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Kurzfassung

Gegenwärtige Fahrzeuge sind mit einer Vielzahl an Fahrerassistenzsystemen ausgestattet,
die den Fahrer während des Betriebs des Fahrzeugs unterstützen. Moderne Assistenzsyste-
me sind beispielsweise in der Lage einen festgelegten Abstand zu einem vorausfahrenden
Fahrzeug einzuhalten, selbständig einzuparken sowie die Fahrspur auf Autobahnen zu
wechseln. Alle diese Funktionen verfügen über eine hohe Zuverlässigkeit und wurden
ausführlich getestet. Dennoch ist der Fahrer dazu angehalten, das Verhalten der Assis-
tenzsysteme zu überwachen und bei Bedarf die Kontrolle zu übernehmen.

Bei vollautonomen Fahrzeugen, welche als SAE Level 5-Fahrzeuge bezeichnet werden,
ist jedoch eine Übernahme der Kontrolle von Fahrgästen ausgeschlossen. Um Fahrzeuge
vollautonom zu betreiben, müssen zahlreiche Softwareanwendungen, wie zum Beispiel
Wahrnehmungs-, Planungs- und Fahrzeugssteuerungsdienste miteinander interagieren,
wobei viele dieser Anwendungen als sicherheitskritisch einzustufen sind. Folgedessen kann
ein Ausfall einer solchen Applikation zu einer für Personen gefährlichen Situation führen.

Um die Sicherheit der Fahrgäste und anderer Verkehrsteilnehmer im Falle eines auftreten-
den Fehlers gewährleisten zu können müssen daher Maßnahmen ergriffen werden, welche
einen sicheren Betrieb in solchen Situationen ermöglichen.

Insbesondere am Beginn der Einführung von autonomen Fahrzeugen ist es wichtig, das
Vertrauen der Kunden zu stärken. So ist, zum Beispiel, die Behandlung von Fehlern
durch das Ausführen einen Nothalts nicht zielführend, da ein solches Verhalten Kunden
verunsichern würde. Folglich muss das autonome Fahrsystem in der Lage sein, Ausfälle
selbstständig zu erkennen und adäquat zu behandeln.

In dieser Arbeit wird ein Ansatz zur schrittweisen Behandlung von Fehlern vorgestellt.
Dieser Ansatz basiert auf den aus der Luft- und Raumfahrt bekannten Fdir (“Fault De-
tection, Isolation, and Recovery”) Methodologie, wobei die von Fdir definierten Schritte
an den Anwendungsfall des autonomen Fahrens angepasst wurden. Darüber hinaus wurde
der Fdir-Ansatz um einen Systemoptimierungsschritt erweitert, welcher die Stabilität
und Effizienz des Gesamtsystems nach einer sicherheitskritischen Rekonfiguration opti-
miert. In diesem Sinne nennen wir unseren Ansatz Fdiro (“Fault Detection, Isolation,
Recovery, and Optimization”).

Da eine schnelle Rekonfiguration als eine wesentliche Anforderung vieler sicherheitskriti-
scher Softwareanwendungen angesehen wird, ist der Erkennungs- und Isolierungsschritt

vii
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des Fdiro-Ansatzes von geringer Komplexität. Daher können diese Schritte innerhalb
von Millisekunden durchgeführt werden.

Um zu zeigen, dass der Erkennungs- und Isolierungsschritt in kurzer Zeit durchgeführt
werden kann wird eine Proof-of-Concept-Implementierung vorgestellt, welche dieses
Verhalten veranschaulicht. Weiters wird eine Implementierung basierend auf linearer Pro-
grammierung vorgestellt, welche Wiederherstellungsmaßnahmen berechnet. Schlußendlich
werden Konzepte zur Optimierung des Systems basierend auf Kontextbeobachtungen
diskutiert.
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Abstract

Nowadays, vehicles are equipped with various advanced assistance systems that support
the driver during the operation of the vehicle. Actions that modern vehicles are capable of
doing are, for instance, keeping the distance to a preceding vehicle, autonomous parking,
or switching lanes on highways. Although these functions are highly reliable and well
tested, the driver is still constrained to monitor their behavior and take over control, if
required.

As far as fully autonomous vehicles are concerned, i.e., so-called SAE Level 5 vehicles,
any takeover actions by passengers are excluded. To operate such autonomous vehicles,
numerous software applications, including, for example, perception, planning, and vehicle
control services, have to interact with each other. Many of these applications are
safety-critical, i.e., a failure might result in a hazardous situation.

Therefore, to guarantee the safety of the passengers and other road users in case an
occurring failure causes a safety-critical application to misbehave, measures have to be
implemented to ensure a safe operation in such situations.

Especially in the initial phase of the development of autonomous vehicles, building
up consumer confidence is essential. Therefore, in this regard, handling failures by
performing an emergency stop, i.e., stopping the vehicle whenever a failure is detected,
is not desirable as such behavior may reduce customer confidence. Consequently, the
system responsible for operating the autonomous vehicle has to detect and handle failures
autonomously, i.e., the system has to be fail-operational.

In this thesis, we introduce a fail-operational approach for handling failures in a stepwise
fashion by adapting the Fdir (“Fault Detection, Isolation, and Recovery”) approach
known from the aerospace domain, whereby we reimplemented the steps defined by Fdir

to fit the area of autonomous driving. Moreover, we extended the Fdir approach by a
system optimization procedure that improves the system stability and efficiency after a
safety-critical reconfiguration. Accordingly, we call our approach Fdiro, standing for
“Fault Detection, Isolation, Recovery, and Optimization”.

Since a fast reconfiguration time is considered an essential requirement of many safety-
critical software applications, the detection and isolation steps of the Fdiro approach
are designed to be of low complexity. Therefore, these steps can be performed within
milliseconds.
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To show that the detection and isolation steps can be performed in a short time, we
provide a proof-of-concept implementation. We further present an implementation based
on linear integer programming for determining recovery actions and introduce concepts
for optimizing the system based on context observations.
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CHAPTER 1
Introduction

Since the introduction of motorized vehicles in the early 20th century, the task of operating
those machines was the responsibility of the driver. In recent years, however, vehicles
have been gradually equipped with an increasing number of driver-assistance systems,
which support the driver. Modern vehicles are, for instance, capable of keeping the
distance to a preceding vehicle, switching lanes on highways, and reversing into a parking
space autonomously.

Due to the rapid technological development, it is feasible to automate the task of driving
in the near future entirely. Such autonomous vehicles, which are also referred to as SAE
Level 5 vehicles [54], may yield many positive aspects. For instance, they can induce an
improved traffic flow [17], fewer emissions [45], and provide mobility to the elderly or
disabled individuals [15]. Furthermore, it is assumed that autonomous vehicles lead to
safer roads [43].

However, since autonomous vehicles are complex distributed systems that consist of
numerous safety-critical software applications [32], i.e., a failure of those applications
might result in hazardous situations, strong efforts are necessary to ensure the safety of
autonomous vehicles. As SAE Level 5 vehicles exclude any takeover actions by passengers,
measures have to be implemented to handle failures autonomously in a safe manner.

Although handling failures by performing an emergency stop is feasible, such behavior is
not desirable since this may cause customer satisfaction to decline [39]. Furthermore, in
case the vehicle is, for example, moving at a very high speed or driving in a tunnel, it might
not be safe to stop abruptly. On the other hand, increasing the failure-acceptance rate
might cause vehicles to operate unintentionally, leading to a loss of customer confidence.
Therefore, solutions to handle this are required.

In this thesis, we introduce Fdiro (“Fault Detection, Isolation, Recovery, and Optimiza-
tion”), a fail-operational approach for handling failures in a stepwise fashion, extended
with a system optimization procedure that improves the system stability and efficiency
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1. Introduction

after the safety-critical reconfiguration. This approach is based on the Fdir (“Fault
Detection, Isolation, and Recovery”) approach known from the aerospace domain [68],
which is also applied in other areas such as chemical [62] and nuclear engineering [67].

An essential feature of Fdir is the redundant design of applications. Fdiro adopts this
characteristic by defining an active and several passive operation modes. The idea is that
each safety-critical application is executed redundantly, whereby one application instance
is executing in active operation mode and thus interacting with other applications. The
other redundant application instances are executing a passive operation mode. Therefore,
these instances are not interacting with other applications and can perform a degraded
set of operations. However, passive instances are capable of quickly taking over the
responsibilities of the active instance if required.

Due to the redundant design of safety-critical applications, the execution of the first
three steps of the Fdiro approach, which correspond to the detection, isolation, and
recovery actions as defined by Fdir, results in an error-free configuration system, which
satisfies the demanded safety requirements. However, since the resulting configuration
might not be optimal, we enhanced the Fdir strategy by an additional optimization
step. The goal of this step is to optimize the application placement, i.e., the assignment
between application instances and computing nodes, according to context observations,
including, for example, environmental conditions and passenger preferences.

Besides enabling a context-based configuration optimization, Fdiro also ensures a fast
reconfiguration time, which is considered an essential requirement of many safety-critical
software applications. For instance, the maximum acceptable reconfiguration time of the
application that controls the steering is 90 ms [48]. Fdiro meets this requirement due to
keeping the complexity of the detection and isolation step low. Consequently, those steps
can be performed within milliseconds.

Compared to the detection and isolation step of Fdiro, the subsequent recovery and
optimization steps are not as time-critical. Therefore, the actions performed during
the recovering and optimization procedure can be more complex and, therefore, more
time-consuming.

The thesis is organized as follows: In Chapter 2, we provide background information about
autonomous driving, the system architecture of autonomous vehicles, and functional
safety. In Chapter 3, we introduce our stepwise reconfiguration approach, i.e., Fdiro.
Chapter 4 focuses on the detection and isolation steps of Fdiro. In Chapter 5, we explain
the redundancy recovery step in more detail. Chapter 6 presents ideas concerning the
application-placement optimization. In Chapter 7, we compare our work to approaches
that aim for similar goals. Finally, in Chapter 8, we conclude the thesis and discuss
possible future work.

Parts of this thesis have been accepted in the proceedings of international conferences
and workshops. To wit, the results of Chapter 3 and Chapter 4 appear in the pro-
ceedings of the 30th European Safety and Reliability Conference (ESREL 2020) [35].
Moreover, the methods introduced in Chapter 6 will be published in the proceedings
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of the 2nd Autonomous System Design Workshop (ASD 2020) [34]. Finally, a paper
summarizing results of Chapter 5 is submitted to the 31st IEEE Intelligent Vehicles
Symposium (IV 2020) [36].
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CHAPTER 2
Background

In what follows, we provide some general information about autonomous driving. Further-
more, we discuss the system architecture of autonomous vehicles as well as the functional
safety concerns of such vehicles.

2.1 Autonomous Driving

In the past, vehicles were purely mechanical systems. In recent years, however, manufac-
turers gradually computerized their vehicles. Due to the rapid technological development,
it is even feasible to (partially) automate the task of driving. To categorize the level of
automaton, the Society of Automotive Engineers (SAE) introduced a classification, as
illustrated in Table 2.1, ranging from no automation to full automation [54].

The era of autonomous cars already began in the late 1970s when engineers at the
Tsukuba Mechanical Engineering Laboratory (Tsukuba, Japan) built the first prototype
that was able to autonomously maneuver a car between street markings [61]. Nowadays,
many automotive manufacturers, including, for example, Tesla, Daimler, Volkswagen,
Ford, and Toyota as well as technology companies such as Google, Amazon, Nvidia, Intel,
and Uber push the research of autonomous driving forward [29].

The development towards fully autonomous vehicles is to be welcomed since such vehicles
can lead to safer roads [43], and an improved traffic flow [17]. Autonomous vehicles can
also cause a social impact by, for example, providing mobility to the elderly or disabled
individuals [15]. Furthermore, vehicle autonomy can lead to reduced energy consumption
and fewer emissions [45].

Many of those benefits become effective once autonomous vehicles are accessible to the
general public. According to the Victoria Transport Policy Institute [42], it is likely that
this will be the case in about 20 to 30 years.
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2. Background

Table 2.1: SAE level of driving automation.

Level 0 No Automation
The driver performs the longitudinal and lat-
eral control.

Level 1 Driver Assistance
The system can either perform the longitudi-
nal control using adaptive cruise control or the
lateral control using a lane-centering system.

Level 2 Partial Automation
The system can perform both longitudinal
and lateral control. However, the driver has to
monitor the actions performed by the system.

Level 3 Conditional Automation

The system can perform both longitudinal as
well as lateral control, and the driver is not
required to monitor the actions performed by
the system. However, the driver has to take
over control, if required.

Level 4 High Automation
The system performs the driving task au-
tonomously in some defined situations.

Level 5 Full Automation
The system performs the driving task au-
tonomously. No driver is required.

2.2 Functional System Architecture of Autonomous

Vehicles

As the research on autonomous vehicles is still in an early phase, none of the proposed
software and hardware architecture concepts for autonomous vehicles is widely accepted.
However, we can identify some functional components that can be found in most au-
tonomous vehicles [63, 33, 9, 69], viz. such a functional system architecture consists of
the following three components:

• perception,

• planning, and

• vehicle control.

The input for this architecture is the information provided by a set of various sensors.
This information is used by the components to generate a set of actions that are performed
by the actuators of the vehicle. Those actuators control, amongst other parameters,
the longitudinal as well as lateral movement of the vehicle. The interplay between the
functional components, sensors, and actuators is illustrated in Figure 2.1.

The perception unit is responsible for locating the vehicle with respect to a map. Since
some use cases require accuracy in the range of centimeters [4], using only the position
data provided by a GPS sensor is not sufficient as the accuracy of GPS ranges above 20
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2.2. Functional System Architecture of Autonomous Vehicles

Figure 2.1: Functional system architecture of autonomous vehicles.

meters [57]. However, the location unit can increase its accuracy by considering additional
information provided by, e.g., (i) cameras, (ii) the internal measurement unit, which
measures the linear accelerations and the vehicle angular, (iii) radar, and (iv) LiDAR
(light detection and ranging) sensors [41]. Furthermore, the perception unit can also
use information shared by other vehicles [19] and the infrastructure [16]. Therefore,
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) information is required.

Besides determining the location of the vehicle, the perception unit is also responsible
for observing the driving environment. Modern approaches mainly use the data received
from LiDAR sensors and cameras to perform the environmental perception [50].

One task of observing the driving environment is, for instance, detecting obstacles such as
other cars, passengers, and cyclists. Currently used perception units mainly apply deep
learning approaches for detecting obstacles due to their superior performance [12]. Further
tasks required for observing the driving environment include, for example, detecting
traffic signs [3], recognizing road markings as well as extracting road surfaces [5].

The location information and environment observations determined by the perception
unit are used as input for the planning component. Based on these data, the route,
behavior, and trajectory of the vehicle are planned.

For determining the route a vehicle shall follow, applying classic search algorithms like
A* [27] or Dijkstra’s [14] is feasible. However, those approaches turn out to be inefficient
in the case of large road networks. Thus, to improve the performance of route planning
in such environments, more sophisticated algorithms have to be applied [6].

The behavioral planner is responsible for obeying the traffic rules. It determines, for
example, the maximum speed, the minimum distance to the preceding vehicle, or whether
the vehicle has to stop at an intersection or not [64]. To model the desired behaviors,
finite-state machines can be used [44].

The output from the route planner and the behavioral planner are used by the trajectory
planner to compute the path that describes how the vehicle shall traverse the environment
with respect to time. Graph search and interpolating curve algorithms are currently the
two main approaches used for implementing trajectory planners [21].
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2. Background

In the next step, the trajectory determined by the planning unit is used as an input for
the vehicle control unit. This unit executes the planned trajectory by controlling the
actuators responsible for the longitudinal and lateral motion of the vehicle.

2.3 Functional Safety

Even though the vehicles currently available on the consumer market are far from being
considered highly automated, they are already equipped with various functions that are
safety-critical, i.e., their misbehavior can cause hazardous situations. The progressive
introduction of safety-critical functions, like brake-by-wire or electronic stability control,
increases the probability that a failure occurs, which causes a safety-critical application
to fail [37].

To reduce this risk, the International Organization for Standardization (ISO) introduced
a standard concerning the functional safety of road vehicles, viz., ISO 26262 [30]. This
standard defines functional safety as the absence of unreasonable risks due to hazards
caused by malfunctioning behavior of electrical and electronic systems (so-called E/E
systems) [30, Part 1]. To achieve this goal, ISO 26262 introduces, for example, a
safety-driven development process as well as an approach for the risk classification of
functions.

A common method for increasing functional safety is to monitor the behavior of safety-
critical applications and to deactivate them in case a failure is detected. Such systems
are referred to as fail-safe systems. Typically, traction control [20], power steering [40],
as well as adaptive cruise control systems [49] are designed to be fail-safe. In case, for
example, the adaptive course control system fails, the driver is warned that this function
is disabled. Therefore, the tasks of keeping the speed and distance to the preceding
vehicle are handed over to the driver.

Although a fail-safe behavior is acceptable in today’s vehicles, for fully autonomous
vehicles, more sophisticated approaches such as fail-operational systems are required
since any takeover actions by the passengers are excluded.

Compared to fail-safe systems, fail-operational systems ensure a correct and safe operation
even if the system is affected by failures [8]. In the following chapter, we introduce an
approach that aims for a fail-operational behavior.
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CHAPTER 3
An Approach for a

Fail-Operational System Design

In this chapter, we introduce a concept for the implementation of a fail-operational
system. The idea of our approach is to handle failures in a stepwise fashion to ensure a
safe system state as fast as possible.

Since our idea of a fail-operational system is based on a redundant design of the software
applications, which are required to operate the autonomous vehicle, we first introduce
the redundancy concept adopted by our approach.

Afterwards, we introduce Fdiro, a stepwise reconfiguration approach standing for “Fault
Detection, Isolation, Recovery, and Optimization”, that is the core of our concept for a
fail-operational system.

3.1 Software Redundancy Concept

As already mentioned before, the fundamental basis of our approach for a fail-operational
system is a redundant design of the software applications. The idea thereby is that
multiple instances of the same application are executed by the system, whereby the
individual instances run in different operation modes. Generally speaking, we distinguish
between an active operation mode, multiple passive operation modes, and one isolated
mode.

An application instance that is executed in active operation mode is referred to as an
active instance. These instances are actively interacting with the system, i.e., they provide
data to other applications or are operating an actuator.

On the other hand, passive instances, i.e., application instances that are executed in
one of the passive operation modes, do not interact with the system. They, however,
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3. An Approach for a Fail-Operational System Design

might perform the same operations as the corresponding active instances. A passive
trajectory planner instance, for example, does not send commands to the controller that
is responsible for steering the car.

Since passive instances are not interacting with the system, per application, multiple
instances that run in passive operation mode are permitted. On the other hand, only one
active instance per application is allowed because otherwise conflicts between multiple
active instances of the same application might arise.

As mentioned before, our redundancy concept defines multiple passive operation modes.
In total, we distinguish between three different passive modes, namely:

• active-hot,

• passive-warm, and

• passive-cold.

The difference between those three passive operation modes is the level of workload
degradation. While active-hot instances perform the same operations as the corresponding
active instances, passive-warm instances perform only a reduced set of actions. Therefore,
active-hot instances can quickly take over the actions of active instances. Passive-cold
instances do not utilize any computing resources. Their primary purpose is to block
required resources so that in case it is required they can quickly upgrade to the active-hot
operation mode. The idea behind defining three passive operation modes is to increase
overall safety while reducing the consumption of computing resources.

Note that in the following we sometimes do not distinguish between the active-hot,
passive-warm, and passive-cold operation mode. We then refer to all application instances
executing one of these operation modes as passive instances and redundant instances,
respectively.

Besides the active and the passive operation modes, our redundancy concept also defines
an isolated mode. This operation mode prevents an instance from communicating with
other instances or controlling actuators. The main purpose of this operation mode is to
prevent further damage after detecting the malfunctioning of an application.

To illustrate the basic idea of our redundancy concept, consider the configuration shown
in Figure 3.1. Each software application is executed by exactly one computing node.
Assuming that all the applications are mission-critical, i.e., necessary for operating the
autonomous vehicle safely, any failure that causes one of the applications to fail might
result in an accident.

Figure 3.2 shows a redundant design of the system illustrated in Figure 3.1. For each
application, one active and one passive instance is executed, whereby these two instances
are located on different computing nodes, i.e., the level of hardware segregation is two.
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3.1. Software Redundancy Concept

Figure 3.1: Configuration without redundant application instances.

Figure 3.2: Configuration with redundant application instances.

Assuming that Computing Node 2 fails, therefore, as shown in Figure 3.3, the active
instance of the trajectory planner, as well as the passive instances of the map and the
navigation application, fail. Since the passive instances are not interacting with the
system, their failure does not endanger the driving mission. The failure of the active
instance of the trajectory planner, on the other hand, affects the steering of the vehicle
and therefore endangers the safety of the passengers as well as other road users.

However, because of the redundant design of the trajectory planner, an accident can be
circumvented by changing the operation mode of the passive trajectory planner instance
to active.

Since handling such failures is not a trivial task, we introduce next our novel approach
realizing the idea of a stepwise reconfiguration.
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3. An Approach for a Fail-Operational System Design

Figure 3.3: Configuration after the failure of computing node 2.

3.2 A Stepwise Reconfiguration Approach

Our approach for handling occurring failures is based on the Fdir (“Fault Detection,
Isolation, and Recovery”) approach known from the aerospace domain [68]. The idea is
to handle failures by executing the following steps:

Step 1: detection of the failure,

Step 2: isolation of the failure by a switchover between redundant instances,

Step 3: recovery of the redundancy requirements, and

Step 4: optimizing the placement of the application instances.

The first three steps correspond to the detection, isolation, and recovery actions specified
by Fdir. The execution of those steps results in an error-free configuration, which
satisfies the required safety requirements. However, since the resulting configuration
might not be optimal, we extended the Fdir strategy by an additional optimization step.
Consequently, we refer to this extended Fdir approach as Fdiro.

The newly introduced optimization step aims to optimize the system according to goals
that depend on the current situation. In the case of an autonomous electric vehicle, a
conceivable goal is, for example, the extension of the range. Assuming that the energy
efficiency of an electric vehicle can be improved by shutting down computing nodes, the
optimization step might aim for finding an application placement that allows shutting
down as many computing nodes as possible.

The motivation for implementing a stepwise reconfiguration is that for some failures,
the reconfiguration time is critical. In some cases, the time until a failure is isolated,
and a redundant instance takes over the actions of the faulty instance is required to be
within milliseconds. The maximum acceptable reconfiguration time of an application
that controls the steering is, for example, 90 ms [48].
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3.2. A Stepwise Reconfiguration Approach

Figure 3.4: Comparison of time criticality and computational complexity of the different
Fdiro steps.

The stepwise design of our reconfiguration approach allows us to meet this requirement
since the complexity of the detection and isolation step is low. Therefore, those steps
can be performed within a guaranteed time.

The complexity of the redundancy recovery step and the optimization step is, on the
other hand, significantly higher. However, since the time criticality of the later steps
is lower than the time criticality of the earlier steps, such behavior is acceptable. The
complementary effect of time criticality and complexity is displayed in Figure 3.4.

Another valid approach to ensure short reconfiguration times is to precompute successor
configurations for all possible failures that can occur. However, as we prove in what
follows, such an approach is not feasible since today’s storage capacities are not sufficient
enough.

Assume that N is the set of computing nodes and I is the set of application instances, i.e.,
of all active and passive instances that are executed by the system.

Moreover, we define a configuration, C, as a mapping between the set of computing nodes
and application instances. We encode configurations as |N | × |I| matrices, whereby an
element is 1 in case the computing node executes the corresponding application instance
or 0 otherwise.

Assuming that we consider only failures of computing nodes and application instances,
in total there are |N | + |I| possible failures that can occur. Since the reconfiguration
actions, after a failure occurred, depend on all failures that happened previously, we have
to consider all possible permutations of failures.

In total, there are (|N | + |I|)! different sequences of failures. Since each failure results
in a new configuration, per failure permutation |N | + |I| configurations, apart from the
initial configuration, are required. Therefore,

(|N | + |I|)! · (|N | + |I|) + 1

configurations have to be precomputed. Since we defined that a configuration is rep-
resented by a |N | × |I| matrix, and the single elements adopt one of two possible
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3. An Approach for a Fail-Operational System Design

values, |N | · |I| bits of storage are required per configuration. Therefore, to store all
(|N | + |I|)! · (|N | + |I|) + 1 configurations,

((|N | + |I|)! · (|N | + |I|) + 1) · |N | · |I|

bits are required.

Assuming, a car is equipped with four computing nodes, i.e., |N | = 4, which execute 100
application instance, i.e., |I| = 100, about 5 · 10169 bytes of storage are required.

Even though configurations can be probably represented more efficiently and some failure
sequences can be shortened we can assume that it is not feasible to store reconfiguration
actions for all possible failures that can occur.

3.2.1 Workflow of FDIRO

Due to the stepwise design of Fdiro, it is evident to use a service-oriented architecture
to implement this approach. In total, we define the following five different components,
which collectively are responsible for performing the Fdiro approach:

• monitors,

• a switchover component,

• a failover controller,

• a redundancy-recovery component, and

• a placement optimizer.

In what follows, we describe the responsibilities of the different components as well as
their interplay.

The monitors are the components that detect failures and consequently trigger a recon-
figuration. We can distinguish between three types of monitors:

• application-instance monitors,

• operating-system monitors, and

• hardware monitors.

Application-instance monitors detect failures of application instances. To detect that an
application instance is malfunctioning, the desired behavior of the application instance
has to be known. Therefore, each application has its own application instance monitor
that is monitoring all instances of that application.
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3.2. A Stepwise Reconfiguration Approach

Furthermore, each operating system shall be monitored by an operating system monitor,
and each computing node shall be monitored by a hardware monitor.

In case that any of those different types of monitors detect a failure, they inform the
switchover component about the affected application instances.

The switchover component then instructs the faulty instance to switch to the isolated oper-
ation mode. Recall, that this operation mode prevents the faulty instance communicating
with other applications or controlling actuators.

Next, the switchover component checks whether for a faulty application instance redundant
instances, i.e., application instances that run in a lower operation mode, exist. In case
that redundant instances exist, the switchover component selects the instance with the
highest operation mode that is lower than the operation mode of the faulty application
instance. Note that we refer to the active operation mode as the highest operation mode,
whereby passive-cold is considered as the lowest operation mode.

The switchover component then instructs the selected instance to switch to the operation
mode of the faulty instance and subsequently hands the control to the redundancy-recovery
component. In case that no redundant instance exists, the switchover component has to
evaluate if the failure of the instance caused the safety level to drop below an acceptable
threshold. If so, the switchover component instructs the failover controller to take over
the control and safely stop the vehicle. Otherwise, the switchover component hands over
the control to the redundancy-recovery component.

The redundancy-recovery component is responsible for restoring the lost redundancy.
Therefore, this component obtains the current resource utilization of all available com-
puting nodes. Using this information, the redundancy-recovery component determines
whether one of the computing nodes offers enough free resources to run an instance that
implements the same functionality as the faulty instance. If such a computing node exists,
the redundancy-recovery component instructs that node to start a redundant instance
that runs in the same operation mode as the instance that was selected by the switchover
component.

In case that no computing node has sufficient resources left, the redundancy-recovery
component is allowed to displace application instances and stop application instance of
lower priority.

The actions performed by the redundancy-recovery component can be seen as a fast
way to increase the safety of the system. However, the placement of the new redundant
instance might not be optimal. Therefore, in the next step, the placement optimizer tries
to find an application placement that is better suited for the current driving situation.

Therefore, the placement optimizer first determines the goals the application placement
shall meet. Then it computes a placement that satisfies the previously defined goals.
Finally, the placement optimizer rolls out the new placement plan to all computing nodes,
which then perform the actions defined in the placement plan.
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3. An Approach for a Fail-Operational System Design

Figure 3.5: Activity diagram of the stepwise reconfiguration process.

Figure 3.5 illustrates the just described workflow in an activity diagram. To further clarify
the tasks performed during the stepwise reconfiguration, we next provide a concrete use
case.

3.2.2 Use Case: Failure of a Trajectory Planner

Assume a system, as illustrated in Figure 3.6, which executes five applications, whereby
for each application, one redundant instance exists. In this example, we consider a failure
of the active instance of the trajectory planner, which is executed by Computing Node 2.

After the failure occurred, the application instance monitor that is specifically designed
to detect failures of trajectory planners has to become aware of the malfunctioning of the
active instance of the trajectory planner. This part of the Fdiro process corresponds to
Step 1, the detection of the failure.
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3.2. A Stepwise Reconfiguration Approach

Figure 3.6: Configuration that illustrates a failure of the active instance of the active
trajectory planner instance.

Next, the detected failure has to be isolated to avoid further damages. Therefore, the
application instance monitor instructs the switchover component to isolate the faulty
trajectory planner instance. Once the prior active instance of the trajectory planner
receives the command to switch to the isolated operation mode, it stops interacting with
the system.

After the failure has been isolated, the switchover component determines whether a
redundant trajectory planner instance is available. In our scenario, this is the case
because Computing Node 5 executes a trajectory planner instance which runs in active-
hot operation mode, so the switchover component selects this instance to upgrade its
operation mode to active. The actions performed by the switchover component correspond
to the second step of the Fdiro procedure. The results of the executed actions are
illustrated in Figure 3.7.

Due to the isolation and the switchover, the trajectory planner is not executed redundantly
anymore. Therefore, in the third step of the Fdiro process, the redundancy-recovery
component tries to recover the lost redundancy. This component examines whether any of
the computing nodes offers enough free resources to execute a trajectory planner instance.
Assuming Computing Node 3 and Computing Node 5 are the only two nodes offering
enough resources for an additional trajectory planner instance, the redundancy-recovery
component will select Computing Node 3 for executing the redundant instance of the
trajectory planner. Computing Node 3 is preferred over Computing Node 5 since the
latter already executes the active instance of the trajectory planner. Therefore, selecting
Computing Node 3 increases the hardware segregation, which results in an improvement
of reliability.

The operation mode selected for the new trajectory planner instance is the same as
the previous operation mode of the now active instance. Therefore, the redundancy

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. An Approach for a Fail-Operational System Design

Figure 3.7: Configuration after the isolation/switchover step of Fdiro was performed.

Figure 3.8: Configuration after the redundancy recovery step of Fdiro was performed.

conditions comply with the conditions obtained before the occurrence of the failure. The
resulting configuration is illustrated in Figure 3.8.

In the last step of the Fdiro process, control is handed over to the placement optimizer.
The task of this unit is to optimize the mapping between computing nodes and application
instances according to specified goals. Assuming that the goal in the currently considered
use case is to utilize as few as possible computing nodes in order to save energy, the
placement optimizer might decide to stop the isolated trajectory planner instance and
migrate the active-hot instance of the perception application to Computing Node 5. As a
result, Computing Node 2 can be turned off, since this node executes no applications
anymore. The optimized application placement is displayed in Figure 3.9.
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3.2. A Stepwise Reconfiguration Approach

Figure 3.9: Configuration after the optimization step of the Fdiro was performed.
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CHAPTER 4
Isolation and Switchover

Procedure

After a monitor has detected a failure, the Fdiro procedure defines that the operation
mode of the faulty application instance is set to isolated. Therefore, the effects of the
failure can be limited. Furthermore, to recover the lost functionality, Fdiro specifies that
a redundant instance upgrades its operation to active. After this switchover, the system
state is again considered to be safe. Therefore, the isolation and switchover procedure has
to be performed fast. To show that it is feasible to perform the isolation and switchover
procedure within milliseconds, we present a proof-of-concept implementation for it.1

4.1 Switchover Strategies

As mentioned before, the switchover procedure instructs a redundant instance, if existing,
to take over the responsibilities of the failed instance. Therefore, the following events
can be treated:

• a failure of an active instance, whereby at least one active-hot or passive-warm
instance has to exist,

• a failure of a passive-hot instance, whereby at least one passive-warm instance has
to exist,

• a failure of a runtime environment, whereby for each instance running on the faulty
runtime environment, there has to be at least one instance running on another
runtime environment, and

1The source codes of all implementations mentioned in the sequel are available upon request from the
author (email: tobias.kain@outlook.com).
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4. Isolation and Switchover Procedure

Figure 4.1: Activity diagram of the parallel and the serial switchover procedure.
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4.2. Switchover Test Implementation

• a failure of a computing node, whereby for each instance running on the faulty
computing node, there has to be at least one instance running on another computing
node.

In case that the switchover component receives a request to perform a switchover procedure
for an application for which no redundant instance exists, the failure can be isolated
by updating the operation mode of the active instance to isolated. However, since no
redundant instances exist, the switchover component cannot recover the functionality that
was lost due to the failure. In such a case, the switchover component has to determine
the safety critically of that application and decide whether a takeover by the fail-safe
system is necessary.

On the other hand, in case a redundant instance exits and the active instance fails,
we can distinguish between a parallel and a serial switchover strategy, as illustrated in
Figure 4.1.

The benefit of the parallel switchover procedure is that the takeover time can be reduced
since the switchover instructions sent to the active instance and commands sent to one
of the redundant instances are executed in parallel. However, the problem is that, for
a short time, two active instances of the same application might exist. As a result,
other components of the system, e.g., actuators, may receive correct as well as corrupted
information.

On the other hand, the advantage of the serial switchover procedure is that at each point
in time, at most one active instance of the same application is executed. However, the
takeover time might be longer since additional communication between the switchover
component and the faulty active component is required.

Each switchover strategy has its own benefits and drawbacks, but it depends on a specific
situation which strategy may be preferred. It is also conceivable that the preferred
switchover procedure might depend on the application and shall, therefore, be defined at
the application level.

Note that for all other events apart from failures of active instances, the parallel switchover
procedure is the one to prefer because active-hot and passive-warm instances do not
interact with the system. Therefore, it is not a problem if two active-hot or two passive-
warm instances are executed simultaneously.

In what follows, we only consider the parallel switchover procedure.

4.2 Switchover Test Implementation

To prove our hypothesis that the switchover procedure can be performed within millisec-
onds, we performed an experiment using a proof-of-concept implementation.
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4. Isolation and Switchover Procedure

Figure 4.2: Setup of the switchover experiment.

4.2.1 Test Setup

For the test setup, we used six identical computing nodes (with OS Ubuntu 18.04.1 LTS,
CPU Intel Pentium Silver J5005, and 8 GB memory). Three computing nodes execute an
application that simulates a safety-critical function, whereby one computing node runs
the active instance, and the other two execute an active-hot instance. The remaining
three computing nodes execute an application-instance monitor, a switchover component,
and a measuring component. The setup of our experiment is illustrated in Figure 4.2.

4.2.2 Component Communication

Physically, the computing nodes are connected using an Ethernet with 1 gigabit/s band-
width. FLAME (“Flexible Automotive Communication Middleware”), a communication

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.2. Switchover Test Implementation

middleware developed by Volkswagen Group Research [59], is used for the communication
between the different components. Using FLAME, we define communication channels,
referred to as topics, between multiple components.

The messages, referred to as objects, that are exchanged via the topics are defined in
a GIGO file, whereby GIGO (“Generic Interface Language Compiler”) is a middleware-
independent interface definition language (IDL), which allows a formal description of
programming interfaces [59]. The following listing shows the GIGO file that defines the
objects exchanged in the switchover experiment:

1<?xml version="1.0" encoding="UTF-8" standalone="no"?>

2<Service name="SwitchoverService" version="0.0"

3xmlns="http://www.volkswagenag.com/6160/service/v1">

4<Object name="TestCase">

5<Elements>

6<Integer name="Id" width="16"/>

7<Integer name="FirstSummand" width="16"/>

8<Integer name="SecondSummand" width="16"/>

9</Elements>

10</Object>

11<Object name="TestResult">

12<Elements>

13<Integer name="TestCaseId" width="16"/>

14<Integer name="Sum" width="16"/>

15<Struct name="ApplicationInstanceInformation"

16type="ApplicationInstanceInformation"/>

17</Elements>

18</Object>

19<Object name="ApplicationInstanceInformation">

20<Elements>

21<Enumeration name="OperationMode" type="OperationMode"/>

22<String name="ApplicationInstanceId"/>

23<String name="ApplicationId"/>

24</Elements>

25</Object>

26<Object name="SwitchOverCommand">

27<Elements>

28<Struct name="ApplicationInstanceInformation"

29type="ApplicationInstanceInformation"/>

30<Enumeration name="NewOperationMode" type="OperationMode"/>

31</Elements>

32</Object>

33<Object name="ApplicationInstanceFail">

34<Elements>

35<Struct name="ApplicationInstanceInformation"

36type="ApplicationInstanceInformation"/>

37</Elements>

38</Object>

39<Enumeration name="OperationMode">

40<Members>

41<Member id="0" name="ACTIVE"/>

42<Member id="1" name="ACTIVE_HOT"/>

43<Member id="2" name="PASSIVE_HOT"/>
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4. Isolation and Switchover Procedure

44<Member id="3" name="ISOLATED"/>

45</Members>

46</Enumeration>

47</Service>

4.2.3 Test Workflow

The application we used for our experiment is a simple service that can add two integers
called math_service. To test the functionality of this application, the application-
instance monitor sends every n milliseconds a test case containing two random integers
to all three application instances via the test-case topic. Once an application instance
receives a test case, it adds the two integers and returns the result via the test-result
topic to the application-instance monitor. The latter then waits until it has received the
test results of all application instances. In case that the test result returned by the active
instance is different from the results returned by the active-hot instances and the results
returned by the two active-hot instances are equal to each other, the application-instance
monitor reports to the switchover component using the application-failure topic that the
active instance of the math_service is not working correctly anymore. As soon as the
switchover component receives such a message, it instructs the faulty active instance
via the switchover topic to switch to the isolated operation mode. Since the application
instances continuously publish the status information, including the operation mode,
every second on the status topic, the switchover component has knowledge about all
available application instances. Therefore, the switchover component can quickly select
an active-hot instance that shall switch to active mode. Since the goal of this experiment
is to perform the switchover as fast as possible, the switchover component randomly
selects an active-hot instance for the switchover. It then instructs the selected active-hot
instance via the switchover topic to switch to the active operation mode.

The measuring component simulates the interaction of the math_service with the
rest of the system. The active instance of the math_service sends every millisecond
a message to the measuring component. This message also includes the instance indi-
cator of the currently active instance as well as a flag that signals whether the active
instance is working correctly or not. Using the receiving times of these messages, the
measuring component determines how long the switchover took. Note that the measuring
component actually measures the takeover time. However, since the active instance of
the math_service sends a message every millisecond to the measuring component, the
switchover time and the takeover time can be considered as equal.

An overview of the performed procedure is illustrated in Figure 4.3.

All components involved in this experiment are implemented in C++.
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4.2. Switchover Test Implementation

Figure 4.3: Activity diagram of the switchover lab experiment.

4.2.4 Test Results

As the goal of this experiment is to show that a switchover can be performed within
milliseconds, we equipped the math_service with a function that allows us to corrupt
the active instance on purpose. We then measure the switchover time as well as the
switchover time of the faulty instance. The difference between those two times is illustrated
in Figure 4.4.

Since the switchover time strongly depends on the failure detection time, we varied the
frequency at which the application-instance monitor sends test cases, referred to as failure
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4. Isolation and Switchover Procedure

Figure 4.4: Visualization of the order of the events during the switchover experiment.

Table 4.1: The test results of the switchover experiment.

Failure Detection Average Switchover Time Average

Sampling Rate of Faulty Instance Takeover Time

5 ms 6.8 ms 8.5 ms
10 ms 9.4 ms 14.4 ms
15 ms 11.8 ms 16.2 ms
20 ms 14.5 ms 16.3 ms
25 ms 17.7 ms 19.3 ms
30 ms 21.8 ms 22.4 ms
35 ms 19.4 ms 21.2 ms
40 ms 25.7 ms 30.0 ms
45 ms 26.8 ms 27.2 ms
50 ms 34.8 ms 36.4 ms

detection sampling rate, to the application instances. Table 4.1, shows the results of the
performed tests. The average switchover time and the average switchover time of the
faulty instance are determined based on 100 test iterations.

From the measurements shown in Table 4.1, we can infer that the latency between
the average switchover time of the faulty instance and the average takeover time is
approximately 2 ms.

Furthermore, we can observe that, on average, the switchover time of the faulty instance
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4.2. Switchover Test Implementation

is about half of the failure detection sampling rate plus an offset of approximately
5 ms. Assuming that time consumed by the application-instance monitor and the time
consumed by the switchover controller as well as the latency of the network is 0 ms, the
average switchover time of the failed instance will converge to half of the failure detection
sampling rate as the number of test runs increases. Therefore we can conclude that
the time consumed by the application-instance monitor plus the time consumed by the
switchover controller plus the latency of the network sums up to is approximately 5 ms.
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CHAPTER 5
Redundancy Recovery

The redundancy recovery procedure is the third step of the Fdiro process. After the
switchover component has isolated the failure that was detected by a monitor, and a
switchover to a redundant instance recovered the lost functionality, the control is passed
on to the redundancy-recovery component. The task of this component is to recover the
redundancy condition which held before the occurrence of the failure. To recover the
redundancy, the redundancy-recovery component has to find a computing node capable
of running an instance of the application affected by the failure. Depending on the
parameters considered and the current application placement, this can be a challenging
task.

The first section of this chapter is dedicated to defining the problem of finding a mapping
between application instances and computing nodes. Afterwards, we introduce a software
architecture as well as an implementation for performing the redundancy recovery.
Furthermore, we present a testing tool for validating the results of our implementation.

5.1 Application-Placement Problem

The task of determining the assignment between application instances and computing
nodes is referred to as the application-placement problem. In our setting, the input of this
problem is a set I of application instances and a set N of computing nodes and the task
is to find a function C, called configuration, that maps each instance i ∈ I to exactly
one node n ∈ N such that certain constraints, defined in terms of a set of parameters,
are satisfied. Moreover, in order to discriminate among a potentially large number
of solutions, we utilize an additional optimization function that specifies which valid
node assignment is desired most. Conceivable optimization goals are, e.g., maximizing
the number of computing nodes that execute no application instances, maximizing the
redundancy of a specific class of applications, or minimizing the number of displacements
after the occurrence of a failure.
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5. Redundancy Recovery

The constraint conditions of the application-placement problem that we consider here
are defined in terms of the following parameters for each application:

• the memory demand,

• the CPU demand,

• the software requirements,

• the level of hardware segregation,

• the level of redundancy, and

• the priority.

Furthermore, for each computing node, we specify

• the memory capacity,

• the CPU capacity, and

• the installed software.

The constraints a valid solution of our application-placement problem needs to satisfy
are the following:

(C1) An application instance has to be executed by exactly one computing node.

(C2) The sum of memory demands of all the application instances running on a computing
node cannot exceed the memory capacity of that node.

(C3) The sum of CPU demands of all the application instances running on a computing
node cannot exceed the CPU capacity of that node.

(C4) An application instance only runs on a computing node, which offers the software
required by the instance.

(C5) The instances that belong to the same application have to run on at least a certain
number of distinct computing nodes, i.e., the level of hardware segregation has to
be satisfied for each application.

In general, solving the application-placement problem is a non-trivial task since, as
follows from results of Tang, Steinder, Spreitzer, and Pacifici [58], the class constrained
multiple-knapsack problem [56], which is NP-hard, can be reduced to the application-
placement problem. Therefore, determining whether the application-placement problem
has a solution is NP-hard too.
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5.2. Software Architecture

5.2 Software Architecture

For implementing the redundancy recovery step of the Fdiro procedure, we designed a
software architecture consisting of several individual components. It allows for dividing
the responsibilities of the different components and thus keeps their complexity reasonable.
Furthermore, adaptations of the individual components are in that way easier to maintain.

Overall, we define five different components:

• a current-state reporter,

• a current-state determiner,

• an application-placement determiner,

• a reconfiguration-plan advertiser, and

• a reconfiguration-plan executor.

These components can be divided into two subsystems: The current-state reporter and
the reconfiguration-plan executor belong to the reconfiguration unit, which is part of
each computing node installed in a vehicle, while the remaining components build up the
redundancy-recovery component. Figure 5.1 illustrates these two subsystems as well as the
subsystem that is responsible for performing the isolation step of the Fdiro procedure.

As mentioned before, the current-state reporter is part of the reconfiguration unit and
is therefore executed by each computing node. The task of this component is to report
the current state of the node to the redundancy-recovery component. This includes
information about the available resources and information about the applications that
are currently executed by this computing node.

The information provided by the current-state reporter is used by the current-state
determiner to obtain the current state of the entire system, containing knowledge about
all available computing nodes, the placement of the application instances, as well as the
requirements of the applications.

The current system state is required by the application-placement determiner to compute
a new application placement, which restores the redundancy condition that held before
the occurrence of the fault. The application-placement determiner is the main component
and the most complex involved in the redundancy recovery step. It is also the point of
entry for the redundancy recovery procedure, i.e., the switchover component instructs
the application-placement determiner to start a set of application instances so that the
redundancy condition is recovered.

Once the application-placement determiner computed a new placement, it forwards
this plan, as well as the system state that was the basis for the determination, to the
reconfiguration-plan advertiser. This component computes, based on the received inputs,
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5. Redundancy Recovery

Figure 5.1: Component diagram, showing the system responsible for the redundancy
recovery step.

a reconfiguration plan, i.e., a set of commands that transfers the current state to a
new system state computed by the application-placement determiner. These commands
instruct a computing node to either start or stop an application instance.

The components receiving those commands are the reconfiguration-plan executors. Those
components are responsible for executing the reconfiguration commands computed by
the reconfiguration-plan advertiser.

In the following section, we describe an implementation for the application-placement
determiner.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.3. Application-Placement Determiner

5.3 Application-Placement Determiner

As already mentioned before, the application-placement determiner, which is part of the
redundancy-recovery component, is responsible for determining the placement of applica-
tion instances that recover the redundancy conditions that held before the occurrence of
a failure. The application-placement determiner, therefore, attempts to find computing
nodes that offer enough resources to execute the new application instances. In case of a
resource shortage, the application-placement determiner may stop application instances
of lower priority and displace application instances.

In this section, we introduce an implementation of an application-placement determiner,
called APD, which solves the application-placement problem. The solving approach
implemented by APD is integer linear programming [55]. The system used to specify our
problem is an open-source software suite developed by Google called OR-Tools [24]. We
use this tool since it supports multiple programming languages including Python, C++,
and Java. Furthermore, OR-Tools supports a variety of commercial and open source
solvers, including, for example, Gurobi [26], SCIP [1], and GLOP [25]. The source code of
this implementation is available on request from the author.

5.3.1 Software Architecture of APD

As illustrated in Figure 5.2, the structural design of APD consists of the following three
subcomponents:

• the input preprocessor,

• the application-placement solver, and

• the solution processor.

The input preprocessor is responsible for transforming the current state information into
a valid application-placement problem definition. Based on that, the input preprocessor
creates a thread of four versions (including the original one) of the given problem
definition, which have different solution-space sizes and are processed in parallel. The
application-placement solver then attempts to solve these four problems in parallel.
Finally, the solution processor selects the most desired solution and forwards it to the
reconfiguration-plan advertiser. A more detailed discussion of this parallel processing is
given in Subsection 5.3.5.

5.3.2 Formalization of the Application-Placement Problem

The application-placement solver determines an application placement based on a given
system state, S, which is represented by a 9-tuple of the form

(A, I, N, R, Φ, Ω, φ, ω, π),

whose elements are defined as follows:
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5. Redundancy Recovery

Figure 5.2: Component diagram, showing the structural design of APD.
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5.3. Application-Placement Determiner

• A is the set of applications;

• I is the set of application instances, where each application instance i ∈ I belongs
to exactly one application a ∈ A;

• N is the set of computing nodes;

• R is the placement restriction function, which specifies whether a computing node
n ∈ N fulfills all software requirements of i ∈ I, defined by setting R(n, i) = 1 if n

fulfills the requirements of i and R(n, i) = 0 otherwise (we write Ri,n = R(n, i) in
what follows);

• Φ is the function which assigns each n ∈ N its memory capacity Φ(n) = Φn in
megabytes;

• Ω is the function which assigns each n ∈ N its CPU capacity Ω(n) = Ωn in cycles
per second;

• φ is the function which assigns each i ∈ I its memory demand φ(i) = φi in
megabytes;

• ω is the function which assigns each i ∈ I its CPU demand ω(i) = ωi in cycles per
second; and

• π is the function assigning each a ∈ A the minimum number π(a) = πa of computing
nodes a has to run on, i.e., the level of hardware segregation of a.

Based on the system state S determined by the input preprocessor, the application-
placement solver computes a configuration function C which specifies whether a computing
node n ∈ N executes an application instance i ∈ I by setting C(n, i) = 1 if n executes
i and C(n, i) = 0 otherwise. Similar to the representation of the placement restriction
function, we will use Ci,n to stand for C(n, i).

Since all elements of the configuration function C are binary, at most 2|I|·|N | poten-
tial solutions exist. Valid solutions, however, must satisfy constraints (C1)–(C5) from
Section 5.1, which are expressed in terms of the following linear constraints:

• Constraint (C1):
∀i ∈ I :

∑

n∈N

Ci,n = 1. (5.1)

• Constraint (C2):
∀n ∈ N :

∑

i∈I

φi · Ci,n ≤ Φn. (5.2)

• Constraint (C3):
∀n ∈ N :

∑

i∈I

ωi · Ci,n ≤ Ωn. (5.3)
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5. Redundancy Recovery

• Constraint (C4):

∀i ∈ I, ∀n ∈ N : if Ri,n = 0, then Ci,n = 0. (5.4)

• Constraint (C5): To express this constraint linearly, we introduce an ancillary
variable ha,n for each application a ∈ A and computing node n ∈ N , which is
defined as follows:

∀a ∈ A, ∀n ∈ N : ha,n =

{

1, if
∑

i∈a Ci,n ≥ 1,

0, otherwise.

Using this variables, we can formalize constraint (C5) by the following four linear
expressions:

∀a ∈ A, ∀n ∈ N : ha,n = 0 or ha,n = 1, (5.5)

∀a ∈ A, ∀i ∈ a, ∀n ∈ N : Ci,n ≤ ha,n, (5.6)

∀a ∈ A, ∀n ∈ N :
∑

i∈a

Ci,n ≥ ha,n, (5.7)

∀a ∈ A :
∑

n∈N

ha,n ≥ πa. (5.8)

Since the modeling of (C5) is not straightforward, we provide an example to clarify its
meaning.

Example 1. Consider a system state S which defines three applications, six application
instances, and four computing nodes, as represented by

A = {a1, a2},

I = {i1, i2, i3, i4, i5, i6}, and

N = {n1, n2, n3, n4}.

The application instances i1, i2, and i3 belong to application a1 and the remaining
instances belong to a2, where the hardware segregation level of both applications is 3, i.e.,
πa1

= πa2
= 3. Furthermore, the system state S defines a configuration function C, as

specified in Table 5.1.

We first consider application a1: Since
∑

i∈a1
Ci,n1

= 0, (5.7) causes that ha1,n1
= 0.

Furthermore, (5.6) yields that ha1,n2
= ha1,n3

= ha1,n4
= 1 since Cn2,i1

= Cn3,i2
=

Cn4,i3
= 1. As a result, also (5.8) holds since

∑

n∈N

ha1,n = 3 ≥ πa = 3.

Next, we show that (C5) does not hold for application a2: As Ci4,n1
= 1 (note that also

Ci5,n1
= Ci6,n1

= 1) and (5.6) has to hold, ha2,n1
= 1 holds. Since Cix,ny

= 0 (for x ∈
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5.3. Application-Placement Determiner

Table 5.1: The configuration function C.

C n1 n2 n3 n4

i1 0 1 0 0
i2 0 0 1 0
i3 0 0 0 1
i4 1 0 0 0
i5 1 0 0 0
i6 1 0 0 0

{4, 5, 6} and y ∈ {2, 3, 4}) and (5.7) has to hold, ha2,n2
= ha2,n3

= ha2,n4
= 0 holds. As a

result, also (5.8) does not hold since
∑

n∈N

ha2,n = 1 � πa = 3.

�

From this example, we can conclude the following result:

Theorem 1. Given a system state

S = (I, A, N, R, Φ, Ω, φ, ω, π)

satisfying conditions (5.1)–(5.8) and a configuration function C, for any a ∈ A and any
n ∈ N , the ancillary variables ha,n satisfy the following two conditions:

ha,n = 0 iff
∑

i∈a

Ci,n = 0, (5.9)

ha,n = 1 iff
∑

i∈a

Ci,n ≥ 1. (5.10)

Proof. We first show condition (5.9). Assume ha,n = 0. Towards a contradiction assume
∑

i∈a Ci,n > 0 (since, by definition,
∑

i∈a Ci,n cannot be negative, we do not have to
consider the case that

∑

i∈a Ci,n < 0). However,
∑

i∈a Ci,n > 0 implies that there exists
some i0 ∈ A and some n0 ∈ N such that Ci0,n0

> 0, and therefore condition (5.6) is
violated.

Conversely, assume now that
∑

i∈a Ci,n = 0 but ha,n = 1 (note that condition (5.5)
restricts that ha,n is either 0 or 1). However, in this case, condition (5.7) is violated since
0 =

∑

i∈a Ci,n < ha,n = 1.

Now we prove condition (5.10). Assume that ha,n = 1 but
∑

i∈a Ci,n < 1. The latter
implies that

∑

i∈a Ci,n = 0 must hold, which contradicts condition (5.7).
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5. Redundancy Recovery

Table 5.2: Resources required by App 1 to App 4.

App 1 App 2 App 3 App 4

Memory Demand 500 150 150 100
CPU Demand 300 200 300 100
Required Software x x, y x, z y, z
Hardware Segregation 2 2 2 1

Table 5.3: Resources provided by Computing Node 1 to Computing Node 4. Note that in
this table we abbreviate “Computing Node” by “CN”.

CN 1 CN 2 CN 3 CN 4

Memory Demand 700 700 1200 400
CPU Demand 600 500 1000 900
Installed Software x, z x, y x, y, z x, y, z

Conversely, assume that
∑

i∈a Ci,n ≥ 1 but ha,n = 0 (note again that condition (5.5)
restricts that ha,n is either 0 or 1).

∑

i∈a Ci,n ≥ 1 implies that there is some i0 ∈ A such
that Ci0,n > 0. Therefore, condition (5.6) is violated.

To discriminate among the different solutions, specifying which solutions are desired
the most, we instruct the solver to find an application placement which maximizes the
following optimization goal, where C represents the current node assignment:

∑

i∈I,n∈N

Ci,n × Ci,n.

Due to this optimization goal, application placements that minimize the number of
application instance displacements are preferred. We aim for a low number of application
instance displacements since displacements are considered to be time-consuming.

In what follows, we provide an example that illustrates the defined constraints as well as
the optimization goal implemented by APD.

5.3.3 APD Use Case

Assume a system configuration comprising four applications, App 1 to App 4, whereby the
required resources are specified in Table 5.2, as well as four computing nodes, Computing
Node 1 to Computing Node 4, whereby the resources provided by these computing nodes
are defined in Table 5.3.

The initial application placement that we consider for this example is illustrated in
Figure 5.3. It is easy to verify that this application placement fulfills all the requirements
requested by the previously defined constraints.
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5.3. Application-Placement Determiner

Figure 5.3: The initial application placement.

Assume now that Computing Node 2 fails. Consequently, also the active instance of
App 1 and the active-hot instance of App 2 fails. Due to the loss of the active instance
of App 1, the service provided by this application is no longer available. Recall that in
such a case, the switchover component instructs a redundant instance of the affected
application to upgrade its operation mode to active.

Once this switchover has been performed successfully, the switchover component instructs
APD to start a new active-hot instance of App 1 and App 2 in order to recover the
redundancy condition that held before the crash of Computing Node 2.

Based on the currently active application placement as well as on the specified application
and computing node parameters, APD computes a new application placement, which
causes the fewest number of displacement of already placed application instances. For
our example, it is required to displace at least one application instance to fulfill all
requirements defined by the constraints.

The resulting application placement is illustrated in Figure 5.4. This application placement
requires the displacement of the active-hot instance of App 3. As stated before, by
construction, our example requires the displacement of at least one application instance.
Therefore, the application placement illustrated in Figure 5.4 is considered as an optimal
solution according to the optimization goal defined by APD.

Besides this solution, multiple other valid application placements exist. However, accord-
ing to our optimization goal, they are not considered as optimal solutions. Figure 5.5
illustrates, for example, an application placement that causes the displacements of five
application instances.

Although for this specific scenario, multiple solutions exist, there are many use cases
for which no solution can be determined. However, in such cases, as defined before, the
application-placement determiner may stop application instances of low priority.
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5. Redundancy Recovery

Figure 5.4: Application placement computed by APD.

Figure 5.5: Valid solution of the application-placement problem which results in five
displacements of application instances.

5.3.4 Core Function of APD

APD is a Python program to solve the application-placement problem. As mentioned
before, APD is divided into the following three subcomponents: the input preprocessor,
the application-placement solver, and the solution processor.

In the following, we focus on the implementation of the application-placement solver,
whereby the compute_application_placement function is considered as the core
of this subcomponent. This function uses OR-Tools to express and solve the application-
placement problem, as described in Section 5.3. The source code of it is illustrated in
the following listing and discussed in the remainder of this section.1

1Note that for the sake of simplicity, the listed code does not exactly correspond to the actual code.
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5.3. Application-Placement Determiner

1def compute_application_placement(current_placement, applications,

2hardware_segregations, cpu_capacities,

3cpu_demands, memory_capacities,

4memory_demands, software_restrictions):

5

6solver = ortools.linear_solver.pywraplp.Solver(’Solver’,

7pywraplp.Solver.BOP_INTEGER_PROGRAMMING)

8

9number_of_apps = len(applications)

10number_of_app_instances = len(current_placement)

11number_of_nodes = len(current_placement[0])

12

13# Creates the variables that shall be determined by the solver.

14new_placement = [[solver.BoolVar("i%i n%i" % (i, n))

15for n in range(number_of_nodes)]

16for i in range(number_of_app_instances)]

17

18new_placement_trans = [[new_placement[i][j]

19for i in range(number_of_app_instances)]

20for j in range(number_of_nodes)]

21

22hardware_segregations_helper = [[solver.BoolVar("a%i n%i" % (a, n))

23for n in range(number_of_nodes)]

24for a in range(number_of_apps)]

25

26’’’

27Constraint 1: An application instance has to be executed by exactly one

28computing node.

29’’’

30for i in range(number_of_app_instances):

31solver.Add(solver.Sum(new_placement[i]) == 1)

32

33’’’

34Constraint 2: The sum of memory demands of all the application

35instances running on a computing node cannot

36exceed the memory capacity of that node.

37’’’

38for n in range(number_of_nodes):

39solver.Add(

40solver.Sum([new_placement_trans[n][i] * memory_demands[i]

41for i in range(number_of_app_instances)]) <=

42memory_capacities[n])

43

44’’’

45Constraint 3: The sum of CPU demands of all the application instances

46running on a computing node cannot exceed the CPU

47capacity of that node:

48’’’

49for n in range(number_of_nodes):

50solver.Add(

51solver.Sum([new_placement_trans[n][i] * cpu_demands[i]

52for i in range(number_of_app_instances)]) <=

53cpu_capacities[n])
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5. Redundancy Recovery

54’’’

55Constraint 4: An application instance only runs on a computing node,

56which offers the software required by the instance.

57’’’

58for i in range(number_of_app_instances):

59for n in range(number_of_nodes):

60if software_restrictions[i][n] == 0:

61solver.Add(new_placement[i][n] == 0)

62

63’’’

64Constraint 5: The level of hardware segregation has to be satisfied for

65each application.

66’’’

67for a in range(number_of_apps):

68for n in range(number_of_nodes):

69

70for i in applications[a]:

71solver.Add(new_placement[i][n] <=

72hardware_segregations_helper[a][n])

73

74solver.Add(

75solver.Sum([

76new_placement[i][n]

77for i in applications[a]

78]) >= hardware_segregations_helper[a][n]

79)

80

81solver.Add(

82solver.Sum(hardware_segregations_helper[a]) >=

83hardware_segregations[a]

84)

85

86’’’

87Optimization Goal: Minimize the number of application instance

88displacements.

89’’’

90solver.Maximize(solver.Sum([

91new_placement[i][n] * current_placement[i][n]

92for i in range(number_of_app_instances)

93for n in range(number_of_nodes)]))

94

95result_status = solver.Solve()

96

97if result_status == 2:

98print("No solution exists.")

99return None

100

101solution = [[new_placement[i][n].solution_value()

102for n in range(number_of_nodes)]

103for i in range(number_of_app_instances)]

104

105return solution
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5.3. Application-Placement Determiner

Table 5.4: The current_placement parameter. Note that in this table we abbreviate
“Application Instance” by “AI ”.

current_placement CN 1 CN 2 CN 4

AI 1 1 0 0
AI 2 1 0 0
AI 3 0 1 0
AI 4 0 1 0
AI 5 0 1 0
AI 6 0 0 1
AI 7 0 0 0
AI 8 0 0 0

The compute_application_placement function requires as input the eight param-
eters:

• current_placement,

• applications,

• hardware_segregations,

• memory_capacities,

• cpu_capacities,

• memory_demands,

• cpu_demands, and

• software_restrictions.

For the example introduced in Subsection 5.3.3, the current_placement parameter
is defined as shown in Table 5.4.

The definition of the correspondence between application instances and applications is
defined by the applications parameter. This parameter is required in order to define
the hardware_segregation parameter, which defines the desired level of hardware
segregation for each application. Table 5.5 and Table 5.6 specify for the considered
example which instance belongs to which application and the hardware segregation of
the applications, respectively.

The memory and CPU resources provided by the computing nodes are defined by the
memory_capacities and the cpu_capacities parameter, respectively. The values
of those parameters are specified in Table 5.7.
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5. Redundancy Recovery

Table 5.5: The applications parameter.

AI 1 App 1

AI 2 App 3

AI 3 App 2

AI 4 App 1

AI 5 App 3

AI 6 App 4

AI 7 App 1

AI 8 App 2

Table 5.6: The hardware_segregation parameter.

App 1 App 2 App 3 App4

hardware_segregation 2 2 2 1

Table 5.7: The memory_capacities and cpu_capacities parameter.

CN 1 CN 2 CN 4

memory_capacities 1000 1200 400
cpu_capacities 1000 1000 900

Table 5.8: The memory_demands and cpu_demands parameter.

AI 1 AI 2 AI 3 AI 4 AI 5 AI 6 AI 7 AI 8

memory_demands 500 150 150 500 150 100 500 150
cpu_demands 300 300 200 300 30 200 300 200

Corresponding to those parameters, we specify the memory and CPU demands of
the application instances by defining the memory_demands and the cpu_demands

parameter. Table 5.8 specifies those parameters.

The software_restrictions parameter indicates whether a computing node fulfills
all software requirements requested by an application instance. This function is specified
in Table 5.9.

After defining all required input variables, the compute_application_placement
function declares in lines 6 to 11 of the code the solver responsible for finding a valid
solution as well as some helper variables.

Next, in lines 14 to 24, we define the variables that shall be determined by the solver. The
new_placement parameter is of the same dimension as the current_placement
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5.3. Application-Placement Determiner

Table 5.9: The software_restrictions variable.

software_restrictions CN 1 CN 2 CN 4

AI 1 1 1 1
AI 2 1 1 1
AI 3 0 1 1
AI 4 1 1 1
AI 5 1 1 1
AI 6 0 1 1
AI 7 1 1 1
AI 8 0 1 1

parameter and declares the variables that after solving the application problem correspond
to the determined solution. Furthermore, we also define current_placement_trans,
which is the transpose of the current_placement parameter.

Besides these variables, the solver also has to determine the variables defined by
the hardware_segregations_helper parameter, whereby those variables indicate
whether any instance of an application is executed by a specific computing node. Due to
those helper variables, constraint (C5), which is defined in Section 5.1, can be expressed
linearly.

Note that the sum of the number of application instances and the number of applications
multiplied by the number of computing nodes corresponds to the total number of
variables t that the solver has to determine:

t = number_of_nodes · (number_of_app_instances + number_of_apps).

Since all those variables are boolean variables, the size of the solution space is 2t. The
solution space for our example, which defines eight application instances, four applications,
and three computing nodes is therefore 23·(8+4) = 236 ≈ 68 · 109.

To restrict the solution space, we add in lines 30 to 84 the constraints introduced in
Section 5.1. Note that we only use linear operations to define those constraints.

Next, we specify in lines 90 to 93 the optimization goal, whereby the goal implemented
by APD is to find a placement solution that differs the least from the current placement.

Finally, in lines 95 to 105, we instruct the solver to solve the specified problem and return
the solution in case one exists. For our example, the solution placement computed by
the solver is illustrated in Table 5.10.

Note that this placement corresponds to the application placement as illustrated in
Figure 5.4 and causes the displacement of one application instance.
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5. Redundancy Recovery

Table 5.10: The solution variable.

solution CN 1 CN 2 CN 4

AI 1 1 0 0
AI 2 1 0 0
AI 3 0 1 0
AI 4 0 1 0
AI 5 0 0 1
AI 6 0 0 1
AI 7 0 1 0
AI 8 0 0 1

Figure 5.6: Multiple threads for determining the application-placement problem for
subsets of applications.

5.3.5 Parallel-Solving Heuristic

To increase the chances of obtaining a valid solution, we divide a given set A of applications
into several subsets. APD computes these subsets based on priorities in terms of the
following four priority classes: HIGHEST , HIGH , LOW , and LOWEST .

Using these priority classes, APD computes the following subsets of applications:

A0 = A = HIGHEST ∪ HIGH ∪ LOW ∪ LOWEST ,

A1 = HIGHEST ∪ HIGH ∪ LOW ,

A2 = HIGHEST ∪ HIGH , and

A3 = HIGHEST .

For each of those four subsets, APD starts a thread that computes an application placement
that considers all applications that are part of the respective subset. Since A3 ⊆ A2 ⊆
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5.3. Application-Placement Determiner

Table 5.11: Priorities of applications App 1 to App 4.

App 1 App 2 App 3 App 4

Priorities LOW HIGHEST HIGH HIGH

Figure 5.7: Application placement that considers only applications of priority HIGHEST
and HIGH , i.e., App 2, App 3, and App 4.

A1 ⊆ A0 = A holds, we can assume, as illustrated in Figure 5.6, that the time required
to find a valid application placement is highest for A and lowest for A3. Furthermore,
it holds that in case a valid application placement for subset Ai exists, for 0 ≤ i ≤ 2, a
solution for subset Ai+1 exists as well. On the other hand, if for subset Ai no solution
exists, we can infer that also for each subset Ai−j , for 1 ≤ j ≤ i, no solution exists.

After the termination of all threads, APD selects the best available solution, whereby an
application placement that considers all applications of subset A0 is the most desired
solution and an application placement that only maps application instances of priority
class HIGHEST is referred to as the worst-case solution.

Recalling the use case introduced in Subsection 5.3.3, assume that Computing Node 2
remains active but instead Computing Node 3 fails. Consequently, not all application
instances executed by the system before the occurrence of the failure can be assigned to
one of the remaining three computing nodes since some constraints cannot be satisfied.

Assuming that the applications that are part of this use case are prioritized as defined in
Table 5.11, an application placement that considers all applications that are either of
priority HIGHEST or HIGH can be determined. Figure 5.7 illustrates the application
placement computed by APD for the described use case.

Besides allowing to find an application placement for the most important applications
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5. Redundancy Recovery

Figure 5.8: Maximum solving time causing two application-placement determiner threads
to abort.

in case that the system cannot run all applications, this priority-based approach also
allows to define an upper bound for the solving time for the application placement. As
illustrated in Figure 5.8, defining a maximum solving time causes that the application
determiner threads that cannot find a valid solution within the specified time are aborted.

Defining a maximum solving time is desirable since some safety-critical situations require
an application placement within a guarded time rather than a placement that considers
all applications.

In case where for none of the four subsets a solution can be found, an emergency system
brings the vehicle to a safe stop.

5.4 Application-Placement Determiner Testing Tool

The application-placement determiner testing tool, called APD-TT, is a web tool that
allows a developer of an application-placement determiner to test its placement behavior
in different situations. The idea thereby is that a user defines test cases which specify
the current system state as well as the event that triggers the computation of a new
application-placement plan. A developer can then analyze the computed placement plan.

As illustrated in Figure 5.9, APD-TT mocks the behavior of the switchover component, the
current-state determiner, and the reconfiguration-plan advertiser. The actions performed
by these mock-components can be controlled and displayed using the AngularJS [22]
frontend of APD-TT.

Besides the web frontend, APD-TT also provides a corresponding backend, whereby
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5.4. Application-Placement Determiner Testing Tool

the backend is developed in Java and uses the Spring framework [51]. It is responsible
for providing the data required by the frontend via REST interfaces. Furthermore,
the backend communicates with the application-placement determiners via gRPC [23].
We used gRPC since it allows to develop application-placement determiners in several
programming languages, including, for example, Java, Python, Go, and C++.

In what follows, we illustrate the workflow of APD-TT using APD and the example
introduced in Subsection 5.3.3.

5.4.1 Workflow of APD-TT

The user interface of APD-TT is separated into the following three tabs:

• the Test Cases tab,

• the App-Placement Determiners tab, and

• the Test Runs tab.

First, the user has to switch to the App-Placement Determiners tab and add a new
application-placement determiner. Therefore, the name, the host, as well as the port
of the application-placement determiner, has to be specified. Figure 5.10 shows the
configuration of APD.

Next, in the Test Cases tab, a test case has to be defined as illustrated in Figure 5.11,
whereby we differentiate between the following two types of test cases:

• redundancy recovery and

• optimization test cases.

For both types of test cases, the current system state, i.e., the current mapping between
application instances and computing nodes, has to be specified. To define the current
system state, we use JSON since this format can be easily converted into gRPC messages.

The current state of the use case introduced in Subsection 5.3.3 is illustrated in the
following listing:

1{

2"applications": [

3{

4"id": "App 1",

5"minLevelOfHardwareSegregation": 2,

6"minMemory": 500,

7"minCPU": 300,

8"features": [ "x" ],

9"priority": "HIGHEST"

10},

11{

12"id": "App 2",

13"minLevelOfHardwareSegregation": 2,
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5. Redundancy Recovery

Figure 5.9: Component diagram, showing the structural design of APD-TT.

Figure 5.10: The application-placement determiners tab of APD-TT.
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5.4. Application-Placement Determiner Testing Tool

Figure 5.11: Creating a new redundancy recovery test case.

14"minMemory": 150,

15"minCPU": 200,

16"features": [ "y" ],

17"priority": "HIGHEST"

18},

19{

20"id": "App 3",

21"minLevelOfHardwareSegregation": 2,

22"minMemory": 150,

23"minCPU": 300,

24"features": [ "x", "z" ],

25"priority": "HIGHEST"

26},

27{

28"id": "App 4",

29"minLevelOfHardwareSegregation": 1,

30"minMemory": 100,

31"minCPU": 200,
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5. Redundancy Recovery

32"features": [ "y", "z" ],

33"priority": "HIGHEST"

34}

35],

36"computingNodes": [

37{

38"id": "CN 1",

39"totalMemory": 700,

40"totalCpu": 600,

41"features": [ "x", "z" ],

42"applicationInstances": [

43{

44"id": "1",

45"applicationId": "App 1",

46"operationMode": "ACTIVE"

47},

48{

49"id": "1",

50"applicationId": "App 3",

51"operationMode": "ACTIVE"

52}

53]

54},

55{

56"id": "CN 3",

57"totalMemory": 1200,

58"totalCpu": 1000,

59"features": [ "x", "y", "z" ],

60"applicationInstances": [

61{

62"id": "2",

63"applicationId": "App 2",

64"operationMode": "ACTIVE"

65},

66{

67"id": "2",

68"applicationId": "App 1",

69"operationMode": "ACTIVE_HOT"

70},

71{

72"id": "1",

73"applicationId": "App 3",

74"operationMode": "ACTIVE_HOT"

75}

76]

77},

78{

79"id": "CN 4",

80"totalMemory": 400,

81"totalCpu": 900,

82"features": [ "x", "y", "z" ],

83"applicationInstances": [

84{
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5.4. Application-Placement Determiner Testing Tool

85"id": "1",

86"applicationId": "App 4",

87"operationMode": "ACTIVE"

88}

89]

90}

91]

92}

In the case of an optimization test case, the user has to provide no other information than
the current state. Test cases of this type are indented to test the optimization ability of
an application-placement determiner concerning the current state. On the other hand,
in case of a redundancy recovery test, the user has to define, besides the current state,
also the application instances that shall be started in order to recover the redundancy
requirements. As before, we use JSON [13] to define those application instances.

For the considered use case, it is required to start two new application instances. The
following listing illustrates the definition of those application instances:

1{

2"applications": [

3{

4"id": "App 1",

5"minLevelOfHardwareSegregation": 2,

6"minMemory": 500,

7"minCPU": 300,

8"features": [ "x" ],

9"priority": "HIGHEST"

10},

11{

12"id": "App 2",

13"minLevelOfHardwareSegregation": 2,

14"minMemory": 150,

15"minCPU": 200,

16"features": [ "y" ],

17"priority": "HIGHEST"

18}

19],

20"applicationInstances": [

21{

22"id": "3",

23"applicationId": "App 1",

24"operationMode": "ACTIVE_HOT"

25},

26{

27"id": "2",

28"applicationId": "App 2",

29"operationMode": "ACTIVE_HOT"

30}

31]

32}
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5. Redundancy Recovery

After creating the test case, it is listed in in the Test Cases tab as shown in Figure 5.12.
By clicking on the Run button, the user can select one of the previously added application-
placement determiners that shall execute the test case.

The resulting test runs are listed in the Test Run tab, as illustrated in Figure 5.13. By
clicking on the Details button, the user can inspect the returned result for the test case.

The following listing displays the result returned by APD for the previously defined test
case:

1{

2"computingNodes": [

3{

4"id": "CN 1",

5"applicationInstances": [

6{

7"id": "1",

8"applicationId": "App 1",

9"operationMode": "ACTIVE"

10},

11{

12"id": "1",

13"applicationId": "App 3",

14"operationMode": "ACTIVE"

15}

16]

17},

18{

19"id": "CN 3",

20"applicationInstances": [

21{

22"id": "2",

23"applicationId": "App 2",

24"operationMode": "ACTIVE"

25},

26{

27"id": "3",

28"applicationId": "App 1",

29"operationMode": "ACTIVE_HOT"

30},

31{

32"id": "4",

33"applicationId": "App 1",

34"operationMode": "ACTIVE_HOT"

35}

36]

37},

38{

39"id": "CN 4",

40"applicationInstances": [

41{

42"id": "2",

43"applicationId": "App 3",

44"operationMode": "ACTIVE_HOT"
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5.4. Application-Placement Determiner Testing Tool

Figure 5.12: The Test Cases tab of APD-TT.

Figure 5.13: The Test Runs tab of APD-TT.

45},

46{

47"id": "1",

48"applicationId": "App 4",

49"operationMode": "ACTIVE"

50},

51{

52"id": "3",

53"applicationId": "App 2",

54"operationMode": "ACTIVE_HOT"

55}

56]

57}

58]

59}

Note that this placement corresponds to the application placement as illustrated in
Figure 5.4.
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CHAPTER 6
Application-Placement

Optimization

The application-placement optimization procedure is the final step of the Fdiro process.
After the redundancy-recovery component recovered the redundancy requirements, it is
the responsibility of the placement optimizer to optimize the application placement so
that the desired goals are fulfilled.

Therefore, the placement optimizer has to solve the application-placement problem
introduced in Section 5.1. Note that compared to the redundancy-recovery component,
which has to solve the application-placement problem for a set of new application instances,
the placement optimizer has to consider all application instances currently executed by
the system.

Besides this difference, also the optimization goals implemented by the redundancy-
recovery component and the placement optimizer differ. The optimization goal imple-
mented by the redundancy-recovery component is designed to support fast solving times
while, due to relaxed solving-time constraints, the placement optimizer can perform more
sophisticated optimizations.

As the optimization performed by the placement optimizer shall take the current driving
situation into account, we introduce, in the following, ideas to update the optimization
goal based on the prevailing situation. Furthermore, we introduce ideas concerning
precomputing and sharing optimized application placements.

6.1 Context-Based Application-Placement Optimization

The goal function used for optimizing the application placement strongly depends on
the current driving situation as well as on the health state of the system, whereby by
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6. Application-Placement Optimization

system we refer to the totality of all software applications, computing nodes, and other
hardware (e.g., sensors, network equipment, . . .) that an autonomous vehicle is equipped
with. The following examples illustrate this dependency:

• Assume that a vehicle drives a passenger to an important meeting, and the vehicle
is low on battery. In such a situation, the goal of arriving on time at the desired
destination is more important than entertaining the passenger. Therefore, to extend
the range of the vehicle, all applications that serve the purpose of entertainment
can be stopped. As a result, some computing nodes can be shut down, which saves
energy.

• Suppose a vehicle is stuck in a traffic jam. Since the vehicle is barely moving,
redundant instances of driving functions can be stopped. Therefore, resources are
released, which can be, for example, used to execute an application that helps to
improve the traffic flow [47].

• Assume that due to a crash, half of the computing nodes installed in the vehicle
stopped working. Since the remaining computing nodes provide not enough re-
sources to execute all the applications that have been executed before the crash,
a new application-placement plan has to be computed. To guarantee the safety
of the passengers, and the safety of other road users, the goal of the placement
optimization is to map all applications that are necessary for bringing the vehicle
to a safe stop.

We next introduce a method that allows determining the goal function best suited for
the current situation.

6.1.1 General Concept for a Context-Based Application-Placement

Optimization

To allow an application-placement optimization based on the current context, we add
a layer on top of the configuration graph, which is a graph where the nodes correspond
to configurations and directed edges indicate configuration transitions corresponding
to events (e.g., failures). The layer on top of the configuration graph subdivides the
configuration graph into multiple levels, whereby a level number, x, for which 0 ≤ x ≤ N

holds, identifies each level, whereby N is the number of levels. The levels are defined
in such a way that the safety and availability of the system are increasing as the level
number is increasing. Therefore, level N can be considered as the “best” level, meaning
that this level is the most desired one. Accordingly, level 0 is the “worst” level. Since
in this level, the minimal safety requirements cannot be satisfied anymore, a fail-safe
system has to take over the control of the vehicle and bring it to a safe stop.

For each level, we define properties (e.g., minimal redundancy requirements) that an
application placement of that level has to fulfill. Furthermore, the levels have to be based
on each other, i.e., an application placement of level x has also to fulfill the properties
required by all levels y, for 0 ≤ y < x.
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6.1. Context-Based Application-Placement Optimization

Another criterion that has to be considered while defining the levels is that edges are not
allowed to intersect more than one level border (recall that edges correspond to events).
This means that it has to be excluded that an occurring event (e.g., the failure of a
computing node) causes a degradation of the level number by two or more. Hence, an
event can only cause a drop to the level below the current level, i.e., multilevel jumps are
not allowed.

Furthermore, for each level, we define a goal function. As already mentioned before,
level N is the most desired level. Therefore, the goal of all the other levels is to get
as fast as possible to level N . This can be achieved by a goal function that prioritizes
application placements that fulfill as many properties requested by the next level as
possible. Once level N is reached, the application placement can be optimized based on
the current driving situation.

Figure 6.1 illustrates the idea of the context-based application-placement optimization.

6.1.2 Context-Based Application-Placement Optimization based on

Priorities

In the previous section, we laid down the criteria that the defined levels have to fulfill
to match our approach of a context-based application-placement optimization. In this
section, we give an example and prove that the specified levels meet the required criteria.

Similar as in Subsection 5.3.5, we use the following priority levels HIGHEST , HIGH ,
LOW , and LOWEST . We assume that each application is of exactly one priority category.

For this example, we use five levels, which are specified as follows:

• Level 0 : At least one application of priority HIGHEST cannot be executed anymore.

• Level 1 : All applications of priority HIGHEST can be executed. The system cannot
run at least one application of priority HIGH .

• Level 2 : For each application of priority HIGHEST , there is at least one redundant
instance, whereby each redundant instance of an application is executed by a
different computing node (the level of hardware segregation is two). For each
application of priority HIGH , at least one instance is executed by the system. The
system cannot run at least one application of priority LOW .

• Level 3 : For each application of priority HIGHEST , there are at least two redundant
instances, and the level of hardware segregation is three. For each application of
priority HIGH , there is at least one redundant instance, and the level of hardware
segregation is two. For each application of priority LOW , at least one instance is
executed by the system. The system cannot run at least one application of priority
LOWEST .

• Level 4 : For each application of priority HIGHEST , there are at least three
redundant instances, and the level of hardware segregation is four. For each
application of priority HIGH , there are at least two redundant instances, and the
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6. Application-Placement Optimization

Figure 6.1: Visualization of an approach for a context-based placement optimization.
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6.1. Context-Based Application-Placement Optimization

level of hardware segregation is three. For each application of priority LOW , there
is at least one redundant instance, and the level of hardware segregation is two.
For each application of priority LOWEST , at least one instance is executed by the
system.

Figure 6.2 illustrates the arrangement of the five levels as well as their definition.

In the previous section, we defined two properties that have to hold for all levels:

• an application placement of level x has also to fulfill the properties required by all
levels y, for 1 ≤ y < x, and

• multilevel jumps are excluded.

The first property is trivial to prove since the minimum redundancy and segregation
requirements are increasing as the level number rises.

To prove that multilevel jumps are excluded, we have to show for all possible events
which can occur that the level gets degraded at most to the level below the current level.
In total, three types of events can occur:

• a failure of an application instance,

• a failure of the runtime environment, and

• a failure of a computing node.

Assume that the system is currently in level N , for N > 0. Therefore, the minimum
number of instances and the minimal level of hardware segregation per application per
priority category are given as follows:

• HIGHEST : N ,

• HIGH : max(N − 1, 0),

• LOW : max(N − 2, 0), and

• LOWEST : max(N − 3, 0).

Note that the function max(x, y) takes two numbers x and y as input and returns x if
x > y holds and y otherwise.

The minimum number of instances and the minimal level of hardware segregation per
application per priority category of level N − 1 are given as follows:

• HIGHEST : N − 1,
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6. Application-Placement Optimization

Figure 6.2: Visualization of an approach for a context-based placement optimization
which is based on priorities.
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6.1. Context-Based Application-Placement Optimization

• HIGH : max(N − 2, 0),

• LOW : max(N − 3, 0), and

• LOWEST : max(N − 4, 0).

In the case that an application instance fails, the number of instances of the corresponding
application is reduced by one. If the application exactly matches the minimal required
number of instances of level N , then the system will drop to level N − 1. Otherwise
(in case the application exceeds the minimal required number of instances), the system
remains in level N .

A failure of the runtime environment causes that all the application instances executed
by the runtime environment will also fail. Since, for each application, the minimum
level of hardware segregation is equal to the minimum number of application instances,
we can assume that for applications that match exactly the minimal requirements of
level N , at most one instance is affected by a runtime environment failure. Therefore,
this type of failure can be reduced to the failure of an application instance. As we already
argued before, our approach avoids multilevel jumps in case an application instance fails.
Therefore, multilevel jumps are also excluded in case of a runtime environment failure.

A failure of a computing node causes that all application instances executed by this
computing node will also fail. As argued before, for each application, the minimal level of
hardware segregation is equal to the minimum number of application instances. Therefore,
we can assume that for applications that match exactly the minimal requirements of
level N , at most one instance is affected by the failure of the computing node. Therefore,
this type of failure can be reduced to the failure of an application instance. Thus,
multilevel jumps are also excluded in case of a computing node failure.

We have shown that, for all three types of events that the current level the system is in,
gets reduced by at most one. Therefore, multilevel jumps are excluded.

Since the goal of levels 1, 2, and 3 is to get to level 4, the optimization goals of those
levels are defined as specified in Table 6.1.

Example Use Case

Consider a car with six computing nodes, as illustrated in Figure 6.3. In total, four
applications (App 1 to App 4 ) are executed by the system, whereby the applications
belong to the following priority classes:

• HIGHEST : App 1,

• HIGH : App 2,

• LOW : App 3, and
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6. Application-Placement Optimization

Table 6.1: Goals of the context-based application-placement optimization.

Level Optimization Goal

1
Try to run one redundant instance of each application of priority
HIGHEST , whereby the level of hardware segregation is two.
Run as many applications of priority HIGH as possible.

2
Try to run one additional redundant instance of each application of
priority HIGHEST , whereby the level of hardware segregation is three.
Try to run one redundant instance of each application of priority
HIGH , whereby the level of hardware segregation is two.
Run as many applications of priority LOW as possible.

3

Try to run one additional redundant instance of each application of
priority HIGHEST , whereby the level of hardware segregation is four.
Try to run one additional redundant instance of each application of
priority HIGH , whereby the level of hardware segregation is three.
Try to run one redundant instance of each application of priority LOW ,
whereby the level of hardware segregation is two.
Run as many applications of priority LOWEST as possible.

4 Driving situation based optimization.

Figure 6.3: Initial configuration that satisfies the requirements of level 4.

• LOWEST : App 4.

In its initial configuration, the system is in optimal condition since it fulfills all the
requirements requested by level 4.

Next, we assume, as illustrated in Figure 6.4, that the active instance of App 1 fails.
Through a switchover to one of the passive instances of App 1, a total loss of App 1 can
be avoided. Note that level 4 requires that for each application of priority HIGHEST , it
holds that the minimal number of instances, as well as the minimal level of hardware
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6.1. Context-Based Application-Placement Optimization

Figure 6.4: Configuration after the active instance of App 1 fails.

Figure 6.5: Configuration that recovers the system to meet the requirements of level 4
again.

segregation, is four. Due to the failure of the active instance, App 1 misses one application
instance to satisfy the requirements of level 4. Therefore, the successor configuration is
not an element of level 4 but rather belongs to level 3.

As mentioned before, the goal of all the non-optimal levels, i.e., all levels apart from
level 4, is to perform recovery operations so that the system gets to the highest possible
level. As illustrated in Figure 6.5, level 4 can be recovered by starting a new passive
instance of App 1.

Once the system is again in level 4, optimizations based on the current driving situations
can be performed. Assuming that the goal is to extend the range of the vehicle, a switch
to an application placement, which utilizes only a subset of all available computing nodes
is preferred. Therefore, as illustrated in Figure 6.6, the active instance of App 4 is moved
to another computing node so that Computing Node 5 can be shut down. Apart from
that optimization, further energy-saving measures can be performed as long as the system
is in level 4.
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6. Application-Placement Optimization

Figure 6.6: Configuration that extends the range of the vehicle.

6.2 Dynamic Context-Based Application-Placement

Optimization

In the approach described before, we defined the goals of the optimization problem
statically. As a result, the system has to reach level N before an optimization based
on the current driving situation is allowed. However, some driving situations, like, for
example, cruising at low speed in a traffic jam, do not require a highly redundant software
architecture.

To address this issue, we introduce in what follows two approaches which allow a dynamic
context-based application-placement optimization.

6.2.1 Dynamic-Level Approach

A very general approach to make our model of a context-based application-placement
optimization more dynamic is to adjust the number N of levels based on the current
context.

Recall that in Subsection 6.1.1, we defined that an optimization based on the driving
situation is only allowed at level N . On the other hand, the optimization goal of all the
other levels is to fulfill the requirements requested by the next highest level. Therefore,
adjusting the number of levels causes that the level in which a driving situation-based
optimization is allowed is varying.

Figure 6.7 illustrates the idea of a dynamic adjustment of the number of levels. The
figure shows that based on the current context, like, for example, the speed of the vehicle,
levels are added or removed.

Since many different contexts are considerable, conflicts regarding the adjustment of the
number of levels can emerge. For example, assume a car driving at a very low speed on
a road where the sidewalks are filled with pedestrians. Assume further that, based on
the present low speed, the required number of levels is two. However, since the car is
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6.2. Dynamic Context-Based Application-Placement Optimization

Figure 6.7: Dynamic adjustment of the number of levels based on the context.

surrounded by many pedestrians, the minimal requirement is N = 3. This means that
the latter context demands a higher number of levels than the former. In such a case,
always the higher requirements are applied. This ensures that the minimal demands of
each context are satisfied.

Example Use Case

To illustrate the dynamic level approach, we provide in what follows an example in which
the number of levels is adjusted based on the speed of the vehicle. To keep this example
simple, we do not consider any other context besides speed.
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6. Application-Placement Optimization

Figure 6.8: Function that specifies the number of levels required at different speeds.

The function displayed in Figure 6.8 specifies the correspondence between speed and the
number of required levels.

Assuming a car is parked, i.e., the speed in 0 km/h, according to Figure 6.8, the number
N of levels equals 1. Furthermore, we define that in total five applications (App 1 to
App 5 ) are executed by the system, whereby the applications belong to the following
priority classes:

• HIGHEST : App 1, App 2,

• HIGH : App 3,

• LOW : App 4, and

• LOWEST : App 5.

The configuration depicted in Figure 6.9 shows a valid application placement that satisfies
all the properties required by level 1.

Assuming that the car accelerates to 30 km/h, the number N of levels increases to 2. As
a result, the optimization goal of level 1 is to bring the system to level 2. This can be
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6.2. Dynamic Context-Based Application-Placement Optimization

Figure 6.9: Initial configuration that satisfies all requirements of level 1 (speed is 0 km/h,
and thus the number N of required levels is 1).

Figure 6.10: Configuration after starting a passive instance of App 1 (speed is 30 km/h,
and thus the number N of required levels is 2).

achieved by starting a passive instance of App 1. The resulting application placement is
displayed in Figure 6.10.

Next, the vehicle increases its speed to 70 km/h. Consequently, the number N of levels
gets updated again to 3. The newly introduced level requires that at least three instances
of all applications of priority HIGHEST are executed by the system. Furthermore, level 3
requires the execution of at least two instances of all applications of priority HIGH .
Therefore, to upgrade the system to level 3, additional passive instances of App 1 and
App 2 are required. The resulting configuration is displayed in Figure 6.11.

6.2.2 Dynamic-Prioritization Approach

Another approach for a dynamic context-based application-placement optimization that
is based on the idea proposed in Subsection 6.1.2 is to dynamically vary the priority class
an application belongs to. This means that for each application and each context, the
corresponding priority has to be defined. In case that two contexts define conflicting
priorities, always the higher priority class gets applied. Therefore, it is guaranteed that
the minimum requirements of all contexts are satisfied.
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6. Application-Placement Optimization

Figure 6.11: Configuration after starting a passive instance of App 1 and App 2 (speed
is 70 km/h, and thus the number N of required levels is 3).

Table 6.2: Specification of the priority class per application at different speed classes.

speed v [km/h] App 1 App 2 App 3 App 4 App 5

v < 10 LOWEST HIGHEST HIGH LOWEST LOW

10 ≤ v < 50 LOW HIGH HIGHEST LOW HIGH

50 ≤ v < 80 HIGH LOW HIGH LOW HIGH

v ≥ 80 HIGHEST LOWEST LOW LOW HIGHEST

Example Use Case

To clarify the dynamic-prioritization approach, consider a system that runs five applica-
tions. Recall that we defined earlier that the prioritization of the applications depends
on the current context. For reasons of simplification, we only consider speed as context
in this example.

Table 6.2 defines the priority classes for all applications based on the different speed
intervals.

Assuming that a vehicle is moving at a speed of less than 10 km/h, according to Table 6.2,
App 1 and App 4 both belong to the priority class LOWEST , App 5 is of priority LOW ,
App 3 of priority HIGH , and App 2 belongs to the priority class HIGHEST .

The configuration depicted in Figure 6.12 shows a valid application placement that fulfills
the requirements of level 4.

Assuming that the car accelerates to a speed of 40 km/h, the priority of the applications
change. According to Table 6.2, the priorities change as follows:

• the priority of App 1 and App 4 get upgraded from LOWEST to LOW ,

• the priorities of App 2 gets downgraded to priority HIGH ,

• the priority of App 3 gets upgraded to HIGHEST , and
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6.2. Dynamic Context-Based Application-Placement Optimization

Figure 6.12: Initial configuration that fulfills all requirements of level 4 (speed less than
10 km/h, and thus the number of required levels is 1).

Figure 6.13: Context change (speed is 40 km/h) that cause the current configuration to
drop from level 4 to level 3.

• the priority of App 5 gets upgraded to HIGH .

Since App 1, App 3, App 4, and App 5 do not fulfill requirements of level 4 anymore, the
level of the current configuration drops to level 3, as is illustrated in Figure 6.13. Note
that the dynamic prioritization approach causes that the level boundaries are flexible,
i.e., a context change can cause a drop or a lift of the level of the system.

To get to level 4 again, additional instances of App 1, App 3, App 4, and App 5 are
required. Since the priority of App 2 dropped from HIGHEST to HIGH , one redundant
instance of App 2 can be stopped. Figure 6.14 shows an application placement that
satisfies all requirements demanded by level 4.

Note that in order to not violate the multilevel jump property defined in Subsection 6.1.1,
it must be ensured that the priority of an application does not get upgraded by more
than one priority level in case of a context change. This means that, for example, a lift
of App 1 from priority LOWEST to priority HIGH in case that the speed exceeds the
10 km/h threshold has to be excluded.
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6. Application-Placement Optimization

Figure 6.14: Configuration that recovers the system to meet the requirements of level 4
again.

6.2.3 Dynamic-Level Approach vs. Dynamic-Prioritization Approach

At first glance, the two approaches for a dynamic context-based application-placement
optimization seem quite similar. However, on closer examination, it turns out that each
approach has different characteristics though.

The dynamic-level approach, for example, is a general approach that is not bounded
to a specific manner of defining levels. On the other hand, the dynamic prioritization
approach is less general. As indicated by the name of this approach, priorities are a key
aspect of this idea. In case that the levels are not defined using priorities, this approach
might not be applicable.

However, the dynamic-prioritization approach allows a more detailed specification of
how the redundancy requirements of an application vary in case of a context change.
For example, with this approach, as illustrated in Subsection 6.2.2, it is expressible that
the redundancy requirements of an application rise as the speed increases, while, on the
other hand, the redundancy requirements of another application decrease as the speed
increases. Due to this flexible priority classification, computing resources are utilized
more efficiently.

Although the dynamic-prioritization approach requires that the developer of an application
specifies for each context the corresponding priority level, this can be a cumbersome and
challenging task, especially if many different contexts are considered. The dynamic-level
approach, on the other hand, requires just to define the minimum number of levels that
are demanded by the different contexts, which is considered to be an easier task than the
challenge described before. Therefore, such an approach might be easier to implement.

6.3 Preventive-Reconfiguration Computation

It can be assumed that computing an optimized reconfiguration is a time-consuming task.
To reduce the time of finding an appropriate reconfiguration after an event occurred,
we propose to precompute reconfigurations, i.e., a reconfiguration for a certain event
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6.3. Preventive-Reconfiguration Computation

Figure 6.15: Visualization of a partially precomputed reconfiguration graph.

is determined before this event actually occurs. Besides faster reconfiguration times,
precomputing reconfigurations can also lead to an application placement of better quality
since more computation time can be consumed as the event has not occurred yet.

In case that the hardware architecture, as well as the applications executed by the system,
are known, a precomputation of reconfigurations for common events can be done even
before the vehicle goes into operation for the first time, i.e., at design time.

Figure 6.15 illustrates the idea of precomputing reconfigurations. The yellow nodes in
the reconfiguration graph correspond to reconfigurations that have to be precomputed at
design time. Since, as already argued in Section 3.2, it is not possible to precompute the
entire reconfiguration graph, the idea is to precompute reconfigurations for events that
have not occurred yet at runtime. Precomputed reconfigurations are illustrated by blue
nodes in Figure 6.15. In case that no precomputed reconfiguration for an occurring event
exists, a new reconfiguration has to be computed at runtime.

Since the optimization of the application placement depends on the actions performed
in the isolation step of the Fdiro process, the operations done in those steps shall be
precomputed as well. Thus, a reconfiguration includes the switchover commands that
shall be rolled out by the switchover controller and an optimized placement plan.

In case that a precomputed reconfiguration plan exists, the redundancy-recovery compo-
nent can be bypassed since the optimized configuration plan can consider the recovery of
the redundancies, as illustrated in Figure 6.16.
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6. Application-Placement Optimization

Figure 6.16: Activity diagram of the stepwise reconfiguration process extended by the
preventive reconfiguration computation approach.

6.3.1 Naive Configuration Precomputation

A naive approach for precomputing reconfigurations is to precompute n hierarchy levels
of the reconfiguration graph, for some n > 0. As illustrated in Figure 6.17, the hierarchy
levels are sequentially precomputed.

The advantage of this approach is that it is easy to implement. However, this approach
does not take the severity of the events as well as the probability of their occurrence into
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6.3. Preventive-Reconfiguration Computation

Figure 6.17: Visualization of a naive approach for precomputing reconfigurations.
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6. Application-Placement Optimization

account. Therefore, we introduce in what follows another approach that considers these
two properties.

6.3.2 Informed Reconfiguration Precomputation

The idea of the informed reconfiguration precomputation approach is that the precompu-
tation of reconfigurations is based on the probability of the occurrence of sequences of
events as well as the severity of those sequences. In order to realize this approach, we
have to determine, for each configuration, the probability, P (e), of the occurrence of each
event e that can affect this configuration. Furthermore, for each event e, the severity,
S(e), has to be determined.

Since we do not know the exact likelihood of the occurrence of an event, nor the exact
severity, we assume that each event is rated according to the ASIL (“Automotive Safety
Integrity Level”) risk classification scheme as defined in the ISO 26262 standard [30,
Part 9]. ASIL defines four severity classes (S0 to S3), which are specified as follows:

• S0: no injuries;

• S1: light and moderate injuries;

• S2: severe and life-threatening injuries (survival possible); and

• S3: life-threatening injuries (survival uncertain).

The severity of the failure of a passive instance of a multimedia application is, for example,
categorized as S0. On the other hand, a failure of an active instance of the trajectory
planner, whereby no redundancies exist, is represented by the severity class S3.

Furthermore, ASIL defines five levels of exposure (E0 to E4):

• E0: incredibly unlikely;

• E1: very low probability;

• E2: low probability;

• E3: medium probability; and

• E4: high probability.

As illustrated in Figure 6.18, for each event, the severity and exposure level has to
be specified. Since the goal of the informed reconfiguration precomputation is first
to precompute reconfigurations which originate from events for which the probability
of occurrence is high and which are of critical severity, we have calculated for each
reconfiguration R that has not been precomputed yet a utilization value U(R, Rcurrent),

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6.3. Preventive-Reconfiguration Computation

Figure 6.18: Visualization of the informed reconfiguration precomputation approach.

where this value is determined based on the severity and the probability of the occurrence
of the sequence of events that originates from the current configuration, Rcurrent. The
utilization values are then used to determine the reconfiguration that shall be precomputed
next.

A naive approach to determine U(R, Rcurrent) is to define a function, F , which specifies
for each severity-exposure combination a value, whereby along the path from Rcurrent to
R, the values defined by F are multiplied. Using this approach, whereby the function F

is defined as illustrated in Table 6.3, the utilization values of the reconfiguration graph,
as shown in Figure 6.18, are calculated as follows:

U(R2, R1) = F (S3, E2) = 0.5,

U(R3, R1) = F (S0, E0) = 0.02,

U(R4, R1) = F (S2, E1) = 0.18,

U(R5, R1) = U(R2, R1) · F (S0, E1) = 0.5 · 0.06 = 0.03,
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6. Application-Placement Optimization

Table 6.3: Function F that rates the different severity-exposure combinations.

F S0 S1 S2 S3

E0 0.02 0.04 0.06 0.1
E1 0.06 0.12 0.18 0.3
E2 0.1 0.2 0.3 0.5
E3 0.14 0.28 0.42 0.7
E4 0.2 0.4 0.6 1

Figure 6.19: Visualization of the global reconfiguration graph.
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6.3. Preventive-Reconfiguration Computation

U(R6, R1) = U(R2, R1) · F (S2, E3) = 0.5 · 0.42 = 0.21,

U(R7, R1) = U(R4, R1) · F (S0, E2) = 0.18 · 0.3 = 0.054,

U(R8, R1) = U(R4, R1) · F (S0, E1) = 0.18 · 0.06 = 0.0108,

U(R9, R1) = U(R6, R1) · F (S1, E0) = 0.21 · 0.04 = 0.0084, and

U(R10, R1) = U(R6, R1) · F (S3, E3) = 0.21 · 0.7 = 0.147.

According to Figure 6.18, R2, R4, and R6 are already precomputed. Therefore, R10 is the
reconfiguration with the highest utilization value. Hence, R10 will be determined next.

6.3.3 Global Reconfiguration Graph

Since it can be assumed that the reconfiguration graphs of the individual cars are often
similar, we propose that whenever a new reconfiguration is computed, it shall be made
available to other cars as well. Therefore, the idea is to build up a global reconfiguration
graph, which is stored in the backend and can be accessed by all cars. Before a car starts
precomputing reconfigurations, it checks if the required reconfiguration has already been
determined and is, therefore, part of the global reconfiguration graph. Therefore, wasting
resources for computing the same configuration multiple times can be avoided.

As illustrated in Figure 6.19, not only can cars participate in extending the reconfigu-
ration graph but also powerful backend servers, which can run more resource-intensive
precomputing algorithms.
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CHAPTER 7
Related Work

Fail-operational systems, similar to the one presented in this thesis, are also required in
other domains. Especially, the avionics area has an inevitable need for such systems. To
improve the safety of airplanes and spacecrafts, systems based on duo-duplex, triple-triple,
or quadruplex architectures are employed [18].

A duo-duplex architecture, as illustrated in Figure 7.1, consists of two lanes, whereby each
lane includes two identical computing nodes, which differ from the computing nodes of the
other lane. Each of the four computing nodes executes a distinct software implementation.
Although the implementations are not identical, they provide the same functionality.
A voting mechanism executed by each lane checks whether the output of the two
implementations is identical. In case diverging outputs are detected, the voter instructs
the switch to use the output determined by the redundant lane. Consequently, duo-duplex
systems, which are, for example, found in airplanes manufactured by Airbus [60], can
tolerate one failure.

An architecture that can tolerate more failures is the triple-triple redundancy architec-
ture, which is used, for example, by Boeing [66]. A triple-triple system, as shown in
Figure 7.2, consists of three homogeneous lanes, whereby each lane includes three distinct
computing nodes, which execute distinct software implementations. Furthermore, each
lane implements a 2oo3 (“two out of three”) voting logic, which compares the output of
the three distinct implementations. Only if all three outputs diverge, the voter instructs
the switch to use the output of another lane. Otherwise, the dominating output value
is considered to be valid. Hence, triple-triple can tolerate two-lane failures as well as
one-implementation failures of the remaining lane.

Also, the quadruplex architecture, which was, for example, used in the NASA Space
Shuttle [11], can tolerate up to two lane failures. Systems based on this architecture, as
illustrated in Figure 7.3, implement four homogenous lanes, whereby each lane consists of a
voter, a switch, as well as a computing node, which executes the software implementation.
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7. Related Work

Figure 7.1: Duo-duplex architecture.

Figure 7.2: Triple-triple architecture.
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Figure 7.3: Quadruplex architecture.

The voters implement a 3oo4 (“three out of four”) voting logic, i.e., in case three of the
four lanes provide the same output, this output is considered to be correct. After the
first fault, the lane which provided the faulty output will be isolated, and the voting
logic degrades to 2oo3. Therefore, another failure can be tolerated.

In the past, the fail-operational system designs used in the aviation domain have been
used in automotive research as well. Especially, drive-by-wire [31, 53] systems were
designed based on these architectural concepts. The problem, however, is that due to the
high hardware and software redundancy, implementing those approaches is costly. Since
the cost limitations in the automotive industry are much higher than in the aerospace
domain [46], an application of the above fail-operational concepts in autonomous vehicles
is unlikely.

Nevertheless, as various safety-critical systems are required to operate autonomous
vehicles, a fail-operational behavior is inevitable [38, 2]. Furthermore, the safety-criticality
of many applications depends on the current context the car is experiencing. For
example, the safety-critically, and therefore the required redundancy of the application
responsible for detecting pedestrians, is higher in case the vehicle is maneuvering in
an urban environment than cruising on a highway. Consequently, employing dynamic
fail-operational concepts, like, for instance, Fdiro, is expedient.

Other dynamic fail-operational approaches include, for example, the concept proposed
by Becker, Schätz, Armbruster, and Buckl [7], which anticipates a dynamic deployment
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7. Related Work

of mixed-critically applications. Similar to our approach, to maintain the operation of
safety-critical applications, after the occurrence of a failure, other less safety-critical
applications are degraded. The focus of their work is on developing a formal method to
calculate the optimal application deployment.

Another interesting dynamic fail-operational approach was introduced by Wotawa and
Zimmermann [65]. In their work, they present an approach for a rule-based concept for
configuring an autonomous vehicle during runtime such that certain preconditions are
fulfilled.
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CHAPTER 8
Conclusion

In this thesis, we introduced Fdiro (“Fault Detection, Isolation, Recovery, and Opti-
mization”), a fail-operational approach for handling failures in a stepwise fashion. The
idea of Fdiro is that in case a failure occurs, a monitoring mechanism first detects
the failure. Next, a switchover component isolates the faulty application instance and
instructing a redundant application instance to take over the responsibilities of the faulty
instance. Due to this switchover, the level of redundancy of the affected application
decreases. Therefore, the recovery step of the Fdiro approach attempts to recover the
lost redundancy by starting a new application instance. Since the placement of this
instance might not be optimal, a subsequent optimization step improves the stability
and efficiency of the system by optimizing the application placement, i.e., the assignment
between application instances and computing nodes.

Fdiro is designed in such a manner that the complexity of the detection and isolation
step is low. Therefore those steps can be performed fast. We demonstrated that
under laboratory conditions, the detection and isolation step can be performed within
milliseconds.

In future work, a simulator to show the usability of the Fdiro approach would be
beneficial [28]. Using such a simulation environment, we can also test further approaches
for solving the application-placement problem. Application-placement determiners based
on evolutionary game theory [52] and reinforcement learning [10] would be, for example,
a promising direction for research.

Furthermore, an integration of the Fdiro approach in a layered context-based recon-
figuration approach is an interesting topic for further work. Such an approach defines
three interconnected layers, which are distinct by their level of awareness. The top
layer, referred to as the context layer, is responsible for observing the context. These
context observations, in turn, imply a set of requirements, which are the input for the
reconfiguration layer. This layer is required to determine reconfiguration actions, which
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8. Conclusion

are then executed by the architecture layer. An overview of such an approach is discussed
in a recent paper [34].
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