξ, x̂)| ≤ C1 exp(−ε1ξ)

and
‖∇ξ,x̂ŭ ◦Ψ(ξ, x̂)‖ ≤ (1 + ξ)C2 exp(−ε2ξ)

for all x̂ ∈ Γ and ξ > 0.

Proof. For d = 1 and x = x(ξ, Rr) ∈ Ωr
ext = (Rr,+∞) (Remark 2.1), we have by (2.6) that

|ŭ(x(ξ, Rr))| = |αr exp(iωx̆(x(ξ, Rr)))|
= |αr exp(iω (Rr + σξvr))|
= |αr| exp(−RrIm(ω)) exp(−Im(ωσ) vrξ)

≤ Cr exp(−εξ),

with Cr = |αr| exp(−RrIm(ω)) and ε = Im(ωσ) vr > 0. A similar constant Cl can be found
to bound |αl exp(iωx̆(x(ξ, Rl))) | in Ωl

ext.
For d = 2, 3 and fixed ξ, x̂, we use the analytic continuation of the integral representation

(2.6) of the initial solution u to obtain

|ŭ(Ψ(ξ, x̂))| =
∣
∣
∣
∣

i

4

∫

Γ0

u(y)∇GΨσ(ξ,x̂)(y) · n(y)−∇u(y) · n(y)GΨσ(ξ,x̂)(y) dy

∣
∣
∣
∣

≤ 1

4

∫

Γ0

∣
∣u(y)∇GΨσ(ξ,x̂)(y) · n(y)

∣
∣+
∣
∣∇u(y) · n(y)GΨσ(ξ,x̂)(y)

∣
∣ dy

≤ 1

4

(
‖u‖L2(Γ0)‖∇GΨσ(ξ,x̂)‖L2(Γ0) + ‖∇u‖L2(Γ0)‖GΨσ(ξ,x̂)‖L2(Γ0)

)
.

For ∇ξ,x̂ŭ we obtain

|∇ξ,x̂ŭ ◦Ψ(ξ, x̂)| =
∣
∣
∣
∣

i

4

∫

Γ0

u(y)∇ξ,x̂

(
∇GΨσ(ξ,x̂)(y) · n(y)

)
−∇u(y) · n(y)∇ξ,x̂GΨσ(ξ,x̂)(y) dy

∣
∣
∣
∣

≤ 1

4

(
‖u‖L2(Γ0)‖∇ξ,x̂∇GΨσ(ξ,x̂)‖L2(Γ0) + ‖∇u‖L2(Γ0)‖∇ξ,x̂GΨσ(ξ,x̂)‖L2(Γ0)

)
.

Now, Lemma 3.13 yields the claim for ŭ since u and ∇u are continuous on the compact
domain Γ0.

Remark 3.15. The rate of the bound on the decay of complex-scaled eigenfunctions in
Theorem 3.14 can be improved due to the term in the denominator of the asymptotic
expansion of the (spherical) Hankel functions in Proposition A.3. Nevertheless, Theorem
3.14 is sharp in a sense that a complex-scaled radiating eigenfunction of Problem 2.3, with
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3.4. Existence of square-integrable analytic continuations of eigenfunctions

a scaling parameter σ and an eigenfrequency ω that fulfill Im(ωσ) < 0 is exponentially
increasing for large ξ(x).
Similar to Definitions 2.6, 2.7, and Proposition 2.8, one could define a radiation condi-

tion using the exponential with negative sign (in one dimension) and (spherical) Hankel
functions of the second kind (in higher dimensions). Eigenfunctions satisfying this inverted
radiation condition would transfer energy from infinity to the interior (in the sense of
(2.4)) and, therefore, be physically unfeasible. Nevertheless, if an analytic continuation is
possible, complex-scaled versions of these non-radiating eigenfunctions are exponentially
decreasing for ω, σ, with Im(ωσ) < 0. Therefore these functions will be eigenfunctions of
the weak formulation of the complex-scaled equation in this region of the complex plane.

3.4. Existence of square-integrable analytic continuations of

eigenfunctions

Theorems 3.11 and 3.14 show that there exist two limitations for the analytic continuation
of a radiating eigenfunction u to be square-integrable on Ω̆:

(S1) Theorem 3.11 gives us the condition

arg(σ) /∈
[

π − max
x̂∈Γ,x∈Γ0

∢(x̂− y,v(x̂)) , π + max
x̂∈Γ,x∈Γ0

∢(x̂− y,v(x̂))

]

.

This is a condition solely on the choice of the complex scaling, namely, a condition for σ
and the exterior coordinates. If this condition is violated, a complex continuation of an
eigenfunction might have singularities in Ω̆ext. For the use of frequency-independent
complex scalings with σ ≡ σ0, the only restriction this condition poses is the fact that
the parameter σ0 of the complex scaling has to be chosen properly.

Since we also use frequency-dependent complex scaling functions σ(ω), we have less
control over the behavior of σ. Therefore, the limitations on the σ are more relevant
in our case.

(S2) Theorem 3.14, on the other hand, gives us the condition

Im(σω) > 0.

This is a condition on the combination of σ and ω. If this condition is not met,
a complex-scaled eigenfunction is, although still analytic, not square-integrable any
more.

Note that condition (S1) is only significant for d = 2, 3, while condition (S2) is also impor-
tant for d = 1.

We will see in Section 5.3 that in regions of the complex plane where said conditions are
violated an essential spectrum might occur.

Remark 3.16. Complex scalings can also be used for the definition of radiation conditions
in the following way: A function u is called radiating with respect to this condition if the
according complex-scaled function ŭ is square-integrable on Ω̆ext. This condition is only
equivalent to the radiation condition defined in Section 2.2 for frequencies ω that fulfill
(S1) and (S2) (see Remark 3.15).
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4. Numerical Results for
Frequency-Dependent Perfectly Matched
Layers

In the previous Chapter 3, we have introduced the technique of complex scaling. It is one
of the main ideas of this thesis to choose the parameter σ of the complex scaling (Definition
3.4) dependent on the frequency ω. In the context of resonance problems, this was intro-
duced first in [NW18]. Therein we have shown by numerous numerical experiments that
using frequency-dependent scalings indeed simplifies the choice of the scaling parameters
and makes the method more robust with respect to the frequency.

In the following we briefly reproduce the most important results from [NW18], to under-
line why pursuing this approach is a promising idea and to motivate some of the theoretical
studies in Chapter 5. In Section 4.1 we show results for d = 1 and move on to results for
d = 2 in Section 4.2. Differing from the fact that in the work at hand we are mainly
concerned with complex-scaled infinite elements (Chapter 6), we use standard perfectly
matched layers, or short, PMLs (i.e., a domain truncation and mesh-based finite elements)
for the discretization of the exterior problem. Although there exist more involved scaling
functions, we confine ourselves the linear scaling functions defined in Definition 3.4. All
the numerical experiments were implemented using the software package Netgen/NGsolve
[Sch97, Sch14].

We emphasize again that the following is just a short recapitulation of some of the effects
of the frequency scaled PML and refer to [NW18] for a more comprehensive read.

4.1. Frequency-dependent PMLs in one dimension

Let R > R0 > 0 and ρ be given by

ρ :

{

ρ0, x ∈ (0, R0],

0, x ∈ (R0,∞)

for some ρ0 > 0. Then, for a given function σ : Λ ⊂ C → C \ {0} and the domains
Ω := (0,∞), Ωint := (0, R), Γ := {R}, and Ωext := (R,∞), with a homogeneous Neumann
boundary condition at 0, we consider the complex-scaled Helmholtz resonance problem to
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4. Numerical Results for Frequency-Dependent Perfectly Matched Layers

find ŭ ∈ C(Ω) ∩ L2(Ω) \ {0}, with ŭ ∈ C2(Ω \ {R0, R}) and ω ∈ C such that

−ŭ′′(x)− ω2(1 + ρ(x))2ŭ(x) = 0, x ∈ Ωint, (4.1a)

− 1

σ(ω)
ŭ′′(x)− σ(ω)ω2ŭ(x) = 0, x ∈ Ωext, (4.1b)

lim
x→R−

σ(ω) ŭ′(x) = lim
x→R+

u′(x) , (4.1c)

ŭ′(0) = 0. (4.1d)

We also impose that ŭ is continuous and differentiable at R0. The interface condition (4.1c)
is chosen in a way that the solution has the correct kink at x = R to be the evaluation of
the analytic continuation of the radiating eigenfunction of Problem 2.3 along the path







R>0 → C,

t 7→
{

t, t ≤ R,
t+ σ(t−R)t, t > R.

It follows from straightforward calculations that the resonances and resonance functions of
(4.1) are given by

ωk :=
1

2R0(ρ0 + 1)

(

−i ln
(
ρ0 + 2

ρ0

)

+ 2πk

)

, k ∈ Z, (4.2a)

ŭk :=







C cos(ωkρ0x) , x ∈ (0, R0],

c sin(ωkx) + d cos(ωkx) , x ∈ (R0, R],

g exp(iωk(x+ σ(ωk) (R− x)) , x ∈ Ωext,

(4.2b)

with

c = C cos(ωρ0R0) sin(ωR0)− Cρ0 cos(ωR0) sin(ωρ0R0) ,

d = C cos(ωρ0R0) cos(ωR0) + Cρ0 sin(ωR0) sin(ωρ0R0) ,

g = C
c sin(ωR) + d cos(ωR)

exp(iωR)

and arbitrary constants C ∈ C \ {0}. The resonance functions (4.2b) decay exponentially,
and are therefore elements of H1(Ω), if and only if Im(ωkσ(ωk)) > 0 (cf. Figure 4.1). If
we truncate the exterior domain Ωext = (R,∞) to a finite domain Ωpml := (R, T ) for some
T > R, multiply (4.1a) and (4.1b) by a test function v ∈ H1((0, T )), integrate, and apply
integration by parts, we obtain the weak formulation of (4.1). Namely, the problem to

find ŭT ∈ H1(Ω) \ {0} and ω ∈ C such that
∫ R

0
ŭ′T (x) v

′(x) dx− ω2

∫ R

0
(1 + ρ(x))2ŭT (x) v(x) dx

+
1

σ(ω)

∫ T

R
ŭ′T (x) v

′(x) dx− ω2σ(ω)

∫ T

R
ŭT (x) v(x) dx = 0. (4.3)
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4.1. Frequency-dependent PMLs in one dimension

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

Ωint Ωext

R0 R

1.5 2 2.5

10−4

10−2

100

x

(i): σ(ω) = 1 + i, ω ≈ 5.7110− 1.3839i

(ii): σ(ω) = 1 + i, ω ≈ 42.8399− 1.3839i

(iii): σ(ω) = 1+10i
ω

, ω ≈ 5.7110− 1.3839i

(iv): σ(ω) = 1+10i
ω

, ω ≈ 42.8399− 1.3839i

Figure 4.1.: Absolute values of the eigenfunctions ŭk from (4.2b) of the un-truncated one-
dimensional complex-scaled problem (4.1), with ρ0 = 0.1, R0 = 1, R = 1.2,
different scalings, and different frequencies.

Note that for a rational function σ(·), the weak formulation (4.3) is a rational eigenvalue
problem in the frequency ω in the sense of Problem 8.1. Therefore, it can be treated using
the methods from Chapter 8.

Figure 4.2 shows the resonances of a discretization of (4.3). We used high-order finite
elements and a significantly finer discretization in Ωint than in Ωpml, to ensure that the
error of the exterior discretization dominates.

Figure 4.2a shows approximated resonances by the use of the frequency-independent
complex scaling σ(ω) ≡ σ0 for different scaling parameters σ0 ∈ C \ {0}. We observe that
the number of resonances which are well-approximated depends heavily on the choice of the
parameter σ0. Moreover, we observe a number of resonances that are no approximations to
the resonances given in (4.2a): The eigenvalues that lie on a straight line crossing the origin
are an approximation to the essential spectrum Σdec (see Sections 5.3.2, 7.3 and Figure 7.4)
and approximate the boundary of the region where (S2) is fulfilled. For h→ 0 and T →∞,
they will approximate the set {ω ∈ Λ : Im(σ(ω)ω) = 0}. We observe two reasons for poor
approximations:

— Resonances close to the essential spectrum are not approximated well since, due to
their slow decay, the truncation error dominates (see Figure 4.1.(i)).

— The quality of the approximation of eigenvalues with larger real parts deteriorates
since their exponential decay is too fast to be approximated well (see Figure 4.1.(ii)).
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4. Numerical Results for Frequency-Dependent Perfectly Matched Layers

0 10 20 30 40 50 60 70 80 90 100
−10

−8

−6

−4

−2

0

2

Fig. 4.1.(i) and (iii) Fig. 4.1.(ii) and (iv)

Re(ω)

Im
(ω

)

correct

σ(ω) = 1 + 0.5i

σ(ω) = 1 + i

σ(ω) = 1 + 5i

(a) Frequency-independent PMLs.

0 10 20 30 40 50 60 70 80 90 100
−10

−8

−6

−4

−2

0

2

Fig. 4.1.(i) and (iii) Fig. 4.1.(ii) and (iv)

Re(ω)

Im
(ω

)

correct

σ(ω) = 1+10i
ω

σ(ω) = 1 + 10i
ω

σ(ω) = 10i
5+ω

(b) Frequency-dependent PMLs.

Figure 4.2.: Comparison of the frequency-dependent and frequency-independent PMLs for
ρ0 = 0.1, R0 = 1, R = 1.2, T = 2.5, mesh-sizes hint = 0.01 and hext = 0.1, and
polynomial order 6.
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4.2. Frequency-dependent PMLs in higher dimensions

(a) ω ≈ 4.90236− 1.63113i (b) ω ≈ 22.2143− 0.67805i

Figure 4.3.: Real parts of resonance functions of the two-dimensional problem, with ρ =
−0.8χ[−1.5,1.5]2 , Ωint = B3, and Ωpml = B4. The dashed square marks the jump
in the potential ρ and the white circle the interface Γ. The colors red, blue, and
green colors correspond to positive, negative, and neutral values respectively.

Moreover, we observe spurious resonances, which are artifacts of the discretization and will
move farther away from the origin for better discretizations (see [NW18, Section 4]).

Figure 4.2b shows approximated resonances for different frequency-dependent complex
scalings. We observe that the scalings where the limit lim|ω|→∞ σ(ω)ω is bounded yield
also good approximations for resonances with large real parts. The reason for this is that
their exponential decay in Ωext is uniform with respect to ω (cf. Figure 4.1.(iii,iv)). We also
observe approximations to the essential spectra Σdec, which take different shapes depending
on the respective scaling σ (see Section 7.3 and Figures 7.5, 7.6 and 7.7).

4.2. Frequency-dependent PMLs in higher dimensions

To undertake numerical experiments for d = 2, we choose the domains Ω = R
2, Ωext = BR

c
,

Γ = SR, and Ωint = BR with R > 0. Moreover, we choose a potential ρ which is, again,
piecewise constant. For the discretization of the problem, we pick the truncated domain
Ωpml = Ωext ∩BT , with T > R.

Since the weak formulation of the complex-scaled Helmholtz equation for higher dimen-
sions will be discussed at length in Chapters 5 and 7, we omit stating it at this place. For
the weak formulation used for the frequency-dependent PML, we refer to [NW18, Formula
(3.9)] and merely present numerical results.

Figure 4.4 shows resonances of the two-dimensional problem approximated by mesh-
based discretizations in Ωint and Ωpml (see Figure 4.3). The reference resonances were
obtained by using a finer mesh, a larger truncated domain, and a higher polynomial order.

In Figure 4.4a we used a frequency-independent scaling. Again we can observe the ap-
proximation of the essential spectrum Σdec and spurious resonances due to the discretiza-
tion. In Figure 4.4b we used a frequency-dependent scaling parameter. In this case we
obtain a considerably larger number of well-approximated resonances and spurious reso-
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4. Numerical Results for Frequency-Dependent Perfectly Matched Layers

nances, which are located farther away from the origin than in the frequency-independent
case.

Contrary to the one-dimensional case, we observe a new set of resonances close to the
negative imaginary axis in the frequency-dependent case (Figure 4.4b). We will later see
that these resonances are located within the area where condition (S1) is violated and are a
discretization of the essential spectrum Σsing (see Sections 5.3.1, 7.3 and Figure 7.5). Note
that corresponding eigenvalues were not present in the one-dimensional case since condition
(S1) is only relevant for higher dimensions.
We emphasize that the superior results in the frequency-dependent case are obtained by

using identical discrete spaces and numbers of unknowns. They are merely a result of the
more pleasant behavior of the complex-scaled eigenfunctions in Ωext due to the frequency-
dependency.
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4.2. Frequency-dependent PMLs in higher dimensions

0 5 10 15 20 25 30 35 40 45 50 55 60
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−1.5

−1

−0.5

0

20 25 30 35 40 45
−0.9
−0.7
−0.5

Re(ω)

Im
(ω

)

reference approximated

(a) Frequency-independent PML, with σ(ω) = 1 + 3i.

0 5 10 15 20 25 30 35 40 45 50 55 60
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−2
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−0.5

0

Fig. 4.3(a)

Fig. 4.3(b)

20 25 30 35 40 45
−0.9
−0.7
−0.5

Re(ω)

Im
(ω

)

reference approximated

(b) Frequency-dependent PML, with σ(ω) = 9+9i
ω

.

Figure 4.4.: Comparison of frequency-dependent and frequency-independent PMLs for ρ =
−0.8χ[−1.5,1.5]2 , R = 3, T = 4, mesh-sizes hint = 0.1 and hext = 0.2, and
polynomial order 4.
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5. Analysis

In this chapter we present an analysis of the complex-scaled Helmholtz resonance prob-
lem for frequency-dependent spherical scalings in three dimensions. We allow arbitrary
frequency-dependencies σ(·), where σ : Λ → C \ {0} is a holomorphic function on some
domain Λ ⊂ C.
A key tool to analyze resonance problems like Problem 2.3 is the Riesz-Fredholm theory

(e.g., [Kre99, Chapters 3 and 4]). This theory can be applied to operators that are the
values of functions that map complex frequencies to bounded operators, mapping H1(Ω)
to itself. These so-called operator functions are associated with the sesquilinear forms of
the weak formulations of Problem 2.3 by the Riesz representation theorem.
The fact that the function σ, and therefore also the associated operator function, is

holomorphic in ω will not be essential for the analysis of the continuous problem since
here only results for fixed frequencies ω are required. The holomorphy of σ(·) is, however,
crucial for analyzing the stability of Galerkin approximations of operator functions (see
[Kar96a, Kar96b] and [Hal19, Theorem 3.17]).

In Section 5.1 we derive a weak formulation of the complex-scaled problem. We show that
an eigenfunction of this weak formulation is the analytic continuation of an eigenfunction
of the strong formulation (Problem 2.3) to the complex-scaled domain and vice versa.

An important ingredient for the analysis of holomorphic operator functions is Fredholm-
ness (Definition 5.8). In Section 5.2 we show that the operator function induced by the
weak formulation is weakly coercive and therefore Fredholm, at least, for certain ω ∈ Λ
such that the conditions (S1) and (S2) established in Chapter 3 are fulfilled. In Section 5.3
we show that an essential spectrum indeed exists for certain ω ∈ Λ such that the conditions
(S1) and (S2) are violated. Although, for the sake of a clear presentation, we present our
analysis merely for spherical scalings and d = 3, we indicate how to extend our results to
more general settings.
For the remainder of this chapter, we assume that (see Figure 5.1 for a sketch in two

dimensions)

Ωext := B1
c ⊂ R

3, Γ := S1, v(x̂) := x̂. (5.1)

Note that in this case the exterior coordinatization and the coordinates of a point x ∈ Ωext

are given explicitly by

Ψ(ξ, x̂) = (1 + ξ)x̂, ξ(x) = ‖x‖ − 1, x̂(x) =
x

‖x‖ .

The maximal angle µ defined in (3.1) is given by

µ = arcsin(max {‖y‖ : y ∈ Γ0}) ∈
(

0,
π

2

]

. (5.2)
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5. Analysis

Γ

Ωint

Ωext

x

0

Γ0v(x̂(x)) x̂(x)

ξ(x) µ

Figure 5.1.: Spherical coordinates in two dimensions.

Moreover, the gradient and the Laplace operator in polar coordinates for a function
f ∈ C2(Ωext) at a point Ψ(ξ, x̂) are given by

(∇f)(Ψ(ξ, x̂)) =
∂f ◦Ψ
∂ξ

(ξ, x̂) x̂+
1

1 + ξ

(

∇̂f ◦Ψ
)

(ξ, x̂) , (5.3a)

(∆f)(Ψ(ξ, x̂)) =
∂2f ◦Ψ
∂ξ2

(ξ, x̂) +
2

1 + ξ

∂f ◦Ψ
∂ξ

(ξ, x̂) +
1

(1 + ξ)2

(

∇̂ · ∇̂f ◦Ψ
)

(ξ, x̂) (5.3b)

for ξ > 0, x̂ ∈ Γ (Remark 7.7), where ∇̂ denotes the surface gradient on Γ (see (1.8)).

It is straightforward to verify, by transforming the integral to polar coordinates, that

‖f‖2L2(Ω) =

∫

Ωint

|f(x)|2 dx+

∫

R>0×Γ
(1 + ξ)2 |(f ◦Ψ)(ξ, x̂)|2 d(ξ, x̂) (5.4)

and

‖f‖2H1(Ω) =

∫

Ωint

‖∇f(x)‖2 + |f(x)|2 dx

+

∫

R>0×Γ
(1 + ξ)2

∣
∣
∣
∣

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∣
∣
∣
∣

2

+
∥
∥
∥∇̂ (f ◦Ψ)(ξ, x̂)

∥
∥
∥

2
d(ξ, x̂)

+

∫

R>0×Γ
(1 + ξ)2 |(f ◦Ψ)(ξ, x̂)|2 d(ξ, x̂)

(5.5)

for functions f ∈ L2(Ω) and f ∈ H1(Ω) respectively. A function f is in L2(Ω) or H1(Ω)
respectively if and only if the right-hand side of (5.4) or (5.5) is finite. For functions
f, g ∈ L2(Ω), the L2(Ω)-inner product is given by

(f, g)L2(Ω) =

∫

Ωint

f(x) g(x) dx+

∫

R>0×Γ
(1 + ξ)2 (f ◦Ψ)(ξ, x̂) (g ◦Ψ)(ξ, x̂) d(ξ, x̂) .
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5.1. The weak formulation of the complex-scaled problem

Similarly, for functions f, g ∈ H1(Ω) ,, the H1(Ω)-inner product is given by

(f, g)H1(Ω) =

∫

Ωint

∇f(x) · ∇g(x) dx+

∫

Ωint

f(x) g(x) dx

+

∫

R>0×Γ
(1 + ξ)2

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∂

∂ξ
(g ◦Ψ)(ξ, x̂) d(ξ, x̂)

+

∫

R>0×Γ
∇̂ (f ◦Ψ)(ξ, x̂) · ∇̂ (g ◦Ψ)(ξ, x̂) d(ξ, x̂)

+

∫

R>0×Γ
(1 + ξ)2 (f ◦Ψ)(ξ, x̂) (g ◦Ψ)(ξ, x̂) d(ξ, x̂) .

5.1. The weak formulation of the complex-scaled problem

In Chapter 3 we have established that, under certain conditions, the eigenfunctions of the
Helmholtz resonance problem (Problem 2.3) allow an analytic continuation to a set con-
taining the complex-scaled domain Ω̆. In the following we derive the weak formulation of
an equation such that the complex-scaled eigenfunctions ŭ, given by (3.5), are eigenfunc-
tions of this equation. We refer to the according problem as the complex-scaled Helmholtz
resonance problem for the remainder of this text.

We shall see that the weak formulation of the complex-scaled equation is given by the
following sesquilinear form:

Definition 5.1. Let (5.1) hold and Λ ⊂ C, σ : Λ→ C \ {0}. Then, for ω ∈ Λ, we define a
sesquilinear form aσ(ω) for f, g ∈ H1(Ω) by

aσ(ω) (f, g) :=

∫

Ωint

∇f(x) · ∇g(x) dx− ω2

∫

Ωint

(1 + ρ(x))2f(x) g(x) dx

+
1

σ(ω)

∫

R>0×Γ
(1 + ξσ(ω))2

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∂

∂ξ
(g ◦Ψ)(ξ, x̂) d(ξ, x̂)

+ σ(ω)

∫

R>0×Γ
∇̂ (f ◦Ψ)(ξ, x̂) · ∇̂ (g ◦Ψ)(ξ, x̂) d(ξ, x̂)

− σ(ω)ω2

∫

R>0×Γ
(1 + σ(ω) ξ)2 (f ◦Ψ)(ξ, x̂) (g ◦Ψ)(ξ, x̂) d(ξ, x̂) .

In the lemma below we show that the sesquilinear form aσ(ω) is continuous for all ω ∈ Λ
with respect to the H1(Ω)-norm.

Lemma 5.2. Let ω ∈ Λ and aσ(ω) be as in Definition 5.1. Then there exists a constant
C(σ(ω)) > 0 such that

|aσ(ω)(f, g)| ≤ C(σ(ω)) ‖f‖H1(Ω) ‖g‖H1(Ω)

for all f, g ∈ H1(Ω).

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Analysis

Proof. We use the triangle inequality to obtain

|aσ(ω) (f, g)| ≤
∣
∣
∣
∣

∫

Ωint

∇f(x) · ∇g(x) dx
∣
∣
∣
∣
+ |ω|2

∣
∣
∣
∣

∫

Ωint

(1 + ρ(x))2f(x) g(x) dx

∣
∣
∣
∣

︸ ︷︷ ︸

(i)

+

∣
∣
∣
∣

1

σ(ω)

∫

R>0×Γ
(1 + ξσ(ω))2

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∂

∂ξ
(g ◦Ψ)(ξ, x̂) d(ξ, x̂)

∣
∣
∣
∣

︸ ︷︷ ︸

(ii)

+ |σ(ω)|
∣
∣
∣
∣

∫

R>0×Γ
∇̂ (f ◦Ψ)(ξ, x̂) · ∇̂ (g ◦Ψ)(ξ, x̂) d(ξ, x̂)

∣
∣
∣
∣

︸ ︷︷ ︸

(iii)

+ |σ(ω)| |ω|2
∣
∣
∣
∣

∫

R>0×Γ
(1 + σ(ω) ξ)2 (f ◦Ψ)(ξ, x̂) (g ◦Ψ)(ξ, x̂) d(ξ, x̂)

∣
∣
∣
∣

︸ ︷︷ ︸

(iv)

.

We can bound the term (i) by

(i) ≤
∫

Ωint

|∇f(x) · ∇g(x)| dx+ |ω|2
∫

Ωint

∣
∣(1 + ρ(x))2f(x) g(x)

∣
∣ dx

≤ max
{

1, |ω|2
∥
∥(1 + ρ)2

∥
∥
L∞(Ωint)

}∫

Ωint

|∇f(x) · ∇g(x)|+ |f(x) g(x)| dx.

Because there exists a constant D(σ(ω)) > 0 such that
∣
∣
∣
∣

1 + ξσ(ω)

1 + ξ

∣
∣
∣
∣

2

≤ D(σ(ω))

for all ξ > 0, we obtain

(ii) ≤ 1

|σ(ω)|

∫

R>0×Γ

∣
∣
∣
∣

1 + ξσ(ω)

1 + ξ

∣
∣
∣
∣

2

(1 + ξ)2
∣
∣
∣
∣

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∂

∂ξ
(g ◦Ψ)(ξ, x̂)

∣
∣
∣
∣
d(ξ, x̂)

≤ D(σ(ω))

|σ(ω) |

∫

R>0×Γ
(1 + ξ)2

∣
∣
∣
∣

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∂

∂ξ
(g ◦Ψ)(ξ, x̂)

∣
∣
∣
∣
d(ξ, x̂) .

Similarly, we can bound (iv) by

(iv) ≤ |σ(ω) ||ω|2D(σ(ω))

∫

R>0×Γ
(1 + ξ)2 |(f ◦Ψ)(ξ, x̂) (g ◦Ψ)(ξ, x̂)| d(ξ, x̂) .

The bound for (iii) is trivial. Combining the terms (i) − (iv) and applying the Cauchy-
Schwarz inequality, we obtain

|aσ(ω)(f, g)| ≤ C(σ(ω)) (f, g)H1(Ω) ≤ C(σ)(ω) ‖f‖H1(Ω) ‖g‖H1(Ω) ,

with

C(σ(ω)) := max

{

1, |ω|2
∥
∥(1 + ρ)2

∥
∥
L∞(Ωint)

,
D(σ(ω))

|σ(ω) | , |σ(ω) |, |σ(ω) ||ω|
2D(σ(ω))

}

.
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5.1. The weak formulation of the complex-scaled problem

Because the sesquilinear form aσ(ω) is bounded, we can define the operator Aσ(ω) ∈
B
(
H1(Ω)

)
, where B

(
H1(Ω)

)
denotes the set of all bounded linear operators from H1(Ω)

to itself, by

(Aσ(ω) f, g)H1(Ω) = aσ(ω)(f, g) (5.6)

using the Riesz representation theorem. It is clear that Aσ(ω) is bounded with respect to
the operator norm ‖·‖B(H1(Ω)) with

‖Aσ(ω)‖B(H1(Ω)) ≤ max

{

1, |ω|2
∥
∥(1 + ρ)2

∥
∥
L∞(Ωint)

,
D(σ(ω))

|σ(ω) | , |σ(ω) |, |σ(ω) ||ω|
2D(σ(ω))

}

.

Using the operator Aσ(ω) and/or the sesquilinear form aσ(ω), we define the complex-scaled
problem as follows:

Problem 5.3. Let (5.1) hold, aσ be as in Definition 5.1, and Aσ be as in (5.6). Then the
equivalent problems to

find ω ∈ Λ and ŭ ∈ H1(Ω) \ {0} such that Aσ(ω) ŭ = 0

and to

find ω ∈ Λ and ŭ ∈ H1(Ω) \ {0} such that aσ(ω)(ŭ, v) = 0 for all v ∈ H1(Ω)

are called the weak formulation of the complex-scaled Helmholtz resonance problem.

In the case that (ω, ŭ) solves this problem, we call ω an eigenvalue and ŭ the correspond-
ing eigenfunction of Aσ(·) and aσ(·).

The theorems below show that sufficiently smooth eigenfunctions of Problem 5.3 are the
complex-scaled eigenfunctions of Problem 2.3 and vice versa.

Theorem 5.4. Let (5.1) hold, σ : Λ ⊂ C→ C\{0}, and ω ∈ Λ be such that Im(σ(ω)ω) > 0
and arg(σ(ω)) /∈ [π − µ, π + µ], with µ as in (5.2). Moreover, let u ∈ C2(Ω) be a radiating
eigenfunction as in Definition 2.7 corresponding to the eigenvalue ω of Problem 2.3 with
homogeneous Neumann boundary conditions on ∂Ω. Then

(i) the function u|Ωext allows an analytic continuation U to a set Θ ⊂ C
3 such that

Ω̆ext,Ωext ⊂ Θ, and

(ii) the complex-scaled eigenfunction

ŭ :







Ω → C,

x 7→
{

u(x) , x ∈ Ωint ∪ Γ,

U(x̆(x)) , x ∈ Ωext

(5.7)

solves Problem 5.3.
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5. Analysis

Proof. We know, by Theorem 3.11, that u|Ωext allows an analytic continuation U to the set

Θ = Θ±, where we choose the appropriate set such that Ω̆
σ(ω)
ext ⊂ Θ. Moreover,

0 = −∆U(x̆)− ω2U(x̆)

for all x̆ ∈ Θ, since the function on the right-hand side is analytic on Θ and coincides with
zero on Ωext. The same holds for the equation in polar coordinates (cf. (5.3b)) at a point
x̆ = Ψσ(ξ, x̂) = Ψ(σξ, x̂) = (1 + σξ)x̂, with σ = σ(ω), namely,

0 = − ∂2U ◦Ψ
∂ξ2

(σξ, x̂)− 2

1 + σξ

∂U ◦Ψ
∂ξ

(σξ, x̂)

− 1

(1 + σξ)2

(

∇̂ · ∇̂U ◦Ψ
)

(σξ, x̂)− ω2 (U ◦Ψ)(σξ, x̂)

= − 1

σ2
∂2U ◦Ψσ

∂ξ2
(ξ, x̂)− 2

σ(1 + σξ)

∂U ◦Ψσ

∂ξ
(ξ, x̂)

− 1

(1 + σξ)2

(

∇̂ · ∇̂U ◦Ψσ
)

(ξ, x̂)− ω2 (U ◦Ψσ)(ξ, x̂) .

(5.8)

Moreover, we know by Theorem 3.14 that the functions U ◦ Ψσ and ∇ξ,x̂(U ◦Ψσ) decay
exponentially for ξ →∞. Thus, the function ŭ, defined by (5.7), fulfills ŭ ∈ H1(Ω)∩C(Ω).
For a test function v ∈ H1(Ω) ∩ C(Ω) we multiply

0 = −∆ŭ− (1 + ρ)2ω2ŭ

by v in Ωint and equation (5.8) by (1 + σξ)2σv ◦Ψσ(ξ, x̂) in Ωext. Then we integrate over
Ωint and R>0 × Γ respectively to obtain

0 =

∫

Ωint

−∆ŭ(x) v(x)− ω2(1 + ρ(x))2ŭ(x) v(x) dx

− 1

σ

∫

R>0×Γ
(1 + σξ)2

∂2ŭ ◦Ψσ

ξ2
(ξ, x̂) v ◦Ψσ(ξ, x̂) d(ξ, x̂)

− 2

∫

R>0×Γ
(1 + σξ)

∂ŭ ◦Ψσ

∂ξ
(ξ, x̂) v ◦Ψσ(ξ, x̂) d(ξ, x̂)

− σ
∫

R>0×Γ

(

∇̂ · ∇̂ŭ ◦Ψσ
)

(ξ, x̂) v ◦Ψσ(ξ, x̂) d(ξ, x̂)

− σω2

∫

R>0×Γ
(1 + σξ)2 (ŭ ◦Ψσ)(ξ, x̂) v ◦Ψσ(ξ, x̂) d(ξ, x̂)

= aσ(ω)(ŭ, v)−
∫

Γ∪∂Ω
∇ŭ(x̂) · n(x̂) v(x̂) dx̂

− 1

σ

[∫

Γ
(1 + σξ)2

∂ŭ ◦Ψσ

∂ξ
(ξ, x̂) v ◦Ψσ(ξ, x̂)

]ξ=∞

ξ=0

,

where we applied integration by parts. The evaluation of the boundary integral at ξ = 0,∞
has to be understood as taking the positive limit. Because of the asymptotic behavior of the
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5.1. The weak formulation of the complex-scaled problem

radial derivative of U ◦Ψσ from Theorem 3.14 and the fact that we imposed homogeneous
Neumann boundary conditions on ∂Ω, we obtain

0 = aσ(ω)(ŭ, v) +

∫

Γ

(
1

σ
lim
ξ→0+

∂U ◦Ψσ

∂ξ
(ξ, x̂)−∇u(x̂) · n(x̂)

)

v(x̂) dx̂

−
∫

∂Ω
∇u(y) · n(y) v(y) dy.

Since u is also analytic in a neighborhood of Γ by Proposition 2.8, we obtain by application
of the chain rule

lim
ξ→0+

∂U ◦Ψσ

∂ξ
(ξ, x̂) = lim

ξ→0+
σx̂ · (∇U)(Ψσ(ξ, x̂)) = σ∇u(x̂) · x̂.

Because of n(x̂) = x̂ on Γ, the first boundary term vanishes. The second term vanishes
since we imposed homogeneous Neumann boundary conditions on ∂Ω.

The density of C(Ω) ∩H1(Ω) in H1(Ω) concludes the proof.

Theorem 5.5. Let (5.1) hold, σ : Λ ⊂ C→ C\{0}, and ω ∈ Λ be such that Im(σ(ω)ω) > 0
and arg(σ(ω)) /∈ [π − µ, π + µ], with µ as in (5.2). Moreover, let ŭ ∈ C(Ω) such that
ŭ|Ωint

∈ C2(Ωint) and ŭ|Ωext
∈ C2(Ωext) be a solution to Problem 5.3. Then

(i) the function x̆ 7→ ŭ(x(x̆)) is analytic in Ω̆ext and allows an analytic continuation U
to a set Θ ⊂ C

3 such that Ωext, Ω̆ext ⊂ Θ and

(ii) the function







Ω → C,

x 7→
{

ŭ(x) , x ∈ Ωint ∪ Γ,

U(x) , x ∈ Ωext

(5.9)

solves Problem 2.3 with homogeneous Neumann boundary conditions on ∂Ω.

Proof. Since Ωext = Ψ(R>0,Γ) ⊂ Ωc
0 and Ω0 has a positive distance to ∂Ωext = Γ, by (D5),

we can find ε > 0 such that Ψ(R>−ε,Γ) ⊂ Ωc
0. Note that here we have enlarged the domain

of Ψ(·, x̂) to negative numbers.
For every ξ ∈ R>−ε we decompose ŭ ◦Ψ into spherical harmonics by

ŭ(Ψ(ξ, x̂)) =
∞∑

k=0

k∑

j=−k

uk,j(ξ)Y
j
k (x̂) (5.10)

for some unknown functions uk,j : R>−ε → C. Since the spherical harmonics form a
complete orthonormal system of L2(Γ) for each ξ ∈ R>−ε, the series

∞∑

k=0

k∑

j=−k

|uk,j(ξ)|2
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5. Analysis

converges. Because for fixed k, j the function ŭ(Ψ(ξ, x̂))Y j
k (x̂) is differentiable in ξ and

uniformly bounded in x̂, we can apply the dominated convergence theorem to obtain

∫

Γ

∂

∂ξ
ŭ ◦Ψ(ξ, x̂)Y j

k (x̂) dx̂ =
∂

∂ξ

∫

Γ
ŭ ◦Ψ(ξ, x̂)Y j

k (x̂) dx̂ = u′k,j(ξ) .

A similar argument can be made for the second derivative. Plugging a test function v with
v(Ψ(ξ, x̂)) = ṽ(ξ)Y j

k (x̂) for ξ > −ε and x̂ ∈ Γ (continued by zero on Ω \ Ψ(R>−ε,Γ)) for
fixed k, j and ṽ ∈ C∞

0 (R>−ε) = {f ∈ C∞(R>−ε) : f(−ε) = 0} into the weak formulation

aσ(ŭ, v) = 0,

we obtain by using integration by parts that each function uk,j solves the complex-scaled
spherical Bessel’s equation

− ∂2

∂ξ2
ũ(ξ)− 2

1 + ξ

∂

∂ξ
ũ(ξ)− k(k + 1)

(1 + ξ)2
ũ(ξ)− ω2ũ(ξ) = 0, ξ ∈ (−ε, 0),

− 1

σ2
∂2

∂ξ2
ũ(ξ)− 2

σ(1 + σξ)

∂

∂ξ
ũ(ξ)− k(k + 1)

(1 + σξ)2
ũ(ξ)− ω2ũ(ξ) = 0, ξ > 0,

σ lim
ξ→0−

∂

∂ξ
ũ(ξ) = lim

ξ→0+

∂

∂ξ
ũ(ξ) .

It can be easily checked that every solution of the complex-scaled spherical Bessel’s equation
for ξ > 0 is given by

uk,j(ξ) = αk,jh
(1)
k (ω(1 + σξ)) + βk,jh

(2)
k (ω(1 + σξ))

for some constants αk,j , βk,j . Due to the asymptotic behavior of the spherical Hankel
functions of the first and the second kind (Proposition A.3) and the fact that ŭ is square-
integrable, we immediately obtain that βk,j = 0. Due to the continuity and the condition
on the derivative at ξ = 0, we obtain that

uk,j(ξ) =

{

αk,jh
(1)
k (ω(1 + ξ)) , ξ ∈ (−ε, 0),

αk,jh
(1)
k (ω(1 + σξ)) , ξ > 0.

Since the series (5.10) converges for ξ > −ε, due to the asymptotic behavior of the
spherical Hankel functions in the index also the series

U(x) :=

∞∑

k=0

k∑

j=−k

αk,jh
(1)(ω(1 + ξ(x)))Y j

k (x̂(x))

converges uniformly on compact sets (cf. [CK98, Theorem 2.14]). Therefore, U is an
analytic continuation of ŭ(x(x̆)) . By construction it is clear that the function defined in
(5.9) solves Problem 2.3.

Remark 5.6. For d = 1, Theorems 5.4 and 5.5 hold without the restriction on arg(σ(ω)).
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5.2. Fredholmness and weak coercivity

Remark 5.7. Here the fact that we restricted ourselves to the spherical scaling in three
dimensions does not pose any limitation. In fact, Theorems 5.4 and 5.5 and their respective
proofs also hold for the more generalized scalings defined in Chapter 3. Of course, the weak
formulation of the complex-scaled problem 5.3 has to be replaced by the according weak
formulation derived in Chapter 7. Similarly, the weak formulation has to be modified for
different boundary conditions. If the boundary Γ and/or the mapping v is not smooth, the
fact that the complex-scaled eigenfunctions have kinks has be taken into account as well.

5.2. Fredholmness and weak coercivity

An important role in the analysis of the approximation of eigenvalues of holomorphic op-
erator functions play the properties of Fredholmness and (weak T -)coercivity. We define
these concepts as follows:

Definition 5.8. Let X be a Hilbert space and let B(X) denote the space of all bounded
linear operators X → X. Then the index ind(A) ∈ Z ∪ {±∞} of an operator A ∈ B(X) is
defined by

ind(A) := dim(ker(A))− dim
(

ran(A)⊥
)

.

An operator A ∈ B(X) is called

(i) coercive if there exists a constant C > 0 such that for all f ∈ X

|(Af, f)X | ≥ C ‖f‖X ,

(ii) weakly coercive if there exists a compact operator K ∈ B(X) such that A − K is
coercive,

(iii) weakly T -coercive if there exists a bijective operator T ∈ B(X) such that T ∗A is
weakly coercive, and

(iv) Fredholm if its index is finite.

An operator function ω 7→ A(ω) is called one of the above if the evaluation at every point
has the according attribute. A bounded bilinear or sesquilinear form is called one of the
above if the associated operator has the according attribute.

It is a well-known fact (e.g., [Kat95, ➜ 5]) that compact perturbations do not change the
index of an operator. Thus, any operator A that can be written as a compact perturbation
of an invertible operator is Fredholm with index zero. Therefore, every coercive operator is
also weakly coercive, every weakly coercive operator is also weakly T -coercive, and every
weakly T -coercive operator is also Fredholm with index zero.

Although we have shown in Section 5.1 that for given ω in a certain region, a sufficiently
smooth eigenfunction corresponding to the eigenvalue ω of the complex-scaled weak formu-
lation 5.3 is a complex-scaled eigenfunction of our initial strong formulation and vice versa,
it is not clear for which ω ∈ Λ the operator function ω 7→ Aσ(ω) is Fredholm. Therefore, it
is not clear for which ω ∈ Λ the approximation theory for holomorphic operator functions
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5. Analysis

[Kar96a, Kar96b] is valid and where we have to expect an essential spectrum (Definition
5.12).

In [Hal19, Theorem 3.17] it is stated that holomorphic operator functions that are weakly
T -coercive are feasible for Galerkin discretizations. Thus, this section is dedicated to exam-
ining for which ω ∈ Λ the operator Aσ(ω) is weakly coercive and therefore also Fredholm.

The lemma below is helpful for showing compactness of an operator.

Lemma 5.9. Let Ω ∈ R
d and m ∈ L∞(Ω) such that

lim
R→∞

‖m‖L∞(Ω∩Bc
R)

= 0.

Then the multiplication operator defined by

Mm :

{

H1(Ω) → L2(Ω) ,

f 7→ m(·) f(·)

is compact.

Proof. [Hal19, Lemma 4.3] with Y = H1(Ω), η1 ≡ 1, and η2 = m.

The theorem below is a special case of [Hal19, Theorem 4.5] for linear scalings.

Theorem 5.10. Let (5.1) hold, σ : Λ→ C\{0}, and ω ∈ Λ∩CIm≤0 such that Im(σ(ω)ω) >
0 and arg(σ(ω)) ∈

[
0, π2

)
. Then the operator Aσ(ω) defined in (5.6) is weakly coercive.

Proof. We define the sesquilinear forms bσ(ω) , kσ(ω) by

bσ(ω) (f, g) :=

∫

Ωint

∇f(x) · ∇g(x) dx

+
1

σ(ω)

∫

R>0×Γ
(1 + ξσ(ω))2

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∂

∂ξ
(g ◦Ψ)(ξ, x̂) d(ξ, x̂)

+ σ(ω)

∫

R>0×Γ
∇̂ (f ◦Ψ)(ξ, x̂) · ∇̂ (g ◦Ψ)(ξ, x̂) d(ξ, x̂)

− σ(ω)3 ω2

∫

R>0×Γ
(1 + ξ)2 (f ◦Ψ)(ξ, x̂) (g ◦Ψ)(ξ, x̂) d(ξ, x̂)

and

kσ(ω) (f, g) := −ω2

∫

Ωint

(1 + ρ(x))2f(x) g(x) dx

− σ(ω)ω2

∫

R>0×Γ

[

(1 + σ(ω) ξ)2 − σ(ω)2 (1 + ξ)2
]

(f ◦Ψ)(ξ, x̂) (g ◦Ψ)(ξ, x̂) d(ξ, x̂)

for f, g ∈ H1(Ω).

Clearly,

aσ(ω) = bσ(ω) + kσ(ω) .
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5.2. Fredholmness and weak coercivity

The sesquilinear form kσ(ω) can be rewritten by

kσ(ω)(f, g) = (f,Mm̄g)L2(Ω) ,

with the function m ∈ L∞(Ω) given by

m(x) =

{

−ω2(1 + ρ)2, x ∈ Ωint,

−σ(ω)ω2 (1+σ(ω)(‖x‖−1))2−σ(ω)2‖x‖2
‖x‖2 , x ∈ Ωext,

andMm̄ : H1(Ω)→ L2(Ω) is the multiplication operator by m̄, where we remind the reader
that ξ(x) = ‖x‖ − 1. Since

lim
ξ→∞

m(x(ξ, x̂)) = 0,

uniformly in x̂ ∈ Γ, we can apply Lemma 5.9 and obtain that Mm̄ is compact. By [Kat95,
Theorem 4.10] the adjoint of a compact operator is also compact. Therefore, also

Kσ(ω) := M∗
m̄|H1(Ω) : H

1(Ω)→ H1(Ω) ,

is compact. Clearly, Kσ(ω) is the operator induced by the sesquilinear form kσ(ω).

It is easy to check that the sesquilinear form bσ(ω) is bounded with respect to the
H1(Ω)-norm. Thus, by means of the Riesz representation theorem we can define a bounded
operator Bσ(ω) such that

(Bσ(ω) f, g)H1(Ω) := bσ(ω)(f, g)

for all f, g ∈ H1(Ω) .

Next we show that Bσ(ω) is coercive. Since we assumed that arg(σ(ω)) ∈
[
0, π2

)
, Im(ω) ≤

0, and Im(σ(ω)ω) > 0, we obtain

arg(σ(ω)ω) ∈
(

0,
π

2

)

,

and therefore also

Im
(

σ(ω)2 ω2
)

> 0.

Because of this and Re
(

i
σ(ω)2

)

> 0 we can find 0 < ε < π
2 such that

Re

(
i exp(−iε)
σ(ω)2

)

> 0

and

Im
(

exp(−iε)σ(ω)2 ω2
)

> 0.
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5. Analysis

−1.5 −1 −0.5 0.5 1 1.5

−1.5

−1

−0.5

0.5

1

1.5

c2(ξ)|c2(ξ)|

c1
|c1|

c3
|c3|

c4
|c4|

Re

Im

Figure 5.2.: Exemplary sketch of the normalized coefficients of the sesquilinear form bσ(ω)

with c1 = i
σ(ω) , c2(ξ) = i(1+ξσ(ω))2

σ2(ω)(1+ξ)2
, c3 = i, and c4 = −iσ(ω)2 ω2 for σ(ω) =

exp
(
i4π9
)
and ω = exp

(
−iπ3

)
.

We use this to calculate
∣
∣
∣
∣

bσ(ω)(f, f)

σ(ω)

∣
∣
∣
∣
≥ Re

(
i exp(−iε)
σ(ω)

bσ(ω)(f, f)

)

= Re

(
i exp(−iε)
σ(ω)

)∫

Ωint

‖∇f(x)‖2 dx

+

∫

R>0×Γ
Re

(
i exp(−iε) (1 + ξσ(ω))2

σ(ω)2 (1 + ξ)2

)

(1 + ξ)2
∣
∣
∣
∣

∂

∂ξ
(f ◦Ψ)(ξ, x̂)

∣
∣
∣
∣

2

d(ξ, x̂)

+ Re(i exp(−iε))
∫

R>0×Γ

∥
∥
∥∇̂ (f ◦Ψ)(ξ, x̂)

∥
∥
∥

2
d(ξ, x̂)

− Re
(

i exp(−iε)σ(ω)2 ω2
)∫

R>0×Γ
(1 + ξ)2 |(f ◦Ψ)(ξ, x̂)|2 d(ξ, x̂)

for f ∈ H1(Ω). Since (see Figure 5.2)

Re

(
i exp(−iε)
σ(ω)

)

=
sin(ε)Re(σ(ω)) + cos(ε) Im(σ(ω))

|σ(ω) |2 > 0,

Re

(
i exp(−iε) (1 + ξσ(ω))2

σ(ω)2 (1 + ξ)2

)

≥ min

{

Re

(
i exp(−iε)
σ(ω)2

)

,Re(i exp(−iε))
}

> 0

for all ξ ≥ 0, and

−Re
(

i exp(−iε)σ(ω)2 ω2
)

= Im
(

exp−iεσ(ω)2 ω2
)

> 0,
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5.3. The essential spectrum

we have that bσ(ω), and therefore also Bσ(ω), is coercive.

Theorem 5.10 gives us that the operator function

Aσ : {ω ∈ Λ ∩ CIm≤0 : Re(σ(ω)) > 0, Im(σ(ω)ω) > 0} → B
(
H1(Ω)

)
,

is Fredholm with index 0. Note that the conditions from Chapter 3, the numerical experi-
ments from Chapter 9, and the construction of the essential spectrum Σsing in Section 5.3
suggest that this is also the case for ω ∈ Λ such that arg(σ(ω)) ∈

[
π
2 , π − µ

)
, with µ as in

(5.2). However, it is not clear how this can be shown. We also neglected frequencies with
positive imaginary part since we are mostly interested in the ones below the positive real
axis and refer to [Hal19], where it is proven that the operator function is T -coercive for
these frequencies.

Remark 5.11. The fact that Aσ is a Fredholm operator function gives us additional regu-
larity of our eigenfunctions. This means that we have a one-to-one correspondence between
solutions of the weak formulation (Problem 5.3) and the strong formulation (Problem 2.3).
Since, by Theorem 5.10,

aσ(ω) = bσ(ω) + kσ(ω) ,

where bσ(ω) is elliptic and kσ(ω) is given by an L2-inner product with an additional coef-
ficient, we can use standard elliptic regularity theory (e.g., [Eva10, Chapters 6.3 and 6.5])
to show that a complex-scaled eigenfunction ŭ is smooth in Ωext and regular in Ωint depen-
dending on the regularity of ρ. Thus, the assumption on the regularity in Theorem 5.5 is
fulfilled.

5.3. The essential spectrum

We know from Section 5.2 that the operator function Aσ(ω) defined in (5.6) is Fredholm for
certain values of ω. For these values we can apply the approximation theory of Karma (see
[Kar96a] and [Kar96b]). The question remains how the operator behaves for frequencies ω
where we have not shown Fredholmness. The considerations from Chapter 3, particularly
from Section 3.2, and the conditions (S1) and (S2) suggest that for frequencies ω where these
conditions are violated the operator are not Fredholm. Simply put, this happens because
the candidates for the complex-scaled eigenfunctions corresponding to these frequencies
are no elements of the space H1(Ω). Nevertheless, there might exist so-called singular
sequences, which fulfill the eigenvalue equation in the limit. The elements of these singular
sequences will also be approximated by a discretization scheme.

In this section we show the converse result of Theorem 5.10 for a special configuration
of domains, namely, that if one of the conditions (S1) and (S2) is violated, the operator is
not Fredholm. Points where an operator function is not Fredholm constitute the so-called
essential spectrum (see, e.g., [Dav02, Section 3]) which we define as follows:

Definition 5.12. Let X be a Hilbert space, Λ ⊂ C and A : Λ → B(X) be an operator
function. Then we define the essential spectrum Σe(A(·)) as the set of all ω ∈ Λ such that
A(ω) is not Fredholm.
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5. Analysis

Remark 5.13. In the literature the definition of the essential spectrum is very ambiguous.
Another possible way to define the essential spectrum as the spectrum of the operator
minus all eigenvalues of finite multiplicity ([HS96, Definition 1.4]). This essential spectrum
is a superset of Σe from in Definition 5.12. Differing from this, Kato defines the essential
spectrum as the set of all points where the operator function is not semi-Fredholm ([Kat95,
IV. ➜5.6]). This set is a subset of Σe. For an overview of the various definitions of the
essential spectrum we refer to [EE87, Chapters I and IX]. Regardless of the choice of the
definition of the essential spectrum, it is always a closed set ([EE87, Section I.4]).
Note that in all the given sources the essential spectrum is only defined for operator

functions of the form ω 7→ T −ωIX for a fixed operator T ∈ B(X). Nevertheless, these defi-
nitions can be extended to the case of more general operator functions in a straightforward
manner.

An important tool to characterize non-Fredholmness of an operator, and therefore points
in the essential spectrum of an operator function, are so-called singular sequences.

Theorem 5.14. Let A ∈ B(X) for some Hilbert space X. Moreover, let sn ∈ X,n ∈ N be
a sequence of normalized vectors such that

1. limn→∞ ‖Asn‖X = 0 and

2. there exists no converging subsequence of sn.

Then A is not Fredholm and the sequence sn is called a singular sequence.

Proof. This is proven, for instance, in [Hal19, Thm. 3.3] and [EE87, Chapter IX, Theorem
1.3].

Remark 5.15. A term worth mentioning at this point is the so-called pseudo spectrum (see,
e.g., [Dav02, Section 2]). For an operator function A(·) and fixed ε > 0, it consists of all
values ω such that there exists a vector f ∈ X, called pseudo eigenvector, that satisfies

‖A(ω) f‖X < ε ‖f‖X .

It is clear that every singular sequence for the operator A(ω) contains pseudo eigenvectors
corresponding to the pseudo eigenvalue ω. Thus, every point ω such that there exists a
singular sequence for A(ω) is part of the pseudo spectrum. Approximations of pseudo
eigenpairs will often be eigenpairs of discretizations of the according resonance problem
with approximation quality ε (see Chapter 9).

In the following two sections, we will construct singular sequences for frequencies ω such
that the conditions (S1) and (S2) are violated. We denote the set of frequencies ω ∈ Σe

connected to the violation of (S1) by Σsing. Similarly, we denote the set of frequencies in
Σe corresponding to the violation of (S2) by Σdec.

5.3.1. The set Σsing

In this section we construct a singular sequence for the operator Aσ(ω) when (S1) is not
fulfilled (i.e., if arg(σ(ω)) ∈ [π − µ, π + µ]). Remember that µ is the maximal angle defined
in (3.1) and in the spherical case given by (5.2).
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5.3. The essential spectrum

To simplify our presentation we consider a special case first: We assume that our domain
solely consists of an exterior domain, namely,

Ω = Ωext = B1
c
, Γ = S1. (5.11)

Note that, in this case, we have µ = π
2 .

Lemma 5.16. Let (5.11) hold, aσ, Aσ be as in Definition 5.1 and (5.6), σ : Λ ⊂ C →
C \ {0}, and σ(ω) /∈ R<0. For ω ∈ Λ and fixed n ∈ N0, m ∈ Z such that |m| ≤ n, we define
the function un,m : Ω→ C by

un,m(x) := h(1)n (ωγ(ξ(x)))Y m
n (x̂(x)) , (5.12)

with γ(ξ) := 1 + σ(ω) ξ. Then un,m ∈ H1(Ω) if and only if Im(ωσ(ω)) > 0 (i.e., if (S2) is
fulfilled). In this case

aσ(ω)(un,m, g) = (Aσ(ω)un,m, g)H1(Ω) = −ω
(

h(1)n

)′
(ω)

∫

Γ
Y m
n (x̂) trΓ g(x̂) dx̂

for all g ∈ H1(Ω) and there exists a constant c > 0 independent of n,m, σ, ω such that

‖Aσ(ω)un,m‖H1(Ω) ≤ c
∣
∣
∣
∣
ω
(

h(1)n

)′
(ω)

∣
∣
∣
∣
.

Proof. The first claim is clear because of the exponential term in the spherical Hankel func-
tions (Proposition A.2) and the formula for the H1-norm in polar coordinates (5.5). Note
that the assumption σ(ω) /∈ R<0 prevents the complex-scaled spherical Hankel function
from having a singularity.
Using a test function g ∈ H1(Ω), we obtain

aσ(ω)(un,m, g) =

∫ ∞

0
ωγ(ξ)2

(

h(1)n

)′
(ωγ(ξ))

∫

Γ
Y m
n (x̂)

∂g ◦Ψ
∂ξ

(ξ, x̂) dx̂dξ

︸ ︷︷ ︸

(∗)

+ σ(ω)

∫ ∞

0
h(1)n (ωγ(ξ))

∫

Γ
∇̂Y m

n (x̂) · ∇̂ (g ◦Ψ)(ξ, x̂) dx̂dξ

− ω2σ(ω)

∫ ∞

0
γ(ξ)2 h(1)n (ωγ(ξ))

∫

Γ
Y m
n (x̂) g(Ψ(ξ, x̂)) dx̂dξ.

Performing integration by parts on the first term, gives

(∗) = −
∫ ∞

0

ω
∂

∂ξ

(

γ(ξ)
2
(

h(1)n

)′

(ωγ(ξ))

)∫

Γ

Y m
n (x̂) g(Ψ(ξ, x̂)) dx̂dξ

+

[

ωγ(ξ)
2
(

h(1)n

)′

(ωγ(ξ))

∫

Γ

Y m
n (x̂) g(Ψ(ξ, x̂)) dx̂

]ξ=∞

ξ=0

= − σ(ω)
∫ ∞

0

(

2ωγ(ξ)
(

h(1)n

)′

(ωγ(ξ)) + ω2γ(ξ)
2
(

h(1)n

)′′

(ωγ(ξ))

)∫

Γ

Y m
n (x̂) g(Ψ(ξ, x̂)) dx̂dξ

− ω
(

h(1)n

)′

(ω)

∫

Γ

Y m
n (x̂) trΓ g(x̂) dx̂,
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5. Analysis

since the functions
(

h
(1)
n

)′
(ωγ(ξ)) decay exponentially for ξ →∞. Using the fact that the

spherical harmonics are the eigenfunctions of the surface Laplacian, we obtain

aσ(ω)(un,m, g) = − σ(ω)
∫ ∞

0

(

Tnh
(1)
n

)

(ωγ(ξ))

∫

Γ
Y m
n (x̂) g(x(r, x̂)) dx̂dξ

− ω
(

h(1)n

)′
(ω)

∫

Γ
Y m
n (x̂) trΓ g(x̂) dx̂,

with

(Tnu)(z) := z2u′′(z) + 2zu′(z)−
(
z2 − n(n+ 1)

)
u(z) ,

which is the differential operator of the spherical Bessel’s equation (A.1) with index n. The

fact that h
(1)
n solves Tnu = 0 yields the second claim.

For the last claim we calculate

‖Aσ(ω)un,m‖H1(Ω) = sup
g∈H1(Ω)

‖g‖H1(Ω)=1

∣
∣(Aσ(ω)un,m, g)H1(Ω)

∣
∣

= sup
g∈H1(Ω)

‖g‖H1(Ω)=1

∣
∣
∣
∣
(Y m

n , trΓ g)L2(Γ)

(

h(1)n

)′
(ω)ω

∣
∣
∣
∣

≤ ‖Y m
n ‖L2(Γ)

︸ ︷︷ ︸

=1

∣
∣
∣
∣

(

h(1)n

)′
(ω)ω

∣
∣
∣
∣

sup
g∈H1(Ω)

‖g‖H1(Ω)=1

‖ trΓ g‖L2(Γ)

≤ ‖tr∂Ω‖
∣
∣
∣
∣
ω
(

h(1)n

)′
(ω)

∣
∣
∣
∣
,

where the inequality for the trace holds because of Theorem A.12.

Note that this situation is actually not covered by our theory since in (D1–5) we required
a positive distance between Γ and ∂Ω (see Remark 2.5). This assumption was necessary
to ensure that the eigenfunctions are smooth at the interface Γ. In the case of (5.11) the
regularity of the eigenfunctions is not an issue since an eigenfunction is given by only one
single spherical Hankel function times a single spherical harmonic and not by an infinite
sum.

Lemma 5.16 shows that the roots of
(

h
(1)
n

)′
are eigenvalues of aσ(ω) and un,m for |m| ≤ n

the corresponding eigenfunctions. If ω is no root of
(

h
(1)
n

)′
, the construction above does not

lead to eigenvalues. Nevertheless, if
(

h
(1)
n

)′
(ω) is small, it helps us to construct a singular

sequence. The main idea here is that, for σ(ω) with arg(σ(ω)) ∈
(
π
2 , π

)
, the functions

∣
∣
∣h

(1)
n (ω(1 + σ(ω) ·))

∣
∣
∣ take their unique, global maximum at a point ξ0 > 0 (cf. Figure 5.4).

Due to the asymptotic behavior of the spherical Hankel functions, this peak dominates
the behavior of the function at ξ = 0 for large n making it an approximate eigenfunction
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5.3. The essential spectrum

(Lemma 5.16). Thus, our singular sequence will be defined by

sn(x) :=
h
(1)
n (ωγ(ξ(x)))Y 0

n (x̂(x))∥
∥
∥h

(1)
n (ωγ(ξ(·)))Y 0

n (x̂(·))
∥
∥
∥
H1(Ω)

.

To characterize the behavior of the functions sn, we need the following technical lemma:

Lemma 5.17. Let σ ∈ C \ {0}. Then the function

{

R → C,

ξ 7→ |γ(ξ)|2 = |1 + σξ|2

takes its unique, global minimum m := |γ(ξ0) |2 = sin(arg σ)2 at ξ0 := −Re(σ)
|σ|2 (see Figure

5.3).

Proof. We differentiate |γ(·) |2 to obtain

∂

∂ξ
|γ(ξ)|2 = ∂

∂ξ

(

γ(ξ)γ(ξ)
)

=
∂

∂ξ

(
1 + (σ + σ)ξ + |σ|2ξ2

)
= 2Re(σ) + 2|σ|2ξ,

which has its unique root at ξ0 := −Re(σ)
|σ|2 . Since |γ(ξ) |2 is a positive, quadratic function in

ξ, this is the global minimum and its value is

|γ(ξ0) |2 = 1 + 2Re(σ) ξ0 + |σ|2ξ20 = 1 + 2Re(σ)

(

−Re(σ)

|σ|2
)

+ |σ|2
(
Re(σ)

|σ|2
)2

= 1− Re(σ)2

|σ|2 = 1− cos(arg(σ))2 = sin(arg(σ))2 .

A main ingredient for the construction of the singular sequence is the fact that the norms
of the functions sn mainly depend on their behavior at the peak. This can be justified by
the so-called Laplace’s Method.

Theorem 5.18 (Laplace’s Method). For a finite or infinite open interval I, let φ, f ∈
L2(I) ∩ C∞(I) be such that f takes its unique, global maximum at x0 ∈ I. Then

∫

I
φ(x)f(x)j dx ∼ φ(x0) f(x0)j+1/2

√

− 2π

jf ′′(x0)
, j →∞.

Proof. See, for example, [Won01, Chapter II.1].

Using Lemma 5.17 and Theorem 5.18 we can prove, by the construction of a singu-
lar sequence, that frequencies ω that violate condition (S1) are elements of the essential
spectrum.
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5. Analysis

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

ξ

|γ
(ξ
)|2

σ = −1 + i
σ = −2 + i
σ = −3 + i
σ = −5 + i

Figure 5.3.: The functions |γ(·)|2 from the Lemmas 5.17 (for ξ > 0) and 5.21 for different
values of σ.

Theorem 5.19. Let (5.1) hold, σ : Λ ⊂ C → C \ {0}, and Aσ as in (5.6). Moreover, let
ω ∈ Λ such that Re(σ(ω)) < 0, σ(ω) /∈ R<0, and Im(σ(ω)ω) > 0. Then ω ∈ Σe(Aσ).

Proof. Since the functions h
(1)
n (ωγ(ξ(·))) are in H1(Ω), we may define a sequence for func-

tions sn ∈ H1(Ω) by

sn(x) :=
h
(1)
n (ωγ(ξ(x)))Y 0

n (x̂(x))∥
∥
∥h

(1)
n (ωγ(ξ(·)))Y 0

n (x̂(·))
∥
∥
∥
H1(Ω)

for x ∈ Ω. Let ξ0 = −Re(σ(ω))
|σ(ω)|2 be the point where |γ(·) |2 takes its unique minimum by

Lemma 5.17. Then we have ξ0 > 0 since Re(σ(ω)) < 0. We pick ξ1 > ξ0 and 0 < ε < 1.
Due to the asymptotic behavior of the spherical Hankel functions (Proposition A.4), we
know that there exists an index N ∈ N such that

(1− ε) (2n− 1)!!

|ωγ(ξ) |n+1
≤ |hn(ωγ(ξ))| ≤ (1 + ε)

(2n− 1)!!

|ωγ(ξ) |n+1

for all n > N0 and ξ ∈ [0, ξ1]. We can bound the norm of h
(1)
n (ωγ(ξ(·)))Y 0

n (x̂(·)) from
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5.3. The essential spectrum

1 1.2 1.4 1.6 1.8 2 2.2 2.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ξ

|s0|
‖s0‖L∞

|s1|
‖s1‖L∞

|s3|
‖s3‖L∞

|s100|
‖s100‖L∞

Figure 5.4.: The functions sn(Ψ(·, x̂)) for σ = −3 + i, normalized at their peak.

below by

∥
∥
∥h(1)n (ωγ(ξ(·)))Y 0

n (x̂(·))
∥
∥
∥

2

H1(Ω)
≥
∥
∥
∥h(1)n (ωγ(ξ(·)))Y 0

n (x̂(·))
∥
∥
∥

2

L2(Ω)

=

∫

Γ
|Y 0

n (x̂) |2 dx̂
︸ ︷︷ ︸

=1

∫ ∞

0
|h(1)n (ωγ(ξ)) (1 + ξ)|2 dξ

≥
∫ ξ1

0
|h(1)n (ωγ(ξ)) (1 + ξ)|2 dξ

≥ (1− ε)2 ((2n− 1)!!)2

|ω|2n+2

∫ ξ1

0

(1 + ξ)2

|γ(ξ)|2n+2
dξ.

Next we apply Theorem 5.18 with φ(ξ) = (1+ξ)2, f(ξ) = |γ(ξ)|−2, j = n+1, and I = (0, ξ1)
and obtain

∫ ξ1

0

(1 + ξ)2

|γ(ξ)|2n+2dξ ∼
(1 + ξ0)

2

|γ(ξ0)|2n+3

√

− 2π

(n+ 1)f ′′(ξ0)

and thus,

∫ ξ1

0

(1 + ξ)2

|γ(ξ)|2n+2dξ ≥
C1√

n+ 1 |γ(ξ0)|2n+3
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5. Analysis

with n > N1 for some N1 ∈ N and C1 = (1 − ε)(1 + ξ0)
2
√

− 2π
f ′′(ξ0)

> 0. Note that C1

depends only on σ(ω) and ε and is independent of n. The index N1 depends on σ(ω), ε
and ξ1. All in all, we obtain

∥
∥
∥h(1)n (ωγ(ξ(·)))Y 0

n (x̂(·))
∥
∥
∥

2

H1(Ω)
≥ (1− ε)3C1((2n− 1)!!)2

|ω|2n+2|γ(ξ0) |2n+3
√
n+ 1

(5.13)

for n > N1.
Let ξ 6= ξ0. Then we can find an index N2 ∈ N such that for all n > N2

|sn(x(ξ, x̂))| ≤
(1 + ε)(2n− 1)!!

|ωγ(ξ)|n+1

|ω|n+1|γ(ξ0)|n+3/2(n+ 1)1/4

(1− ε)3/2√C1(2n− 1)!!
sup
x̂∈Γ

∣
∣Y 0

n (x̂)
∣
∣

≤ C2

∣
∣
∣
∣

γ(ξ0)

γ(ξ)

∣
∣
∣
∣

n+1√
2n+ 1(n+ 1)1/4,

since |Y 0
n | is bounded by

√
2n+ 1 (Proposition A.6). Again, we put all the factors in-

dependent of n in the constant C2 = (1+ε)

(1−ε)3/2
|γ(ξ0)|1/2√

C1
> 0 depending on ε and σ(ω) and

independent of n.

Since
∣
∣
∣
γ(ξ0)
γ(ξ)

∣
∣
∣ < 1, this gives

lim
n→∞

|sn(x)| = 0

for all x ∈ Ω such that ‖x‖ 6= 1 + ξ0. Using the second part of 5.16 we find

‖Aσ(ω) sn‖H1(Ω) =

∥
∥
∥Aσ(ω)

(

h
(1)
n (ωγ(ξ(·)))Y 0

n (x̂(·))
)∥
∥
∥
H1(Ω)

∥
∥
∥h

(1)
n (ωγ(ξ(·)))Y 0

n (x̂(·))
∥
∥
∥
H1(Ω)

≤ c

∣
∣
∣
∣
ω
(

h
(1)
n

)′
(ω)

∣
∣
∣
∣

∥
∥
∥h

(1)
n (ωγ(ξ(·)))Y 0

n (x̂(·))
∥
∥
∥
H1(Ω)

for some c > 0 independent of n. Using the asymptotic behavior of
(

h
(1)
n

)′
and the lower

bound of the norm in the denominator (5.13) we obtain

‖Aσ(ω) sn‖H1(Ω) ≤ c
∣
∣
∣
∣
∣
(1 + ε)

(2n− 1)!!(n+ 1)ω

iωn+2

ωn+1γ(ξ0)
n+3/2 (n+ 1)1/4

(1− ε)3/2√C1(2n− 1)!!

∣
∣
∣
∣
∣

=
c(1 + ε)

(1− ε)3/2√C1
|γ(ξ0) |n+3/2(n+ 1)3/4

for large n.
Because of |γ(ξ0) | < |γ(0) | = 1 this shows that

lim
n→∞

‖Aσ(ω) sn‖H1(Ω) = 0.

To show that there exists no converging subsequence of sn, let snk
be an arbitrary

subsequence. Then snk
converges to zero pointwise almost everywhere. Thus, the only

possible limit would be the zero function. This cannot be the case since ‖snk
‖H1(Ω) = 1.
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5.3. The essential spectrum

Adding an interior domain

Until now, we have proven the existence of an essential spectrum for frequencies ω such
that Re(σ(ω)) < 0 for the domain Ω = B1

c
. The situation is a little different when we add

an interior domain Ωint = B1 \BR for some 0 < R < 1.

In this case the eigenfunctions of Aσ can be constructed similarly to Lemma 5.16.

Lemma 5.20. Let 0 < R < 1,Ω = BR
c
,Γ = ∂B1,Ωint = Ω ∩ B1, and Ωext = B1

c
.

Moreover, let σ : Λ ⊂ C → C \ {0} and Aσ be as in (5.6). Then, for fixed ω ∈ Λ and
n ∈ N0, m ∈ Z such that |m| ≤ n, we define a function

un,m(x) := h(1)n (ωγ(ξ(x)))Y m
n (x̂(x)) ,

where

γ :







R≥R−1 → C,

ξ 7→
{

1 + ξ, ξ < 0,

1 + σ(ω) ξ, ξ ≥ 0.

(5.14)

Then un,m ∈ H1(Ω) if and only if Im(ωσ) > 0 and σ(ω) /∈ R<0. In this case

aσ(ω)(un,m, g) = (Aσ,ωun,m, g)H1(Ω) = −ω
(

h(1)n

)′
(Rω)

∫

Γ
Y m
n (x̂) g(x̂) dx̂

for all g ∈ H1(Ω) ∩ C
(
Ω
)
and there exists a constant c > 0 independent of n,m, σ, ω such

that

‖Aσ(ω)un,m‖H1(Ω) ≤ c
∣
∣
∣
∣
ω
(

h(1)n

)′
(Rω)

∣
∣
∣
∣
.

Proof. After a transformation into polar coordinates of the interior part of aσ(ω), the proof
works exactly along the lines of the proof of Lemma 5.16.

In this case the same construction as before will only lead to a singular sequence if the
peaks of hn(ωγ(·)) dominate the behavior of h′n(ωR). This is quantified by the following
lemma:

Lemma 5.21. Let 0 < R < 1, σ ∈ {z ∈ C \ {0} : arg z ∈
(
π − sin−1(R) , π + sin−1(R)

)
}

and γ as in (5.14). Then the function |γ(·)|2 takes its global minimum m := sin(arg(σ))2

at ξ0 := −Re(σ)
|σ|2 (see Figure 5.3).

Proof. By Lemma 5.17, the global minimum of |γ|2
∣
∣
∣
R≥0

is sin(arg(σ))2 at the point ξ0 =

−Re(σ)
|σ|2 . For ξ ∈ [R− 1, 0], we have

|γ(ξ)|2 = (1 + ξ)2 ≥ R2 = sin
(
π ± sin−1(R)

)2
> sin(arg(σ))2 .
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5. Analysis

Theorem 5.22. Let 0 < R < 1, Ω = BR
c
,Γ = ∂B1,Ωint = Ω ∩ B1,Ωext = B1

c
, σ : Λ ⊂

C→ C \ {0}, and Aσ be as in (5.6). Moreover, let ω ∈ Λ such that

arg(σ(ω)) ∈
(
π − sin−1(R) , π

)
∪
(
π, π + sin−1(R)

)

and Im(ωσ(ω)) > 0. Then we have ω ∈ Σe(Aσ(·)).

Proof. The singular sequence can be defined exactly as in Theorem 5.19 with extended
domain to Ωint. The proof works accordingly, where we use Lemma 5.20 instead of Lemma
5.16.

Remark 5.23. In Theorems 5.19 and 5.22 we assumed Im(σ(ω)ω) > 0 to obtain that the

functions h
(1)
n (ωγ(·)) are exponentially decreasing and to use them for the construction of

the singular sequence. The same line of proof can be repeated for Im(σ(ω)ω) < 0 and the
spherical Hankel functions of the second kind.

Moreover, we excluded the case σ(ω) ∈ R≤0 to avoid having to deal with complex-
scaled eigenfunctions with a singularity. Nevertheless, for continuous scaling functions
σ : Λ→ C \ {0}, the set {ω ∈ Λ : σ(ω) ∈ R≤0} is always part of the essential spectrum Σe

since Σe is a closed set (see Remark 5.13).

An alternative way to prove this is to construct a singular sequence for σ(ω) ∈ R<0, by
approximating the function un given in Ωext by

un := h(1)n (ωγ(ξ(·)))Y 0
n (x̂(·)) ,

which is not regular, by an appropriate sequence of H1(Ω) functions.

A similar line of proof for as in Theorems 5.19 and 5.22 works for a domain Ω such that
BR ⊂ Ωc and potential functions ρ that vanish on Bc

R. Note, however, that the essential
spectrum could, in theory, be larger for problems with an interior domain. In any case the
essential spectrum Σsing is always a subset of {ω ∈ Λ : Re(σ(ω)) ≤ 0} since otherwise the
corresponding operator function is Fredholm. By the reasoning from Remark 5.23, on the
other hand, Σsing always contains the set {ω ∈ Λ : σ(ω) ∈ R<0}.

5.3.2. The set Σdec

In this section we construct a singular sequence for ω ∈ Λ such that Im(σ(ω)ω) = 0
and therefore show that Aσ(ω) is not Fredholm at the boundary of the domain where
(S2) is fulfilled. Contrary to Section 5.3.1 we consider general domains of the form (5.1).
The theorem below and its proof are basically a special case of [Hal19, Theorem 4.6].
Nevertheless, we rephrase the proof for the sake of completeness and due to the fact that
we consider merely the case of linear complex scalings.

Theorem 5.24. Let σ : Λ ⊂ C → C \ {0}, Aσ as in (5.6), and ω ∈ Λ such that
Im(σ(ω)ω) = 0 and σ(ω) /∈ R<0. Then ω ∈ Σdec(Aσ) .

Proof. We pick a smooth cut-off function ζ : R → R such that supp(ζ) ⊂ [−1, 1], ζ(x) ∈
[0, 1] for x ∈ R, and ζ(x) = 1 for x ∈

(
−1

2 ,
1
2

)
. Such a function can be constructed, for
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5.3. The essential spectrum

instance, by using mollifiers (e.g., [Eva10, Appendix C.4]). Moreover, we define

ζn(ξ) := ζ

(
ξ − n2
n

)

, u0(ξ) := h
(1)
0 (ωγ(ξ)) ,

where we used the notation γ(ξ) = 1 + σ(ω) ξ. The functions ζn fulfill

supp(ζn) =
[
n2 − n, n2 + n

]

and ζn(ξ) = 1 for ξ ∈
[
n2 − n/2, n2 + n/2

]
. Now we define the elements of our singular

sequence sn ∈ H1(Ω) by

sn(x) :=

{

0, x ∈ Ωint ∪ Γ,
ζn(ξ(x))u0(ξ(x))
‖ζn(ξ(·))u0(ξ(·))‖H1(Ωext)

, x ∈ Ωext
(5.15)

for n ∈ N.
We can bound the H1(Ω)-norm in the denominator of (5.15) from below by

‖ζn(ξ(·))u0(ξ(·))‖2H1(Ωext)
≥ ‖ζn(ξ(·))u0(ξ(·))‖2L2(Ω)

=

∫

R>0×Γ
(1 + ξ)2 |ζn(ξ)u0(ξ)|2 d(ξ, x̂)

=
4π

3

∫ ∞

0
(1 + ξ)2 |ζn(ξ)u0(ξ)|2 dξ.

Because of ζn(ξ) = ζ
(
ξ−n2

n

)

= 1 for ξ ∈
(
n2 − n

2 , n
2 + n

2

)
and h

(1)
0 (z) = exp(iz)

iz , we can

continue to calculate

‖ζn(ξ(·))u0(ξ(·))‖2H1(Ωext)
≥ 4π

3

∫ n2+n/2

n2−n/2
(1 + ξ)2

∣
∣
∣
∣

exp(iωγ(ξ))

iωγ(ξ)

∣
∣
∣
∣

2

dξ

=
4π exp(Re(iω))2

3|ω|2
∫ n2+n/2

n2−n/2

∣
∣
∣
∣

1 + ξ

1 + σ(ω) ξ

∣
∣
∣
∣

2

dξ,

since
|exp(iωσ(ω) ξ)| = |exp(−Im(σ(ω)ω) ξ)| = 1

for all ξ ∈ R>0 by assumption. Because of

lim
ξ→∞

1 + ξ

1 + σ(ω) ξ
=

1

σ(ω)
,

we can find an index N ∈ N such that
∣
∣
∣
∣

1 + ξ

1 + σ(ω) ξ

∣
∣
∣
∣

2

≥ 1

2 |σ(ω)|2

for all ξ > n2 − n
2 and n > N . All in all we have

‖ζn(ξ(·))u0(ξ(·))‖H1(Ωext)
≥ C√n,
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5. Analysis

with C =
√

2π
3

exp(Re(iω))
|σ(ω)ω| for all n > N .

For any test function g ∈ H1(Ω), we have for n > N (see (5.5))

C
√
n |aσ(ω)(sn, g)| ≤

∣
∣
∣
∣
∣

∫

R>0×Γ

γ(ξ)2

σ(ω)

∂

∂ξ
(ζn(ξ)u0(ξ))

∂

∂ξ
g ◦Ψ(ξ, x̂) d(ξ, x̂)

−ω2σ(ω)3
∫

R>0×Γ
γ(ξ)2 ζn(ξ)u0(ξ) g ◦Ψ(ξ, x̂) d(ξ, x̂)

∣
∣
∣
∣

≤ |aσ(ω)(u0(ξ(·)) , ζn(ξ(·)) g)|

+
1

|σ(ω) |

∫

R>0×Γ

∣
∣
∣
∣
γ(ξ)2 ζ ′n(ξ)u0(ξ)

∂

∂ξ
g ◦Ψ(ξ, x̂)

∣
∣
∣
∣
d(ξ, x̂)

︸ ︷︷ ︸

=(∗)

+
1

|σ(ω) |

∫

R>0×Γ

∣
∣
∣γ(ξ)

2 ζ ′n(ξ)u
′
0(ξ) g ◦Ψ(ξ, x̂)

∣
∣
∣ d(ξ, x̂)

︸ ︷︷ ︸

=(∗∗)

,

where we extended the functions ζn(ξ(·)), u0(ξ(·)) to Ωint by zero and u0(0) respectively
and used

∂

∂ξ
(u0(ξ) ζn(ξ))

∂

∂ξ
g ◦Ψ(ξ, x̂) = u′0(ξ)

∂

∂ξ

(

ζn(ξ) g ◦Ψ(ξ, x̂)
)

− u′0(ξ) ζ ′n(ξ) g ◦Ψ(ξ, x̂) + u0(ξ) ζ
′
n(ξ)

∂

∂ξ
g ◦Ψ(ξ, x̂).

Note that aσ(ω)(u0(ξ(·)) , ζn(ξ(·)) g) = 0 for n > 1 (Lemma 5.16, where we use the fact
that trΓ(ζn(ξ(·)) g) = 0).

Using a constant D > 0 such that

∣
∣
∣
∣

1 + σ(ω) ξ

1 + ξ

∣
∣
∣
∣

2

< D

for all ξ ≥ 0, the terms (∗) and (∗∗) can be bounded by

(∗) ≤ D
(

ζ ′n(ξ(·))u0(ξ(·)) ,
(
∂

∂ξ
g ◦Ψ

)

(ξ(·) , x̂(·))
)

L2(Ω)

≤ D
∥
∥ζ ′n(ξ(·))u0(ξ(·))

∥
∥
L2(Ω)

∥
∥
∥
∥

∂

∂ξ
g ◦Ψ

∥
∥
∥
∥
L2(Ω)

,

(∗∗) ≤ D
(
ζ ′n(ξ(·))u′0(ξ(·)) , g

)

L2(Ω)

≤ D
∥
∥ζ ′n(ξ(·))u′0(ξ(·))

∥
∥
L2(Ω)

‖g‖L2(Ω) .

Due to fact that

ζ ′n(ξ) =
1

n
ζ ′
(
ξ − n2
n

)

,

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.4. Discussion of the analysis

we can bound

∥
∥ζ ′n(ξ(·))u0(ξ(·))

∥
∥2

L2(Ω)
≤ 4π

3n

∥
∥ζ ′
∥
∥2

L∞(−1,1)

∫ n2+n

n2−n
(1 + ξ)2

∣
∣
∣
∣

exp(iωγ(ξ))

iωγ(ξ)

∣
∣
∣
∣

2

dξ ≤ E

for some constant E > 0 independent of n and n large enough. The term containing

u′0(ξ) =
(
exp(iωγ(ξ))

iωγ(ξ)

)′
= iωσ(ω) exp(iωγ(ξ))

(
iωγ(ξ)− 1

(iωγ(ξ))2

)

can be bounded similarly. Collecting all the terms, we obtain

|aσ(ω)(sn, g)| ≤
F√
n
‖g‖H1(Ω)

for n large enough and some constant F > 0 and therefore

lim
n→∞

‖Aσ(ω) sn‖H1(Ω) = 0.

The sequence sn has no convergent subsequence since supp sn∩supp sm = ∅ for n 6= m.

5.4. Discussion of the analysis

We have seen in Theorems 5.4 and 5.5 and Remark 5.11 that in the region of frequen-
cies where the operator function Aσ is Fredholm, we have a one-to-one correspondence
of eigenpairs of the complex-scaled weak formulation (Problem 5.3) and the strong for-
mulation (Problem 2.3). Moreover, we can apply the approximation theory of weakly
T -coercive operator functions to obtain spectral convergence of Galerkin discretizations
of the complex-scaled weak formulation. This allows us to approximate eigenvalues and
eigenfunctions of the Helmholtz resonance problem.
For other regions we have constructed singular sequences and, therefore, we have shown

that the operator function is not Fredholm there. In these regions we expect the discretized
problem to exhibit a discretization of the essential spectrum (cf. Remark 5.15).

Note, however, that our analysis is only complete for the case where Ω = B1
c
and Γ = S1.

In this case, for a scaling function σ : Λ → C \ {0}, we can decompose Λ into the disjoint
sets

Λ = Ξ+ ∪ Ξ− ∪ Σe,

with

Σe = Σsing ∪ Σdec, Σsing = {ω ∈ Λ : σ(ω) ∈ CRe≤0} , Σdec = {ω ∈ Λ : ωσ(ω) ∈ R} ,

and

Ξ+ = {ω ∈ Λ : σ(ω) ∈ CRe>0, Im(ωσ(ω)) > 0} ,
Ξ− = {ω ∈ Λ : σ(ω) ∈ CRe>0, Im(ωσ(ω)) < 0} . (5.16)

Here Ξ+ and Ξ− denote the sets where we can expect approximations to radiating and
non-radiating resonances respectively (cf. Remarks 3.15 and 3.16).
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5. Analysis

For the case where we add an interior domain Ωint = BR
c ∩ B1 for some 0 < R < 1, we

showed that

{
ω ∈ Λ : arg(σ(ω)) ∈

[
π − sin−1(R) , π + sin−1(R)

]}
⊂ Σe,

which is smaller than the corresponding set in the previous case. The set Σdec remains
unchanged. Note that these sets correspond exactly to the sets where the conditions (S1)
and (S2) are violated. However, for a comprehensive analysis of this case it still remains to
show Fredholmness of the operator functions in question for ω ∈ Λ such that arg(σ(ω)) ∈
[
π
2 , π − sin−1(R)

)
∪
(
π + sin−1R, 3π2

]
.

For more general interior domains we will see in our numerical experiments in Chapter 9
that, for examples with a general interior domain, similar to the case of the interior domain
with the cut-out sphere, we may expect a larger region where resonances are approximated
than the one given in (5.16).
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6. Discretization

In this chapter we define and analyze the discretization of the complex-scaled Helmholtz
resonance problems (Problem 5.3 and Section 7.1) by the use of complex-scaled infinite
elements. To this end we closely follow [NW19, Sections 4 and 5]. Since the frequency-
dependency σ of the scaling function does not affect the discretization, we omit the fre-
quency-dependency and write σ = σ(ω) for this entire chapter.

We assume that the exterior part of the sesquilinear form aσ(ω) (cf. Definition 5.1),
corresponding to the weak formulation of the complex-scaled equation, can be decomposed
into generalized-radial and tangential parts in the following sense: For functions f, g ∈
H1(Ω) that can be written as products of a generalized-radial and a tangential part in
Ωext, namely,

f ◦Ψ(ξ, x̂) = f̃(ξ) f̂(x̂) , g ◦Ψ(ξ, x̂) = g̃(ξ) ĝ(x̂)

for ξ ∈ R>0, x̂ ∈ Γ and some functions f̃ , g̃ : R>0 → C and f̂ , ĝ : Γ→ C, we assume that

aext(ω)(f, g) := aσ(ω)(f, g)−
∫

Ωint

∇f(x) · ∇g(x) dx+ ω2

∫

Ωint

(1 + ρ(x))2f(x) g(x) dx

=

J∑

j=0

ãj

(

f̃ , g̃
)

âj

(

f̂ , ĝ
)

(6.1)

for some J ∈ N0 and some sesquilinear form ãj , âj that act on functions R>0 → C and
Γ→ C respectively. For the case that Ωext is the complement of a sphere, the sesquilinear
form aσ(ω) from Definition 5.1 allows such a decomposition. For more general cases we
refer to Section 7.1. Additionally, we assume that a similar decomposition is possible for
the L2(Ωext) and H

1(Ωext)-inner products and norms in the respective exterior coordinates.

6.1. Galerkin methods

The finite element method belongs to the class of Galerkin methods. In the following we
give a short introduction to these methods. We refer to [Cia02] for an introduction to the
finite element method for elliptic problems and to [Ihl98] for the finite element method for
scattering problems.

For the resonance problem to

find ω ∈ Λ, f ∈ X \ {0} such that A(ω) f = 0
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6. Discretization

for a given operator function A : Λ ⊂ C→ B(X) on a Hilbert space X, the idea of Galerkin
methods is to pick a finite-dimensional subspace Xh ⊂ X and consider the discrete problem
to

find ω ∈ Λ, fh ∈ Xh \ {0} such that ΠhA(ω) fh = 0. (6.2)

Here Πh : X → Xh denotes the orthogonal projection. In the case where the operator
function A is induced by a sesquilinear form valued function a via the Riesz representation
theorem, the discrete problem (6.2) can be shown to be equivalent to the problem to

find ω ∈ Λ, fh ∈ Xh \ {0} such that a(ω)(fh, gh) = 0 for all gh ∈ Xh. (6.3)

For a given basis B = {b0, . . . , bN} of Xh, any vector fh ∈ Xh can be uniquely written as

fh =

N∑

j=0

cjbj

for some coefficients c0, . . . , cN ∈ C. Again, the discrete problems (6.2) and (6.3) are
equivalent to the problem to

find ω ∈ Λ and a vector c = (c0, . . . , cN )⊤ 6= 0 such that M(ω) c = 0. (6.4)

Here M = (Mi,j)i,j=0,...,N is the matrix valued function with

Mi,j(ω) := a(ω)(bj , bi)

for all ω ∈ Λ.
Thus, for the application of a Galerkin method, an appropriate subspace Xh and a

suitable basis b0, . . . , bN have to be defined. Subsequently, the resulting matrix eigenvalue
problem (6.4) has to be solved using an appropriate algorithm (see Chapter 8).

By assumption (6.1) the resonance problem in Ωext is already formulated in exterior
coordinates (ξ, x̂) ∈ R>0 × Γ. Thus, in the exterior domain we use discrete tensor product
spaces which are composed of finite-dimensional subspaces X̃ ⊂ H1(R>0) and X̂ ⊂ H1(Γ).
For discretizing the problem in the interior domain we use standard H1-conforming, high
order finite element spaces.
Since most of the available algorithms for solving matrix eigenvalue problems are based

on the evaluation (and inversion) of the matrix function at one or more frequencies, we have
to be able to assemble the matrix M(ω0) for a given frequency ω0 ∈ Λ. It is one of the core
ideas of the finite element method to choose the basis in a way that the resulting matrices
are sparse (i.e., have few non-zero entries). Naturally, we want to choose subspaces that
also exhibit this quality. Moreover, it is evident that the subspaces should approximate
the eigenfunctions well. All of these requirements for our subspaces and basis functions are
summarized in (R1–6).

6.2. Discretization and coupling

In this section we give a general outline on how we define our discretization without explic-
itly specifying the discrete bases and spaces. The radial bases and spaces will be defined
in Section 6.3.
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6.2. Discretization and coupling

6.2.1. Interior discretization

For discretizing the problem in the interior domain Ωint, basically, any discrete space

Xint = span{bj : j = 0, . . . , L} ⊂ H1(Ωint)

such that Xint|Γ := {trΓ f : f ∈ Xint} ⊂ H1(Γ) can be used. The trace space of this interior
discrete space is then used for the interface discretization, namely,

X̂M := Xint|Γ = span{trΓ bj : j = 0, . . . , L} ⊂ H1(Γ) . (6.5)

A basis of X̂M is given by B̂M :=
{
trΓ bj(0), . . . , trΓ bj(M)

}
, where the functions j(·) choose

a subset of all the traces such that the elements of B̂M are linearly independent and span
the space X̂M .

Remark 6.1. An obvious choice for Xint is a standard high-order conforming finite element
space. Since in this case all of the basis functions corresponding to inner nodes in Ωint

have vanishing traces on the interface Γ, we expect the dimension of X̂M to be considerably
smaller than the dimension of Xint.

Note that the definition of high-order finite element spaces for arbitrary surfaces Γ is
not straightforward. For the construction of surface finite elements we refer to [DE13].
Commonly, for instance, a piecewise polynomial approximation Γh of Γ is considered. Nev-
ertheless, if Γh fulfills the assumptions on the interface from Definition 3.1, we can simply
work with Γh.

6.2.2. Exterior discretization by tensor product spaces

Let N ∈ N0 and

B̃N := {φn : n = 0, . . . , N} ⊂
{
f : R>0 → C : f(ξ(·)) ∈ H1(Ωext)

}

be a family of linearly independent functions and

X̃N := span
(

B̃N

)

the discrete space spanned by B̃N . To discretize the exterior problem, we use a tensor
product basis and space of the form

X̃N ⊗ X̂M := span
(

B̃N ⊗ B̂M

)

,

B̃N ⊗ B̂M := {φ⊗ b := (ξ, x̂) 7→ φ(ξ) b(x̂) : φ ∈ B̃N , b ∈ B̂M},

where X̂M is the trace space of the interior space defined in (6.5).

It is easy to check that for a function g ∈ X̃N ⊗ X̂M , the function g ◦Ψ−1 is an element
of H1(Ωext). Thus, we can define

XN,M :=
{

g ◦Ψ−1 : g ∈ X̃N ⊗ X̂M

}

.
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6. Discretization

6.2.3. Coupling the interior and the exterior problem

Since we want to create a conforming discrete space for the whole problem on Ω, we need
to couple our interior and exterior discrete spaces in a manner that the resulting space is
equivalent to a subspace of H1(Ω). We achieve this by using

XN :=
{
f ∈ H1(Ω) : f |Ωint

∈ Xint, f |Ωext
∈ XN,M , trΓ (f |Ωint

)
= trΓ

(
f |Ωext

)}
,

with XN,M and Xint as in Sections 6.2.2 and 6.2.1 respectively. To obtain a basis of XN
we have to couple the basis functions in a way that the resulting functions are continuous
at the interface Γ. Under the assumption that the radial basis functions φn are continuous
with φ0(0) = 1 and φn(0) = 0 for all n ∈ N, this can be done as follows: Let bj be an
interior basis function with non-vanishing trace on Γ. Then φ0 ⊗ trΓ bj is also an element
of XN,M and the function







Ω → C,

x 7→
{

bj(x) , x ∈ Ωint ∪ Γ,

bj(x̂(x))φ0(ξ(x)) , x ∈ Ωext,

is continuous on Ω and an element of XN . Identifying the corresponding basis functions in
this way results in a basis of the discrete space XN . If there exist multiple basis functions
of the radial space with non-vanishing trace at 0, we have to add more basis functions or
use a non-conforming method.

6.3. Radial discretization

Our goal in this section is to construct a suitable finite basis B̃N = {φj : j = 0, . . . , N} ⊂
{
f : R>0 → C : f(ξ(·)) ∈ H1(Ωext)

}
and the according suitable finite-dimensional space

X̃N = span
(

B̃N

)

⊂
{
f : R>0 → C : f(ξ(·)) ∈ H1(Ωext)

}
.

Our requirements for the basis functions φn and the discrete space X̃N are:

(R1) It is easy to couple the interior and the exterior problem,

(R2) the discretization matrices are sparse,

(R3) the basis functions φn are easy to evaluate numerically stable,

(R4) the integrals1
∫

R>0
q(ξ)φ

(α)
n (ξ)φ

(β)
j (ξ) dξ are easy to compute (numerically) for poly-

nomials q and α, β ∈ {0, 1},

(R5) the generalized-radial part of the eigenfunctions can be well approximated by func-
tions from X̃N , and

(R6) the condition numbers of the discretization matrices behave well for large values of
N .

1where ·(n) denotes the n-th derivative
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6.3. Radial discretization

6.3.1. Perfectly matched layers

The idea of perfectly matched layers is to use a finite-dimensional subspace Xh ⊂ H1(Ωext)
of functions which are supported only in a finite domain Ωpml ⊂ Ωext.

Remark 6.2. A usual implementation of a perfectly matched layer (for resonance problems
see, e.g., [Hal19, KP09]) consists of meshing Ωpml and using standard finite element basis
functions for H1(Ωpml). To apply this idea to the coordinates from Definition 3.1, we have
to transform the respective weak formulations back to cartesian coordinates after applying
the complex scaling. To be able to do so, it is necessary to explicitly know the inverse
coordinate mapping Ψ−1(x) = (ξ(x) , x̂(x)). Although this is the case, for instance, for
spherical coordinates (cf. Example 3.3), in more general cases these mappings are not
available in closed forms.

Contrary to the usual implementation of perfectly matched layers described in Remark
6.2, one can also use the exterior coordinates and tensor product approach explained in
Section 6.2. In the context of perfectly matched layers this corresponds to choosing a one-
dimensional mesh on the truncated generalized-radial domain (0, T ) for some T > 0 and
using a finite element space

Xh ⊂ H1
T ((0, T )) := {f ∈ H1(R>0) : supp(f) ⊂ [0, T ]}.

For this approach merely the sesquilinear form in exterior coordinates of the form (6.1)
has to be known. Usual one-dimensional finite element bases and spaces fulfill all the
requirements (R1–6).

6.3.2. Complex-scaled infinite Elements

Complex scaling leads to anisotropic solutions. In the interior domain Ωint, as well as in the
surface direction of the exterior domain, the oscillating behavior of the function dominates,
whereas in the generalized-radial direction of the exterior domain the exponential decay is
more significant. Therefore, it is natural to choose suitable different basis functions for the
different parts of the solution respectively.
For the radial discretization we use the space of generalized Laguerre functions (Defini-

tion A.10). These functions are used as basis functions for spectral methods for equations
on unbounded domains with exponentially decreasing solutions (see, e.g., [STW11, Sec-
tion 7.4]). We will see in the following that they are a suitable choice considering our
requirements (R1–6).

Definition 6.3. For N ∈ N0 we define the radial basis and space by

B̃N := {φ0, . . . , φN}, X̃N := span
(

B̃N

)

,

where φn := φn,−1 are the generalized Laguerre functions with index −1 given by

φn(ξ) = exp(−ξ)Ln,−1(2ξ) = exp(−ξ)
n∑

k=0

(
n− 1
n− k

)
(−2ξ)k
k!

for ξ > 0 (Definitions A.7, A.10 and Figure 6.1).
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6. Discretization

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

ξ

φ0,−1

φ1,−1

φ2,−1

φ3,−1

Figure 6.1.: The first few basis functions φj = φj,−1.

The first few basis functions φj are given by

φ0(ξ) = exp(−ξ) ,
φ1(ξ) = −2ξ exp(−ξ) ,
φ2(ξ) = (2ξ2 − 2ξ) exp(−ξ) ,

φ3(ξ) =

(

−4ξ3

3
+ 4ξ2 − 2ξ

)

exp(−ξ) .

Since for any m ∈ Z the function Ln,m is a polynomial of order n with non-zero leading
coefficient (see Remark A.8), the space X̃N can also be described by

X̃N = {exp(−x) pj(x) : pj ∈ PN} = span({φj,m : j = 0, . . . , N}) ,

for any m ∈ Z. We proceed to study whether the space X̃N and the basis BN from
Definition 6.3 satisfy the requirements (R1–6).

For the approximation properties and the condition numbers, we refer to Sections 6.5
and 9.1 respectively.

Coupling

By Proposition A.11.(iv) we have (cf. Figure 6.1)

φ0(0) = 1, φn(0) = 0

for all n ∈ N. Thus, as described in Section 6.2.3, we only have to couple the basis functions
that contain the generalized-radial basis function φ0. Therefore, (R1) is fulfilled.
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6.4. Complex-scaled and Hardy space infinite elements

Sparsity

By A.11.(v) we have that the radial integrals vanish for radial basis functions φj , φk and
|j − k| large enough, as long as the coefficients of the radial part of the sesquilinear forms
are polynomials (see also the matrices in Section 7.4.1). This is the case for the radial
sesquilinear forms corresponding to all the coordinates we consider (cf. Definition 5.1 and
Section 7.1).

Stable evaluation and numerical integration

The generalized Laguerre functions can be evaluated numerically stable by using the recur-
sion given in Proposition A.11.(vi). We use Gauss rules for (0,∞) with weighting function
exp(−·) to obtain exact quadrature rules for the Laguerre functions (see [STW11, Chap-
ter 7.1.2] and Section 7.4.2).

Remark 6.4. This enables us to also deal with inhomogeneous potentials in the exterior
domain which is not possible in a straightforward way using classical Hardy space infinite
elements (see Section 10.2.1).

6.4. Complex-scaled and Hardy space infinite elements

The method of Hardy space infinite elements (short HSIEM) was introduced by Hohage
and Nannen in 2009 (see [HN09]) and is based on a radiation condition called the pole
condition ([HSZ03a, HSZ03b, SHK+07]).

In the following we give a short introduction to the HSIEM for one-dimensional prob-
lems. The pole condition imposes a condition on the analytic continuation of the Laplace
transform L of a solution u given by

L(u)(s) :=
∫ ∞

0
u(x) exp(−xs) dx.

To state the weak formulation on which the Hardy space infinite element method is based,
we need the following definition:

Definition 6.5. For σ ∈ C \ {0} we define the right Hardy space H
(
i
σR
)
as the set of all

functions f : i
σR → C such that there exists a volume function fvol :

i
σCIm≤0 → C with

f = fvol| i
σ
R
and the integrals

∫

R

∣
∣
∣fvol

(

s+
y

σ

)∣
∣
∣

2
ds

are uniformly bounded for y ∈ R>0. Moreover, we define operators T σ
m , T σ

s : C×H
(
i
σR
)
→
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6. Discretization

H
(
i
σR
)
and a bilinear form qσ : H

(
i
σR
)
×H

(
i
σR
)
→ C by

T σ
m(u0, U)⊤ :=

u0 + U(s)

s+ 1
σ

,

T σ
s (u0, U)⊤ :=

−u0
σ + sU(s)

s+ 1
σ

,

qσ (U, V ) :=
1

2iπ

∫

i
σ
R

U(s)V (−s) ds.

Now the weak formulation for the HSIEM of a one-dimensional problem on the domain
Ω := (−R,∞) for some R > 0 can be stated as follows:

Problem 6.6. Let σ ∈ C \ {0}, R > 0, Ωint := (−R, 0) and H
(
i
σR
)
, T σ

m , T σ
s , qσ as in

Definition 6.5. Then we consider the problem to

find ω ∈ C \ {0}, and 0 6= (u, U) ∈ H1(Ωint)×H
(
i

σ
R

)

such that

(
u′, v′

)

L2(Ωint)
+ qσ

(

T σ
s (tr0 u, U)⊤ , T σ

s (tr0 v, V )⊤
)

= ω2
((

(1 + ρ)2u, v
)

L2(Ωint)
+ qσ

(

T σ
m (tr0 u, U)⊤ , T σ

m (tr0 v, V )⊤
))

for all v ∈ H1(Ωint), V ∈ H
(
i

σ
R

)

.

The correspondence in Ωext between the eigenfunctions (u, U)⊤ of Problem 6.6 and eigen-
functions w of the Helmholtz resonance problem is given by

L
(
w|Ωext

)
= T σ

m(u(0), U)⊤.

It can be shown that Problem 6.6 is equivalent to Problem 2.3 for frequencies ω with
Im(ωσ) > 0. For an exhaustive reference we refer to [HN18, HHNS16]2 The parameter s0
used therein is related to σ by the formula s0 = − 1

σ . To discretize Problem 6.6 we use basis
functions (cf. [HN18, 3.7] with s0 = − 1

σ )

βσ−1 :=

(
1
0

)

,

βσn :=

(
0

− 2
σ·+1

(
σ·−1
σ·+1

)n

) (6.6)

for n = 0, . . . , N − 1.
One key observation is the following correspondence between the generalized Laguerre

functions and the basis functions defined above.

2Note that these papers use more involved basis functions and Hardy spaces respectively. Nevertheless,
we refer to these, more recent publications since the presentation therein is closer to our understanding
of infinite elements, whereas in publications like [HN09, Hal16, HN15b], in addition to the Laplace
transform, a Möbius transform is used.
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6.4. Complex-scaled and Hardy space infinite elements

Lemma 6.7. For σ ∈ C \ {0}, let βj, j ∈ Z≥−1 be as in (6.6), T σ
m, T σ

s as in Definition
6.5, and φj, j ∈ N0 be as in Definition 6.3. Then for s ∈ R and n ∈ N0

L(φn)(s) =
1

σ
T σ
m

(
βσn−1

)( s

σ

)

and

L
(
φ′n
)
(s) = T σ

s

(
βσn−1

)( s

σ

)

.

Proof. For n = 0 we have

L(φ0)(s) = L(exp(−·))(s) =
1

s+ 1
= T 1

m

(
β1−1

)
(s) .

For n > 0 using L
(
exp(−·) ·k

)
= k!

(s+1)k+1 and

(
n− 1
n

)

= 0 we obtain

L(φn)(s) =
n∑

k=0

(
n− 1
n− k

)
(−2)k
k!
L
(

exp(−·) ·k
)

(s)

=
n∑

k=1

(
n− 1
n− k

)
(−2)k

(s+ 1)k+1

= − 2

(s+ 1)2

n∑

k=1

(
n− 1
k − 1

)
(−2)k−1

(s+ 1)k−1

= − 2

(s+ 1)2

(

1− 2

s+ 1

)n−1

= T 1
m

(
β1n−1

)
(s) .

Moreover, we have

T 1
m

(
β1n−1

)
(s) =

1

σ
T σ
m

(
βσn−1

)( s

σ

)

which leads to the first statement. The second claim can be obtained by similar computa-
tions or, alternatively, by the use of [HN18, 2.15].

The theorem below states that the discretization matrices of the HSIEM and the complex-
scaled infinite element method defined in 6.3.2 are identical.

Theorem 6.8. For σ ∈ C \ {0}, let βj, j ∈ Z≥−1 be as in (6.6), T σ
m, T σ

s as in Definition
6.5, and φj, j ∈ N0 as in Definition 6.3. Then, for n, k ∈ N0,

σ

∫ ∞

0
φn(ξ)φk(ξ) dξ = qσ

(
T σ
m

(
βσn−1

)
, T σ

m

(
βσk−1

))
,

1

σ

∫ ∞

0
φ′n(ξ)φ

′
k(ξ) dξ = qσ

(
T σ
s

(
βσn−1

)
, T σ

s

(
βσk−1

))
.
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6. Discretization

Proof. We have

σ

∫ ∞

0
φn(ξ)φk(ξ) dξ =

σ

2π

∫ ∞

−∞
L(φn)(is)L(φk)(−is) ds

=
σ

2π

∫ ∞

−∞

1

σ
T σ
m

(
βσn−1

)
(
is

σ

)
1

σ
T σ
m

(
βσk−1

)
(

− is
σ

)

ds

=
1

2iπ

∫

i
σ
R

T σ
m

(
βσn−1

)
(s) T σ

m

(
βσk−1

)
(−s) ds

= qσ
(
T σ
m

(
βσn−1

)
, T σ

m

(
βσk−1

))
,

where we used the equality
∫ ∞

0
f(x)g(x) dx =

1

2π

∫ ∞

−∞
L(f) (is)L(g)(−is) ds,

from [HN09, Lemma A.1], which can be shown to hold for the basis functions φj . The
proof for the derivatives works similarly.

6.5. Approximation results for infinite elements

In this section we deal with the stability of the complex-scaled infinite element method.
The main results for this analysis are contained in the work of Karma [Kar96a, Kar96b]
on the approximation of holomorphic Fredholm operator functions. The main theorems
therein are [Kar96a, Theorem 2] and [Kar96b, Theorems 2 and 3].

[Kar96a, Theorem 2] states that for certain discrete approximation schemes, the cluster
points of sequences of eigenvalues of the discretized problems are exactly the eigenvalues
of the initial problem. [Kar96b, Theorems 2 and 3] state that the convergence rates of
the approximation of eigenvalues and eigenvectors are governed by the best approximation
error of the eigenvectors.

In [Hal19, Section 3] it is proven that Galerkin discretization schemes fulfill the neces-
sary assumptions of [Kar96a, Kar96b] on the discrete approximation schemes. The results
are summarized in [Hal19, Theorem 3.17] in the context of weakly T (·)-coercive operator
functions.
In the following we study the approximation of eigenfunctions, given by (2.8), by the

discrete functions defined in Section 6.3.

Radial approximation error

Along the lines of Chapter 5, we consider the case of three-dimensional polar coordinates
and the according scaling, namely,

Ωext = R
3 \B1, Γ = S1,

and

x̂(x) =
x

‖x‖ , ξ(x) = ‖x‖ − 1, v(x̂) = x̂.
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6.5. Approximation results for infinite elements

As a motivation for the following Sections 6.5.1 and 6.5.2, we undertake the following
considerations: Let

v(ξ, x̂) :=
∞∑

k=0

k∑

j=−k

βk,jh
(1)
k (ω(1 + σξ))Y j

k (x̂) =
∞∑

l=0

ũl(ξ) ûl(x̂)

be a complex-scaled eigenfunction in polar coordinates in Ωext (Proposition 2.8 and The-
orem 5.5) for some scaling parameter σ ∈ C \ {0} and a frequency ω ∈ C such that ω, σ

fulfill (S1) and (S2). Here ûl = Y
k(l)
j(l) and (k(l) , j(l)) is the inverse of the bijection

l :

{

{(k, j) ∈ N0 × Z : |j| ≤ k} → N0,

(k, j) 7→ k2 + k + j.

Then the infinite sum converges uniformly on compact sets (Proposition 2.8) and v ◦
Ψ−1 ∈ C∞(Ωext

)
.

We pick an index K ∈ N and truncate the infinite series to

u(ξ, x̂) :=

K∑

l=0

ũl(ξ) ûl(x̂) = v(ξ, x̂)−
∞∑

l=K+1

ũl(ξ) ûl(x̂) .

In the following we discuss the approximation error of the truncated solution u. Note that
the truncation of the series is not part of our method but merely a tool to motivate the
following modal analysis. Also note that for a complete analysis of the approximation error
an estimate that is uniform in K would be necessary.

Remark 6.9. The error caused by the truncation of the series can be analyzed using the
reasoning we sketch in the following: Since v ∈ C∞(Ωext

)
, we also have v(1, ·) ∈ Hn(Γ)

for every n ∈ N0. From the fact that the spherical harmonics form a complete orthogonal
system with respect to the H1(Γ)-norm we obtain that (cf. [Hal19, (2.6)])

|v(1, ·)|2Hn(Γ) =
∞∑

k=0

(k(k + 1))n
k∑

j=−k

∣
∣
∣βk,jh

(1)
k (ω)

∣
∣
∣

2
,

where |·|Hn(Γ) denotes theH
n(Γ)-seminorm. Since this holds for any n ∈ N0, the coefficients

βk,jh
(1)
k (ω) decay super-algebraically for k →∞.

In the following let

uN,M (ξ, x̂) =
K∑

l=0

ũNl (ξ) ûMl (x̂) ,

uN (ξ, x̂) =

K∑

l=0

ũNl (ξ) ûl(x̂)

for some approximations ũNl ≈ ũl, ûMl ≈ ûl and l = 0, . . . ,K.
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6. Discretization

Then we can bound the approximation error of u by

‖uN,M (ξ(·) , x̂(·))− u‖H1(Ωext)

≤ ‖uN,M (ξ(·) , x̂(·))− uN (ξ(·) , x̂(·))‖H1(Ωext)
︸ ︷︷ ︸

=:ε̂

+ ‖uN (ξ(·) , x̂(·))− u‖H1(Ωext)
︸ ︷︷ ︸

=:ε̃

and obtain for the tangential error ε̂

ε̂2 =

∫ ∞

0
(1 + ξ)2

∫

Γ

∣
∣
∣
∣
∣

K∑

l=0

(
ũNl
)′
(ξ)
(
ûMl (x̂)− ûl(x̂)

)

∣
∣
∣
∣
∣

2

dx̂dξ

+

∫ ∞

0

∫

Γ

∥
∥
∥
∥
∥

K∑

l=0

ũNl (ξ) ∇̂
(
ûMl (x̂)− ûl(x̂)

)

∥
∥
∥
∥
∥

2

dx̂dξ

+

∫ ∞

0
(1 + ξ)2

∫

Γ

∣
∣
∣
∣
∣

K∑

l=0

ũNl (ξ)
(
ûMl (x̂)− ûl(x̂)

)

∣
∣
∣
∣
∣

2

dx̂dξ

≤
(

K∑

l=0

∫ ∞

0
(1 + ξ)2

∣
∣
∣

(
ũNl
)′
(ξ)
∣
∣
∣

2
dξ

)(
K∑

l=0

∫

Γ

∣
∣ûMl (x̂)− ûl(x̂)

∣
∣
2
dx̂

)

+

(
K∑

l=0

∫ ∞

0

∣
∣ũNl (ξ)

∣
∣
2
dξ

)(
K∑

l=0

∫

Γ

∥
∥
∥∇̂
(
ûMl (x̂)− ûl(x̂)

)
∥
∥
∥

2
dx̂

)

+

(
K∑

l=0

∫ ∞

0
(1 + ξ)2

∣
∣ũNl (ξ)

∣
∣
2
dξ

)(
K∑

l=0

∫

Γ

∣
∣ûMl (x̂)− ûl(x̂)

∣
∣
2
dx̂

)

.

If we assume approximation properties of the tangential space of the form

∥
∥ûMl − ûl

∥
∥
L2(Γ)

≤ Ĉ(M) ‖ûl‖L2(Γ) ,
∥
∥
∥∇̂
(
ûMl − ûl

)
∥
∥
∥
L2(Γ)

≤ Ĉ(M)
∥
∥
∥∇̂ûl

∥
∥
∥
L2(Γ)

for some functions Ĉ, independent of ûl, and the radial approximation to be continuous
with constant D̃ > 0, namely,

∥
∥ũNl

∥
∥
H1(R>0)

≤ D̃ ‖ũl‖H1(R>0)
,

we obtain

ε̂ ≤ D̃Ĉ(M) ‖u(ξ(·) , x̂(·))‖H1(Ωext)
,
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6.5. Approximation results for infinite elements

since the H1(Ωext)-norm of u(ξ(·) , x̂(·)) is given by

‖u(ξ(·) , x̂(·))‖2H1(Ωext)
=

K∑

m,l=0

∫ ∞

0
(1 + ξ)2ũ′l(ξ) ũ′m(ξ)dξ

∫

Γ
ûl(x̂) ûm(x̂) dx̂

+

∫ ∞

0
ũl(ξ) ũm(ξ)dξ

∫

Γ
∇̂ûl · ∇̂ûmdx̂

+

∫ ∞

0
(1 + ξ)2ũl(ξ) ũm(ξ)dξ

∫

Γ
ûl(x̂) ûm(x̂) dx̂

=

K∑

l=0

∫ ∞

0
(1 + ξ)2

∣
∣ũ′k(ξ)

∣
∣2 dξ

+

∫ ∞

0

(
k(l) (k(l) + 1) + (1 + ξ)2

)
|ũk(ξ)|2 dξ.

(6.7)

The derivation of Ĉ can be done by using standard techniques for H1-conforming finite
elements on the surface Γ (see [DE13]). Naturally, we expect Ĉ → 0 for M →∞.
For the radial error, we obtain by a similar calculation as in (6.7)

ε̃2 =
K∑

l=0

∫ ∞

0

(1 + ξ)2
∣
∣
∣

(
ũNl
)′
(ξ)− ũ′l(ξ)

∣
∣
∣

2

+

∫ ∞

0

(
k(l) (k(l) + 1) + (1 + ξ)2

) ∣
∣ũNl (ξ)− ũl(ξ)

∣
∣
2
dξ.

This means that we have to find a bound for the radial best approximation error of the
form

inf
ũN∈X̃N

∥
∥
∥h

(1)
k (ω(1 + σ·))− ũN

∥
∥
∥
H̃1

k(R>0)
≤ C̃(N)

∥
∥
∥h

(1)
k (ω(1 + σ·))

∥
∥
∥
H̃1

k(R>0)
, (6.8)

where the weighted norm is defined by

‖f‖2
H̃1

k(R>0)
:=

∫ ∞

0
(1 + ξ)2

∣
∣f ′(ξ)

∣
∣2 +

∫ ∞

0

(
k(k + 1) + (1 + ξ)2

)
|f(ξ)|2 dξ, (6.9)

for suitable functions f .
In the following sections we present a modal analysis, meaning that we show (6.8) with

C̃(N) = C̃k(N) depending on the Hankel index k. Note that for a full analysis we would
need this bound to be uniform in the index.

6.5.1. General approximation results

In this section we present approximation results by Laguerre functions, which are indepen-
dent of the fact that the radial components of the eigenfunctions are given by spherical
Hankel functions. Recall that the discrete space X̃N is given by

X̃N = span({φ0, . . . , φN}) = span({φ0,0, . . . , φ0,N})

(Definition 6.3). We shorten the notation by writing ψn := φn,0 for n ∈ N0 and remind the
reader that the functions ψn form a complete orthogonal system in L2(R>0). Moreover, we
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6. Discretization

use the symbol ΠN for the orthogonal projection onto X̃N with respect to the L2(R>0)-inner
product given by

ΠNf = 2

N∑

n=0

(f, ψn)L2(R>0)
ψn, (6.10)

for a function f ∈ L2(R>0). From [STW11] we obtain the following result:

Theorem 6.10. Let m,N ∈ N, m < N and f : R>0 → C be a function such that

ξ 7→ ξm
(

∂
∂ξ + I

)m
f(ξ) ∈ L2(R>0). Then

‖ΠNf − f‖2L2(R>0)
≤ (N −m+ 1)!

(N + 1)!

∥
∥
∥
∥
(·)m

(
∂

∂· + I

)m

f

∥
∥
∥
∥

2

L2(R>0)

.

Proof. [STW11, Theorem 7.9] with α = 1 and l = 0. Note that the arguments of the basis
functions in [STW11] are scaled by the factor 1

2 compared to the basis functions φj .

Using Stirling’s approximation for the factorial gives

(N −m+ 1)!

(N + 1)!
∼ N−m

for N →∞, which shows that the projection error decays super-algebraically in N . For a
given function f ∈ L2(R>0) we write

cn := 2 (f, ψn)L2(R>0)
. (6.11)

Then the projection error and its norm are given by

ΠNf − f =
∞∑

n=N+1

cnψn

and

‖ΠNf − f‖2L2(R>0)
=

1

2

∞∑

n=N+1

|cn|2.

From the considerations above it immediately follows that for m ∈ N and a function

f : R>0 → C such that ξ 7→ ξm
(

∂
∂ξ + I

)m
f(ξ) ∈ L2(R>0), there exists C̃m(f) > 0

independent of n such that
|cn| ≤ C̃m(f)n−

m
2

for every n ∈ N. Thus, also the coefficients of the expansion of f converge to zero super-
algebraically.
To obtain a bound in the weighted norm ‖·‖H̃1

k(R>0)
given by (6.9) we rewrite this norm

by

‖ΠNf − f‖2H̃1

k
(R>0)

=
1

2

∞∑

n,j=N+1

cncj

∫ ∞

0

(1 + ξ)2ψ′
n(ξ)ψ

′
j(ξ) + (k(k + 1) + (1 + ξ)2ψn(ξ)ψj(ξ) dξ

(6.12)

=
1

2

∞∑

n,j=N+1

cncj

(

S
(1+ξ)2

n,j + k(k + 1)
δn,j
2

+M
(1+ξ)2

n,j

)

, (6.13)
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6.5. Approximation results for infinite elements

with

M
(1+ξ)2

n,j :=

∫ ∞

0
(1 + ξ)2ψn(ξ)ψj(ξ) dξ, S

(1+ξ)2

n,j :=

∫ ∞

0
(1 + ξ)2ψ′

n(ξ)ψ
′
j(ξ) dξ. (6.14)

The lemma below states that the coefficients of the (infinite) matrices with entries S
(1+ξ)2

n,j

and M
(1+ξ)2

n,j grow, at most, polynomially.

Lemma 6.11. Let M(1+ξ)2, S(1+ξ)2 be the (infinite) matrices with entries given by (6.14).
Then there exists a constant C > 0 such that

∣
∣
∣S

(1+ξ)2

n,j

∣
∣
∣ ,
∣
∣
∣M

(1+ξ)2

n,j

∣
∣
∣ ≤ Cmin{j2, n2}

for all n, j ∈ N0.

Proof. For n, j ∈ N0 we decompose S
(1+ξ)2

n,j into

S
(1+ξ)2

n,j =

∫ ∞

0
φ′n(ξ)φ

′
j(ξ) dξ + 2

∫ ∞

0
ξφ′n(ξ)φ

′
j(ξ) dξ +

∫ ∞

0
ξ2φ′n(ξ)φ

′
j(ξ) dξ.

Using the formula (Proposition A.11.(iii))

ψ′
n = −ψn − 2φn−1,1 = −ψn − 2

n−1∑

j=0

ψj ,

we obtain
∫ ∞

0
φ′n(ξ)φ

′
j(ξ) dξ =

∫ ∞

0

(

ψn(ξ) + 2
n−1∑

k=0

ψk(ξ)

)(

ψj(ξ) + 2

j−1
∑

l=0

ψl(ξ)

)

dξ

=

{
1
2(1 + 4n), n = j,
1
2(2 + 4min{n, j}), n 6= j.

Using (Proposition A.11.(i))
∫ ∞

0
(2ξ)kφn,k(ξ)φj,k(ξ) dξ =

(n+ k)!

2n!
δn,j

and (Proposition A.11.(iii))
ψ′
n = −φn,1 − φn−1,1,

we obtain

2

∫ ∞

0
ξφ′n(ξ)φ

′
j(ξ) dξ =

∫ ∞

0
2ξ (φn,1(ξ) + φn−1,1(ξ)) (φj,1(ξ) + φj−1,1(ξ)) dξ

=







1
2(2n+ 1), n = j,
1
2(n+ 1), n+ 1 = j,
1
2n, n− 1 = j,

0, else.

By performing similar calculations for the quadratic term and the expression M
(1+ξ)2

n,j , we
obtain the claim.
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6. Discretization

The final theorem of this section states that the best approximation error in the weighted
norm decays super-algebraically as well.

Theorem 6.12. Let m,N ∈ N with m < N , ΠN as in (6.10), and f as in Theorem 6.10.
Then there exists a constant C̃m,k(f) > 0, independent of N , such that

‖ΠNf − f‖H̃1
k(R>0)

≤ C̃m,k(f)N
2−m

2 .

Proof. Let cn be again the coefficients of the expansion of f in the basis functions ψn as in

(6.11). Then for An,j = M
(1+ξ)2

n,j ,S
(1+ξ)2

n,j

∣
∣
∣
∣
∣
∣

∞∑

n=N+1

cn

∞∑

j=N+1

An,jcj

∣
∣
∣
∣
∣
∣

≤
∞∑

n=N+1

|cn|
∞∑

j=N+1

|An,jcj |

≤ CC̃2
m(f)

∞∑

n=N+1

n−
m
2

∞∑

j=N+1

j2j−
m
2

≤ CC̃2
m(f)

∞∑

n=N+1

n−
m
2

∫ ∞

N
x2−

m
2 dx

= CC̃2
m(f)

∞∑

n=N+1

n−
m
2

1
m
2 − 3

N3−m
2

≤ CC̃2
m(f)

1

(m2 − 3)(m2 − 1)
N4−m

for any m < N . Using (6.12) and summing over the expressions and taking the square root
finishes the proof.

6.5.2. Approximation of spherical Hankel functions

In the previous section he have shown that the error in the weighted norm ‖·‖H̃1
k(R>0)

decays super-algebraically in the number of radial unknowns N . Although this gives us
convergence of the complex-scaled infinite element method for Bessel equations, we do
not obtain how the error depends on the scaling parameter σ. In the following we derive
estimates for the L2-error depending on the scaling. Error estimates in the weighted norm
can then be obtained as in the previous section.

Again we use the notation ψn := φn,0.

Best approximation in one dimension

Prior to the discussion of approximation results for the solutions in three dimensions, we
state some results regarding the simpler one-dimensional problems.

Theorem 6.13. For b ∈ C, Re(b) > −1 and n ∈ N0,

∫ ∞

0
exp(−bξ)ψn(ξ) dξ =

(b− 1)n

(b+ 1)n+1
.
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6.5. Approximation results for infinite elements

If, additionally, Re(b) > 0 and ξ ∈ R>0, we have

exp(−bξ) = 2

b+ 1

∞∑

n=0

(
b− 1

b+ 1

)n

ψn(ξ).

Moreover, the L2(R>0)-orthogonal projection onto X̃N of the function exp(−b·) is given by

ΠN exp(−b·) = 2

b+ 1

N∑

n=0

(
b− 1

b+ 1

)n

ψn(·) .

Proof. It is easily shown by integration by parts and induction over j that for j ∈ N, j ≤
n+ 1
∫ ∞

0
exp(−bξ)ψn(ξ) dξ =

1

b+ 1

j−1
∑

k=0

(
2

b+ 1

)k

L
(k)
n,0(0) +

(
2

b+ 1

)j ∫ ∞

0
exp(−ξ(b+ 1))L

(j)
n,0(2ξ) dξ.

For j = n+ 1 we obtain

∫ ∞

0
exp(−bξ)ψn(ξ) dξ =

1

b+ 1

n∑

k=0

(
2

b+ 1

)k

L
(k)
n,0(0)

A.9.(iii)
=

1

b+ 1

n∑

k=0

(

− 2

b+ 1

)k

Ln−k,k(0)

=
1

b+ 1

n∑

k=0

(

− 2

b+ 1

)k (
n
k

)

=
1

b+ 1

(

1− 2

b+ 1

)n

=
(b− 1)n

(b+ 1)n+1
.

If Re(b) > 0, we have exp(−b·) ∈ L2(R>0). Since {ψn, n ∈ N0} is a complete orthogonal
system of L2(R>0) , we have

exp(−bξ) =
∞∑

n=0

(ψn, exp(−b·))L2(R>0)

(ψn, ψn)L2(R>0)

ψn(x) =
2

b+ 1

∞∑

n=0

(
b− 1

b+ 1

)n

ψn(ξ) .

From Theorem 6.13 we obtain the following corollary for the best approximation error
of decaying exponentials.

Corollary 6.14. For b ∈ C, Re(b) > 0 and N ∈ N0

inf
uN∈X̃N

‖exp(−b·)− uN‖L2(R>0)
≤ ‖(I−ΠN ) exp(−b·) ‖L2(R>0) =

1
√

2Re(b)

∣
∣
∣
∣

b− 1

b+ 1

∣
∣
∣
∣

N+1

.
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6. Discretization

Proof. We have

‖(I−ΠN ) exp(−b·) ‖2L2(R>0)
=

∥
∥
∥
∥
∥

2

b+ 1

∞∑

n=N+1

(
b− 1

b+ 1

)n

ψn

∥
∥
∥
∥
∥

2

L2(R>0)

=

∣
∣
∣
∣

2

b+ 1

∣
∣
∣
∣

2 ∞∑

n=N+1

∣
∣
∣
∣

b− 1

b+ 1

∣
∣
∣
∣

2n

‖ψn‖2L2(R>0)

= 2

∣
∣
∣
∣

(b− 1)N+1

(b+ 1)N+2

∣
∣
∣
∣

2 ∞∑

n=0

∣
∣
∣
∣

b− 1

b+ 1

∣
∣
∣
∣

2n

= 2

∣
∣
∣
∣

(b− 1)N+1

(b+ 1)N+2

∣
∣
∣
∣

2
1

1−
∣
∣
∣
b−1
b+1

∣
∣
∣

2

=

∣
∣
∣
∣

b− 1

b+ 1

∣
∣
∣
∣

2N+2 1

2Re(b)
.

Remark 6.15. Because of the representation of the eigenfunctions for d = 1 in the exterior
(Definition 2.6)

uext(ξ) = α exp(±iωR) exp(iωσξ) ,
Theorem 6.13 and Corollary 6.14 with b = −iσω state that the approximation by Laguerre

functions in the L2-norm depends on the quantity
∣
∣
∣
1+iωσ
1−iωσ

∣
∣
∣. It is exact if ωσ = i. In

particular we have for Im(σω) > 0

inf
uh∈X̃N

‖ exp(iσω·)− uh‖L2(R>0) ≤
1

√

2Im(σω)

∣
∣
∣
∣

1 + iσω

1− iσω

∣
∣
∣
∣

N+1

,

stating that the best approximation error of radiating eigenfunctions of the one-dimensional
Helmholtz equation decreases exponentially with respect to the number of exterior degrees
of freedom N .

Best approximation of the zeroth spherical Hankel function

Since the radial part of the eigenfunctions of the three-dimensional Helmholtz resonance
problem in the exterior domain consist of spherical Hankel functions of the first kind, we

proceed by discussing the approximation of h
(1)
0 by Laguerre functions. Suppose we want

to approximate

h
(1)
0 (ω + iξ) =

− exp(iω) exp(−ξ)
−iω + ξ

using our basis functions ψn. This is be the case when we apply a frequency-dependent
complex scaling σ(ω) = i

ω (see Section 7.3). Then the approximation error is governed by

the terms
(
exp(−·)
a+· , ψn

)

L2(R>0)
with a = −iω. This motivates the following definition:
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6.5. Approximation results for infinite elements

Definition 6.16. For a ∈ C \ R≤0 and n, k ∈ N0, we define

αn,k(a) :=

∫ ∞

0

exp(−ξ)
(a+ ξ)k

ψn(ξ) dξ.

The lemma below states that the numbers αn,1(a) can be computed by evaluating a
single integral.

Lemma 6.17. For a ∈ C \ R≤0 and n ∈ N0, we have

αn,1(a) =

∫ ∞

0

ξn exp(−ξ)
(a+ ξ)n+1

dξ.

The numbers 2αn,1(a) are the coefficients of the expansion of exp(−·)
a+· in the Laguerre func-

tions ψn and therefore

exp(−ξ)
a+ ξ

= 2
∞∑

n=0

αn,1(a)ψn(ξ).

Proof. It is easily shown by integration by parts and induction over j that for j ≤ n
∫ ∞

0

tn exp(−t)
(2a+ t)n+1

dt =
(n− j)!
n!

∫ ∞

0

1

(2a+ t)n+1−j

dj

dtj
(exp(−t) tn) dt.

For j = n, we obtain

∫ ∞

0

tn exp(−t)
(2a+ t)n+1

dt =
1

n!

∫ ∞

0

1

2a+ t

dn

dtn
(exp(−t) tn) dt

A.9.(v)
=

∫ ∞

0

1

2a+ t
exp(−t)Ln,0(t) dt

=

∫ ∞

0

2 exp(−t)
2a+ 2t

ψn(t) dt = αn,1(a) .

The following theorem gives an asymptotic expansion of the terms αn,1(a) with respect
to n.

Theorem 6.18 (asymptotic behavior of αn,1). For a ∈ C \ R≤0, we have

αn,1(a) = exp
(

a− 2
√

2a(n+ 1)
) √

π

(2a(n+ 1))
1
4

(

1 +O
(

1√
n+ 1

))

, n→∞.

3

3The symbols
√
z and z

1

4 for z ∈ C\R≤0 assume their respective principal values (their image is symmetric
with respect to the positive real axis).
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6. Discretization

Proof. Lemma 6.17 states that

αn,1(a) = n!U(n+ 1, 1, 2a) ,

where for n ∈ N0, a ∈ C \ R≤0

U(n+ 1,m, a) =
a1−m

n!

∫ ∞

0

tn exp(−t)
(a+ t)n+2−m

dt.

The function U is called confluent hypergeometric function of the second kind ([Tem96,
Section 7.2]). Using (10.3.39) and (9.1.3) in [Tem15] we obtain

n!U(n+ 1, 1, 2a) = 2 exp(a)

(

K0

(

2
√

2a(n+ 1)
)

+

√

2a

n+ 1
K1

(

2
√

2a(n+ 1)
)

+O
(

1√
n+ 1

))

for n→∞ and

Kn(z) =

√
π

2z
exp(−z)

(

1 +O
(
1

z

))

,

for |z| → ∞. All in all, we obtain

αn,1(a) = n!U(n+ 1, 1, 2a)

=
√
π(2a(n+ 1))−

1
4 exp

(

a− 2
√

2a(n+ 1)
)(

1 +O
(

1√
n+ 1

))

for n→∞.

Using the lemma above, we can now bound the best approximation error of h
(1)
0 (ω + i·)

by Laguerre functions.

Lemma 6.19. Let N ∈ N and ω ∈ C\{0}. Then there exists a constant c > 0 independent
of N , such that

∥
∥
∥(I−ΠN )h

(1)
0 (ω + i·)

∥
∥
∥
L2(R>0)

≤ c
√
π

(2|ω|) 1
4

exp
(

−2Re
(√

ω(N + 1)
))

.

Proof. We have

∥
∥
∥(I−ΠN )h

(1)
0 (ω + i·)

∥
∥
∥

2

L2(R>0)
=

∥
∥
∥
∥
(I−ΠN )(−1) exp(iωR) exp(−·)−iω + ·

∥
∥
∥
∥

2

L2(R>0)

=

∞∑

n=N+1

|2αn,1(−iω) |2‖ψn‖2

≤ 2c
∞∑

n=N+1

∣
∣
∣
∣
∣
exp

(

−iω − 2
√

−2iω(n+ 1)
) √

π

(−2iω(n+ 1))
1
4

∣
∣
∣
∣
∣

2

= cπ

√

2

ω

∞∑

n=N+1

exp
(

2Im(ω)− 4Re
(√

−2iω(n+ 1)
))

√
n+ 1
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6.5. Approximation results for infinite elements

for some c > 0. Since the summands are the values of a decreasing function in n, we can
replace the sum with an integral and obtain

∥
∥
∥(I−ΠN )h

(1)
0 (ω + i·)

∥
∥
∥

2

L2(R>0)
≤ cπ exp(2Im(ω))

√

2

ω

∫ ∞

N+1

exp
(
−4Re

(√
−2iωt

))

√
t

dt

= 2c exp(2Im(ω))π

√

2

ω

∫ ∞
√
N+1

exp
(

−4Re
(√
−2iω

)

s
)

ds

=
cπ exp(2Im(ω))

2Re
(√
−2iω

) exp
(

−4Re
(√

−2iω(N + 1)
))

.

Lemma 6.19 only gives us the approximation error for a frequency-dependent complex
scaling σ(ω) = i

ω , which leads to solutions with exponential decay exp(−·). General scalings
result in solutions with exponential decay exp(Re(iωσ)) leading to an additional error term.

Theorem 6.20. Let ω ∈ C, σ ∈ C \ R<0 with Im(ωσ) > 0, N ∈ N, and X̃N as in
Definition 6.3. Then there exist constants C1, C2 > 0 independent of N such that the best

approximation error of h
(1)
0 (ω + ωσ·) can be bounded by

inf
uN∈X̃N

‖h(1)0 (ω + ωσ·)− uN‖L2(R>0) ≤ C1

∣
∣
∣
∣

1 + iσω

1− iσω

∣
∣
∣
∣

N+1

+ C2ε

(

N,
1

σ
,−iωσ

)

,

with

ε(N, a, b) := ‖(I−ΠN )
1

a+ ·ΠN exp(−b·) ‖L2(R>0). (6.15)

Proof. We have

‖(I−ΠN )h
(1)
0 (ω + ωσ·) ‖L2(R>0) = ‖(I−ΠN )

−i exp(iω)
ωσ

exp(iωσ·)
1
σ + · ‖L2(R>0)

≤ C2‖(I−ΠN )
1

1
σ + ·(I−ΠN )exp(iωσ·)‖L2(R>0)

+ C2 ‖(I−ΠN )
1

1
σ + ·ΠNexp(iωσ·)‖L2(R>0)

︸ ︷︷ ︸

ε(N, 1
σ
,−iωσ)

,

with C2 =
∣
∣
∣
exp(iω)
ωσ

∣
∣
∣. The first term can be bounded by

‖(I−ΠN )
1

1
σ + ·(I−ΠN )exp(iωσ·)‖L2(R>0) ≤ 2C‖(I−ΠN )exp(iωσ·)‖L2(R>0)

≤ 2C
1

√

2Im(ωσ)

∣
∣
∣
∣

1 + iωσ

1− iωσ

∣
∣
∣
∣

N+1

for some constant C > 0 (cf. Corollary 6.14).
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6. Discretization

To obtain a bound for the best approximation error of h
(1)
0 in the space X̃N , we need to

find a bound for the expression ε. Since for b ∈ C and a ∈ C \ R≤0

(I−ΠN )
1

a+ ·ΠN exp(−b·) =
∞∑

n=N+1

∫ ∞

0

1

a+ ξ

N∑

k=0

(b− 1)k

(b+ 1)k+1
ψk(ξ)ψn(ξ) dξψn(·) ,

we need to know the asymptotic behavior of the expressions

βn,k(a) :=

∫ ∞

0

ψn(x)ψk(x)

a+ x
dx (6.16)

for large n ∈ N. Thus, we state the following lemma:

Lemma 6.21. Let a ∈ C \ R<0, and βn,k given by (6.16). Then for n, k ∈ N0 such that
n ≥ k there holds

βn,k(a) = αn,1(a)Lk,0(−2a). (6.17)

Proof. We prove by induction in k. For k = 0, we have

βn,0(a) = αn,1(a) = αn,1(a)L0,0(−2a),

and for k = 1, n ≥ 1

βn,1(a) =

∫ ∞

0

exp(−x)(1− 2x)

a+ x
ψn(x) dx

= αn,1(a)− 2

∫ ∞

0

x+ a− a
a+ x

exp(−x)ψn(x) dx

= αn,1(a)− δn,0 + 2aαn,1(a)

= (2a+ 1)αn,1(a) = L1,0(−2a)αn,1(a).

For n ≥ k, we use the recursion from A.11.(vi) and write

βn,k(a) =

∫ ∞

0

ψn(x)

a+ x

(
2k − 1− 2x

k
ψk−1(x)−

k − 1

k
ψk−2(x)

)

dx =

=
2k − 1

k
βn,k−1(a)−

k − 1

k
βn,k−2(a)−

2

k

∫ ∞

0

x+ a− a
a+ x

ψn(x)ψk−1(x) dx

=
2k − 1

k
βn,k−1(a)−

k − 1

k
βn,k−2(a) +

2a

k
βn,k−1(a)

= αn,1(a)

(
2k − 1 + 2a

k
Lk−1,0(−2a)−

k − 1

k
Lk−2,0(−2a)

)

= αn,1(a)Lk,0(−2a).

Now we are able to bound the term ε(N, a, b) given by (6.15).
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6.5. Approximation results for infinite elements

Lemma 6.22. For a ∈ C \ R≤0, b ∈ C and Re(b) > 0, there exists C > 0 independent of
N such that

ε(N, a, b) ≤ C exp
(

−2Re
(√

2a(N + 1)
))

for ε as in (6.15).

Proof. Since

ΠN exp(−bx) = 2

b+ 1

N∑

k=0

(
b− 1

b+ 1

)k

ψk(x),

we have

ε(N, a, b)2 =

∥
∥
∥
∥
∥

∞∑

n=N+1

4

b+ 1

N∑

k=0

(
b− 1

b+ 1

)k (

ψn,
ψk

·+ a

)

L2(R>0)

ψn

∥
∥
∥
∥
∥

2

L2(R>0)

=

∥
∥
∥
∥
∥

∞∑

n=N+1

4

b+ 1

N∑

k=0

(
b− 1

b+ 1

)k

βn,k(a)ψn

∥
∥
∥
∥
∥

2

L2(R>0)

=
1

2

∞∑

n=N+1

∣
∣
∣
∣
∣

4

b+ 1
αn,1(a)

N∑

k=0

(
b− 1

b+ 1

)k

Lk,0(−2a)
∣
∣
∣
∣
∣

2

.

Using the generating function of the Laguerre polynomials from Lemma A.9.(vi) we have,
for some constant C, that

N∑

k=0

(
b− 1

b+ 1

)k

Lk,0(−2a) ≤ C
1

1− b−1
b+1

exp

(

2a
b−1
b+1

1− b−1
b+1

)

= C
b+ 1

2
exp(a(b− 1))

and thus

ε(N, a, b)2 ≤ 2C

∞∑

n=N+1

|αn,1(a) exp(a(b− 1))|2 .

Substituting the asymptotic behavior of αn,1 and repeating the arguments of the proof of
Lemma 6.19, we find for some constant c ∈ R

∞∑

n=N+1

|αn,1(a)|2 ≤ c
∣
∣
∣
∣
exp(2a)

π√
2a

∣
∣
∣
∣

1

2Re
(√

2a
) exp

(

−4Re
(√

2a(N + 1)
))

.

All in all, this gives

ε(N, a, b) ≤ C̃ exp(Re(ab))
√
π

√

|2a|Re
(√

2a
)
exp
(

−2Re
(√

2a(N + 1)
))

.
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6. Discretization

Using Theorem 6.20 and Lemma 6.22 we have proven the following theorem:

Theorem 6.23. Let N ∈ N, ω ∈ C, σ ∈ C \ R<0, such that Im(σω) > 0 and X̃N as in
Definition 6.3. Then we can bound the approximation error of the complex-scaled zeroth
spherical Hankel function by

inf
uN∈X̃N

∥
∥
∥h

(1)
0 (ω(1 + σ·))− uN

∥
∥
∥
L2(R>0)

≤ c1
∣
∣
∣
∣

1 + iσω

1− iσω

∣
∣
∣
∣

N+1

+ c2 exp

(

−2Re
(√

2(N + 1)

σ

))

for some constants c1, c2 > 0 independent of N .

Theorem 6.23 states that the approximation error of h
(1)
0 (ω + σω·) by Laguerre functions

can be split up into two parts:

— An exponentially decaying part similar to the error of the one-dimensional problem,
which is generated by the different exponential decay of the solution and the basis
functions and

— a super-algebraic part due to the fact that we approximate the rational part of h
(1)
0

by polynomials.

Approximation of spherical Hankel functions with higher index

Up to now we have only dealt with the approximation of the complex-scaled Hankel function
of the first kind with index zero. For Hankel functions with higher indices similar bounds
for the approximation error can be derived. To avoid lengthy and technical calculations we
merely give a short sketch of the results.

Similar to Theorem 6.18 one can show an asymptotic behavior of αn,k of the form

|αn,k(a)| ≤ Ck,a

∣
∣
∣exp

(

−2
√

2a(n+ 1)
)∣
∣
∣ (n+ 1)−

3
4
+ k

2 , n→∞.

Using this and similar ideas as in the proofs of Theorem 6.20 and Lemma 6.22 leads to a
bound of the best approximation error of the complex-scaled spherical Hankel function of
the first kind with index n ∈ N

inf
uN∈X̃N

∥
∥
∥h(1)n (ω(1 + σ·))− uN

∥
∥
∥
L2(R>0)

≤ c1
∣
∣
∣
∣

1 + iσω

1− iσω

∣
∣
∣
∣

N+1

+ c2 exp

(

−2Re
(√

2(N + 1)

σ

))

(N +1)
n
2

for some constants c1, c2 > 0 independent of N .
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7. Implementation

In this chapter we collect all the relevant information for readers who are interested in
implementing our method. To implement the frequency-dependent complex scaling in
exterior coordinates we have to

1. pick exterior coordinates and derive the according weak formulation of the complex-
scaled equation,

2. pick a frequency-dependent scaling parameter σ : Λ ⊂ C → C \ {0} and derive the
according non-linear eigenvalue problem,

3. assemble the (in-)finite element matrices, and

4. solve the discrete non-linear eigenvalue problem.

We address the derivation of the weak formulation for three examples of exterior coordinates
in Section 7.1 (see (7.3), (7.4), (7.5), (7.6), (7.7) and (7.8)).

In Section 7.2 we show how to derive eigenvalue problems that are rational in the
frequency ω for the given exterior coordinates from Section 7.1 and rational frequency-
dependencies.
In Section 7.3 we give examples for choices of the frequency-dependency (see (7.14)).

Moreover, for these frequency-dependencies, we explicitly calculate the subsets of the com-
plex plane where the assumptions (S1) and (S2) are violated and therefore give descriptions
for the possible location of the essential spectrum.
The task of assembling the (in-)finite element matrices is addressed in Section 7.4. For al-

gorithms for the approximation of the eigenvalues and eigenfunctions of rational eigenvalue
problems, we refer to Chapter 8.

In the following we assume that a suitable discretization of the interior domain Ωint and
the interface Γ is already given (cf. Section 6.2.1) and merely focus on the discretization
of the exterior domain Ωext.

7.1. The complex-scaled Helmholtz equation in various exterior
coordinates

In Chapter 5 we focused on the spherical scaling to present a detailed analysis. Since,
in some configurations, it is advantageous to use different exterior coordinates and there-
fore different scalings, we give examples for the weak formulations of the complex-scaled
Helmholtz equation for three different types of exterior coordinates.
To implement frequency-dependent complex scalings in exterior coordinates at least the

weak formulation of the complex-scaled Helmholtz equation has to be known. We will
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7. Implementation

see that this means that we need explicit expressions of the inverse of the Jacobian of
the coordinatization Ψ and its determinant. In the following we derive these expressions
for a specific selection of exterior coordinates. Note that all of the following choices may
be combined to create suitable exterior coordinates for a given problem, as long as the
resulting exterior coordinates fulfill the assumptions (C1) and (C2). We emphasize that
all the weak formulations in the following sections are still posed on infinite-dimensional
spaces with infinite domains.

Remark 7.1. There are two reasons why we need an explicit expression of the inverse of
the Jacobian of the complex scaling x̆(x) and its determinant:
Firstly, due to the fact that we want to employ a suitable tensorization to assemble the

discrete matrices, we need to split the respective sesquilinear forms into a generalized-radial
and a surface part as in (6.1).
Secondly, we want to obtain a rational eigenvalue problem (as defined in Problem 8.1)

to be able to apply the available efficient algorithms for rational or polynomial eigenvalue
problems (see Chapter 8). Therefore, we need to derive a weak formulation of the complex-
scaled equation which is a sum over rational functions in the frequency ω times sesquilinear
forms that are independent of ω. Note that for a frequency-independent scaling this is
always the case regardless of the choice of exterior coordinates.

Again we assume that the domains Ω,Ωext,Ωint,Γ are chosen such that the assumptions
(D1–5) are fulfilled. Moreover, we assume that the mapping v fulfills (C1) and (C2). We
remind the reader that the exterior coordinatization Ψ : R>0 × Γ → Ωext is given by the
mapping

Ψ(ξ, x̂) = x̂+ ξv(x̂) .

Since the choice of exterior coordinates is independent of the specific choice of the frequency-
dependency of the scaling parameter σ(·), we omit this dependency in this section (except
for Section 7.2) and simply write σ = σ(ω).
For the remainder of this section we use the following notation: Let Mj ⊂ R

d−1 and
ϕj : Mj ⊂ R

d−1 → Γ be an embedding (i.e., a diffeomorphism from Mj to ϕj(Mj)). Then
we define

Ψϕj :

{

R>0 ×Mj → Ωext,

(ξ, η) 7→ Ψ(ξ, ϕj(η)) .
(7.1)

Since Γ is a (piecewise smooth) manifold by assumption, there exists a family of embeddings
such that Γ is covered. We define Ψσ

ϕj
accordingly by

Ψσ
ϕj

:

{

R>0 ×Mj → Ω̆ext,

(ξ, η) 7→ Ψσ(ξ, ϕj(η)) .

We emphasize that the embeddings ϕj are merely necessary for the derivation of the weak
formulation and do not have to be known for the implementation of our method.
To, informally, derive a complex-scaled weak formulation of the Helmholtz resonance

problem, we proceed as follows: Assume that (ω, u) is an eigenpair of the strong formulation
of the Helmholtz resonance problem (Problem 2.3) with homogeneous Neumann boundary
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7.1. The complex-scaled Helmholtz equation in various exterior coordinates

conditions on ∂Ω. Moreover, we assume that u admits an analytic continuation U to some
domain Θ ⊂ C

d such that Ωext ⊂ Θ, Ω̆ext = Ψσ(R>0,Γ) ⊂ Θ and such that U |Ω̆ext
∈

H1
(

Ω̆ext

)

. We choose an analytic test function v : Θ→ C such that v|Ωext
∈ H1(Ωext) and

v|Ω̆ext
∈ H1

(

Ω̆ext

)

. Then we multiply the homogeneous Helmholtz equation by v̄, integrate

over Ψϕj (R>0,Mj) , and apply partial integration to obtain

0 =

∫

Ψϕj(R>0,Mj)
−∆u(x) v(x)− ω2u(x) v(x) dx

=

∫

Ψϕj(R>0,Mj)
∇u(x) · ∇v(x)− ω2u(x) v(x) dx+ boundary terms

=

∫

R>0×Mj

(

DΨϕj (ξ, η)
−⊤∇u ◦Ψϕj (ξ, η)

)

·
(

DΨϕj (ξ, η)
−⊤∇v ◦Ψϕj (ξ, η)

)

− ω2u ◦Ψϕj (ξ, η) v ◦Ψϕj (ξ, η)
∣
∣det

(
DΨϕj (ξ, η)

)∣
∣ d(ξ, η) + boundary terms.

(7.2)

The boundary terms vanish when we sum over sets Mj and embeddings ϕj for j in some
index set J such that the sets Ψϕj (R>0,Mj) are a disjoint decomposition of Ωext and couple
the exterior to the interior equation. If the integrand in (7.2) is holomorphic on a large
enough complex domain, instead of integrating over R>0, we can integrate over the complex
path σR>0 and obtain

0 =

∫

R>0×M

σ

((
1
σ

0
0 I

)

DΨϕj
(σξ, η)

−⊤∇u ◦Ψϕj
(σξ, η)

)

·
((

1
σ

0
0 I

)

DΨϕj
(σξ, η)

−⊤∇v ◦Ψϕj
(σξ, η)

)

− ω2σu ◦Ψϕj
(σξ, η) v ◦Ψϕj

(σξ, η)r
(
det
(
DΨϕj

(σξ, η)
))
d(ξ, η) + boundary terms,

where r(·) again denotes the analytic continuation of the modulus as in Remark 3.10.

The considerations above tell us that, to obtain a complex-scaled weak formulation in
exterior coordinates, we need to explicitly determine the expressions

(
DΨϕj (ξ, η)

)−1
, det

(
DΨϕj (ξ, η)

)
.

In the following sections we will perform these calculations for three different sets of coor-
dinates.

To enhance the readability of the formulas, in the following sections, unlike in the previous
sections, we write down the exterior sesquilinear forms for functions f, g : R>0 × Γ → C

such that f ◦Ψ−1, g ◦Ψ−1 ∈ H1(Ωext).

7.1.1. Uni-directional coordinates

A very simple example of (local) exterior coordinates are coordinates where the direction of
the generalized-radial variable is constant (see Figure 7.1). Obviously, using one constant
direction of the generalized-radial variable cannot lead to a parametrization of the whole
exterior domain. Nevertheless, if this mapping is combined with suitable other exterior
coordinates, it can lead to a useful complex scaling.
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7. Implementation

Γ
Ωint

Ωext

v0

x̂1
v0

x̂2

v0

x̂3

Figure 7.1.: An example for uni-directional coordinates in two dimensions.

Definition 7.2. We call exterior coordinates, as defined in Definition 3.11, uni-directional
on Γ1 ⊂ Γ if v(x̂) ≡ v0 for some v0 ∈ R

d and all x̂ ∈ Γ1.

For a given vector v0 and a set Γ1 ⊂ Γ to be local exterior coordinates, the restriction
posed by assumption (C1) is that v0 ·n(x̂) > 0 for all x̂ ∈ Γ1. Assumption (C2) in general
means that we require a sufficiently large distance between Γ0 and Γ1.

Theorem 7.3. The derivative of Ψϕj for uni-directional coordinates given by Definition
7.2, its inverse, and its determinant can be calculated by

DΨϕj (ξ, η) = (v0, Dϕj(η)) ,

(
DΨϕj (ξ, η)

)−1
=

1

v0 · n(ϕj(η))

(

n(ϕj(η))
⊤

Dϕj(η)
†
(

v0 · n(ϕj(η)) Id − v0n(ϕj(η))
⊤
)

)

,

detDΨϕj (ξ, η) =

√

det
(

Dϕj(η)
⊤Dϕj(η)

)

v0 · n(ϕj(η)) .

Proof. We use Corollary A.16 for the matrix (v0, Dϕj(η)), the facts that n(x̂(η)) is nor-
malized and orthogonal to the columns of Dϕj(η) for η ∈Mj , and v0 · n > 0.

Using Theorem 7.3 we can compute the gradient in uni-directional coordinates of a
function f ∈ C1(Ωext) at a point Ψ(ξ, x̂) by (see (1.8))

∇f(Ψ(ξ, x̂)) =
n(x̂)

n(x̂) · v0

∂f ◦Ψ
∂ξ

(ξ, x̂) +

(

Id −
n(x̂)v⊤

0

n(x̂) · v0

)

∇̂f ◦Ψ(ξ, x̂) .

Thus, we can state the exterior part of the sesquilinear form of the weak formulation of the

1Here we have to weaken the assumption (C1) from Ψ being a bijective onto Ωext to the assumption of
Ψ : R>0 × Γ1 → Ωext being a bijection onto a suitable subset of Ωext.
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7.1. The complex-scaled Helmholtz equation in various exterior coordinates

complex-scaled Helmholtz equation in uni-directional coordinates by

auniσ (ω)(f, g) :=
1

σ

∫

R>0×Γ1

1

n(x̂) · v0

∂

∂ξ
f(ξ, x̂)

∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−
∫

R>0×Γ1

v0

n(x̂) · v0
·
(

∇̂(f(ξ, x̂)) ∂
∂ξ
g(ξ, x̂)

)

d(ξ, x̂)

−
∫

R>0×Γ1

v0

n(x̂) · v0
·
(

f(ξ, x̂) ∇̂(g(ξ, x̂))
)

d(ξ, x̂)

+σ

∫

R>0×Γ1

(

∇̂f(ξ, x̂)
)⊤(

n(x̂) · v0Id +
v0v

⊤
0

n(x̂) · v0

)

∇̂g(ξ, x̂)d(ξ, x̂)

−ω2σ

∫

R>0×Γ1

n(x̂) · v0f(ξ, x̂) g(ξ, x̂)d(ξ, x̂)

(7.3)

for f, g : R>0 × Γ1 such that f ◦Ψ−1, g ◦Ψ−1 ∈ H1(Ωext).
For d = 2 we can simplify the term

∫

R>0×Γ1

(

∇̂f(ξ, x̂)
)⊤(

n(x̂) · v0I2 +
v0v

⊤
0

n(x̂) · v0

)

∇̂g(ξ, x̂)d(ξ, x̂)

=

∫

R>0×Γ1

‖v0‖2
n(x̂) · v0

∇̂f(ξ, x̂) · ∇̂g(ξ, x̂)d(ξ, x̂) .

To implement this scaling and assemble the corresponding matrices, the surface gradient
∇̂ and the normal vector n(x̂) have to be evaluated at x̂ ∈ Γ1.

Remark 7.4. A very popular version of the complex scaling method is to use so-called
cartesian scalings (see, e.g., [BP13]). Linear, cartesian scalings for d = 2 and Ωint =
[−1, 1]× [−1, 1] are given by

x̆(x) = (x̆(x, y) , y̆(x, y))⊤ =

(
x+ σ(x− 1)χR≥1

(x) + σ(x+ 1)χR≤−1
(x)

y + σ(y − 1)χR≥1
(y) + σ(y + 1)χR≤−1

(y)

)

,

where χM denotes the indicator function of a setM . Apart from the corner regions {(x, y) ∈
R
2 : |x|, |y| > 1}, the cartesian scaling can be written in uni-directional coordinates where

v are the unit vectors in positive/negative x and y directions. In the corner regions, on
the other hand, writing cartesian scalings in exterior coordinates is not possible due to the
fact that the boundary corresponding to a corner region contains the corner point only. A
possible workaround is to choose Γ1 as a curve inside of Ωext, parallel to Γ, and with some
suitable connection in the corner regions (e.g., quarter circles or straight lines) and allow
also negative values of ξ. However, in this case coupling the interior to the exterior space
is more involved.

7.1.2. Star-shaped coordinates

Star-shaped coordinates are a generalization of polar coordinates and are also used in
[Hal16]. They describe the domain Ωext by a surface coordinate and a generalized-radial
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7. Implementation

Γ
Ωint

Ωext

m

v(x̂
3 )

x̂3

v(
x̂2
)

x̂2

v(x̂1)
x̂1

Figure 7.2.: An example for star-shaped coordinates in two dimensions.

coordinate with respect to some origin m ∈ Ωint (see Figure 7.2). They have the property
that, similar to the case of uni-directional coordinates (Section 7.1.3), only the normal
vector n(x̂) has to be evaluated on the boundary. Moreover, they can be applied to cases
where Ωint is star-shaped, whereas curvilinear coordinates (Section 7.1.3) can only be ap-
plied to cases where Ωint is convex. Nevertheless, for condition (C2) to hold it is, in general,
necessary that there is a sufficient distance between Γ0 and Γ.

Definition 7.5. We call exterior coordinates, as given in Definition 3.1, star-shaped if
v(x̂) = x̂−m for some point m ∈ Ωint.

Again the inverse of the Jacobian and its determinant can be calculated directly.

Theorem 7.6. For star-shaped coordinates the derivative of Ψϕj , its inverse, and its de-
terminant can be calculated by

DΨϕj
(ξ, η) = (ϕj(η)−m, (1 + ξ)Dϕj(η)) ,

(
DΨϕj

(ξ, η)
)−1

=
1

v(ϕj(η)) · n(ϕj(η))

(

n(ϕj(η))
⊤

1
1+ξ

Dϕj(η)
†
(

v(ϕj(η)) · n(ϕj(η)) Id − v(ϕj(η))n(ϕj(η))
⊤
)

)

,

detDΨϕj
(ξ, η) =

√

det
(

Dϕj(η)
⊤
Dϕj(η)

)

(1 + ξ)d−1v(ϕj(η)) · n(ϕj(η)) .

Proof. We use Corollary A.16 for the matrix

DΨϕj (ξ, η) = (ϕj(η)−m, (1 + ξ)Dϕj(η))

and the fact that n(η) is normalized and orthogonal to the columns of ϕj(η).
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7.1. The complex-scaled Helmholtz equation in various exterior coordinates

Similar to before we can calculate the according sesquilinear form

astarσ (ω)(f, g) :=
1

σ

∫

R>0×Γ

(1 + σξ)d−1

n(x̂) · v(x̂)
∂

∂ξ
f(ξ, x̂)

∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−
∫

R>0×Γ

(1 + σξ)d−2v(x̂)

n(x̂) · v(x̂) ·
(

∇̂(f(ξ, x̂))
) ∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−
∫

R>0×Γ

(1 + σξ)d−2v(x̂)

n(x̂) · v(x̂) ·
(
∂

∂ξ
f(ξ, x̂) ∇̂(g(ξ, x̂))

)

d(ξ, x̂)

+σ

∫

R>0×Γ

(1 + σξ)d−3
(

∇̂f(ξ, x̂)
)⊤
(

Idn(x̂) · v(x̂) +
v(x̂)v(x̂)

⊤

n(x̂) · v(x̂)

)

∇̂g(ξ, x̂)d(ξ, x̂)

−ω2σ

∫

R>0×Γ

(1 + σξ)d−1n(x̂) · v(x̂) f(ξ, x̂) g(ξ, x̂)d(ξ, x̂)

(7.4)

for f, g : R>0 × Γ such that f ◦ Ψ−1, g ◦ Ψ−1 ∈ H1(Ωext). Again, similar to the case of
uni-directional coordinates, the sesquilinear form for d = 2 can be simplified by

astar,2σ (ω)(f, g) :=
1

σ

∫

R>0×Γ

1 + σξ

n(x̂) · v(x̂)
∂

∂ξ
f(ξ, x̂)

∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−
∫

R>0×Γ

v(x̂)

n(x̂) · v(x̂) ·
(

∇̂(f(ξ, x̂))
) ∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−
∫

R>0×Γ

v(x̂)

n(x̂) · v(x̂) ·
(
∂

∂ξ
f(ξ, x̂) ∇̂(g(ξ, x̂))

)

d(ξ, x̂)

+σ

∫

R>0×Γ

‖v(x̂)‖2
n(x̂) · v(x̂) (1 + σξ)

(

∇̂f(ξ, x̂)
)⊤
· ∇̂g(ξ, x̂)d(ξ, x̂)

−ω2σ

∫

R>0×Γ
(1 + σξ)n(x̂) · v(x̂) f(ξ, x̂) g(ξ, x̂)d(ξ, x̂) .

(7.5)

Remark 7.7. The polar or spherical coordinates, used in Chapter 5 for the analysis of our
method, are a special case of both, curvilinear and star-shaped coordinates with Γ = B1.
Plugging n(x̂) = v(x̂) = x̂ into (7.4) gives

apolarσ (ω)(f, g) :=
1

σ

∫

R>0×Γ
(1 + σξ)d−1 ∂

∂ξ
f(ξ, x̂)

∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

+σ

∫

R>0×Γ
(1 + σξ)d−3∇̂f(ξ, x̂) · ∇̂g(ξ, x̂)d(ξ, x̂)

−ω2σ

∫

R>0×Γ
(1 + σξ)d−1f(ξ, x̂) g(ξ, x̂)d(ξ, x̂) ,

(7.6)

since in this case v is orthogonal to the surface gradient of a function.

7.1.3. Curvilinear coordinates

Curvilinear coordinates have also been used in [LS01]. They are based on the description
of a point x ∈ Ωext by a normal and a tangential variable with respect to the boundary Γ
(see Figure 7.3).
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7. Implementation

Γ
Ωint

Ωext

n(
x̂ 1
)

x̂1

n(x̂2)

x̂2

Figure 7.3.: An example for curvilinear coordinates in two dimensions.

Definition 7.8. We call exterior coordinates, as in Definition 3.1, curvilinear if v(x̂) =
n(x̂).

Contrary to uni-directional (Section 7.1.1) and star-shaped (Section 7.1.2) coordinates
where only the normal vector n has to be evaluated on the boundary, when using curvilinear
coordinates one also has to evaluate the curvature of Γ. Moreover, for assumption (C1) to
be fulfilled Ωint has to be convex and the normal vector n has to be continuous, (i.e., Γ has
to be at least C1). Assumption (C2), on the other hand, is always fulfilled for curvilinear
coordinates.
For the remainder of this section we assume that the embeddings ϕj are such that the

columns of its derivative

Dϕj(η) := (t1(η) , . . . , td−1(η)) ,

are orthonormal. Note that in this case we have

Dϕj(η)
⊤Dϕj(η) = Id−1.

Then we can rewrite the derivative of the normal vector by

Dn(η) = (κ1(η) t1(η) , . . . , κd−1(η) td−1(η))

for some functions κj . The functions κj are known as the main curvatures of the manifold
Γ.

Theorem 7.9. For curvilinear coordinates, the derivative of Ψϕj , its inverse, and its de-
terminant can be calculated by

DΨϕj (ξ, η) = (n(η) , (1 + ξκ1(η))t1(η) , . . . , (1 + ξκd−1(η))td−1(η)) ,

(
DΨϕj (ξ, η)

)−1
=

(

n(η) ,
1

1 + ξκ1(η)
t1(η) , . . . ,

1

1 + ξκd−1(η)
td−1(η)

)⊤
,

detDΨϕj (ξ, η) =

d−1∏

i=1

(1 + ξκj(η)).
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7.2. Derivation of rational eigenvalue problems

Proof. The claim follows immediately from straightforward calculations and the fact that
the columns of DΨϕj (ξ, η) are orthonormal.

Using Theorem 7.9 we can calculate the gradient of a function f ∈ C1(Ωext) in curvilinear
coordinates at a point Ψ(ξ, x̂) by

∇f(Ψ(ξ, x̂)) = n(ξ)
∂f ◦Ψ
∂ξ

(ξ, x̂) +

d−1∑

j=1

tj(x̂) tj(x̂)
⊤

1 + κj(x̂)
∇̂f ◦Ψ(ξ, x̂) .

The according sesquilinear form for d = 2 is given by

acurv,2σ (ω)(f, g) :=
1

σ

∫

R>0×Γ
(1 + σξκ(x̂))

∂f

∂ξ
(ξ, x̂)

∂g

∂ξ
(ξ, x̂)d(ξ, x̂)

+ σ

∫

R>0×Γ

1

1 + σξκ(x̂)
∇̂f(ξ, x̂) · ∇̂g(ξ, x̂)d(ξ, x̂)

− ω2σ

∫

R>0×Γ
(1 + σξκ(x̂))f(ξ, x̂) g(ξ, x̂)d(ξ, x̂) ,

(7.7)

where we used the notation κ := κ1 since we only have one main curvature. For d = 3, we
obtain

acurv,3σ (ω)(f, g) :=
1

σ

∫

R>0×Γ
(1 + σξκ1(x̂))(1 + σξκ2(x̂))

∂f

∂ξ
(ξ, x̂)

∂g

∂ξ
(ξ, x̂)d(ξ, x̂)

+ σ

∫

R>0×Γ

(1 + σξκ2(x̂))

1 + σξκ1(x̂)
t1(x̂) · ∇̂f(ξ, x̂) t1(x̂) · ∇̂g(ξ, x̂)d(ξ, x̂)

+ σ

∫

R>0×Γ

(1 + σξκ1(x̂))

1 + σξκ2(x̂)
t2(x̂) · ∇̂f(ξ, x̂) t2(x̂) · ∇̂g(ξ, x̂)d(ξ, x̂)

− ω2σ

∫

R>0×Γ
(1 + σξκ1(x̂))(1 + σξκ2(x̂))f(ξ, x̂) g(ξ, x̂)d(ξ, x̂) .

(7.8)

Remark 7.10. Unlike in the case of uni-directional or star-shaped coordinates, for the
implementation of a complex scaling in curvilinear exterior coordinates and d = 2, also the
curvature κ needs to be provided. For d = 3, apart from the curvatures κ1, κ2, also the
tangential vectors t1, t2 are needed. All this information is contained in the Weingarten
tensor ([DE13, Definition 2.5])

W(x̂) := ∇̂n(x̂)
since the eigenvalues and eigenvectors of W(x̂) are 0, κ1(x̂) , κ2(x̂) and n(x̂) , t1(x̂) , t2(x̂).
Thus, a possible way to approximate the curvatures and tangential vectors if the normal
vector is available is to project the normal vector onto the discrete surface space X̂ ⊂ H1(Γ)
(Section 6.2.2) and use a discrete gradient.

7.2. Derivation of rational eigenvalue problems

In the previous section we have derived explicit expressions for the exterior sesquilinear
form aext(ω) in various exterior coordinates. The goal of this section is to transform the

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

7. Implementation

exterior bilinear forms from Section 7.1 into the following form: Let Λ ⊂ C → C \ {0} be
a given frequency-dependency and f, g ∈ H1(Ω) such that they allow a decomposition in
Ωext into

f ◦Ψ(ξ, x̂) = f̃(ξ) f̂(x̂) , g ◦Ψ(ξ, x̂) = g̃(ξ) ĝ(x̂)

for some functions f̃ , g̃ : R>0 → C and f̂ , ĝ : Γ → C. Then we assume that we can
decompose the exterior part of the sesquilinear form function aσ into

aext(ω)(f, g) =

J∑

j=0

γj(ω) ãj

(

f̃ , g̃
)

âj

(

f̂ , ĝ
)

, (7.9)

for some J ∈ N0, sesquilinear forms ãj , âj , acting on functions on R>0 and Γ respec-
tively, and rational functions γj : Λ → C. We require the generalized-radial and surface
sesquilinear forms ãj and âj to be independent of ω.
This decomposition is necessary for two reasons (cf. Remark 7.1):

— To be able to assemble the matrices for the exterior problem by a suitable ten-
sorization of matrices, corresponding to the generalized-radial parts ãj and matrices
corresponding to the surface parts âj , we already required the exterior bilinear form
of the complex-scaled Helmholtz problem to be of the form (6.1), which is a weaker
assumption than (7.9).

— While there exist methods to approximate or solve matrix eigenvalue problems with a
general holomorphic dependency of the matrix function on the eigenvalue parameter,
we shall see in Chapter 8 that it is considerably less computationally expensive to
consider rational eigenvalue problems. A Galerkin discretization, as in Section 6.1, of
the eigenvalue problem corresponding to a sesquilinear form of the form (7.9) leads
to a rational eigenvalue problem, in the sense of Problem 8.1.

For the use of a frequency-independent complex scaling in exterior coordinates only
assumption (6.1) has to be met.

7.2.1. Uni-directional coordinates

If we assume a rational frequency-dependency σ(·), the sesquilinear form (7.3) is already of
the form (7.9). Thus, it can immediately be used for assembling the discretization matrices
and we obtain a rational eigenvalue problem (Problem 8.1).

7.2.2. Star-shaped coordinates

For a rational function σ(·) the exterior sesquilinear form for star-shaped coordinates for
d = 3 (see (7.4)) is of the form (7.9) after an expansion of the factors (1 + σ(ω) ξ)2.
For d = 2, on the other hand, the sesquilinear form astarσ (see (7.5)) merely fulfills

assumption (6.1) of Chapter 6 (i.e., it can be decomposed into a generalized-radial and a
surface part). Due to the factor 1

1+σ(ω)ξ it cannot be decomposed as in (7.9) and therefore

does not lead to a rational eigenvalue problem in the sense of Chapter 8 (Problem 8.1).
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7.2. Derivation of rational eigenvalue problems

To obtain a rational problem in this case, one can scale the solution (or trial function)
and the test function in Ωext by the factor (1+ξ(x))1/2 before applying the complex scaling.
An application of the product rule leads to the sesquilinear form

astar sc.σ (ω)(f, g) :=
1

σ(ω)

∫

R>0×Γ

(1 + σ(ω) ξ)2

n(x̂) · v(x̂)
∂

∂ξ
f(ξ, x̂)

∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−σ(ω)
4

∫

R>0×Γ

1

n(x̂) · v(x̂)f(ξ, x̂) g(ξ, x̂)d(ξ, x̂)

−
∫

R>0×Γ

(1 + σ(ω) ξ)v(x̂)

n(x̂) · v(x̂) ·
(

∇̂(f(ξ, x̂))
) ∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−
∫

R>0×Γ

(1 + σ(ω) ξ)v(x̂)

n(x̂) · v(x̂) ·
(
∂

∂ξ
f(ξ, x̂) ∇̂(g(ξ, x̂))

)

d(ξ, x̂)

−σ(ω)
2

∫

R>0×Γ

v(x̂)

n(x̂) · v(x̂) · ∇̂
(

f(ξ, x̂) g(ξ, x̂)
)

d(ξ, x̂)

+σ(ω)

∫

R>0×Γ

‖v(x̂)‖2
n(x̂) · v(x̂)

(

∇̂f(ξ, x̂)
)⊤
· ∇̂g(ξ, x̂)d(ξ, x̂)

−1

2

∫

Γ

1

n(x̂) · v(x̂) tr0 f(x̂) tr0 g(x̂)dx̂

−ω2σ(ω)

∫

R>0×Γ
(1 + σ(ω) ξ)2n(x̂) · v(x̂) f(ξ, x̂) g(ξ, x̂)d(ξ, x̂) ,

(7.10)

where tr0 denotes the trace at ξ = 0. The additional boundary term in (7.10) is due to the
fact that the scaling factor is merely applied in Ωext and not in Ωint.

Note that, unlike in [NW18, Section 3.2] where we scaled solely the test function, we are
able to preserve the symmetry2 of the problem by scaling the test and trial function. For
the special case of polar or spherical coordinates (see (5.1) and (7.6)) we obtain

apolar sc.σ (ω)(f, g) :=
1

σ(ω)

∫

R>0×Γ
(1 + σ(ω) ξ)2

∂

∂ξ
f(ξ, x̂)

∂

∂ξ
g(ξ, x̂)d(ξ, x̂)

−σ(ω)
4

∫

R>0×Γ
f(ξ, x̂) g(ξ, x̂)d(ξ, x̂)

+σ(ω)

∫

R>0×Γ

(

∇̂f(ξ, x̂)
)⊤
· ∇̂g(ξ, x̂)d(ξ, x̂)

−1

2

∫

Γ
tr0 f(x̂) tr0 g(x̂)dx̂

−ω2σ(ω)

∫

R>0×Γ
(1 + σ(ω) ξ)2f(ξ, x̂) g(ξ, x̂)d(ξ, x̂) .

(7.11)

2in a sense that astar sc.(ω) is symmetric for real-valued functions f, g
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7. Implementation

7.2.3. Curvilinear coordinates

In the case of curvilinear coordinates, in general, the sesquilinear forms acurv,2σ (ω) and
acurv,3σ (ω) from (7.7) and (7.8) cannot be decomposed into a generalized-radial and a surface
part in the sense of (6.1). Thus, obviously they do not fulfill (7.9) either. A scaling similar
to the case of star-shaped coordinates of the solution and test function would have to be
a multiplication by a factor containing 1 + κ(x̂)σ(ω) ξ. Therefore, such a scaling is not
reasonable in this case since it would lead to additional terms containing also the derivatives
of the curvatures.

A possible way to obtain a rational problem is to introduce additional unknowns. For
d = 2 we introduce the additional unknown function uτ ∈ L2(Ωext) that fulfills

(1 + σ(ω)κ(x̂) ξ)uτ (ξ, x̂) := t(x̂) · ∇̂u(ξ, x̂) .

In weak form this leads to the augmented sesquilinear form

acurv,mixed
σ (ω)((f, fτ ), (g, gτ )) :=

1

σ(ω)

∫

R>0×Γ
(1 + σ(ω) ξκ(x̂))

∂f

∂ξ
(ξ, x̂)

∂g

∂ξ
(ξ, x̂)d(ξ, x̂)

+ σ(ω)

∫

R>0×Γ
fτ (ξ, x̂) t(x̂) · ∇̂g(ξ, x̂)d(ξ, x̂)

+ σ(ω)

∫

R>0×Γ
t(x̂) · ∇̂f(ξ, x̂) gτ (ξ, x̂)d(ξ, x̂)

− σ(ω)
∫

R>0×Γ
(1 + σ(ω) ξκ(x̂))fτ (ξ, x̂) gτ (ξ, x̂)d(ξ, x̂)

− σ(ω)
∫

R>0×Γ
ω2(1 + σ(ω) ξκ(x̂))f(ξ, x̂) · g(ξ, x̂)d(ξ, x̂) ,

(7.12)

for f, fτ , g, gτ such that f ◦ Ψ−1, g ◦ Ψ−1 ∈ H1(Ωext) and fτ ◦ Ψ−1, gτ ◦ Ψ−1 ∈ L2(Ωext).
Note that the augmented sesquilinear form above is still symmetric for real-valued test and
ansatz functions.

Remark 7.11. The discrete space of the auxiliary variable has to be picked in a way that
the tangential part of the surface derivative of a discrete function is an element of this
space. In our examples in Chapter 9 we choose a similar tensor product approach as
described in Section 6.2 by choosing X̃N ⊗ ŶL with a surface space ŶL ⊂ L2(Γ) such that
t(x̂) · ∇̂f̂(x̂) ∈ ŶL for all f ∈ X̂M .

For d = 3, similar techniques can be applied although in this case it is not straightforward
to preserve the symmetry.

7.3. Specific frequency-dependencies and their essential spectra

As shown in Chapter 4, the choice of the frequency-dependency σ : Λ ⊂ C → C \ {0}
heavily affects the approximation of the resonances and resonance functions. Although in
general any holomorphic function can be used, we focus on functions σ that are rational in
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7.3. Specific frequency-dependencies and their essential spectra

the frequency ω to obtain rational matrix eigenvalue problems. Using frequency-dependent
scaling parameters is common for scattering problems (and necessary for problems in time
domain cf. Section 10.2.4). In his original publication [Ber94] Berengér used a function3

σ(ω) := 1 +
iα

ω
,

with α > 0. In [NW18] we used the simpler scaling σ(ω) := σ0
ω for some complex parameter

σ0 ∈ C\{0}. More involved frequency-dependencies are used in the engineering community
(mostly in connection with finite difference schemes) under the name of CPML4 (e.g.,
[DG07, RG00]).

If we consider the possible locations of the two parts of the essential spectrum (cf. (S1)
and (S2) and Sections 5.3.1, 5.3.2) and the fact that we want to have similar approximation
properties of the eigenfunctions for a range of frequencies which is as wide as possible, we
have to pick the function σ in a way that

— Im(σ(ω)ω) > 0 and arg(σ(ω)) /∈ [π − µ, π + µ] for frequencies ω we are interested in
and

— σ(ω)ω is bounded for |ω| → ∞.

In the following we consider frequency-dependencies of the form

σ(ω) =
α
ω + β

γ + δω
, (7.13)

with α, β, γ, δ ∈ C such that |α|+ |β|, |γ|+ |δ| 6= 0. Notable special cases of this choice are

σ0(ω) := β, (7.14a)

σv(ω) :=
α

ω
, (7.14b)

σb(ω) := β +
α

ω
, (7.14c)

σc(ω) :=
β

γ + δω
. (7.14d)

We know from the analysis of our method in Section 5.3 that we have to expect an essential
spectrum in regions where Re(σ(ω)ω) = 0 and arg(σ(ω)) /∈ [π− µ, π+ µ], where µ ∈ [0, π2 ]
(see Section 5.4). Thus, we have to identify the set

Ξ := {ω ∈ Λ : Im(σ(ω)ω) > 0, arg(σ(ω)) /∈ [π − µ, π + µ]} ,

which is bounded by the sets

Λsing := Λ+
sing ∪ Λ−

sing,

Σdec = {ω ∈ Λ : Im(σ(ω)ω) = 0} ,
3Note that in [Ber94] the sign of the Fourier transform is inverted.
4The abbreviation CPML (short for convolutional PML) is used due to the fact that the term 1

1+iω
leads

to a convolution operator in time-domain.
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7. Implementation

with

Λ+
sing := {ω ∈ Λ : arg(σ(ω)) = π + µ} ,

Λ−
sing := {ω ∈ Λ : arg(σ(ω)) = π − µ} .

To this end, we have to invert the mappings ω 7→ σ(ω) and ω 7→ τ(ω) := σ(ω)ω.
For scalings of the form (7.13), the function τ is a Möbius transformation (Definition

A.18). Therefore, in this case the set Σdec is a subset of either a circle or a straight line.
For scalings of the form (7.14) the function σ is a Möbius transformation as well. There-

fore, for such scalings the sets Λ±
sing are subsets of circles and/or straight lines as well. In

the following we determine these sets explicitly for the scalings given in (7.14).

The frequency-independent scaling σ0

The scaling σ0(ω) ≡ β 6= 0 is the one most commonly used for resonance problems (e.g.,
[Hal19, HN09, KP09]). Its domain is Λ = C and for arg(β) /∈ [π − µ, π + µ] it leads to

Σdec =
1

β
R

and therefore for Im(β) > 0

Ξ = {ω ∈ C : arg(ω) /∈ [π − arg(β) , 2π − arg(β)]}

(see Figure 7.4).

The scaling σv

In the simplest frequency-dependent case of σv from (7.14b) with α /∈ R we have the domain
Λ = C \ {0}. The set Λsing is given by

Λ±
sing = σ−1

v (exp(i(π ± µ))R≥0) =
α

exp(i(π ± µ))R≥0 = −α exp(∓iµ)R≥0.

We have

τv(ω) = σv(ω)ω = α /∈ R (7.15)

and thus ([NW18, Section 3.1]),
Σdec = ∅.

For arg(α) < π − µ the set where we can expect approximations to radiating resonances is
given by (see Figure 7.5)

Ξ = {ω ∈ C \ {0} : arg(ω) /∈ [π + arg(α)− µ, π + arg(α) + µ]} .

The set were Σsing is located is a wedge, which is symmetric with respect to the line −αR≥0

and an has an opening angle 2µ. Moreover, in the case of a spherical scaling, because of
(7.15), the complex-scaled (spherical) Hankel functions have a uniform exponential decay
and oscillatory behavior for all frequencies ω 6= 0.
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7.3. Specific frequency-dependencies and their essential spectra

−1.5 −1 −0.5 0.5 1 1.5
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−0.5
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Σ
d
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Ξ

Re

Im

Figure 7.4.: The essential spectrum (dotted) and the area Ξ where eigenvalues correspond-
ing to radiating eigenfunctions are approximated (white) for a constant scaling
σ(ω) = 1+2i. The area where the non-radiating resonances are approximated
is colored in blue.

The scaling σb

We assume that α, β 6= 0, otherwise our scaling is already covered by the previous con-
siderations. Like in the previous case, the domain is Λ = C \ {0}. The sets Λ±

sing can be
calculated by

Λ±
sing = σ−1

b (− exp(±iµ)R≥0) .

Because of

σ−1
b (t) =

α

t− β ,

we may apply Lemma A.19 and obtain that Λ±
sing are subsets of circular lines connecting

the points −α
β and 0 with center αµ̄

β̄µ−βµ̄
and αµ

β̄µ̄−βµ
respectively. Moreover, because of

τ−1
b (t) =

t− α
β

,

the set Σdec is given by

Σdec = −
α

β
+
t

β
: t ∈ R

and is therefore a straight line (see Figure 7.6). Contrary to before, in this case the quantity
σb(ω)ω is not bounded for large |ω|. Therefore, we cannot expect uniform approximation
properties of eigenfunctions in the frequency (see also Figure 4.2b).
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7. Implementation
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Figure 7.5.: The possible location of the essential spectrum Σsing (red) and the area Ξ
(white) where eigenvalues corresponding to radiating eigenfunctions are ap-
proximated for the scaling σv(ω) =

1+2j
ω with µ = π

4 .

The scaling σc

We assume that β, γ, δ 6= 0. Otherwise, the scaling is already covered by the previous
considerations. Because of

σ−1
c (t) =

β − γt
δt

,

we obtain that the sets Λ±
sing are given by

Λ±
sing = −γ

δ
− exp(∓iµ) β

δ
R≥0.

Therefore, Σsing is contained in a wedge with edge at −γ
δ and angle 2µ, which is symmetric

with respect to the line −γ
δ −

β
δR≥0 (see Figure 7.7). Using Lemma A.19 for the mapping

τ−1
c (t) =

γt

β − δt ,

we obtain that Σdec is a circle with center γβ̄
βδ̄−β̄δ

and radius
∣
∣
∣

γβ
βδ̄−β̄δ

∣
∣
∣.

7.4. Assembling the infinite element matrices

To apply numerical methods for solving or approximating the non-linear matrix eigenvalue
problems (Chapter 8), resulting from a Galerkin discretization by the use of (in-)finite
elements (Chapter 6), we need to assemble the matrices M(ω) with entries

Mk,j(ω) := aσ(ω)(bj , bk)
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7.4. Assembling the infinite element matrices
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Λ
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n
g

Λ
−
sing

Ξ

Re

Im

Figure 7.6.: The possible location of the essential spectrum and the area Ξ (white) where
eigenvalues corresponding to radiating eigenfunctions are approximated for the
scaling σb(ω) = 1 + 1+i

ω with µ = π
3 .

for given frequencies ω and a given basis BN = {b0, . . . , bN } ⊂ XN (cf. Section 6.2.3).

By Section 6.2.2 our basis functions in Ωext in exterior coordinates are products of a
generalized-radial and a surface component. Therefore, by (6.1) (and (7.9)) the exterior
parts of our sesquilinear forms can be decomposed into generalized-radial and surface parts
and we may assemble these parts separately and tensorize them appropriately.

Plugging basis functions φj(ξ) bk(x̂) , φl(ξ) bm(x̂), for generalized-radial and surface basis

functions as in Sections 6.2.3 and 6.3, for instance, into the sesquilinear form apolarσ (ω) for
d = 3 (see 7.6) results in

apolarσ (ω)(φj ⊗ bk, φl ⊗ bm) :=
1

σ(ω)

∫

R>0

(1 + σ(ω) ξ)2φ′j(ξ)φ
′
l(ξ) dξ

∫

Γ
bk(x̂) bm(x̂) dx̂

+σ(ω)

∫

R>0

φj(ξ)φl(ξ) dξ

∫

Γ
∇̂bk(x̂) · ∇̂bk(x̂) dx̂

+σ(ω)ω2

∫

R>0

(1 + σ(ω) ξ)2φj(ξ)φl(ξ) dξ

∫

Γ
bk(x̂) bk(x̂) dx̂.

The surface parts can be assembled using usual techniques for (surface) finite elements.
The generalized-radial parts consist of matrices with entries of the form

∫

R>0

ξaφ
(b)
j (ξ)φ

(b)
l (ξ) dξ

for a ∈ N0 and b ∈ {0, 1}, where ·(n) denotes the n-th derivative. For other coordinates
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7. Implementation
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Figure 7.7.: The possible location of the essential spectrum and the area Ξ (white) where
eigenvalues corresponding to radiating eigenfunctions are approximated for the
scaling σc(ω) =

2i
1+ω with µ = π

3 .

also non-symmetric terms might occur (cf. (7.3), (7.4), and (7.5)). Therefore, we define
the following matrices:

Definition 7.12. For N,n ∈ N0, let φ0, . . . , φN be as in Definition 6.3. Then we define
the matrices M̃n, S̃n, D̃n ∈ R

N+1×N+1 by

M̃n :=
(

M̃n
j,k

)

j,k=0,...,N
:=

∫

R>0

ξnφk(ξ)φj(ξ) dξ,

S̃n :=
(

S̃n
j,k

)

j,k=0,...,N
:=

∫

R>0

ξnφ′k(ξ)φ
′
j(ξ) dξ,

D̃n :=
(

D̃n
j,k

)

j,k=0,...,N
:=

∫

R>0

ξnφ′k(ξ)φj(ξ) dξ.

7.4.1. Explicit formulas

We use the orthogonality from Proposition A.11.(i) and the recursion (ii) from the same
proposition to obtain for j, k ∈ N0

M̃0
j,k =

∫ ∞

0

φk(ξ)φj(ξ) dξ =

∫ ∞

0

(ψk(ξ)− ψk−1(ξ)) (ψj(ξ)− ψj−1(ξ)) dξ =







1
2 , k = j = 0,

1, k = j > 0,

− 1
2 , |k − j| = 1,

0, else.
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7.4. Assembling the infinite element matrices

Similarly, we obtain, by using Proposition A.11.(iii), that

S̃0
j,k =

∫ ∞

0

φ′k(ξ)φ
′
j(ξ) dξ =

∫ ∞

0

(−ψk(ξ)− ψk−1(ξ)) (−ψj(ξ)− ψj−1(ξ)) dξ =







1
2 , k = j = 0,

1, k = j > 0,
1
2 , |k − j| = 1,

0, else

and

D̃0
j,k =

∫ ∞

0

φ′k(ξ)φj(ξ) dξ =

∫ ∞

0

(−ψk(ξ)− ψk−1(ξ)) (ψj(ξ)− ψj−1(ξ)) dξ =







− 1
2 , k = j = 0,

0, k = j > 0,

∓ 1
2 , k − j = ±1,

0, else.

The above in matrix form reads

M̃0 =
1

2









1 −1
−1 2

. . .

. . .
. . . −1
−1 2









, S̃0 =
1

2









1 1

1 2
. . .

. . .
. . . 1
1 2









, D̃0 =
1

2









1 −1
1 0

. . .

. . .
. . . −1
1 0









.

The matrices corresponding to sesquilinear forms with non-constant polynomial coefficients
can be obtained by similar calculations.

Remark 7.13. In some cases (e.g., for the frequency-independent scaling in polar coordinates

for d = 2, see (7.6)) it is necessary to compute matrices Ã =
(

Ãl,j

)

l,j=0,...,N
with entries

of the form

Ãl,j =

∫

R>0

1

1 + σ0ξ
φ
(b)
j (ξ)φ

(c)
l (ξ) dξ,

with b, c ∈ {0, 1} and some σ0 ∈ C \R<0. In [HN09] this is done in the following way: The
matrix Ã for b, c = 0 is approximated by the matrix

Ã ≈ B⊤T−1B,

where B is the representation of the basis functions φj = φj,−1, j = 0, . . . , N , with respect
to the orthogonal basis functionψj = φj,0, j = 0, . . . , N and T is the matrix corresponding
to the multiplication operator by ξ 7→ 1 + σ0ξ, with respect to the basis ψ0, . . . , ψN . Note,
however, that this gives merely an approximation of the correct matrix.

7.4.2. Numerical integration

Alternatively, we can compute the generalized-radial discretization matrices from Definition
7.12 by using quadrature rules. This is particularly useful for the case where we consider
potentials ρ that are not constant in the exterior domain Ωext (Section 10.2.1). Since the
radial basis functions are of the form exp(−ξ) q(2ξ) for certain polynomials q, also their
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7. Implementation

derivatives are of this form. Thus, after applying the substitution ξ 7→ ξ
2 to the integrals

in Definition 7.12, we have to find a quadrature rule wj , ξj ∈ R, j = 0, . . .M such that

∫

R>0

exp(−ξ) q(ξ) dξ =
M∑

j=0

wjq(ξj)

for all polynomials q up to some degree. An obvious choice for this task are Gauss rules with
respect to the weight function exp(−·). These integration rules are given by the following
theorem:

Theorem 7.14. For M ∈ N, let ξ0, . . . , ξM be the roots of the Laguerre polynomial LM+1,0.
Moreover, let

wj :=
ξj

(M + 1)2LM,0(ξj)
2 , j = 0, . . . ,M.

Then

∫ ∞

0
exp(−ξ) q(ξ) dξ =

M∑

j=0

wjq(ξj)

for all polynomials q ∈ P2M+1.

Proof. See [STW11, Theorem 7.1] with α = 0.

The weights and quadrature points can be calculated using the following theorem:

Theorem 7.15. For M ∈ N, the quadrature points ξ0, . . . , ξM of the Gauss-Laguerre
quadrature as in Theorem 7.14 are the eigenvalues of the matrix










1 −1
−1 3 −2

. . .
. . .

. . .

−M + 1 2M − 1 −M
−M 2M + 1










.

The weights w0, . . . , wM are the squares of the first entries of the according eigenvectors.

Proof. See [STW11, Section 7.1.3].
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8. Non-Linear Eigenvalue Problems

In this chapter we present methods to efficiently approximate the eigenvalues and eigen-
vectors of the discrete, non-linear eigenvalue problems that result from the discretization
of the complex-scaled Helmholtz equation using frequency-dependent scalings (see Section
7.2).

General non-linear eigenvalue problems appear in a wide range of applications in math-
ematics, physics, and engineering (e.g., [BHM+13]). Numerical methods for such problems
are, for example, discussed in [Ruh73], [MV04] (subspace iteration), and [SS03, Bey12]
(methods based on contour integrals).
A helpful property of the non-linear eigenvalue problems in question is the fact that they

consist of sums over constant matrices times scalar rational functions in the frequency.
Therefore, they allow a linear representation1 (cf., e.g., [MV04, Section 2] and Section 8.2.1),
which is a larger, but in some sense equivalent, generalized-linear eigenvalue problem.
Although for the linear representation of a non-linear eigenvalue problem, known methods

like an Arnoldi iteration can be applied, it is, in many cases, advised against doing so (e.g.,
[MV04, Introduction]) since the linear representation is usually considerably larger than
the original problem. Moreover, it is not straightforward to preserve desirable properties
like symmetry (cf. [DPVD19] for structure preserving linear representations of polynomial
eigenvalue problems).
Nevertheless, we use linear representations to derive a method for efficiently approximat-

ing the eigenvalues and eigenvectors of the rational eigenvalue problems. Our method is
nearly as efficient as solving linear eigenvalue problems using the shift-and-invert Arnoldi
method since the main effort also consists of applying the inverse of the particular matrix
function (cf. Problem 8.1) evaluated at a given shift once per iteration (see Table 8.1).
This chapter is structured as follows: After the proper definition of the rational eigenvalue

problems we want to solve (Problem 8.1) we briefly discuss the shift-and-invert Arnoldi
algorithm for the special case of generalized-linear eigenvalue problems (Section 8.1). In
Section 8.2.1 we deal with linear representations of rational eigenvalue problems and show
in Sections 8.2.2 and 8.2.3 how the shift-and-invert Arnoldi algorithm can be efficiently
applied to linear representations.
For the remainder of this chapter, we consider the following problems:

Problem 8.1. For Λ ⊂ C, n ∈ N0, and N ∈ N, let γ0, . . . , γn : Λ→ C and M0, . . . ,Mn ∈
C
N×N . Then we call the problem to

find eigenpairs (ω,u) ∈ Λ× C
N \ {0} such that M(ω)u :=

n∑

j=0

γj(ω)M
ju = 0 (8.1)

1In the literature the term linearization is widely used. Nevertheless, we refrain from using this term since
it might lead the reader to the belief that we apply some form of linear approximation.

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

8. Non-Linear Eigenvalue Problems

a non-linear eigenvalue problem with scalar coefficients. A problem of this form is called
rational if γ0, . . . , γn are rational functions. We call the set

Σ(M) := {ω ∈ Λ : M(ω) is singular}

the spectrum of the generalized eigenvalue problem, ω ∈ Σ(M) an eigenvalue, and u ∈
ker(M(ω)) \ {0} a corresponding eigenvector.

In our case the matrices Mj typically are large and sparse and, as shown in Section 7.2,
we can assume that the eigenvalue problems are rational. Moreover, we are not interested
in the full set of eigenvalues, but rather in the ones in the vicinity of a given shift ω0 ∈ C.

We start by discussing the special case of generalized-linear eigenvalue problems.

8.1. Generalized-linear eigenvalue problems

Linear eigenvalue problems, which are the problems to

find (ω,u) ∈ C× C
N \ {0} such that M0u = ωu

and generalized-linear eigenvalue problems, which are the problems to

find (ω,u) ∈ C× C
N \ {0} such that M0u = ωM1u (8.2)

for matrices M0,M1 ∈ C
N×N are clearly special cases of non-linear (and rational) eigen-

value problems (see Problem 8.1). For such problems, the set Λ can always be chosen as
Λ = C.

To find eigenpairs (µ,u) of the shift-and-inverted problem, we use the so-called Arnoldi
algorithm (see, e.g., [Saa11, Section 6.2]), stated in Algorithm 1 in its simplest form. For
a given matrix A, this algorithm computes orthonormal vectors v0, . . . ,vK and an upper
Hessenberg matrixH ∈ C

(K+1)×(K+1) that is the projection ofA onto the subspace spanned
by these vectors. The eigenvalues of H are approximations to the eigenvalues of A with
the largest absolute values and the corresponding eigenvectors are the representations of
approximations to the according eigenvectors ofA in the basis

{
v0, . . . ,vK

}
. The algorithm

terminates if for some index j < K the set v0, . . . ,vj is an invariant subspace with respect
to the matrix A. A convergence analysis for the Arnoldi algorithm can be found in [Saa11,
Section 6.7].

An important idea for the treatment of large and sparse generalized-linear eigenvalue
problems (8.2) is using a so-called shift-and-invert. Instead of looking for eigenpairs of
(8.2), we look for the eigenvalues µ with the largest absolute values of the shift-and-inverted
linear problem to

find (µ,u) ∈ C \ {0} × C
N \ {0} such that

(
M0 − ω0M

1
)−1

M1u = µu (8.3)

for a given fixed shift ω0 ∈ C such that ω0 is no eigenvalue. It is easy to verify that
the eigenvalues µ with the largest absolute values of the shift-and-inverted problem (8.3)
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8.1. Generalized-linear eigenvalue problems

Algorithm 1 Arnoldi algorithm

Input: A ∈ C
N×N , K ∈ N

Output: approximations (λ0,u
0), . . . , (λK ,u

K) to eigenpairs of A
1: pick a normalized random vector v0 ∈ C

N

2: H← 0 ∈ C
(K+1)×(K+1)

3: for k = 1, . . . ,K + 1 do

4: t← Avk−1

5: for j = 0, . . . , k − 1 do

6: Hj,k−1 ← vj · t
7: t← t−Hj,k−1v

j

8: end for

9: if t = 0 then

10: break
11: end if

12: if k < K + 1 then

13: Hk,k−1 ← ‖t‖
14: vk ← t

Hk,k−1

15: end if

16: end for

17: (λ0,w
0), . . . , (λK ,w

K) ∈ C× C
K+1 ← eigenpairs of H

18: for j = 0, . . . ,K do

19: uj ←
(
v0, . . . ,vK

)
wj

20: end for

correspond to the eigenvalues ω of the initial problem (8.2) closest to the shift ω0 via the
relation

ω =
1

µ
+ ω0 (8.4)

and the eigenvectors u of the corresponding eigenvalues ω and µ coincide.

If we apply Algorithm 1 to the setting described above, namely, to the matrix A =
(M0 − ω0M

1)−1M1, we end up with Algorithm 2. Note that in Algorithm 2, as in the
following algorithms, we omit explicitly stating the computation of the eigenpairs of the
projected matrix H and the computation of the vectors uj since it can be done as in
Algorithm 1 (lines 14–20). Subsequently, the eigenvalues can be shifted back using (8.4).

If we assume that N ≫ K, the main computational effort of Algorithm 2 is the fac-
torization and application of the large inverse matrix in lines 3 and 5, where the effort
for the factorization is considerably more costly than the application. The computational
effort for the orthogonalization (lines 6–15) and the effort for finding the eigenvalues and
eigenvectors of the matrix H ∈ C

(K+1)×(K+1), which has to be performed afterwards, is
not as significant.
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8. Non-Linear Eigenvalue Problems

Algorithm 2 Shift-and-invert Arnoldi algorithm

Input: M0,M1 ∈ C
N×N , K ∈ N, ω0 ∈ C

Output: v0, . . . ,vK ∈ C
N , H ∈ C

(K+1)×(K+1)

1: pick a normalized random vector v0 ∈ C
N

2: H← 0 ∈ C
(K+1)×(K+1)

3: factorize
(
M0 − ω0M

1
)−1

4: for k = 1, . . . ,K + 1 do

5: t←
(
M0 − ω0M

1
)−1

M1vk−1

6: for j = 0, . . . , k − 1 do

7: Hj,k−1 ← vj · t
8: t← t−Hj,k−1v

j

9: end for

10: if t = 0 then

11: break
12: end if

13: if k < K + 1 then

14: Hk,k−1 ← ‖t‖
15: vk ← t

Hk,k−1

16: end if

17: end for

8.2. Rational eigenvalue problems

To be able to use the ideas from Section 8.1 for non-linear eigenvalue problems of the form
(8.1) as well, we introduce additional unknowns to transform (8.1) into a generalized-linear
eigenvalue problem of the form (8.2). Although this makes the shift-and-invert Arnoldi
algorithm 2 applicable to rational eigenvalue problems, the resulting problem is much more
costly to solve compared to linear problems with the same dimensions. In the following we
construct an algorithm that applies the procedure described above, with no significant extra
costs compared to Algorithm 2, for generalized-linear problems of the same dimensions.

8.2.1. Linear representations

We define the linear representation of a non-linear eigenvalue problem as follows:

Definition 8.2. Let N ∈ N and M : Λ ⊂ C → C
N×N . Moreover, let M ∈ N and

T : Λ→ C
(N+M)×(N+M), V : Λ→ C

N×(N+M) be affine matrix functions2 such that T(ω)
is regular for all ω ∈ Λ0 ⊂ Λ and

M(ω)u = V(ω)T(ω)−1

(
u

0

)

for all ω ∈ Λ0 and u ∈ C
N . Then we call V,T,Λ0 a linear representation of M.

2For a matrix function ω 7→ A(ω), the term ”affine” has to be understood with respect to the variable ω

(i.e., in a sense that A(ω) = Â−ωÃ for two constant matrices Â, Ã with suitable dimensions and ω in
the respective domain).
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8.2. Rational eigenvalue problems

In the following we frequently use the decomposition of the matrix functions T and V

into

V =
(
V0,V1

)
, T =

(
T0,0 T0,1

T1,0 T1,1

)

, (8.5)

with affine matrix functions V0 : Λ → C
N×N ,V1 : Λ → C

N×M ,T0,0 : Λ → C
N×N ,T0,1 :

Λ→ C
N×M ,T1,0 : Λ→ C

M×N ,T1,1 : Λ→ C
M×M .

To illustrate Definition 8.2 and for later use, we give an example of a linear representation.

Example 8.3. Consider the rational eigenvalue problem corresponding to the matrix func-
tion

M :

{

C \ {1} → C
N×N ,

ω 7→M0 + 1
1−ωM

1 + ω3M2
(8.6)

for some matrices M0,M1,M2 ∈ C
N×N and some N ∈ N. To find a linear representation

of M, one can introduce additional unknowns

u0 := u, u1 :=
1

1− ωu
0, u2 := ωu0, u3 := ωu2 = ω2u0,

which are linear combinations of each other with an affine dependency on ω and find the
matrix T(ω) ∈ C

4N×4N such that

T(ω)







u0

u1

u2

u3







=







u

0

0

0






.

For (8.6), a linear representation is then given by the matrix functions

T(ω) :=







IN 0 0 0

−IN (1− ω)IN 0 0

−ωIN 0 IN 0

0 0 −ωIN IN






, V(ω) :=

(
M0,M1,0, ωM2

)

for ω ∈ C. Since det(T(ω)) = 1 − ω for all ω ∈ C, we can pick Λ0 = Λ = C \ {1}.
Straightforward computations show that T,V,Λ0 is indeed a linear representation of M
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8. Non-Linear Eigenvalue Problems

since

V(ω)T(ω)−1







u

0

0

0







=
(
M0,M1,0, ωM2

)







IN 0 0 0

−IN (1− ω)IN 0 0

−ωIN 0 IN 0

0 0 −ωIN IN







−1





u

0

0

0







=
(
M0,M1,0, ωM2

)







IN 0 0 0
1

1−ω IN
1

1−ω IN 0 0

ωIN 0 IN 0

ω2IN 0 ωIN IN













u

0

0

0







=
(
M0,M1,0, ωM2

)







u
1

1−ωu

ωu
ω2u







=

(

M0 +
1

1− ωM
1 + ω3M2

)

u = M(ω)u

for u ∈ C
N and ω ∈ C \ {1}.

Remark 8.4. Example 8.3 shows the linear representation of a rational eigenvalue problem
with scalar coefficients. Note, however, that the linear representations from Definition 8.2
may also be applied to non-linear eigenvalue problems of a more involved form than sums
over constant matrices times scalar functions (i.e., than the ones given in Problem 8.1).

The following lemma shows that a linear representation is, in some sense, equivalent to
the initial non-linear problem.

Lemma 8.5. Let V,T,Λ0 be a linear representation of M as in Definition 8.2 and (8.5).
Then

Σ(M) ∩ Λ0 = Σ

((
V0 V1

T1,0 T1,1

))

∩ Λ0.

Proof. Let ω ∈ Σ(M) ∩ Λ0. Then there exists a vector u ∈ C
N \ {0} such that

M(ω)u = 0.

Since V,T,Λ0 is a linear representation and ω ∈ Λ0, we have

0 = M(ω)u = V(ω)T(ω)−1

(
u

0

)

.

Because T(ω) is regular and u 6= 0, we have z := T(ω)−1

(
u

0

)

6= 0 and since

(
u

0

)

= T(ω) z,

we have that
(
T1,0,T1,1

)
(ω) z = 0 and therefore also

(
V0(ω) V1(ω)
T1,0(ω) T1,1(ω)

)

z = 0.
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8.2. Rational eigenvalue problems

Thus, (ω, z) is an eigenpair of

(
V0 V1

T1,0 T1,1

)

.

Let (ω, z) ∈ Λ0 × C
N+M \ {0} be an eigenpair of

(
V0 V1

T1,0 T1,1

)

, meaning that

(
V0(ω) V1(ω)
T1,0(ω) T1,1(ω)

)

z = 0.

It follows that

T(ω) z =

((
T0,0(ω) ,T0,1(ω)

)
z

(
T1,0(ω) ,T1,1(ω)

)
z

)

=:

(
y

0

)

,

with y 6= 0, since T(ω) is regular by assumption and z 6= 0. All in all, we have that

M(ω)y = V(ω)T(ω)−1

(
y

0

)

= V(ω)T(ω)−1
T(ω) z = V(ω) z = 0,

stating that (ω,y) is an eigenpair of M.

The matrix function T of the linear representation in Example 8.3 is of the form

T(ω) =

(
IN 0

T1,0(ω) T1,1(ω)

)

, (8.7)

stating that the eigenvectors are, essentially, not changed during the process of deriving
the linear representation. In this case, if we find an eigenvalue ω of the matrix function
(
V0 V1

T1,0 T1,1

)

for a linear representation as in Lemma 8.5, we merely need to check whether

T1,1(ω) is regular. If this is the case, by Lemma 8.5, ω is an eigenvalue of the non-linear
problem corresponding to M. If T1,1(ω) is singular we have no information whether ω is
an eigenvalue of the non-linear problem as well.

8.2.2. The Arnoldi algorithm for linear representations

Since the matrix function

LV,T :=

(
V0 V1

T1,0 T1,1

)

, (8.8)

induced by a linear representation of a non-linear eigenvalue problem as given in Definition
8.2, is affine, the according eigenvalue problem is of the form (8.2). Thus, we may apply the
shift-and-invert Arnoldi algorithm (Algorithm 2) to the eigenvalue problem corresponding
to the matrix function LV,T from (8.8) to approximate eigenvalues and eigenvectors of the
non-linear problem corresponding to M (cf. Lemma 8.5).

As noted before, the factorization of the inverse matrix (in this case the inverse of LV,T(ω)
from (8.8)) contributes the main computational effort of this algorithm. Therefore, we
attempt to make the factorization and application of this inverse more efficient. To this
end, we state the following definition:
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8. Non-Linear Eigenvalue Problems

Definition 8.6. Let V,T,Λ0 be a linear representation of M as in Definition 8.2 and (8.5).
Then we write ·̂ and ·̃ for the constant part and first derivative respectively, of all the affine
matrix functions involved (e.g., V(ω) = V̂− ωṼ). We also adopt this notation for further
occurring affine matrix functions. Moreover, for LV,T as in (8.8) and u ∈ C

N , we write

nM,ω(u) := LV,T(ω)−1
L̃V,Tu =

(
V0(ω) V1(ω)
T1,0(ω) T1,1(ω)

)−1
(

Ṽ0 Ṽ1

T̃1,0 T̃1,1

)

u

for the next vector in the shift-and-invert Arnoldi algorithm (Algorithm 2) applied to the
generalized-linear eigenvalue problem corresponding to the affine matrix function LV,T

(Algorithm 2, line 5).

The following lemma states that the inverse of the matrix M(ω) is exactly the Schur
complement of the matrix LV,T(ω) and therefore gives us a formula for the inverse involved
in the computation of nM,ω(u).

Lemma 8.7. Let T,V,Λ0 a linear representation of M as in Definition 8.2 that fulfills
(8.5) and (8.7) and LV,T as in (8.8). Then for ω ∈ Λ0

M(ω) = V0(ω)−V1(ω)T1,1(ω)−1
T1,0(ω)

(i.e., M(ω) is the Schur complement of the matrix LV,T(ω) from (8.8)). Moreover, for
ω ∈ Λ0 \ Σ(M) and z0 ∈ C

N , z1 ∈ C
M , we have

LV,T(ω)−1

(
z0

z1

)

=

(
M(ω)−1 (z0 −V1(ω)T1,1(ω)−1

z1)

T1,1(ω)−1 (z1 −T1,0(ω)n0)

)

,

where n0 ∈ C
N consists of the first N entries of the vector LV,T(ω)−1

(
z0

z1

)

.

Proof. For ω ∈ Λ0, the matrix T(ω), and therefore also T1,1(ω), is regular and we have

T(ω)−1 =

(
IN 0

−T1,1(ω)−1
T1,0(ω) T1,1(ω)−1

)

.

Thus, for arbitrary u ∈ C
N

M(ω)u = V(ω)

(
IN 0

−T1,1(ω)−1
T1,0(ω) T1,1(ω)−1

)(
u

0

)

= V(ω)

(
u

−T1,1(ω)−1
T1,0(ω)u

)

=
(

V0(ω)−V1(ω)T1,1(ω)−1
T1,0(ω)

)

u.

It follows that M(ω) is the Schur complement of the Matrix

LV,T(ω) =

(
V0(ω) V1(ω)
T1,0(ω) T1,1(ω)

)

.

The second claim follows by Lemma A.17.
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8.2. Rational eigenvalue problems

Lemma 8.7 states that, to undertake the computations in the lines 3 and 5 in Algorithm
2, applied to LV,T from (8.8), we can employ a factorization of the matrix M(ω) (i.e., as
in the case of a generalized-linear problem (8.2), the according matrix function evaluated
at the shift). Therefore, desirable properties of the matrix that has to be inverted (like,
e.g., symmetry or skew-symmetry) are preserved. In general, this is not the case if simply
the matrix LV,T is used. The additional costs for the inversion and the application of the
inverse for a linear representation compared to a generalized-linear problem consist mostly
of the factorization and application of the inverse of the matrix T1,1(ω) ∈ C

M×M .
Nevertheless, if the dimension M of the matrix T1,1(ω) is as large as or larger than the

dimension of the problem N , we still end up with the additional factorization of a large.

8.2.3. Linear representations by scalar multiples

We motivate the following section by applying Lemma 8.7 to the problem from Example
8.3.

Example 8.3 (contd.). Recall the linear representation

T(ω) =







IN 0 0 0

−IN (1− ω)IN 0 0

−ωIN 0 IN 0

0 0 −ωIN IN






, V(ω) =

(
M0,M1,0, ωM3

)

of the matrix function (8.6).
Note that T is of the form

T(ω) =

(
1 0

t(ω) S(ω)

)

⊗ IN , (8.9)

with

t(ω) :=





−1
−ω
0



 ∈ C
3, S(ω) :=





1− ω 0 0
0 1 0
0 −ω 1



 ∈ C
3×3,

where the Kronecker productA⊗B ∈ C
NK×ML for two matricesA = (Ai,j)i=1,...N,j=1,...M ∈

C
N×M ,B ∈ C

K×L and M,N,K,L ∈ N is defined by

A⊗B :=






A1,1B . . . A1,MB
...

. . .
...

AN,1B . . . AN,MB




 .

If we only introduce new unknowns that are scalar multiples of our original unknowns as
in the present example, the matrix function T of the according linear representation will
always be of the form (8.9). This makes the computation and application of

T1,1(ω)−1 = S(ω)−1 ⊗ IN

straightforward and computationally cheap if the matrix S(ω) is small. This motivates the
following definition:
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8. Non-Linear Eigenvalue Problems

Definition 8.8. We call a linear representation V,T,Λ0 of M : Λ ⊂ C→ C
N×N for N ∈ N

a linear representation by scalar multiples if the matrix function T ∈ C
(m+1)N×(m+1)N for

some m ∈ N is of the form

T(ω) =

(
T0,0(ω) T0,1(ω)
T1,0(ω) T1,1(ω)

)

=

(
IN 0

t(ω)⊗ IN S(ω)⊗ IN

)

for some matrix functions

C
m ∋ t(ω) = t̂− ωt̃, C

m×m ∋ S(ω) = Ŝ− ωS̃

and ω ∈ Λ0. We change the notation of V slightly, compared to (8.5), by writing

V(ω) =
(
V0(ω) , . . . ,Vm(ω)

)

for affine matrix functions V0, . . . ,Vm : Λ → C
N×N . Moreover, we introduce the matrix

functions

C
m×(m+1) ∋ A(ω) =






A1,0(ω) . . . A1,m(ω)
...

. . .
...

Am,0(ω) . . . Am,m(ω)




 := S(ω)−1

(

t̃, S̃
)

,

C
m ∋ a(ω) =






a1(ω)
...

am(ω)




 := S(ω)−1

t(ω) ,

(8.10)

for all ω ∈ Λ0.

In the case of a linear representation by scalar multiples (Definition 8.8), the following
theorem shows how to efficiently compute the next vector nM,ω (Definition 8.6) in the
shift-and-invert Arnoldi algorithm.

Theorem 8.9. Let V,T,Λ0 be a linear representation by scalar multiples of M as in
Definition 8.8 and ω ∈ Λ0 \ Σ(M). Then the vector

nM,ω(u) =
((

n0
)⊤
, . . . , (nm)⊤

)⊤

from Definition 8.6 for

C
N(m+1) ∋ u =

((
u0
)⊤
, . . . , (um)⊤

)⊤

with uj ,nj ∈ C
N , j = 0, . . . ,m can be computed by

C
N ∋ xi :=

m∑

j=0

Ai,j(ω)u
j , i = 1, . . . ,m,

C
N ∋ n0 = M(ω)−1

(

Ṽu−
m∑

i=1

Vi(ω)xi

)

,

ni = xi − ain
0, i = 1, . . . ,m

with a,A as in (8.10).
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8.2. Rational eigenvalue problems

Proof. For

z0 := Ṽu =
(

Ṽ0, . . . , Ṽm
)

u, z1 :=
(

T̃1,0, T̃1,1
)

u =
(

t̃, S̃
)

⊗ INu

we obtain, by applying Lemma 8.73 and usingT1,1(ω) = S(ω)⊗IN and T1,0(ω) = t(ω)⊗IN ,
that

nM,ω(u) =

(
M(ω)−1 (z0 −

(
V1(ω) , . . . ,Vm(ω)

)
T1,1(ω)−1

z1)

T1,1(ω)−1 (z1 −T1,0(ω)n0)

)

=




M(ω)−1

(

Ṽ −
(
V1(ω) , . . . ,Vm(ω)

)
S(ω)−1

(

t̃, S̃
)

⊗ IN

)

u

S(ω)−1
((

t̃, S̃
)

⊗ IN u− t(ω)⊗ IN n0
)





=

(

M(ω)−1
(

Ṽ −
(
V1(ω) , . . . ,Vm(ω)

)
A(ω)⊗ IN

)

u

A(ω)⊗ IN u− a(ω)⊗ IN n0

)

=













M(ω)−1




Ṽu−

(
V1(ω) , . . . ,Vm(ω)

)






x1

...
xm











x1 − a1(ω)n
0

...
xm − am(ω)n0













.

Theorem 8.9 immediately leads to Algorithm 3. This version of the shift-and-invert
Arnoldi algorithm for linear representations is more efficient, compared to inverting the
whole linear system matrix LV,T(ω) ∈ C

(m+1)N×(m+1)N , since only the matrix M(ω) ∈
C
N×N of the non-linear problem evaluated at the shift has to be inverted. Although it

involves only the factorization and application of one large inverse matrix (lines 5 and 11),
the vectors that have to be orthonormalized in each step are of the dimension (m + 1)N
(instead of N in the generalized-linear case).
Moreover, there are still many computations with large vectors involved in each step

(lines 7–10 and lines 12–14).
The efficiency of Algorithm 3 depends on the number m, which depends on the choice of

the linear representation. For rational functions γj with high orders, this number can get
large compared to the number n+ 1 of the involved matrices.
The matrices V̂, Ṽ in Example 8.3 consist of scalar multiples of the constant matrices

Mj of the given problem. This observation can be formally put by assuming that the affine
matrix functions Vj : Λ→ C

N×N from

V(ω) =
(
V0(ω) , . . . ,Vm(ω)

)
=
(

V̂0, . . . , V̂m
)

− ω
(

Ṽ0, . . . , Ṽm
)

for ω ∈ Λ, are given by

V̂j =
n∑

i=0

P̂i,jM
i, Ṽj =

n∑

i=0

P̃i,jM
i, j = 1, . . . ,m (8.11)

3remember that we have to replace V
1 by

(

V
1, . . . ,Vm

)
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8. Non-Linear Eigenvalue Problems

for matrices P̂, P̃ ∈ C
(n+1)×(m+1).

Remark 8.10. Recall the matrix function

T(ω) =







1 0 0 0
−1 1− ω 0 0
−ω 0 1 0
0 0 −ω 1






⊗ IN

and its inverse

T(ω)−1 =







1 0 0 0
1

1−ω
1

1−ω 0 0

ω 0 1 0
ω2 0 ω 1






⊗ IN

of the linear representation of the matrix function

M(ω) =

2∑

j=0

γj(ω)M
j = M0 +

1

1− ωM
1 + ω3M2

for ω ∈ C \ {1}.
For this linear representation the matrices from 8.11 are given by

P̂ =





1 0 0 0
0 1 0 0
0 0 0 0



 , P̂ =





0 0 0 0
0 0 0 0
0 0 0 1





since V(ω) =
(
M0,M1,0, ωM2

)
.

The fact that the coefficient functions γj are entries of the first column of T(ω)−1 sug-
gests that we can evaluate the coefficients γj at a point ω ∈ Λ0 by using a given linear
representation.
Indeed, for a linear representation by scalar multiplesT,V,Λ0 ofM(ω) =

∑n
j=0 γj(ω)M

j ,
we obtain, by Lemma 8.7, for ω ∈ Λ0

M(ω) = V0(ω)−
(
V1(ω) , . . . ,Vm(ω)

)
T1,1(ω)−1

T1,0(ω)

=

n∑

i=0

Mi
(

P̂i,0 − ωP̃i,0

)

−
m∑

j=1

n∑

i=0

Mi
(

P̂i,j − ωP̃i,j

)

aj(ω)

=
(
M0, . . . ,Mn

) (

P̂− ωP̃
)( 1
−a(ω)

)

.

It follows that

(γ0(ω) , . . . , γn(ω))
⊤ =

(

P̂− ωP̃
)( 1
−a(ω)

)

.

These considerations also show that linear representations by scalar multiples (Definition
8.8) can only exist for rational eigenvalue problems (Problem 8.1) since the function a(·) =
S(·)−1

t(·) is always rational.
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8.2. Rational eigenvalue problems

Due to the formulas for the computation of the next vector in the shift-and-invert Arnoldi
algorithm for a linear representation by scalar multiples from Theorem 8.9, it is clear
that all the components nj , j = 0, . . . ,m of the vector nM,ω(u) can be written as linear
combinations of the component n0 and the components of the previous vector u. The
following, a little technical, theorem utilizes this fact and the assumption (8.11) to derive
a more efficient version of Algorithm 3.

Theorem 8.11. Let T,V,Λ0 be a linear representation by scalar multiples of the matrix
function M : Λ → C

N×N , N ∈ N, and ω ∈ Λ0 \ Σ(M) such that (8.11) holds. Moreover,
let k ∈ N, b0, . . . ,bk−1 ∈ C

N be normalized and orthogonal,

nM(u, ω) =
((

n0
)⊤
, . . . , (nm)⊤

)⊤
,

as in Definition 8.6, and

u =
((

u0
)⊤
, . . . , (um)⊤

)⊤
∈ C

N(m+1)

with uj ,nj ∈ C
N , j = 0, . . . ,m such that uj =

(
b0, . . . ,bk−1

)
cj for j = 0, . . . ,m and

cj ∈ C
k.

Then there exist vectors d0, . . . ,dm ∈ C
k+1 such that

nM(u, ω) =






(
b0, . . . ,bk

)
d0

...
(
b0, . . . ,bk

)
dm




 ,

where bk is the orthonormalization of n0 against b0, . . . ,bk−1 which defines d0. Moreover,
with

wj,l := Mjbl ∈ C
N , j = 0, . . . , n, l = 0, . . . , k − 1,

and a,A as in Definition 8.8, the vectors n0 and d1, . . . ,dm can be computed by

n0 = M−1(ω)
n∑

j=0

(

wj,0, . . . ,wj,k−1
)

ej ,

(
d1, . . . ,dm

)
=

((
c0, . . . , cm

)
A(ω)⊤

0

)

− d0a(ω)⊤ ,

with

C
(n+1)×(m+1) ∋ F(ω) := P̃−

(

P̂− ωP̃
)(

0

A(ω)

)

,

C
k×(n+1) ∋

(
e0, . . . , en

)
:=
(
c0, . . . , cm

)
F(ω)⊤ .

Proof. From Theorem 8.9 it is clear that the components n1, . . . ,nm are linear combinations
of the components of u and n0 and therefore also of b0, . . . ,bk. For the remainder, we use
the formula for n0 from Theorem 8.9

n0 = M−1(ω)
(

Ṽ −
(
V1(ω) , . . . ,Vm(ω)

)
A(ω)⊗ IN

)

u

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

8. Non-Linear Eigenvalue Problems

to compute

M(ω)n0 =
m∑

j=0

Ṽjuj −
m∑

k=1

(

V̂k − ωṼk
) m∑

j=0

Ak,j(ω)u
j

=
m∑

j=0

Ṽj
(

b0, . . . ,bk−1
)

cj −
m∑

k=1

(

V̂k − ωṼk
) m∑

j=0

Ak,j(ω)
(

b0, . . . ,bk−1
)

cj

=

m∑

j=0

n∑

i=0

P̃i,jM
i
(

b0, . . . ,bk−1
)

cj

−
m∑

k=1

n∑

i=0

(

P̂i,k − ωP̃i,k

)

Mi
(

b0, . . . ,bk−1
) m∑

j=0

Ak,j(ω) c
j

=
n∑

i=0

(

wi,0, . . . ,wi,k−1
)





m∑

j=0

P̃i,jc
j −

m∑

k=1

(

P̂i,k − ωP̃i,k

) m∑

j=0

Ak,j(ω) c
j





=

n∑

i=0

(

wi,0, . . . ,wi,k−1
)





m∑

j=0

Fi,j(ω) c
j





︸ ︷︷ ︸

ei

,

with

F(ω) := P̃−
(

P̂− ωP̃
)(

0

A(ω)

)

.

Thus, the formula for n0 is proven. Using the formulas for ni, i = 1, . . . ,m from Theorem
8.9, we obtain

ni =
m∑

j=0

Ai,j(ω)u
j − ai(ω)n

0

=
m∑

j=0

Ai,j(ω)
(

b0, . . . ,bk−1
)

cj − ai(ω)
(
b0, . . . ,bk

)
d0

=
(

b0, . . . ,bk
)





m∑

j=0

Ai,j(ω)

(
cj

0

)

− ai(ω)d
0



 .

Therefore,

(
n1, . . . ,nm

)
=
(

b0, . . . ,bk
)(((

c0, . . . , cm
)
A(ω)⊤

0

)

− d0a(ω)⊤
)

.

The main idea of Algorithm 4 is to utilize the fact that the m + 1 components of the
vectors uj ∈ C

(m+1)N from Algorithm 3 can be written as linear combinations of the basis
vectors bj ∈ C

N (cf. Theorem 8.11). The only necessary additional assumption is that
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8.2. Rational eigenvalue problems

the components of the first vector u0 ∈ C
(m+1)N are scalar multiples of a vector b0 ∈ C

N .
Since the vectors b0, . . . ,bk are already orthonormal, we merely have to orthonormalize

the smaller vectors
((

d0
)⊤
, . . . , (dm)⊤

)⊤
∈ C

(K+1)(m+1) (cf. Theorem 8.11) against the

coefficient vectors of the previous large vectors. This leads to Algorithm 4.

Discussion of Algorithm 4

Lines 1–6 in Algorithm 4 are pre-computations that have to be carried out only once, in-
volving only small vectors and matrices. Lines 7 and 14 contain the, usually expensive,
factorization and application of the inverse of the large matrix M(ω). Lines 15–24 corre-
spond to the orthonormalization of the next basis vector bk and are exactly as expensive
as in the Arnoldi algorithm for the (generalized-)linear case (Algorithm 2). Line 25–36
involve only small vectors and are negligible with respect to their computational costs if
n,m,K ≪ N .
The only parts involving large vectors that are more expensive than in the linear case,

are the lines 9–11 (in each step we have to multiply every matrix Mj by the new basis
vector) and the sum in line 14.

Since Algorithm 4 is, in exact arithmetic, equivalent to the shift-and-invert Arnoldi
algorithm for the linear representation, the analysis of Algorithm 4 can be done using the
analysis presented, for example, in [Saa11] for the Arnoldi algorithm.

Comparison of Algorithms 2–4

Table 8.1 shows a comparison of the computational costs of the algorithms presented in this
chapter. Under the reasonable assumption that n ≤ m + 1 ≪ N we can summarize that,
with respect to the main contribution to the numerical costs, namely, the factorization
and application of the large inverse matrix, Algorithms 3 and 4 for rational problems are
as efficient as Algorithm 2 for generalized-linear problems. Due to its high costs for the
factorization, applying Algorithm 2 to the linear representation LV,T is not advisable.

The computational costs for the orthonormalization grow quadratic in K. Thus, the
higher costs for the orthonormalization of the larger vectors in Algorithm 3 can be relevant
for larger values of K. Note, however, that Algorithm 4 also requires k(n + 1) additions
in each step which leads to a quadratic growth in K as well. Nevertheless, while for small
values of m and K, Algorithm 3 might be as efficient as Algorithm 4, in general, Algorithm
4 is the most efficient choice.

4where we counted a scalar multiplication together with a vector addition as one and also counted vector
assignments
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8. Non-Linear Eigenvalue Problems

Alg. 2 for
M(ω) = M

0−ωM1

Alg. 2 for LV,T Alg. 3 Alg. 4

dimension of the
inverse matrix

N (m+ 1)N N N

dimension of the
vectors that are
orthonormalized

N (m+ 1)N (m+ 1)N N

number of
applications of

matrices with dim. N

1 (m+ 1)2 3m+ 1 n+ 1

number of additions
of vectors with dim.

N4

0 (m+ 1)2 (m+ 1)2 + 2m k(n+ 1)

Table 8.1.: Comparison of the computational efficiency of the algorithms for generalized-
linear and rational eigenvalue problems per iteration step, where N is the di-
mension of the matrix function, m is the number of additional unknowns, n+1
the number of large matrices, and k the step. All computations involving no
large vectors of dimension N are neglected, as well as the computation of the
eigenvectors (lines 14–20 in Algorithm 1), since they are identical for all of the
algorithms.
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8.2. Rational eigenvalue problems

Algorithm 3 Shift-and-invert Arnoldi algorithm for linear representations by scalar mul-
tiples with smart inverse

Input: M, Ṽ, V̂, S̃, Ŝ, t̃, t̂ as in Definition 8.8, ω ∈ Λ0, K ∈ N

Output: u0, . . . ,uK ∈ C
N(m+1),H ∈ C

(K+1)×(K+1)

1: choose a normalized random vector u0 =
((

u0,0
)⊤
, . . . ,

(
u0,m

)⊤)⊤ ∈ C
N(m+1)

2: A←
(

Ŝ− ωS̃
)−1 (

t̃, S̃
)

3: a←
(

Ŝ− ωS̃
)−1 (

t̂− ωt̃
)

4: H← 0 ∈ C
(K+1)×(K+1)

5: factorize M(ω)−1

6: for k = 1, . . . ,K + 1 do

7: for i = 1, . . . ,m do

8: xi ←∑m
l=0Ai,lu

k−1,l

9: end for

10: y← Ṽuk−1 −∑m
l=1

(

V̂l − ωṼl
)

xl

11: n0 ←M(ω)−1
y

12: for i = 1, . . . ,m do

13: ni ← xi − ain
0

14: end for

15: for j = 0, . . . , k − 1 do

16: Hj,k−1 ← uj · n
17: n =

((
n0
)⊤
, . . . , (nm)⊤

)⊤
← n−Hj,k−1u

j

18: end for

19: if n = 0 then

20: break
21: end if

22: if k < K + 1 then

23: Hk,k−1 ← ‖n‖
24: uk ← n

Hk,k−1

25: end if

26: end for
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8. Non-Linear Eigenvalue Problems

Algorithm 4 Optimized shift-and-invert Arnoldi algorithm for linear representations by
scalar multiples

Input: M0, . . . ,Mn, P̂, P̃, S̃, Ŝ, t̃, t̂ as in Definition 8.8 and (8.11), ω ∈ Λ0, K ∈ N

Output: b0, . . . ,bK ∈ C
N , c0, . . . , cK ∈ C

(K+1)(m+1),H ∈ C
(K+1)×(K+1)

1: pick a normalized rand. vectors b0 ∈ C
N , c0 =

((
c0,0
)⊤
, . . . ,

(
c0,m

)⊤)⊤ ∈

C
(K+1)(m+1), with c0,j =

(

c
0,j
0 ,0

)⊤
∈ C

K+1 and c
0,j
0 ∈ C for j = 0, . . . ,m

2: H← 0 ∈ C
(K+1)×(K+1)

3: A←
(

Ŝ− ωS̃
)−1 (

t̃, S̃
)

4: a←
(

Ŝ− ωS̃
)−1 (

t̂− ωt̃
)

5: F← P̃−
(

P̂− ωP̃
)(

0

A

)

6: (γ0, . . . , γn)
⊤ ←

(

P̂− ωP̃
)( 1
−a

)

7: factorize M(ω)−1 =
(∑n

i=0M
iγi
)−1

8: for k = 1, . . . ,K + 1 do

9: for i = 0, . . . , n do

10: wi,k−1 ←Mibk−1

11: end for

12:
(
e0, . . . , en

)
←
(
ck−1,0, . . . , ck−1,m

)
F⊤

13: d0 ← 0 ∈ C
K+1

14: n←M(ω)−1∑n
i=0

∑k−1
j=0 w

i,jeij
15: for j = 0, . . . , k − 1 do

16: d0
j ← bj · n

17: n← n− d0
jb

j

18: end for
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8.2. Rational eigenvalue problems

19: if n = 0 then

20: break
21: end if

22: l← ‖n‖
23: bk ← n

l
24: d0

k ← l
25:

(
d1, . . . ,dm

)
←
(
ck−1,0, . . . , ck−1,m

)
A⊤ − d0a⊤

26: d←
((

d0
)⊤
, . . . , (dm)⊤

)⊤

27: for j = 0, . . . , k − 1 do

28: Hj,k−1 ← cj · d
29: d← d−Hj,k−1c

j

30: end for

31: if d = 0 then

32: break
33: end if

34: if k < K + 1 then

35: Hk,k−1 ← ‖d‖
36: ck ← d

Hk,k−1

37: end if

38: end for
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9. Numerical Experiments

In this chapter we discuss the results of numerical experiments that show how the three
main ideas of this thesis, namely,

— frequency-dependent complex scaling,

— tensor product discretizations generated by exterior coordinates, and

— complex-scaled infinite elements,

affect the performance of our method, compared to standard techniques.
In Section 9.2 we show that frequency-dependent scalings lead to a larger number of

well-approximated resonances than frequency-independent scalings (Figures 9.4, 9.5, and
9.6). Moreover, we show that the use of curvilinear coordinates can help to considerably
reduce the number of unknowns of the discrete problem (Figure 9.7 and Table 9.1). In
Section 9.3 we perform experiments that exhibit the superior computational efficiency of
complex-scaled infinite elements compared to certain PML approximations. Moreover, we
numerically compute the condition numbers of the generalized-radial discretization matrices
to show that they depend polynomially on the number of unknowns of the infinite element
spaces (Section 9.1).

All of the experiments were done using an implementation along the lines of Chapter
7 based on the software package Netgen/NGsolve [Sch97, Sch14]. To solve the rational
eigenvalue problems we used the shift-and-invert Arnoldi algorithm 4 from Chapter 8,
where we applied a, once per shift pre-computed, Cholesky factorization for symmetric,
non-hermitian problems to solve the linear system of equations in each step of the method.
We note that our implementation, as described in Chapter 7, is done in a way that it

can be applied to problems with potential functions ρ that are non-constant in the exterior
domain as well, as long as they allow a suitable decomposition in exterior coordinates (see
Section 10.2.1).

9.1. Condition numbers

In Section 6.3 requirement (R6) for basis functions φj was that they lead to well-conditioned
discretization matrices. Figure 9.1 shows the condition numbers of the discretization ma-
trices Ãn,N for a fixed scaling parameter σ0 ∈ C \ {0}, given by

Ã
n,N
j,k :=

1

σ0

∫

R>0

(1 + σ0ξ)
2φ′j(ξ)φ

′
k(ξ) dξ

+ σ0

∫

R>0

(
n(n+ 1)− ω2(1 + σ0ξ)

2
)
φj(ξ)φk(ξ) dξ, (9.1)
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9. Numerical Experiments

1 10 20 30 40 50 60
100

101

102

103

104

105

o
(
N

2
)

o
( N

3
)

N

n = 1
n = 5
n = 10
n = 15

Figure 9.1.: Spectral condition numbers of the discretization matrices Ãn,N given by (9.1),
with parameter σ0 = 0.3 + 0.3i and frequency ω = 10− 0.5i.

with respect to different infinite element orders N ∈ N. These matrices correspond to
discretizations of the complex-scaled spherical Bessel equations with index n. We observe
that the condition numbers grow slower than o

(
N3
)
. For N = 60 degrees of freedom the

condition number is about 105. Nevertheless, since the best approximation error decays
at least super-algebraically (Section 6.5), we expect that the mild grow in the condition
number is dominated by the fast convergence of the approximation error.

9.2. Comparison of different scalings

Similar to Section 4.2, we choose two-dimensional numerical examples with Ω = R
2 and

ρ = ρ0χΩ1 , and ρ0 > −1, where χΩ1 denotes the indicator function of a set Ω1 ⊂ R
2

(Figures 9.2 and 9.3).

Spherical scaling

Figure 9.4 shows the discrete resonances for spherical, frequency-independent scalings and
infinite elements. We can observe that only the first two resonances are approximated with
an approximation quality depending on the choice of the parameter. Moreover, we can
observe the discretization of the essential spectrum Σdec (Sections 5.3.2 and 7.3) close to
the imaginary axis.

Figure 9.5 shows discrete resonances computed using frequency-dependent scalings σv
(see (7.14b)). Compared to the frequency-independent scaling in Figure 9.4, more reso-
nances are approximated. Moreover, we can observe the essential spectrum Σsing. Note
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9.2. Comparison of different scalings

Rt

Rx

Rx

R

0

m

Γ

Ω1

(a) Geometry for the circular scaling. The dot-
ted, red line marks the jump in the potential
function ρ.

Rt

Rx

Rx

Γ

Ω1

(b) Geometry for the curvilinear scaling.

Figure 9.2.: Geometry with different choices of Γ. The upper part of Ω1 consists of half of
an ellipse with main semi-axis sizes Rt and Rx. The lower part is a half circle.

that although the set Σsing takes the shape derived in Section 7.3, it does not fill the whole
region. This does not contradict our analysis from Chapter 5 since the essential spectrum
Σsing therein was only derived for the case of a spherical scatterer. The lines Λ±

sing delimit
the area where the essential spectrum would occur for a circular scatterer surrounding Ω1.
Since the set Σdec is empty in this case, we do not observe it here.

We emphasize again that the computations shown in Figure 9.5 were done using an
identical mesh and the same number of degrees of freedom as the computations shown in
Figure 9.4 (see also Table 9.1). The better results are solely a result of the more pleasant
behavior of the complex-scaled eigenfunctions due to the frequency-dependent scaling.

Figure 9.6 shows discrete resonances obtained by using a spherical, frequency-dependent
scaling σc (see (7.14d)). We observe a similar approximation quality as in Figure 9.5. This
time the circular shaped essential spectrum Σdec is also present.

Curvilinear scaling

To reduce the number of degrees of freedom, we use a curvilinear scaling (Section 7.1.3
and (7.12)) to be able to choose Γ := ∂ supp(ρ) (Figure 9.2b). Note that this choice is
not covered by our theory since we required a positive distance between the support of the
potential ρ and the boundary Γ (Remark 2.5). Nevertheless, Figure 9.7 shows that this
choice leads to better results than the application of spherical scalings.

Table 9.1 shows a comparison of the numbers of degrees of freedom for the spherical
(Figures 9.4–9.6 and 9.2a) and the curvilinear scaling (Figures 9.7 and 9.2b). The use of
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9. Numerical Experiments

(a) us0 (b) us1 (c) us2

(d) uc0 (e) uc1 (f) uc2

Figure 9.3.: Real parts of the resonance functions corresponding to resonances ω0 ≈
5.1262664193 − 0.4639832795i, ω1 ≈ 8.8930913382 − 0.4891699190i, ω2 ≈
11.9748826324 − 0.3852545391i in Ωint. We used parameters Rt = 4, Rx = 2,
ρ0 = −0.8 (see Figure 9.2) and the frequency-dependent scaling σ(ω) = 1+i

ω
and spherical (m = (0, 1)⊤, R = 3.5, Figures a–c, cf. Figure 9.5a) and curvi-
linear coordinates (Figures d–f, cf. Figure 9.7). The colors red, blue, and green
correspond to positive, negative, and neutral values respectively. Note that the
resonance functions in Ωext are not pictured.

the curvilinear scaling considerably reduces the overall number of degrees of freedom due
to the fact that only about half the number of interior degrees of freedom are needed. The
number of exterior degrees of freedom is higher in the curvilinear case, since we need to
introduce an additional unknown to obtain a rational problem (see Section 7.2 and (7.12)).
Nevertheless, since the basis functions corresponding to the additional unknown are L2-
basis functions, they lead to more sparsity in the matrix structure than the degrees of
freedom corresponding to the H1-basis functions.

9.3. Comparison of infinite elements to PMLs

In this subsection we reproduce the results of [NW19, Section 6.2]. Contrary to the previous
sections, we choose a three-dimensional example to compare the computational costs of the
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9.3. Comparison of infinite elements to PMLs

spherical curvilinear

interior dofs 17 764 9 196

boundary H1-dofs 444 318

boundary L2-dofs 318

exterior H1-dofs 9 324 6 678

exterior L2-dofs 6 678

exterior dofs 8 880 13 038

total dofs 26 644 22 234

Table 9.1.: Comparison of the degrees of freedom (dofs) used for the experiments in Figures
9.4–9.6 (spherical scaling) and 9.7 (curvilinear scaling).

infinite elements to the ones of a PML. We approximate the resonances of the Helmholtz
equation on Ωext := Ω := R

3 \ B1 with homogeneous Neumann boundary conditions on
∂Ω. In this case the resonances are given by the roots of the spherical Hankel functions
(Lemma 5.16) and the eigenfunctions are given by (5.12).
All of the computations in this section were done on a desktop computer with an Intel i3

CPU with 2x3.5GHz and 16GiB memory. All of the given times are for the factorization of
the system matrix only since this factorization contributes the main computational effort
to the used algorithm (see Chapter 8).

Figure 9.8 shows the error of the resonances plotted against the factorization times for
infinite elements and a PML using the tensor product method described in Section 6.3.1,
with one-dimensional, high-order finite element basis functions in radial direction on an
interval [0, T ]. We applied h-refinement to obtain a succession of discretizations, with an
initial mesh consisting of one single element.
In Figures 9.8a and 9.8c the error generated by the truncation of the exterior domain can

be observed at approximately 10−3. In Figures 9.8c and 9.8d the infinite elements already
reach the error generated by the surface discretization, which is approximately 10−7. All
of the experiments show that the infinite elements are clearly superior to the used PML
discretizations with respect to the computational efficiency.
Note that, due to the fact that we used the tensor product ansatz also for the PML

discretizations, this version of PML is already more efficient than a typical linear PML
based on an unstructured exterior mesh. On the other hand, the efficiency of the PML can
be increased by using more involved scaling profiles than the simple linear scaling functions
we make use of. Moreover, an adapted one-dimensional mesh could be used to obtain better
approximation properties in radial direction.
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9. Numerical Experiments

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Re(ω)

Im
(ω

)

reference σ(ω) = 0.5 + 0.5i σ(ω) = 0.5 + i

Figure 9.4.: Resonances for a spherical, frequency-independent scaling with Rt = 4, Rx = 2,
R = 3.5, ρ0 = −0.8, and m = (0, 1)⊤. The discretization parameters are
N = 20 and polynomial order 3 where we used the mesh from Figure 9.2a for
the interior and surface discretization.
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9.3. Comparison of infinite elements to PMLs
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g

Fig. 9.3(a) Fig. 9.3(b)
Fig. 9.3(c)

Re(ω)

Im
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)

reference σv

(a) σv(ω) =
1+i
ω
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+ si
n
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(b) σv(ω) =
i
ω

Figure 9.5.: Resonances for a spherical, frequency-dependent scaling σv with Rt = 4, Rx =
2, R = 3.5, ρ0 = −0.8, m = (0, 1)⊤. The discretization parameters are N =
20 and polynomial order 3, where we used the mesh from Figure 9.2a. The
dashdotted lines indicate the region where we expect the essential spectrum
Σsing.
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9. Numerical Experiments
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Figure 9.6.: Resonances for a spherical, frequency-dependent scaling σc(ω) = i
1+ω with

Rt = 4, Rx = 2, R = 3.5, ρ0 = −0.8, m = (0, 1)⊤. The discretization
parameters are N = 20 and polynomial order 3, where we used the mesh from
Figure 9.2a. The dashdotted and dotted lines indicate the regions where we
expect the subsets of the essential spectrum Σsing and Σdec respectively.
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Figure 9.7.: Resonances for a curvilinear frequency-dependent scaling σv(ω) = 1+i
ω with

Rt = 4, Rx = 2, ρ0 = −0.8, m = (0, 1)⊤. The discretization parameters are
N = 20 and polynomial order 3 (and 2 for the auxiliary L2-space) and we used
the mesh from Figure 9.2b. The dashdotted line indicates the region where we
expect the essential spectrum Σsing.
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9.3. Comparison of infinite elements to PMLs
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Figure 9.8.: Comparison of the errors of selected resonances ω against factorization times.
We used a surface discretization with order o = 5 and mesh-size h = 0.3,
σ(ω) = 1+i

ω , and different exterior discretizations. The PMLs were truncated
at T > 0 and discretized with radial elements of order or.
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10. Conclusion and Outlook

In this final chapter we give a short summary of our findings (Section 10.1). Moreover, we
explain a few additional scenarios where our method might be a good choice and present
ideas on how to apply it (Section 10.2). In Section 10.3 we address some open questions
for future research.

10.1. Conclusion

We have presented the derivation, analysis, and implementation of the method of frequency-
dependent complex-scaled infinite elements for exterior Helmholtz resonance problems.
Throughout this work we have shown, in our numerical experiments in Chapters 4 and
9, that the use of a frequency-dependent complex scaling can make the method more
robust in the frequency. Therefore, a single computation produces a larger number of
well-approximated discrete resonances, compared to the use of a frequency-independent
scaling.

In our analysis in Chapter 5, we have shown that the use of a frequency-dependent
complex scaling affects the essential spectrum of the problem. This has to be taken into
account for the choice of the scaling parameters. Using exterior coordinates (Section 7.1)
for generating the complex scaling is useful for the following reasons: Primarily, these
coordinates enable us to use curvilinear and star-shaped complex scalings. These scalings
can be used to adapt the shape of the interface between the exterior and interior domain to
the geometry of the given problem. Therefore, the interior domain can be chosen small to
reduce the number of unknowns of the resulting discrete problem (see Table 9.1). Moreover,
exterior coordinates can be used to define the discretization of the exterior domain by the
use of tensor product basis functions (Section 6.2). Thus, it is not necessary to explicitly
generate a mesh of the exterior domain.

We have introduced complex-scaled infinite elements (Section 6.3) for the discretization
of the exterior problem. These infinite elements exhibit super-algebraic approximation
properties for the eigenfunctions of the complex-scaled Helmholtz equation (cf. Section
6.5) and are, therefore, very well-suited to efficiently treat the resonance problems at hand.
Moreover, the complex-scaled infinite elements unite many preferable properties, including
well-conditioned, sparse discretization matrices (Section 9.1) and the possibility to use
numerical integration (Section 6.3.2) for assembling said matrices.

Lastly, in Chapter 8 we have presented numerical procedures to efficiently solve the
rational eigenvalue problems which appear due to the use of frequency-dependent complex
scalings.
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10. Conclusion and Outlook

ρ ≡ ρ0

ρ ≡ ρ1

Ωext

Ωint

Γ

n(x̂)

x ξ(x)

x̂(x)

Figure 10.1.: An example of a problem with non-constant potential ρ(·) = ρ̂(x̂(·)) in Ωext

that can be treated using curvilinear coordinates. Note that the jumps in the
potential function are aligned with the normal vector n of the interface Γ.

10.2. Applications and extensions

In the following we give an overview of problems, in addition to the scenarios studied in
this work, where our method could be applied.

10.2.1. Inhomogeneous exterior

Contrary to the discretization matrices of Hardy space infinite elements, which are, in some
sense, equivalent to the complex-scaled infinite elements (Section 6.4), the discretization
matrices of the complex-scaled infinite elements can also be computed using numerical
integration (Section 7.4.2). This can be applied in situations where the potential ρ is not
only supported in a bounded domain ([SHK+07, NS11]). If we assume that the potential
ρ can be written in Ωext by

ρ(x) = ρ̃(ξ(x)) ρ̂(x̂(x)) ,

we can still compute the discretization matrices by an appropriate tensorization and solve
the discrete eigenvalue problem. Configurations where this is useful include, for example,
open waveguides (see Figure 10.1, where the potential depends only on the surface vari-
able x̂) or potentials that have also a dependency on the generalized-radial coordinate.
Resonances for the latter situation were computed, experimentally, in [NW19], although a
proper analysis of this problem has yet to be done. Note that, in this case, it is not even
straightforward to define an appropriate radiation condition (cf. [NS11]).
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10.2. Applications and extensions

Figure 10.2.: Snapshots of a time-domain example with inhomogeneous exterior potential
ρ (see Figure 10.1). The dashed, white circle marks the location of the source.

10.2.2. Frequency-dependent materials

An interesting topic is the study of waves in metamaterials. In some applications these ma-
terials can be modeled by frequency-dependent material parameters, where the frequency-
dependency is usually chosen as a rational function ([GV17]). In this case the complex
scaling has to be chosen dependent on the frequency as well ([BFJ03, BJV18, BK17]).
Since the according non-linear eigenvalue problems are very similar to the ones in our case,
they could also be treated using the methods from Chapter 8.

10.2.3. Other wave-type equations

The Hardy space infinite element method has been successfully applied to electromagnetic
([NHSS13]) and elastic ([HN15a]) wave problems in the time-harmonic regime. Therefore,
it is straightforward to use complex-scaled infinite elements for these equations as well.
In the elastic case also so-called two pole Hardy space infinite elements are used ([HN18,
HHNS16]). It remains an open question whether these elements allow a representation as
complex-scaled infinite elements as well.

10.2.4. Time-domain

Another situation where it is mandatory to use a frequency-dependent complex scaling is
the discretization of problems in time-domain. The scaling needs to be frequency-dependent
due to the fact that it has to work for all frequencies ω ∈ R, since in the derivation of the
problem, the inverse Fourier transform is applied to the time-harmonic problem. The
frequency-dependencies given in Section 7.3 have already successfully been used for the
time-discretization together with infinite elements ([NTW19]). Using exterior coordinates
makes the treatment of interesting geometries, such as open waveguides (see Figures 10.1,
and 10.2) possible. Future work could include combining these ideas with discontinuous
Galerkin methods and explicit time-discretization schemes for fast matrix-free implemen-
tations. Moreover, a thorough study of the effects of the various frequency-dependencies in
time-domain could be conducted, since, also in time-domain, the choice of the frequency-
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10. Conclusion and Outlook

−2 −1 0 1 2

0

1

2 Ωint ΩextΩext

−2 −1 0 1 2

0

1

2

−2 −1 0 1 2

0

1

2

−2 −1 0 1 2

0

1

−2 −1 0 1 2

0

1

−2 −1 0 1 2

0

1

σ(ω) =
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Figure 10.3.: Successive snapshots of a one-dimensional time-domain example using PMLs
with different frequency-dependencies.

dependency heavily affects the behavior of the wave in the exterior domain (see Figure
10.3). Although different frequency-dependencies are used in the engineering community
(e.g., [DG07, RG00]), to our knowledge the issue of the mathematical analysis thereof has
not attracted much attention.

10.2.5. Preconditioning

Another interesting topic for future research is the application of preconditioned iterative
solvers to our method for non-linear eigenvalue problems. The matrix that needs to be
inverted for the application of our algorithm is identical to the one of an according scat-
tering problem. Therefore, any preconditioner for (complex-scaled) Helmholtz scattering
problems may be applied. Established preconditioners for such problems are sweeping
preconditioners (e.g., [EY11b, EY11a, GZ19]) and shifted Laplace preconditioners (e.g.,
[BGT83]).
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10.3. Further open questions

10.3. Further open questions

Although we have presented an analysis of our method for the case of a spherical scaling
in three dimensions, there are still some gaps to fill.
There is a gap between the region in the complex plane where we can show Fredholmness

of the operator function and the region where we can show the existence of an essential
spectrum. Moreover, the results regarding the essential spectrum Σsing should be refined
and generalized to other configurations. In addition to these gaps, the analysis should be
extended to the case of general scalings in exterior coordinates.
Lastly, we have presented only a modal analysis of the approximation properties of our

basis functions. For a comprehensive analysis, bounds that are uniform in the Bessel index
have to be found.
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A. Appendix

A.1. Special functions

In this section we give an overview of the special functions we use throughout our work.
For a useful summary of most of these functions and their properties we refer to [AS64].
For more comprehensive references see, for example, [Leb65, Tem96, AW01].

A.1.1. (Spherical) Hankel functions

The Hankel functions of the first and second kind H
(1,2)
α of order α ∈ R play an important

role in a wide variety of applications. Most notably, in our context they appear in the
separation of the Helmholtz and wave equations into polar coordinates.

The spherical Hankel functions h
(1,2)
α are the counterparts of the Hankel functions for

three dimensions and spherical coordinates. In the literature the (spherical) Hankel func-
tions of the first and second kind are commonly also referred to as (spherical) Bessel func-
tions of the third (and fourth) kind. A classical reference for these functions is [Wat44].
All of the following properties can also be found in [AS64, Chapters 9 and 10], [Leb65,
Chapter 5] and [Tem96, Chapter 9]. For an overview of the properties of the spherical
Hankel functions we refer to [CK98, Section 2.4].
One way to define the Hankel functions is to use integral representations (cf. [Tem96,

Equation (9.2)]). The spherical Hankel functions can then be defined by

h(1,2)α (z) :=

√
π

2z
H

(1,2)

α+ 1
2

(z)

for z ∈ C \ {0}.
In the following we state a few properties of the (spherical) Hankel functions which are

proven in the given references or follow as easy corollaries.

Proposition A.1. Let n ∈ N0. Then

(i) the Hankel functions H
(1,2)
n are analytic on C \ {0} with a branch point at 0 and

(ii) H
(1)
n and H

(2)
n are linearly independent solutions of Bessel’s differential equation

z2u′′(z) + zu′(z) + (z2 − n2)u(z) = 0.

Proposition A.2. Let n ∈ N0. Then

(i)

h(1,2)n =
exp(±iz)
(±i)n+1z

n∑

m=0

1

(∓2iz)m
(n+m)!

m!(n−m)!
,
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A. Appendix

(ii) the functions h
(1,2)
n are holomorphic functions on C \ {0} with a pole of order n + 1

at 0, and

(iii) the functions h
(1,2)
n are linearly independent solutions of Bessel’s spherical differential

equation

z2u′′(z) + 2zu′(z) +
(
z2 − n(n+ 1)

)
u(z) = 0. (A.1)

The (spherical) Hankel functions and their derivatives have the following asymptotic
behavior for large arguments and large orders:

Proposition A.3. Let n, k ∈ N0. Then

∂k

∂zk
H(1,2)

n (z) = (±i)k
√

2

πz
exp

(

±i
(

z − (2n+ 1)π

4

))(

1 +O

(
1

z

))

, |z| → ∞,

∂k

∂zk
h(1,2)n (z) =

(±i)k−n−1

z
exp(±iz)

(

1 +O

(
1

z

))

, |z| → ∞.

Proposition A.4 (Asymptotics of the (spherical) Hankel functions for large order). We
have

lim
n→∞

hn(z)iz
n+1

(2n− 1)!!
= 1

and

lim
n→∞

h′n(z)iz
n+2

(2n− 1)!!(n+ 1)
= −1,

uniformly on compact subsets of C \ {0}.

A.1.2. (Spherical) harmonics

Spherical and cylindrical harmonics are orthogonal systems on the surfaces of the unit
sphere and circle respectively. References for these functions include [Leb65, Chapter 7],
[AW01, Section 12.6], and [CK98, Section 2.3].

Definition A.5 (Spherical and cylindrical harmonics). For n ∈ N0,m ∈ Z with |m| ≤ n,
the spherical harmonics can be defined on S1 ⊂ R

3 by

Y m
n :

{

Γ → R,

x̂ 7→
√

(2n+1)(n−|m|!)
4π(n+|m|)! p

|m|
n (cos(θ(x̂))) exp(imφ(x̂)) ,

where p
|m|
n are the associated Legendre functions and θ, φ are the polar angles. Moreover,

we define the cylindrical harmonics on S1 ⊂ R
2 by

Φn(x̂) := exp(inθ(x̂)) ,

where θ ∈ [0, 2π) is the polar angle.
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A.1. Special functions

Proposition A.6.

(i) The spherical harmonics are a complete orthonormal system with respect to the L2(S1)-
inner product. Moreover, they are a complete orthogonal system with respect to the
H1(S1)-inner product.

(ii) For all n ∈ N0 and x̂ ∈ B1, ∣
∣Y 0

n (x̂)
∣
∣ ≤
√
2n+ 1.

A.1.3. (Generalized) Laguerre polynomials and functions

The generalized Laguerre polynomials form orthogonal systems for certain weighted L2-
spaces on the set R>0. References for these functions include [STW11, Section 7.1], [AS64,
Chapter 22], and [Leb65, Section 4.17].

Definition A.7. For n,m ∈ Z, we define the generalized Laguerre polynomials by

Ln,m(x) :=

n∑

k=0

(
n+m
n− k

)
(−x)k
k!

,

where the binomial coefficient for α ∈ C, k ∈ N0 is defined by

(
α
k

)

:=
k∏

j=1

α− j + 1

j
. (A.2)

We use the convention that an empty sum equals zero and an empty product equals one.

Remark A.8. Since an empty sum equals zero we have for n < 0

Ln,m(x) = 0.

An empty product equals one which leads to
(
α
0

)

= 1

for all α ∈ C. Moreover, for n, k ∈ N0 with k > n, we have
(
n
k

)

= 0.

Thus, the Laguerre polynomials Ln,−m with n > 0 and negative index −m have vanishing
coefficients of xk for k ≤ m.

Proposition A.9 (properties of the generalized Laguerre polynomials). Let n,m ∈ Z.
Then we have

(i) for x ∈ C

nLn,m(x) = (2n+m− 1− x)Ln−1,m(x)− (n+m− 1)Ln−2,m(x) ,
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A. Appendix

(ii)

Ln,m−1 = Ln,m − Ln−1,m,

(iii) for k ∈ N0, x ∈ C

dk

dxk
Ln,m(x) = (−1)kLn−k,m+k(x) ,

(iv)

L′
n,m = −Ln−1,m+1 = −

n−1∑

k=0

Lk,m,

(v) for n ∈ N0, x ∈ C

Ln,m(x) =
exp(x)

xmn!

dn

dxn
(
exp(−x)xn+m

)
,

and

(vi) for t, x ∈ C, |t| < 1,

∞∑

k=0

Lk,0(x)t
k =

exp
(

− tx
1−t

)

1− t .

Definition A.10. We define the generalized Laguerre functions for n,m ∈ Z by

φn,m(x) := exp(−x)Ln,m(2x).

We shorten the notation by writing and φn := φn,−1, ψn := φn,0.

Proposition A.11 (properties of the generalized Laguerre functions). Let n ∈ N0,m ∈ Z.
Then

(i) for k ∈ N0, the functions ·kφn,m ∈ L2(R>0) and

∫ ∞

0
ξmφn,m(ξ)φj,m(ξ) dξ =

(n+m)!

2m+1n!
δn,j ,

(ii)
φn,m−1 = φn,m − φn−1,m,

(iii)

φ′n,m = −φn,m − 2φn−1,m+1 = −φn,m+1 − φn−1,m+1 = −φn,m − 2
n−1∑

k=0

φk,m,
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A.2. Further necessary results and technical computations

(iv)

φn,−1(0) = δ0,n,

(v) for j, l ∈ N0 such that |j − n| > l + 1 and p ∈ Pl,
(
pφ′n, φ

′
j

)

L2(R>0)
= (pφn, φj)L2(R>0)

= 0,

and

(vi) for x ∈ C,

kφk,m(x) = (2k +m− 1− 2x)φk−1,m(x)− (k +m− 1)φk−2,m(x).

A.2. Further necessary results and technical computations

In this section we state and prove results that were omitted in the main text for the sake
of a clear presentation.

Theorem A.12. Let D ⊂ R
d be a smooth, open domain such that Dc is bounded. Then

there exists a bounded operator

tr∂D : H1(D)→ H1/2(∂D)

such that for f ∈ C
(
D
)
∩H1(D) we have tr∂D f = f |∂D.

Proof. Let R > 0 be such that Dc ⊂ BR. Then the set DR := D ∩BR is a bounded, open
domain with smooth boundary. Thus, we have a well-defined and bounded trace operator

tr∂DR
: H1(DR)→ H1/2(∂DR)

that fulfills

‖tr∂DR
f‖H1/2(DR) ≤

∥
∥
∥tr∂DR

∥
∥
∥ ‖f‖H1(DR)

for every f ∈ H1(DR), where ‖tr∂DR
‖ > 0 denotes the operator norm of tr∂DR

.

For f ∈ H1(D), we have f |DR
∈ H1(DR) and thus, we may define

tr∂D f := (tr∂DR
f)|∂D .

Because of

‖tr∂D f‖H1/2(∂D) ≤ ‖tr∂DR
f‖H1/2(∂DR) ≤

∥
∥
∥tr∂DR

∥
∥
∥ ‖f‖H1(DR) ≤

∥
∥
∥tr∂DR

∥
∥
∥ ‖f‖H1(Ω) ,

the operator tr∂D is also bounded with norm ‖tr∂D‖ ≤ ‖tr∂DR
‖ .
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A. Appendix

Lemma A.13. Let n ∈ N, a ∈ C, b,d ∈ C
n, and C ∈ C

n×n such that C is regular. Then

the determinant of M :=

(
a b⊤

d C

)

can be computed by

det(M) =
(

a− b⊤C−1d
)

det(C) .

Moreover, if a 6= b⊤C−1d, the matrix M is regular and

M−1 =
det(C)

det(M)

(
1 −b⊤C−1

−C−1d C−1db⊤C−1

)

+

(
0 0

0 C−1

)

.

Proof. We have

M =

(
a b⊤

d C

)

=

(
a− b⊤C−1d b⊤C−1

0 In

)(
1 0

d C

)

which proves the statement about the determinant. Moreover, if a 6= b⊤C−1d the deter-
minant of M is non-zero and

M
det(C)

det(M)

(
1 −b⊤C−1

−C−1d C−1db⊤C−1

)

=
1

a− b⊤C−1d

(
a− b⊤C−1d −ab⊤C−1 + b⊤C−1db⊤C−1

0 0

)

=

(
1 −b⊤C−1

0 0

)

= In+1−M
(
0 0

0 C−1

)

.

Lemma A.14. Let m,n ∈ N, m < n, and T ∈ C
n×m such that T has full rank. Then TT†

is the matrix of the orthogonal projection onto V := span(T), where T† :=
(
T⊤T

)−1
T⊤

and span(T) denotes the space spanned by the columns of T.

Proof. For v ∈ C
n, the vector TT†v is in V . Moreover, we have

T⊤
(

TT†v − v
)

= T⊤v −T⊤v = 0.

Theorem A.15. Let v ∈ C
n, T ∈ C

n×n−1 such that T has full rank (i.e., T⊤T is regular),
and n ∈ C

n such that ‖n‖ = 1 and T⊤n = 0. Then

det

((
v⊤

T⊤

)

(v,T)

)

= det
(

T⊤T
)

(v · n)2 .

Moreover, if v · n 6= 0, the matrix

(
v⊤

T⊤

)

(v,T) is regular and

((
v⊤

T⊤

)

(v,T)

)−1

=
1

(v · n)2

(

1 −
(
T†v

)⊤

−T†v T†v
(
T†v

)⊤

)

+

(

0 0

0 T† (T†)⊤

)

.
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A.2. Further necessary results and technical computations

Proof. Since T⊤T is regular, we can apply the first part of Lemma A.13 to the matrix

M :=

(
v⊤

T⊤

)

(v,T) =

(
v⊤v v⊤T
T⊤v T⊤T

)

to obtain

det(M) = det

((
v⊤v v⊤T
T⊤v T⊤T

))

=
(

v · v − v⊤TT⊤v
)

det
(

T⊤T
)

= (v · n)2 det
(

T⊤T
)

.

If v · n 6= 0, the matrix M is regular and we can apply the second part of Lemma A.13 to
obtain

M−1 =
1

(v · n)2

(

1 −v⊤T
(
T⊤T

)−1

−
(
T⊤T

)−1
T⊤v

(
T⊤T

)−1
T⊤vv⊤T

(
T⊤T

)−1

)

+

(

0 0

0
(
T⊤T

)−1

)

=
1

(v · n)2

(

1 −
(
T†v

)⊤

−T†v T†vv⊤ (T†)⊤

)

+

(

0 0

0 T† (T†)⊤

)

,

since

T†
(

T†
)⊤

=
(

T⊤T
)−1

T⊤T
(

T⊤T
)−1

=
(

T⊤T
)−1

.

Corollary A.16. Let n,v ∈ C
n, and T ∈ C

n×n−1 such that T has full rank, ‖n‖ = 1,
T⊤n = 0, and v · n 6= 0. Then (v,T) is regular,

(v,T)−1 =
1

v · n

(
n⊤

−T†vn⊤

)

+

(
0
T†

)

,

and

|det (v,T)| =
√

|det (T⊤T)| |v · n| .

Proof. Since for any regular matrix M ∈ C
n×n we have M−1 =

(
M⊤M

)−1
M⊤, we obtain

for M = (v,T), by Theorem A.15, that

M−1 =

(

1

(v · n)2

(

1 −
(
T†v

)⊤

−T†v T†v
(
T†v

)⊤

)

+

(

0 0

0 T† (T†)⊤

))(
v⊤

T⊤

)

=
1

(v · n)2




v⊤
(

In −
(
TT†)⊤

)

−T†vv⊤
(

In −
(
TT†)⊤

)



+

(
0
T†

)

.

Since, by Lemma A.14,
(
In −TT†) is the projection onto the space span(T)⊥ = span(n),

we have (

In −TT†
)

v = v · nn

and therefore the assertion follows. The formula for the determinant follows from taking
the square root of the determinant of M⊤M.
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A. Appendix

Lemma A.17. For N,M ∈ N, let A ∈ C
N×N , B ∈ C

N×M , C ∈ C
M×N , and D ∈ C

M×M

such that D is regular and
S := A−BD−1C

is regular. Then

(
A B

C D

)

is regular and for x0 ∈ C
N ,x1 ∈ C

M , we have

(
y0

y1

)

:=

(
A B

C D

)−1(
x0

x1

)

=

(
S−1

(
x0 −BD−1x1

)

D−1 (x1 −Cy0)

)

.

Proof. We have

(
S−1

(
x0 −BD−1x1

)

D−1
(
x1 −CS−1

(
x0 −BD−1x1

))

)

=

(
S−1 −S−1BD−1

−D−1CS−1
(
IM +D−1CS−1B

)
D−1

)(
x0

x1

)

.

Moreover, due to

AS−1 −BD−1CS−1 = SS−1 = IN ,

−AS−1BD−1 +B
(
IM −D−1CS−1B

)
D−1 =

(
−AS−1 + IM +BD−1CS−1

)
BD−1 = 0,

CS−1 −DD−1CS−1 = 0

and
−CS−1BD−1 + IM +CS−1BD−1 = IM ,

we obtain
(
A B

C D

)(
S−1

(
x0 −BD−1x1

)

D−1
(
x1 −CS−1

(
x0 −BD−1x1

))

)

=

(
x0

x1

)

.

Definition A.18. For complex numbers a, b, c, d ∈ C such that |c|+ |d| 6= 0, we define the
Möbius transformation m by

m :

{

C \
{
−d

c

}
→ C,

z 7→ az+b
cz+d .

Lemma A.19. Let µ ∈ C \ {0} and a, b, c, d ∈ C such that c, d 6= 0 and m as in Definition
A.18. Then the set

m(µR)

is a subset of the circle in the complex plane with center

m0 :=
(bc− ad)µ̄c̄
c(dc̄µ̄− d̄cµ) +

a

c
=
bµ̄c̄− ad̄µ
dc̄µ̄− d̄cµ

and radius

r :=

∣
∣
∣
∣

(bc− ad)µ
dc̄µ̄− d̄cµ

∣
∣
∣
∣
.
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A.2. Further necessary results and technical computations

Proof. For t ∈ R, we have

|m0 −m(µt)| =
∣
∣
∣
∣

(bc− ad)µ̄c̄
c(dc̄µ̄− d̄cµ) +

a

c
− atµ+ b

ctµ+ d

∣
∣
∣
∣

=

∣
∣
∣
∣

(bc− ad)µ̄|c|2
c2(dc̄µ̄− d̄cµ) +

a(ctµ+ d)− (atµ+ b)c

c(ctµ+ d)

∣
∣
∣
∣

=

∣
∣
∣
∣

(bc− ad)µ̄|c|2
c2(dc̄µ̄− d̄cµ) +

ad− bc
c(ctµ+ d)

∣
∣
∣
∣

=

∣
∣
∣
∣

(bc− ad)µ̄|c|2(ctµ+ d) + (ad− bc)c(dc̄µ̄− d̄cµ)
c2(dc̄µ̄− d̄cµ)(ctµ+ d)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(bc− ad)
(
µ̄|c|2(ctµ+ d)− c(dc̄µ̄− d̄cµ)

)

c2(dc̄µ̄− d̄cµ)(ctµ+ d)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(bc− ad)µ
(
µ̄|c|2ct+ d̄c2

)

c2(dc̄µ̄− d̄cµ)(ctµ+ d)

∣
∣
∣
∣
∣
.

Because of
∣
∣
∣
∣

µ̄|c|2ct+ d̄c2

ctµ+ d

∣
∣
∣
∣
=

∣
∣
∣
∣

µ̄c2c̄t+ d̄c2

ctµ+ d

∣
∣
∣
∣
= |c|2

∣
∣
∣
∣

µ̄c̄t+ d̄

ctµ+ d

∣
∣
∣
∣
= |c|2,

we have

|m0 −m(µt)| =
∣
∣
∣
∣

(bc− ad)µ
dc̄µ̄− d̄cµ

∣
∣
∣
∣
= r.
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[BHNPRr08] A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodŕıguez. An ex-
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