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Kurzfassung

Moonshine steht fiir eine iiberraschende Verbindung zwischen scheinbar unabhangigen
Gebieten der Mathematik, ndmlich modularen Objekten (Zahlentheorie) und spo-
radischen Gruppen (Gruppentheorie). Historisch wird John MacKays Beobachtung
vom Jahr 1978 als Anfang dieses Gebiets betrachtet, in der er eine Verbindung zwis-
chen der Kleinschen J-Funktion und der Monster Gruppe erkannte. Die genauere Un-
tersuchung von MacKays Beobachtung und der Beweis der ‘Monstrous-Moonshine-
Vermutung’ durch Borcherds im Jahr 1992 hat zu der Entwicklung neuer Konzept
gefithrt und zu neuen Einblicken in der Mathematik und der Physik beigetragen.
Die Entdeckung von Mathieu Moonshine durch Eguchi, Ooguri und Tachikawa im
Jahr 2010, welche eine Verbindung zwischen dem elliptischen Genus von K3 und der
groffiten Mathieu Gruppe herstellte, erneuerte das Interesse an der Untersuchung von
Moonshine-Phénomenen. In den darauffolgenden Jahren sind viel weitere Mondschein-
Phanomene entdeckt und untersucht worden, was zu neuen iiberraschenden Ein-
blicken gefiihrt hat.

In meiner Arbeit versuche ich auf verschiedene Arten neue Moonshine-Phdnomene zu
finden. Einerseits untersuche ich, ob es fiir héher dimensionale Calabi-Yau Manig-
faltigketen einen Zusammenhang mit Moonshine gibt. Der Zusammenhang wird
durch den elliptischen Genus der Mannigfaltigkeiten hergestellt. Die Untersuchung
zeigt einige mogliche interessante Verbindungen, insbesondere von 5-dimensionalen
Calabi-Yau Mannigfaltigkeiten zu Mathieu Moonshine. Bei einer genaueren Betrach-
tung lassen sich diese aber nicht bekraftigen. Ein anderer Zugang ergibt sich durch
die Dualitat zwischen heterotischem und Typ II String. Hierdurch kann Mathieu
Moonshine mit topologischen Invarianten (Gromov-Witten/Gopakumar-Vafa Invari-
anten) von bestimmten Calabi-Yau Mannigfaltigkeiten in Zusammenhang gebracht
werden. Konkret untersuche ich CHL-Orbifolds von Eg x Eg heterotischen Kompak-
tifizierungen auf K3 x T2. In der effektiven 4 dimensionalen Theorie dieser Modelle
stehen gewisse gravitative Kopplungen und das Prepotential der Vektormultiplet
Moduli im Zusammenhang mit den ‘getwisten’ und ‘getwinten’ ellitpischen Genera
von K3. In den dualen Typ II Kompaktifzierungen sind diese Kopplungen und das
Prepotential durch die topologischen Invarianten der Calabi-Yau Mannigfaltigkeit
bestimmt. Dadurch ergibt sich ein interessanter Zusammenhang zwischen Math-
ieu Moonshine und den Gromov-Witten/Goparkuma-Vafa Invarianten bestimmter
Calabi-Yau Mannigfaltigkeiten. Des weiteren ist es moglich fiir bestimmte heterotis-
che CHL Orbifolds die dualen Calabi-Yau Manigfaltigkeiten zu finden und zum Teil
explizit zu konstruieren.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

Moonshine, which famously started with John MacKays observation in 1978 connect-
ing the Klein-J-function to the Monster group, connects seemingly unrelated fields of
mathematics - modular objects (number theory) and sporadic groups (group theory).
The precise analysis of the initial observation and its proof by Borcherds in 1992 has
led to new concepts and insights both in mathematics and physics. The discovery
of Mathieu moonshine by Eguchi, Ooguri and Tachikawa in 2010, linking the elliptic
genus of K3 to the largest Mathieu group, brought renewed interest to the research
field. Since then many new moonshine phenomena have been found shedding light
Oon ever new surprising connections.

In this thesis I search for new moonshine in different ways. I try to connect higher
dimensional Calabi-Yau manifolds to moonshine by analysing their elliptic genera. I
find some interesting initial results which however cease to hold under closer analy-
sis. In a different approach I make use of heterotic-type II duality to relate Mathieu
moonshine to the Gromov-Witten invariants of certain Calabi-Yau threefolds. In
particular I study CHL orbifolds of Eg x Eg heterotic string compactifications on
K3 x T?. In these models the twisted twining elliptic genera of K3 show up in the
gravitational couplings and the vector moduli prepotential of the four dimensional
effective theory. In the dual type II compactifications these couplings and the prepo-
tential are governed by the topology (Gromov-Witten/Gopakumar-Vafa invariants)
of the Calabi-Yau threefolds the theory is compactified on. In this way the Calabi-
Yau manifolds get connected to Mathieu moonshine. For certain CHL orbifolds of
the heterotic string one is able to find the dual Calabi-Yau manifolds, in some cases
by direct construction.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Acknowledgements

I want to start by thanking my adviser Timm Wrase without whom no part of
this work would have been possible. Starting with suggesting the topic of my PhD
and finding interesting research questions, Timm was helpful at all stages of my PhD.
He was always open for questions and discussions and never failed to provide helpful
answers and new ideas. Always hard working and friendly Timm was a constant
source of motivation and positivity throughout my PhD.

I would also like to thank my diploma thesis adviser Manfried Faber who during the
time of writing my diploma thesis brought back the joy of physics I already thought
lost. He is partly responsible for my will to continue my studies and starting my
PhD.

I would like to thank the members of our moonshine group, Abhiram, Abhishek and
Maria for good times and discussions inside and outside of physics. Especially I have
to thank Maria whom it was a joy to share the office with. I would like to thank
Christoph for helpful discussions (physics and non-physics related) and for sharing
the occasional beer. Further I would like to thank Harald Skarke for taking the time
to listen to some of the (not always well formulated) ideas that came up during my
research and his endurance in explaining some of the more mathematical aspects of
physics.

It was pleasure to get to know Justin David and Araditha and I am grateful for
the hospitality I experienced during my visit at IISc Bangalore. I would also like to
thank the Institute of Theoretical Physics at TU Wien and all of its members for
providing an excellent working and studying environment.

I would like to end by thanking my whole family for always being supportive and
never asking more than the necessary questions. Especially I have to thank my sister
and her family for providing me with lots of joy and distractions outside of physics.
This work was in part supported by the Austrian Science Fund (FWF): P 285552.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

1

Introduction

1.1 Historic remarks and overview

1.2 Mathieu Moonshine and Gromov-Witten invariants
1.3 Further appearances of moonshine

1.4  About this thesis

Mathematical building blocks
2.1 Modular objects

2.1.1  Modular forms

2.1.2  Jacobi forms
2.2 Sporadic groups

Moonshine - first encounters and known examples
3.1 Monstrous Moonshine

3.2 Conway moonshine

3.3 Mathieu moonshine

3.4 Umbral Moonshine

3.5 Thompson Moonshine

Searching for Moonshine in higher dimensional Calabi-Yau mani-
folds
4.1 The elliptic genera of Calabi-Yau manifolds

4.1.1 Calabi-Yau 1-folds

4.1.2 Calabi-Yau 2-folds

4.1.3 Calabi-Yau 3-folds

4.1.4 Calabi-Yau 4-folds

4.1.5 Calabi-Yau 5-folds

4.1.6  Calabi-Yau 6-folds

4.1.7 Calabi-Yau manifolds of dimension d > 6
4.2  Twined elliptic genera for specific Calabi-Yaus

co w1 O

10
10
12
15
17

20
20
27
29
33
33

34
34
35
35
35
36
36
37
38
39

4.2.1 Calculating twined elliptic genera for CY hypersurfaces in weighted

projective ambient space
4.2.2 Twisted elliptic genera of CY 5-folds
4.2.3 Calabi-Yau 6-folds
4.3 A toroidal orbifold and two Gepner models
4.4 Concluding remarks

Mathieu Moonshine and Gromov-Witten invariants
5.1 Heterotic compactifications on K3 x T2 and CHL orbifolds
5.1.1 The spectrum

39
42
47
48
20

51
o1
52


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.1.2  The new supersymmetric index
5.2 CHL orbifolds
5.2.1 The spectrum
5.2.2  Gravitational couplings/threshold corrections and the new su-
persymmetric index
5.3 Gravitational couplings and the vector moduli prepotential
5.4 Type II compactifications on Calabi-Yau 3-folds
5.4.1 Spectrum
5.4.2 Gravitational couplings and the prepotential
5.5 Calculating the Gromov-Witten/Gopakumar-Vafa invariants
5.5.1 Genus zero Gromov-Witten invariants - the prepotential
5.5.2  Conformal bootstrap
5.6 Heterotic - Type II duality - finding the dual CY

Conclusion and Outlook

Definition of some modular objects - conventions
A.1 Eisenstein series and n-function

A.2 Jacobi theta functions

A.3 Weak Jacobi forms

Some notes on lattices

Superconformal algebra and characters
C.1 (Extended) N = 2 characters
C.2 N = 4 characters

Calabi-Yau manifolds and toric geometry

D.1 Basic definitions and properties

D.2 Calabi-Yau manifolds as hypersurfaces in weighted projective ambient
spaces

D.3 Calabi-Yau manifolds as hypersurfaces in toric ambient spaces

Conformal bootstrap
Higgsing of the gauge group

Character table of My,

54
57
29

61
64
66
66
68
70
70
71
73

76

79
79
79
81

81

83
83
84

85
85

86
87

90

93

96


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1 Introduction

1.1 Historic remarks and overview

This work is on Moonshine in conformal field theory and sting theory. Moonshine
in general refers to surprising connections between two rather unrelated fields of
mathematics namely modular functions and special finite groups (sporadic groups).
In mathematics modular functions had originally mostly been considered in number
theory while the classification of finite groups had been taken place completely inde-
pendently ((see, e.g, [1, 2]) for some historic notes). However in 1978 John McKay
observed that the coefficients of a certain modular function (the Klein-J-function ')
correspond to sums of dimensions of irreducible representations of the largest spo-
radic group (the Monster group)?. The simplest such relation famously takes the

form
196884 = 196883 + 1. (1.1)

This naive observation had non the less far reaching implications for mathematics as
it became clear that it was no mere coincidence but a consequence of a much deeper
connection between group theory/algebra and number theory (modular objects). In
the months/years following the initial observation the ‘Monstrous Moonshine con-
jecture’ was formulated by Conway and Norton [3]. The proof of this conjecture
involved the construction of the ‘Monster module’ by Frenkel, Lepowsky, Meurman
[4] with the help of vertex operator algebras, which had previously been invented by
Borcherds [5]. The Monstrous Moonshine conjecture was finally proven by Borcherds
in 1992 [6], for which he received the Fields medal in 1998.

The connection to physics goes back Dixon-Gispang-Harvey [7] who gave a ‘phys-
ical’ construction of the Monster module. More precisely they constructed a chiral
conformal field theory (CFT) consisting of 24 bosons on a Z, orbifold of the Leech
lattice. This CFT has the Monster group as its symmetry group and its partition
function is the Klein-J-function. In this setting the somehow rather abstract ver-
tex operator algebra can be interpreted as the algebra of chiral primary fields. The
connection between the formerly unconnected areas of mathematics becomes natural
here, since the Monster group appears as symmetry group of a (chiral) CFT and the
modular object is a counting function of states that arise as vacuum amplitude on
the torus.

Another instance of moonshine was observed by Conway and Norton in [3] con-
necting the Conway group C'og to certain congruence subgroups of the modular group
SL(2,7Z), which again can be linked to modular objects. A module in this setting

Tt is uniquely defined to be the complex function invariant under the full modular group SL(2, Z)
mapping SL(2,Z)\H U {oo} bijectively to C U {co} with expansion e=2™* + O(e?"%%) at z — ioo.

2Already in 1975 Andrew Ogg had noticed a connection between congruence subgroups of
SL(2,Z) which later was seen to be connected to moonshine.
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was found in [8, 9]. The ‘physical’ realization as a CFT in this case is different than
for Monstrous moonshine as it also involves fermions.

Interest in moonshine was greatly renewed in 2010, when Eguchi, Ooguri and
Tachikawa [10] noticed that the elliptic genus of a N' = (4,4) non-linear sigma model
on K3 seems to be related to the largest Mathieu group Mss when expanded in
N = 4 characters. Subsequent research [11-15] confirmed this connection. However
the authors of [16] made it clear that My, cannot appear directly as the symmetry
of a K3 sigma model. Since the elliptic genus counts BPS states of the theory My,
should be a symmetry of these states. Also since it is an index and does not depend
on the moduli space of the theory, My, might arise as a ‘sum’ of symmetries at
different points in moduli space. These ideas which have been pursued in [17-20]
have been coined ‘symmetry-surfing’.

In [21, 22] Cheng, Duncan and Harvey established a new kind of moonshine
connecting all Niemeier lattices and their symmetry groups to slightly generalized
modular functions (mock modular forms) which also includes Mathieu moonshine as
a special case. In [15, 23] the existence of a module was shown such that the specific
functions that appear are trace functions. In [24] the Umbral moonshine was related
to the K3 sigma models. In [25] the authors showed that all umbral symmetry groups
appear at different points in the moduli space of type IIA string theory on K3 x T2
which provides a natural physics starting point for its understanding.

In [26, 27] moonshine phenomena involving the Thompson group were found and
proven and in [28] moonshine involving the O’Nan group was proven.

We see that the general picture that emerges is that the physical models form
a natural connection between seemingly unrelated areas of modular functions and
finite groups. In this setting the modular functions appear as certain functions of
the states of the model. Modular symmetries acting on the moduli space of these
models are then responsible for the modular properties of the counting functions.
The symmetries acting on the states of the model are then the special finite groups
that appear. Lately it has been tried to construct CFTs with sporadic symmetries
in a more systematic way [29].

1.2 Mathieu Moonshine and Gromov-Witten invariants

In compactifications of the Eg x Eg heterotic string on K3 x T? the elliptic genus
is connected to certain gravitational couplings of the effective theory. In this way
these couplings also get related to Mathieu moonshine. Further through the duality
with type II string theory compactified on Calabi-Yau threefolds it gets connected to
topological invariants (Gromov-Witten/Gopakumar-Vafa invariants) of these mani-
folds [30, 31]. Mathieu Moonshine has also been related to the Yukawa couplings and
the holomorphic 3-form in these models [32]. Further in [33] Mathieu moonshine has
been shown to be related to four dimensional theories with A/ = 1 supersymmetry.
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So one may observe that through string dualities moonshine has also been connected
to (algebraic) geometry.

1.3 Further appearances of moonshine

Since modular objects appear naturally in string compactifications potential rela-
tions to moonshine can be found in many places. As an example consider type II
string theory compactified on K3 x T?. The counting function of dyons (electric and
magnetic charged BPS states) is a Siegel modular form which can be obtained by
a well described procedure (‘Borcherds lift’) from the elliptic genus of K3, see, e.g,
[34] and reference therein. The number of dyons also gives a count of the microstates
of supersymmetric black holes.In the M-theory setting this has also been explored
in, e.g, [35]. The Monster module has also been related to 3 dimensional gravity by
Witten in [36].

1.4 About this thesis

This thesis is aimed at finding and establishing new moonshine connections. We start
by introducing the necessary mathematical building block in section 2. In section 3
we discuss some known instances of moonshine in greater depth. Then in section 4
we look for moonshine in the elliptic genera of higher dimensional Calabi-Yau man-
ifolds. We do this by expanding them in superconformal characters and calculating
their twined elliptic genera. We also analyse certain toroidal and Gepner models.This
section is based on [37]. In section 5 Mathieu moonshine in CHL-orbifolds of het-
erotic compactifications on K3 x T? is studied. Through duality with type II string
theory it gets connected the Gromov-Witten invariants of the dual CY. We explain
the models on both sides of the duality and find the dual Calabi-Yau manifolds for
certain heterotic models. This section is based on [31, 38].

In the course of my PhD studies I have published the following papers

[1 ] A. Banlaki, A. Chattopadhyaya, A. Kidambi, T. Schimannek, M. Schimpf, Het-
erotic strings on (K3 x T?)/Z3 and their dual Calabi-Yau threefolds, JHEP 04
(2020) 203, [1911.09697].

[2 ] A. Banlaki, A. Chowdhury, A. Kidambi, M. Schimpf, On Mathieu Moonshine
and Gromov-Witten invariants, JHEP 02 (2020) 082,[1811.11619]

[3 ] A. Banlaki, A. Chowdhury, C. Roupec, T. Wrase, Scaling limits of dS vacua and
the swampland, JHEP 1903 (2019) 065, [1811.07880]

[4 ] A. Banlaki, A. Chowdhury, A. Kidambi, M. Schimpf, H. Skarke, T. Wrase,
Calabi- Yau manifolds and sporadic groups, JHEP 1802 (2018) 129, [1711.09698|
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This thesis is based on [1], [2], [4] which are all connected to moonshine, which
was my main research interest during my PhD. My article [3] arose from my interest
in the swampland conjectures in particular in the dS swampland conjecture. My
contributions to these articles has been the following:

[1 ] I Higgsed the heterotic spectrum and calculated the Gopakumar-Vafa invariants
predicted from the heterotic side and checked with the results on the Type II
side.

[2 ] I calculated the Higgsed spectrum of the different heterotic models. For the
relevant models I searched the Kreuzer-Skarke database for matching CYs.
I calculated the Gromov-Witten invariants and analysed if they match the
heterotic results.

[3 ] I analysed some of scaling limits of the scalar potential and helped in analysing
the scalar potential of the explicit example we discuss.

[4 ] I wrote some of the initial Mathematica code used for analysing 5-fold twined
elliptic genera and calculated some of the twisted elliptic genera of the toroidal
and Gepner models of chapter 5.
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2 Mathematical building blocks

In this section we will introduce the basic mathematical objects that lie at the heart
of moonshine. As mentioned in the introduction these are (generalized) modular
forms/Jacobi forms and sporadic groups.

2.1 Modular objects

In this subsection we introduce the modular objects that appear in moonshine. We
follow [39-43].

Given two complex numbers A\, Ag € C with Im(Xy/A;) # 0, we can define the
lattice A = (A1, Ag) := {nA1 + mAg|n, m € Z}, and the torus

T? ={2€Clz~2z+ A\ VAEA}

Using conformal transformations continuously connected to the identity, we can ro-
tate and rescale the basis A, Ay of the lattice. In particular thereby we can always
set Ay = 1 and T? can hence be completely specified by the modulus 7 := :\\—f In
particular 7 can be chosen to lie in the upper half plane H := {z € C|Im(z) > 0},
since we can always interchange A\; and Ay. Conformal transformations which are not
continuously connected to the identity correspond to a change of oriented basis of
A. They are generated by the modular group SL(2,Z) of 2 x 2 matrices with integer

entries and unit determinant. They act on the modular parameter as *

ar +b

ab
L(2,7Z = H—H 2.1
spe.zyay= (1) Hom. o 50 2.)
and are generated by the two elements *
1
T:t—=174+1,5:7—=>——. (2.2)
T

Noting that (') is the only element (apart from the identity itself) that acts
trivially on H, we define the quotient PSL(2,Z) = SL(2,Z)/ (' ° ), which now
acts faithfully on H. In general we also want to add oo (or ico) to H. It is then
understood that for v = (¢4) € SL(2,Z), v(co) := %, so that altogether we add
QU{oo} to H. These additional points are called cusps and SL(2,Z) acts transitively
on them.

3Forming a subgroup of SL(2,R) and the associated Mébius transformations with real coeffi-
cients.

40n the lattice this corresponds to changing to the basis: < A, A2 + A1 > and < —Ag, A1 >
respectively.

10
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The fundamental domain SL(2,Z)\H may be represented by the set
1 1
f::{zEH|—§§Rez§§and |z| > 1} (2.3)

together with the identification z; ~ 29 iff Re z; = j:% and 2z = 2z = 1 or if
|z1] =1 and 25 = —i. It is known as the key-hole region. Every torus can uniquely
characterised by a point in this region up to conformal transformations. Adjoining
the cusps, (complex) infinity as well as @, to the key hole region we obtain a set of
genus zero, i.e., homeomorphic to the 2-sphere S2.

More generally for every N € N, N > 1, we define the following subgroups of the full
modular group SL(2,Z):

Lo(N) :={(2%) €Tjc =0 (modN)}
I'i(N):={(2%) €Tlle=0(mod N)and a,d =1 (mod N)} (2.5)
I'(N):={(2%)eTlb,c=0(mod N)anda,d =1 (mod N)}. (2.6)

In general we call a subgroup I' < SL(2,Z) congruence subgroup, if I' contains I'(V)
for some N > 1. The action of a congruence subgroup on the cusps, Q U {oc}, has
finite many orbits.

We note that the points of I'g(N)\H characterize a torus with a cyclic subgroup of
fixed order N and the points of I'; (N)\H characterize a torus with a generator of a
cyclic subgroup of fixed order N [43]. The last statement can be understood in the
following way [43]:

For a point in I'; (NV)\H let 7 € F be the point that arises through the natural map
I'y(N)\H — SL(2,Z)\H. Then consider 1/N € Z+7Z as generator of a cyclic group
of order N. In general for v = (¢ %) € SL(2,Z) the map

f:C/Z+72 —CJZ+~(T)Z, z —

2.7

et +d (27)

is an isomorphism between the torus with complex structure 7 and (7). If we further
assume v € ['1 (V) then 1/N remains fixed under a change of basis by ~, since

1 c d—1

1 ~ rt R

N c7'+d: cT +d

€ fZ+712)=7+~(7)Z. (2.8)

So a specific point of order NV is fixed. Further given a torus with complex structure
T together with a generator of a cyclic group one can find an isomorphism mapping
this torus to a torus with complex structure in I'y(N)\H and mapping the generator
to 1/N.

11


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.1.1 Modular forms

Having introduced the modular group above we now discuss functions which have
special transformation properties under it.

We call a function f : C — C modular if it is meromorphic and invariant under the
modular group, i.e.,

f(z) = f(vz), Yy € SL(2,Z). (2.9)

Note that modular functions naturally form a vector space. A modular function
can equivalently be seen as meromorphic function defined on the fundamental do-
main SL(2,7) \ H or as a function F' on a lattices in the complex plane, satisfying
F(A) = F(AA) for all A € C*, where the connection between f and F is given by:
f(z):=F((1,z)) and F(< A, Ay >) := f(f\‘—;)

More generally for a congruence subgroup I' of SL(2,Z) one defines a modular func-
tion for I ® to be a meromorphic function on H invariant under I" and of exponential
growth at infinity, i.e., f(z +iy) = O(e“Y) for y — oo and some C > 0.

This concept may be generalized by demanding the corresponding function F' on
lattices to have a certain integer weight k under scaling, i.e., F(A\) = X*F(A).
Translating this back to functions on H we define a modular function of weight k for
a congruence subgroup I' to be defined as above but with (2.9) replaced by

flyz) = (cz+ ) f(2), Yy = (¢4) €T (2.10)

Similarly we define a modular form of weight k for T' to be a holomorphic function
on H transforming as in (2.10) for all 4 € T" and of subexponential growth at infinity,
ie.,

f(z +iy) = O(e“Y) for y — oo and for all C' > 0. (2.11)

The growth condition implies polynomial growth at infinity, more precisely that
flz+iy) = O(1) for y — oo and f(%) = O(y=*) for y — 0. The set of modular forms
of weight &k on a discrete group I' < SL(2,R) is denoted by M(I"). It forms a finite
dimensional vector space and is zero for k& < 0. The algebra M. (I') := &, M(I")
consisting of modular forms of all weights on T is finitely generated. Every modular
function can be represented as a fraction of two modular forms.

Specializing property (2.10) to the case (1) we see that f(z + 1) = f(z), i.e., the
modular forms on a congruence group I’ containing (} !) are periodic in z and hence

may be expanded in q := e>™%,

f(2) =) ang" (2.12)

neL

5Sometimes also modular function on I is used.

12


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

The growth conditions imply that only finitely many a,,n < 0 can be non-zero for
a modular function and that a,, = 0 for n < 0 for a modular form. A modular form
for which ag = 0 is called a cusp form. Further whenever (' %) € I we see that
My(T") is zero for k odd (again by (2.10)).
Typical examples of modular forms of weight 2k, k > 1, for SL(2,7Z) are the Eisen-
stein series given by

9 e n2k—1qn
C(1—2k:)n 1—qgn’

Eo(2) =1+ (2.13)

where ( is the Riemann zeta function. In particular one can show that the space of
all modular forms for SL(2,7Z), M.(SL(2,Z)), can be generated by the Eisenstein
series Fy, Fg. More explicit expressions are given in Appendix A.

Another modular function which will be of particular importance for us is the Klein-
J function J(z). It is the unique modular function of weight zero mapping the
(enlarged) fundamental domain, FU{oo} , bijectively to CUoo and with the following
expansion at z — ico (¢ — 0)

J(z) =q '+ 0(q). (2.14)
In terms of the Eisenstein series J(z) may be expressed as

E4(Z)3
E4<Z)3 — E6(Z)2

J(z) = 1728 — 744, (2.15)

Its first few expansion coefficients around z — ioo (¢ — 0) are
J(2) = ¢ ' + 196884q + 21493760¢> + 864299970¢° + . . .. (2.16)

It is a Hauptmodul for the function field of modular functions of weight 0 for SL(2,7Z),
i.e., each function k(z) of this field may be written as a rational function of J(z) with
complex coefficients ¢ |

b(z) = 220 WIEN (2.17)
2 jmo b (2)!
The concept of modular forms may be generalized in different ways. The partic-
ular generalizations we will encounter are modular forms of half-integer weight with
multiplier system. We simply give two examples which are important for us.

6Recall that meromorphic functions on the sphere (on C U cc) are in general rational functions,
i.e., quotients of polynomials.
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First we define the Dedekind eta function

o0

n(r)=q= [J1—-q"). (2.18)

n=1

It transforms under modular transformations as

i

A+ 1) = efin(r) , n(~2) = V=irn(r), (219)

i.e., it is a modular form of weight % with a multiplier system. As a side note,
q~'/?*n(7) is known as the Euler function ¢(¢) and is the multiplicative inverse of
the generating functions of partitions of natural numbers, i.e.,

@ _ q% =5 p(k)e (2.20)
k=0

where p(k) is the number of partitions of k. Due to the Euler identity n(7) has a
power series/Laurent series expansion of the form

o0

n(r) =g Y (=1)"gBr TR, (2.21)

n=—oo

The 24-th power of the Dedekind eta function is known as discriminant function,
A(z) := n(2)?*. Tt is a modular form of weight 12 for SL(2,Z). It was originally
studied by Ramanujan. Its inverse also features prominently in the chiral part of the
bosonic string partition function.

As a second example we introduce the theta function

0(r) == 05(2r,0) = > q". (2.22)

nez
It transforms as
1 2
6(z+1) = 6(2), 0(—1) = ,/Tze@ (2.23)

from which one can show that it is a weight 1/2 modular form for I'y(4) with non-
trivial multiplier system. If we define NV, (k) to be the number of ways one can write
the integer n as a sum of k squares, counting order and signs, we see that

Y ONu(k)g =gt x e x Y g =0(2) (2.24)

a1€Z ap €L

Hence 6(z)* is the generating function for N, (k). For k = 2 this with some additional
work can for example be used to prove that every prime p, p =1 mod 4, is the sum

14
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of 2 squares [44].

We also want to mention that we can also consider 65(z,0) as a modular form for
the full modular group SL(2,7Z). What we find is that it transforms as a component
of the vector valued modular form ©(z) := (62(z,0),03(z,0),04(z,0)), which has the
following transformation properties

@(—2)::JiES@@%(xz+1y:T®@) (2.25)

where )
001 e/t (0
S=(o010].,7=| 0 01]. (2.26)
100 0 10

Finally we mention that there exist another generalization of modular forms, called
mock modular forms, see, e.g., [34, 41]. Let w € %Z and let h be a holomorphic
function H with at most exponential growth at all cusps. h is called a weakly
holomorphic mock modular form of weight w for a subgroup I' < SL(2,R) if there
is a modular from of weight 2 — w such that the sum h := h + ¢* transforms like
a holomorphic modular from of weight w for I'. Here ¢* is uniquely defined by g¢
(we do not give the exact definition, since we will not need it), however g* is not
holomorphic, rather it fulfils

0
—2i3(1)Y=—=g" (1) = . 2.27
(7)™ (7) = 9(7) (227)
In the physical setting mock modular forms will typically appear when the theory
(its moduli space) is non-compact.

2.1.2 Jacobi forms

In this subsection we introduce a different set of modular objects, called (weak) Jacobi
forms. The prime example of a Jacobi form we will encounter later will be the elliptic
genus of N' = 2 super conformal field theories. We start with the definition [34, 44].
A weak Jacobi form ¢y, (T, 2) of weight k € Z and index m € Z* is a function from
H x C — C fulfilling the following properties

1. @pm(7,2) is ‘modular in 7 and elliptic in 2, i.e.,

27rimcz2

ar+b z B i = @b
¢k,m (C’T—{—CF CT+d) - (CT+d) € + ¢k7m<7_7 Z)7 v(cd) € SL(27Z)
(2.28)

2. ¢k m (7, 2) transforms under translations of z by 7Z + Z in the following way

Gl (T, 2+ AT+ p) = (—1)Qm(”“)e_zmm()‘%“’\z)gbkm(T, z), VA p€Z. (2.29)

15


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

3. From the above properties it follows that ¢g m(T+1, 2) = Gm(T, 2+1) = @(7, 2)
which allows for a Fourier expansion

Grm(T,2) = cln,1)q"y" (2.30)

n,r

where ¢ := €™ y := €?™*. In particular the property (2.28) implies that
c(n,r) = C(4nm — r?,r) where C(A,r) only depends on r (mod 2m). The
quantity A = 4mn — r? is called the discriminant. A Jacobi form ¢y, (7, 2) is
called holomorphic if C(A,r) vanishes for A < 0, i.e., if

c(n,7) =0 unless 4nm >r? (2.31)
it is called a Jacobi cusp form if C(A,r) vanishes for A <0, i.e., if
c(n,r) =0 unless 4nm > r? (2.32)

and it is called a weak Jacobi form if
¢(n,r) =0 unless n > 0. (2.33)

Finally if a Jacobi form satisfies the yet weaker condition ¢(n,r) = 0 unless
n > ng for some fixed ng € 7Z it is called weakly holomorphic Jacobi form.
The space of all holomorphic resp. cuspidal, weak, weakly holomorphic Jacobi
forms of weight & and index m is denoted by Jym, Ji ., T j,'cm and all are
finite dimensional.

The space of weak Jacobi forms of even weight £ and integer index m is generated by
the Eisenstein series £y(7), Eg(7) and the functions ¢_; 5(7, 2), ¢o1(7, 2) [44] defined
in Appendix A. One can easily convince oneself that the space jo,m of weak Jacobi
forms of weight 0 and index m is generated by m basis elements for m = 1,2, 3,4, 5.
More precisely one finds

j(],l = {¢0.1}

Jog = {41, Ead’ 51}

j0,3 = {¢g,17 E4¢2—2,1¢0,1a E6¢3—2,1}

j0,4 - {¢é,1= E4¢%2,1¢g,17 E6¢32,1¢0,17 Eszfm}

Jos = {01, Bad® 51041, B8’ 1051, B1d 51001, EaEed® 5, }.

The spaces of weak Jacobi forms of even weight and half integer index are related to
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the spaces of weak Jacobi forms of even weight and integer index through the simple
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relationship [45]
Jokmit = o3 Jokm-1, M E L. (2.34)

2.2 Sporadic groups

Apart from the modular objects discussed in the subsection above, certain special
finite groups, so called sporadic groups, play an important role in Moonshine. We
will introduce them and their most important properties in this subsection.

A group is a pair (G, ) consisting of a set G and a binary operation - : G x G — G
such that the following properties are fulfilled:

(1) Identity: There exist an element e € G , st. e-a=a-e =a for all a € G.
(Such an element is unique.)

(2) Associativity: For all a,b,c € G, (a-b)-c=a-(b-c) holds.

(3) Inverse element: For each a € G there exists an inverse element, denoted by
a ' €@, st. a-a”t =a'a=e. (The inverse element is unique.)

In the following we will mostly just write G when referring to a group (G, -). Also
we will often use the shorthand notation ab for a - b.

A subgroup N of a group G, denoted by N < G, is as subset N C G s.t. the set N
together with the restriction of the binary operation to N x N again forms a group.
A subgroup N of a group G is called normal, denoted by N <G, if gNg=! = N for all
g € G 7, ie., if N is invariant under conjugation. For a normal subgroup N <G we
have aN - DN = abN. Hence the set of left cosets G/N = {aN|a € G} form a group,
called quotient group. A group G is called simple if its only normal subgroups are G
itself and {e}.

Given two groups (G, -), (H,*) a group homomorphism ¢ : G — H is a map from G
to H respecting the binary operation, i.e., ¢(a-b) = ¢(a) x ¢(b) for all a,b € G. The
kernel of ¢, denoted by ker ¢, i.e., the set of elements in G mapped to the identity
of H, is a normal subgroup of G. The image of G is a a subgroup of H isomorphic
to G/kero.

A representation R = (V, p) of a group G is tuple consisting of a vector space V' and a
homomorphism p : G — Hom(V'). Given a representation R, we define the character
chr : G — C,g — Try(p(g)) 8. By the cyclic property of the trace, characters are
‘class-functions’, i.e., they are constant on equivalence classes of the group G. These
functions form a vector space and by defining an appropriate inner product one may
show that the number of linear independent characters is equal to the number of
irreducible representation of the group G. Characters of finite groups may be listed

"We define aN := {ablb € N}, Na := {balb € N}.
8By common abuse of notation, for a representation R = (V,p) we will often use R and V
interchangeably and simply write g instead of p(g)
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in character tables with columns labelled by equivalence classes ? and rows labelled by
the irreducible representations. In order to classify all finite groups it is sufficient to
classify all finite simple groups. This follows mainly from the Jordan-Holder theorem
which states that for a fixed group G and any nested sequence

G:HoDHlDHQD"'DHkDHk+1:{€}

such that H; is normal in H; | and H,;_,/H; is simple, the length of the sequence is
always the same and the quotient groups H; ;/H; appearing are the same up to a
possible permutation.

Classification of all finite simple groups was achieved in the early 1980s by a
collective effort of a large number of mathematicians (see, e.g, [1, 2]). The results
have been collected in the ‘ATLAS of Finite Groups’ [46]. The classification can be
split up into groups belonging to an ‘infinite family’, which are

e the cyclic groups Z,,(p a prime)
e the alternating groups 2, for n > 5
e 16 families of Lie type

and 26 sporadic groups which do not belong to any infinite family. For us mostly the
sporadic groups will be of interest.

The largest sporadic group is the so called (Fischer-Griess) Monster group (con-
structed by Griess in 1980 [47]), normally denoted by M. It obtained its name
because of its size which is

|M|=2%.320.57.75.112.13% . 17-19-23 .29 - 31 - 41 - 47 - 59- ~ 8 x 10%. (2.35)

20 of the 26 sporadic groups are subgroups of M. Figure 1 shows a digram of all the
sporadic groups where a line between two groups stands for the subgroup relation.
The groups which appear as subgroups of the Monster group are also referred to as
the ‘happy family’ whereas the remaining 6 sporadic groups are sometimes called
pariah.

The groups that will be of special importance to us are apart from the Monster group
the Mathieu groups Msy, May3 as well as the Conway group Co;.

Co, can be obtained from the Conway group Co, by its centre. C'oy is the automor-
phism group of the Leech lattice (see Appendix B).

The largest Mathieu group My, has size

|Myy| =2'°-3%.5.7-11-23. (2.36)

9These are normally labelled by the order of an element in the class followed by a capital letter,
A, B..., if there is more then one equivalence class with elements of the same order.
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Figure 1: The sporadic simple groups. Figure from [48].

It can be thought of as subgroup of the permutation group So4 that is the automor-
phism group of the extended binary Golay code . In particular My, is 5-transitive!!.
The group Mss is of order

|Mas| =27 -3%.5.7-11-23. (2.37)
It is defined to be the subgroup of M, that keeps one point fixed.

We end with some notation that will be needed in particular for the groups
appearing in umbral moonshine. We call a group G the double cover of a group H,
G ~ 2.H, if G has a normal subgroup Z of order 2 (hence Z is central) s.t. G/Z ~ H.
For g a prime power, we define I, to be the finite field with ¢ elements. Then GL,(q)
is defined to be the group of invertible n xn matrices with coefficients in F,. AGL,(q)
denotes the affine linear group defined through the natural action of GL,(q) on Fy
and the translation x — z + v for v € F.

10The extended Golay code is an error-correcting code that encodes 12 bit of data into 24-bit
of data such that any 3-bit error can be corrected. It consists of a 12-dimensional subspace W of
{0, 1}?* of 24-bit words such that any two distinct elements of W differ in at least 8 coordinates.

1A permutation group G acting on n points is called k-transitive if for any two give sets of
points, ai,...,ar and by ...bg, a; # a; and b; # b; for i # j, there exists a g € G with g(a;) = b;
fori=1,...,k.
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3 Moonshine - first encounters and known examples

In this section we will briefly discuss known and well studied examples of Moonshine
starting with Monstrous moonshine.

3.1 Monstrous Moonshine

The subject of moonshine started with the observation by John McKay in 1978 that
the expansion coefficients of the Klein-J-function as in (2.16) can be expressed as
sums of dimensions of irreducible representations of the Monster group. That is we

may write

196884 = 192883 + 1 (3.1)
21493760 = 21296876 + 196883 + 1
864299970 = 842609326 + 21296876 + 2 - 196883 + 2 - 1

where the numbers on the Lh.s. are the expansion coefficients in (2.16) and the
numbers on the r.h.s. are the dimensions of irreducible representations of M. Initially
it was not clear if this was just some coincidence between large numbers or if it really
constituted a surprising connection between previously completed unrelated parts of
mathematics. Further light was shed on this subject by John Thompson [49] who
proposed the existence of a graded representation V' of the Monster group

V=V,oViehe... (3.2)

with V1 = po, Vi = p1 ® po, Vo = p2 & p1 & po, V3 = ... and p; being the irreducible
representation of M ordered by dimension such that

J(2) = dim, (V) := dim(V_,)qg~' + Z dim(V;)q". (3.3)

It was then the suggestion by Thompson to consider for every g € M the more
general series, now called McKay-Thompson series,

Ty(2) = chvg(g) = chy ,(9)g " + > chy(9)¢". (3.4)

This was done by Conway and Norton [3] who found that various T,(z) indeed
correspond to Hauptmoduls of various genus 0 modular groups. Thereby it became
clear that the observations (3.1) were not mere coincidences. More precisely Conway
and Norton conjectured that for each g € M the McKay-Thompson series T,(z) (as
defined in (3.4)) coincides with the unique Hauptmodul with expansion ¢~! + O(q)
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near z — 0o for some genus zero subgroup I'y < SL,(R), which contains I'g(V)
as a normal subgroup where N € N; N| (ord(g) - ged(24, ord(g))). Notice that the

McKay-Thompson series T,(z) only depends on the conjugacy class of g because
of the cyclic property of the trace. The Monster group has 194 conjugacy classes.
Moreover a character evaluated at g will be the complex conjugate of the character
evaluated at ¢g~!'. The total number of Hauptmoduls arising from the MacKay-
Thompson series is 171.

Previously it had already been noted by Andrew Ogg in 1975 [50] that the primes p
for which Ty(p)+'? has genus 0 are

{2,3,5,11,13,17,19, 23,29, 31, 41, 47,59, 71} (3.5)

and are exactly the prime divisors of the order of the Monster group (2.35)'. Clearly
this is somewhat explained by the Conway-Norton conjecture.

The Conway-Norton conjecture was verified by Atkin, Fong and Smith [51] numer-
ically. An explicit construction of the envisioned graded module was finally given
by Frenkel, Lepowsky and Meurman (FLM) [52]. This module is typically called
the Monster module V. The FLM construction makes use of the concept of vertex
operator algebra (which is a mathematically precise formulation of a chiral confor-
mal field). We will not go into depth here rather we will explain the more physical
approach given in [7].

This construction starts by considering 24 bosons on the Leech lattice, which is the
unique self-dual, even 24-dimensional lattice with no vector of length less than 2. We
follow [7] and begin the discussion with some basics notions of 2 dimensional confor-
mal field theory (CFT). The infinitesimal conformal transformations z — z + ez"*!
of the complex plane are generated by the momenta

dz
L, = ]{ 7? T (2) (3.6)
of the stress energy tensor. They satisfy the well known Virasoro commutator algebra
relations

C
[Lon, L] = (m — 1)Ly + E(m3 — )00 (3.7)

where ¢ € R is the central charge of the theory. Representations of the Virasoro
algebra may be given by primary fields ¢(z) of a certain conformal weight h defined

12174 (p)+ is the group generated by T'g(p) together with % (% 6), which are known as Atkin-

Lehner involutions. It is the normaliser of I'y(p) in SL(2,R).
BFamously Ogg offered a bottle of Jack Daniel’s whiskey to the first person to explain this
coincidence.
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by their operator product expansion (OPE) with the energy-momentum tensor

h 1

50(22) + =)

P Oop(z2) + . . . (3.8)

T(z1)9(22) ~
where on the r.h.s. we only explicitly state all the singular terms. By acting with a
primary field on the vacuum one obtains a highest weight state , |h) = ¢(0) |0). It
fulfils Lo |h) = h|h), L, |h) = 0 for all n > 0. By acting with the generators L,,,n < 0
on such a highest weight state one obtains a representation of the Virasoro algebra
which for ¢ > 1 and h > 0 will be unitary and irreducible’*. A representation arising
in such a way from a primary field of conformal weight A is in general referred to as
Verma module and for the unitary, irreducible case denoted by Lj .. This module
comes with a natural integer grading Ly . = P, Ly, . where

he = {v € Lpc|Lov = (h+n)v}. (3.9)

In this context n is also called the level. The character of the Verma module is
defined by

00 h— <

_c . q 24
chLy.(q) :== ¢" 21 Y (dimL".)¢" = = (3.10)
2 v [l= (=g
A conformal field theory consists of a left- and a right-moving (holomorphic-/anti-
holomorphic) part given by conformal weight (h, h). The torus partition function of
the theory is defined as

n=0

Ze(q,q) = Try (qLO’iij(”i) (3.11)

where the trace is taken over the Hilbert space (Verma module) of the theory and
q := exp(2miT), T being the modular parameter of the torus. It will be of the form

Z(4,@) = Y NyjchLy cchLy . (3.12)

h,h

where N, ; counts the number of primary fields of conformal weight (h,h) of the
theory. Z.(q,q) should be invariant under modular transformations, (2.1), of 7. This
put strong requirements on the possible form of N, which we however will not
discuss in detail here. For ¢ > 1 in particular it leads to the requirement of an
infinite number of primary fields. In specific situations (3.12) may factorize into left-
and right-moving parts and one can consider the holomorphic part only. It is such a
situation we will be interested in in the following which we will describe below.

We now consider the concrete example of 24 free bosons X*(z,z),i = 1...24, on a

14Tn general unitarity restricts the values of h and ¢ and one must factor out potential null states
in order to obtain irreducible representations.
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even, self-dual integer lattice A/2 =< ey,...,eqy > /2 of dimension 24. The action
is given by

1 . . 1 _ _
= / OX'OX" + ByoX'0X" = / 9apOX X" + bup0X*0X"  (3.13)
T m

where X* ~ X'+ 27(\'/2), for all A € A and X' = (e,)'X“ and hence X* ~
X%+2m(n*/2), n® € Z. The metric is defined by g., = €, - €, and by, = Bij(e,)"(ep)’

are the components of the (constant) antisymmetric B—field w.r.t. the lattice frame.

For the concrete choice
e,Be, = e, e, mod?2, (3.14)

e.g., bay = £gap,a S b one can show that the Hilbert space factorizes into a holo-
morphic and anti-holomorphic part. That is we can split X(z,2) in the following

way

X(27) = %(m(z) +2(2). (3.15)

where z'(z) are free holomorphic fields which fulfil *(z) ~ x%(2) + 27\, for all A € A.
Their mode expansion may be written as

BN i , a_ﬁz —n
2 (z)=¢ —ip lnz—kznz;éo i (3.16)
with commutation relations given by
[¢',p'] = —id7 | o}, ] = n6" 6pimo- (3.17)
For every 8 € A a highest weight state of this theory is defined by

P |B) = B"18),an|B) =0, forn > 0. (3.18)

By acting with a_, on such a state the whole Fock space Fj is generated. The
partition function of the theory therefore becomes

1 2
B2/2
n(q)? Zq

BeEA

Z(q,q) = (3.19)

(corresponding to the factorization Ny, j; = NNy, in (3.12)).
The primary fields of the theory are given by particular products of the dimension
one U(1) currents j'(z) = i0x" and the exponentials

Va(z) = 77 B e A (3.20)
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of dimension $%?/2. The OPE of the vertex operators Vj as defined above is not
associative. Associativity can be restored by including a factor ¢(f) on the r.h.s.
that satisfies, c(a)c(8) = €(a, B)c(a + B), where €(a, 8) is a 2-cocycle!®.

The partition function of the holomorphic part of the theory is now given by

Ox
Z(q) = ¢/ Trgh = —2 3.22
@ n(q)** (3:22)

where Oa(q) = > gcp ¢%*/? is the theta function of the lattice A. For our choice of
lattice - i.e., even, self-dual of dimension 24 - Z(q) is modular invariant.

For the concrete lattice we are interested in, namely the Leech lattice Apeeen, which
does not have points of (length)? = 2, we find

@ eecC. 1
beech — 2 1 244196884 + - - = J(q) + 24, (3.23)

n* q

ZLeech (Q) -

i.e., the modular invariant J-function which showed up in monstrous moonshine with
an additional additive constant 24. The constant arises from the states generated
by the 24 primary fields i0z' of weight 1. These may be removed by performing
an additional Z, orbifold, as originally considered by FLM. Concretely one simply
orbifolds by the discrete symmetry  — —x. This removes the unwanted states
but it also enlarges the symmetry group of the theory in the following way. Before
the orbifold the automorphism group of the Leech lattice is the Conway group Coy.
Because of the cocycle factors that arise in the definition of the vertex operators Vj
the symmetry of the theory before the orbifold is actually an extension of C'oy by
the abelian group (Z»)?*. The symmetry group of the orbifolded Leech lattice is the
first Conway group C'oy, which is the quotient of C'oy by its centre. This again gets
enlarged through the cocyle factors. This symmetry group acts on the orbifolded
theory in a way that does not exchange twisted and untwisted states. The orbifolded
theory however has an additional symmetry which roughly speaking boils down to
exchanging twisted and untwisted states. These two symmetries together generate
the Monster group which hence is a symmetry group of the orbifolded theory. In
the following we will study the orbifolded theory more explicitly and show that the
symmetry group is exactly the Monster group.

The lattice Apeeen has no invariant sublattices under this symmetry and the fixed
points are classified by A/2A.

The Hilbert space H(yy before orbifolding is the direct product of the Fock spaces
Fj3 (defined around (3.18)). The Hilbert space of the twisted theory will then consist

5For an abelian group A , s € N, amap e¢: A x A — Z/sZ is called 2-cocyle if [4]

e(a, B) +ela+B,7) = e(B,7) + (e, B+ 7). (3.21)

Cocycles naturally appear in central extensions of A.
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of the invariant states of the untwisted theory, H (+ and the invariant states of the

+)
twisted theory H (+_ ) More concrete if we denote the action the orbifold action by

g, 9% = 1, one defines
Hi,y={v e Hgy,lgv = +v}. (3.24)

These states are explicitly given by

Hy={al, a2, (18) + [=8)}ufal, ..aZi (18) —=8))}  (3.25)

and the partition function of the untwisted sector can be calculated to be

1 (Ox q !

Z+ — —1T Lo _ — Leech ) 3.26
0 =0 T = (S g 520
The twisted Hilbert space arises from fields satisfying % (e?™2) = —z(z)(modArcecn)

which have the mode expansion
P =3 +i > O (3.27)

n
meZ+1/2

with o’ obeying commutation relations as in (3.17). The construction of the twisted
Hilbert space is more subtle in particular due to the two-cocycle factors that arise
in the construction of the operators (3.20). For the details we refer to [7]. For the
partition function of the invariant states in this sector one finds

1 1 1
+ —1 1/2 o
Z(_)<Q) =dq TrH+ q =(q 2 (HZOI(]_ —_ qn_1/2)24 Hzozl(l + qn_1/2)24> .
(3.28)

The complete partition function is then

Zunla) = 26,0 + 2 (0) = 2@y Ly [ (YT (AYE (1)
tw +\4 ) 2 g 2 0o 04 03

1 @A' eec (q) 1 1
- 5?774}1 +35 9 7724 [(‘9304) + (6203)" — (8194)12}

= S(T(@) + 24(h + 1)) + 5(J(q) —24) = T +12h,

where in the last line we have introduced the Coxeter number A of the lattice, which
for our cases is % and which vanishes for the Leech-lattice, i.e., Areeen = 0, so that
we exactly obtain the J function as our partition function.

It remains to show that the symmetry of the theory is exactly the Monster group. We
have already argued that the Monster group will be part of the symmetry group. To

see that it is not larger we follow FLM and define a special product (‘cross-bracket’)
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on the Fourier components of fields of weight 2 by
i N ST i
¢m X ¢f’b = 5([ m+1> ¢n—1] + [ n+1» ¢m—1]) (329)

where 7, j label the different dimension 2 fields. One can show that this cross-bracket
closes on dimension 2 fields by considering the general form of the OPE of such fields
[7]. As shown by FLM the infinite dimensional closed algebra given by this cross-
bracket is an affinization of the Griess-algebra B. The Griess algebra itself appears
as the 196884 zero mode subalgebra. It is known that the automorphism group of
the Griess algebra is precisely the Monster group so we have succeeded in showing
that the symmetry group of 24 bosons on the Z, orbifold of the Leech lattice has
exactly the Monster group as its symmetry group.

We still need that the chiral theory constructed above fulfils all the requirements
of Monstrous moonshine, i.e., in particular that the traces T, = TrH<++ +H ggto~t
are indeed the genus zero Hauptmoduls conjectured. This can be done using iden-
tities fulfilled by the J-function and the 7,. The most basic one (found by Zagiers,

Borcherds and others) is the relation

p A=) = T (p) = J(7) (3.30)
nez

where p = €™ and a, are the coefficients of a g-expansion of J, ie.J(q) =
Y ns_ 1 anq". It implies indefinitely many relations between the a; which fixes all
a; from just the knowledge of aq,as, as, as, as. The structure of (3.30) is similar to
denominator identities known from Lie and Kac-Moody algebras. Borcherds was
able to generalize this identity to identities for the T}’s by introducing the notion
of generalised Kac-Moody algebras [53] and in particular the Monster Lie algebra.
The denominator identities for this generalized Kac-Moody algebra then leads to the
necessary identities/generalizations of (3.30) [6].

In [54] Norton, based on earlier observation by himself and others, suggested a
generalization of Monstrous moonshine in the following manner. For each element
g € M there exists a graded projective representation V(g) = €,,cq V(9)n of the
centralizer Cys(g) of g in M and to each commuting pair (g, h) of elements in M
there exists a holomorphic function 7\, ) defined on the upper half plane H s.t. the
following holds:

(1) Tigane gonay (1) = 7y Tigny (L55) where (24) € SL(2,Z) and v € C,7* = 1.
(2) T(g,h)(7_> = T(k_lgk:,k:lhk’)<7_>7 Vk € M.
(3) There exists a lift h of h to a linear representation on V' (g) s.t.

Timy (1) = > Try(g),hg" . (3.31)
neQ
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(4) Tig,n)(7) is either constant or a Hauptmodul for some genus zero congruence sub-
group of SL(2,7Z).

(5) Tie,ny(T) coincides with the MacKay-Thompson series T3 (7).

All these properties with the exception of (4) can more or less straightforwardly be
understood from the construction of the Monster module as a chiral CF'T as pre-
sented above. In this context T(, ;) are the twisted-twined partition functions which
naturally fulfil the properties (1-3) and (5). The generalised moonshine conjectures
have been proven in [55-57].

3.2 Conway moonshine

In the previous section we have seen that Monstrous moonshine establishes a con-
nection between certain discrete genus zero subgroups of SL(2,R) and the Monster
group. More precisely to an element m € M (rather only its conjugacy class matters),
given the knowledge of the Monster module, we associate its MacKay-Thompson se-
ries T,, and then find the appropriate genus zero group I';, < SL(2,R) s.t. T,
induces an embedding I',,,\H — C (or alternatively s.t. I',,, is the invariance group
of T,,). In [3] Conway and Norton also described an assignment of genus zero groups
I, < SL(2,R) to elements of the Conway group, C'og. It can be explicitly be given as
follows. For an element g € C'og = Aut(Apeeen) that acts on Apeecn ®z C with eigen-
values {e;}?*, we assign 'y < SL(2,R) to be the invariance group of the holomorphic
function
24
ty(r) =[] (t — ™) (3.32)
n>0i=1
on H. As a first step one may observe that g = e the identity element, the associated
function is up to a constant the function associated to the 2B element of the Monster
group, t. = Top — 24. In general it holds that

ty=q " —xq+ O(q), (3.33)

with x, = Y.7'e;. So one defines T5(27) = t4(T) + X which then is the unique
normalized principle modulus attached to the genus zero group I'y [9]. Also in this
case one can find an infinite dimensional ‘Conway module’ s.t. the functions T} are
the corresponding McKay-Thompson series - the coefficients of T} are then traces of
¢ in this module. Such a module was sketched in [52] and more explicit constructed
and studied in [8, 9] in terms of super-vertex algebras. We will review this in the more
familiar language of CFTs In [4] the module was constructed as what corresponds to
a chiral SCFT consisting of 8 bosons X; and their super-partners ¢; on the Eg root
lattice orbifolded by the Zs action

(X, ¥) = (X5, =) (3.34)

27


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

The theory after orbifolding is a ¢ = 12 theory with no primary fields of conformal
weight h = % and N = 1 supersymmetry. The partition function in the NS sector
can easily be computed

(3.35)

1 Ey(7)05(7, 0)* 04(7,0)* O5(7,0)4
Zns,ps(T)) = 5( 7 165" ot 16" o 0)4>

= ¢ Y2 40+ 276¢"/% 4 2048¢ + 11202¢%/% + . . ..
The first few coefficients may be split into irreducible representations of C'oq

276 = 276, (3.36)
2048 = 1+ 276 + 1771, (3.37
11202 = 1+ 276 + 299 + 1771 + 8855,

~—

(3.38)

From this it seems that the SCFT has a C'o; symmetry however how this symmetry
arises is not obvious. One may use a different construction of the same SCFT by
constructing it out of 24 free chiral fermions Aq, ..., Ay which are orbifolded by the
Zy action \; — —\;. The partition function of this theory in the V.S sector is simply

4
1 01 (T, 0 12
Zns ferm (T) = 5 ) = S5 (3.39)

which is equal to (3.35) by non-trivial identities fulfilled by the theta functions.
The 24 free fermions have a manifest Spin(24) symmetry, but no explicit N' = 1
supersymmetry. One can construct a AN/ = 1 supercurrent in the following way.
By an element s € Fi2 F = {—1/2,1/2} we denote one of the 2!2 = 4096 linear
independent ground states in the Ramond sector, created from the vacuum by the
fermion zero modes A;(0). Then let Wy be the corresponding weight 3/2 spin field
which implements the flow from the NS to the R sector. It was shown in [8] that
there exists coefficients ¢s € C s.t.

W=> W, (3.40)

seF1?

has the proper OPE with the energy momentum tensor to be a supercurrent. Any
choice of W will break Spin(24) and it was shown in [8] that the suitable chosen
N =1 current will break Spin(24) exactly to Cog

As discussed in [58] this method may actually be generalized to find models with
N = 2,3 and corresponding subgroups of C'oy as symmetry groups.
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3.3 Mathieu moonshine

In this subsection we will discuss Mathieu Moonshine, which to a large part will also
be the main concern of the rest of this work.

We start by defining the elliptic genus Z of a N' = (2,2) superconformal field
theory (SCFT) with central charges (¢, ¢) by [59]

Zd%%yﬁ=¥HRR<O<UH*Bwhq“‘i@%‘§> (3.41)

where y = e?™% ¢ = 2. Here Jy is the zero mode of the third component of
the SU(2) R-symmetry algebra, Ly is the zero mode of the Virasoro algebra and
Fy, Fr are the respective left and right moving fermion number operators. The trace
is taken over the Ramond-Ramond sector of the theory. The right moving part is
just the Witten index and so for a theory with discrete spectrum ¢ it will only get
contributions from the right moving ground states, hence for such theories the elliptic
genus will not depend on ¢. The elliptic genus is and index that counts the BPS
states of the theory and is independent of the moduli of the theory. The modularity
properties of the CFT together with the spectral flow and unitarity imply that it is
a weak Jacobi-form of index m = ¢ and weight 0 [61].

In [62] the elliptic genus of a N = (4, 4) nonlinear sigma model (NLSM) on K3 (with
central charge (c,¢) = (6,6)) was calculated to be

b2(a,9)\" | (Os(0.9)\* | (Oa(a.9))”
Zell _ 8 ( 2\%, + ? + ! . 342
K [ 02(Q7 1) 93(q7 1) 94<Q7 1) ( )
Here the elliptic genus counts the number of i—BPS states of the theory. Contrary to

the %—BPS states of the theory, the multiplicity of the i—BPS states is not completely
protected when one moves around in the moduli space of the theory but the index is

unchanged, i.e., two i—BPS states may pair to form a non-BPS state which is then
no longer counted by the elliptic genus.

In [10] it was noted that when one expands the K 3-elliptic genus in term of N' =4
characters, the expansion coefficients can be related to dimensions of irreducible
representations of the Mathieu group Ms4. More concretely if we use the definition
of N’ = 4 superconformal characters given in Appendix C.2 one finds that

Z (q,y) = 20 ch%:,é(ﬂ z) —2 ch;\(;g(ﬂ z) + Z A, Chg\{n:é (1, 2) (3.43)
n=1

16For a non-discrete spectrum the elliptic genus will in general be non-holomorphic and give rise
to mock-modular forms [34, 60].
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where the coefficients and their the decomposition into dimensions of irreducible
17 18

representations of My, are given by
A1 =20=23-3-1
Ag=-2=-2-1
A =90 =45445
Ay = 462 = 431 + 431
Az = 1540 = 770 + 770
' (3.44)

The reason the group My, arises here were not completely clear. From the result of
Mukai and Kondo [63, 64] it is known that the symplectic automorphisms of K3, i.e.,
automorphisms that leave the 2-form of K3 invariant, in general form a subgroup of
Mss. It might seem natural to assume that this group simple gets enlarged to Moy
through ‘stringy effects’. More precisely since the elliptic genus counts i—BPS—states
one might assume that the My, acts on the sets of these BPS-states, i.e., that they
form an infinite dimensional graded module *

1 = P H, @ 1Y (3.45)
n=0

where the sum runs over all N' = 4 representations that appear and H,, are the
corresponding, not necessarily irreducible, Mys-representations that appear, with
dim H,, = |A,|. In order to further strengthen the connection to My, the twined
elliptic genera Z§/ | of K'3 may be considered, which are defined by an insertion of
an element g € My, in the elliptic genus, i.e.,

23, (7,2) 1= Trig (o(—1)F5* iy g~ sigho=5 ). (.46)

They form the analogue of the McKay-Thompson series in Monstrous moonshine
and hence should admit an expansion similar to (3.43) but now with the coefficients
A, replaced by traces of g in the respective representations, A, = Try, (g). Similar
to the elliptic genus itself they are expected to transform as Jacobi forms of weight
0 and index 1 under the subgroup I'o(N) of SL(2,Z), where N is the order of the

ITDifferent representations with equal dimensions have been indicated by a bar. Contrary to
Monstrous moonshine also negative values appear here, since we count states with a sign depending
on their statistics (bosonic/fermionic).

18The decomposition of ‘larger’ coefficients is not unique but can be fixed using the twined elliptic
genera, see below.

9The existence of such a module has been shown in [15].
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element g, possibly up to a multiplier system, i.e., (2.28) is changed to

aT + b z 27icd  2mimcz?

m, CT—|—d) = e Nhg g ertd Z}i(lgg@', Z), V((ég) € Fo(N) (347)

K.

This will lead to a non-trivial phase in the case when h, # 1?°. Based on these
assumptions and the knowledge of the first few expansion coefficients explicit ex-
pression for all twined elliptic genera were found in [11-14] strengthening the idea
that My, symmetry is present. For cases where g € Ms3 and can be realized as an
symplectic automorphism of K3 the corresponding twined elliptic genera were also
calculated in [11, 65] in agreement with those results. In [15] it was proven that
all expansion coefficients A, in (3.43) can be decomposed into sums of dimensions
or irreducible representations on Msy. In [16], by a generalization of the results of
Mukai and Kondo it was shown that the group of automorphisms of a NLSM on K3
is in general a subgroup of the Conway group Coy, but never My, and in general also
not a subgroup of My,. In [66] this was expanded to include loci of singular NLSM
and all possible twining genera of NLSM on K3 were conjectured based on the work
done in [24, 67]. In [68] this conjecture was proven in a ‘physical’ way by demanding
the absence of ‘unphysical’ wall crossings.

In [69] generalized Mathieu Moonshine was considered and all the twisted twining
elliptic genera Zfég’g’h of K3 were calculated. For every commuting pair g, h € Moy

these are defined by
Z%lé’g’h = TrRth (h(_l)FLyOqLO_Q%(_1)FRqEO_2£4> (348)

where the trace is taken over the g-twisted Ramond sector. It is expected that these
twisted twining elliptic genera transform as they were twisted twining characters
of a holomorphic orbifold. In particular they are expected to fulfil the following
properties:

(A) Elliptic and modular properties:

Z;(lé’g’h(T, z+Ilr+1) = e_%im(lzT’L%Z)Zﬁé’g’h(T, z), V,I'eZ (3.49)

ar 0T+ 2 0 b 2T el ab
ZK3,g,h<c7_+d7 CT—|—d) = ngh<cd)e ertd K3h,cga,h‘igd(7—7 2)7 v(cd> € SL(27Z>7
for a certain multiplier x 5 : SL(2,Z) — U(1). In particular each Z5f% , is a

weak Jacobi form of weight 0 and index 1 with multiplier x, , under a subgroup
Lynof SL(2,Z).

20A list of h, for Mathieu moonshine is given in [15].
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(B) Invariance under conjugation of the pair g, h € May:
Zfe(lg,g,h(7-7 z) = gg,h(k)zfeéé,k—lgk,k—lhk(7—7 z), Yk € Moy (3.50)

where &, (k) is a phase.

(C) Zf{lg 4.1 18 supposed to have a well defined expansion in terms on ' = 4 super-
conformal characters which depends among other things on certain 2-cocycles
cq 169].

(D) For g = e, the identity of My, Zf(lé’e’h are just the twining elliptic genera
considered above.

It is further postulated that these properties (in particular xgp,&,n and ¢,) are
all controlled by a 3-cocycle « representing a class in H?(May, U(1)). Under these
assumptions all the twisted twining elliptic genera were calculated in [69]. Note that
the set of twisted twining elliptic genera modulo modular transformations is in one
to one correspondence with conjugacy classes of abelian subgroups of My, generated
by two (commuting) elements g, h € M. There exists 55 such subgroups of which
22 correspond to cyclic subgroups. The cyclic subgroups are generated by elements
of the form (e, g) and hence correspond to twining genera (and the twisted twining
genera obtained from those by modular transformations). The remaining 34 twisted
twining genera were calculated in [69]. Many of these twisted twining genera vanish
due to obstructions, i.e., situations where the properties (A-D) above only allow for
vanishing solutions. The only un-obstructed twisted twining elliptic genera, using
the shorthand ¢, ) = Zf{”g’g’h, are

$2B,4As5 P4B, A5, PaB,Ay> P2B &AL 2> P3A3A5, P3A,B (3.51)

the last two of which vanish identically.

The cases that will be important to us are in particular where (g, h) = (¢, ¢"*) for
g € My where (r,s) € {0,...,N — 1} and N = ord(¢'), which includes the cases
where the subgroups generated by g and h are cyclic. Here compact expressions for
24, are known. We define Z71 .= ZL ., -, then

zg = 399 24@) =0
r,s \4) - r,S) ~e T, 0% (q, ’ .
Mol 24 (q,y) + NBY™ ()L (v, 5) # (0,0)

where a;f’s) are numerical constants and ﬁ;,r’s)(q) is a weight 2 modular form under
Fo(N). For the cases N = 2,3,5,7 we give the explicit expression in (5.32) and
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further expressions can be found in the Appendix E of [70].

The discussion above/the existence of generalized Mathieu moonshine strengthens
the case for an action of My, on the i—BPS states of the NLSM on K3. Still it is
not clear how exactly this action arises. At generic points of the moduli space of K3
the coefficients of the elliptic genus are expected to agree with graded dimensions of
}L—BPS states [20, 71, 72|, but no explicit construction of the NLSM is known and the
automorphism symmetry group of the NLSM is typically trivial. Since the elliptic
genus does not change as one moves around in moduli space, it was suggested in [17-
20] that the My, action might arise by combining symmetry groups from different
parts of the moduli space and it was shown how this action arises for the lowest non-
trivial BPS states, i.e., for 90 = 45+45. This idea has been coined ‘symmetry-surfing’
and was further pursued and strengthened in [20]. An other approach was taken in
[25] where the authors study type ITA string theory on K3 x T2, The resulting has
My, and indeed all umbral symmetry groups at different points in it moduli space
and so gives new insight into the appearance of Mathieu moonshine. Still it seems
correct to say that Mathieu moonshine is still not completely resolved.

3.4 Umbral Moonshine

In [21, 22] a connection relating the Niemeier lattices and their symmetry group
(given in table 12) to vector-valued mock modular forms was given. Thereby a
Niemeier lattice with Coxeter number m will be matched to a 2m component mock-
modular form with pole of order q_ﬁ at 7 — ioco and regular behaviour at the other
cusps. The existence of appropriate module s.t. the vector valued mock modular
forms arise as specific trace functions was conjectured in [22]. In [15, 23] the existence
of these module was shown. In [24] the Umbral moonshine was related to the K3
sigma models (in particular this is done by relating the A-D-E root-systems to the
A-D-E du Val singularities a K3 can develop).

3.5 Thompson Moonshine

We start by defining the ‘Kohnen plus-space’ as the set of holomorphic functions
that transform like 0(7) = 63(27,0) under I'y(4) and in addition satisfy ¢, = 0 for all
n # 0,1 (mod 4) for their Fourier expansion at infinity >, ¢,¢". Then let M| /2 be
the space of functions defined in the same way but allowed to be meromorphic at the
cusps. In [73] a basis for this spaces was given. It was later noted that the Fourier
coefficients of one particular basis function can be expressed as sums of dimensions
of irreducible representations of the Thompson group. This led the authors of [26]
to the following conjecture [27]:

There exists a Z-graded T'h-supermodule

W = é W, (3.53)

m=-—3
m=0,1lmod4
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where for m > 0 the graded component W, has vanishing odd part if m = 0 (mod
4) and vanishing even part if m = 1 (mod 4), such that for all ¢ € Th the McKay-

Thompson series
(o)

Tg(r):= Y  stracew, (9)q" (3.54)

m=—3
m=0,1mode4

is a specifically given weakly holomorphic modular form of weight 1/2 in the Kohnen
plus space. This conjecture was proven in [27].

4 Searching for Moonshine in higher dimensional Calabi-

Yau manifolds

In this section we will study the elliptic genera of Calabi-Yau manifolds in various
dimensions. In particular we are interested in finding moonshine phenomena, similar
to Mathieu moonshine studied in subsection 3.3, in CY’s other than K3. As we will
see it will in particular be natural to study CY 5-folds.

4.1 The elliptic genera of Calabi-Yau manifolds

We start by recalling some of the basic properties of elliptic genera of Calabi-Yau
manifolds in various dimensions. Most of this will be based on [45, 74]. Concretely
we will be interested in the elliptic genus as defined in (3.41) for an N = (2,2)
superconformal theory which has a CY d-fold as its target space. Such a theory has
central charges (c,¢) = (3d, 3d).

The elliptic genus is a weak Jacobi form of weight 0 and index d/2 [61]. The first
term of the elliptic genus in a g-expansion is given by

Zov,(1,2) = > (—1)"x(CYa)y? ™ + O(g), (4.1)

p=0

where x,(Yy) = Zfzo(—l)’"hp”” 21, For 2 = 0 (y = 1) the elliptic genus reduces to
the Witten index and so the higher order terms vanish in this case. Then

Zey,(1,0) = xev, = > _(—1)"xp(CYa) (4.2)

p=0

becomes exactly the Euler number of the Calabi-Yau. For small d these properties
will fix the prefactor of the generator JQ% in terms of the Euler number of the CY and
a few of the x,. We proceed by analysing the elliptic genera for different dimensions.

?1N0te that for a CY d-fold that is the product of two CYs, Yy = Yy x Yg,, xp(Ya) =
S0 X5 (Ya,) X xi—j(Ya,) holds.
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4.1.1 Calabi-Yau 1-folds

For d = 1 there exists only one Calabi-Yau (up to isomorphisms), namely the two-
torus T2. Its elliptic genus however vanishes. More generally the elliptic genus of
any even dimensional 2n-torus 72" vanishes. This is due to the fermionic zero modes

in the right moving Ramond sector Tr ((—1)FRQZO_%) x b(q, —1) = 0.

4.1.2 Calabi-Yau 2-folds

For d = 2 there are two non-trivial cases K3 and the Enriques surface. The elliptic
genus of K3 shows Mathieu moonshine which already has been discussed in 3.3.
The Enriques surface, which can be obtained by a fix-point free involution of K3
(see, e.g, [75]), shows a moonshine phenomenon connected to My [76]. It is in a
geometric way connected to M, since its semi-symplectic automorphism?? can be
embedded into My; < M [77]. Its elliptic genus is just half that of the K3 and
hence has an expansion in term of N/ = 4 characters of the form

_ 2 An e
Zen(7,2) = ¢o1(7,2) = 100hj2\7/(;§(7, z) + Z TCh/Q\[n_‘f (T,2). (4.3)
n=1

sy

where the A, are as in (3.43), (3.44). Since all the A,, are even one may again interpret
the expansion coefficients A,,/2 as dimension of some vector space. In particular they
may be decomposed in term of dimensions of irreducible representations of M, in
the following way

10 = 11— 1,
1 =1,
A, = 45,
Ay = 55 + 176,

A3 =66+2-120+ 2144 + 76,
(4.4)

As before an expansion in terms of N' = 2 characters is also possible which leads to
the same expansion with an overall minus sign.

4.1.3 Calabi-Yau 3-folds

For d = 3 one finds the following expansion in terms of A" = 2 characters

Zow(1,2) = X520 4(72) = X9 (5 (r) + 5P (12)  (45)

22 A semi-symplectic automorphism of the Enriques surface is an automorphism whose lift to K3
is either symplectic or anti-symplectic.
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where the normalization is fixed by the equations (4.2) and (A.15). As this expansion
only includes two characters, it is not very interesting from a moonshine perspective.
In section 5 we will study CY 3-folds from a different perspective by connecting their
Gromov-Witten invariants to Mathieu moonshine.

4.1.4 Calabi-Yau 4-folds

For d = 4 the elliptic genus is an element of the space jog of Jacobi forms of weight
0 and index 2. This vector space is generated by the two elements as is clear from
(2.34) above. Through (4.1) and (4.2) we find that the elliptic genus is uniquely fixed
by the Euler number ycy, and yo = Zfzo(—l)’“ho’r. Using the formulas of (A.3) we
find

Zon(r,2) = X (60, (1, 2 = Bu(r)ooan(7,2) + XoBs(To-na(7, 2 (46)
For ‘genuine’ CY 4-folds % we always have yo = h%9 + h04 = 2.
In this situation a variety of connections to sporadic groups have already been estab-
lished. In [21] the weak Jacobi form 5 (¢§ ; — E4¢?, ;) appeared in umbral moonshine.
It was shown that it exhibits 2.M;5 moonshine when expanded in terms of N = 4
characters. In [78] the same function was expanded in terms of N/ = 2 characters
and shown to exhibit Ly(11)** moonshine. In addition it was shown in [58] that
the weak Jacobi form $ (¢, + 5E4¢2, ;) exhibits Mz moonshine upon expansion in
N = 4 characters and shows M3 moonshine when expanded in A/ = 2 characters.
When expanded in terms of AN/ = 1 characters the authors of [79] showed that it also
exhibits My, moonshine.

4.1.5 Calabi-Yau 5-folds

For d = 5 the elliptic genera occurring will be a weak Jacobi forms of weight 0 and
index g As stated in (2.34) they can be obtained by multiplying the corresponding
integer index weak Jacobi forms with the function ¢ . From this it follows that
the elliptic genera occurring for d = 5 are all proportional to ¢, ggzﬁo,l. The prefactor
is uniquely fixed by the Euler number of the CY 5-fold we are considering. Making
use of the relations between N = 4 characters for central charge ¢ = 3d multiplied
with ¢q s and N = 2 characters for central charge ¢ = 3(d + 3) given in (C.12) in

23In this context we define ‘genuine’ to mean CY d-folds whose holonomy group is SU(d) and

not a subgroup thereof.
24Here Lo(11) stands for the finite simple group PSL(2,11) = SL(2,F11)/F%;, where Fy; is the
prime field of integers modulo 11.
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Appendix C, we see that

Bo,sch5l50 = —ch501 —chNZQ
dozebyot = —chl5E — hN 25 + g E — el
dogch) 1 = —chll 3 — chN 23, Vn € N2!, (4.7)

From this follows directly the following expansion of the elliptic genus of CY 5-folds
in terms of A/ = 2 characters:

Zoys (T, 2) = XCYS $0,3%0,1

N 48 [ ( h (T Z> T Ch (T Z)> 2 <Ch5,0,%(7—7 Z) + Ch570’,%(7—7 Z))

+ i A, (chgﬁé(ﬂ z) + Chgizg (T, z)) } : (4.8)
n=1

This expansion makes it clear that for CY 5-folds with ycy, = —48, the expansion
coefficients are the same as for Mathieu moonshine, whereas for CY 5-folds with
Xcoys = —24 we find the coefficients of Enriques moonshine. Since the overall choice
of sign of the N' = 2 characters is a mere convention, the above statement also holds
true for CY 5-folds with xcy, = +48 and xcy, = +24.

From these observations it is certainly not clear if there really is a concrete
connection to the Mathieu (Enriques) group for CY 5-folds or even how it arises.
One may of course think of obvious (and rather trivial) examples where the CY 5-
fold is simple the product of a K3 (Enriques) surface with a CY 3-fold. Then the
connection would just arise through the better understood case of K3. To understand
if there is actually a deeper connection between general CY 5-folds and the Mathieu
(Enriques) group we will study the twined elliptic genera for certain (genuine) CY
b-folds in section 4.2.

4.1.6 Calabi-Yau 6-folds

For d = 6 the elliptic genus is a weak Jacobi form of weight 0 and index 3. As
can be seen from (2.34) the space of such forms is 3-dimensional. The elliptic genus
of a CY 6-fold may hence be uniquely fixed in terms of the Euler number ycy,
and x, = ZEZO(—l)”hP’T, for p = 0,1. Again by matching the first few coefficients
according to formulas (4.1), (4.2) we find that the elliptic genus is given by

Zovy = X548 (.2) — ——(xovs — 4801 + 6x0)) Ea(r) 82 5, (7, 2)d0a (., 2)

1728 267
1
864 (XCYG 72(X1 - 6X0))E6<7_>¢212,1<T7 Z) (49)
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One may consider the cases where the CY 6-fold is a product of three K3’s, three
Enriques surface or K3 (Enriques surface) times a CY 4-fold. In those cases a
connection to (one/two) of the sporadic groups Lo(11), Mo, Mao, Mas.Msy will be
inherited from the connections discussed in subsections 4.1.3, 4.1.4. It certainly
would be interesting to understand if in general a connection between CY 6-folds
and sporadic groups does exist.

One particular example which does not obviously fall into one of the above cases
may be uncovered by setting yo = x1 = 0. Then the elliptic genus is

Zovy = 138 (60(7,2) = BEA(T)6 5, (. 2)b0a (7, ) — 2Ea(7)6% (7, 2))

XCY
= 4 . Q%,%(Tv Z)
02(7', 2)293<T, 2)294<T> Z>2
X Gy (7, 0)205(7, 0)264(7, 0)?
= X% [4 h600 + < QChN_l + 14Ch6 1, 1 + 420116,2,1 + 86Ch63 it )

8
— (16ch)’T + 48chhoy + 112chgvgl4 +...)
+ (6ch + 28k + 56eh)5d + ) | (4.10)

The expansion of this Jacobi form in terms of N" = 4 characters has appeared in [21]
and can be related to 2.AGL3(2) via the umbral moonshine conjecture . We can
find explicit examples of CY 6-folds that will acquire above elliptic genus by taking
products of two CY3-folds. This manifold will automatically satisfy xo = x1 =0 .
The case that appears for umbral moonshine is xcy, = 8. Since for our examples
XCYs = Xey® * Xoy® holds, this maybe be achieved for any pair of CY 3-folds that
have Euler number £2 and 44 respectively.

4.1.7 Calabi-Yau manifolds of dimension d > 6

From our discussion above we see that by taking products of lower dimensional CY
manifolds one may obtain a wealth of CY d-folds (d > 6) with potential connection
to sporadic groups. Since CY d-folds for larger d have not been systematically
constructed a treatment of the general case would require a lot of work. As a start one
may however consider if and when the extremal Jacobi forms of umbral moonshine
[21, 22] appear as elliptic genera of CY manifolds or products thereof.

As we have already seen one example is given by the elliptic genus of K3. The
next examples may appear for CY 4-folds, i.e., Jacobi forms of weight 0 and index
2, with xo(CY,) = 0. As already mentioned in 4.1.4 genuine CY 4-folds always have

25This conjecture was proven in [23].
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Xo = 2 which follows from the more general property that

0 if dis odd

2 if d is even

o(CYa) = { (4.11)

Alternatively CY; = K3 x K3 has yo = 4 and CY; = K3 x T% has y, = 0 but
vanishing elliptic genus.

For weight 0 and index 3 we saw in subsection 4.1.6 that possible CY 6-folds do
exist.
Next we look for CY 8-folds that can give rise to the Jacobi form of weight 0 and
index 4 appearing in umbral moonshine. For this to be the case we would need
Xo = X1 = X2 = 0 which cannot be the case for genuine CY 8-folds but which one
might be able to achieve by taking products of lower dimensional CY’s. First trying
with CYg=CY5xCY3 we see that yo = x1 = 0 will hold but since x2(CY5 x C'Y3)
Xoys X Xovs and Zeoysxoy, X Xovs X Xy, Do interesting examples exist in this case.
Alternatively trying CYg=K3x CY3xCY3 runs into the same problem.

When one looks for CY 12-folds that give rise to the Jacobi forms that appear
in umbral moonshine one finds that xyo = x1 = X2 = X3 = x4 = X6 = 0 is required.
This again is too restrictive to give rise to interesting examples.

4.2 Twined elliptic genera for specific Calabi-Yaus

In the previous subsections we have established first hints that CY d-folds for d > 2
may be involved in some kind of moonshine, i.e, they may via their elliptic genera
be connected to certain sporadic groups. In this subsection in order to strengthen or
dismiss this idea we will calculate the twined elliptic genera for specific CY d-folds.
In particular the largest class of these CY d-folds will all be realized as hypersurfaces
in weighted projective space.

4.2.1 Calculating twined elliptic genera for CY hypersurfaces in weighted
projective ambient space

In [80] the methods to calculate elliptic genera for CY manifolds realized as hyper-
surfaces in weighted projective space were developed. This methods can easily be
generalized to also calculate the twined genera when the symmetry element we are
twining with is realized as a geometric symmetry of the CY.

Concretely we consider a CY d-fold in weighted projective space CPdwtl._"w o
determined as the solution of p(®q, ..., P42) = 0, where p is a transverse polynomial
of degree m = Z?Zl w; and ®; are the homogeneous coordinates of the weighted
projective space (see Appendix D.2) .

Then we introduce a two-dimensional linear sigma model with ' = (2, 2) super-
symmetry consisting of:

i) one abelian vector multiplet (giving rise to an U(1) gauge symmetry),
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ii) d+ 2 chiral multiplets ®;, i = 1,...,d 4 2, with charge w; under the U(1) gauge
field and zero R-charge,

iii) one chiral multiplet X with U(1) charge —m and R-charge 2.

The superpotential invariant under U(1) gauge transformations is given by W =
Xp(®q,...,Pgr0) and has the correct R charge. The F-term equation OW/0X =

p(P1, ..., Pgi2) = 0 restricts us to the CY-hypersurface we considered above.

In the next step we study the refined elliptic genus defined by

Zref(T,2,u) = Trpr ((—1)FLyJOQLO_%:EQ(—l)FRqEO_%) (4.12)

2miu

depending on an extra chemical potential x = e*™", associated to the U(1) charge
(). As one can convince oneself a chiral multiplet of U(1) charge w and R-charge R

gives rise to a (multiplicative) contribution to this refined elliptic genus of the form

Ou(r. (5 = 1)z -+ wu)

Z0 (1 zu) = PAE E—— (4.13)
An abelian vector field will lead to an (u independent) factor
ef (T, 2) = % (4.14)
Altogether the theory we consider leads to
Zoy(r, ) = in(T)®  01(r, —mu) ﬁ (1, (5 — 1)z + wu)‘ (4.15)

01(r, —2) 01(1, 2 — mu) - 01(, %z + wu)

i=1

From this we can obtain the standard elliptic genus by integrating over u. As shown
in [80] this integral will localize to a sum of contour integrals

2o o) = Z ]{ T, —mu) Cﬁ 01(7, (£ — 1)z + wu)
ref i 91 (1,—2) U, 91 (T, z—mu) O1(7, Bz +wu)

i=1

.szng

(4.16)
where M, are the poles of the integrand where the chiral multiplets become mass-
less. For a chiral multiplet with U(1) charge @ and R-charge R these singularities
are located at

R
Qu + 9% = 0, modZ+ 7Z. (4.17)

The supscript in Mg, captures the fact that in above formula one can restrict to

singularities for chiral multiplets with negative U(1) charge, @@ < 0. For our theory
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this is only the chiral multiplet X and the singularities are the solutions of
—mu+z=—k—AIr, klecZ. (4.18)

The integrand is periodic under v ~ u + 1 ~ uw + 7. The solutions which are within
a fundamental domain under this identification are given by

we 2R <, (4.19)
m

Hence the elliptic genus (4.16) of the CY can be written as

. 3 m—1 d+2 R
in(r 01 (T, —mu O1(7, (5 — 1)z + wu)
Zonr) = 5t 3 g LG s '
1\ k=0 u=(k+0r+z)/m 17 i1 1(7’, 5 < + ’LUU)
(4.20)

By using the specific properties of the f-function (see, e.g., Appendix B of [80]) one
can further simplify this expression. Finally one obtains the following formula for
the elliptic genus of CY d-fold that is a hypersurface in a weighted projective space
and can be described by a transverse polynomial

Zoy,(T,2) mz:l | ik )
¢ e L1 O ,%(k—i—&’—f-z))
m—1 ) d+2 9 Zﬂ;zlk wT:LE %_1
- ﬁ H 1(q’ ‘ 27riwil? LI?EJ w, ) (421)
k=0 i=1 91(7, e m gm ym)
Now we can consider an abelian symmetry acting on the chiral multiplets as
g: P — MNP, i=1,2,....d+2. (4.22)

Twining the elliptic genus by such an symmetry will lead to a shift of the second
argument of ¢, by «; for each of the chiral fields ®;. Hence we obtain for the elliptic
genus twined by such a symmetry

q Ja_d
Zoy,(1,2) = Trge (9(—1)FLyJ°qL°_S(—1)F'"(JL° 8)

2 etz S, (1) o + (k4 U7 + 2) — 2)
k

- k=0 m 1 91(770‘1+%( +€7’—|—2))

m—1  _¢d+2 il 4Lk} wil w
eV = 210N (ot 50 ) gty 1) (423
B . w, k wil  w; .

ko 4=0 m pair} 91 <7_7 e27r1<o¢z+ pros )CI?Z;W)

The case of non-abelian symmetries that permute the ®; may be treated by first
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performing a coordinate transformation that diagonalizes the permutation matrix.
In the new coordinates the symmetries again appear as abelian symmetries.

4.2.2 Twisted elliptic genera of CY 5-folds

As we have seen in subsection 4.1.5 the elliptic genus of CY 5-folds seems to imply a
possible connection between CY 5-folds and Ms,. In order to get a better understand-
ing for this we will now apply the techniques discussed in the previous subsection to
CY 5-folds. A large set (more precisely there are 5 757 727) of CY 5-folds that can
be described as reflexive polytopes is given on the website [81] (under 4 folds ->
A1l files, in the files 6dRefWH.xxx-xxx.gz). In order to apply our methods we
need to restrict this set to the ones that can be described by a transverse polynomial
in weighted projective space. This then leaves us with 19 353 CY 5-folds.

The hope is that one finds CY 5-folds which twined elliptic genera show similar
behaviour as we have experienced for K3 in Mathieu moonshine, i.e., that the coef-
ficients that correspond to dimensions of irreducible representations of the sporadic
group are replaced by the appropriate traces of the element we are twining with. For
the case when the CY 5-fold is just a product of K3 and and a CY 3-fold (and the
symmetry acts on K 3) this will (trivially) be the case. But also for genuine CY 5-folds
this may occur in certain situations. For example for the hypersurface in weighted
projective space (CIED?,LL&&QJO which has Euler number xcy, = —170688 = —48-3556
we consider the Z, symmetry given by

(I)l — —q)l,
L : 4.24
2 {(1)2 — —D,. ( )

For this one finds the elliptic genus twisted by this symmetry is given by

Zo2t =14 [2 (53 2) + 5 (7, 2)) = 2 (hd5A (T 2) 4+ bl (7, 2))

+3° 480 (m@{;g (r,2) + e (7, z)) ] , (4.25)
n=1

that is the multiplicative constant at the beginning has been changed from 3556 to
14 and the rest of the expansion coefficients simply correspond to the 2A series of
Msy. To explain the change in the prefactor one may decompose 3556 in various
ways into irreps of My, that will give rise to 14 after the twisting.

An other example that works in a similar way is the hypersurface in the weighted
projective space (C]P’?7272737474,8. Applying the same order 2 twist (4.24) one again
finds the 2A series but now multiplied with a factor 69/2. The fractional prefactor
is obviously not consistent with an interpretation in terms if My but if we limit
ourselves to M5 also this example seems interesting.
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Going one step further we can consider the order four symmetry

b, — iq)l,
Ly : 4.26
4 { oy — —1D5. ( )

Here one finds that twining the elliptic genus of the CY hypersurface in CP?,l,l,lA, 44
by this symmetry gives the coefficients of the 4B series of My, with a prefactor of 42.
More such specific examples can be found. This leads to the idea of a systematic study
of the twining genera of CY 5-folds that are hypersurfaces in weighted projective
spaces.

In my paper [37] this was done in the following manner:

1. From the 5 757 727 examples on the website [81] we took the 19 353 CY
5-folds that can be descried by a transverse polynomial in the homogeneous
coordinates of the ambient weighted projective space.

2. Then we used by a simple code to construct a single transverse polynomial.
This reduced the number of possible cases to 18 830 CY 5-folds, which to some
extent may be attributed to the simplicity of the code used.

3. In 16 727 cases we were able to find a Z, symmetry of the transverse polynomial.

4. For these 167272 manifolds the elliptic genus twined by such an Z, symmetry
was calculated. In case the calculation took too long it was aborted. By this
method we arrived at 13 642 twined elliptic genera.

The elliptic genera found in this way can always be split into a linear combination of
the 1A and 2A series of My, with integer or half integer prefactors. As an example
we may give the elliptic genus of the hypersurface in the weighted projective space
CP} 111113 twined by the symmetry given in (4.24)

. 9 _ _ _
Ztcng =3 [22 <chN_f(T, z) + ch?((i%(ﬂ z)) -2 (Ch'é\j’(;g(T z) + Chso (7' z))

||M8

( hN 3 (T, z)—i-ChN > (T,Z))]
+ 43 - [6 (ch (7’ z) + Ch (T z)) -2 (ChQ{E%Q(T, z) + ch?iig(r, z))

+iA%2A)<hN_( 2) 4 el 2o (7, z))] (4.27)

772

This behaviour may already be expected from standard CFT arguments [11, 12] since
any elliptic genus twined by a group element g is a Jacobi form ¢, w.r.t To(|g])
with a potentially non trivial multiplier,i.e, it transforms as in (3.47),(2.29). Twining
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by an element of the 1A or 2A congruence class has trivial phase while twining by a
2B element has non-trivial multiplier.

The vector space of possible twined elliptic genera for CY 5-folds is created by
very few basis elements. That follows from the fact that they are simply products of
¢o,3 and the functions that appear for K3 (as follows from Lemma 1.4. in [45]) and
that the elements for K3 are created by very few basis elements [66]. In particular
twining by an order two element will always give a linear combination of 1A and
2A twining genera for trivial multiplier. On the other hand for non-trivial multiplier
one will always obtain something proportional to the 2B series. The fact that we in
our analysis never found a 2B series follows from the fact that they will only show
up for non-geometric symmetries, i.e., symmetries that treat left and right movers
differently. This will then give rise to failure of level matching and which further
leads to the non trivial multiplier in the twining elliptic genera.

We may choose the following two functions as basis elements for the 1A and 2A series
respectively

Fra(r,2) = 11 (ché‘if; (r,2) + b5 (7, z)) . (chgfgg (7, 2) + g2 (r, z))

+45 (ch{,)v:% (1,2) + ché\fiz%(ﬂ z)) +... (4.28)
foa(T,2) =3 (Ch'gf’():é(T, z) + ché\’[(i%(ﬂ z)> - (Chg\’[(fgz(ﬂ z) + chg;E%(T, z))
3 (chgﬁjg (r,2) + b2 (. z)> T (4.29)

Out of the 13 642 twined elliptic genera one finds 927 cases that are proportional to
foa- Further 811 of these the overall coefficient is an even integer which may lead one
to suspect a possible My, symmetry (for the remaining 116 the prefactor is odd and
may agree to a 2B element of Mj,). To further check if these manifold really have a
Moy, symmetry we proceeded as follows

1. We generated a large number of Z, symmetries for each of these 927 examples
and calculated the twining elliptic genera for all of them.

2. In most of the cases with multiple Z, symmetry one finds one elliptic genus
proportional to just the f5, and the rest to be linear combinations of f;, and

f2a-

3. For the cases with only one obvious Zs; symmetry we looked for higher order
abelian symmetries and calculated their twining elliptic genera. In all cases one
finds at least one symmetry that leads to a twined elliptic genus not consist
with either My, or M.

Based on these results one can conclude that none of the analysed 13 642 CY
b-folds has a strict My, symmetry. The results are consistent with the idea that
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the CY 5-folds have small discrete symmetry groups (at certain points in moduli
space). However other possibilities are also possible. For example symmetry groups
that are larger than Ms,, in particular extended by one or several Zy’s are not ruled
out. Also theoretically one could imagine the situation where the symmetry group
X% could be interpreted
| many different My symmetries rather than that many copies or sums

corresponds to multiple copies of Ms,. Then the prefactor
XCYs
a8

of certain irreducible representations under a single M,y. Then the Zy symmetries
studied could be part of certain of those Ms,’s corresponding to a 2A element there
while for others it would simply correspond to the identity. This would then also fit

as having |

with having a linear combination of fi, and f5,. Fractional coefficients are however
still excluded.

The special cases with ycy, = £48(£24) are the ones that should correspond
to a single Moy (Mis) symmetry. The list of [81] however only contains a single such
CY b5-fold which is related to the fact that all those examples have sums of weights
m =Y, w; < 200 which lead to mostly rather large negative Euler number. In order
to generate further examples one may use PALP [82], which is however rather time
consuming. Hence we chose to proceed as follows:

1. For 7 < m < 600 partition m into 7 integer weights w;,s =1,...,7.

2. Keep those cases for which the Poincare polynomial

7

P(z) =] Tz (4.30)

1 — gwi
i=T

evaluated at = 1 is an integer 2° . This is a very fast check.

3. From the remaining cases keep those for which the formula for the Euler number

PO I I (131

k=1 1=1 ged(l,k)- 2L €Z

gives £24 or +48.
4. For the remaining cases use PALP [82] to check the weight systems explicitly.

By taking these steps one arrives at dozens of new examples. We also calculated
all Hodge numbers for those examples in order to be certain that they do correspond
to different manifolds. For some of the cases we found manifolds with the same
Hodge numbers so that one can not immediately conclude that they correspond to
non-diffeomorphic manifolds. For all the examples we then proceeded by finding Z,
symmetries (table 1) and calculated the twined elliptic genera. Having calculated all

26This is a necessary condition for an appropriate polynomial to exit - see Appendix D.2.
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Euler number | number of example | cases with Z, symmetry | reflexive cases
x = —48 72 (67) 64 (59) 6 (6)
X = +48 68 (59) (43) 4 (4)
Y = —24 32 (29) 6 (23) 4 (4)
X =+24 27 (24) 5 (22) 4 (4)

Table 1: The number of CY 5-folds constructed as hypersurfaces in weighted pro-
jective spaces. The numbers in parenthesis give the number of CY manifolds with
different Hodge numbers

the twined elliptic genera for the examples above arising from one of the geometric
Zo symmetries one can make two observations:

1.) Making a quantitative analysis one can observe that for y = +48 and xy = —48
the twining elliptic genera are proportional to the 2A twined elliptic genus of M, in
3.4% and 5.2% of the cases. Also for the coefficient of f;4 one observes that zero is
not more likely than other small coefficients. Furthermore the is no apparent prefer-
ence for even coefficients.

2.) For the cases that actually give something proportional to the 2A elliptic genus
one observes that they have prefactors with absolute value larger than one. More
specifically for the examples we considered we find the multiplicities {—42 fo,, —38 faq,
—22fo4, =6 f2q,50f2,}. While this may seem surprising it can understood from the
fact that the elliptic genus counts bosonic and fermionic states with different sign.
In particular in cases with high symmetry (at special points in moduli space) we
may expect a lot of states to exist which contribute to the elliptic genus but in total
cancel out (at a general place in moduli space the expectation is that most of those
state obtain a mass and no longer contribute). When calculating the twining ellip-
tic genus only states that are invariant under the symmetry element inserted in the
trace will be kept and hence the cancellation may not take place in the same fashion
hence leading to different multiplicities. As a concrete example we may consider
CIP16 17.17.34,58,62.102 Which has Euler number x = —48 and hence elliptic genus

Zéz—zls = +2f14(7,2) = 22 (chévozf( z) + ch (7’ z)) — <ch 2(1,2) + ch

—{—90<chN 3 (T, z)—{—chN 2 (7’ z))—i—

Upon twining with the Zy symmetry

(I)Q — —(DQ,
L 4.33
2 { @2 — —q)g. ( )
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we obtain

Zgg/s (1,2) = 50 fou (T, 2)
— 150 (chfs‘ifg (r,2) + b5 (r, z)) 50 (cth;g(T, 2) + el (r, z))

150 (b3 (7, 2) + b2 (r,2)) + (4.34)
We see that, e.g., the 22 states that belong to (Ch?if;(ﬂ z) + ché\((ffé (T, z)) turn into
150 such states.

One way to understand such large number is to look at the Hodge numbers of
the CY. They are in general large (compared to the Euler number 48) so the have

to cancel in a rather precise way. For the concrete example at hand we have
bt =25 h'? =0, B'? =232, M =259, h*? =1692, h*® =1946.  (4.35)

Now for a general CY 5-fold it holds that (see page 6 in [45])

1 11

Xo=X5=0,x1=x4= T XOYsr X2 = X3 = 51X (4.36)

Through twining these exact cancellations get changed and will produce larger
multiplicities.

Finally for the CY manifolds with xy = £24 that we constructed we similarly
calculated all the Zs twining elliptic genera but always obtained a linear combination
of fi, and fs5, with non-zero coefficients, so never something proportional to just fo,.
From all these observations we can exclude a strict Myy or My symmetry for the
cases we studied.

4.2.3 Calabi-Yau 6-folds

In subsection 4.1.6 we saw that a CY 6-fold which is a particular product of two CY
3-folds will give rise to Jacobi form that appears in umbral moonshine. However if
one calculates the twined elliptic genus for a symmetry of one of the CY 3-folds it
will only change by a factor relative to the elliptic genus. We can illustrate this by
looking at the elliptic genus for the quintic CY, given as a hypersurfacae in Cplll,l,l,l,l'
Its elliptic genus is just

Zpuintie(7,2) = 1006 2 = —100 (ch%:é (r,2) + iy 2, (7, z)) . (4.37)
Twining this by a symmetry of order 5 that acts on the first two coordinates as

g: B = 0P, Dy — 2P, (4.38)
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yields the following twined elliptic genus

Z(g)

quintic

(r.2) = —563 = —5 <chg(;§(7, 2) + e 2 (7, z)) , (4.39)

i.e., only the overall prefactor changes. So in this situation we will never obtain the
twined series of 2. AGL3(2).

4.3 A toroidal orbifold and two Gepner models

In the last section we analysed a large class of CY 5- folds for the existence of My,
symmetry without finding any evidence for it. Since there does not exist a complete
list of CY 5-folds and it is not known if their number is finite, we do not know if this
result is representative in any way. In particular the My, symmetry might show up
at special points in moduli space where the CY’s have enlarged symmetry groups.
In this subsection we will hence study such examples, in particular toroidal orbifold
points and Gepner models.

The toroidal orbifolds we are interested in are of the form T'°/G where G is a
discrete symmetry group of the 10-dimensional torus T°. The Z, toroidal orbifolds
that occur in Monstrous and Conway moonshine and exchanges the signs of all
coordinates are not of this type. We may however look at cases where G = G X G
and the orbifolds are of the form T'°/G = T*/G, x T%/Gy. For Gy = Zp,, m =
2,3,4,6 we obtain the product of the singular limit of a K3 with a complex three
dimensional space. In this case the origin of My, can be thought to directly come
from K3.

We choose to study an example where G = Zj is generated by the following 4

elements
Cfd L2 3 4 5 1.2 .3 .4 5
g1:{z",2°,2°,25, 2} = {—2",—2%,2°, 2%, 2°},
Cr1 2 3 4 5 12 .3 .4 5
go :{z",2°,2°,25, 2 = {z, —2%, —2°, 2%, 2°},
A2 3 4 5 1 .2 .3 .4 5
gs:{z,2°,2°,25, 2y = {2, 2%, =27, —2", 2°},
S L2 3 4 5 1.2 .3 4 5
gs:{z",2°,2°,25, 2y = {z,2°,2°, =%, = 2°},
where we have the five complex coordinates z',..., 2% on T'°. The elliptic genus of

this particular model is

O2(7,2)303(7, 2)04(7, 2)  Oa(7, 2)303(7, 2)04(7, 2)
0o(7,0)05(7,0)04(7,0) 05(7,0)05(7,0)04(7,0)

Os(7, 2)303(7, 2)04(T, z)]

ZTlo/Zg — 1280 [

02 (T7 0)93(77 O>94<T7 0)
- 160(Z50,%¢071. (440)
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This can be easily seen to arise from the sum over all the twisted sectors (sectors
with ¢ € G insertion in the trace). Each g € G will exactly change the sign of two
2*. The untwisted sector does not contribute as we have already discussed that the
elliptic genus of any torus vanishes due to the fermionic zero modes.

Now we choose to twine the elliptic genus with the symmetry h that acts on the
torus as

ho{zt, 2%, 23 24 %) — {izh, —i2?, 23, 24, 20 (4.41)

Since its squares to an element in G, h* = g; € G, it is of order 2. Twining the
elliptic genus by this element one obtains:

24t s (722) = 16|65 1585~ )1s(0)14(0)

j=1
1 1 1 1
t2(0)% 4 £3(0)% + 14(0)? t () tr(==) + te ()t (=)t (0
HOP + 1507 + 600 0 (i) + ()0 IO
1 1
HOP + 507+ 607 3 (- i (0)
ky#ko#kg#k1
k1,ko,k3€{2,3,4}
1 1 1 1 1 1
+ Z [tl(z)tks(—z) + tks(i)tl(—z) + 2tk1(1)tk2(_1>]
k1#ko#kg#kq
k1,ko,k3€{2,3,4}
'(tk1 (0)2 + tk’z (O)Q)tl%(o) (442)
= 56f1a —+ 48]02(17 (443)
where we have introduced t; := W. Since we find a linear combination of fi,

and fy, we can again conclude that the studied symmetry element h is not related
to a My, symmetry of the model.

As our final example we will consider two Gepner models, namely (1) and (2)°
which are highly symmetrical. The models correspond to orbifolds by Z,; of tensor
products of 15 resp. 10 copies of Agq for £ = 1 and £ = 2. In [61, 83] it was
explained how to calculate the elliptic genus for such models (and this was applied
to moonshine in [84]). Each minimal model Ay, is obtained from a chiral multiplet

22 Tt will contribute a multiplicative factor

® with a superpotential W =

k+2 °
0 (7, 12)

Zi(T,2) = 4270 (4.44)
0 (7 i27)

to the elliptic genus. The Zj o orbifold of N such minimal models with central
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charge ¢ (¢ = 15 in our case) gives a contribution

k+1
ZGepner(Ty Z) e —— Z e%(a+b)€22m(a72+2az)(Zk(T, z+ar + b))N (445)
a,b=0

With the help of this we find the following elliptic genera for the models we want to
consider

Z(l)ls (7’, Z) = —455¢0’%(b071, (4.46)
3(2)10 (T, Z) = —615¢0,%¢071. (4.47)
We now want to twine these elliptic genera by a symmetry. The simplest case is

where the symmetry simply acts by multiplying the chiral multiplet with a phase
d — e?™2d . The twined elliptic genus of a single minimal model is then

«9(7’ wz—a)

ZralT,2) = 5 G E_E o) (4.48)
The twined elliptic genus of the Gepner model hence becomes
1 kel mic 2mic 2 N
Zéﬁpner(T, z) = ) a;() e (a+b) o =5 (am74202) le Zio (T, 2+ a1 + D). (4.49)

We consider the Zs symmetry that simply acts by multiplying the chiral multiplet
with a minus sign. This results in the following twined elliptic genera

Z{8515(7, 2) =TT fra + 110 foq, (4.50)
Z(0(7, 2) = 35 fia + 100 f2a, (4.51)

which are again linear combinations of f;, and f5,. So also in this case we conclude
that the examples we studied do not lead to an outright My, symmetry.

4.4 Concluding remarks

In this section we have discussed the results published in [37] on finding Moonshine in
the elliptic genus in higher dimensional CY manifolds. As we have seen in particular
the elliptic genus of CY 5-folds shows an interesting expansion in terms of NV = 2
characters. After calculating the twining elliptic genera for order two elements of
a large class (13 642) of CY 5-folds (in particular all realized as hypersurfaces in a
weighted projective ambient space) we are not able to find any examples of genuine
CY 5-folds that show Mathieu moonshine. The trivial cases where the CY 5-fold
is the product of K3 with a CY 3-fold are the only examples we are able to find.
Similarly for the models that arise at special points in moduli space where we have
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an extended symmetry algebra, like toroidal orbifolds and Gepner models, the only
examples that show a connection to My, are again the trivial cases where one factor
corresponds to a K3. So summing up, from this analysis one cannot conclude that
CY 5-folds are involved in Mathieu moonshine in any interesting kind of way.

For CY 6-folds we find connections to Jacobi forms of umbral moonshine in special
cases. However also here twining the elliptic genera does not produce the appropriate
twined series.

For CY4-folds connections to moonshine may still exist and may be the content of
further studies.

5 Mathieu Moonshine and Gromov-Witten invariants

In this section we will present a different manner in which Mathieu Moonshine is
connected to CY manifolds. In particular we will make use of the string duality
to relate heterotic compactifications on K3 x T2, and orbifolds thereof, to type II
compactifications on CY 3-folds. We will match heterotic and type Il compactifica-
tions by comparing their spectrum, the vector moduli prepotential as well as certain
gravitational couplings of the effective theory. On the heterotic side the prepotential
and the gravitational couplings are related to a special index of the internal the-
ory, called the new supersymmetric index [85-89]. As we will see this index will
be connected to Mathieu Moonshine. On the type II side the prepotential and the
couplings are connected to topological invariants of the CY 3-fold, called Gromov-
Witten/Gopakumar-Vafa invariants, which by matching to the heterotic side will
also be connected to Mathieu Moonshine.

5.1 Heterotic compactifications on K3 x T? and CHL orbifolds

In this subsection we will discuss the compactification of the Eg x Eg heterotic string
on K3 x T? and CHL-orbifolds. Our discussion follows [31, 38, 90-92].

When compactifying the heterotic string on a manifold X one in general needs
to specify data beyond the sigma model metric on X. This is the case since the
Bianchi identity for the three form field strength of the heterotic string demands
dH = 1(tr(RAR)—tr(FAF) =0 (in cohomology), where R is the curvature 2-form
of X and F is the fields strength of the Eg x Eyg gauge field. We write the gauge
bundle associated to F' as V; x V5 and express the condition in terms of the respective
second Chern classes. Then it reads (without five-brane source)

2(X) = (V1) + 2(V2) , (V1) = a1(V2) = 0. (5.1)

So we see that for compactifications on a manifold with non-vanishing second Chern
class we need to embed non-trivial gauge bundles (instantons) in Eg x Eg. In par-
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ticular for the compactification on K3 x T2 we find

/@(Vl) —|-/62(V2) = /CQ(K?)) = YK3 = 24 (5.2)

so we need to embed in total 24 instantons in the Egx Eg gauge group in this situation.
More precisely we need to embed (n™"), n(?)) instantons in some subgroups H; x H,
of Eg x Eg, nW) 4+ n?) =24 n® ¢ N. This will break the gauge group to Gy x Gs,
where G is the commutant of H; in Eg. Due to the symmetry under the exchange of
the two Eg factors one can restrict to 0 < ny < 12. In general this will then lead to a
N = (0,4) world-sheet supersymmetry and N’ = 2 supersymmetry in four spacetime
dimensions. The special case where one chooses n(!) = 24, n(? = 0 and sets the gauge
connection equal to the spin connection, i.e., and H; = SU(2),G; = E; is called the
standard embedding. In this case the world-sheet supersymmetry is N' = (4,4) and
the results presented in section 3.3 for the elliptic genus of K3 will hold. However as
we will see in the following also for other choices of instanton embeddings a connection
to My, will continue to exist.

Now we turn to the structure of the internal CF'T and internal Hilbert space of
the theory. For the standard embedding the first Eg factor is broken to Dg X Ds.
Using the fermionic description of these latices one obtains the following structure
for the internal Hilbert space [85, 92]

Hinternal HgQGK?) ® H(6 ,0) 7_[(8 ,0) H(Q ,3) (53)

where the upper index labels the left and right central charges. Hgiﬁgg) is made
up of 4 left moving bosons on K3 together with the 4 fermions from the fermionic
representation of Dy, and a right-moving ¢ = 6 supersymmetric contribution. 7—[ (6.0)

stands for 12 fermions coming from Dy, HSS’O) is the Hilbert space of the unbroken

Eg and lastly, H(ng) is the Hilbert space of two left moving bosons on 72 and a
supersymmetric ¢ = 3 theory on T?. For non-standard embeddings we in general
have vector bundles with rank 7,5 belonging to the instantons embedded in the
first/second Eg. Then 2(ry + r2) fermions from the two Ej’s couple to the gauge

connection, and the Hilbert space structure generalizes accordingly [93].

5.1.1 The spectrum

In this subsection we will briefly discuss how one may obtain the massless spectrum
of the Eg X Fg heterotic string compactified on K3 x T2 see, e.g., [90, 94, 95, 95-97].
One may follow either of two approaches:

i) At a a generic point in K3 moduli space one can obtain the number of vector and
hypermultiplets of the effective 4d N/ = 2 spacetime theory by dimensional reduction
of the 10-dimensional A = 1 spectrum of the heterotic string [94, 95, 97, 98], which
consist of a gravity multiplet and a vector multiplet. The 10 dimensional gravity
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multiplet gives an universal contribution corresponding to one gravity multiplet, 3
vector multiplets and 20 hyper multiplets.

The 10 dimensional vector multiplet is in the adjoint representation of the gauge
group , i.e., (248,1)®(1, 248). Upon embedding of instantons into subgroups Hy x Hy
of Fg x Fg the adjoint representation of Eg decomposes as

Eg — Hz X Gl
248 — (1,adjG;) + > (RY™, R{™) + (adjH;, 1) (5.4)
k

where adj stands for the adjoint representation and R,(CHi), R;Gi) label different rep-
resentations of H;, G; labelled by k. The 4 dimensional gauge bosons arises from the
10 dimensional gauge boson transforming as singlets under H;. The corresponding
scalars for these vector multiplets come from the 10 dimensional gauge bosons with
vector index along T2. To obtain the number of fermions one may use index theo-
rems [90]. Fermions charged under the the groups H; x Hs will arrange themselves
in hypermultiplets.

ii) The second method to obtain the spectrum of the heterotic string on K3 x T?
is to study the theory at special points in K3 moduli space where K3 may be writ-
ten as T*/Zy;, M = 2,3,4,6. Here one can explicitly calculate the spectrum from
the orbifolded conformal field theory, that is one compactifies the Eg x Eg heterotic
string on T*/Zyr x T? [95, 96]. Parametrising 7% by z;,7, € [0,27) and T* by
(y1,---,ys) € [0,27) the orbifold action by Z,;, generated by an element g, may be
written as

9" ¢ (21, T2, Y1 Hiye, ya+iva) = (21, 22, M (yy+iys), e M (yatiy,)), s = 0,.. ., 3,

(5.5)
i.e., g acts diagonally on the (complex) coordinates with eigenvalues e*?m%  q, =
(0,0, %, —%) In addition one needs to declare the action on the gauge degrees

of freedom, which we will denote 7(g). Discarding the outer automorphism (which
exchange the two Ey factors) g must act on the gauge group as an element of Fg x Eg,
the unbroken gauge group than being the commutant of (g) in Eg x Es. For our
case (where the orbifold group is generated by a single element), using the bosonic
description of Eg x Fg one can always choose v(g) to lie in the maximal torus of the
gauge group. Hence it commutes with all the Cartan currents i0X and can only act
by a constant shift of the chiral bosons,

v X XT 4V (5.6)
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Then g™ = 1 implies that MV needs to lie in the Eg x Fg weight lattice. It is
futher restricted by modular invariance to fulfil M(V? — v?) =even. Different shift
vectors V' correspond to the different possible instanton embeddings. There are two
such embeddings for M = 2, five for M = 3, 12 for M = 4 and fifty-nine for M = 6.
The spectrum can now be found by orbifold methods. States consist of combinations
of left and right vertex operators, L ® R. The mass formula for such states in the
sector twisted by ¢" is found to be

1 1 1
Here Npg/; are the oscillator number of the R/L part, r is a SO(8) weight with

Z?:l r; = odd, P is an element of the Eg x Fg weight lattice with Z}il P! = even
and F, is the zero point energy from the twisted sector oscillators, it is give by

E, = % Further the multiplicities of states satisfying above mass formula are
given by

M-1
1
D(g") =57 > X(g" g™ A(n,m) (5.8)
m=0
where A(n,m) is a phase factor given by
1
A(n,m) = exp{27i[(r + nv) -mv — (P +nV) -mV + §mn(V2 — ) +mpl}. (5.9)

p only appears in the case of oscillators (Ny # 0), €*™ is the phase by which the
oscillators in the T* are rotated by g. x(g", ¢g™) is the number of simultaneous fixed
points of g™ and g™, x(1,¢™) is defined to be 1. From this the gauge group and
complete spectrum can be worked out [96]. A complete list of all cases can be found
in [99]. We reproduce the examples that will be important to us in tables 2,3.

5.1.2 The new supersymmetric index

Having discussed the spectrum of the Fg x Eg heterotic string on K3 x T? in the
previous section we now turn to calculating the gravitational couplings and the vector
moduli prepotential. A central object that is needed to calculate these quantities [85-
89] is the new supersymmetric index [100]. It is also the object that brings about
the connection to Mathieu moonshine. It is defined by

1 c Cc
Z"(q,q) = ——=Trp(F(=1)F g0 2igho 2 5.10
(¢,9) O rr(F(—1)"q q )61(2279) (5.10)

where the trace is taken over the Ramond sector of the internal CF'T associated to
the K3xT? and Fg x Eg with central charge (c,¢) = (22,9). It is an natural object in
d = 4, N' = 2 heterotic compactifications since it counts the number of BPS-states.
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Ny — N, Gauge group, Twisted Hypermultiplets b
Shift vector sectors
84 Esx SUQ2)xU1) | ¢° (27,2;1) + (1,2;1) + (1,1;64)
xSO(14) x U(1) +2(1,1;1) 2
gt + g7 12(1,17)-+ (1,2;1)
(2,1,1,0%2,07) +4(27,1;1) +4(1,1;14)
g"” 3(1,2;14) +10(1,2;1)
116 SU(8) x SU(2) g"° (28,2;1) + (1,1;64) +2(1,1;1)
xSO(14) x U(1) | ¢* + ¢ 8(8,1;1) +4(8,2;1) g
(3,1°,0%2,07) g’ 5(1,2;14) +6(1,2;1)
Table 2: Two examples of perturbative Eg x Eg heterotic orbifold spectra on T*/Z,.
Gauge Group, Untwisted Twisted
shift vector sector sector
E; x U(1) x Fy (56;1) +2(1;1) 9(56;1)
3(1,—1,050%) +(1;1) + 45(1;1)
18(1;1)
SU(9) x Ex (84;1) +2(1;1) | 9(36;1) + 18(9;1)
5(2,1%,0%0%)
SO(14)% x U(1)? (14:1) + (1;14) 9(14;1)
£(2,07;2,07) +(64;1) + (1;64) +9(1;14)
+2(1;1) +18(1;1)
Eg x SU(3) x E; x U(1) (27,3;1) 9(27,1;1)
5(2,1%,0% 1, -1,06) +(1,1;56) 9(1,3;1)
4+2(1,1;1) + (1,1;1) +18(1,3;1)
SU(9) x Eg x SU(3) | (84;1,1) + (1;27,3) 9(9;1,3)
1(2,1%,0%2,1%,0°) 2(1;1,1)

Table 3: Hypermultiplet spectrum for different embeddings with K3 as T*/Z3. We

have not kept track of various U(

1) charges.

As shown in [85], section 3, morally speaking,

2 (q,q) = —2i

D

BPS vectormultiplets

7“q°

2

BPS hypermultiplets

(5.11)

In the case without any Wilson lines on 72, the new supersymmetric index for
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the theory on K3 x T? takes the general form [101]

§ qé PL—PR) o~ 27T2P%
)

Z2"(q,q) = Zks(q) - Zap
Zoa(q,0) = Y q?"ig?”

22(4, 4

pels 2 p€El2 2
1
2 2
Pp = —miU +mo +nT +nTU|%, 5.12
R 2T2U2| 1 2 1 2 | ( )
1, 1,
5]91; = 5193 + miny + maong,

where T, U are the Kahler and complex structure moduli on 7T2. We see that the
new supersymmetric index factorizes into a holomorphic part Zx3(¢q) coming from
K3 and the Eg x Eg contributions and into a lattice sum Zy5. In general the new
supersymmetric index will depend on the topology of the manifold one (e.g., xk3)
on and on the topology of the gauge bundle, e.g., (n(l),n@)). However one may
move in instanton moduli space, i.e., change the way the instantons are embedded in
Eys x Eg. This is equivalent to moving around in the hypermultiplet moduli space by
(un-)Higgsing, thereby changing the gauge group G; x GG3. So one can easily move
from standard to non-standard embeddings. Doing so however leaves the net number
of vector- and hypermultiplets Ny — Ny = 240 as well as (n(!, n(2)) unchanged. We
note that the gauge group can be maximally Higgsed for n(Y) = 0,1, 2 only.

For the case of SU(2) bundles with instanton numbers (n(Y); n(?)) and no Wilson
lines the contribution from the K3 part is [85]

n Bs(q)Ea(q) | n'? Bo(q)Ealq)] _ _2E6(Q)E4( 9)
24 n(g)* 24 n(g* n(q)*

By making use of the modular properties of Z"" one can make a much more general

Zr3(q) = — (5.13)

statement [30]. Namely, as will become clear from (5.41) (with g = 1) in subsection
5.2.2, 5 Z™" is a non-holomorphic modular form of weight -2 (with a pole at infinity).
Given the factorisation in (5.12) one can deduce that the form of Zg3 as given in
(5.13) is actually uniquely fixed up to a multiplicative constant. This constant can
be fixed to 1 by various arguments 2*

The Hilbert space structure (5.3) implies that Zx3(q) admits an expansion in terms
of the characters of D6 and the elliptic genus of K3 with the elliptic modulus taking

2"Due to the gravitational anomaly 6d, ' = 1 compactifications of the heterotic string on K3
always satisfy nyg — ny = 244, ng,ny here stand for the number of NV = 1 hyper-and vector
multiplets. This in turn fixes the coefficient of the ¢'/® in an expansion of (5.13) to 1 [30].
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special values [85]

0(0)'*Ziala) =3 B (%ff)ﬁz;éé,(q, 1)+t (93(9))62%@, )
B (q

(%) 2.0 (5.14)

The factors can be understood in the following way: The F, factor comes from the un-
broken Eg, the Dg characters enter through the trace over the 12 free fermions coming
from the broken Eg. The elliptic genus arises from taking a trace over the remaining
4 fermions, the 4 bosons in the left moving sector together with the supersymmetric
right moving sector in the (R—, R), (NS+, R) and (NS—, R) sectors (Here + stands
for the insertion of (—1)* when taking the trace and — stands for no such insertion.
For the right moving part the (—1)f% insertion is always there so it is left away). The

6
(R+, R) sector also contributes a term proportional to (97]1(((1‘1))> ZZ(q,+1) which we

=

q

have omitted since vanishes due to 6;(¢) = 0. However contributions from this sector
may arise from twisted sectors when studying CHL-orbifolds.

Through the presence of the K3 elliptic genus in (5.14) one obtains a connection
between the new supersymmetric index and to Msy. More precisely making use of
(3.43) one finds the following expansion

4E5(q)
B e

(@) = 20 gn=1/41=0(q) — 29n=1/4,=1/2(q) + Z AnGh=n+1/a3=1/2(q) (5.15)
n=1

where

02(0)\°  ns L (05(0)\° | ves 1/2
9h:n+1/4,l(Q) = Ch3,n,z (q,—1)+q2 Ch3,n,z (¢, —q’%) (5.16)

L (04()\° e
—qi <—4(Q)> ch}i (4, 4')

n(q)

and the coefficients A,, are as stated in (3.44) and are the dimensions of irreducible
representation of the Mathieu group. This shows that the new supersymmetric index
(for the case without Wilson lines) and thereby also the number of BPS states admits
a decomposition in terms of dimensions of irreducible representations of May.
Before we turn to the connection with CY 3-folds we will discuss the generaliza-
tion to CHL orbifolds to the constructions presented above. Thereby not just the
elliptic genus but also the twisted twining genera of K3 enter the discussion.

5.2 CHL orbifolds

In this subsection we consider Zy orbifolds of the Eg x Fg heterotic string compact-
ified on K3 x T? . Following [38, 70, 92, 97] we consider orbifolds where Zy acts
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freely by an 1/N shift on one of the circles of T? together with an action on the
internal CFT describing the heterotic string on K3. We refer to these orbifolds as
CHL orbifolds ? of order N. Orbifolding by a freely acting group is necessary in or-
der to preserve N/ = 2 space time supersymmetry. Since the action involves both K3
and T2 the orbifolded theories cannot be thought to be obtained from N’ =1, d = 6
vacua.

In particular we consider orbifolds where Zy acts as an automorphism on K3.
This action must preserve SU(2) holonomy so it must retain the holomorphic 2-form
on K3 and the holomorphic 1-form on T2 [104].

So Zy has to act as a symplectic automorphism (of order N) on K3 ?°. As
mentioned in section 3.3 the symplectic automorphisms of K3 form a subgroup of Mss
(which may change when moving in the moduli space of K3). Each automorphism
corresponds to one of the following nine conjugacy classes of Mas [106]

1A, 2A, 3A, 4B, 5A, 6A, TA, 7B, 8A. (5.17)

We will consider examples of Zy [70, 92, 97] and Zs orbifolds [38].

For the Z, case we follow [92] and consider a point in K3 moduli space, where
K3 is expressible as T%/Z,. Concretely let (yi,...,ys) € [0,27) be coordinates on
T* then K3 is obtained by the orbifold action

9" (Y1 + iy2, ys + iya) ~ (€2 (g1 +iyo), e T (ys +iya)), s =0,...,3  (5.18)

Parametrising the T2 by z1,xs € [0,27) the CHL action may be written as

9 (X1, T2, Y1, Y2, Y3, Ya) ~ (T + T, To,y1 + Ty + WYz + T,y ). (5.19)
For the Zj case we realize K3 as T"/Z3 [38]. We choose the coordinates on 7% to be
(21,29) € C?/Z* with periodicity

27

Zi~ Zi+nie; +noey, €1 =€ 3 jeg =1, (nl,ng) S 72, (520)

The orbifold limit of K3 is then realized by orbifolding with

27is _ 2mis

g° i (21,20) = (€73 z1,e 3 z). (5.21)

Denoting the coordinates on T2 by (x1,r3) € [0,27) as above, the CHL orbifold of

Z8They are named after Chaudhuri, Hockney and Lykken who were the first to study freely acting
orbifolds of heterotic string compactifications [102, 103].

29Since such automorphisms always have a fixed point [105] it is necessary for the action on T2
to be fix point free, as is guaranteed by the 1/N shift.
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order 3 can now be implemented by orbifolding with

2T 1 2
g/ : (.Tl,xg, 21,22) —> <ZE1 + ?,1‘2,22 + 561 -+ 562, 22> . (522)

5.2.1 The spectrum

As in the unorbifolded case (subsection 5.1.1), the spectrum of the CHL orbifolded
theory may be again be constructed in the two ways above.
i) By dimensional reduction [97]: One needs to take into account that the number
of A forms on the orbifolded K3 is given by [65]

B9k k= -2t 9 for N=2,3.5T. (5.23)

T N +1 ’ Y

Then one finds that the universal contribution from the 10 dimensional gravity mul-
tiplet after orbifolding is 1 gravity multiplet, 3 vector fields and 2k hypermultiplets,
so only the number of hypermultiplets is changed. Similarly in the contribution
coming from the 10 dimensional gauge multiplet only the number of hypermultiplets
changes.
ii) As in to the unorbifolded case one can obtain the spectrum at special points in
K3 moduli space by CFT methods [38, 92]. One thing to notice is that the sector
twisted by ¢’ only does not produce massless states since the ¢’ action is fixed point
free. The formulas of the masses of states (5.7) stay the same, only the formula for
the degeneracies (5.8) changes to

]_M
Dlg :MN;

where now x(g", g™¢") is the number of fixed points of ¢" invariant under ¢"¢"", so
essentially just the projection onto ¢’ invariant states has entered. Since the embed-

x(9", 9™ g")A(n, m) (5.24)

MZ

I
o

T

ding of instantons into the gauge group has not been changed (i.e., the shift vector
is the same) and the vector multiplets arise from the untwisted sector, the gauge
group and number of vector multiplets is unchanged. Only the number of hyper-
multiplets arising from the twisted sectors may change. So by counting the common
fixed points of g and ¢™g" for the Zy and Zs orbifolds the resulting spectrum can
be found [38, 92]. Again we reproduce the cases that are of interest to us in tables
4 and 5. To obtain the complete spectrum the gravity multiplet and the 3 vector
multiplets coming from the universal contribution from the 10 dimensional gravity
multiplet still need to be added to this spectrum.

We are interested in finding the possible type II dual theories to the theories of
tables 4 and 5. In practice finding the dual theory is only feasible when the rank of
the gauge group is small, hence we want to Higgs the gauge group as far as possible
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Ny — N, Gauge group, Twisted Hypermultiplets b
Shift vector sectors
84 | EsxSU@2)xU(1) | ¢° | (27,2;1)+(1 ,2,1> +(1,1;64)
xSO(14) x U(1) +2(1,1;1) 2
gt +y 6(1,1;1) +4(1,2;1)
(2,1,1,0%2,07) +2(27,1;1) +2(1,1;14)
g"” (1,2;14) +6(1,2;1)
116 SU(8) x SU(2) g"° (28,2;1) + (1,1;64) +2(1,1;1)
xSO(14) x U(1) | ¢" +¢"° 4(8,1;1) +2(8,2;1) 8
(3,1°,0%2,07) g’ 3(1,2;14) +2(1,2;1)

Table 4: Perturbative Fg x Eg heterotic orbifold spectra on T*/Z, after order 2
CHL orbifolds

Gauge Group, shift Untwisted Twisted
shift sector sector
E; xU(1) x Eg (56;1) +2(1;1) 3(56;1)
5(1,—1,050%) +(1;1) + 15(1;1)
6(1;1)
SU(9) x Eg (84;1) +2(1;1) 3(36;1) +6(9;1)
5(2,1%,0%0°%)
SO(14)% x U(1)? (14;1) + (1;14) 3(14;1)
£(2,07;2,07) +(64;1) + (1;64) +3(1;14)
+2(1;1) +6(1;1)
E¢ x SU(3) x Er x U(1) (27,3;1) 3(27,1;1)
5(2,1%,0°% 1, -1,0% +(1,1;56) 3(1,3;1)
+2(1) + (1) +6(1,3;1)
SU(9) x Eg x SU(3) | (84:1,1) + (1;27,3) 3(9:1,3)
3(2,1%,0%2,14,0%) 2(1)

Table 5: Perturbative Fg x Fg heterotic orbifold spectra on T%/Zj after order 3
CHL orbifolds. We have not kept track of various U(1) charges.

and find the dual theories of the maximally Higgsed models %°. As illustrated in
Appendix F Higgsing is done by starting at a point in moduli space where all of

the charged scalars (coming from either vector or hypermultiplets) have a vanishing

390n the type II side Higgsing correspond to moving in the CY moduli space through conifold
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singularities.
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VEV. Then we may Higgs the gauge group by giving VEV to scalars belonging
to certain hypermultiplets, moving along the Higgs branch of moduli space. As
mentioned above in section 5.1.2 this corresponds to changing the embedding of the
(n1,n2) instantons into the Eg x Eg gauge group while however keeping ny, ny fixed.
Higgsing does not change the relative number of vector and hyper multiplets N, — N,,.
Once we have Higgsed the gauge group in this manner we can still give a VEV to
the scalars of the vector multiplets in the remaining gauge group, moving along the
Coulomb of those vector multiplets. Thereby these gauge groups are broken to U(1)
factors, the number of those being equal to the rank of the unbroken gauge group.
This will reduce the number of vector multiplets from the dimension of the gauge
group to the rank of the gauge group. We give an explicit examples for how the
Higgsing is done in the Appendix F. The examples of spectrum we have presented
in tables 4 are all such that the gauge group can be completely Higgsed. For table
5 this is the case for the third and sixth example. That is after Higgsing we are
left with only the vector multiplets coming from the universal contribution of the
gravity multiplet, i.e., 3 vector multiplets, the gravity multiplet and the remaining
hypermultiplets, i.e. N, — N, hypermultiplets.

5.2.2 Gravitational couplings/threshold corrections and the new super-
symmetric index

The new supersymmetric index for the CHL orbifolds of the Eg x Fg heterotic string
compactification on K3 x T? with different instanton embeddings can be obtained
by generalising the methods described in [101]. We briefly explain the results given
in [38, 92]. For the case where K3 is realized as a T*/Zj; and general non standard
embedding given by shift vectors 7,7 , the new supersymmetric index of an order N
CHL orbifold takes the general form

M-1 N—1
1 2mwiab 12 1
new,N __ — 22012 1y (a,b) (a,b) i . (r,8) =
2N = g 2 ¢ A @ 2 @ x g Pl b s 0 2457 (0.)
(5.25)
where the partition functions of the shifted Eg lattice are given by
1 . 8
a,b —imfBa ! a+2ay!
Z ORIl | [ﬁizbf’yyf} )
a,=0 I=1
1 8
a,b —inBa Y 8_ 1 a+4-2a7!
25" ) = Y et T |52 ] (5.26)
a,5=0 I=1
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Your knowledge hub

I? = (v2 4+72). ZQ(T;) (q,q) is the twisted-twined partition function of 7% and has the
expression

2 2
Zia ) = Y. qFgr ey, (5.27)
mi,mo,ng€Z
nm €L+ g

where the momenta are defined as in (5.12) and as before T, U are respectively the
Kéhler and complex structure moduli of T2. The twist by an element of order N is

2mimys/N

reflected in the phase e and the fractional values of n;. Furthermore

. 4 =
F(a,r,b,8;q) = Trg gogr (g”g’semp i qL°§L°> (5.28)

is the trace over T* with 4 left and 4 right moving bosons, and over right moving
fermions in the twisted Ramond sector whose fermion number is F 17{4, g incorporates
the Zj; action. One can work out an explicit expression

a2 1

F(aa T, b7 S q) = ka,rb,sn(T)qu N Tardib o (529)

Hl(aT;b, 7_)2

where k%% are complex numbers that depend on I'> and their absolute value de-
pends on the common fixed points. They can be worked out for the different situa-
tions [92, 101].

Closed expression for different situation have been obtained in [38, 92, 97]. In general
one may write 2" in the form

N-1
2 Ng.a) = =43 23700/ a), (5:30)

r,s=0

where 7(q)? f"*)(q) is a modular form of weight 10 under To(N) 3'.
We start by giving the expression Z"%V for the standard embedding, making
use of (5.30). Here one obtains [70]

1

P = 5 i) 1ol ) - 5000 B (53D

where ozg’s), ﬁg’s) are the same as in (3.52) and explicit expressions can be found in

31The vector space of such forms for N = 2 is three dimensional and may be generated by
E4Eg, E285 and 3 Eg, where & is defined in (5.33).
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the Appendix E of [70]. For N =2,3,5,7 we have

0o _ 8 9 8
W = — Y = ——— # (0,0 5.32
“ N N(N+1)’(T’S) (0,0) (532)

ﬁéo,o)(T) —0, 55078)(7_) — _Ni_ 15N(7') ) Bé’"ﬂ"k)(r) = W&V (Tj\_fk)

for 1 <s,7k < N—1and Ey is a modular form of weight 2 under I'q(V) defined as

_ 1% n(r)
En(T) = m@ In D(NT)

(5.33)

In this case (i.e., for the standard embedding) Z™“" has the following expansion in
terms of the twisted twining elliptic genera of K3 [92, 97]

new, N ( — iN (TS ’7 4(9) % 02(9)\° ell B
Z GO =N Z_ [(n@) Zisrs(a,—1) (5.34)

N 05(q) \" @Az (g —q) — b1(a) 6q1/43f<l%rs(qq>
n(q) n(q)

where we have used the shorthand notation Z¢% . := Z¢ s So by our discussion

g
in 3.3 in this situation the new supersymmetric index becomes linked to the MacKay-
Thompson series of Mathieu moonshine.

For the case of non-standard embeddings of order 2 considered in [92] one finds

the following expression

1) = 2772}‘(61)

P = i (13- (3s7@) + (3 -9) E4<q>)

< [Ja8 7 Bulo) - 500 B)

Ei(q)Es(q) (5.35)

The constant b depends on the 14 different possible instanton embeddings listed in
[101] and it takes four different values

A 4 2 8
b 0.-. 2 =24 5.36
E{)g?g?g} ( )

The values for b relevant for our example are given in table 4 and the complete list
of shift vectors and corresponding b values can be found in [92]. The value of b also
directly determines the difference between the number of hyper and vector multiplets
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Shift Np—N, | a b ¢ d
3(1,—1,0%0°) ~134 0 0 I o
3(2,1%,0%0%) —80 Lo 3 9
£(2,07;2,07) 64 203 L3

5(1,-1,002,1%,0%) 28 o o0 3 2
3(2,1%,0%,2,1,0%) 82 2 02 3 8

Table 6: Values of a,b,¢ and N, — N, for different instanton embeddings/shift
vectors with K3 as T*/Zs and N = 3 CHL orbifold.

through the relation
N, — N, = 144b — 12. (5.37)

For order 3 orbifolds one finds

1
o0 = (1o + BE2Fs + CEu(Fy + 3;By) + d€3(Fo + 3615
(r,rk) 1 ~ 6 2 ~ / CZ 2 /
f ’ = W CZE4E6 + 553 Eﬁ + CE4(E6 - 53E4) + 583 (E6 - €3E4) (538)

where 1 < r, k < 2, we omitted the 7 dependence and &4(7) := &(™E). The values
of @,b,¢,d depend on the instanton embeddings and are given in table 6. It turns
that for all the four non standard embeddings a, b,¢,d may be expressed by one
parameter in the following way

o1 - 1
0= (U84 X), b=~ (48 + x)

i -1

€=~ g5 (456 +5X) , d = 555 (264 + ) (5.39)

where x will turn out to be the Euler character of the dual CY (see subsection 5.6
and 5.5.2).
5.3 Gravitational couplings and the vector moduli prepotential

As mentioned at the start of this section we want to match the vector moduli prepo-
tential as well as certain gravitational couplings of the d = 4, N = 2 effective field
theory arising from the heterotic and type Il compactification. Concretely in the low
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energy effective action the gravitational couplings Fj, appear in the form

S = /F9<y7 g) ’ F—&2-972R3-7 (540)

where F',, R, are the self-dual part of the graviphoton and the Riemann tensor and
y,y collective stand for the dependence on the vector moduli. The label g is chosen
since on the type II side the couplings F} arise from topological contributions of the
genus g world sheet (it should hence not be confused with either the string coupling
or an element of the orbifold group). The gravitational couplings on the heterotic
side are perturbatively one loop level exact . Concretely for the case of the Eg x FEg
heterotic string compactified on K3 x T? it has been shown [87, 88, 107, 108] that
F,, for g > 1, are given by the one-loop integral

1 d27— 1 a c T ¢
) = ——— - ; (29-2)( _1\Frn,Lo—< ~Lo—=
Flv9) = 272(9!)2/ Ty {72277( >2Tr [(18X) A 24}

H/dzxZZ 972 (z; H/d2 Z'07%(7 )>} (5.41)

where X is the complex coordinate on 72 and Z', Z? are the complex coordinates on
the transverse non-compact space time. The trace is taken over the Ramond sector
of the internal conformal field theory. The internal trace can be calculated to be

(i0X)29-2) (—1)FFqL0*i(j£0’§} - (5.42)

1 (p("”vs)) (29_2)
(r,5) R lpL|?/2 =PRI /2 £(r,s)
2 r T
()2 Z 2,2 ( /—QTQUQ) q q ()

8

0(7)?

where f(")(7) is defined in (5.30), p}°, pl> are defined in (5.12). The integral can be
evaluated by using the lattice reduction theorem by Borcherds [109], see, e.g, [70].
In order to make a connection to the type II side one need to extract the purely
holomorphic part. This part can be written in term of Gopakumar-Vafa invariants
of the CY on the dual type II side. For the case where we set all moduli to zero
apart from (7,U), the complex structure and the complexified Kahler structure of
the torus, one finds that the purely holomorphic part is given by 32

—hol (_1>g—1 — —27ings/N _(7,8) . 2mim-y
F)" = T Z (Z e ¢y 1 (ning/N)Liz_3,(e )
s=0 m>0
L (s
+ 5003 - 29)) (5.43)

32More precisely it is the complex conjugate of the antiholomorphic part.
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where ( is the Riemann zeta function, y = (7,U) , m = (n1,n2) with ny € Z/N,ns €
Z ,r=niNmod N and m > 0 is defined as

ni,ng > 0and (ny,n9) # (0,0), (5.44)
ny > 0,n9 < 0 and nq|ng| < 1.

The coefficients ¢\ are defined through

FEN () Pag(Ga, G, .. Gog) = Y i)(1,0)¢, (5.45)

le

=S

where G, = 2((2k)Esy,, Eo being the Eisenstein series of weight 2k and Py is
related to the Schur polynomial S of order g by
1 1

Pag(x1, oy ..., x4) = —S(1, 982 ;xg). (5.46)
Although (5.43) was derived under the condition g > 1, it may be extrapolated to
g=1and g =0. For g = 0 it correspond to 1-loop corrections to the vector-moduli
prepotential. More concretely when considering the case without Wilson lines the
heterotic vector moduli prepotential is of the form

Fhe(Shet T, U) = S"'TU + 1710 (T,U) + O(e*™5™) (5.47)

where 5" is the heterotic dilaton and 7', U are the complex structure and the com-
plexified Kihler class as before. Then f1=?(T U) = p(T,U) + F}°, with p(T,U)
being a cubic polynomial that will not be important for us.

5.4 Type II compactifications on Calabi-Yau 3-folds

In this section we briefly explain the necessary details of type II compactifications
on a CY 3-fold.

5.4.1 Spectrum

This section mostly follows the discussion of chapter 14.6 in [95]. Compactifying type
IT string theory on a CY 3-fold leads to a N' = 2 effective theory in 4 dimensions with
abelian gauge group *3. The spectrum can be obtained by dimensional reduction of
the massless 10 dimensional spectrum. For type ITA this consists of the (non-chiral)
N = 2 gravity multiplet

gIIA<]-0) = {GMN7 \115:)7 \Ijg\;)a )\(+)7 A(_)7 BMN7 (03)MNP7 (Cl)Ma Q}a (548)

33Non abelian gauge symmetries can occur at specific points in moduli space where certain 2-
cycles (3-cycles for type IIB) shrink to zero.

66


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

where M, N =0,...,9. The superscripts on the fermions denote their chiralities. The
fermions arise from the (NS, R) and (R, N.S) sector. The metric Gy, antisymmetric
tensor By and the dilaton are in the (NS, N.S) sector. The remaining bosonic field,
i.e, the vector C and the 3-form C3 come from the (R, R) sector.

Upon dimensional reduction these fields will arrange themselves in the following 4
dimensional N = 2 multiplets:

e Gravity multiplet consisting of a graviton g,,,, a gauge boson (graviphoton) C,,
and two Majorana gravitinos w,(f), 2/},(;) of opposite chiralities.

e Vector multiplet consisting of gauge field A,, two Weyl fermions A,, and
scalar ¢ all in the adjoint representation of the gauge group.

e Hypermultiplet consisting of two Weyl fermions v, @1 and two complex bosons
¢,d". In N =1 terms (¢,,q) and (z/zqi,éﬂ) make up a chiral and antichiral
multiplet which are in conjugate representations.

We split the ten dimensional index in the following (SU(3) covariant way)
M = (u,i,4) and denote the fluctuations of the metric around its background value
by g,.. Compactifying type ITA string theory on a CY with hodge numbers A'?
and h?! contains one gravity multiplet, with the graviphoton originating from the
ten dimensional R-R gauge field C;. Further it contains h'! vector multiplets. The
complex scalars of the vector multiplets arise from metric g;; and B-field B;; with
two internal indices. These scalars correspond to complexified Kahler moduli of the
CY. The corresponding U(1) gauge fields come from the R-R 3-form gauge potential
(C3)i5- So the abelian gauge symmetry is given by U (1)’7“1’1Jr1 (which includes the
graviphoton). Finally there are h*! + 1 hypermultiplets. The scalars of h*! of these
multiplets arise from metric with two internal indices g;; and R-R 3-form with 3 in-
ternal indices (C3);;z. These scalars correspond to complex structure deformations.
The scalars of the final multiplet arise from the R-R 3-form with three internal in-
dices (Cs);j5 and the dilaton.
For type IIB compactifications the number of vector and hyper multiplets is ex-
changed, i.e., N, = h>'+1, N = h'"' +1. Type IIA and type IIB compactifications
are related through mirror symmetry, i.e., a type IIA compactification on a Calabi-
Yau with Hodge numbers hb! h%! is dual to a type IIB compactification on an
appropriate mirror Calabi-Yau with hodge numbers Al! = A2 p21 = plL,
We end with some comments on the structure of the moduli space of the theory. Due
to the N' = 2 supersymmetry no mixing between the kinetic terms of vector - and
hypermultiplet scalars can occur, hence the moduli space M locally factorizes into
the product of the two, i.e., M = Myee X My, **. In particular M, is a (special)

34If we also take non-perturbative effects, i.e., D-branes, into account non-abelian gauge-
symmetries may appear and some of the scalars will be charged w.r.t. to these gauge groups.

67


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kéhler manifold and My,, is a quaternionic manifold due to the A" = 2 supersym-
metry. For type ITA and IIB compactifications the dilaton is part of a hypermultiplet
which hence receives stringy corrections (perturbative and non-perturbative). The
metric of vector multiplet moduli space is exact at string tree level. For type ITA
the vector moduli correspond to Kahler moduli and the metric on the Kahler moduli
space receives o-model corrections at order (a//L?)® and non-perturbative correc-
tions (proportional to powers of e L?/ @) due to world-sheet instantons *>. For the
type IIB theory the vector moduli correspond to complex structure moduli and the
metric on the complex structure moduli space is exact at both string tree level and
o- model tree level. We will have more to say on how to compute the prepotential

of the vector moduli in the next subsection.

5.4.2 Gravitational couplings and the prepotential

The quantities we will want to compare to match heterotic and type II compactifica-
tions are couplings F, given in (5.41), more precisely their holomorphic part defined
in (5.43). As has been shown in [107] for the type II side they correspond to the
genus ¢ free energies of the topological string compactified on the appropriate dual
CY M which we will denote by F gGV. We define the generating function F¢V for

these free energies as
o0

FV(goy) =Y F(y)g2? (5.49)

g=0
where g, is the string coupling and y stands for the vector multiplet moduli as before.
As shown in [110, 111] it can be written in the following form

00 S 1 d . 29—2 .
FV (=3 S (2 sin®? ) J2rid(my) (5.50)

g=0 m>0 d=1

where m = (ny,...,nu.1) labels the 2-cycles % and the constant nd, are the genus
g Gopakumar-Vafa invariants. These invariants count in an exact way the number
of BPS states in Calabi-Yau compactification of the type IIA theory. They are
closely related to Gromov-Witten invariants, see, e.g., [112] and we will often use the
Gromov-Witten and Gopakumar-Vafa invariants interchangeably although they are
not strictly the same. Roughly speaking genus g Gromov-Witten invariants count
the number of ‘distinct ways’ maps x : ¥, — X from the genus g world-sheet ¥, to
the CY X. Hence they are related to the counting of curves in X. However due to
multicovering ( mapping X, to a curve multiple times) and ‘bubbling effects’ (the

This will lead to potentials for those fields and to an interaction of the scalars from the two types
of multiplets. The kinetic terms however still keep the product structure.

35Topological non-trivial embeddings of the world-sheet into the CY manifold.

361f we choose a basis {5;};—1 . p11 then a 2-cycle B can be uniquely written as 8 = >, n;3;,

(nl,...,nhm) 7& (0,...,0).

.....
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fact that by gluing an arbitrary small handle to a genus g worldsheet maps from 3,
to X will also contribute to the maps from ¥, to X) Gromov-Witten invariants are
in general not integers. Gopakumar-Vafa invariants in a way take care of the above
effects by viewing the worldsheet as a submanifold of the Calabi-Yau (rather than
a map embedding the worldsheet). Gopakumar-Vafa invariants are always integral.
From the knowledge of all Gopakumar-Vafa invariants (for all genera) one can obtain
all Gromov-Witten invariants and vice versa.
From (5.49), (5.50) we find the following explicit expression for F| gG v,

(_1)g‘B2gB2gf2’X(M)

FEV = 5.51
0T gy 9)(2g - 2) (5:51)
|B2g|”0 2(_1)gn2 9g—2 .4 . 2mim-
m m :i: .2 g g L _ mm-y
2 2929 —2)1 (29 —2)! 13 "+ | Dlsz (e7)

m>0

where By, are the Bernoulli numbers, x (/) is the Euler characteristic of the Calabi-
Yau and the polylogarithm Liy is defined as Lip(z) = 325 .
For ¢ = 0 we obtain the instanton corrections to the vector moduli prepotential,

which takes the form

M : Tim-
FEYV = C(B)# + E nY Lig(e*™™V), (5.52)
m>0
For g =1 we get
1 .
FGV — — 0 1 Li 27wim-y ) 5.53
£ = 3 () 1) (5.53)

Now we want to compare this to the heterotic result (5.41). This was obtained in
the weak coupling limit, S"* — ioo and with no Wilson lines. On the type II side
this corresponds to setting A — 3 moduli (or potentially combinations thereof) to
zero and sending one combination of moduli to ico. Comparing constant terms one
finds [70]

(D
2(2m)29-2" 9

Further one obtains the following relations between the lowest genus Gopakumar-

GV __
F&V = (5.54)
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Vafa invariants that are related to the heterotic side through

N-1 )
O o 7r1n25 (,r,s
n(n17n2) 2 e
s=0
N-—1
1 _ 2mings 1
1 — N (T,S) 2 0
n(m,nz) 92 e N Co (m /2) — E’I’L(nth), (555)
s=0
N-—1
1 2mings B
1 — — 028 (rys) (2 )
Mns) = g3 206 G (M7/2) = Ny s

s=0

where r = ny N mod N and m? = 2nyns.

5.5 Calculating the Gromov-Witten/Gopakumar-Vafa invariants

In this section we will discuss how one can obtain the Gromov-Witten/Gopakumar
Vafa invariants n¢, showing up in the expression for the gravitational couplings on
the type II side , (5.51). This can then be used to find the potentially dual CY in
the heterotic-type II duality.

5.5.1 Genus zero Gromov-Witten invariants - the prepotential

The vector moduli prepotential for a type ITA compactification on a CY X in general
takes the form

P = —Sanory - G 4 o AT (656)
where y4 label the vector moduli, kK¢ are the triple intersection numbers of the
CY, as before m = (nq, ..., n,.1) labels the 2-cycles of X and n? labels the Gromov-
Witten invariants of multi-degree m = (ny,...,np11). The prepotential (and hence
the Gromov-Witten invariants) may be calculated by using mirror symmetry. That
is one makes use of the fact the type IIB string theory compactified on the mirror
CY, X*, has a vector moduli prepotential that is exact at tree level, so determined
by the triple intersection numbers of the dual CY X*. This prepotential can then
be mapped to the type IIA side with the help of the mirror map, that maps the 11B
moduli to the respective ITA moduli.

For CY’s that have a description as hypersurface or as complete intersection
in an toric ambient space this has been implemented in the Mathematica package
instanton.m [113]. It takes the generators of the Morri cone of X* as input. Roughly
speaking starting at the large complex structure point, which can be defined by the
Morri cone of X* one may calculate a particular period of the holomorphic 3-from,
the so called fundamental period. From this one derives the Piccard-Fuchs system
of linear differential equations which all the periods of the holomorphic three from
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have to fulfil. This then allows one to calculate the triple intersection numbers of X*
as well as the mirror map.

5.5.2 Conformal bootstrap

In [114] a different method was used to obtain all genus Gopakumar-Vafa invariants.
As we will discuss in more detail in section 5.6, in the unorbifolded version of the
heterotic - type II duality, the Calabi-Yau manifolds that appear on the type II
side are fibrations of elliptic K3 surfaces over P!, which makes it possible to obtain
all-genus results for the topological string [115], at least for a certain set of curve
classes. More generally in [116] a special class of elliptically fibered CY 3-folds was
considered, in particular where all fibers are irreducible and no fibral divisors are
present. Then it was argued that the expansion coefficients Zz(7, A) in an expansion
of the topological string partition function Z,, of the form

Ziop (Tt N) = Zo(r. ) [ 14+ ) Zs(r, N)Q” (5.57)
BeHL1(B,Z)

are Jacobi forms of weight zero, where the sum is over 2-cycles in the base. The
elliptic argument 7 is related to the complexified volume of the fiber and the string
coupling constant, which we here denote by ), appears as elliptic argument. Q° =
exp(2mi Y, B';), where t;,i = 1,...,h""(B) are shifted volumes of curves in the
base. The the modular transformations acting on these arguments and under which
Ziop. is invariant, arise as part of the symplectic monodromy group acting on the
integral symplectic basis of periods of the mirror of the elliptic fibered CY 3-fold.
The integral BPS expansion of Z,,, imposes a pole structure on Z3 from which it can
be argued that its numerator is a weak Jacobi form and its denominator is unique.

In [114] it was argued that the CYs appearing on the type II side in the CHL
orbifolded version of the heterotic-type II duality have to be genus one fibrations
with N-sections, where N is the order of the CHL orbifold, for some more details
see subsection 5.6. Then the arguments given above for the expansion coefficients of
Ziop. can be generalized to this situation, where now also parameters corresponding
to volumes of fibral curves are included, see (E.2). One finds that for genus one
fibrations with N-sections and N < 4 the SL(2,Z) group is broken to I'; (N) and the
complexified Kahler parameters that correspond to the fibral curves and which we
will collectively denote by m become elliptic parameters of Zz(7, A\, m). Zg(1, A\, m)
are shown to be meromorphic higher degree Jacobi forms of I';(N) with additional
elliptic parameters, where the numerators now are weak Jacobi forms under I'y (V).
We provide more details in Appendix E.

Specializing the ansatz (E.6) from the Appendix E to the examples of genus one
fibered CY 3-folds with 2-sections (listed in table 9) that are dual to CHL orbifolds
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of order 2 of the heterotic string one finds for base degree one [114]

As(T)
(27)%4¢_21(27, N)

Hr N = L&, [4(6b —5) - €2+ 2(2 — 3b) - E4]. (5.58)
This can be checked against predictions from (5.55) using (5.35), (5.45) and b = 2,5

and one finds a perfect match.
For base degree 2 the conformal bootstrap gives the result [114]

[ AT Go(T, N)
Zo(r, \) = <n O G N il A)> (5.59)

where ¢y needs to be fixed 3" by comparing to the predictions of the heterotic side
(again using (5.35), (5.45)). Once ¢ has been fixed it again leads to a perfect match.

Next we turn to CY 3-folds with 3-sections, listed in table 10, that are potentially
dual to CHL orbifolds of order 3 of the heterotic string on K3 x T5. The Gopakumar-
Vafa invariants at genus zero can be calculated using the standard techniques [117].
One finds that at degree zero w.r.t. the base of the K3 fibration the genus zero
invariants only depend on the Euler characteristic and we list them in table 7, where
dp,d; correspond to the degreed of the P! base and the genus one fiber of the K3
respectively. More concretely

dr = Ey- B,dg =7 *(B) - B (5.60)

where FEj is the divisor associated to the three section. Indeed table 7 matches with
the predictions from (5.38),(5.39) and (5.45) if one identifies dp = ny, dg = ny + no.
In order to calculate the genus one Gopakumar-Vafa invariants one again makes use

dp\dr| 0 1 2 3 4
0 0  X4+240 X+240 —X X 1240
1% +240 1962 — 3y x4 18016 43X + 95454 413280 — 30x
2 0 X+240 £X+18016 413280 — 30X 54x + 5694624
3 0 0 —x 15X 1 95454 54 + 5694624
4 0 0 0 X 4240 413280 — 30x
5 0 0 0 0

Table 7: Genus zero Gopakumar-Vafa invariants of degree zero with respect to the
base of the K3 fibration for the families of Calabi-Yau manifolds ME‘?V and MQ(?’V) of
table 10.

3TWe refer to (5.30), (5.31) in [114] for the explicit expression.
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dr\g 0 1 2 3 45
0 X126 0 0 0 00
1 X'+ 240 0 0 0 00
2 1962 — 3y 0 0 0 00
3 12X+ 18016 —X — 52 0 0 00
4 % + 95454 —x — 480 0 0 00
5 | 413280 — 30x 6 — 3924 0 0 00
6 | ®X+1627330  —2ZX — 36188 X+78 0 00
7 | Ay +5694624  —18y — 192348 X 4 720 0 00
8 | 18353988 — 195y 78y — 838332 5886 — Oy 0 00
9 | 170x + 55646304 —80x — 3362964 %X + 54464 —2 —104 00
10 |291y + 159217686 —157y — 11963892 %X + 290202 —2x — 960 0 0

Table 8: Gopakumar-Vafa invariants of degree zero with respect to the base of the
K3 fibration and degree one with respect to the base of the K3 fiber for the families
of Calabi-Yau manifolds M£31)7V and M2(3y)

of the conformal bootstrap. Using genus zero Gopakumar-Vafa invariants to fix the
ansatz one finds
1 AG(T)

Zi(1, ) = TR EENNEEY [(120 + x) E3(1) — 9(152 + x)&(7)%].  (5.61)

One finds that this matches the results calculated from the heterotic side (using
(5.38),(5.39),(5.45))).

5.6 Heterotic - Type 1l duality - finding the dual CY

In this section we will show how one may use the information gathered in the previous
sections to find the dual CY manifolds corresponding to certain CHL orbifolds of the
Eys x Eg heterotic compactification on K3 x T?. We start by briefly reviewing some
facts about this duality without the CHL orbifold, see, e.g, [118, 119]. The duality
between the Eg x Eg heterotic string compactified on K3 x T? was first found in [90].
Assuming that the heterotic theory is weakly coupled in the geometric regime of the
type II theory it can be shown that the CY involved in this duality always need
to be an elliptic K3 surfaces fibered over P! [120]. This may at least be motivated
by using an adiabatic extension argument [121] in the following way: Starting with
the well known duality between the Eg x Eg heterotic string compactified on T
and type ITA compactified on K3 in six dimensions [122, 123], one may fiber both
sides of this duality over a P!. The resulting geometry on the type II theory is a
CY that is K3 fibered over P!. On the heterotic side one notices that in order to
obtain the correct amount of unbroken spacetime supersymmetry only a 72 inside
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T* needs to be non-trivially fibered. The T2 fibered over P!, makes up a K3 and the
extra T2 is trivially fibered. Under the duality the heterotic dilaton is mapped to the
complexified Kihler modulus of the P! that is the base of the fibration and the weak
heterotic coupling limit S"* — oo corresponds to the limit of a large base. The
complex structure and the complexified volume correspond to linear combinations of
the complexified volume of the elliptic fiber and the P! base of Kj.

In particular the maximally Higgsed heterotic theory with (12 + n,12 — n) in-
stantons is dual to type II A compactified on an elliptic fibration over an Hirzebruch
surface F,,, which is a P! bundle over P!, see [90, 124] for examples and [125-127] for
a treatment in F-theory. The heterotic moduli S, T, U corresponding to the dilaton
and the Kahler and complex structure of 72, are mapped to the moduli controlling
the size of the two P's and a modulus of the elliptic fibration.

One can observe that the unorbifolded heterotic theory has a T-duality group of the
form

Thet = SL(2,7) x SL(2,Z) x Zs. (5.62)

The first SL(2,Z) factor correspond to the modular symmetry of the complex struc-
ture modulus of 72. The Z, symmetry comes from T-duality along one of the circles
of T? which exchanges the complex and Kéahler moduli. Combining these two sym-
metries then gives rise to the second SL(2,Z) factor. On the type II side the SL(2,7Z)
action arises through monodromies in the moduli space of the elliptic fibration and
another monodromy creates the Z, symmetry that exchanges T and U [128].

As we have discussed in subsection 5.2 the CHL orbifold of order N acts on T? by
a 1/N shift along one of the circles of T%. The group acting on the modulus of T
that preserves the Zy action together with its generator is I'y(/V), which we defined
in (2.5). Along the cycle not involved in the orbifold we can still perform a T-duality
transformation that exchanges T and U. From this one infers that the symmetry
group of the CHL orbifolded theory has the form

Tenr =Ti(N) x Ty(N) X Zs. (5.63)

On the type II side this symmetries should arise through monodromies in the quan-
tum Kahler moduli space of the CY. This then implies that the CY manifolds ap-
pearing in the duality need to be genus 1-fibered with N-sections.

Now we turn to finding the possible dual CY manifolds. In particular this will be
possible for heterotic models which can be completely Higgsed so that they only
remaining vector fields are the ones coming from the compactification of the metric
and the B-field on T2 giving N, = 4. For order 2 CHL orbifolds we have seen that
the only models that can be completely Higgsed are the ones in 4. In [31] possible CY
duals were found by searching the Kreuzer-Skarke CY-database [81] for CY manifold
that have the correct hodge numbers h''! = N, — 1 = 3 and h?! = N;, — 1 = 83, 115.
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Table 9: Values of ‘charges’ ¢, g2 for which the construction of [114] yields a toric
variety that is a Pjo fibration over P! x P! and s.t. the generic Calabi-Yau has
h*! = 3 (the special case h'"' = 4 corresponds to an elliptic fibration with two
independent sections). Al h2! are the Hodge numbers of the resulting CY. by, b
are given by formula (5.64).

For all such candidate CYs the genus zero Gromov-Witten invariants were computed
using the Mathematica package instanton.m [113] and compared with the predictions
from the heterotic side (using (5.35), (5.45)). Using this method two candidate CY
duals were found.

In [114] CY manifolds that are genus one fibered over F; = P! x P! with 2-
sections were constructed systematically by a ‘fiber based approach’. That is one
first constructs the genus one fiber /elliptic curve as a hypersurface in a toric variety.
Then the coefficients of the hypersurface equation are lifted to be sections of line
bundles over some base, which in our case will be ;. This leads to all possible
dual CYs for the cases that can (potentially) be completely Higgsed, i.e., instanton
numbers (12 +n,12 —n), n = 0, 1,2 3. In this way matching CYs for all such cases
from [92] were found. In particular the construction made use of the fact that a
genus one fibration with 2-sections can always be mapped into a fibration of degree 4
hypersurface in P11 [129]. The different solutions can be parametrized by ‘charges’
(¢1,q2) which we list in table 9, together with the hodge numbers and the value of
b that matches the result on the heterotic side, i.e., table 2 above. The value of b is
given by

1
b= m[160 — 16(q1 + ¢2) + 8q1¢2). (5.64)

The index of b (i.e. by, be) in table 9 corresponds to the heterotic string arising from
a b-brane that wraps the restriction of the genus one fibration to either of the P;’s
of the base (F;). The single special case where h''! = 4 was found to correspond to
an elliptic fibration with two independent sections. In particular the two CYs found
in [31] also are part of the so constructed CYs.

In [38] the CYs dual to CHL orbifolds of order 3 of the heterotic string on K3xT?

38The heterotic strings arises in the type IIA picture as a 5-brane wrapping a K3 fiber. The
different geometries that possibly arise from using Fg, F5 as base lead to the same heterotic string
as argued in [114]
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that are completely Higgsable were constructed by methods similar to [114]. By our
discussion above we know that the dual CYs should all be genus one fibered CY
3-folds with 3-sections and h''' = 3 and in addition also exhibit a K3 fibration. We
start by noting that every genus one fibration that exhibits 3-sections is birational to
a hypersurface in a fibration of weighted projective space where the base is P? [129].
In order for a K3 fibration to exist the base of the fibration needs to be a Hirzebruch
surface IF,,, n = 0,1, 2, so that one can restrict the construction to CY 3-folds that
are hypersurfaces in a four-dimensional toric ambient space. Since the base of the
K 3 fibration has to be P! the fibration has to arise from a compatible toric fibration
of the ambient space. The dual CYs were then constructed by lifting K3 surfaces
that are genus one fibered with 3 sections and have Picard number 2. Scanning all
4319 3-dimensional reflexive polytopes classified in [130] one finds that there exist 3
such K3 surfaces corresponding to the reflexive polytopes that are the convex hull
A,(f') of the points

vl 1 0
V2 0 1 0
VS —]_ —]_ 0 ’ (565)
vt n 0 1
Vo 0 0 -1

where n € {—1,0,1}. These can be lifted to a 4-dimensional polytope by adding the

points
V{I(V71),I/§:(O’—1) (566)

which will be reflexive when v € QAS’). This way one finds 14 genus one fibered
CY 3-folds that have 3-sections which are listed in table 10. Here we have also
listed the Euler number and indicated the two models that match the completely
Higgsable cases of table 5 by their shift vectors. For these cases one finds that the
Gopakumar-Vafa invariants of various genus match (see subsection 5.5.2).

6 Conclusion and Outlook

Moonshine is fascinating subject for mathematicians and physicists alike. Since its
start with McKays observation in 1978 a lot of new insight has been gained but still
many questions remain open.

In this thesis I have tried to contribute to the understanding of moonshine by
finding new moonshine phenomena. In section 4, based on my publication [37], T
looked for moonshine phenomena connecting higher dimensional Calabi-Yau mani-
folds and sporadic groups. This was done by analysing their elliptic genus, which
is the index that establishes the moonshine connection for K3 [10]. In particular
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Polytope n v X Base B | Candidate shift
2 (0,0,-1) | _ [y
2 (1,000 | 1] R,
2 (0,1,-1) F

1o oo oy | b OL=D g 1(2,12,0%;2,14,0%)
-1 (’ ,O) FO 3\ ) )y < )

0 1 0 0

U1 o0 oll=L (=100 Fy
-1 (0,0,—1) | —150 F,

n 0 1 0

0 0-1 0 200001y Fo

00 0 1 -1 (0,0,0) Fo

S [F 00— [—1s]

2 (07170> —132 IFO
—1 (1707()) IFO
2 (=2,-2,0)| Fo 19 7.9 (7
1 (200 120 | 1(2,07;2,07)

Table 10: The 14 genus one fibered Calabi-Yau threefolds M,@ that have 3-sections
and also exhibit a compatible K3 fibration such that the polarization lattice is of
rank two with anti-diagonal intersection form.

the twining elliptic genera of a large number (13 642) of CY 5-folds was calculated
and analysed. However in all those cases no new moonshine could be found, thus
strengthening the special role played by K3 in Mathieu moonshine. Also the elliptic
genera of certain toroidal orbifolds an Gepner models was studied but also here no
new moonshine phenomena could be established.

In section 5, based on my publications [31, 38|, I tried to deepen the connection
between Eg x Fg heterotic string compactifications on K3 x T? and type II compact-
ifications on CY 3-folds, which was shown to link Mathieu moonshine to topological
invariants (Gromov-Witten/Gopakumar-Vafa invariants) of the CY manifolds [30].
This was done by studying the CHL orbifolds of order 2 and 3 of the heterotic string
given in [92] and [38] and finding their potentially dual CY-manifolds. Thereby one
also connects the twining and twisted twining genera of K3 to Gromov-Witten in-
variants. In some cases we were able to find the dual CY manifolds and, based on
the methods of [114], to also give an explicit construction for these manifolds in cer-
tain cases. Thereby also our understanding the of heterotic-type II string duality is
deepened.

Going forward there are still many open problems one might address. Most
imminently one might try to find the dual CY manifolds to CHL orbifolds of higher
order and in general try to understand how CY manifolds ‘know’ about moonshine.
Since K3 and its elliptic genus are present in many string constructions, e.g., for
type II compactifications on K3 x T? it gets connected to the microstate counting of
back holes, it seems interesting also to look for new connections in such situations.
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In general modular objects show up in many areas of physics and one might expect
connections to moonshine to arise in some of these situations leading to potentially
many further interesting connections.
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A Definition of some modular objects - conventions

In this appendix we will collect the definitions of specific modular objects that are

used in this work. Throughout we define g := €*™7, y = *%*,

A.1 Eisenstein series and n-function
We start by defining the Eisenstein series Fy, Eg, the generators of modular forms

on SL(2,7),

n

— =1+ 240q + 2160¢° + . . .,

n3q
1_

Ey(r) =1+240) p
n=1

0 5.n
Eg(r)=1-504)" ln_qqn — 1 — 504¢ — 166324 + . ..
n=1

which are modular forms of weight 4 and 6 respectively.
We further define the Dedekind eta function

o0

n(r)=q= [J1-q"). (A1)

n=1
It transforms under modular transformations as
n(r+1) = ern(r) (A.2)
1 .
n(—2) = Vi), (A3)

hence it is a modular form of weight % with a multiplier system.
We also define the following functions

Ay(r) = ”75?:))816 (A.4)
Bofr) = BT (A5)
Ay(r) = ”(22?252”)16 (A.6)

Aoy, k =2,3,4 is a modular form of weight 2k for T'; (k).

A.2 Jacobi theta functions

The generalized Jacobi theta function can be written as

0 |:Z:| (7_’ Z) _ Zq%(k—l—%)?'ewi(k—&-%)b€(27riz)(k+%)’ (A?)

keZ
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and one defines

0.(7, 2) =0 m (1,2), Os(r,2) =6 m (7,2),
0 0 (A.8)
O5(7, z) =0 [O} (1,2), O4(1,2) =10 [1} (1,2).
More explicitly one finds the following expression and product representations:
Or(r.2) =—i Y (—1)""2yq*
n+3€Z
= —igt (v} =y ) TIO = )0 = ya") (1 =y '™, (A.9)
n=1
Or(7,2) = Z yqr
n+3 lez
= ¢t (v +y ) TIO - )0+ ya") (0 + 7). (A.10)
n=1
Os(7,2) = > y"q™
nez
= [ —a (1+ya2) (1+y7'¢ 2, (A.11)
L= (1) (1071
n2
Ou(1,2) = > (=D)"y"q7
nez
=[] - (1 - yq”‘%) (1 - y‘lq”‘%> : (A.12)
n=1

Setting z = 0, (y = 1) in above definitions we obtain the ‘truncated’ Jacobi theta
functions 0;(7) := 0;(1,2=10), i =1,...,4 . From (A.9) we immediately see 6,(7) =
0.
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A.3 Weak Jacobi forms

We further define the following weak Jacobi forms ¢y, of weight k£ and index m

o= o((B3) + () (e))

1
= §—|—10+y+(’)(q)

‘91 (T7 Z)2
_ = — A.14
(b 2,1(7-7 Z) 77(7-)6 ( )
1
= —§+2—y+O(Q),
92(7—7 Z) 93(7—a Z) 04(7—7 Z)
=2 A15
%0.4(7:2) 02(7,0) 05(7,0) 04(7,0) (A.15)
1
= —+y+0(q).
7 Vi +0(q)
B Some notes on lattices
We collect some basic definitions and facts about lattices following [95].
Give an n-dimensional vector space V =< ey, ..., e, >, spanned by the basis vectors

e, i =1,...,n we define a lattice A to be the set of points.

A= {inlellnl € Z} : (B.1)

We will consider the cases where V is either R" with Euclidean inner product or

p I, I _~N~ptqa T .1
- vw impi1 VW

RP4, p4q = n with Lorentzian inner product, i.e., v.w = > I

for v,w € A. The elements of A have expansions A 3 v = n;el. Hence g;; = e; - e,
is the metric on A. The volume of the unit cell, containing one lattice point is given
by vol(A) = /| det g|. We further define the dual lattice A*

N ={weV]|w-veZVveA}l (B.2)
The corresponding dual basis vectors then fulfil

e -e; =0 (B.3)
and the dual metric g;; = e, - €; is the inverse of g;;. Thereby vol(A*) = (vol(A))~".
A lattice is called unimodular if vol(A) = 1. It is called integral if v -w € Z, for
all v,w € A which is equivalent to A C A*. An integral lattice is called even if all
lattice vectors have even (length)?. A is called self-dual if A = A*. This condition is
equivalent to A being unimodular and integral.
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dimension number of lattices

8 1
16 2
24 24
32 many

Table 11: Number of even, self-dual lattices in different dimensions.

For the study of CFTs the even, self-dual lattices are of particular interest since they
lead to holomorphic CFTs with central charge ¢ equal to the dimension of the lattice.
Even, self-dual lattices only exist when the dimension is a multiple of 8. Table 11
gives the number of such lattices in up to 24 dimension (thereafter their number
increases rapidly - for further details see, e.g., [131])

In 24 dimensions, which will be of particular importance to us there are 24 of
such lattices, called the Niemeier lattices. One of these lattices, the Leech lattice,
stands out in that its shortest vectors have (length)? = 4, so in particular it contains
no root vectors (vectors of (length)? = 2). The remaining 23 Niemeier lattices can
be labelled by the Dynkin diagram of their root system. They fall into an A-D-E
classification as can be seen in table 12. The root systems arise from the A,DE
algebras by the rules that for a given lattice the Coxeter number for each factor has
to be the same and the rank of the factors has to sum up to 24. The Niemeier lattices
arise from modifications of the root systems including ‘gluing vectors’. In table 12
the ‘umbral symmetry group’ G, for each lattice L is given, which is defined to be
the automorphism group of the lattice modulo the Weyl- group of the associated
A-D-E system.
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Niemeier root system

Umbral symmetry G

A%l Moy
AL 2.Mj,
A8 2.AG Ly(2)
Af GLy(5)/2
AiD, G Ly (3)
A SLs(3)
A2D; Dih,
A3 Dihg
ASD(; Z4
A D7 Eg Loy
At Ly
Ay5Dy Ly
A7 Er Loy
Aoy Ly
DS 3.Symg
D} Symy
D} Syms
D10E$ Zo
D%Q Zo
D1sEy
Doy
E} GLy(3)
E3 Syms

Table 12: Niemeier lattices and associated umbral symmetry.

C Superconformal algebra and characters

C.1 (Extended) N =2 characters

For the (extended) N = 2 superconformal algebra with central charge ¢ = 3d, let [Q2)
denote a highest weight state with eigenvalues h,? w.r.t. Ly and Jy. Writing Hj, ¢
for the representation belonging to |Q) we define the (graded) N' = 2 characters in
the Ramond sector through

2 (7, 2) = Try, ,((—1)Fg"o s ePm=0), (C.1)

27 - Below we will also use y = e*™*. In
the Ramond sector unitarity requires h > 5 = g.

The characters [132-134] are given by (using the conventions of [74]3):

where F is the fermion number and ¢ = e

e Massles (BPS) representations exist for h = g; (=

39Note that our definition of 6, (7, 2) differs by a minus sign from the definition used there.
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1),—%. For £ > ¢ > 0 they are given by

a (=0)0i(7, 2) (=)
ch)Gino (T, 2) = (—1)*2 ”2 Y gl (C.2)
n(r L =yq"
neZ
and for ¢ = %l one has
. (d=1)n
N=2 a (=)0 (7, 2 S ST (1—q)(=y)
ch’~=i(1,2) = (1) —— q: (C.3)
405 n(r ; (1—yg")(1 = yg" )"
: : : d. p _ d d d
e Massive (non-BPS) representations exist for h > sl=535-1...,—(5—

1),—% and ¢ # 0 for d = even. For ¢ > 0 we have

- d ~1 “Iin “1)n
i o(r,2) = (1) g DY G e (el
neZ

In both cases the characters for £ < 0 are given by

Chd h—& e<o(T z) = Chdh /24, _es0(T, —2). (C.5)

The Witten index of a massless representation is given by

da

(—=1)*2, for0<(< 9,
chd0£>0(7',z =0) = { 1+ (=1), for ¢ = ;_z . 2 (C.6)
C.2 N =4 characters

Analogously to the N' = 2 case the (graded) characters of the N' = 4 superconformal
algebra with central charge ¢ = 3d, and d even, in the Ramond sector are defined as

)it e (7, 2) = Try, , ((—1)FghoFetmeT0), (C.7)

where h and ¢ are the eigenvalues of Ly and T3 of the highest weight state belonging
to the representation Hj . As in the N = 2 case unitarity requires h > g.
The characters [135] are given by (using conventions from [136])

e Massless representation exist for h = g, (=0, % ey f—f and are given by
i 61 ,7_ Z 47r15( +1)m+€)(z+ ) 4 )
ch e (§+1)m*+26m
dOZ( ) 9 (7_ 2Z 7. Z Z - )2 q

e=*x1meZ

(C.8)
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In particular for £ = 0 this may be written as

L+yq™
ch 2) = g+1)m yld+2m . C.9
dOO(T7 ) 8(’7’ 2Z Zq 1_qu ( )
meZ
e Massive representation exist for A > g, (= %, 1,..., f{ and are given by

B 202 _d 91(7', Z)2

hN:4 B 2”8 ——~ ' 7
C d,h—ﬁ,z(ﬂ z) = iq 0,(7, 22)(7)?

1 1
(’9§+1,2e(77 zZ+ 5) - 19%+1,—2e(7'a z+ 5)) )
(C.10)

where

Dpa(T, 2) = qu?“’ 2Pt (C.11)

neZ

With the help of the N' = 4 characters combinations of massless N' = 2 charac-
ters which are even in z can be expressed in the following way

— — d+1 _
A3 (. 2) 2y (r2) = (~1)'F 60 (. 2)eb) 5o 2). (C.12)

(1) ny (7, 2) (i Slo(r, 2) + 54 (m2)) - (C13)

N=2 N=2
chd707%(7, z) + Chd,o,—g(T’ z)
Likewise the even-z combination of the massive N/ = 2 characters can be written as

7 (7, 2) + 2 (7 2) = (=1 gy s (7, 2)ech) 5 4 1 (m2) . (C1d)

D Calabi-Yau manifolds and toric geometry

In this appendix we will briefly summarize some properties of Calabi-Yau manifolds.
In particular we will also give a short overview of their realization in weighted pro-
jective spaces and toric geometry.

D.1 Basic definitions and properties

In this subsection we give the general definitions and basic properties of CY man-
ifolds. We follow mostly [95, 137]. A CY d-fold X is a compact Kahler manifold
having d-complex dimensions and fulfilling one of the equivalent properties

i) X has vanishing first Chern class, ¢; = 3=[R].

i1) X admits a Ricci flat metric.

ii1) The holonomy group of X is a subgroup of SU(d).*

40Mostly CY d-folds are supposed to have exactly SU(d) holonomy. We will often refer to such
CY d-folds as being genuine CY d-folds.
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iv) X admits a covariant constant spinor.
v) X has a unique nowhere vanishing holomorphic d-form € .

The Hodge numbers (dimensions of the Dobeault cohomology ) fulfil the following
relations

o WPV = hi=PO gince HP(X) ~ H9P(X), which follows by contraction with the
(d,0) form Q.

e hP9 = h?P by complex conjugation.
o hP = h1=44=P by Poincare duality.

e K%Y = 1 holds for any compact, connected Kihler complex manifold. For
simply-connected Kéahler manifolds, which will be the case for most CY mani-
folds we consider (tori are a counterexample), we further have h'% = h%! = (

The Hodge numbers can be nicely arranged in the so called Hodge diamond. For
d = 2,3 it takes the general form:

1
1 0 0
0 0 0 pi! 0
1 20 1, 1 2! hi2 1 (D.1)
0 0 0 i 0
1 0 0
1

D.2 Calabi-Yau manifolds as hypersurfaces in weighted projective am-
bient spaces

In this section we will discuss the construction and properties of CY manifolds con-
structed as hypersurfaces in weighted projective spaces. We follow [95, 138] for the
construction in weighted projective space.

Compact manifolds cannot be constructed as submanifolds of C", however one
can construct them as hypersurfaces in (weighted) projective space and generaliza-
tions thereof. We start by the defining a generalized C*(:= C \ {0}) action on C"™!
through

Aoz=X-(20 ..., 2") = (A2 .. AW, (D.2)

where A € C* and the non-zero integer w; is called the weight of the homogeneous
coordinate z;. Using this action we define an equivalence relation ~ on C" through

2~ eANeC =Nz (D.3)
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and the equivalence class of a point is denoted by [z]. Then the weighted projec-
tive space with weights w;,i = 0,...,n, is defined by P"[wy,...,w,] = P,[w] =
(C"t1\ {0})/ ~. A hypersurface X4[w] in weighted projective space is defined as
the vanishing locus of a quasi-homogeneous polynomial p(\ - 2) = \9p(z), where d is
called the degree of p(z),

Xylw] = {[z": -1 2"] € P"|p(2) = 0}. (D.4)

The first Chern class of Xy[w] vanishes if d = >~ | w;. In order for X, to be non-
singular, we require dp(z) = p(z) = 0 only to hold at 0(:= [0 : --- : 0]), which is
not in P”. A necessary condition for such a polynomial to exist is that the Poincaré-

polynomial, defined by

ol —gde

i=0
is indeed a polynomial, i.e., that the set of all multiples of 1/(d — w;) includes the
set of all multiples of 1/w;. A simple check for this condition is to see if P(0) is an

integer. The Euler number of X,[w] is given by

ey It o8
k=1 1=1 ged{l,k}-“ieZ ’

which was proven in [138] based on [139].

D.3 Calabi-Yau manifolds as hypersurfaces in toric ambient spaces

The constructions above may be generalized in different ways. We want to consider
hypersufaces in toric varieties next. We will mostly follow [140, 141] in the following
discussion.

Toric varieties are generalisations of weighted projective space. Roughly speaking
they are obtained by introducing additional coordinates and an appropriate number
of additional equivalence relations of the form (D.2, D.3). We start by defining the
necessary objects.

Let N be a n-dimensional lattice and N the real vector space carrying the lat-

tice then:

-An r-dimensional cone o, in Ng, finitely generated by vy,...,vs € Ngr,s > r is
defined by
on = {Mv1 + -+ Aus]\; > 0for 1 <i < s} (D.7)

An r-dimensional cone is called simplicial if it is generated by r (linear independent)
vectors. An m-dimensional cone is called basic if it is generated by a basis of the
lattice N.
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-A strongly convex rational polyhedral cone is defined to be an n or lower dimensional
cone, with 0 as its apex, bounded by finitely many hyperplanes (‘polyhedral’), edges
spanned by lattice vectors (‘rational’) and not containing a complete line (‘strongly
convex’).

-A face of a cone o is defined to be either ¢ itself or the intersection of o with a
hyperplane bounding it

-A  fan is defined to be a finite collection of cones such that all faces of cones and
all intersection of cones also belong to the fan. For a fan ¥ we define £ to be the
n-dimensional cones in .

Let ¥ be a fan consisting of a strongly convex rational polyhedral cones. For
each one dimensional cone in Y with primitive generator v;,7 = 1,...,k assign a
homogeneous coordinate z;. Then the generalisation of the action (D.2) and the
equivalence relation (D.3) on this C* is the following :

k

k
(21, z) ~ (NB 2y, AD z) if quvi =0 (D.8)
i=1

where qj. € 7 and gcd(qé, i =1,...,k)=1 (this corresponds to k — n independent
relations so that (locally) we have an n-dimensional manifold.)

Further similar to excluding 0 in the definition of the weighted projective space we
need to exclude points where certain z; are zero simultaneously. The set that needs
to be excluded is defined by

Zs = J(z1,...,2) e = 0Vi € I} (D.9)

where the union |J; is taken over all sets I C {1,...,k} for which {v;, : i € I}
does not belong to a cone in ¥. Removing the set Zs, from C* is the equivalent to
saying that several z; are allowed to vanish simultaneously only if the corresponding
v; belong to the same cone.

If all n-dimensional cones of 3 are basic the toric variety is given by the quotient
of C¥\ Zs. by the equivalence relations (D.8). In the case that a n-dimensional cone
is not basic, i.e., it is spanned by {v1, ..., v,} that do not span the lattice N but only
a sublattice, say N(vy,...,v,), additional relations will exist, which form an abelian
group isomorphic to N/N(vy,...,v,). In this situation we will in addition have to
factor C* \ Zsx, by this group as well. This will lead to orbifold singularities which
can be removed by appropriate
subdivision of the fan #!. In addition singularities will arise if the fan contains cones

41This corresponds to introducing additional coordinates and additional relations. Thereby the
previous singular point is replaced by a smooth manifold. This procedure is referred to as ‘blow

)

up’.
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which are not simplicial. These again can be cured by subdivision of the fan. A toric
variety is smooth if and only if the fan consist of simplicial and basic cones only. It
is compact if and only if the support of the fan covers the lattice.
We may think of an n-dimensional cone o as representing coordinate patches. More
concretely let o be generated by vy, ..., v,, then the associated coordinate patch is
U, = {(#1,...,2)|zi > 0}. Lower dimensional cones represent regions of overlap
where patches are glued together.

In the next step we want to specify the polynomials whose vanishing locus will
define the CY. Starting with a lattice N and a fan 2, () = {v;, ..., v}, we consider
the dual lattice of N, M := Hom(N,Z). Then we define the polyhedron A through

A ={we M[(v;,w) >—-1,i=1,...,k}. (D.10)

Then consider the (Laurent) polynomial given by

k
fa=Y au [ (D.11)

wEA i=1

where a,, € C are parameters. Under a scaling as in (D.8) fa transforms homoge-
neously. Now the polynomial equation fa = 0 is well defined. We further define the
dual polyhedron A* by

A" = {v € Ng|[{(v,w) > =1, Yw € A)}. (D.12)

A is called reflerive if A* is a lattice polyhedron, i.e., if the vertices of A* C Ny lie
in N. Note that (A*)* = A.
To a pair of reflexive polyhedra (A, A*) we can again associate the fan defined by

Y (A) = {complete rational fan whose cones are the cones over (D.13)

the faces of A with apex at the origin}

Since we want the fan to consist of simplicial basic cones we need a maximal star
triangulation of the polyhedron.

It was shown by Bartyrev that given a pair of reflexive polyhedra (A, A*) the
hypersurface defined by the vanishing of a generic polynomial defined by A is a
smooth CY manifold for n < 4. For n < 3 the toric variety itself is ensured to be
smooth by reflexivity. For n = 4 the toric variety may have point like singularities,
which however are missed by the generic hypersurface.

Exchanging the role of A and A* above gives rise to the mirror CY. There exist
combinatorial formulas, also found by Bartyrev [142], for the Hodge numbers of the
CY as sums over lattice points of faces of the involved polyhedra, see also [141].
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There are 16 reflexive 2 dimensional polyhedra. They describe elliptic curves.

All 4319 three dimensional reflexive polyhedra have been classified in [130]. They
describe K3 surfaces.

Finally all 473,800,776 reflexive 4 dimensional polyhedra have been classified in [143]
and can be accessed on [81]. They rise to 6 dimensional CY’s and hence are important
for string compactifications to 4 dimensions.

E Conformal bootstrap

In this appendix we will give a brief summary the conformal bootstrap, as introduced
in [114], sections 2-4, for the topological string partition function on genus one fibered
CY 3-folds with N-sections for N € {2,3,4}.

A Calabi-Yau is said to be genus one fibered over a base B if there exists a
surjective map 7 : X — B s.t. the generic fiber over B is a torus. If the projection
admits a section X is called elliptically fibered. We use the convention that a genus
one fibration in general does not have a section but only a N-section intersecting
the generic fiber N-times, i.e., it corresponds to N points that can be identified
in each fiber. Moving along closed paths in the base of the fibration these points
will generically experience a monodromy (this distinguishes them from a union of
N sections). In our notation a genus one fibered manifold with N-sections does not
have N’-sections with N/ < N and in particular it has no section.

We start by considering an elliptically fibered 3-fold M with base B and projection 7.
By the Shioda-Tate-Wazir theorem [144] its homology group H4(M) is degenerated
by the three types of divisors:

i) vertical divisors D; = 7' D;, where D; € Hy(B).

ii) fibral divisors consisting of rational curves fibered over a divisor in B.

iii) sections, which can be split into holomorphic sections, intersecting every fiber
in a point, and rational sections, that intersect every smooth irreducible fiber in a
point.

By convention an elliptic fibration has at least one section (which can be either
holomorphic or rational). One can choose any section to be the zero section. This
enables one to canonically identify every fiber with a torus, C/(Z + 7Z), using the
intersection with the zero section as the origin. Addition of points on the fiber defines
a group law in the fiber which may be extended to the rational sections and defines
the Mordell-Weil group MW (M). A basis of Hy(M) is then given by the zero section
and a set of sections that are linear independent in the Mordell-Weil group together
with a basis of vertical divisors and fibral divisors.

For genus one fibered threefolds the above may be generalised [129] by consid-
ering k-sections instead of sections. One can pick a ‘zero k-section’ and act on it
with an appropriate generalisation of the Mordell-Weil group to obtain a basis of
k-sections.
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For an elliptically fibered CY manifold M one can define the Shioda map o :
MW (M) — Hy(M,Z), which is a homomorphism from the Mordell-Weill group to
Hy(M,Z). Tt can uniquely be defined in terms of its intersection properties [145].
This definition may then be generalized to genus one fibrations with N-sections in
the following way. Start by defining the inner product

(,): Hy(M) x Hy(M) — Hy(B), (S,5") — —m(S-5). (E.1)

Then for an N-section E of a CY 3-fold one defines o(F) := E + D where D is the
unique linear combination of the zero- N-section, vertical divisors and fibral divisors
s.t. o(FE) is orthogonal to the subspace spanned by those divisors in Hy(M) w.r.t.
(-,-).

Irreducible curves in M will arise from either curves in the base or from rational
curves that are fibers of fibral divisors or from isolated rational curves over points
of the base (the latter two will collectively be called fibral curves). One can expand
the topological string partition function Z,, = exp(z;’io A¥72F,) in the following
manner

Ziop (T, N) = Zo(m M) [ 14+ D Zg(m,m, \)Q” (E.2)

BcHL(B.L)

where one finds that for an elliptic fibration or for a genus one fibration with N-
sections, N € {1,2,3,4}, the Kéhler modulus 7 should be such that N7 is the
complexified volume of the generic fiber. Further m are the complexified volumes of
the fibral curves and Q? = exp(2ni}_, 8t;), where t;,i = 1,..., h"(B) are shifted
volumes of curves in the base. This shift is linear in 7 and was first observed for
elliptic figurations in [146, 147].

Modular properties of the topological string partition function are consequences of
the general transformation behaviour under monodromies in the stringy Kéhler mod-
uli space.

The automorphic properties of Z,, can be derived from the wave function interpre-
tation of Zy,, [148], which was investigated in, e.g., [149, 150].

Assume M is elliptic or genus one fibration. Parametrize the Kéhler form w as

r rk(G) ba(B)
w=T7-(Eo+D)+ Y _mi-o(E)+ > mi-Dpiy+ Y & D (E.3)
i=1 i=r+1 i=1

where D;; denotes a basis of fibral divisors,i = 1,...,7k(G) **, E;, i = 0,...,r are
independent N-sections; D are vertical divisors dual to the curves C; = %EO - D,

42The notation rk(G) arises from the ‘F-theory-dictionary’ discussed in Appendix A of [114].
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with D; = 7'D;, i = 1,...,by(B), in the sense that
D, C; = Nd,,. (E.4)

The ‘zero N-section’ Ej is shifted by D, the unique vertical divisor s.t. Eo =FEy+D
is orthogonal to all of these curves C;. Furthermore the shifted Kahler parameters
ti, i=1,...,h"(B) are defined to be

G 1 =
tl’ = ti + ﬁT’ with a; = /]V[EOZ . Dl (E5)

One assumes that there are no fibral divisors at a generic point of the complex
structure moduli space of M.

Then assuming an expansion as in (E.2) one can make the following ansatz for
the expansion coefficients Zz(7,m, \),

1 Qbﬁ(Tu m, >‘) (E 6)
(NPT TIL 620 (N7, 50) |

Zg(T,m, A) =
5( ) ;

where ¢ (B) is the first Chern class of the base, the numerator is an element

B

05(7,m, \) € M.(N)[61(NT,#), 601(NT, @)] - Agy (7)1~ % o (E.7)

where M, (N) denotes the ring of modular forms for I';(N), e stands for any elliptic
parameter z € {\,m} and the exponent of Ayy(7) is determined by the congruence

relation . B
R _ .
1 N =3 [Ncl(B) N} S mod 1. (E.8)
The weight of ¢z is given by
w=6c1(B)-B—Y B (E.9)
!
and the index w.r.t. the topological string coupling A is
P E.10
Tﬁ*ﬁﬁ’(ﬁ_cl(ﬁ))' ( . )
The index matrix w.r.t. the geometric elliptic parameters m;, i = 1,...,rk(G) is

| ( Am(B) o(B) -5 forl<ij<r
rh = ¥ { —3m(Dyi- Dyi)- B forr <i,j <rk(G) . (E.11)
0 otherwise
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F Higgsing of the gauge group

In this appendix we will explain in some detail how the gauge group of the models of
table 4 and 5 can be Higgsed by giving vacuum expectation values (vev’s) to scalars
in the hypermultiplets. We take the necessary branching rules from [151]. For more
on Higgsing see for example [99, 152—-154].

For concreteness sake we will study the third model of table 5. Before Higgsing
we have the following gauge group and matter content, coming from the twisted and
untwisted sector

SO(14) x SO(14) x U(1)* (F.1)
4(14,1) +4(1,14) 4 (64,1) + (1,64) + 8(1,1).
The matter content is labelled by the representations under the two SO(14) groups,
i.e. we have left out the U(1) charges. Counting degrees of freedom we find the
numbers of vector- and hypermultiplets N, = 184 and N, = 248. We will start by

explaining how to Higgs the first SO(14) factor.
For this we notice the following branching rules

SO(14) D SO(13): 14 13+ 1, 64 — 64. (F.2)

Giving a vev to one 14 will break SO(14) to SO(13). One 13 will get ‘caten’ by the
broken generators of the gauge fields (turning them massive) and the result is the
following gauge group and matter spectrum

SO(13) x SO(14) x U(1)?, (F.3)
3(13,1) +4(1,14) + (64,1) + (1,64) + 12(1,1).

We may check that N, — N, = 235 — 171 = 64 is unchanged. In the next step we
give a vev to a 13 and use the branching rules

SO(13) D SO(12) : 13 12+ 1, 64 — 32+ 32", (F.4)

Similar to before a 12 gets ‘eaten’ by the broken generators of SO(13) and we find
the following gauge group and matter spectrum after Higgsing

SO(12) x SO(14) x U(1)?, (F.5)
2(12,1) +4(1,14) + (32,1) + (32',1) + (1,64) + 15(1,1).
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Two more similar steps lead to the following gauge group and matter spectrum

SO(10) x SO(14) x U(1)?, (F.6)
4(1,14) +2(16,1) +2(16,1) + (1,64) + 18(1,1).

The branching rules

SO(10) D SU(5) x U(1) : 16 — 10(1) + 5(—3) + 1(5), (F.7)
16 — 10(—1) +5(3) + 1(—5)

(the number in brackets give the U(1) charge) indicate that we can give a vev to
16 and 16 thereby breaking SO(10) to SU(5) where 10,10 and one scalar will get
‘eaten’ by the broken generators. The gauge group and spectrum after this step of
Higgsing are thus

SU(5) x SO(14) x U(1)?, (F.8)

4(1,14) +2(5,1) +2(5,1) + (10,1) + (10,1) + (1,64) +21(1,1).
In the next step we give a vev to 5,5 and use the branching rules

SU(5) > SUMA) x U(1) : 5 — 4(1) + 1(—4), (F.9)
10 — 4(—3) + 6(2)

to obtain the gauge group and spectrum

SU(4) x SO(14) x U(1)?, (F.10)
4(1,14) +2(4,1) +2(4,1) + (6,1) + (6,1) + (1,64) + 24(1,1).

We proceed by breaking SU(4) to SU(3) by giving a vev to 4,4 and using the
branching rules

SU(4) D SU(3) x U(1) : 4 — 3(1) + 1(—3), (F.11)
6 — 3(—2) + 3(2).

We obtain the following gauge group and spectrum

SU(3) x SO(14) x U(1)?, (F.12)
4(1,14) 4+ 3(3,1) +3(3,1) + (1,64) +27(1,1).

We can continue in similar manner using 3(3,1) and 3(3,1) to Higgs SU(3) com-
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pletely and end up with

SO(14) x U(1)?, (F.13)
4(1,14) + (1,64) + 37(1,1).

In the same way we may Higgs the second SO(14). The two U(1) factors in the
gauge group may be Higgsed by any of the charged scalars. Thus we end up with a
completely Higgsed gauge group and 64 neutral scalars.
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