
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

Dissertation

Moonshine in Conformal Field Theory
and String Theory

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Privatdoz. Timm Michael Wrase, PhD
E136

Institut für Theoretische Physik

eingereicht an der Technischen Universität Wien
Fakultät für Physik

von

Dipl.-Ing. Andreas Banlaki
Matr.Nr.: 9725099

Rückaufgasse 33/3, 1190 Wien

Wien, am 26. Mai 2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Kurzfassung

Moonshine steht für eine überraschende Verbindung zwischen scheinbar unabhängigen

Gebieten der Mathematik, nämlich modularen Objekten (Zahlentheorie) und spo-

radischen Gruppen (Gruppentheorie). Historisch wird John MacKays Beobachtung

vom Jahr 1978 als Anfang dieses Gebiets betrachtet, in der er eine Verbindung zwis-

chen der Kleinschen J-Funktion und der Monster Gruppe erkannte. Die genauere Un-

tersuchung von MacKays Beobachtung und der Beweis der ‘Monstrous-Moonshine-

Vermutung’ durch Borcherds im Jahr 1992 hat zu der Entwicklung neuer Konzept

geführt und zu neuen Einblicken in der Mathematik und der Physik beigetragen.

Die Entdeckung von Mathieu Moonshine durch Eguchi, Ooguri und Tachikawa im

Jahr 2010, welche eine Verbindung zwischen dem elliptischen Genus von K3 und der

größten Mathieu Gruppe herstellte, erneuerte das Interesse an der Untersuchung von

Moonshine-Phänomenen. In den darauffolgenden Jahren sind viel weitere Mondschein-

Phänomene entdeckt und untersucht worden, was zu neuen überraschenden Ein-

blicken geführt hat.

In meiner Arbeit versuche ich auf verschiedene Arten neue Moonshine-Phänomene zu

finden. Einerseits untersuche ich, ob es für höher dimensionale Calabi-Yau Manig-

faltigketen einen Zusammenhang mit Moonshine gibt. Der Zusammenhang wird

durch den elliptischen Genus der Mannigfaltigkeiten hergestellt. Die Untersuchung

zeigt einige mögliche interessante Verbindungen, insbesondere von 5-dimensionalen

Calabi-Yau Mannigfaltigkeiten zu Mathieu Moonshine. Bei einer genaueren Betrach-

tung lassen sich diese aber nicht bekräftigen. Ein anderer Zugang ergibt sich durch

die Dualität zwischen heterotischem und Typ II String. Hierdurch kann Mathieu

Moonshine mit topologischen Invarianten (Gromov-Witten/Gopakumar-Vafa Invari-

anten) von bestimmten Calabi-Yau Mannigfaltigkeiten in Zusammenhang gebracht

werden. Konkret untersuche ich CHL-Orbifolds von E8×E8 heterotischen Kompak-

tifizierungen auf K3× T 2. In der effektiven 4 dimensionalen Theorie dieser Modelle

stehen gewisse gravitative Kopplungen und das Prepotential der Vektormultiplet

Moduli im Zusammenhang mit den ‘getwisten’ und ‘getwinten’ ellitpischen Genera

von K3. In den dualen Typ II Kompaktifzierungen sind diese Kopplungen und das

Prepotential durch die topologischen Invarianten der Calabi-Yau Mannigfaltigkeit

bestimmt. Dadurch ergibt sich ein interessanter Zusammenhang zwischen Math-

ieu Moonshine und den Gromov-Witten/Goparkuma-Vafa Invarianten bestimmter

Calabi-Yau Mannigfaltigkeiten. Des weiteren ist es möglich für bestimmte heterotis-

che CHL Orbifolds die dualen Calabi-Yau Manigfaltigkeiten zu finden und zum Teil

explizit zu konstruieren.

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Abstract

Moonshine, which famously started with John MacKays observation in 1978 connect-

ing the Klein-J-function to the Monster group, connects seemingly unrelated fields of

mathematics - modular objects (number theory) and sporadic groups (group theory).

The precise analysis of the initial observation and its proof by Borcherds in 1992 has

led to new concepts and insights both in mathematics and physics. The discovery

of Mathieu moonshine by Eguchi, Ooguri and Tachikawa in 2010, linking the elliptic

genus of K3 to the largest Mathieu group, brought renewed interest to the research

field. Since then many new moonshine phenomena have been found shedding light

on ever new surprising connections.

In this thesis I search for new moonshine in different ways. I try to connect higher

dimensional Calabi-Yau manifolds to moonshine by analysing their elliptic genera. I

find some interesting initial results which however cease to hold under closer analy-

sis. In a different approach I make use of heterotic-type II duality to relate Mathieu

moonshine to the Gromov-Witten invariants of certain Calabi-Yau threefolds. In

particular I study CHL orbifolds of E8 × E8 heterotic string compactifications on

K3 × T 2. In these models the twisted twining elliptic genera of K3 show up in the

gravitational couplings and the vector moduli prepotential of the four dimensional

effective theory. In the dual type II compactifications these couplings and the prepo-

tential are governed by the topology (Gromov-Witten/Gopakumar-Vafa invariants)

of the Calabi-Yau threefolds the theory is compactified on. In this way the Calabi-

Yau manifolds get connected to Mathieu moonshine. For certain CHL orbifolds of

the heterotic string one is able to find the dual Calabi-Yau manifolds, in some cases

by direct construction.
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1 Introduction

1.1 Historic remarks and overview

This work is on Moonshine in conformal field theory and sting theory. Moonshine

in general refers to surprising connections between two rather unrelated fields of

mathematics namely modular functions and special finite groups (sporadic groups).

In mathematics modular functions had originally mostly been considered in number

theory while the classification of finite groups had been taken place completely inde-

pendently ((see, e.g, [1, 2]) for some historic notes). However in 1978 John McKay

observed that the coefficients of a certain modular function (the Klein-J-function 1)

correspond to sums of dimensions of irreducible representations of the largest spo-

radic group (the Monster group)2. The simplest such relation famously takes the

form

196884 = 196883 + 1. (1.1)

This naive observation had non the less far reaching implications for mathematics as

it became clear that it was no mere coincidence but a consequence of a much deeper

connection between group theory/algebra and number theory (modular objects). In

the months/years following the initial observation the ‘Monstrous Moonshine con-

jecture’ was formulated by Conway and Norton [3]. The proof of this conjecture

involved the construction of the ‘Monster module’ by Frenkel, Lepowsky, Meurman

[4] with the help of vertex operator algebras, which had previously been invented by

Borcherds [5]. The Monstrous Moonshine conjecture was finally proven by Borcherds

in 1992 [6], for which he received the Fields medal in 1998.

The connection to physics goes back Dixon-Gispang-Harvey [7] who gave a ‘phys-

ical’ construction of the Monster module. More precisely they constructed a chiral

conformal field theory (CFT) consisting of 24 bosons on a Z2 orbifold of the Leech

lattice. This CFT has the Monster group as its symmetry group and its partition

function is the Klein-J-function. In this setting the somehow rather abstract ver-

tex operator algebra can be interpreted as the algebra of chiral primary fields. The

connection between the formerly unconnected areas of mathematics becomes natural

here, since the Monster group appears as symmetry group of a (chiral) CFT and the

modular object is a counting function of states that arise as vacuum amplitude on

the torus.

Another instance of moonshine was observed by Conway and Norton in [3] con-

necting the Conway group Co0 to certain congruence subgroups of the modular group

SL(2,Z), which again can be linked to modular objects. A module in this setting

1It is uniquely defined to be the complex function invariant under the full modular group SL(2,Z)
mapping SL(2,Z)\H ∪ {∞} bijectively to C ∪ {∞} with expansion e−2πiz +O(e2πiz) at z → i∞.

2Already in 1975 Andrew Ogg had noticed a connection between congruence subgroups of
SL(2,Z) which later was seen to be connected to moonshine.
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was found in [8, 9]. The ‘physical’ realization as a CFT in this case is different than

for Monstrous moonshine as it also involves fermions.

Interest in moonshine was greatly renewed in 2010, when Eguchi, Ooguri and

Tachikawa [10] noticed that the elliptic genus of a N = (4, 4) non-linear sigma model

on K3 seems to be related to the largest Mathieu group M24 when expanded in

N = 4 characters. Subsequent research [11–15] confirmed this connection. However

the authors of [16] made it clear that M24 cannot appear directly as the symmetry

of a K3 sigma model. Since the elliptic genus counts BPS states of the theory M24

should be a symmetry of these states. Also since it is an index and does not depend

on the moduli space of the theory, M24 might arise as a ‘sum’ of symmetries at

different points in moduli space. These ideas which have been pursued in [17–20]

have been coined ‘symmetry-surfing’.

In [21, 22] Cheng, Duncan and Harvey established a new kind of moonshine

connecting all Niemeier lattices and their symmetry groups to slightly generalized

modular functions (mock modular forms) which also includes Mathieu moonshine as

a special case. In [15, 23] the existence of a module was shown such that the specific

functions that appear are trace functions. In [24] the Umbral moonshine was related

to theK3 sigma models. In [25] the authors showed that all umbral symmetry groups

appear at different points in the moduli space of type IIA string theory on K3× T 2

which provides a natural physics starting point for its understanding.

In [26, 27] moonshine phenomena involving the Thompson group were found and

proven and in [28] moonshine involving the O’Nan group was proven.

We see that the general picture that emerges is that the physical models form

a natural connection between seemingly unrelated areas of modular functions and

finite groups. In this setting the modular functions appear as certain functions of

the states of the model. Modular symmetries acting on the moduli space of these

models are then responsible for the modular properties of the counting functions.

The symmetries acting on the states of the model are then the special finite groups

that appear. Lately it has been tried to construct CFTs with sporadic symmetries

in a more systematic way [29].

1.2 Mathieu Moonshine and Gromov-Witten invariants

In compactifications of the E8 × E8 heterotic string on K3 × T 2 the elliptic genus

is connected to certain gravitational couplings of the effective theory. In this way

these couplings also get related to Mathieu moonshine. Further through the duality

with type II string theory compactified on Calabi-Yau threefolds it gets connected to

topological invariants (Gromov-Witten/Gopakumar-Vafa invariants) of these mani-

folds [30, 31]. Mathieu Moonshine has also been related to the Yukawa couplings and

the holomorphic 3-form in these models [32]. Further in [33] Mathieu moonshine has

been shown to be related to four dimensional theories with N = 1 supersymmetry.
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So one may observe that through string dualities moonshine has also been connected

to (algebraic) geometry.

1.3 Further appearances of moonshine

Since modular objects appear naturally in string compactifications potential rela-

tions to moonshine can be found in many places. As an example consider type II

string theory compactified on K3×T 2. The counting function of dyons (electric and

magnetic charged BPS states) is a Siegel modular form which can be obtained by

a well described procedure (‘Borcherds lift’) from the elliptic genus of K3, see, e.g,

[34] and reference therein. The number of dyons also gives a count of the microstates

of supersymmetric black holes.In the M-theory setting this has also been explored

in, e.g, [35]. The Monster module has also been related to 3 dimensional gravity by

Witten in [36].

1.4 About this thesis

This thesis is aimed at finding and establishing new moonshine connections. We start

by introducing the necessary mathematical building block in section 2. In section 3

we discuss some known instances of moonshine in greater depth. Then in section 4

we look for moonshine in the elliptic genera of higher dimensional Calabi-Yau man-

ifolds. We do this by expanding them in superconformal characters and calculating

their twined elliptic genera. We also analyse certain toroidal and Gepner models.This

section is based on [37]. In section 5 Mathieu moonshine in CHL-orbifolds of het-

erotic compactifications on K3× T 2 is studied. Through duality with type II string

theory it gets connected the Gromov-Witten invariants of the dual CY. We explain

the models on both sides of the duality and find the dual Calabi-Yau manifolds for

certain heterotic models. This section is based on [31, 38].

In the course of my PhD studies I have published the following papers

[1 ] A. Banlaki, A. Chattopadhyaya, A. Kidambi, T. Schimannek, M. Schimpf, Het-

erotic strings on (K3× T 2)/Z3 and their dual Calabi-Yau threefolds, JHEP 04

(2020) 203, [1911.09697].

[2 ] A. Banlaki, A. Chowdhury, A. Kidambi, M. Schimpf, On Mathieu Moonshine

and Gromov-Witten invariants, JHEP 02 (2020) 082,[1811.11619]

[3 ] A. Banlaki, A. Chowdhury, C. Roupec, T. Wrase, Scaling limits of dS vacua and

the swampland, JHEP 1903 (2019) 065, [1811.07880]

[4 ] A. Banlaki, A. Chowdhury, A. Kidambi, M. Schimpf, H. Skarke, T. Wrase,

Calabi-Yau manifolds and sporadic groups, JHEP 1802 (2018) 129, [1711.09698]
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This thesis is based on [1], [2], [4] which are all connected to moonshine, which

was my main research interest during my PhD. My article [3] arose from my interest

in the swampland conjectures in particular in the dS swampland conjecture. My

contributions to these articles has been the following:

[1 ] I Higgsed the heterotic spectrum and calculated the Gopakumar-Vafa invariants

predicted from the heterotic side and checked with the results on the Type II

side.

[2 ] I calculated the Higgsed spectrum of the different heterotic models. For the

relevant models I searched the Kreuzer-Skarke database for matching CYs.

I calculated the Gromov-Witten invariants and analysed if they match the

heterotic results.

[3 ] I analysed some of scaling limits of the scalar potential and helped in analysing

the scalar potential of the explicit example we discuss.

[4 ] I wrote some of the initial Mathematica code used for analysing 5-fold twined

elliptic genera and calculated some of the twisted elliptic genera of the toroidal

and Gepner models of chapter 5.
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2 Mathematical building blocks

In this section we will introduce the basic mathematical objects that lie at the heart

of moonshine. As mentioned in the introduction these are (generalized) modular

forms/Jacobi forms and sporadic groups.

2.1 Modular objects

In this subsection we introduce the modular objects that appear in moonshine. We

follow [39–43].

Given two complex numbers λ1, λ2 ∈ C with Im(λ2/λ1) 6= 0, we can define the

lattice Λ = 〈λ1, λ2〉 := {nλ1 +mλ2|n,m ∈ Z}, and the torus

T 2 = {z ∈ C|z ∼ z + λ, ∀λ ∈ Λ}.

Using conformal transformations continuously connected to the identity, we can ro-

tate and rescale the basis λ1, λ2 of the lattice. In particular thereby we can always

set λ1 = 1 and T 2 can hence be completely specified by the modulus τ := λ2

λ1
. In

particular τ can be chosen to lie in the upper half plane H := {z ∈ C|Im(z) > 0},
since we can always interchange λ1 and λ2. Conformal transformations which are not

continuously connected to the identity correspond to a change of oriented basis of

Λ. They are generated by the modular group SL(2,Z) of 2× 2 matrices with integer

entries and unit determinant. They act on the modular parameter as 3

SL(2,Z) ∋ γ =

(

a b

c d

)

: H → H , τ 7→ aτ + b

cτ + d
(2.1)

and are generated by the two elements 4

T : τ → τ + 1 , S : τ → −1

τ
. (2.2)

Noting that
(

−1 0
0 −1

)

is the only element (apart from the identity itself) that acts

trivially on H, we define the quotient PSL(2,Z) = SL(2,Z)/
(

−1 0
0 −1

)

, which now

acts faithfully on H. In general we also want to add ∞ (or i∞) to H. It is then

understood that for γ = ( a b
c d ) ∈ SL(2,Z) , γ(∞) := a

c
, so that altogether we add

Q∪{∞} to H. These additional points are called cusps and SL(2,Z) acts transitively

on them.

3Forming a subgroup of SL(2,R) and the associated Möbius transformations with real coeffi-
cients.

4On the lattice this corresponds to changing to the basis: < λ1, λ2 + λ1 > and < −λ2, λ1 >
respectively.
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The fundamental domain SL(2,Z)\H may be represented by the set

F := {z ∈ H| − 1

2
≤ Rez ≤ 1

2
and |z| ≥ 1} (2.3)

together with the identification z1 ∼ z2 iff Re z1 = ±1
2
and z2 = z1 ± 1 or if

|z1| = 1 and z2 = − 1
z1
. It is known as the key-hole region. Every torus can uniquely

characterised by a point in this region up to conformal transformations. Adjoining

the cusps, (complex) infinity as well as Q, to the key hole region we obtain a set of

genus zero, i.e., homeomorphic to the 2-sphere S2.

More generally for every N ∈ N, N ≥ 1, we define the following subgroups of the full

modular group SL(2,Z):

Γ0(N) := {( a b
c d ) ∈ Γ|c ≡ 0 (modN)} (2.4)

Γ1(N) := {( a b
c d ) ∈ Γ|c ≡ 0 (mod N) and a, d ≡ 1 (mod N)} (2.5)

Γ(N) := {( a b
c d ) ∈ Γ|b, c ≡ 0 (mod N) and a, d ≡ 1 (mod N)}. (2.6)

In general we call a subgroup Γ < SL(2,Z) congruence subgroup, if Γ contains Γ(N)

for some N ≥ 1. The action of a congruence subgroup on the cusps, Q ∪ {∞}, has
finite many orbits.

We note that the points of Γ0(N)\H characterize a torus with a cyclic subgroup of

fixed order N and the points of Γ1(N)\H characterize a torus with a generator of a

cyclic subgroup of fixed order N [43]. The last statement can be understood in the

following way [43]:

For a point in Γ1(N)\H let τ ∈ F be the point that arises through the natural map

Γ1(N)\H → SL(2,Z)\H. Then consider 1/N ∈ Z+τZ as generator of a cyclic group

of order N . In general for γ = ( a b
c d ) ∈ SL(2,Z) the map

f : C/Z+ τZ → C/Z+ γ(τ)Z , z 7→ z

cτ + d
(2.7)

is an isomorphism between the torus with complex structure τ and γ(τ). If we further

assume γ ∈ Γ1(N) then 1/N remains fixed under a change of basis by γ, since

1

N
−

1
N

cτ + d
=

c
N
+ d−1

N

cτ + d
∈ f(Z+ τZ) = Z+ γ(τ)Z. (2.8)

So a specific point of order N is fixed. Further given a torus with complex structure

τ together with a generator of a cyclic group one can find an isomorphism mapping

this torus to a torus with complex structure in Γ1(N)\H and mapping the generator

to 1/N .
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2.1.1 Modular forms

Having introduced the modular group above we now discuss functions which have

special transformation properties under it.

We call a function f : C → C modular if it is meromorphic and invariant under the

modular group, i.e.,

f(z) = f(γz) , ∀γ ∈ SL(2,Z). (2.9)

Note that modular functions naturally form a vector space. A modular function

can equivalently be seen as meromorphic function defined on the fundamental do-

main SL(2,Z) \ H or as a function F on a lattices in the complex plane, satisfying

F (Λ) = F (λΛ) for all λ ∈ C∗, where the connection between f and F is given by:

f(z) := F (〈1, z〉) and F (< λ1, λ2 >) := f(λ1

λ2
).

More generally for a congruence subgroup Γ of SL(2,Z) one defines a modular func-

tion for Γ 5 to be a meromorphic function on H invariant under Γ and of exponential

growth at infinity, i.e., f(x+ iy) = O(eCy) for y → ∞ and some C > 0.

This concept may be generalized by demanding the corresponding function F on

lattices to have a certain integer weight k under scaling, i.e., F (λΛ) = λ−kF (Λ).

Translating this back to functions on H we define a modular function of weight k for

a congruence subgroup Γ to be defined as above but with (2.9) replaced by

f(γz) = (cz + d)kf(z), ∀γ = ( a b
c d ) ∈ Γ. (2.10)

Similarly we define a modular form of weight k for Γ to be a holomorphic function

on H transforming as in (2.10) for all γ ∈ Γ and of subexponential growth at infinity,

i.e.,

f(x+ iy) = O(eCy) for y → ∞ and for all C > 0. (2.11)

The growth condition implies polynomial growth at infinity, more precisely that

f(x+ iy) = O(1) for y → ∞ and f(1
z
) = O(y−k) for y → 0. The set of modular forms

of weight k on a discrete group Γ < SL(2,R) is denoted by Mk(Γ). It forms a finite

dimensional vector space and is zero for k < 0. The algebra M∗(Γ) :=
⊕

kMk(Γ)

consisting of modular forms of all weights on Γ̃ is finitely generated. Every modular

function can be represented as a fraction of two modular forms.

Specializing property (2.10) to the case ( 1 1
0 1 ) we see that f(z + 1) = f(z), i.e., the

modular forms on a congruence group Γ̃ containing ( 1 1
0 1 ) are periodic in z and hence

may be expanded in q := e2πiz,

f(z) =
∑

n∈Z

anq
n (2.12)

5Sometimes also modular function on Γ is used.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

The growth conditions imply that only finitely many an, n < 0 can be non-zero for

a modular function and that an = 0 for n < 0 for a modular form. A modular form

for which a0 = 0 is called a cusp form. Further whenever
(

−1 0
0 −1

)

∈ Γ we see that

Mk(Γ) is zero for k odd (again by (2.10)).

Typical examples of modular forms of weight 2k, k > 1, for SL(2,Z) are the Eisen-

stein series given by

E2k(z) = 1 +
2

ζ(1− 2k)

∞
∑

n=1

n2k−1qn

1− qn
, (2.13)

where ζ is the Riemann zeta function. In particular one can show that the space of

all modular forms for SL(2,Z), M∗(SL(2,Z)), can be generated by the Eisenstein

series E4, E6. More explicit expressions are given in Appendix A.

Another modular function which will be of particular importance for us is the Klein-

J function J(z). It is the unique modular function of weight zero mapping the

(enlarged) fundamental domain, F∪{∞} , bijectively to C∪∞ and with the following

expansion at z → i∞ (q → 0)

J(z) = q−1 +O(q). (2.14)

In terms of the Eisenstein series J(z) may be expressed as

J(z) = 1728
E4(z)

3

E4(z)3 − E6(z)2
− 744. (2.15)

Its first few expansion coefficients around z → i∞ (q → 0) are

J(z) = q−1 + 196884q + 21493760q2 + 864299970q3 + . . . . (2.16)

It is a Hauptmodul for the function field of modular functions of weight 0 for SL(2,Z),

i.e., each function k(z) of this field may be written as a rational function of J(z) with

complex coefficients 6 ,

k(z) =

∑n
i=0 aiJ(z)

i

∑m
j=0 bjJ(z)

j
, ai, bj ∈ C. (2.17)

The concept of modular forms may be generalized in different ways. The partic-

ular generalizations we will encounter are modular forms of half-integer weight with

multiplier system. We simply give two examples which are important for us.

6Recall that meromorphic functions on the sphere (on C ∪∞) are in general rational functions,
i.e., quotients of polynomials.
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First we define the Dedekind eta function

η(τ) = q
1
24

∞
∏

n=1

(1− qn). (2.18)

It transforms under modular transformations as

η(τ + 1) = e
iπ
12η(τ) , η(−1

τ
) =

√
−iτη(τ), (2.19)

i.e., it is a modular form of weight 1
2
with a multiplier system. As a side note,

q−1/24η(τ) is known as the Euler function φ(q) and is the multiplicative inverse of

the generating functions of partitions of natural numbers, i.e.,

1

φ(q)
= q

1
24

1

η(τ)
=

∞
∑

k=0

p(k)qk (2.20)

where p(k) is the number of partitions of k. Due to the Euler identity η(τ) has a

power series/Laurent series expansion of the form

η(τ) = q
1
24

∞
∑

n=−∞

(−1)nq(3n
2−n)/2. (2.21)

The 24-th power of the Dedekind eta function is known as discriminant function,

∆(z) := η(z)24. It is a modular form of weight 12 for SL(2,Z). It was originally

studied by Ramanujan. Its inverse also features prominently in the chiral part of the

bosonic string partition function.

As a second example we introduce the theta function

θ(τ) := θ3(2τ, 0) =
∑

n∈Z

qn
2

. (2.22)

It transforms as

θ(z + 1) = θ(z) , θ(− 1

4z
) =

√

2z

i
θ(z) (2.23)

from which one can show that it is a weight 1/2 modular form for Γ0(4) with non-

trivial multiplier system. If we define Nn(k) to be the number of ways one can write

the integer n as a sum of k squares, counting order and signs, we see that

∞
∑

n=0

Nn(k)q
n =

∑

a1∈Z

qa
2
1 × · · · ×

∑

ak∈Z

qa
2
k = θ(z)k. (2.24)

Hence θ(z)k is the generating function for Nn(k). For k = 2 this with some additional

work can for example be used to prove that every prime p, p ≡ 1 mod 4, is the sum
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of 2 squares [44].

We also want to mention that we can also consider θ3(z, 0) as a modular form for

the full modular group SL(2,Z). What we find is that it transforms as a component

of the vector valued modular form Θ(z) := (θ2(z, 0), θ3(z, 0), θ4(z, 0)), which has the

following transformation properties

Θ

(

−1

z

)

=
√
−iz SΘ(z) , Θ(z + 1) = T Θ(z) (2.25)

where

S =





0 0 1

0 1 0

1 0 0



 , T =





eiπ/4 0 0

0 0 1

0 1 0



 . (2.26)

Finally we mention that there exist another generalization of modular forms, called

mock modular forms, see, e.g., [34, 41]. Let w ∈ 1
2
Z and let h be a holomorphic

function H with at most exponential growth at all cusps. h is called a weakly

holomorphic mock modular form of weight w for a subgroup Γ ≤ SL(2,R) if there

is a modular from of weight 2 − w such that the sum ĥ := h + g∗ transforms like

a holomorphic modular from of weight w for Γ. Here g∗ is uniquely defined by g

(we do not give the exact definition, since we will not need it), however g∗ is not

holomorphic, rather it fulfils

− 2iI(τ)w
∂

∂τ̄
g∗(τ) = g(τ). (2.27)

In the physical setting mock modular forms will typically appear when the theory

(its moduli space) is non-compact.

2.1.2 Jacobi forms

In this subsection we introduce a different set of modular objects, called (weak) Jacobi

forms. The prime example of a Jacobi form we will encounter later will be the elliptic

genus of N = 2 super conformal field theories. We start with the definition [34, 44].

A weak Jacobi form φk.m(τ, z) of weight k ∈ Z and index m ∈ Z+ is a function from

H× C → C fulfilling the following properties

1. φk,m(τ, z) is ‘modular in τ and elliptic in z’, i.e.,

φk,m

(

aτ + b

cτ + d
,

z

cτ + d

)

= (cτ + d)ke
2πimcz2

cτ+d φk,m(τ, z), ∀ ( a b
c d ) ∈ SL(2,Z).

(2.28)

2. φk,m(τ, z) transforms under translations of z by τZ+ Z in the following way

φk,m(τ, z+λτ +µ) = (−1)2m(λ+µ)e−2πim(λ2τ+2λz)φk,m(τ, z), ∀λ, µ ∈ Z. (2.29)
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3. From the above properties it follows that φk,m(τ+1, z) = φk,m(τ, z+1) = φ(τ, z)

which allows for a Fourier expansion

φk,m(τ, z) =
∑

n,r

c(n, r)qnyr (2.30)

where q := e2πiτ , y := e2πiz. In particular the property (2.28) implies that

c(n, r) = C(4nm − r2, r) where C(∆, r) only depends on r (mod 2m). The

quantity ∆ = 4mn− r2 is called the discriminant. A Jacobi form φk,m(τ, z) is

called holomorphic if C(∆, r) vanishes for ∆ < 0, i.e., if

c(n, r) = 0 unless 4nm ≥ r2, (2.31)

it is called a Jacobi cusp form if C(∆, r) vanishes for ∆ ≤ 0, i.e., if

c(n, r) = 0 unless 4nm > r2, (2.32)

and it is called a weak Jacobi form if

c(n, r) = 0 unless n ≥ 0. (2.33)

Finally if a Jacobi form satisfies the yet weaker condition c(n, r) = 0 unless

n ≥ n0 for some fixed n0 ∈ Z it is called weakly holomorphic Jacobi form.

The space of all holomorphic resp. cuspidal, weak, weakly holomorphic Jacobi

forms of weight k and index m is denoted by Jk,m, J
0
k,m, J̃k.m, J̃

!
k,m and all are

finite dimensional.

The space of weak Jacobi forms of even weight k and integer index m is generated by

the Eisenstein series E4(τ), E6(τ) and the functions φ−1,2(τ, z), φ0,1(τ, z) [44] defined

in Appendix A. One can easily convince oneself that the space J̃0,m of weak Jacobi

forms of weight 0 and index m is generated by m basis elements for m = 1, 2, 3, 4, 5.

More precisely one finds

J̃0,1 = {φ0,1}
J̃0,2 = {φ2

0,1, E4φ
2
−2,1}

J̃0,3 = {φ3
0,1, E4φ

2
−2,1φ0,1, E6φ

3
−2,1}

J̃0,4 = {φ4
0,1, E4φ

2
−2,1φ

2
0,1, E6φ

3
−2,1φ0,1, E

2
4φ

4
−2,1}

J̃0,5 = {φ5
0,1, E4φ

2
−2,1φ

3
0,1, E6φ

3
−2,1φ

2
0,1, E

2
4φ

4
−2,1φ0,1, E4E6φ

5
−2,1}.

The spaces of weak Jacobi forms of even weight and half integer index are related to

the spaces of weak Jacobi forms of even weight and integer index through the simple
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relationship [45]

J̃2k,m+ 1
2
= φ0, 3

2
J̃2k,m−1, m ∈ Z. (2.34)

2.2 Sporadic groups

Apart from the modular objects discussed in the subsection above, certain special

finite groups, so called sporadic groups, play an important role in Moonshine. We

will introduce them and their most important properties in this subsection.

A group is a pair (G, ·) consisting of a set G and a binary operation · : G×G → G

such that the following properties are fulfilled:

(1) Identity: There exist an element e ∈ G , s.t. e · a = a · e = a for all a ∈ G.

(Such an element is unique.)

(2) Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c) holds.

(3) Inverse element: For each a ∈ G there exists an inverse element, denoted by

a−1 ∈ G, s.t. a · a−1 = a−1a = e. (The inverse element is unique.)

In the following we will mostly just write G when referring to a group (G, ·). Also

we will often use the shorthand notation ab for a · b.
A subgroup N of a group G, denoted by N ≤ G, is as subset N ⊆ G s.t. the set N

together with the restriction of the binary operation to N ×N again forms a group.

A subgroup N of a group G is called normal, denoted by N ⊳G, if gNg−1 = N for all

g ∈ G 7, i.e., if N is invariant under conjugation. For a normal subgroup N ⊳ G we

have aN · bN = abN . Hence the set of left cosets G/N = {aN |a ∈ G} form a group,

called quotient group. A group G is called simple if its only normal subgroups are G

itself and {e}.
Given two groups (G, ·), (H, ⋆) a group homomorphism φ : G→ H is a map from G

to H respecting the binary operation, i.e., φ(a · b) = φ(a) ⋆ φ(b) for all a, b ∈ G. The

kernel of φ, denoted by ker φ, i.e., the set of elements in G mapped to the identity

of H, is a normal subgroup of G. The image of G is a a subgroup of H isomorphic

to G/kerφ.

A representation R = (V, ρ) of a group G is tuple consisting of a vector space V and a

homomorphism ρ : G→ Hom(V ). Given a representation R, we define the character

chR : G → C, g 7→ TrV (ρ(g))
8. By the cyclic property of the trace, characters are

‘class-functions’, i.e., they are constant on equivalence classes of the group G. These

functions form a vector space and by defining an appropriate inner product one may

show that the number of linear independent characters is equal to the number of

irreducible representation of the group G. Characters of finite groups may be listed

7We define aN := {ab|b ∈ N}, Na := {ba|b ∈ N}.
8By common abuse of notation, for a representation R = (V, ρ) we will often use R and V

interchangeably and simply write g instead of ρ(g)

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

in character tables with columns labelled by equivalence classes 9 and rows labelled by

the irreducible representations. In order to classify all finite groups it is sufficient to

classify all finite simple groups. This follows mainly from the Jordan-Hölder theorem

which states that for a fixed group G and any nested sequence

G = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hk ⊃ Hk+1 = {e}

such that Hi is normal in Hi−1 and Hi−1/Hi is simple, the length of the sequence is

always the same and the quotient groups Hi−1/Hi appearing are the same up to a

possible permutation.

Classification of all finite simple groups was achieved in the early 1980s by a

collective effort of a large number of mathematicians (see, e.g, [1, 2]). The results

have been collected in the ‘ATLAS of Finite Groups’ [46]. The classification can be

split up into groups belonging to an ‘infinite family’, which are

• the cyclic groups Zp,(p a prime)

• the alternating groups An, for n ≥ 5

• 16 families of Lie type

and 26 sporadic groups which do not belong to any infinite family. For us mostly the

sporadic groups will be of interest.

The largest sporadic group is the so called (Fischer-Griess) Monster group (con-

structed by Griess in 1980 [47]), normally denoted by M . It obtained its name

because of its size which is

|M | = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59· ≈ 8× 1053. (2.35)

20 of the 26 sporadic groups are subgroups of M . Figure 1 shows a digram of all the

sporadic groups where a line between two groups stands for the subgroup relation.

The groups which appear as subgroups of the Monster group are also referred to as

the ‘happy family’ whereas the remaining 6 sporadic groups are sometimes called

pariah.

The groups that will be of special importance to us are apart from the Monster group

the Mathieu groups M24,M23 as well as the Conway group Co1.

Co1 can be obtained from the Conway group Co0 by its centre. Co0 is the automor-

phism group of the Leech lattice (see Appendix B).

The largest Mathieu group M24 has size

|M24| = 210 · 33 · 5 · 7 · 11 · 23. (2.36)

9These are normally labelled by the order of an element in the class followed by a capital letter,
A,B..., if there is more then one equivalence class with elements of the same order.
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Figure 1: The sporadic simple groups. Figure from [48].

It can be thought of as subgroup of the permutation group S24 that is the automor-

phism group of the extended binary Golay code 10. In particularM24 is 5-transitive
11.

The group M23 is of order

|M23| = 27 · 32 · 5 · 7 · 11 · 23. (2.37)

It is defined to be the subgroup of M24 that keeps one point fixed.

We end with some notation that will be needed in particular for the groups

appearing in umbral moonshine. We call a group G the double cover of a group H,

G ≃ 2.H, if G has a normal subgroup Z of order 2 (hence Z is central) s.t. G/Z ≃ H.

For q a prime power, we define Fq to be the finite field with q elements. Then GLn(q)

is defined to be the group of invertible n×nmatrices with coefficients in Fq. AGLn(q)

denotes the affine linear group defined through the natural action of GLn(q) on Fn
q

and the translation x 7→ x+ v for v ∈ Fn
q .

10The extended Golay code is an error-correcting code that encodes 12 bit of data into 24-bit
of data such that any 3-bit error can be corrected. It consists of a 12-dimensional subspace W of
{0, 1}24 of 24-bit words such that any two distinct elements of W differ in at least 8 coordinates.

11A permutation group G acting on n points is called k-transitive if for any two give sets of
points, a1, . . . , ak and b1 . . . bk, ai 6= aj and bi 6= bj for i 6= j, there exists a g ∈ G with g(ai) = bi
for i = 1, . . . , k.
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3 Moonshine - first encounters and known examples

In this section we will briefly discuss known and well studied examples of Moonshine

starting with Monstrous moonshine.

3.1 Monstrous Moonshine

The subject of moonshine started with the observation by John McKay in 1978 that

the expansion coefficients of the Klein-J-function as in (2.16) can be expressed as

sums of dimensions of irreducible representations of the Monster group. That is we

may write

196884 = 192883 + 1 (3.1)

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1
...

where the numbers on the l.h.s. are the expansion coefficients in (2.16) and the

numbers on the r.h.s. are the dimensions of irreducible representations ofM . Initially

it was not clear if this was just some coincidence between large numbers or if it really

constituted a surprising connection between previously completed unrelated parts of

mathematics. Further light was shed on this subject by John Thompson [49] who

proposed the existence of a graded representation V of the Monster group

V = V−1 ⊕ V1 ⊕ V2 ⊕ . . . (3.2)

with V−1 = ρ0, V1 = ρ1 ⊕ ρ0, V2 = ρ2 ⊕ ρ1 ⊕ ρ0, V3 = ... and ρi being the irreducible

representation of M ordered by dimension such that

J(z) = dimq(V ) := dim(V−1)q
−1 +

∞
∑

i=1

dim(Vi)q
i. (3.3)

It was then the suggestion by Thompson to consider for every g ∈ M the more

general series, now called McKay-Thompson series,

Tg(z) := chV,q(g) = chV−1(g)q
−1 +

∞
∑

i=1

chVi
(g)qi. (3.4)

This was done by Conway and Norton [3] who found that various Tg(z) indeed

correspond to Hauptmoduls of various genus 0 modular groups. Thereby it became

clear that the observations (3.1) were not mere coincidences. More precisely Conway

and Norton conjectured that for each g ∈ M the McKay-Thompson series Tg(z) (as

defined in (3.4)) coincides with the unique Hauptmodul with expansion q−1 + O(q)
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near z → i∞ for some genus zero subgroup Γg ≤ SL2(R), which contains Γ0(N)

as a normal subgroup where N ∈ N, N |
(

ord(g) · gcd(24, ord(g))
)

. Notice that the

McKay-Thompson series Tg(z) only depends on the conjugacy class of g because

of the cyclic property of the trace. The Monster group has 194 conjugacy classes.

Moreover a character evaluated at g will be the complex conjugate of the character

evaluated at g−1. The total number of Hauptmoduls arising from the MacKay-

Thompson series is 171.

Previously it had already been noted by Andrew Ogg in 1975 [50] that the primes p

for which Γ0(p)+
12 has genus 0 are

{2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71} (3.5)

and are exactly the prime divisors of the order of the Monster group (2.35)13. Clearly

this is somewhat explained by the Conway-Norton conjecture.

The Conway-Norton conjecture was verified by Atkin, Fong and Smith [51] numer-

ically. An explicit construction of the envisioned graded module was finally given

by Frenkel, Lepowsky and Meurman (FLM) [52]. This module is typically called

the Monster module V ♮. The FLM construction makes use of the concept of vertex

operator algebra (which is a mathematically precise formulation of a chiral confor-

mal field). We will not go into depth here rather we will explain the more physical

approach given in [7].

This construction starts by considering 24 bosons on the Leech lattice, which is the

unique self-dual, even 24-dimensional lattice with no vector of length less than 2. We

follow [7] and begin the discussion with some basics notions of 2 dimensional confor-

mal field theory (CFT). The infinitesimal conformal transformations z → z + ǫzn+1

of the complex plane are generated by the momenta

Ln =

∮

dz

2πi
zn+1T (z) (3.6)

of the stress energy tensor. They satisfy the well known Virasoro commutator algebra

relations

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (3.7)

where c ∈ R is the central charge of the theory. Representations of the Virasoro

algebra may be given by primary fields φ(z) of a certain conformal weight h defined

12Γ0(p)+ is the group generated by Γ0(p) together with 1√
p

(

0 1
−p 0

)

, which are known as Atkin-

Lehner involutions. It is the normaliser of Γ0(p) in SL(2,R).
13Famously Ogg offered a bottle of Jack Daniel’s whiskey to the first person to explain this

coincidence.
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by their operator product expansion (OPE) with the energy-momentum tensor

T (z1)φ(z2) ∼
h

(z1 − z2)2
φ(z2) +

1

(z1 − z2)
∂2φ(z2) + . . . (3.8)

where on the r.h.s. we only explicitly state all the singular terms. By acting with a

primary field on the vacuum one obtains a highest weight state , |h〉 = φ(0) |0〉. It

fulfils L0 |h〉 = h |h〉 , Ln |h〉 = 0 for all n > 0. By acting with the generators Ln, n < 0

on such a highest weight state one obtains a representation of the Virasoro algebra

which for c > 1 and h > 0 will be unitary and irreducible14. A representation arising

in such a way from a primary field of conformal weight h is in general referred to as

Verma module and for the unitary, irreducible case denoted by Lh,c. This module

comes with a natural integer grading Lh,c =
⊕

n L
n
h,c where

Ln
h,c := {v ∈ Lh,c|L0v = (h+ n)v}. (3.9)

In this context n is also called the level. The character of the Verma module is

defined by

chLh,c(q) := qh−
c
24

∞
∑

n=0

(dimLn
q,c)q

n =
qh−

c
24

∏∞
n=1(1− q)n

. (3.10)

A conformal field theory consists of a left- and a right-moving (holomorphic-/anti-

holomorphic) part given by conformal weight (h, h̄). The torus partition function of

the theory is defined as

Zc(q, q̄) = TrH

(

qL0−
c
24 q̄L̄0−

c̄
24

)

(3.11)

where the trace is taken over the Hilbert space (Verma module) of the theory and

q := exp(2πiτ), τ being the modular parameter of the torus. It will be of the form

Zc(q, q̄) =
∑

h,h̄

Nh,h̄chLh,cchLh̄,c (3.12)

where Nh,h̄ counts the number of primary fields of conformal weight (h, h̄) of the

theory. Zc(q, q̄) should be invariant under modular transformations, (2.1), of τ . This

put strong requirements on the possible form of Nh,h̄, which we however will not

discuss in detail here. For c > 1 in particular it leads to the requirement of an

infinite number of primary fields. In specific situations (3.12) may factorize into left-

and right-moving parts and one can consider the holomorphic part only. It is such a

situation we will be interested in in the following which we will describe below.

We now consider the concrete example of 24 free bosons X i(z, z̄), i = 1 . . . 24, on a

14In general unitarity restricts the values of h and c and one must factor out potential null states
in order to obtain irreducible representations.
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even, self-dual integer lattice Λ/2 =< e1, . . . , e24 > /2 of dimension 24. The action

is given by

S =
1

2π

∫

∂X i∂̄X i +Bij∂X
i∂̄X i =

1

2π

∫

gab∂X
a∂̄Xb + bab∂X

a∂̄Xb (3.13)

where X i ∼ X i + 2π(λi/2), for all λ ∈ Λ and X i = (ea)
iXa and hence Xa ∼

Xa+2π(na/2), na ∈ Z. The metric is defined by gab = ea · eb and bab = Bij(ea)
i(eb)

j

are the components of the (constant) antisymmetric B−field w.r.t. the lattice frame.

For the concrete choice

eaBeb = ea · eb mod 2 , (3.14)

e.g., bab = ±gab, a ≶ b one can show that the Hilbert space factorizes into a holo-

morphic and anti-holomorphic part. That is we can split X(z, z̄) in the following

way

X(z, z̄) =
1

2
(x(z) + x(z̄)). (3.15)

where xi(z) are free holomorphic fields which fulfil xi(z) ∼ xi(z)+2πλ, for all λ ∈ Λ.

Their mode expansion may be written as

xi(z) = qi − ipi ln z + i
∑

n 6=0

αi
n

n
z−n (3.16)

with commutation relations given by

[qi, pj] = −iδij , [αi
n, α

j
m] = nδijδn+m,0. (3.17)

For every β ∈ Λ a highest weight state of this theory is defined by

pi |β〉 = βi |β〉 , αn |β〉 = 0, for n > 0. (3.18)

By acting with α−n on such a state the whole Fock space Fβ is generated. The

partition function of the theory therefore becomes

Z(q, q̄) =

∣

∣

∣

∣

∣

1

η(q)24

∑

β∈Λ

qβ
2/2

∣

∣

∣

∣

∣

(3.19)

(corresponding to the factorization Nh,h̄ = NhNh̄ in (3.12)).

The primary fields of the theory are given by particular products of the dimension

one U(1) currents ji(z) = i∂xi and the exponentials

Vβ(z) =: eiβ·x(z) :, β ∈ Λ (3.20)
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of dimension β2/2. The OPE of the vertex operators Vβ as defined above is not

associative. Associativity can be restored by including a factor c(β) on the r.h.s.

that satisfies, c(α)c(β) = ǫ(α, β)c(α + β), where ǫ(α, β) is a 2-cocycle15.

The partition function of the holomorphic part of the theory is now given by

Z(q) = q−c/24TrqL0 =
ΘΛ

η(q)24
(3.22)

where ΘΛ(q) =
∑

β∈Λ q
β2/2 is the theta function of the lattice Λ. For our choice of

lattice - i.e., even, self-dual of dimension 24 - Z(q) is modular invariant.

For the concrete lattice we are interested in, namely the Leech lattice ΛLeech, which

does not have points of (length)2 = 2, we find

ZLeech(q) =
ΘLeech

η24
=

1

q
+ 24 + 196884q + · · · = J(q) + 24, (3.23)

i.e., the modular invariant J-function which showed up in monstrous moonshine with

an additional additive constant 24. The constant arises from the states generated

by the 24 primary fields i∂xi of weight 1. These may be removed by performing

an additional Z2 orbifold, as originally considered by FLM. Concretely one simply

orbifolds by the discrete symmetry x → −x. This removes the unwanted states

but it also enlarges the symmetry group of the theory in the following way. Before

the orbifold the automorphism group of the Leech lattice is the Conway group Co0.

Because of the cocycle factors that arise in the definition of the vertex operators Vβ
the symmetry of the theory before the orbifold is actually an extension of Co0 by

the abelian group (Z2)
24. The symmetry group of the orbifolded Leech lattice is the

first Conway group Co1, which is the quotient of Co0 by its centre. This again gets

enlarged through the cocyle factors. This symmetry group acts on the orbifolded

theory in a way that does not exchange twisted and untwisted states. The orbifolded

theory however has an additional symmetry which roughly speaking boils down to

exchanging twisted and untwisted states. These two symmetries together generate

the Monster group which hence is a symmetry group of the orbifolded theory. In

the following we will study the orbifolded theory more explicitly and show that the

symmetry group is exactly the Monster group.

The lattice ΛLeech has no invariant sublattices under this symmetry and the fixed

points are classified by Λ/2Λ.

The Hilbert space H(+) before orbifolding is the direct product of the Fock spaces

Fβ (defined around (3.18)). The Hilbert space of the twisted theory will then consist

15For an abelian group A , s ∈ N, a map ǫ : A×A → Z/sZ is called 2-cocyle if [4]

ǫ(α, β) + ǫ(α+ β, γ) = ǫ(β, γ) + ǫ(α, β + γ). (3.21)

Cocycles naturally appear in central extensions of A.
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of the invariant states of the untwisted theory, H+
(+) and the invariant states of the

twisted theory H+
(−). More concrete if we denote the action the orbifold action by

g, g2 = 1, one defines

H+
(+) = {v ∈ H(+)|gv = +v}. (3.24)

These states are explicitly given by

H+
(+) = {αi1

−n1
. . . αi2k

−n2k
(|β〉+ |−β〉)} ∪ {αi1

−n1
. . . α

i2k+1

−n2k+1
(|β〉 − |−β〉)} (3.25)

and the partition function of the untwisted sector can be calculated to be

Z+
(+)(q) = q−1TrH+

(+)
qL0 =

1

2

(

ΘΛLeech

η24
+

q−1

∏∞
n=1(1 + qn)24

)

. (3.26)

The twisted Hilbert space arises from fields satisfying xi(e2πiz) = −x(z)(modΛLeech)

which have the mode expansion

xi(z) = q̃i + i
∑

m∈Z+1/2

αi
n

n
z−n, (3.27)

with αi
n obeying commutation relations as in (3.17). The construction of the twisted

Hilbert space is more subtle in particular due to the two-cocycle factors that arise

in the construction of the operators (3.20). For the details we refer to [7]. For the

partition function of the invariant states in this sector one finds

Z+
(−)(q) = q−1TrH+

(−)
qL0 = q1/2

1

2

(

1
∏∞

n=1(1− qn−1/2)24
− 1
∏∞

n=1(1 + qn−1/2)24

)

.

(3.28)

The complete partition function is then

Ztw(q) = Z+
(+)(q) + Z+

(−)(q) =
1

2

ΘΛLeech
(q)

η24
+

1

2
212

[

(

η

θ2

)12

+

(

η

θ4

)12

−
(

η

θ3

)12
]

=
1

2

ΘΛLeech
(q)

η24
+

1

2

1

η24
[

(θ3θ4)
12 + (θ2θ3)

12 − (θ1θ4)
12
]

=
1

2
(J(q) + 24(h+ 1)) +

1

2
(J(q)− 24) = J + 12h,

where in the last line we have introduced the Coxeter number h of the lattice, which

for our cases is |Λ2|
24

and which vanishes for the Leech-lattice, i.e., hLeech = 0, so that

we exactly obtain the J function as our partition function.

It remains to show that the symmetry of the theory is exactly the Monster group. We

have already argued that the Monster group will be part of the symmetry group. To

see that it is not larger we follow FLM and define a special product (‘cross-bracket’)

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

on the Fourier components of fields of weight 2 by

φi
m × φj

n =
1

2
([φi

m+1, φ
j
n−1] + [φj

n+1, φ
i
m−1]) (3.29)

where i, j label the different dimension 2 fields. One can show that this cross-bracket

closes on dimension 2 fields by considering the general form of the OPE of such fields

[7]. As shown by FLM the infinite dimensional closed algebra given by this cross-

bracket is an affinization of the Griess-algebra B. The Griess algebra itself appears

as the 196884 zero mode subalgebra. It is known that the automorphism group of

the Griess algebra is precisely the Monster group so we have succeeded in showing

that the symmetry group of 24 bosons on the Z2 orbifold of the Leech lattice has

exactly the Monster group as its symmetry group.

We still need that the chiral theory constructed above fulfils all the requirements

of Monstrous moonshine, i.e., in particular that the traces Tg = TrH+
(+)

+H+
(−)
gqL0−1

are indeed the genus zero Hauptmoduls conjectured. This can be done using iden-

tities fulfilled by the J-function and the Tg. The most basic one (found by Zagiers,

Borcherds and others) is the relation

p−1
∏

m>0
n∈Z

(1− pmqn)am·n = J(ρ)− J(τ) (3.30)

where p = e2πiρ and an are the coefficients of a q-expansion of J , i.e.,J(q) =
∑

n≥−1 anq
n. It implies indefinitely many relations between the ai which fixes all

ai from just the knowledge of a1, a2, a3, a4, a5. The structure of (3.30) is similar to

denominator identities known from Lie and Kac-Moody algebras. Borcherds was

able to generalize this identity to identities for the Tg’s by introducing the notion

of generalised Kac-Moody algebras [53] and in particular the Monster Lie algebra.

The denominator identities for this generalized Kac-Moody algebra then leads to the

necessary identities/generalizations of (3.30) [6].

In [54] Norton, based on earlier observation by himself and others, suggested a

generalization of Monstrous moonshine in the following manner. For each element

g ∈ M there exists a graded projective representation V (g) =
⊕

n∈Q V (g)n of the

centralizer CM(g) of g in M and to each commuting pair (g, h) of elements in M

there exists a holomorphic function T(g,h) defined on the upper half plane H s.t. the

following holds:

(1) T(gahc,gbhd)(τ) = γ T(g,h)(
aτ+b
cτ+d

) where ( a b
c d ) ∈ SL(2,Z) and γ ∈ C, γ24 = 1.

(2) T(g,h)(τ) = T(k−1gk,k−1hk)(τ), ∀k ∈M .

(3) There exists a lift h̃ of h to a linear representation on V (g) s.t.

T(g,h)(τ) =
∑

n∈Q

TrV (g)nh̃q
n−1. (3.31)
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(4) T(g,h)(τ) is either constant or a Hauptmodul for some genus zero congruence sub-

group of SL(2,Z).

(5) T(e,h)(τ) coincides with the MacKay-Thompson series Th(τ).

All these properties with the exception of (4) can more or less straightforwardly be

understood from the construction of the Monster module as a chiral CFT as pre-

sented above. In this context T(g,h) are the twisted-twined partition functions which

naturally fulfil the properties (1-3) and (5). The generalised moonshine conjectures

have been proven in [55–57].

3.2 Conway moonshine

In the previous section we have seen that Monstrous moonshine establishes a con-

nection between certain discrete genus zero subgroups of SL(2,R) and the Monster

group. More precisely to an elementm ∈M (rather only its conjugacy class matters),

given the knowledge of the Monster module, we associate its MacKay-Thompson se-

ries Tm and then find the appropriate genus zero group Γm < SL(2,R) s.t. Tm
induces an embedding Γm\H → C (or alternatively s.t. Γm is the invariance group

of Tm). In [3] Conway and Norton also described an assignment of genus zero groups

Γg < SL(2,R) to elements of the Conway group, Co0. It can be explicitly be given as

follows. For an element g ∈ Co0 = Aut(ΛLeech) that acts on ΛLeech ⊗Z C with eigen-

values {εi}24i=1 we assign Γg < SL(2,R) to be the invariance group of the holomorphic

function

tg(τ) :=
∏

n>0

24
∏

i=1

(

1− εiq
2n−1

)

(3.32)

on H. As a first step one may observe that g = e the identity element, the associated

function is up to a constant the function associated to the 2B element of the Monster

group, te = T2B − 24. In general it holds that

tq = q−1 − χq +O(q), (3.33)

with χg =
∑24

i εi. So one defines T s
g (2τ) := tg(τ) + χg which then is the unique

normalized principle modulus attached to the genus zero group Γg [9]. Also in this

case one can find an infinite dimensional ‘Conway module’ s.t. the functions T s
g are

the corresponding McKay-Thompson series - the coefficients of T s
g are then traces of

g in this module. Such a module was sketched in [52] and more explicit constructed

and studied in [8, 9] in terms of super-vertex algebras. We will review this in the more

familiar language of CFTs In [4] the module was constructed as what corresponds to

a chiral SCFT consisting of 8 bosons Xi and their super-partners ψi on the E8 root

lattice orbifolded by the Z2 action

(Xi, ψi) → (−Xi,−ψi). (3.34)
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The theory after orbifolding is a c = 12 theory with no primary fields of conformal

weight h = 1
2
and N = 1 supersymmetry. The partition function in the NS sector

can easily be computed

ZNS,E8(τ)) =
1

2

(E4(τ)θ3(τ, 0)
4

η12
+ 16

θ4(τ, 0)
4

θ2(τ, 0)4
+ 16

θ2(τ, 0)
4

θ4(τ, 0)4

)

(3.35)

= q−1/2 + 0 + 276q1/2 + 2048q + 11202q3/2 + . . . .

The first few coefficients may be split into irreducible representations of Co1

276 = 276, (3.36)

2048 = 1 + 276 + 1771, (3.37)

11202 = 1 + 276 + 299 + 1771 + 8855,
.... (3.38)

From this it seems that the SCFT has a Co1 symmetry however how this symmetry

arises is not obvious. One may use a different construction of the same SCFT by

constructing it out of 24 free chiral fermions λ1, . . . , λ24 which are orbifolded by the

Z2 action λi → −λi. The partition function of this theory in the NS sector is simply

ZNS,ferm.(τ) =
1

2

4
∑

i=2

θi(τ, 0)
12

η(τ)12
(3.39)

which is equal to (3.35) by non-trivial identities fulfilled by the theta functions.

The 24 free fermions have a manifest Spin(24) symmetry, but no explicit N = 1

supersymmetry. One can construct a N = 1 supercurrent in the following way.

By an element s ∈ F12
2 , F = {−1/2, 1/2} we denote one of the 212 = 4096 linear

independent ground states in the Ramond sector, created from the vacuum by the

fermion zero modes λi(0). Then let Ws be the corresponding weight 3/2 spin field

which implements the flow from the NS to the R sector. It was shown in [8] that

there exists coefficients cs ∈ C s.t.

W =
∑

s∈F12
2

csWs (3.40)

has the proper OPE with the energy momentum tensor to be a supercurrent. Any

choice of W will break Spin(24) and it was shown in [8] that the suitable chosen

N = 1 current will break Spin(24) exactly to Co0
As discussed in [58] this method may actually be generalized to find models with

N = 2, 3 and corresponding subgroups of Co0 as symmetry groups.
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3.3 Mathieu moonshine

In this subsection we will discuss Mathieu Moonshine, which to a large part will also

be the main concern of the rest of this work.

We start by defining the elliptic genus Zell of a N = (2, 2) superconformal field

theory (SCFT) with central charges (c, c̄) by [59]

Zell(q, y)) = TrRR

(

(−1)FL+FRyJ0qL0−
c
24 q̄L̄0−

c̄
24

)

(3.41)

where y = e2πiz, q = e2πiτ . Here J0 is the zero mode of the third component of

the SU(2) R-symmetry algebra, L0 is the zero mode of the Virasoro algebra and

FL, FR are the respective left and right moving fermion number operators. The trace

is taken over the Ramond-Ramond sector of the theory. The right moving part is

just the Witten index and so for a theory with discrete spectrum 16 it will only get

contributions from the right moving ground states, hence for such theories the elliptic

genus will not depend on q̄. The elliptic genus is and index that counts the BPS

states of the theory and is independent of the moduli of the theory. The modularity

properties of the CFT together with the spectral flow and unitarity imply that it is

a weak Jacobi-form of index m = c
6
and weight 0 [61].

In [62] the elliptic genus of a N = (4, 4) nonlinear sigma model (NLSM) on K3 (with

central charge (c, c̄) = (6, 6)) was calculated to be

Zell
K3 = 8

[

(

θ2(q, y)

θ2(q, 1)

)2

+

(

θ3(q, y)

θ3(q, 1)

)2

+

(

θ4(q, y)

θ4(q, 1)

)2
]

. (3.42)

Here the elliptic genus counts the number of 1
4
-BPS states of the theory. Contrary to

the 1
2
-BPS states of the theory, the multiplicity of the 1

4
-BPS states is not completely

protected when one moves around in the moduli space of the theory but the index is

unchanged, i.e., two 1
4
-BPS states may pair to form a non-BPS state which is then

no longer counted by the elliptic genus.

In [10] it was noted that when one expands the K3-elliptic genus in term of N = 4

characters, the expansion coefficients can be related to dimensions of irreducible

representations of the Mathieu group M24. More concretely if we use the definition

of N = 4 superconformal characters given in Appendix C.2 one finds that

Zell
K3(q, y) = 20 chN=4

2,0,0 (τ, z)− 2 chN=4
2,0, 1

2
(τ, z) +

∞
∑

n=1

An ch
N=4
2,n, 1

2
(τ, z) (3.43)

16For a non-discrete spectrum the elliptic genus will in general be non-holomorphic and give rise
to mock-modular forms [34, 60].
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where the coefficients and their the decomposition into dimensions of irreducible

representations of M24 are given by 17 18

A−1 = 20 = 23− 3 · 1
A0 = −2 = −2 · 1
A1 = 90 = 45 + 45

A2 = 462 = 431 + 431

A3 = 1540 = 770 + 770
.... (3.44)

The reason the group M24 arises here were not completely clear. From the result of

Mukai and Kondo [63, 64] it is known that the symplectic automorphisms of K3, i.e.,

automorphisms that leave the 2-form of K3 invariant, in general form a subgroup of

M23. It might seem natural to assume that this group simple gets enlarged to M24

through ‘stringy effects’. More precisely since the elliptic genus counts 1
4
-BPS-states

one might assume that the M24 acts on the sets of these BPS-states, i.e., that they

form an infinite dimensional graded module 19

HBPS =
∞
⊕

n=0

Hn ⊗HN=4
n (3.45)

where the sum runs over all N = 4 representations that appear and Hn are the

corresponding, not necessarily irreducible, M24-representations that appear, with

dimHn = |An|. In order to further strengthen the connection to M24, the twined

elliptic genera Zell
K3,g of K3 may be considered, which are defined by an insertion of

an element g ∈M24 in the elliptic genus, i.e.,

Zell
K3,g(τ, z) := TrRR

(

g(−1)FL+FRyJ0qL0−
c
24 q̄L̄0−

c̄
24

)

. (3.46)

They form the analogue of the McKay-Thompson series in Monstrous moonshine

and hence should admit an expansion similar to (3.43) but now with the coefficients

An replaced by traces of g in the respective representations, Ãn = TrHn
(g). Similar

to the elliptic genus itself they are expected to transform as Jacobi forms of weight

0 and index 1 under the subgroup Γ0(N) of SL(2,Z), where N is the order of the

17Different representations with equal dimensions have been indicated by a bar. Contrary to
Monstrous moonshine also negative values appear here, since we count states with a sign depending
on their statistics (bosonic/fermionic).

18The decomposition of ‘larger’ coefficients is not unique but can be fixed using the twined elliptic
genera, see below.

19The existence of such a module has been shown in [15].
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element g, possibly up to a multiplier system, i.e., (2.28) is changed to

Zell
K3,g(

aτ + b

cτ + d
,

z

cτ + d
) = e

2πicd
Nhg e

2πimcz2

cτ+d Zell
K3,g(τ, z), ∀ ( a b

c d ) ∈ Γ0(N). (3.47)

This will lead to a non-trivial phase in the case when hg 6= 120. Based on these

assumptions and the knowledge of the first few expansion coefficients explicit ex-

pression for all twined elliptic genera were found in [11–14] strengthening the idea

that M24 symmetry is present. For cases where g ∈ M23 and can be realized as an

symplectic automorphism of K3 the corresponding twined elliptic genera were also

calculated in [11, 65] in agreement with those results. In [15] it was proven that

all expansion coefficients An in (3.43) can be decomposed into sums of dimensions

or irreducible representations on M24. In [16], by a generalization of the results of

Mukai and Kondo it was shown that the group of automorphisms of a NLSM on K3

is in general a subgroup of the Conway group Co1, but neverM24 and in general also

not a subgroup of M24. In [66] this was expanded to include loci of singular NLSM

and all possible twining genera of NLSM on K3 were conjectured based on the work

done in [24, 67]. In [68] this conjecture was proven in a ‘physical’ way by demanding

the absence of ‘unphysical’ wall crossings.

In [69] generalized Mathieu Moonshine was considered and all the twisted twining

elliptic genera Zell
K3,g,h of K3 were calculated. For every commuting pair g, h ∈ M24

these are defined by

Zell
K3,g,h = TrRR,g

(

h(−1)FLy0qL0−
c
24 (−1)FR q̄L̄0−

c̄
24

)

(3.48)

where the trace is taken over the g-twisted Ramond sector. It is expected that these

twisted twining elliptic genera transform as they were twisted twining characters

of a holomorphic orbifold. In particular they are expected to fulfil the following

properties:

(A) Elliptic and modular properties:

Zell
K3,g,h(τ, z + lτ + l′) = e−2πim(l2τ+2lz)Zell

K3,g,h(τ, z), ∀l, l′ ∈ Z (3.49)

Zell
K3,g,h(

aτ + b

cτ + d
,

z

cτ + d
) = χg,h ( a b

c d ) e
2πi cz2

cτ+dZell
K3h,cga,hdgd(τ, z), ∀ ( a b

c d ) ∈ SL(2,Z),

for a certain multiplier χg,h : SL(2,Z) → U(1). In particular each Zell
K3,g,h is a

weak Jacobi form of weight 0 and index 1 with multiplier χg,h under a subgroup

Γg,h of SL(2,Z).

20A list of hg for Mathieu moonshine is given in [15].
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(B) Invariance under conjugation of the pair g, h ∈M24:

Zell
K3,g,h(τ, z) = ξg,h(k)Zell

K3,k−1gk,k−1hk(τ, z), ∀k ∈M24. (3.50)

where ξg,h(k) is a phase.

(C) Zell
K3,g,h is supposed to have a well defined expansion in terms on N = 4 super-

conformal characters which depends among other things on certain 2-cocycles

cg [69].

(D) For g = e, the identity of M24, Zell
K3,e,h are just the twining elliptic genera

considered above.

It is further postulated that these properties (in particular χg,h, ξg,h and cg) are

all controlled by a 3-cocycle α representing a class in H3(M24, U(1)). Under these

assumptions all the twisted twining elliptic genera were calculated in [69]. Note that

the set of twisted twining elliptic genera modulo modular transformations is in one

to one correspondence with conjugacy classes of abelian subgroups of M24 generated

by two (commuting) elements g, h ∈ M24. There exists 55 such subgroups of which

22 correspond to cyclic subgroups. The cyclic subgroups are generated by elements

of the form (e, g) and hence correspond to twining genera (and the twisted twining

genera obtained from those by modular transformations). The remaining 34 twisted

twining genera were calculated in [69]. Many of these twisted twining genera vanish

due to obstructions, i.e., situations where the properties (A-D) above only allow for

vanishing solutions. The only un-obstructed twisted twining elliptic genera, using

the shorthand φg,h := Zell
K3,g,h, are

φ2B,4A2 , φ4B,A3 , φ4B,A4 , φ2B,8A1,2 , φ3A,3A3 , φ3A,B1 , (3.51)

the last two of which vanish identically.

The cases that will be important to us are in particular where (g, h) = (g′r, g′s) for

g′ ∈ M24 where (r, s) ∈ {0, . . . , N − 1} and N = ord(g′), which includes the cases

where the subgroups generated by g and h are cyclic. Here compact expressions for

Zell
K3,g,h are known. We define Zell

r,s := Zell
K3,g′r,g̃′s , then

Zell
r,s(q, y) =

{

N
8
α
(0,0)
g̃ Zell(q, y), (r, s) = (0, 0)

N
8
α
(r,s)
g̃ Zell(q, y) +Nβ

(r,s)
g̃ (q)

θ21(q,y)

η6(q)
, (r, s) 6= (0, 0)

, (3.52)

where α
(r,s)
g′ are numerical constants and β

(r,s)
g′ (q) is a weight 2 modular form under

Γ0(N). For the cases N = 2, 3, 5, 7 we give the explicit expression in (5.32) and
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further expressions can be found in the Appendix E of [70].

The discussion above/the existence of generalized Mathieu moonshine strengthens

the case for an action of M24 on the 1
4
-BPS states of the NLSM on K3. Still it is

not clear how exactly this action arises. At generic points of the moduli space of K3

the coefficients of the elliptic genus are expected to agree with graded dimensions of
1
4
-BPS states [20, 71, 72], but no explicit construction of the NLSM is known and the

automorphism symmetry group of the NLSM is typically trivial. Since the elliptic

genus does not change as one moves around in moduli space, it was suggested in [17–

20] that the M24 action might arise by combining symmetry groups from different

parts of the moduli space and it was shown how this action arises for the lowest non-

trivial BPS states, i.e., for 90 = 45+45. This idea has been coined ‘symmetry-surfing’

and was further pursued and strengthened in [20]. An other approach was taken in

[25] where the authors study type IIA string theory on K3× T 2. The resulting has

M24 and indeed all umbral symmetry groups at different points in it moduli space

and so gives new insight into the appearance of Mathieu moonshine. Still it seems

correct to say that Mathieu moonshine is still not completely resolved.

3.4 Umbral Moonshine

In [21, 22] a connection relating the Niemeier lattices and their symmetry group

(given in table 12) to vector-valued mock modular forms was given. Thereby a

Niemeier lattice with Coxeter number m will be matched to a 2m component mock-

modular form with pole of order q−
1

4m at τ → i∞ and regular behaviour at the other

cusps. The existence of appropriate module s.t. the vector valued mock modular

forms arise as specific trace functions was conjectured in [22]. In [15, 23] the existence

of these module was shown. In [24] the Umbral moonshine was related to the K3

sigma models (in particular this is done by relating the A-D-E root-systems to the

A-D-E du Val singularities a K3 can develop).

3.5 Thompson Moonshine

We start by defining the ‘Kohnen plus-space’ as the set of holomorphic functions

that transform like θ(τ) = θ3(2τ, 0) under Γ0(4) and in addition satisfy cn = 0 for all

n 6= 0, 1 (mod 4) for their Fourier expansion at infinity
∑

n cnq
n. Then let M !

1/2 be

the space of functions defined in the same way but allowed to be meromorphic at the

cusps. In [73] a basis for this spaces was given. It was later noted that the Fourier

coefficients of one particular basis function can be expressed as sums of dimensions

of irreducible representations of the Thompson group. This led the authors of [26]

to the following conjecture [27]:

There exists a Z-graded Th-supermodule

W =
∞
⊕

m=−3
m≡0,1mod4

Wm (3.53)
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where for m ≥ 0 the graded component Wm has vanishing odd part if m ≡ 0 (mod

4) and vanishing even part if m ≡ 1 (mod 4), such that for all g ∈ Th the McKay-

Thompson series

T[g](τ) :=
∞
∑

m=−3
m≡0,1mode4

straceWm
(g)qm (3.54)

is a specifically given weakly holomorphic modular form of weight 1/2 in the Kohnen

plus space. This conjecture was proven in [27].

4 Searching for Moonshine in higher dimensional Calabi-

Yau manifolds

In this section we will study the elliptic genera of Calabi-Yau manifolds in various

dimensions. In particular we are interested in finding moonshine phenomena, similar

to Mathieu moonshine studied in subsection 3.3, in CY’s other than K3. As we will

see it will in particular be natural to study CY 5-folds.

4.1 The elliptic genera of Calabi-Yau manifolds

We start by recalling some of the basic properties of elliptic genera of Calabi-Yau

manifolds in various dimensions. Most of this will be based on [45, 74]. Concretely

we will be interested in the elliptic genus as defined in (3.41) for an N = (2, 2)

superconformal theory which has a CY d-fold as its target space. Such a theory has

central charges (c, c̄) = (3d, 3d).

The elliptic genus is a weak Jacobi form of weight 0 and index d/2 [61]. The first

term of the elliptic genus in a q-expansion is given by

ZCYd
(τ, z) =

d
∑

p=0

(−1)pχp(CYd)y
d
2
−p +O(q), (4.1)

where χp(Yd) =
∑d

r=0(−1)rhp,r 21. For z = 0 (y = 1) the elliptic genus reduces to

the Witten index and so the higher order terms vanish in this case. Then

ZCYd
(τ, 0) = χCYd

=
d
∑

p=0

(−1)pχp(CYd) (4.2)

becomes exactly the Euler number of the Calabi-Yau. For small d these properties

will fix the prefactor of the generator J0, d
2
in terms of the Euler number of the CY and

a few of the χp. We proceed by analysing the elliptic genera for different dimensions.

21Note that for a CY d-fold that is the product of two CYs, Yd = Yd1
× Yd2

, χp(Yd) =
∑i

j=0
χj(Yd1

)× χi−j(Yd2
) holds.
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4.1.1 Calabi-Yau 1-folds

For d = 1 there exists only one Calabi-Yau (up to isomorphisms), namely the two-

torus T 2. Its elliptic genus however vanishes. More generally the elliptic genus of

any even dimensional 2n-torus T 2n vanishes. This is due to the fermionic zero modes

in the right moving Ramond sector Tr
(

(−1)FR q̄L̄0−
c̄
24

)

∝ θ2(q̄,−1) = 0.

4.1.2 Calabi-Yau 2-folds

For d = 2 there are two non-trivial cases K3 and the Enriques surface. The elliptic

genus of K3 shows Mathieu moonshine which already has been discussed in 3.3.

The Enriques surface, which can be obtained by a fix-point free involution of K3

(see, e.g, [75]), shows a moonshine phenomenon connected to M12 [76]. It is in a

geometric way connected to M11 since its semi-symplectic automorphism22 can be

embedded into M11 < M12 [77]. Its elliptic genus is just half that of the K3 and

hence has an expansion in term of N = 4 characters of the form

ZEnr(τ, z) = φ0,1(τ, z) = 10chN=4
2,0,0 (τ, z) +

∞
∑

n=1

An

2
chN=4

2,n, 1
2
(τ, z). (4.3)

where theAn are as in (3.43), (3.44). Since all theAn are even one may again interpret

the expansion coefficients An/2 as dimension of some vector space. In particular they

may be decomposed in term of dimensions of irreducible representations of M12 in

the following way

10 = 11− 1,

−1 = −1,

A1 = 45,

A2 = 55 + 176,

A3 = 66 + 2 · 120 + 2 · 144 + 76,
... (4.4)

As before an expansion in terms of N = 2 characters is also possible which leads to

the same expansion with an overall minus sign.

4.1.3 Calabi-Yau 3-folds

For d = 3 one finds the following expansion in terms of N = 2 characters

ZCY3(τ, z) =
χCY3

2
φ0, 3

2
(τ, z) =

χCY3

2

(

chN=2
3,0, 1

2
(τ, z) + chN=2

2,0,− 1
2
(τ, z)

)

(4.5)

22A semi-symplectic automorphism of the Enriques surface is an automorphism whose lift to K3
is either symplectic or anti-symplectic.
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where the normalization is fixed by the equations (4.2) and (A.15). As this expansion

only includes two characters, it is not very interesting from a moonshine perspective.

In section 5 we will study CY 3-folds from a different perspective by connecting their

Gromov-Witten invariants to Mathieu moonshine.

4.1.4 Calabi-Yau 4-folds

For d = 4 the elliptic genus is an element of the space J̃0,2 of Jacobi forms of weight

0 and index 2. This vector space is generated by the two elements as is clear from

(2.34) above. Through (4.1) and (4.2) we find that the elliptic genus is uniquely fixed

by the Euler number χCY4 and χ0 =
∑d

r=0(−1)rh0,r. Using the formulas of (A.3) we

find

ZCY4(τ, z) =
χCY4

144
(φ0,1(τ, z)

2 − E4(τ)φ−2,1(τ, z)
2) + χ0E4(τ)φ−2,1(τ, z)

2. (4.6)

For ‘genuine’ CY 4-folds 23 we always have χ0 = h0,0 + h0,4 = 2.

In this situation a variety of connections to sporadic groups have already been estab-

lished. In [21] the weak Jacobi form 1
24
(φ2

0,1−E4φ
2
−2,1) appeared in umbral moonshine.

It was shown that it exhibits 2.M12 moonshine when expanded in terms of N = 4

characters. In [78] the same function was expanded in terms of N = 2 characters

and shown to exhibit L2(11)
24 moonshine. In addition it was shown in [58] that

the weak Jacobi form 1
6
(φ2

0,1 + 5E4φ
2
−2,1) exhibits M22 moonshine upon expansion in

N = 4 characters and shows M23 moonshine when expanded in N = 2 characters.

When expanded in terms of N = 1 characters the authors of [79] showed that it also

exhibits M24 moonshine.

4.1.5 Calabi-Yau 5-folds

For d = 5 the elliptic genera occurring will be a weak Jacobi forms of weight 0 and

index 5
2
. As stated in (2.34) they can be obtained by multiplying the corresponding

integer index weak Jacobi forms with the function φ0, 3
2
. From this it follows that

the elliptic genera occurring for d = 5 are all proportional to φ0, 3
2
φ0,1. The prefactor

is uniquely fixed by the Euler number of the CY 5-fold we are considering. Making

use of the relations between N = 4 characters for central charge c = 3d multiplied

with φ0, 3
2
and N = 2 characters for central charge c = 3(d + 3) given in (C.12) in

23In this context we define ‘genuine’ to mean CY d-folds whose holonomy group is SU(d) and
not a subgroup thereof.

24Here L2(11) stands for the finite simple group PSL(2, 11) = SL(2,F11)/F
∗
11
, where F11 is the

prime field of integers modulo 11.
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Appendix C, we see that

φ0, 3
2
chN=4

2,0,0 = −chN=2
5,0, 1

2
− chN=2

5,0,− 1
2
,

φ0, 3
2
chN=4

2,0, 1
2
= −chN=2

5,0, 3
2
− chN=2

5,0,− 3
2
+ chN=2

5,0, 1
2
− chN=2

5,0,− 1
2
,

φ0, 3
2
chN=4

2,n, 1
2
= −chN=2

5,0, 3
2
− chN=2

5,0,− 3
2
, ∀n ∈ N≥1. (4.7)

From this follows directly the following expansion of the elliptic genus of CY 5-folds

in terms of N = 2 characters:

ZCY5(τ, z) =
χCY5

24
φ0, 3

2
φ0,1

= −χCY5

48

[

22
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

− 2
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

+
∞
∑

n=1

An

(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

) ]

. (4.8)

This expansion makes it clear that for CY 5-folds with χCY5 = −48, the expansion

coefficients are the same as for Mathieu moonshine, whereas for CY 5-folds with

χCY5 = −24 we find the coefficients of Enriques moonshine. Since the overall choice

of sign of the N = 2 characters is a mere convention, the above statement also holds

true for CY 5-folds with χCY5 = +48 and χCY5 = +24.

From these observations it is certainly not clear if there really is a concrete

connection to the Mathieu (Enriques) group for CY 5-folds or even how it arises.

One may of course think of obvious (and rather trivial) examples where the CY 5-

fold is simple the product of a K3 (Enriques) surface with a CY 3-fold. Then the

connection would just arise through the better understood case ofK3. To understand

if there is actually a deeper connection between general CY 5-folds and the Mathieu

(Enriques) group we will study the twined elliptic genera for certain (genuine) CY

5-folds in section 4.2.

4.1.6 Calabi-Yau 6-folds

For d = 6 the elliptic genus is a weak Jacobi form of weight 0 and index 3. As

can be seen from (2.34) the space of such forms is 3-dimensional. The elliptic genus

of a CY 6-fold may hence be uniquely fixed in terms of the Euler number χCY6

and χp =
∑6

r=0(−1)rhp,r, for p = 0, 1. Again by matching the first few coefficients

according to formulas (4.1), (4.2) we find that the elliptic genus is given by

ZCY6 =
χCY6

1728
φ3
0,1(τ, z)−

1

567
(χCY6 − 48(χ1 + 6χ0))E4(τ)φ

2
−2,1(τ, z)φ0,1(τ, z)

− 1

864
(χCY6 − 72(χ1 − 6χ0))E6(τ)φ

3
−2,1(τ, z). (4.9)
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One may consider the cases where the CY 6-fold is a product of three K3’s, three

Enriques surface or K3 (Enriques surface) times a CY 4-fold. In those cases a

connection to (one/two) of the sporadic groups L2(11),M12,M22,M23.M24 will be

inherited from the connections discussed in subsections 4.1.3, 4.1.4. It certainly

would be interesting to understand if in general a connection between CY 6-folds

and sporadic groups does exist.

One particular example which does not obviously fall into one of the above cases

may be uncovered by setting χ0 = χ1 = 0. Then the elliptic genus is

ZCY6 =
χCY6

1728
(φ3

0,1(τ, z)− 3E4(τ)φ
2
−2,1(τ, z)φ0,1(τ, z)− 2E6(τ)φ

3
−2,1(τ, z))

=
χCY6

4
φ2
0, 3

2
(τ, z)

= χCY6

θ2(τ, z)
2θ3(τ, z)

2θ4(τ, z)
2

θ2(τ, 0)2θ3(τ, 0)2θ4(τ, 0)2

=
χCY6

8

[

4chN=4
6,0,0 +

(

−2chN=4
6,0, 1

2
+ 14chN=4

6,1, 1
2
+ 42chN=4

6,2, 1
2
+ 86chN=4

6,3, 1
2
+ . . .

)

−
(

16chN=4
6,1,1 + 48chN=4

6,2,1 + 112chN=4
6,3,1 + . . .

)

+
(

6chN=4
6,1, 3

2
+ 28chN=4

6,2, 3
2
+ 56chN=4

6,3, 3
2
+ . . .

) ]

. (4.10)

The expansion of this Jacobi form in terms of N = 4 characters has appeared in [21]

and can be related to 2.AGL3(2) via the umbral moonshine conjecture 25. We can

find explicit examples of CY 6-folds that will acquire above elliptic genus by taking

products of two CY3-folds. This manifold will automatically satisfy χ0 = χ1 = 0 .

The case that appears for umbral moonshine is χCY6 = 8. Since for our examples

χCY6 = χ
CY

(1)
3

· χ
CY

(2)
3

holds, this maybe be achieved for any pair of CY 3-folds that

have Euler number ±2 and ±4 respectively.

4.1.7 Calabi-Yau manifolds of dimension d > 6

From our discussion above we see that by taking products of lower dimensional CY

manifolds one may obtain a wealth of CY d-folds (d > 6) with potential connection

to sporadic groups. Since CY d-folds for larger d have not been systematically

constructed a treatment of the general case would require a lot of work. As a start one

may however consider if and when the extremal Jacobi forms of umbral moonshine

[21, 22] appear as elliptic genera of CY manifolds or products thereof.

As we have already seen one example is given by the elliptic genus of K3. The

next examples may appear for CY 4-folds, i.e., Jacobi forms of weight 0 and index

2, with χ0(CY4) = 0. As already mentioned in 4.1.4 genuine CY 4-folds always have

25This conjecture was proven in [23].
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χ0 = 2 which follows from the more general property that

χ0(CYd) =

{

0 if d is odd

2 if d is even
. (4.11)

Alternatively CYd = K3 × K3 has χ0 = 4 and CYd = K3 × T 4 has χ0 = 0 but

vanishing elliptic genus.

For weight 0 and index 3 we saw in subsection 4.1.6 that possible CY 6-folds do

exist.

Next we look for CY 8-folds that can give rise to the Jacobi form of weight 0 and

index 4 appearing in umbral moonshine. For this to be the case we would need

χ0 = χ1 = χ2 = 0 which cannot be the case for genuine CY 8-folds but which one

might be able to achieve by taking products of lower dimensional CY’s. First trying

with CY8=CY5×CY3 we see that χ0 = χ1 = 0 will hold but since χ2(CY5 ×CY3) ∝
χCY5 × χCY3 and ZCY5×CY3 ∝ χCY5 × χCY3 no interesting examples exist in this case.

Alternatively trying CY8=K3× CY3×CY3 runs into the same problem.

When one looks for CY 12-folds that give rise to the Jacobi forms that appear

in umbral moonshine one finds that χ0 = χ1 = χ2 = χ3 = χ4 = χ6 = 0 is required.

This again is too restrictive to give rise to interesting examples.

4.2 Twined elliptic genera for specific Calabi-Yaus

In the previous subsections we have established first hints that CY d-folds for d > 2

may be involved in some kind of moonshine, i.e, they may via their elliptic genera

be connected to certain sporadic groups. In this subsection in order to strengthen or

dismiss this idea we will calculate the twined elliptic genera for specific CY d-folds.

In particular the largest class of these CY d-folds will all be realized as hypersurfaces

in weighted projective space.

4.2.1 Calculating twined elliptic genera for CY hypersurfaces in weighted

projective ambient space

In [80] the methods to calculate elliptic genera for CY manifolds realized as hyper-

surfaces in weighted projective space were developed. This methods can easily be

generalized to also calculate the twined genera when the symmetry element we are

twining with is realized as a geometric symmetry of the CY.

Concretely we consider a CY d-fold in weighted projective space CPd+1
w1,...,wd+2

determined as the solution of p(Φ1, . . . ,Φd+2) = 0, where p is a transverse polynomial

of degree m =
∑d

i=1wi and Φi are the homogeneous coordinates of the weighted

projective space (see Appendix D.2) .

Then we introduce a two-dimensional linear sigma model with N = (2, 2) super-

symmetry consisting of:

i) one abelian vector multiplet (giving rise to an U(1) gauge symmetry),
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ii) d+ 2 chiral multiplets Φi, i = 1, . . . , d+ 2, with charge wi under the U(1) gauge

field and zero R-charge,

iii) one chiral multiplet X with U(1) charge −m and R-charge 2.

The superpotential invariant under U(1) gauge transformations is given by W =

Xp(Φ1, . . . ,Φd+2) and has the correct R charge. The F -term equation ∂W/∂X =

p(Φ1, . . . ,Φd+2) = 0 restricts us to the CY-hypersurface we considered above.

In the next step we study the refined elliptic genus defined by

Zref (τ, z, u) = TrRR

(

(−1)FLyJ0qL0−
d
8xQ(−1)FR q̄L̄0−

d
8

)

(4.12)

depending on an extra chemical potential x = e2πiu, associated to the U(1) charge

Q. As one can convince oneself a chiral multiplet of U(1) charge w and R-charge R

gives rise to a (multiplicative) contribution to this refined elliptic genus of the form

ZΦ
ref (τ, z, u) =

θ1(τ, (
R
2
− 1)z + wu)

θ1(τ,
R
2
z + wu)

. (4.13)

An abelian vector field will lead to an (u independent) factor

Zvec
ref (τ, z) =

iη(τ)3

θ1(τ,−z)
. (4.14)

Altogether the theory we consider leads to

Zref (τ, z, u) =
iη(τ)3

θ1(τ,−z)
θ1(τ,−mu)
θ1(τ, z −mu)

d+2
∏

i=1

θ1(τ, (
R
2
− 1)z + wu)

θ1(τ,
R
2
z + wu)

. (4.15)

From this we can obtain the standard elliptic genus by integrating over u. As shown

in [80] this integral will localize to a sum of contour integrals

Zref (τ, z, u) =
iη(τ)3

θ1(τ,−z)
∑

uj∈M
−
sing

∮

U=uj

du
θ1(τ,−mu)
θ1(τ, z −mu)

d+2
∏

i=1

θ1(τ, (
R
2
− 1)z + wu)

θ1(τ,
R
2
z + wu)

,

(4.16)

where M−
sing are the poles of the integrand where the chiral multiplets become mass-

less. For a chiral multiplet with U(1) charge Q and R-charge R these singularities

are located at

Qu+
R

2
z = 0, mod Z+ τZ. (4.17)

The supscript in M−
sing captures the fact that in above formula one can restrict to

singularities for chiral multiplets with negative U(1) charge, Q < 0. For our theory
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this is only the chiral multiplet X and the singularities are the solutions of

−mu+ z = −k − ℓτ, k, ℓ ∈ Z. (4.18)

The integrand is periodic under u ∼ u + 1 ∼ u + τ . The solutions which are within

a fundamental domain under this identification are given by

u =
z + k + ℓτ

m
, 0 ≤ k, ℓ ≤ m. (4.19)

Hence the elliptic genus (4.16) of the CY can be written as

ZCYd
(τ, z) =

iη(τ)3

θ1(τ,−z)
m−1
∑

k,ℓ=0

∮

u=(k+ℓτ+z)/m

du
θ1(τ,−mu)
θ1(τ, z −mu)

d+2
∏

i=1

θ1(τ, (
R
2
− 1)z + wu)

θ1(τ,
R
2
z + wu)

.

(4.20)

By using the specific properties of the θ-function (see, e.g., Appendix B of [80]) one

can further simplify this expression. Finally one obtains the following formula for

the elliptic genus of CY d-fold that is a hypersurface in a weighted projective space

and can be described by a transverse polynomial

ZCYd
(τ, z) =

m−1
∑

k,ℓ=0

e−2πiℓz

m

d+2
∏

i=1

θ1(τ,
wi

m
(k + ℓτ + z)− z)

θ1(τ,
wi

m
(k + ℓτ + z))

=
m−1
∑

k,ℓ=0

y−ℓ

m

d+2
∏

i=1

θ1(q, e
2πiwik

m q
wiℓ

m y
wi
m

−1)

θ1(τ, e
2πiwik

m q
wiℓ

m y
wi
m )

. (4.21)

Now we can consider an abelian symmetry acting on the chiral multiplets as

g : Φi → e2πiαiΦi, i = 1, 2, . . . , d+ 2. (4.22)

Twining the elliptic genus by such an symmetry will lead to a shift of the second

argument of θ1 by αi for each of the chiral fields Φi. Hence we obtain for the elliptic

genus twined by such a symmetry

ZCYd
(τ, z) = TrRR

(

g(−1)FLyJ0qL0−
q

8 (−1)Fr q̄L̄0−
d
8

)

=
m−1
∑

k,ℓ=0

e−2πiℓz

m

d+2
∏

i=1

θ1(τ, αi +
wi

m
(k + ℓτ + z)− z)

θ1(τ, αi +
wi

m
(k + ℓτ + z))

=
m−1
∑

k,ℓ=0

y−ℓ

m

d+2
∏

i=1

θ1(q, e
2πi(αi+

wik

m )q
wiℓ

m y
wi
m

−1)

θ1

(

τ, e2πi(αi+
wik

m )q
wiℓ

m y
wi
m

) . (4.23)

The case of non-abelian symmetries that permute the Φi may be treated by first
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performing a coordinate transformation that diagonalizes the permutation matrix.

In the new coordinates the symmetries again appear as abelian symmetries.

4.2.2 Twisted elliptic genera of CY 5-folds

As we have seen in subsection 4.1.5 the elliptic genus of CY 5-folds seems to imply a

possible connection between CY 5-folds andM24. In order to get a better understand-

ing for this we will now apply the techniques discussed in the previous subsection to

CY 5-folds. A large set (more precisely there are 5 757 727) of CY 5-folds that can

be described as reflexive polytopes is given on the website [81] (under 4 folds ->

All files, in the files 6dRefWH.xxx-xxx.gz). In order to apply our methods we

need to restrict this set to the ones that can be described by a transverse polynomial

in weighted projective space. This then leaves us with 19 353 CY 5-folds.

The hope is that one finds CY 5-folds which twined elliptic genera show similar

behaviour as we have experienced for K3 in Mathieu moonshine, i.e., that the coef-

ficients that correspond to dimensions of irreducible representations of the sporadic

group are replaced by the appropriate traces of the element we are twining with. For

the case when the CY 5-fold is just a product of K3 and and a CY 3-fold (and the

symmetry acts onK3) this will (trivially) be the case. But also for genuine CY 5-folds

this may occur in certain situations. For example for the hypersurface in weighted

projective space CP6
1,1,1,3,5,9,10 which has Euler number χCY5 = −170688 = −48 ·3556

we consider the Z2 symmetry given by

Z2 :

{

Φ1 → −Φ1,

Φ2 → −Φ2.
(4.24)

For this one finds the elliptic genus twisted by this symmetry is given by

Z tw,2A
CY5

= 14 ·
[

2
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

− 2
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

+
∞
∑

n=1

A(2A)
n

(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

) ]

, (4.25)

that is the multiplicative constant at the beginning has been changed from 3556 to

14 and the rest of the expansion coefficients simply correspond to the 2A series of

M24. To explain the change in the prefactor one may decompose 3556 in various

ways into irreps of M24 that will give rise to 14 after the twisting.

An other example that works in a similar way is the hypersurface in the weighted

projective space CP6
1,2,2,3,4,4,8. Applying the same order 2 twist (4.24) one again

finds the 2A series but now multiplied with a factor 69/2. The fractional prefactor

is obviously not consistent with an interpretation in terms if M24 but if we limit

ourselves to M12 also this example seems interesting.
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Going one step further we can consider the order four symmetry

Z4 :

{

Φ1 → iΦ1,

Φ2 → −iΦ2.
(4.26)

Here one finds that twining the elliptic genus of the CY hypersurface in CP6
1,1,1,1,4,4,4

by this symmetry gives the coefficients of the 4B series ofM24 with a prefactor of 42.

More such specific examples can be found. This leads to the idea of a systematic study

of the twining genera of CY 5-folds that are hypersurfaces in weighted projective

spaces.

In my paper [37] this was done in the following manner:

1. From the 5 757 727 examples on the website [81] we took the 19 353 CY

5-folds that can be descried by a transverse polynomial in the homogeneous

coordinates of the ambient weighted projective space.

2. Then we used by a simple code to construct a single transverse polynomial.

This reduced the number of possible cases to 18 880 CY 5-folds, which to some

extent may be attributed to the simplicity of the code used.

3. In 16 727 cases we were able to find a Z2 symmetry of the transverse polynomial.

4. For these 167272 manifolds the elliptic genus twined by such an Z2 symmetry

was calculated. In case the calculation took too long it was aborted. By this

method we arrived at 13 642 twined elliptic genera.

The elliptic genera found in this way can always be split into a linear combination of

the 1A and 2A series of M24 with integer or half integer prefactors. As an example

we may give the elliptic genus of the hypersurface in the weighted projective space

CP6
1,1,1,1,1,1,3 twined by the symmetry given in (4.24)

Z tw,2A
CY5

=
9

2

[

22
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

− 2
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

+
∞
∑

n=1

An

(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

) ]

+ 43 ·
[

6
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

− 2
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

+
∞
∑

n=1

A(2A)
n

(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

) ]

. (4.27)

This behaviour may already be expected from standard CFT arguments [11, 12] since

any elliptic genus twined by a group element g is a Jacobi form φg
0,m w.r.t Γ0(|g|)

with a potentially non trivial multiplier,i.e, it transforms as in (3.47),(2.29). Twining
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by an element of the 1A or 2A congruence class has trivial phase while twining by a

2B element has non-trivial multiplier.

The vector space of possible twined elliptic genera for CY 5-folds is created by

very few basis elements. That follows from the fact that they are simply products of

φ0, 3
2
and the functions that appear for K3 (as follows from Lemma 1.4. in [45]) and

that the elements for K3 are created by very few basis elements [66]. In particular

twining by an order two element will always give a linear combination of 1A and

2A twining genera for trivial multiplier. On the other hand for non-trivial multiplier

one will always obtain something proportional to the 2B series. The fact that we in

our analysis never found a 2B series follows from the fact that they will only show

up for non-geometric symmetries, i.e., symmetries that treat left and right movers

differently. This will then give rise to failure of level matching and which further

leads to the non trivial multiplier in the twining elliptic genera.

We may choose the following two functions as basis elements for the 1A and 2A series

respectively

f1a(τ, z) = 11
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

−
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

+45
(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

)

+ . . . (4.28)

f2a(τ, z) = 3
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

−
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

−3
(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

)

+ . . . . (4.29)

Out of the 13 642 twined elliptic genera one finds 927 cases that are proportional to

f2a. Further 811 of these the overall coefficient is an even integer which may lead one

to suspect a possible M24 symmetry (for the remaining 116 the prefactor is odd and

may agree to a 2B element of M12). To further check if these manifold really have a

M24 symmetry we proceeded as follows

1. We generated a large number of Z2 symmetries for each of these 927 examples

and calculated the twining elliptic genera for all of them.

2. In most of the cases with multiple Z2 symmetry one finds one elliptic genus

proportional to just the f2a and the rest to be linear combinations of f1a and

f2a.

3. For the cases with only one obvious Z2 symmetry we looked for higher order

abelian symmetries and calculated their twining elliptic genera. In all cases one

finds at least one symmetry that leads to a twined elliptic genus not consist

with either M24 or M12.

Based on these results one can conclude that none of the analysed 13 642 CY

5-folds has a strict M24 symmetry. The results are consistent with the idea that
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the CY 5-folds have small discrete symmetry groups (at certain points in moduli

space). However other possibilities are also possible. For example symmetry groups

that are larger than M24, in particular extended by one or several Z2’s are not ruled

out. Also theoretically one could imagine the situation where the symmetry group

corresponds to multiple copies of M24. Then the prefactor
χCY5

48
could be interpreted

as having |χCY5

48
|many differentM24 symmetries rather than that many copies or sums

of certain irreducible representations under a single M24. Then the Z2 symmetries

studied could be part of certain of those M24’s corresponding to a 2A element there

while for others it would simply correspond to the identity. This would then also fit

with having a linear combination of f1a and f2a. Fractional coefficients are however

still excluded.

The special cases with χCY5 = ±48(±24) are the ones that should correspond

to a single M24(M12) symmetry. The list of [81] however only contains a single such

CY 5-fold which is related to the fact that all those examples have sums of weights

m =
∑

iwi ≤ 200 which lead to mostly rather large negative Euler number. In order

to generate further examples one may use PALP [82], which is however rather time

consuming. Hence we chose to proceed as follows:

1. For 7 ≤ m ≤ 600 partition m into 7 integer weights wi,i = 1, . . . , 7.

2. Keep those cases for which the Poincare polynomial

P (x) =
7
∏

i=7

1− xm−wi

1− xwi
(4.30)

evaluated at x = 1 is an integer 26 . This is a very fast check.

3. From the remaining cases keep those for which the formula for the Euler number

χ =
1

m

m
∑

k=1

m
∑

l=1

∏

gcd(l,k)·
wi
m

∈Z

wi −m

wi

(4.31)

gives ±24 or ±48.

4. For the remaining cases use PALP [82] to check the weight systems explicitly.

By taking these steps one arrives at dozens of new examples. We also calculated

all Hodge numbers for those examples in order to be certain that they do correspond

to different manifolds. For some of the cases we found manifolds with the same

Hodge numbers so that one can not immediately conclude that they correspond to

non-diffeomorphic manifolds. For all the examples we then proceeded by finding Z2

symmetries (table 1) and calculated the twined elliptic genera. Having calculated all

26This is a necessary condition for an appropriate polynomial to exit - see Appendix D.2.
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Euler number number of example cases with Z2 symmetry reflexive cases
χ = −48 72 (67) 64 (59) 6 (6)
χ = +48 68 (59) 51 (43) 4 (4)
χ = −24 32 (29) 26 (23) 4 (4)
χ = +24 27 (24) 25 (22) 4 (4)

Table 1: The number of CY 5-folds constructed as hypersurfaces in weighted pro-
jective spaces. The numbers in parenthesis give the number of CY manifolds with
different Hodge numbers

the twined elliptic genera for the examples above arising from one of the geometric

Z2 symmetries one can make two observations:

1.) Making a quantitative analysis one can observe that for χ = +48 and χ = −48

the twining elliptic genera are proportional to the 2A twined elliptic genus of M24 in

3.4% and 5.2% of the cases. Also for the coefficient of f1A one observes that zero is

not more likely than other small coefficients. Furthermore the is no apparent prefer-

ence for even coefficients.

2.) For the cases that actually give something proportional to the 2A elliptic genus

one observes that they have prefactors with absolute value larger than one. More

specifically for the examples we considered we find the multiplicities {−42f2a,−38f2a,

−22f2a,−6f2a, 50f2a}. While this may seem surprising it can understood from the

fact that the elliptic genus counts bosonic and fermionic states with different sign.

In particular in cases with high symmetry (at special points in moduli space) we

may expect a lot of states to exist which contribute to the elliptic genus but in total

cancel out (at a general place in moduli space the expectation is that most of those

state obtain a mass and no longer contribute). When calculating the twining ellip-

tic genus only states that are invariant under the symmetry element inserted in the

trace will be kept and hence the cancellation may not take place in the same fashion

hence leading to different multiplicities. As a concrete example we may consider

CP6
16,17,17,34,58,62,102 which has Euler number χ = −48 and hence elliptic genus

Zχ=−48
CY5

= +2f1a(τ, z) = 22
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

− 2
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

+90
(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

)

+ . . . (4.32)

Upon twining with the Z2 symmetry

Z2 :

{

Φ2 → −Φ2,

Φ2 → −Φ2.
(4.33)
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we obtain

Z tw
CY5

(τ, z) = 50f2a(τ, z)

= 150
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

− 50
(

chN=2
5,0, 3

2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)

−150
(

chN=2
5,n, 3

2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

)

+ . . . . (4.34)

We see that, e.g., the 22 states that belong to
(

chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)

turn into

150 such states.

One way to understand such large number is to look at the Hodge numbers of

the CY. They are in general large (compared to the Euler number 48) so the have

to cancel in a rather precise way. For the concrete example at hand we have

h1,1 = 25, h1,2 = 0, h1,3 = 232, h1,4 = 259, h2,2 = 1692, h2,3 = 1946. (4.35)

Now for a general CY 5-fold it holds that (see page 6 in [45])

χ0 = χ5 = 0, χ1 = χ4 = − 1

24
χCY5 , χ2 = χ3 =

11

24
χCY5 . (4.36)

Through twining these exact cancellations get changed and will produce larger

multiplicities.

Finally for the CY manifolds with χ = ±24 that we constructed we similarly

calculated all the Z2 twining elliptic genera but always obtained a linear combination

of f1a and f2a with non-zero coefficients, so never something proportional to just f2a.

From all these observations we can exclude a strict M24 or M12 symmetry for the

cases we studied.

4.2.3 Calabi-Yau 6-folds

In subsection 4.1.6 we saw that a CY 6-fold which is a particular product of two CY

3-folds will give rise to Jacobi form that appears in umbral moonshine. However if

one calculates the twined elliptic genus for a symmetry of one of the CY 3-folds it

will only change by a factor relative to the elliptic genus. We can illustrate this by

looking at the elliptic genus for the quintic CY, given as a hypersurfacae in CP4
1,1,1,1,1.

Its elliptic genus is just

Zquintic(τ, z) = −100φ0, 3
2
= −100

(

chN=2
3,0, 1

2
(τ, z) + chN=2

3,0,− 1
2
(τ, z)

)

. (4.37)

Twining this by a symmetry of order 5 that acts on the first two coordinates as

g : Φ1 → e2πi/5Φ1, Φ2 → e2πi/5Φ2 (4.38)
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yields the following twined elliptic genus

Z(g)
quintic(τ, z) = −5φ0, 3

2
= −5

(

chN=2
3,0, 1

2
(τ, z) + chN=2

3,0,− 1
2
(τ, z)

)

, (4.39)

i.e., only the overall prefactor changes. So in this situation we will never obtain the

twined series of 2.AGL3(2).

4.3 A toroidal orbifold and two Gepner models

In the last section we analysed a large class of CY 5- folds for the existence of M24

symmetry without finding any evidence for it. Since there does not exist a complete

list of CY 5-folds and it is not known if their number is finite, we do not know if this

result is representative in any way. In particular the M24 symmetry might show up

at special points in moduli space where the CY’s have enlarged symmetry groups.

In this subsection we will hence study such examples, in particular toroidal orbifold

points and Gepner models.

The toroidal orbifolds we are interested in are of the form T 10/G where G is a

discrete symmetry group of the 10-dimensional torus T 10. The Z2 toroidal orbifolds

that occur in Monstrous and Conway moonshine and exchanges the signs of all

coordinates are not of this type. We may however look at cases where G = G1 ×G2

and the orbifolds are of the form T 10/G = T 4/G1 × T 6/G2. For G1 = Zm, m =

2, 3, 4, 6 we obtain the product of the singular limit of a K3 with a complex three

dimensional space. In this case the origin of M24 can be thought to directly come

from K3.

We choose to study an example where G = Z4
2 is generated by the following 4

elements

g1 : {z1, z2, z3, z4, z5} → {−z1,−z2, z3, z4, z5},
g2 : {z1, z2, z3, z4, z5} → {z1,−z2,−z3, z4, z5},
g3 : {z1, z2, z3, z4, z5} → {z1, z2,−z3,−z4, z5},
g4 : {z1, z2, z3, z4, z5} → {z1, z2, z3,−z4,−z5},

where we have the five complex coordinates z1, . . . , z5 on T 10. The elliptic genus of

this particular model is

ZT 10/Z4
2
= 1280

[

θ2(τ, z)
3θ3(τ, z)θ4(τ, z)

θ2(τ, 0)θ3(τ, 0)θ4(τ, 0)
+
θ2(τ, z)

3θ3(τ, z)θ4(τ, z)

θ2(τ, 0)θ3(τ, 0)θ4(τ, 0)

+
θ2(τ, z)

3θ3(τ, z)θ4(τ, z)

θ2(τ, 0)θ3(τ, 0)θ4(τ, 0)

]

= 160φ0, 3
2
φ0,1. (4.40)
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This can be easily seen to arise from the sum over all the twisted sectors (sectors

with g ∈ G insertion in the trace). Each g ∈ G will exactly change the sign of two

zi. The untwisted sector does not contribute as we have already discussed that the

elliptic genus of any torus vanishes due to the fermionic zero modes.

Now we choose to twine the elliptic genus with the symmetry h that acts on the

torus as

h : {z1, z2, z3, z4, z5} → {iz1,−iz2, z3, z4, z5}. (4.41)

Since its squares to an element in G, h2 = g1 ∈ G, it is of order 2. Twining the

elliptic genus by this element one obtains:

Z tw
T 10/Z4

2
(τ, z) = 16

[

6
4
∑

j=1

tj(
1

4
)tj(−

1

4
)t3(0)t4(0)

+[t2(0)
2 + t3(0)

2 + t4(0)
2]

4
∑

k=2

[t1(
1

4
)tk(−

1

4
) + tk(

1

4
)t1(−

1

4
)]tk(0)

+[t2(0)
2 + t3(0)

2 + t4(0)
2]

∑

k1 6=k2 6=k3 6=k1
k1,k2,k3∈{2,3,4}

tk1(
1

4
)tk2(−

1

4
)tk3(0)

+
∑

k1 6=k2 6=k3 6=k1
k1,k2,k3∈{2,3,4}

[t1(
1

4
)tk3(−

1

4
) + tk3(

1

4
)t1(−

1

4
) + 2tk1(

1

4
)tk2(−

1

4
)]

·(tk1(0)2 + tk2(0)
2)tk3(0)

]

(4.42)

= 56f1a + 48f2a, (4.43)

where we have introduced tj :=
θj(τ,z+x)

θj(τ,x)
. Since we find a linear combination of f1a

and f2a we can again conclude that the studied symmetry element h is not related

to a M24 symmetry of the model.

As our final example we will consider two Gepner models, namely (1)15 and (2)10

which are highly symmetrical. The models correspond to orbifolds by Zk+1 of tensor

products of 15 resp. 10 copies of Ak+1 for k = 1 and k = 2. In [61, 83] it was

explained how to calculate the elliptic genus for such models (and this was applied

to moonshine in [84]). Each minimal model Ak+1 is obtained from a chiral multiplet

Φ with a superpotential W = Φk+2

k+2
. It will contribute a multiplicative factor

Zk(τ, z) =
θ
(

τ, k+1
k+2

z
)

θ
(

τ, k+1
k+2

z
) (4.44)

to the elliptic genus. The Zk+2 orbifold of N such minimal models with central
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charge c (c = 15 in our case) gives a contribution

ZGepner(τ, z) =
1

k + 2

k+1
∑

a,b=0

e
πic
6

(a+b)e
2πic
6

(aτ2+2az)(Zk(τ, z + aτ + b))N . (4.45)

With the help of this we find the following elliptic genera for the models we want to

consider

Z(1)15(τ, z) = −455φ0, 3
2
φ0,1, (4.46)

Z(2)10(τ, z) = −615φ0, 3
2
φ0,1. (4.47)

We now want to twine these elliptic genera by a symmetry. The simplest case is

where the symmetry simply acts by multiplying the chiral multiplet with a phase

Φ → e2πiαΦ . The twined elliptic genus of a single minimal model is then

Zk,α(τ, z) =
θ
(

τ, k+1
k+2

z − α
)

θ
(

τ, k+1
k+2

z + α
) . (4.48)

The twined elliptic genus of the Gepner model hence becomes

Z tw
Gepner(τ, z) =

1

k + 2

k+1
∑

a,b=0

e
πic
6

(a+b)e
2πic
6

(aτ2+2az)

N
∏

i=1

Zk,αi
(τ, z + aτ + b). (4.49)

We consider the Z2 symmetry that simply acts by multiplying the chiral multiplet

with a minus sign. This results in the following twined elliptic genera

Z tw
(1)15(τ, z) = 77f1a + 110f2a, (4.50)

Z tw
(2)10(τ, z) = 35f1a + 100f2a, (4.51)

which are again linear combinations of f1a and f2a. So also in this case we conclude

that the examples we studied do not lead to an outright M24 symmetry.

4.4 Concluding remarks

In this section we have discussed the results published in [37] on finding Moonshine in

the elliptic genus in higher dimensional CY manifolds. As we have seen in particular

the elliptic genus of CY 5-folds shows an interesting expansion in terms of N = 2

characters. After calculating the twining elliptic genera for order two elements of

a large class (13 642) of CY 5-folds (in particular all realized as hypersurfaces in a

weighted projective ambient space) we are not able to find any examples of genuine

CY 5-folds that show Mathieu moonshine. The trivial cases where the CY 5-fold

is the product of K3 with a CY 3-fold are the only examples we are able to find.

Similarly for the models that arise at special points in moduli space where we have
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an extended symmetry algebra, like toroidal orbifolds and Gepner models, the only

examples that show a connection to M24 are again the trivial cases where one factor

corresponds to a K3. So summing up, from this analysis one cannot conclude that

CY 5-folds are involved in Mathieu moonshine in any interesting kind of way.

For CY 6-folds we find connections to Jacobi forms of umbral moonshine in special

cases. However also here twining the elliptic genera does not produce the appropriate

twined series.

For CY4-folds connections to moonshine may still exist and may be the content of

further studies.

5 Mathieu Moonshine and Gromov-Witten invariants

In this section we will present a different manner in which Mathieu Moonshine is

connected to CY manifolds. In particular we will make use of the string duality

to relate heterotic compactifications on K3 × T 2, and orbifolds thereof, to type II

compactifications on CY 3-folds. We will match heterotic and type II compactifica-

tions by comparing their spectrum, the vector moduli prepotential as well as certain

gravitational couplings of the effective theory. On the heterotic side the prepotential

and the gravitational couplings are related to a special index of the internal the-

ory, called the new supersymmetric index [85–89]. As we will see this index will

be connected to Mathieu Moonshine. On the type II side the prepotential and the

couplings are connected to topological invariants of the CY 3-fold, called Gromov-

Witten/Gopakumar-Vafa invariants, which by matching to the heterotic side will

also be connected to Mathieu Moonshine.

5.1 Heterotic compactifications on K3× T 2 and CHL orbifolds

In this subsection we will discuss the compactification of the E8×E8 heterotic string

on K3× T 2 and CHL-orbifolds. Our discussion follows [31, 38, 90–92].

When compactifying the heterotic string on a manifold X one in general needs

to specify data beyond the sigma model metric on X. This is the case since the

Bianchi identity for the three form field strength of the heterotic string demands

dH = 1
4
(tr(R∧R)− tr(F ∧F ) = 0 (in cohomology), where R is the curvature 2-form

of X and F is the fields strength of the E8 × E8 gauge field. We write the gauge

bundle associated to F as V1×V2 and express the condition in terms of the respective

second Chern classes. Then it reads (without five-brane source)

c2(X) = c2(V1) + c2(V2) , c1(V1) = c1(V2) = 0. (5.1)

So we see that for compactifications on a manifold with non-vanishing second Chern

class we need to embed non-trivial gauge bundles (instantons) in E8 × E8. In par-
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ticular for the compactification on K3× T 2 we find

∫

c2(V1) +

∫

c2(V2) =

∫

c2(K3) = χK3 = 24 (5.2)

so we need to embed in total 24 instantons in the E8×E8 gauge group in this situation.

More precisely we need to embed (n(1), n(2)) instantons in some subgroups H1 ×H2

of E8 × E8, n
(1) + n(2) = 24, n(i) ∈ N. This will break the gauge group to G1 × G2,

where Gi is the commutant of Hi in E8. Due to the symmetry under the exchange of

the two E8 factors one can restrict to 0 ≤ n2 ≤ 12. In general this will then lead to a

N = (0, 4) world-sheet supersymmetry and N = 2 supersymmetry in four spacetime

dimensions. The special case where one chooses n(1) = 24, n(2) = 0 and sets the gauge

connection equal to the spin connection, i.e., and H1 = SU(2), G1 = E7 is called the

standard embedding. In this case the world-sheet supersymmetry is N = (4, 4) and

the results presented in section 3.3 for the elliptic genus of K3 will hold. However as

we will see in the following also for other choices of instanton embeddings a connection

to M24 will continue to exist.

Now we turn to the structure of the internal CFT and internal Hilbert space of

the theory. For the standard embedding the first E8 factor is broken to D6 × D2.

Using the fermionic description of these latices one obtains the following structure

for the internal Hilbert space [85, 92]

Hinternal = H(6,6)
D2K3 ⊗H(6,0)

D6
⊗H(8,0)

E8
⊗H(2,3)

T 2 (5.3)

where the upper index labels the left and right central charges. H
(6,6)
D2K3 is made

up of 4 left moving bosons on K3 together with the 4 fermions from the fermionic

representation of D2, and a right-moving c̄ = 6 supersymmetric contribution. H(6,0)
D6

stands for 12 fermions coming from D6, H(8,0)
E8

is the Hilbert space of the unbroken

E8 and lastly, H(2,3)

T 2 is the Hilbert space of two left moving bosons on T 2 and a

supersymmetric c = 3 theory on T 2. For non-standard embeddings we in general

have vector bundles with rank r1,2 belonging to the instantons embedded in the

first/second E8. Then 2(r1 + r2) fermions from the two E8’s couple to the gauge

connection, and the Hilbert space structure generalizes accordingly [93].

5.1.1 The spectrum

In this subsection we will briefly discuss how one may obtain the massless spectrum

of the E8×E8 heterotic string compactified on K3×T 2, see, e.g., [90, 94, 95, 95–97].

One may follow either of two approaches:

i) At a a generic point in K3 moduli space one can obtain the number of vector and

hypermultiplets of the effective 4d N = 2 spacetime theory by dimensional reduction

of the 10-dimensional N = 1 spectrum of the heterotic string [94, 95, 97, 98], which

consist of a gravity multiplet and a vector multiplet. The 10 dimensional gravity
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multiplet gives an universal contribution corresponding to one gravity multiplet, 3

vector multiplets and 20 hyper multiplets.

The 10 dimensional vector multiplet is in the adjoint representation of the gauge

group , i.e., (248, 1)⊕(1,248). Upon embedding of instantons into subgroupsH1×H2

of E8 × E8 the adjoint representation of E8 decomposes as

E8 → Hi ×Gi

248 → (1, adjGi) +
∑

k

(R
(Hi)
k ,R

(Gi)
k ) + (adjHi, 1) (5.4)

where adj stands for the adjoint representation and R
(Hi)
k ,R

(Gi)
k label different rep-

resentations of Hi, Gi labelled by k. The 4 dimensional gauge bosons arises from the

10 dimensional gauge boson transforming as singlets under Hi. The corresponding

scalars for these vector multiplets come from the 10 dimensional gauge bosons with

vector index along T 2. To obtain the number of fermions one may use index theo-

rems [90]. Fermions charged under the the groups H1 ×H2 will arrange themselves

in hypermultiplets.

ii) The second method to obtain the spectrum of the heterotic string on K3 × T 2

is to study the theory at special points in K3 moduli space where K3 may be writ-

ten as T 4/ZM , M = 2, 3, 4, 6. Here one can explicitly calculate the spectrum from

the orbifolded conformal field theory, that is one compactifies the E8 ×E8 heterotic

string on T 4/ZM × T 2 [95, 96]. Parametrising T 2 by x1, x2 ∈ [0, 2π) and T 4 by

(y1, . . . , y4) ∈ [0, 2π) the orbifold action by ZM , generated by an element g, may be

written as

gs : (x1, x2, y1+iy2, y3+iy4) 7→ (x1, x2, e
2πis/M(y1+iy2), e

−2πis/M(y3+iy4)), s = 0, . . . , 3,

(5.5)

i.e., g acts diagonally on the (complex) coordinates with eigenvalues e±2πiva , va =

(0, 0, 1
M
,− 1

M
). In addition one needs to declare the action on the gauge degrees

of freedom, which we will denote γ(g). Discarding the outer automorphism (which

exchange the two E8 factors) g must act on the gauge group as an element of E8×E8,

the unbroken gauge group than being the commutant of γ(g) in E8 × E8. For our

case (where the orbifold group is generated by a single element), using the bosonic

description of E8 ×E8 one can always choose γ(g) to lie in the maximal torus of the

gauge group. Hence it commutes with all the Cartan currents i∂̄X and can only act

by a constant shift of the chiral bosons,

γ : XI 7→ XI + V I . (5.6)
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Then gM = 1 implies that MV I needs to lie in the E8 × E8 weight lattice. It is

futher restricted by modular invariance to fulfil M(V 2 − v2) =even. Different shift

vectors V correspond to the different possible instanton embeddings. There are two

such embeddings for M = 2, five for M = 3, 12 for M = 4 and fifty-nine for M = 6.

The spectrum can now be found by orbifold methods. States consist of combinations

of left and right vertex operators, L ⊗ R. The mass formula for such states in the

sector twisted by gn is found to be

m2
R = NR +

1

2
(r + nv)2 + En −

1

2
; m2

l = NL +
1

2
(P + nV )2 + En − 1. (5.7)

Here NR/L are the oscillator number of the R/L part, r is a SO(8) weight with
∑4

i=1 ri = odd, P is an element of the E8 × E8 weight lattice with
∑16

I=1 P
I = even

and En is the zero point energy from the twisted sector oscillators, it is give by

En = n(M−n)
M2 . Further the multiplicities of states satisfying above mass formula are

given by

D(gn) =
1

M

M−1
∑

m=0

χ(gn, gm)∆(n,m) (5.8)

where ∆(n,m) is a phase factor given by

∆(n,m) = exp{2πi[(r + nv) ·mv − (P + nV ) ·mV +
1

2
mn(V 2 − v2) +mρ]}. (5.9)

ρ only appears in the case of oscillators (NL 6= 0), e2πiρ is the phase by which the

oscillators in the T 4 are rotated by g. χ(gn, gm) is the number of simultaneous fixed

points of gn and gm, χ(1, gm) is defined to be 1. From this the gauge group and

complete spectrum can be worked out [96]. A complete list of all cases can be found

in [99]. We reproduce the examples that will be important to us in tables 2,3.

5.1.2 The new supersymmetric index

Having discussed the spectrum of the E8 × E8 heterotic string on K3 × T 2 in the

previous section we now turn to calculating the gravitational couplings and the vector

moduli prepotential. A central object that is needed to calculate these quantities [85–

89] is the new supersymmetric index [100]. It is also the object that brings about

the connection to Mathieu moonshine. It is defined by

Znew(q, q̄) =
1

η(q)2
TrR(F (−1)F qL0−

c
24 q̄L0−

c̄
24 )
∣

∣

∣

c=(22,9)
(5.10)

where the trace is taken over the Ramond sector of the internal CFT associated to

the K3×T 2 and E8×E8 with central charge (c, c̄) = (22, 9). It is an natural object in

d = 4,N = 2 heterotic compactifications since it counts the number of BPS-states.
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Nh −Nv Gauge group, Twisted Hypermultiplets b̂

Shift vector sectors

84 E6 × SU(2)× U(1) g′0 (27,2;1) + (1,2;1) + (1,1;64)
×SO(14)× U(1) +2(1,1;1) 2

3

g′1 + g′3 12(1,1;1) + 8(1,2;1)
(2, 1, 1, 05; 2, 07) +4(27,1;1) + 4(1,1;14)

g′2 3(1,2;14) + 10(1,2;1)

116 SU(8)× SU(2) g′0 (28,2;1) + (1,1;64) + 2(1,1;1)
×SO(14)× U(1) g′1 + g′3 8(8,1;1) + 4(8,2;1) 8

9

(3, 15, 02; 2, 07) g′2 5(1,2;14) + 6(1,2;1)

Table 2: Two examples of perturbative E8×E8 heterotic orbifold spectra on T 4/Z4.

Gauge Group, Untwisted Twisted

shift vector sector sector

E7 × U(1)× E8 (56;1) + 2(1;1) 9(56;1)
1
3
(1,−1, 06; 08) +(1;1) + 45(1;1)

18(1;1)

SU(9)× E8 (84;1) + 2(1;1) 9(36;1) + 18(9;1)
1
3
(2, 14, 03; 08)

SO(14)2 × U(1)2 (14;1) + (1;14) 9(14;1)
1
3
(2, 07; 2, 07) +(64;1) + (1;64) +9(1;14)

+2(1;1) +18(1;1)

E6 × SU(3)× E7 × U(1) (27,3;1) 9(27,1;1)
1
3
(2, 12, 05; 1,−1, 06) +(1,1;56) 9(1,3;1)

+2(1,1;1) + (1,1;1) +18(1,3;1)

SU(9)× E6 × SU(3) (84;1,1) + (1;27,3) 9(9;1,3)
1
3
(2, 12, 05; 2, 14, 03) 2(1;1,1)

Table 3: Hypermultiplet spectrum for different embeddings with K3 as T 4/Z3. We
have not kept track of various U(1) charges.

As shown in [85], section 3, morally speaking,

Znew(q, q̄) = −2i

[

∑

BPS vectormultiplets

q∆q∆̄ −
∑

BPS hypermultiplets

q∆q∆̄

]

. (5.11)

In the case without any Wilson lines on T 2, the new supersymmetric index for
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the theory on K3× T 2 takes the general form [101]

Znew(q, q̄) = ZK3(q) · Z2,2(q, q̄),

Z2,2(q, q̄) =
∑

p∈Γ2,2

q
1
2
p2L q̄

1
2
p2R =

∑

p∈Γ2,2

q
1
2
(p2L−p2R)e−2πτ2p2R ,

p2R =
1

2T2U2

| −m1U +m2 + n1T + n2TU |2, (5.12)

1

2
p2L =

1

2
p2R +m1n1 +m2n2,

where T, U are the Kähler and complex structure moduli on T 2. We see that the

new supersymmetric index factorizes into a holomorphic part ZK3(q) coming from

K3 and the E8 × E8 contributions and into a lattice sum Z2,2. In general the new

supersymmetric index will depend on the topology of the manifold one (e.g., χK3)

on and on the topology of the gauge bundle, e.g., (n(1), n(2)). However one may

move in instanton moduli space, i.e., change the way the instantons are embedded in

E8×E8. This is equivalent to moving around in the hypermultiplet moduli space by

(un-)Higgsing, thereby changing the gauge group G1 × G2. So one can easily move

from standard to non-standard embeddings. Doing so however leaves the net number

of vector- and hypermultiplets NV −NH = 240 as well as (n(1), n(2)) unchanged. We

note that the gauge group can be maximally Higgsed for n(1) = 0, 1, 2 only.

For the case of SU(2) bundles with instanton numbers (n(1), n(2)) and no Wilson

lines the contribution from the K3 part is [85]

ZK3(q) = −2

[

n(1)

24

E6(q)E4(q)

η(q)24
+
n(2)

24

E6(q)E4(q)

η(q)24

]

= −2
E6(q)E4(q)

η(q)24
. (5.13)

By making use of the modular properties of Znew one can make a much more general

statement [30]. Namely, as will become clear from (5.41) (with g = 1) in subsection

5.2.2, τ2Znew is a non-holomorphic modular form of weight -2 (with a pole at infinity).

Given the factorisation in (5.12) one can deduce that the form of ZK3 as given in

(5.13) is actually uniquely fixed up to a multiplicative constant. This constant can

be fixed to 1 by various arguments 27.

The Hilbert space structure (5.3) implies that ZK3(q) admits an expansion in terms

of the characters of D6 and the elliptic genus of K3 with the elliptic modulus taking

27Due to the gravitational anomaly 6d, N = 1 compactifications of the heterotic string on K3
always satisfy nH − nV = 244, nH , nV here stand for the number of N = 1 hyper-and vector
multiplets. This in turn fixes the coefficient of the q1/6 in an expansion of (5.13) to 1 [30].
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special values [85]

η(q)12ZK3(q) =
1

2
E4

[

(

θ2(q)

η(q)

)6

Zell
K3(q,−1) + q

1
4

(

θ3(q)

η(q)

)6

Zell
K3(q,−q1/2)

− q
1
4

(

θ4(q)

η(q)

)6

Zell
K3(q, q

1/2)
]

. (5.14)

The factors can be understood in the following way: The E4 factor comes from the un-

broken E8, theD6 characters enter through the trace over the 12 free fermions coming

from the broken E8. The elliptic genus arises from taking a trace over the remaining

4 fermions, the 4 bosons in the left moving sector together with the supersymmetric

right moving sector in the (R−, R), (NS+, R) and (NS−, R) sectors (Here + stands

for the insertion of (−1)FL when taking the trace and − stands for no such insertion.

For the right moving part the (−1)FR insertion is always there so it is left away). The

(R+, R) sector also contributes a term proportional to
(

θ1(q)
η(q)

)6

Zell
K3(q,+1) which we

have omitted since vanishes due to θ1(q) = 0. However contributions from this sector

may arise from twisted sectors when studying CHL-orbifolds.

Through the presence of the K3 elliptic genus in (5.14) one obtains a connection

between the new supersymmetric index and to M24. More precisely making use of

(3.43) one finds the following expansion

− 4E6(q)

η12
(q) = 20 gh=1/4,l=0(q)− 2gh=1/4,l=1/2(q) +

∞
∑

n=1

Angh=n+1/4,l=1/2(q) (5.15)

where

gh=n+1/4,l(q) =

(

θ2(q)

η(q)

)6

chN=4
3,n,l (q,−1) + q

1
4

(

θ3(q)

η(q)

)6

chN=4
3,n,l (q,−q1/2) (5.16)

− q
1
4

(

θ4(q)

η(q)

)6

chN=4
3,n,l (q, q

1/2)

and the coefficients An are as stated in (3.44) and are the dimensions of irreducible

representation of the Mathieu group. This shows that the new supersymmetric index

(for the case without Wilson lines) and thereby also the number of BPS states admits

a decomposition in terms of dimensions of irreducible representations of M24.

Before we turn to the connection with CY 3-folds we will discuss the generaliza-

tion to CHL orbifolds to the constructions presented above. Thereby not just the

elliptic genus but also the twisted twining genera of K3 enter the discussion.

5.2 CHL orbifolds

In this subsection we consider ZN orbifolds of the E8 ×E8 heterotic string compact-

ified on K3 × T 2 . Following [38, 70, 92, 97] we consider orbifolds where ZN acts
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freely by an 1/N shift on one of the circles of T 2 together with an action on the

internal CFT describing the heterotic string on K3. We refer to these orbifolds as

CHL orbifolds 28 of order N . Orbifolding by a freely acting group is necessary in or-

der to preserve N = 2 space time supersymmetry. Since the action involves both K3

and T 2 the orbifolded theories cannot be thought to be obtained from N = 1, d = 6

vacua.

In particular we consider orbifolds where ZN acts as an automorphism on K3.

This action must preserve SU(2) holonomy so it must retain the holomorphic 2-form

on K3 and the holomorphic 1-form on T 2 [104].

So ZN has to act as a symplectic automorphism (of order N) on K3 29. As

mentioned in section 3.3 the symplectic automorphisms ofK3 form a subgroup ofM23

(which may change when moving in the moduli space of K3). Each automorphism

corresponds to one of the following nine conjugacy classes of M23 [106]

1A, 2A, 3A, 4B, 5A, 6A, 7A, 7B, 8A. (5.17)

We will consider examples of Z2 [70, 92, 97] and Z3 orbifolds [38].

For the Z2 case we follow [92] and consider a point in K3 moduli space, where

K3 is expressible as T 4/Z4. Concretely let (y1, . . . , y4) ∈ [0, 2π) be coordinates on

T 4 then K3 is obtained by the orbifold action

gs : (y1 + iy2, y3 + iy4) ∼ (e2πis/4(y1 + iy2), e
−2πis/4(y3 + iy4)) , s = 0, . . . , 3 (5.18)

Parametrising the T 2 by x1, x2 ∈ [0, 2π) the CHL action may be written as

g′ : (x1, x2, y1, y2, y3, y4) ∼ (x1 + π, x2, y1 + π, y2 + π, y3 + π, y4 + π). (5.19)

For the Z3 case we realize K3 as T 4/Z3 [38]. We choose the coordinates on T 4 to be

(z1, z2) ∈ C2/Z2 with periodicity

zi ∼ zi + n1e1 + n2e2, e1 = e
2πi
3 , e2 = 1, (n1, n2) ∈ Z2. (5.20)

The orbifold limit of K3 is then realized by orbifolding with

gs : (z1, z2) 7→ (e
2πis
3 z1, e

− 2πis
3 z2). (5.21)

Denoting the coordinates on T 2 by (x1, x2) ∈ [0, 2π) as above, the CHL orbifold of

28They are named after Chaudhuri, Hockney and Lykken who were the first to study freely acting
orbifolds of heterotic string compactifications [102, 103].

29Since such automorphisms always have a fixed point [105] it is necessary for the action on T 2

to be fix point free, as is guaranteed by the 1/N shift.
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order 3 can now be implemented by orbifolding with

g′ : (x1, x2, z1, z2) 7→
(

x1 +
2π

3
, x2, z2 +

1

3
e1 +

2

3
e2, z2

)

. (5.22)

5.2.1 The spectrum

As in the unorbifolded case (subsection 5.1.1), the spectrum of the CHL orbifolded

theory may be again be constructed in the two ways above.

i) By dimensional reduction [97]: One needs to take into account that the number

of h1,1 forms on the orbifolded K3 is given by [65]

h1,1 = 2k , , k =
24

N + 1
− 2, forN = 2, 3, 5, 7. (5.23)

Then one finds that the universal contribution from the 10 dimensional gravity mul-

tiplet after orbifolding is 1 gravity multiplet, 3 vector fields and 2k hypermultiplets,

so only the number of hypermultiplets is changed. Similarly in the contribution

coming from the 10 dimensional gauge multiplet only the number of hypermultiplets

changes.

ii) As in to the unorbifolded case one can obtain the spectrum at special points in

K3 moduli space by CFT methods [38, 92]. One thing to notice is that the sector

twisted by g′ only does not produce massless states since the g′ action is fixed point

free. The formulas of the masses of states (5.7) stay the same, only the formula for

the degeneracies (5.8) changes to

D(gn) =
1

M

1

N

M−1
∑

m=0

N−1
∑

r=0

χ(gn, gmg′r)∆(n,m) (5.24)

where now χ(gn, gmg′r) is the number of fixed points of gn invariant under gmg′r, so

essentially just the projection onto g′ invariant states has entered. Since the embed-

ding of instantons into the gauge group has not been changed (i.e., the shift vector

is the same) and the vector multiplets arise from the untwisted sector, the gauge

group and number of vector multiplets is unchanged. Only the number of hyper-

multiplets arising from the twisted sectors may change. So by counting the common

fixed points of gn and gmg′r for the Z2 and Z3 orbifolds the resulting spectrum can

be found [38, 92]. Again we reproduce the cases that are of interest to us in tables

4 and 5. To obtain the complete spectrum the gravity multiplet and the 3 vector

multiplets coming from the universal contribution from the 10 dimensional gravity

multiplet still need to be added to this spectrum.

We are interested in finding the possible type II dual theories to the theories of

tables 4 and 5. In practice finding the dual theory is only feasible when the rank of

the gauge group is small, hence we want to Higgs the gauge group as far as possible
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Nh −Nv Gauge group, Twisted Hypermultiplets b̂

Shift vector sectors

84 E6 × SU(2)× U(1) g′0 (27,2;1) + (1,2;1) + (1,1;64)
×SO(14)× U(1) +2(1,1;1) 2

3

g′1 + g′3 6(1,1;1) + 4(1,2;1)
(2, 1, 1, 05; 2, 07) +2(27,1;1) + 2(1,1;14)

g′2 (1,2;14) + 6(1,2;1)

116 SU(8)× SU(2) g′0 (28,2;1) + (1,1;64) + 2(1,1;1)
×SO(14)× U(1) g′1 + g′3 4(8,1;1) + 2(8,2;1) 8

9

(3, 15, 02; 2, 07) g′2 3(1,2;14) + 2(1,2;1)

Table 4: Perturbative E8 × E8 heterotic orbifold spectra on T 4/Z4 after order 2
CHL orbifolds

Gauge Group, shift Untwisted Twisted

shift sector sector

E7 × U(1)× E8 (56;1) + 2(1;1) 3(56;1)
1
3
(1,−1, 06; 08) +(1;1) + 15(1;1)

6(1;1)

SU(9)× E8 (84;1) + 2(1;1) 3(36;1) + 6(9;1)
1
3
(2, 14, 03; 08)

SO(14)2 × U(1)2 (14;1) + (1;14) 3(14;1)
1
3
(2, 07; 2, 07) +(64;1) + (1;64) +3(1;14)

+2(1;1) +6(1;1)

E6 × SU(3)× E7 × U(1) (27,3;1) 3(27,1;1)
1
3
(2, 12, 05; 1,−1, 06) +(1,1;56) 3(1,3;1)

+2(1) + (1) +6(1,3;1)

SU(9)× E6 × SU(3) (84;1,1) + (1;27,3) 3(9;1,3)
1
3
(2, 12, 05; 2, 14, 03) 2(1)

Table 5: Perturbative E8 × E8 heterotic orbifold spectra on T 4/Z3 after order 3
CHL orbifolds. We have not kept track of various U(1) charges.

and find the dual theories of the maximally Higgsed models 30. As illustrated in

Appendix F Higgsing is done by starting at a point in moduli space where all of

the charged scalars (coming from either vector or hypermultiplets) have a vanishing

30On the type II side Higgsing correspond to moving in the CY moduli space through conifold
singularities.
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VEV. Then we may Higgs the gauge group by giving VEV to scalars belonging

to certain hypermultiplets, moving along the Higgs branch of moduli space. As

mentioned above in section 5.1.2 this corresponds to changing the embedding of the

(n1, n2) instantons into the E8 ×E8 gauge group while however keeping n1, n2 fixed.

Higgsing does not change the relative number of vector and hyper multiplets Nh−Nv.

Once we have Higgsed the gauge group in this manner we can still give a VEV to

the scalars of the vector multiplets in the remaining gauge group, moving along the

Coulomb of those vector multiplets. Thereby these gauge groups are broken to U(1)

factors, the number of those being equal to the rank of the unbroken gauge group.

This will reduce the number of vector multiplets from the dimension of the gauge

group to the rank of the gauge group. We give an explicit examples for how the

Higgsing is done in the Appendix F. The examples of spectrum we have presented

in tables 4 are all such that the gauge group can be completely Higgsed. For table

5 this is the case for the third and sixth example. That is after Higgsing we are

left with only the vector multiplets coming from the universal contribution of the

gravity multiplet, i.e., 3 vector multiplets, the gravity multiplet and the remaining

hypermultiplets, i.e. Nh −Nv hypermultiplets.

5.2.2 Gravitational couplings/threshold corrections and the new super-

symmetric index

The new supersymmetric index for the CHL orbifolds of the E8×E8 heterotic string

compactification on K3 × T 2 with different instanton embeddings can be obtained

by generalising the methods described in [101]. We briefly explain the results given

in [38, 92]. For the case where K3 is realized as a T 4/ZM and general non standard

embedding given by shift vectors γ, γ̃ , the new supersymmetric index of an order N

CHL orbifold takes the general form

Znew,N = − 1

2η20(q)

M−1
∑

a,b=0

N−1
∑

r,s=0

e−
2πiab

M2 Γ2

Z
(a,b)
E8

(q)×Z(a,b)

E′
8

(q)× 1

2ν
F (a, r, b, s; q)Z

(r,s)
2,2 (q, q̄),

(5.25)

where the partition functions of the shifted E8 lattice are given by

Z
(a,b)
E8

(q) =
1
∑

α,β=0

e−iπβa
∑8

I=1 γ
I

8
∏

I=1

θ
[

α+2aγI

β+2bγI

]

,

Z
(a,b)

E′
8

(q) =
1
∑

α,β=0

e−iπβa
∑8

I=1 γ̃
I

8
∏

I=1

θ
[

α+2aγ̃I

β+2bγ̃I

]

, (5.26)
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Γ2 = (γ2+ γ̃2). Z
(r,s)
2,2 (q, q̄) is the twisted-twined partition function of T 2 and has the

expression

Z
(r,s)
2,2 (q, q̄) =

∑

m1,m2,n2∈Z

n1∈Z+
r
N

q
p2
L
2 q̄

p2
R
2 e2πim1s/N , (5.27)

where the momenta are defined as in (5.12) and as before T, U are respectively the

Kähler and complex structure moduli of T 2. The twist by an element of order N is

reflected in the phase e2πim1s/N and the fractional values of n1. Furthermore

F (a, r, b, s; q) := TrR,gag′r

(

gbg′seiπF
T4

R qL0 q̄L̄0

)

(5.28)

is the trace over T 4 with 4 left and 4 right moving bosons, and over right moving

fermions in the twisted Ramond sector whose fermion number is F T 4

R , g incorporates

the ZM action. One can work out an explicit expression

F (a, r, b, s; q) = ka,rb,sη(τ)2q
−a2

M2
1

θ1(
aτ+b
3
, τ)2

(5.29)

where ka,r,b,s are complex numbers that depend on Γ2 and their absolute value de-

pends on the common fixed points. They can be worked out for the different situa-

tions [92, 101].

Closed expression for different situation have been obtained in [38, 92, 97]. In general

one may write Znew,N in the form

Znew,N(q, q̄) = − 4
N−1
∑

r,s=0

Z
(r,s)
2,2 (q, q̄)f (r,s)(q), (5.30)

where η(q)24f (r,s)(q) is a modular form of weight 10 under Γ0(N) 31.

We start by giving the expression Znew,N for the standard embedding, making

use of (5.30). Here one obtains [70]

f (r,s)(q) =
1

2η(q)24
E4(q)

[

1

4
α
(r,s)
g̃ E6(q)− β

(r,s)
g̃ (τ)E4(q)

]

, (5.31)

where α
(r,s)
g̃ , β

(r,s)
g̃ are the same as in (3.52) and explicit expressions can be found in

31The vector space of such forms for N = 2 is three dimensional and may be generated by
E4E6, E

2

4
E2 and E2

2
E6, where E2 is defined in (5.33).
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the Appendix E of [70]. For N = 2, 3, 5, 7 we have

α
(0,0)
g̃ =

8

N
, α

(r,s)
g̃ =

8

N(N + 1)
, (r, s) 6= (0, 0) (5.32)

β
(0,0)
g̃ (τ) = 0 , β

(0,s)
g̃ (τ) = − 2

N + 1
EN(τ) , β(r,rk)

g̃ (τ) =
2

N(N + 1)
EN
(

τ + k

N

)

for 1 ≤ s, r, k ≤ N − 1 and EN is a modular form of weight 2 under Γ0(N) defined as

EN(τ) =
12i

π(N − 1)
∂τ ln

η(τ)

η(Nτ)
. (5.33)

In this case (i.e., for the standard embedding) Znew,N has the following expansion in

terms of the twisted twining elliptic genera of K3 [92, 97]

Znew,N(q, q̄) =
1

N

N−1
∑

r,s=0

Z
(r,s)
2,2 (q, q̄)E4(q)

η(q)12
×
[

(

θ2(q)

η(q)

)6

Zell
K3,r,s(q,−1) (5.34)

+

(

θ3(q)

η(q)

)6

q1/4Zell
K3,r,s(q,−q

1
2 )−

(

θ4(q)

η(q)

)6

q1/4Zell
K3,r,s(q, q

1
2 )

]

,

where we have used the shorthand notation Zell
K3,r,s := Zell

K3,g′r,g′s . So by our discussion

in 3.3 in this situation the new supersymmetric index becomes linked to the MacKay-

Thompson series of Mathieu moonshine.

For the case of non-standard embeddings of order 2 considered in [92] one finds

the following expression

f (0,0)(q) =
1

2η24(q)
E4(q)E6(q) (5.35)

f (r,s)(q) =
3

4η24(q)

(

b̂ ·
(

3

2
β
(r,s)
g̃ (τ)

)2

+

(

2

3
− b̂

)

E4(q)

)

×
[

1

4
α
(r,s)
g̃ E6(q)− β

(r,s)
g̃ (τ)E4(q)

]

The constant b̂ depends on the 14 different possible instanton embeddings listed in

[101] and it takes four different values

b̂ ∈
{

0,
4

9
,
2

3
,
8

9

}

. (5.36)

The values for b̂ relevant for our example are given in table 4 and the complete list

of shift vectors and corresponding b̂ values can be found in [92]. The value of b̂ also

directly determines the difference between the number of hyper and vector multiplets
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Shift Nh −Nv ã b̃ c̃ d̃
1
3
(1,−1, 06; 08) −134 0 0 1

4
0

1
3
(2, 14, 03; 08) −80 1

16
− 9

16
− 3

16
9
16

1
3
(2, 07; 2, 07) 64 −1

48
3
16

1
48

3
16

1
3
(1,−1, 06; 2, 12, 05) 28 0 0 −1

32
9
32

1
3
(2, 12, 05; 2, 14, 03) 82 −1

32
9
32

3
64

9
64

Table 6: Values of ã, b̃, c̃ and Nh − Nv for different instanton embeddings/shift
vectors with K3 as T 4/Z3 and N = 3 CHL orbifold.

through the relation

Nh −Nv = 144 b̂− 12. (5.37)

For order 3 orbifolds one finds

f (0,1) =
1

3η24

(

ãE4E6 + b̃E2
3E6 + c̃E4(E6 + 3E3E4) + d̃E2

3 (E6 + 3E3E4)
)

f (r,rk) =
1

3η24

(

ãE4E6 +
b̃

9
E ′2
3 E6 + c̃E4(E6 − E ′

3E4) +
d̃

9
E ′2
3 (E6 − E ′

3E4)

)

(5.38)

where 1 ≤ r, k ≤ 2, we omitted the τ dependence and E ′
3(τ) := E3( τ+k

3
). The values

of ã, b̃, c̃, d̃ depend on the instanton embeddings and are given in table 6. It turns

that for all the four non standard embeddings ã, b̃, c̃, d̃ may be expressed by one

parameter in the following way

ã =
1

2733
(48 + χ) , b̃ = − 1

273
(48 + χ)

c̃ = − 1

2833
(456 + 5χ) , d̃ =

1

283
(264 + χ) (5.39)

where χ will turn out to be the Euler character of the dual CY (see subsection 5.6

and 5.5.2).

5.3 Gravitational couplings and the vector moduli prepotential

As mentioned at the start of this section we want to match the vector moduli prepo-

tential as well as certain gravitational couplings of the d = 4, N = 2 effective field

theory arising from the heterotic and type II compactification. Concretely in the low
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energy effective action the gravitational couplings Fg appear in the form

S =

∫

Fg(y, ȳ) · F 2g−2
+ R2

+, (5.40)

where F+, R+ are the self-dual part of the graviphoton and the Riemann tensor and

y, ȳ collective stand for the dependence on the vector moduli. The label g is chosen

since on the type II side the couplings Fg arise from topological contributions of the

genus g world sheet (it should hence not be confused with either the string coupling

or an element of the orbifold group). The gravitational couplings on the heterotic

side are perturbatively one loop level exact . Concretely for the case of the E8 ×E8

heterotic string compactified on K3 × T 2 it has been shown [87, 88, 107, 108] that

Fg, for g > 1, are given by the one-loop integral

Fg(y, ȳ) =
1

2π2(g!)2

∫

d2τ

τ2

{ 1

τ 22 η(τ)
2
Tr
[

(i∂̄X)(2g−2)(−1)FFqL0−
c
24 q̄L̃0−

c̃
24

]

〈
g
∏

i=1

∫

d2xiZ
1∂Z2(xi)

g
∏

j=1

∫

d2x̃iZ̄
1∂Z̄2(x̃i)〉

}

(5.41)

where X is the complex coordinate on T 2 and Z1, Z2 are the complex coordinates on

the transverse non-compact space time. The trace is taken over the Ramond sector

of the internal conformal field theory. The internal trace can be calculated to be

1

η(τ)2
Tr
[

(i∂̄X)(2g−2) (−1)FFqL0−
c
24 q̄L̃0−

c̃
24

]

= (5.42)

2
1

η(τ)24

∑

r,s

Γ
(r,s)
2,2

(

(p
(r,s)
R )√
2T2U2

)(2g−2)

q|pL|
2/2q̄|pR|2/2f (r,s)(τ)

where f (r,s)(τ) is defined in (5.30), pr,sL , p
r,s
R are defined in (5.12). The integral can be

evaluated by using the lattice reduction theorem by Borcherds [109], see, e.g, [70].

In order to make a connection to the type II side one need to extract the purely

holomorphic part. This part can be written in term of Gopakumar-Vafa invariants

of the CY on the dual type II side. For the case where we set all moduli to zero

apart from (T, U), the complex structure and the complexified Kähler structure of

the torus, one finds that the purely holomorphic part is given by 32

F̄ hol
g =

(−1)g−1

π2

N−1
∑

s=0

(

∑

m>0

e−2πin2s/Nc
(r,s)
g−1 (n1n2/N)Li3−3g(e

2πim·y)

+
1

2
c
(0,s)
g−1 (0)ζ(3− 2g)

)

(5.43)

32More precisely it is the complex conjugate of the antiholomorphic part.
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where ζ is the Riemann zeta function, y = (T, U) , m = (n1, n2) with n1 ∈ Z/N, n2 ∈
Z , r = n1N modN and m > 0 is defined as

n1, n2 ≥ 0 and (n1, n2) 6= (0, 0), (5.44)

n1 > 0, n2 < 0 and n1|n2| ≤ 1.

The coefficients c
(r,s)
g are defined through

f (r,s)(τ)P2g(G2, G4, . . . , G2g) =
∑

l∈ Z

N

c
(r,s)
g−1 (l, 0)q

l, (5.45)

where G2k = 2ζ(2k)E2k, E2k being the Eisenstein series of weight 2k and P2g is

related to the Schur polynomial S of order g by

P2g(x1, x2, . . . , xg) = −S(x1,
1

2
x2, . . . ,

1

g
xg). (5.46)

Although (5.43) was derived under the condition g > 1, it may be extrapolated to

g = 1 and g = 0. For g = 0 it correspond to 1-loop corrections to the vector-moduli

prepotential. More concretely when considering the case without Wilson lines the

heterotic vector moduli prepotential is of the form

F het(Shet, T, U) = ShetTU + f 1−loop(T, U) +O(e2πiS
het

) (5.47)

where Shet is the heterotic dilaton and T, U are the complex structure and the com-

plexified Kähler class as before. Then f 1−loop(T, U) = p(T, U) + F̄ hol
0 , with p(T, U)

being a cubic polynomial that will not be important for us.

5.4 Type II compactifications on Calabi-Yau 3-folds

In this section we briefly explain the necessary details of type II compactifications

on a CY 3-fold.

5.4.1 Spectrum

This section mostly follows the discussion of chapter 14.6 in [95]. Compactifying type

II string theory on a CY 3-fold leads to a N = 2 effective theory in 4 dimensions with

abelian gauge group 33. The spectrum can be obtained by dimensional reduction of

the massless 10 dimensional spectrum. For type IIA this consists of the (non-chiral)

N = 2 gravity multiplet

GIIA(10) = {GMN ,Ψ
(+)
m ,Ψ

(−)
M , λ(+), λ(−), BMN , (C3)MNP , (C1)M ,Φ}, (5.48)

33Non abelian gauge symmetries can occur at specific points in moduli space where certain 2-
cycles (3-cycles for type IIB) shrink to zero.
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whereM,N = 0, . . . , 9. The superscripts on the fermions denote their chiralities. The

fermions arise from the (NS,R) and (R,NS) sector. The metricGMN , antisymmetric

tensor BMN and the dilaton are in the (NS,NS) sector. The remaining bosonic field,

i.e, the vector C1 and the 3-form C3 come from the (R,R) sector.

Upon dimensional reduction these fields will arrange themselves in the following 4

dimensional N = 2 multiplets:

• Gravity multiplet consisting of a graviton gµν , a gauge boson (graviphoton) Cµ

and two Majorana gravitinos ψ
(+)
µ , ψ

(−)
µ of opposite chiralities.

• Vector multiplet consisting of gauge field Aµ, two Weyl fermions λ, ψ, and

scalar φ all in the adjoint representation of the gauge group.

• Hypermultiplet consisting of two Weyl fermions ψq, ψ̃
†
q̃ and two complex bosons

q, q̃†. In N = 1 terms (ψq, q) and (ψ̃†
q̃, q̃

†) make up a chiral and antichiral

multiplet which are in conjugate representations.

We split the ten dimensional index in the following (SU(3) covariant way)

M = (µ, i, ī) and denote the fluctuations of the metric around its background value

by gµν . Compactifying type IIA string theory on a CY with hodge numbers h1,1

and h2,1 contains one gravity multiplet, with the graviphoton originating from the

ten dimensional R-R gauge field C1. Further it contains h
1,1 vector multiplets. The

complex scalars of the vector multiplets arise from metric gij̄ and B-field Bij̄ with

two internal indices. These scalars correspond to complexified Kähler moduli of the

CY. The corresponding U(1) gauge fields come from the R-R 3-form gauge potential

(C3)µij̄. So the abelian gauge symmetry is given by U(1)h
1,1+1 (which includes the

graviphoton). Finally there are h2,1 + 1 hypermultiplets. The scalars of h2,1 of these

multiplets arise from metric with two internal indices gij and R-R 3-form with 3 in-

ternal indices (C3)ijk̄. These scalars correspond to complex structure deformations.

The scalars of the final multiplet arise from the R-R 3-form with three internal in-

dices (C3)ijk and the dilaton.

For type IIB compactifications the number of vector and hyper multiplets is ex-

changed, i.e., Nv = h2,1+1, Nh = h1,1+1. Type IIA and type IIB compactifications

are related through mirror symmetry, i.e., a type IIA compactification on a Calabi-

Yau with Hodge numbers h1,1, h2,1 is dual to a type IIB compactification on an

appropriate mirror Calabi-Yau with hodge numbers h̃1,1 = h2,1, h̃2,1 = h1,1.

We end with some comments on the structure of the moduli space of the theory. Due

to the N = 2 supersymmetry no mixing between the kinetic terms of vector - and

hypermultiplet scalars can occur, hence the moduli space M locally factorizes into

the product of the two, i.e., M = Mvec ×Mhyp
34. In particular Mvec is a (special)

34If we also take non-perturbative effects, i.e., D-branes, into account non-abelian gauge-
symmetries may appear and some of the scalars will be charged w.r.t. to these gauge groups.
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Kähler manifold and Mhyp is a quaternionic manifold due to the N = 2 supersym-

metry. For type IIA and IIB compactifications the dilaton is part of a hypermultiplet

which hence receives stringy corrections (perturbative and non-perturbative). The

metric of vector multiplet moduli space is exact at string tree level. For type IIA

the vector moduli correspond to Kähler moduli and the metric on the Kähler moduli

space receives σ-model corrections at order (α′/L2)3 and non-perturbative correc-

tions (proportional to powers of e−L2/α′
) due to world-sheet instantons 35. For the

type IIB theory the vector moduli correspond to complex structure moduli and the

metric on the complex structure moduli space is exact at both string tree level and

σ- model tree level. We will have more to say on how to compute the prepotential

of the vector moduli in the next subsection.

5.4.2 Gravitational couplings and the prepotential

The quantities we will want to compare to match heterotic and type II compactifica-

tions are couplings Fg given in (5.41), more precisely their holomorphic part defined

in (5.43). As has been shown in [107] for the type II side they correspond to the

genus g free energies of the topological string compactified on the appropriate dual

CY M which we will denote by FGV
g . We define the generating function FGV for

these free energies as

FGV (gs, y) =
∞
∑

g=0

FGV
g (y)g2g−2

s (5.49)

where gs is the string coupling and y stands for the vector multiplet moduli as before.

As shown in [110, 111] it can be written in the following form

FGV (gs, y) =
∞
∑

g=0

∑

m>0

∞
∑

d=1

ng
m

1

d

(

2 sin
dgs
2

)2g−2

e2πid(m·y) (5.50)

where m = (n1, . . . , nh1,1) labels the 2-cycles 36 and the constant ng
m are the genus

g Gopakumar-Vafa invariants. These invariants count in an exact way the number

of BPS states in Calabi-Yau compactification of the type IIA theory. They are

closely related to Gromov-Witten invariants, see, e.g., [112] and we will often use the

Gromov-Witten and Gopakumar-Vafa invariants interchangeably although they are

not strictly the same. Roughly speaking genus g Gromov-Witten invariants count

the number of ‘distinct ways’ maps x : Σg → X from the genus g world-sheet Σg to

the CY X. Hence they are related to the counting of curves in X. However due to

multicovering ( mapping Σg to a curve multiple times) and ‘bubbling effects’ (the

This will lead to potentials for those fields and to an interaction of the scalars from the two types
of multiplets. The kinetic terms however still keep the product structure.

35Topological non-trivial embeddings of the world-sheet into the CY manifold.
36If we choose a basis {Σi}i=1,...,h1,1 then a 2-cycle β can be uniquely written as β =

∑

i niΣi,
(n1, . . . , nh1,1) 6= (0, . . . , 0).
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fact that by gluing an arbitrary small handle to a genus g worldsheet maps from Σg

to X will also contribute to the maps from Σg+1 to X) Gromov-Witten invariants are

in general not integers. Gopakumar-Vafa invariants in a way take care of the above

effects by viewing the worldsheet as a submanifold of the Calabi-Yau (rather than

a map embedding the worldsheet). Gopakumar-Vafa invariants are always integral.

From the knowledge of all Gopakumar-Vafa invariants (for all genera) one can obtain

all Gromov-Witten invariants and vice versa.

From (5.49), (5.50) we find the following explicit expression for FGV
g ,

FGV
g =

(−1)g|B2gB2g−2|χ(M)

4g(2g − 2)(2g − 2)!
(5.51)

+
∑

m>0

[

|B2g|n0
m

2g(2g − 2)!
+

2(−1)gn2
m

(2g − 2)!
± · · · − g − 2

12
ng−1
m + ng

m

]

Li3−2g(e
2πim·y)

where B2g are the Bernoulli numbers, χ(M) is the Euler characteristic of the Calabi-

Yau and the polylogarithm Lik is defined as Lik(x) =
∑k

i=1
xn

nk .

For g = 0 we obtain the instanton corrections to the vector moduli prepotential,

which takes the form

FGV
0 = ζ(3)

χ(M)

2
+
∑

m>0

n0
mLi3(e

2πim·y). (5.52)

For g = 1 we get

FGV
1 =

∑

m>0

(

1

12
n0
m + n1

m

)

Li1(e
2πim·y). (5.53)

Now we want to compare this to the heterotic result (5.41). This was obtained in

the weak coupling limit, Shet → i∞ and with no Wilson lines. On the type II side

this corresponds to setting h1,1 − 3 moduli (or potentially combinations thereof) to

zero and sending one combination of moduli to i∞. Comparing constant terms one

finds [70]

FGV
g =

(−1)g+1

2(2π)2g−2
F̄ hol
g . (5.54)

Further one obtains the following relations between the lowest genus Gopakumar-
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Vafa invariants that are related to the heterotic side through

n0
(n1,n2)

= 2
N−1
∑

s=0

e−
2πin2s

N c
(r,s)
−1 ,

n1
(n1,n2)

=
1

2π2

N−1
∑

s=0

e−
2πin2s

N c
(r,s)
0 (m2/2)− 1

12
n0
(n1,n2)

, (5.55)

n1
(n1,n2)

=
1

8π2

N−1
∑

s=0

e−
2πin2s

N c
(r,s)
1 (m2/2)− B4

8
n0
(n1,n2)

,

where r = n1N modN and m2 = 2n1n2.

5.5 Calculating the Gromov-Witten/Gopakumar-Vafa invariants

In this section we will discuss how one can obtain the Gromov-Witten/Gopakumar

Vafa invariants ng
m showing up in the expression for the gravitational couplings on

the type II side , (5.51). This can then be used to find the potentially dual CY in

the heterotic-type II duality.

5.5.1 Genus zero Gromov-Witten invariants - the prepotential

The vector moduli prepotential for a type IIA compactification on a CY X in general

takes the form

F IIA = −1

6
κABCy

AyByC − χ(X)ζ(3)

2(2π)3
+

1

(2π)3

∑

m>0

n0
mLi3(e

2πm·y) (5.56)

where yA label the vector moduli, κABC are the triple intersection numbers of the

CY, as before m = (n1, . . . , nh1,1) labels the 2-cycles of X and n0
m labels the Gromov-

Witten invariants of multi-degree m = (n1, . . . , nh1,1). The prepotential (and hence

the Gromov-Witten invariants) may be calculated by using mirror symmetry. That

is one makes use of the fact the type IIB string theory compactified on the mirror

CY, X∗, has a vector moduli prepotential that is exact at tree level, so determined

by the triple intersection numbers of the dual CY X∗. This prepotential can then

be mapped to the type IIA side with the help of the mirror map, that maps the IIB

moduli to the respective IIA moduli.

For CY’s that have a description as hypersurface or as complete intersection

in an toric ambient space this has been implemented in the Mathematica package

instanton.m [113]. It takes the generators of the Morri cone of X∗ as input. Roughly

speaking starting at the large complex structure point, which can be defined by the

Morri cone of X∗ one may calculate a particular period of the holomorphic 3-from,

the so called fundamental period. From this one derives the Piccard-Fuchs system

of linear differential equations which all the periods of the holomorphic three from
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have to fulfil. This then allows one to calculate the triple intersection numbers of X∗

as well as the mirror map.

5.5.2 Conformal bootstrap

In [114] a different method was used to obtain all genus Gopakumar-Vafa invariants.

As we will discuss in more detail in section 5.6, in the unorbifolded version of the

heterotic - type II duality, the Calabi-Yau manifolds that appear on the type II

side are fibrations of elliptic K3 surfaces over P1, which makes it possible to obtain

all-genus results for the topological string [115], at least for a certain set of curve

classes. More generally in [116] a special class of elliptically fibered CY 3-folds was

considered, in particular where all fibers are irreducible and no fibral divisors are

present. Then it was argued that the expansion coefficients Zβ(τ, λ) in an expansion

of the topological string partition function Ztop. of the form

Ztop.(τ, t, λ) = Z0(τ, λ)



1 +
∑

β∈H1,1(B,Z)

Zβ(τ, λ)Q
β



 (5.57)

are Jacobi forms of weight zero, where the sum is over 2-cycles in the base. The

elliptic argument τ is related to the complexified volume of the fiber and the string

coupling constant, which we here denote by λ, appears as elliptic argument. Qβ =

exp(2πi
∑

i β
iti), where ti, i = 1, . . . , h1,1(B) are shifted volumes of curves in the

base. The the modular transformations acting on these arguments and under which

Ztop. is invariant, arise as part of the symplectic monodromy group acting on the

integral symplectic basis of periods of the mirror of the elliptic fibered CY 3-fold.

The integral BPS expansion of Ztop. imposes a pole structure on Zβ from which it can

be argued that its numerator is a weak Jacobi form and its denominator is unique.

In [114] it was argued that the CYs appearing on the type II side in the CHL

orbifolded version of the heterotic-type II duality have to be genus one fibrations

with N -sections, where N is the order of the CHL orbifold, for some more details

see subsection 5.6. Then the arguments given above for the expansion coefficients of

Ztop. can be generalized to this situation, where now also parameters corresponding

to volumes of fibral curves are included, see (E.2). One finds that for genus one

fibrations with N -sections and N ≤ 4 the SL(2,Z) group is broken to Γ1(N) and the

complexified Kähler parameters that correspond to the fibral curves and which we

will collectively denote by m become elliptic parameters of Zβ(τ, λ,m). Zβ(τ, λ,m)

are shown to be meromorphic higher degree Jacobi forms of Γ1(N) with additional

elliptic parameters, where the numerators now are weak Jacobi forms under Γ1(N).

We provide more details in Appendix E.

Specializing the ansatz (E.6) from the Appendix E to the examples of genus one

fibered CY 3-folds with 2-sections (listed in table 9) that are dual to CHL orbifolds
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of order 2 of the heterotic string one finds for base degree one [114]

Z1(τ, λ) =
∆2(τ)

η(2τ)24φ−2,1(2τ, λ)
· E2
[

4(6b̂− 5) · E2
2 + 2(2− 3b̂) · E4

]

. (5.58)

This can be checked against predictions from (5.55) using (5.35), (5.45) and b̂ = 2
3
, 4
9

and one finds a perfect match.

For base degree 2 the conformal bootstrap gives the result [114]

Z2(τ, λ) =

(

∆4(τ)

η(2τ)24
φ2(τ, λ)

φ−2,1(2τ, λ)φ−2,1(4τ, λ)

)

(5.59)

where φ2 needs to be fixed 37 by comparing to the predictions of the heterotic side

(again using (5.35), (5.45)). Once φ2 has been fixed it again leads to a perfect match.

Next we turn to CY 3-folds with 3-sections, listed in table 10, that are potentially

dual to CHL orbifolds of order 3 of the heterotic string on K3×T2. The Gopakumar-

Vafa invariants at genus zero can be calculated using the standard techniques [117].

One finds that at degree zero w.r.t. the base of the K3 fibration the genus zero

invariants only depend on the Euler characteristic and we list them in table 7, where

db, df correspond to the degreed of the P1 base and the genus one fiber of the K3

respectively. More concretely

dF = E0 · β, dB = π−1(B) · β (5.60)

where E0 is the divisor associated to the three section. Indeed table 7 matches with

the predictions from (5.38),(5.39) and (5.45) if one identifies dF = n1, dB = n1 + n2.

In order to calculate the genus one Gopakumar-Vafa invariants one again makes use

dB\dF 0 1 2 3 4
0 0 χ

2
+ 240 χ

2
+ 240 −χ χ

2
+ 240

1 χ
2
+ 240 1962− 3χ 10χ

3
+ 18016 15χ

2
+ 95454 413280− 30χ

2 0 χ
2
+ 240 10χ

3
+ 18016 413280− 30χ 54χ+ 5694624

3 0 0 −χ 15χ
2

+ 95454 54χ+ 5694624
4 0 0 0 χ

2
+ 240 413280− 30χ

5 0 0 0 0

Table 7: Genus zero Gopakumar-Vafa invariants of degree zero with respect to the
base of the K3 fibration for the families of Calabi-Yau manifolds M

(3)
−1,ν and M

(3)
2,ν of

table 10.

37We refer to (5.30), (5.31) in [114] for the explicit expression.
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dF\g 0 1 2 3 4 5
0 χ

6
+ 26 0 0 0 0 0

1 χ
2
+ 240 0 0 0 0 0

2 1962− 3χ 0 0 0 0 0
3 10χ

3
+ 18016 −χ

3
− 52 0 0 0 0

4 15χ
2

+ 95454 −χ− 480 0 0 0 0
5 413280− 30χ 6χ− 3924 0 0 0 0
6 88χ

3
+ 1627330 −23χ

3
− 36188 χ

2
+ 78 0 0 0

7 54χ+ 5694624 −18χ− 192348 3χ
2
+ 720 0 0 0

8 18353988− 195χ 78χ− 838332 5886− 9χ 0 0 0
9 170χ+ 55646304 −80χ− 3362964 38χ

3
+ 54464 −2χ

3
− 104 0 0

10 291χ+ 159217686 −157χ− 11963892 61χ
2

+ 290202 −2χ− 960 0 0

Table 8: Gopakumar-Vafa invariants of degree zero with respect to the base of the
K3 fibration and degree one with respect to the base of the K3 fiber for the families
of Calabi-Yau manifolds M

(3)
−1,ν and M

(3)
2,ν .

of the conformal bootstrap. Using genus zero Gopakumar-Vafa invariants to fix the

ansatz one finds

Z1(τ, λ) =
1

48

∆6(τ)

η(3τ)24φ−2,1(3τ, λ)
[(120 + χ)E3(τ)− 9(152 + χ)E3(τ)2]. (5.61)

One finds that this matches the results calculated from the heterotic side (using

(5.38),(5.39),(5.45))).

5.6 Heterotic - Type II duality - finding the dual CY

In this section we will show how one may use the information gathered in the previous

sections to find the dual CY manifolds corresponding to certain CHL orbifolds of the

E8 ×E8 heterotic compactification on K3× T 2. We start by briefly reviewing some

facts about this duality without the CHL orbifold, see, e.g, [118, 119]. The duality

between the E8×E8 heterotic string compactified on K3×T 2 was first found in [90].

Assuming that the heterotic theory is weakly coupled in the geometric regime of the

type II theory it can be shown that the CY involved in this duality always need

to be an elliptic K3 surfaces fibered over P1 [120]. This may at least be motivated

by using an adiabatic extension argument [121] in the following way: Starting with

the well known duality between the E8 × E8 heterotic string compactified on T 4

and type IIA compactified on K3 in six dimensions [122, 123], one may fiber both

sides of this duality over a P1. The resulting geometry on the type II theory is a

CY that is K3 fibered over P1. On the heterotic side one notices that in order to

obtain the correct amount of unbroken spacetime supersymmetry only a T 2 inside
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T 4 needs to be non-trivially fibered. The T 2 fibered over P1, makes up a K3 and the

extra T 2 is trivially fibered. Under the duality the heterotic dilaton is mapped to the

complexified Kähler modulus of the P1 that is the base of the fibration and the weak

heterotic coupling limit Shet → i∞ corresponds to the limit of a large base. The

complex structure and the complexified volume correspond to linear combinations of

the complexified volume of the elliptic fiber and the P1 base of K3.

In particular the maximally Higgsed heterotic theory with (12 + n, 12 − n) in-

stantons is dual to type II A compactified on an elliptic fibration over an Hirzebruch

surface Fn, which is a P1 bundle over P1, see [90, 124] for examples and [125–127] for

a treatment in F-theory. The heterotic moduli S, T, U corresponding to the dilaton

and the Kähler and complex structure of T 2, are mapped to the moduli controlling

the size of the two P1s and a modulus of the elliptic fibration.

One can observe that the unorbifolded heterotic theory has a T-duality group of the

form

Γhet = SL(2,Z)× SL(2,Z)× Z2. (5.62)

The first SL(2,Z) factor correspond to the modular symmetry of the complex struc-

ture modulus of T 2. The Z2 symmetry comes from T -duality along one of the circles

of T 2 which exchanges the complex and Kähler moduli. Combining these two sym-

metries then gives rise to the second SL(2,Z) factor. On the type II side the SL(2,Z)

action arises through monodromies in the moduli space of the elliptic fibration and

another monodromy creates the Z2 symmetry that exchanges T and U [128].

As we have discussed in subsection 5.2 the CHL orbifold of order N acts on T 2 by

a 1/N shift along one of the circles of T 2. The group acting on the modulus of T 2

that preserves the ZN action together with its generator is Γ1(N), which we defined

in (2.5). Along the cycle not involved in the orbifold we can still perform a T -duality

transformation that exchanges T and U . From this one infers that the symmetry

group of the CHL orbifolded theory has the form

ΓCHL = Γ1(N)× Γ1(N)× Z2. (5.63)

On the type II side this symmetries should arise through monodromies in the quan-

tum Kähler moduli space of the CY. This then implies that the CY manifolds ap-

pearing in the duality need to be genus 1-fibered with N -sections.

Now we turn to finding the possible dual CY manifolds. In particular this will be

possible for heterotic models which can be completely Higgsed so that they only

remaining vector fields are the ones coming from the compactification of the metric

and the B-field on T 2 giving Nv = 4. For order 2 CHL orbifolds we have seen that

the only models that can be completely Higgsed are the ones in 4. In [31] possible CY

duals were found by searching the Kreuzer-Skarke CY-database [81] for CY manifold

that have the correct hodge numbers h1,1 = Nv − 1 = 3 and h2,1 = Nh − 1 = 83, 115.
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q1 q2 h1,1 h2,1 b̂1 b̂2
4 4 4 148 - -
4 3 3 131 1 -
4 2 3 115 8

9
8
9

4 1 3 99 7
9

-
4 0 3 83 2

3
2
3

q1 q2 h1,1 h2,1 b̂1 b̂2
3 3 3 123 - -
3 2 3 115 - 8

9

3 1 3 107 - -
2 2 3 115 8

9
8
9

Table 9: Values of ‘charges’ q1, q2 for which the construction of [114] yields a toric
variety that is a P112 fibration over P1 × P1 and s.t. the generic Calabi-Yau has
h1,1 = 3 (the special case h1,1 = 4 corresponds to an elliptic fibration with two
independent sections). h1,1, h2,1 are the Hodge numbers of the resulting CY. b̂1, b̂2
are given by formula (5.64).

For all such candidate CYs the genus zero Gromov-Witten invariants were computed

using the Mathematica package instanton.m [113] and compared with the predictions

from the heterotic side (using (5.35), (5.45)). Using this method two candidate CY

duals were found.

In [114] CY manifolds that are genus one fibered over F1 = P1 × P1 with 2-

sections were constructed systematically by a ‘fiber based approach’. That is one

first constructs the genus one fiber/elliptic curve as a hypersurface in a toric variety.

Then the coefficients of the hypersurface equation are lifted to be sections of line

bundles over some base, which in our case will be F1. This leads to all possible

dual CYs for the cases that can (potentially) be completely Higgsed, i.e., instanton

numbers (12 + n, 12− n), n = 0, 1, 2 38. In this way matching CYs for all such cases

from [92] were found. In particular the construction made use of the fact that a

genus one fibration with 2-sections can always be mapped into a fibration of degree 4

hypersurface in P112 [129]. The different solutions can be parametrized by ‘charges’

(q1, q2) which we list in table 9, together with the hodge numbers and the value of

b̂ that matches the result on the heterotic side, i.e., table 2 above. The value of b̂ is

given by

b̂ =
1

144
[160− 16(q1 + q2) + 8q1q2]. (5.64)

The index of b̂ (i.e. b1, b2) in table 9 corresponds to the heterotic string arising from

a 5-brane that wraps the restriction of the genus one fibration to either of the P1’s

of the base (F1). The single special case where h1,1 = 4 was found to correspond to

an elliptic fibration with two independent sections. In particular the two CYs found

in [31] also are part of the so constructed CYs.

In [38] the CYs dual to CHL orbifolds of order 3 of the heterotic string onK3×T 2

38The heterotic strings arises in the type IIA picture as a 5-brane wrapping a K3 fiber. The
different geometries that possibly arise from using F0,F2 as base lead to the same heterotic string
as argued in [114]
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that are completely Higgsable were constructed by methods similar to [114]. By our

discussion above we know that the dual CYs should all be genus one fibered CY

3-folds with 3-sections and h1,1 = 3 and in addition also exhibit a K3 fibration. We

start by noting that every genus one fibration that exhibits 3-sections is birational to

a hypersurface in a fibration of weighted projective space where the base is P2 [129].

In order for a K3 fibration to exist the base of the fibration needs to be a Hirzebruch

surface Fn, n = 0, 1, 2, so that one can restrict the construction to CY 3-folds that

are hypersurfaces in a four-dimensional toric ambient space. Since the base of the

K3 fibration has to be P1 the fibration has to arise from a compatible toric fibration

of the ambient space. The dual CYs were then constructed by lifting K3 surfaces

that are genus one fibered with 3 sections and have Picard number 2. Scanning all

4319 3-dimensional reflexive polytopes classified in [130] one finds that there exist 3

such K3 surfaces corresponding to the reflexive polytopes that are the convex hull

∆
(3)
n of the points

























ν1 1 0 0

ν2 0 1 0

ν3 −1 −1 0

ν4 n 0 1

ν5 0 0 −1

, (5.65)

where n ∈ {−1, 0, 1}. These can be lifted to a 4-dimensional polytope by adding the

points

ν ′1 = (ν, 1) , ν ′2 = (0,−1) (5.66)

which will be reflexive when ν ∈ 2∆
(3)
2 . This way one finds 14 genus one fibered

CY 3-folds that have 3-sections which are listed in table 10. Here we have also

listed the Euler number and indicated the two models that match the completely

Higgsable cases of table 5 by their shift vectors. For these cases one finds that the

Gopakumar-Vafa invariants of various genus match (see subsection 5.5.2).

6 Conclusion and Outlook

Moonshine is fascinating subject for mathematicians and physicists alike. Since its

start with McKays observation in 1978 a lot of new insight has been gained but still

many questions remain open.

In this thesis I have tried to contribute to the understanding of moonshine by

finding new moonshine phenomena. In section 4, based on my publication [37], I

looked for moonshine phenomena connecting higher dimensional Calabi-Yau mani-

folds and sporadic groups. This was done by analysing their elliptic genus, which

is the index that establishes the moonshine connection for K3 [10]. In particular
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Polytope n ν χ Base B Candidate shift





















1 0 0 0
0 1 0 0

−1 −1 0 0
n 0 1 0
0 0 −1 0
0 0 0 1
ν −1





















2 (0, 0,−1) −168
F1

2 (1, 0, 0) F0

2 (0, 1,−1)

−156

F1

1
3
(2, 12, 05; 2, 14, 03)

−1 (0, 1,−1) F1

−1 (0, 2, 0) F0

−1 (−1, 0, 0) F0

−1 (0, 0,−1) −150 F1

2 (0, 0, 0) −144
F0

−1 (0, 0, 0) F0

−1 (1, 0,−1) −138 F1

2 (0, 1, 0) −132
F0

−1 (1, 0, 0) F0

2 (−2,−2, 0) −120
F0 1

3
(2, 07; 2, 07)−1 (2, 0, 0) F0

Table 10: The 14 genus one fibered Calabi-Yau threefoldsM
(3)
n,ν that have 3-sections

and also exhibit a compatible K3 fibration such that the polarization lattice is of
rank two with anti-diagonal intersection form.

the twining elliptic genera of a large number (13 642) of CY 5-folds was calculated

and analysed. However in all those cases no new moonshine could be found, thus

strengthening the special role played by K3 in Mathieu moonshine. Also the elliptic

genera of certain toroidal orbifolds an Gepner models was studied but also here no

new moonshine phenomena could be established.

In section 5, based on my publications [31, 38], I tried to deepen the connection

between E8×E8 heterotic string compactifications on K3×T 2 and type II compact-

ifications on CY 3-folds, which was shown to link Mathieu moonshine to topological

invariants (Gromov-Witten/Gopakumar-Vafa invariants) of the CY manifolds [30].

This was done by studying the CHL orbifolds of order 2 and 3 of the heterotic string

given in [92] and [38] and finding their potentially dual CY-manifolds. Thereby one

also connects the twining and twisted twining genera of K3 to Gromov-Witten in-

variants. In some cases we were able to find the dual CY manifolds and, based on

the methods of [114], to also give an explicit construction for these manifolds in cer-

tain cases. Thereby also our understanding the of heterotic-type II string duality is

deepened.

Going forward there are still many open problems one might address. Most

imminently one might try to find the dual CY manifolds to CHL orbifolds of higher

order and in general try to understand how CY manifolds ‘know’ about moonshine.

Since K3 and its elliptic genus are present in many string constructions, e.g., for

type II compactifications on K3×T 2 it gets connected to the microstate counting of

back holes, it seems interesting also to look for new connections in such situations.
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In general modular objects show up in many areas of physics and one might expect

connections to moonshine to arise in some of these situations leading to potentially

many further interesting connections.
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A Definition of some modular objects - conventions

In this appendix we will collect the definitions of specific modular objects that are

used in this work. Throughout we define q := e2πiτ , y = e2πiz.

A.1 Eisenstein series and η-function

We start by defining the Eisenstein series E4, E6, the generators of modular forms

on SL(2,Z),

E4(τ) = 1 + 240
∞
∑

n=1

n3qn

1− qn
= 1 + 240q + 2160q2 + . . . ,

E6(τ) = 1− 504
∞
∑

n=1

n5qn

1− qn
= 1− 504q − 16632q2 + . . .

which are modular forms of weight 4 and 6 respectively.

We further define the Dedekind eta function

η(τ) = q
1
24

∞
∏

n=1

(1− qn). (A.1)

It transforms under modular transformations as

η(τ + 1) = e
iπ
12η(τ) (A.2)

η(−1

τ
) =

√
−iτη(τ), (A.3)

hence it is a modular form of weight 1
2
with a multiplier system.

We also define the following functions

∆4(τ) =
η(2τ)16

η(τ)8
, (A.4)

∆6(τ) =
η(3τ)18

η(τ)6
, (A.5)

∆8(τ) =
η(2τ)8η(4τ)16

η(τ)8
. (A.6)

∆2k, k = 2, 3, 4 is a modular form of weight 2k for Γ1(k).

A.2 Jacobi theta functions

The generalized Jacobi theta function can be written as

θ

[

a

b

]

(τ, z) =
∑

k∈Z

q
1
2(k+

a
2 )

2

eπi(k+
a
2 )be(2πiz)(k+

a
2 ), (A.7)
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and one defines

θ1(τ, z) =θ

[

1

1

]

(τ, z) , θ2(τ, z) = θ

[

1

0

]

(τ, z) ,

θ3(τ, z) =θ

[

0

0

]

(τ, z) , θ4(τ, z) = θ

[

0

1

]

(τ, z) .

(A.8)

More explicitly one finds the following expression and product representations:

θ1(τ, z) = −i
∑

n+ 1
2
∈Z

(−1)n−
1
2ynq

n2

2

= −iq 1
8

(

y
1
2 − y−

1
2

)

∞
∏

n=1

(1− qn)(1− yqn)(1− y−1qn), (A.9)

θ2(τ, z) =
∑

n+ 1
2
∈Z

ynq
n2

2

= q
1
8

(

y
1
2 + y−

1
2

)

∞
∏

n=1

(1− qn)(1 + yqn)(1 + y−1qn), (A.10)

θ3(τ, z) =
∑

n∈Z

ynq
n2

2

=
∞
∏

n=1

(1− qn)
(

1 + yqn−
1
2

)(

1 + y−1qn−
1
2

)

, (A.11)

θ4(τ, z) =
∑

n∈Z

(−1)nynq
n2

2

=
∞
∏

n=1

(1− qn)
(

1− yqn−
1
2

)(

1− y−1qn−
1
2

)

. (A.12)

Setting z = 0, (y = 1) in above definitions we obtain the ‘truncated’ Jacobi theta

functions θi(τ) := θi(τ, z = 0), i = 1, . . . , 4 . From (A.9) we immediately see θ1(τ) =

0.
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A.3 Weak Jacobi forms

We further define the following weak Jacobi forms φk,m of weight k and index m

φ0,1(τ, z) = 4

(

(

θ2(τ, z)

θ2(τ, 0)

)2

+

(

θ3(τ, z)

θ3(τ, 0)

)2

+

(

θ4(τ, z)

θ4(τ, 0)

)2
)

(A.13)

=
1

y
+ 10 + y +O(q)

φ−2,1(τ, z) =
θ1(τ, z)

2

η(τ)6
(A.14)

= −1

y
+ 2− y +O(q),

φ0, 3
2
(τ, z) = 2

θ2(τ, z)

θ2(τ, 0)

θ3(τ, z)

θ3(τ, 0)

θ4(τ, z)

θ4(τ, 0)
(A.15)

=
1√
y
+
√
y +O(q).

B Some notes on lattices

We collect some basic definitions and facts about lattices following [95].

Give an n-dimensional vector space V =< e1, . . . , en >, spanned by the basis vectors

ei, i = 1, . . . , n we define a lattice Λ to be the set of points.

Λ =

{

n
∑

i=1

niei|ni ∈ Z

}

. (B.1)

We will consider the cases where V is either Rn with Euclidean inner product or

Rp,q, p+q = n with Lorentzian inner product, i.e., v·w =
∑p

i=1 v
I ·wI−∑p+q

i=p+1 v
I ·wI

for v,w ∈ Λ. The elements of Λ have expansions λ ∋ v = nie
I
i . Hence gij = ei · ej

is the metric on Λ. The volume of the unit cell, containing one lattice point is given

by vol(Λ) =
√

| det g|. We further define the dual lattice Λ∗

Λ∗ = {w ∈ V |w · v ∈ Z, ∀v ∈ Λ}. (B.2)

The corresponding dual basis vectors then fulfil

e∗i · ej = δij (B.3)

and the dual metric g∗ij = ei · ej is the inverse of gij. Thereby vol(Λ
∗) = (vol(Λ))−1.

A lattice is called unimodular if vol(Λ) = 1. It is called integral if v · w ∈ Z, for

all v,w ∈ Λ which is equivalent to Λ ⊂ Λ∗. An integral lattice is called even if all

lattice vectors have even (length)2. Λ is called self-dual if Λ = Λ∗. This condition is

equivalent to Λ being unimodular and integral.
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dimension number of lattices
8 1
16 2
24 24
32 many

Table 11: Number of even, self-dual lattices in different dimensions.

For the study of CFTs the even, self-dual lattices are of particular interest since they

lead to holomorphic CFTs with central charge c equal to the dimension of the lattice.

Even, self-dual lattices only exist when the dimension is a multiple of 8. Table 11

gives the number of such lattices in up to 24 dimension (thereafter their number

increases rapidly - for further details see, e.g., [131])

In 24 dimensions, which will be of particular importance to us there are 24 of

such lattices, called the Niemeier lattices. One of these lattices, the Leech lattice,

stands out in that its shortest vectors have (length)2 = 4, so in particular it contains

no root vectors (vectors of (length)2 = 2). The remaining 23 Niemeier lattices can

be labelled by the Dynkin diagram of their root system. They fall into an A-D-E

classification as can be seen in table 12. The root systems arise from the A,D,E

algebras by the rules that for a given lattice the Coxeter number for each factor has

to be the same and the rank of the factors has to sum up to 24. The Niemeier lattices

arise from modifications of the root systems including ‘gluing vectors’. In table 12

the ‘umbral symmetry group’ GL for each lattice L is given, which is defined to be

the automorphism group of the lattice modulo the Weyl- group of the associated

A-D-E system.
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Niemeier root system Umbral symmetry G
A24

1 M24

A12
2 2.M12

A8
3 2.AGL3(2)

A6
4 GL2(5)/2

A4
5D4 GL2(3)
A4

6 SL2(3)
A2

7D5 Dih4
A3

8 Dih6
A2

9D6 Z4

A11D7E6 Z2

A2
12 Z4

A15D9 Z2

A17E7 Z2

A24 Z2

D6
4 3.Sym6

D4
6 Sym4

D3
8 Sym3

D10E
2
7 Z2

D2
12 Z2

D16E8

D24

E4
6 GL2(3)

E3
8 Sym3

Table 12: Niemeier lattices and associated umbral symmetry.

C Superconformal algebra and characters

C.1 (Extended) N = 2 characters

For the (extended) N = 2 superconformal algebra with central charge c = 3d, let |Ω〉
denote a highest weight state with eigenvalues h, ℓ w.r.t. L0 and J0. Writing Hh,ℓ

for the representation belonging to |Ω〉 we define the (graded) N = 2 characters in

the Ramond sector through

chN=2
d,h− c

24
,ℓ(τ, z) = TrHh,ℓ

((−1)F qL0−
c
24 e2πizJ0) , (C.1)

where F is the fermion number and q = e2πiτ . Below we will also use y = e2πiz. In

the Ramond sector unitarity requires h ≥ c
24

= d
8
.

The characters [132–134] are given by (using the conventions of [74]39):

• Massles (BPS) representations exist for h = d
8
; ℓ = d

2
, d
2
− 1, d

2
− 2, . . . ,−(d

2
−

39Note that our definition of θ1(τ, z) differs by a minus sign from the definition used there.
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1),−d
2
. For d

2
> ℓ ≥ 0 they are given by

chN=2
d,0,ℓ≥0(τ, z) = (−1)ℓ+

d
2
(−i)θ1(τ, z)

η(τ)3
yℓ+

1
2

∑

n∈Z

q
d−1
2

n2+(ℓ+ 1
2
)n (−y)(d−1)n

1− yqn
, (C.2)

and for ℓ = d
2
one has

chN=2
d,0, d

2
(τ, z) = (−1)d

(−i)θ1(τ, z)

η(τ)3
y

d+1
2

∑

n∈Z

q
d−1
2

n2+ d+1
2

n (1− q) (−y)(d−1)n

(1− yqn)(1− yqn+1)
.(C.3)

• Massive (non-BPS) representations exist for h > d
8
; ℓ = d

2
, d
2
− 1, . . . ,−(d

2
−

1),−d
2
and ℓ 6= 0 for d = even. For ℓ > 0 we have

chN=2
d,h− c

24
,ℓ>0(τ, z) = (−1)ℓ+

d
2 qh−

d
8
iθ1(τ, z)

η(τ)3
yℓ−

1
2

∑

n∈Z

q
d−1
2

n2+(ℓ− 1
2
)n (−y)(d−1)n .(C.4)

In both cases the characters for ℓ < 0 are given by

chN=2
d,h− c

24
,ℓ<0(τ, z) = chN=2

d,h−c/24,−ℓ>0(τ,−z). (C.5)

The Witten index of a massless representation is given by

chN=2
d,0,ℓ≥0(τ, z = 0) =

{

(−1)ℓ+
d
2 , for 0 ≤ ℓ < d

2
,

1 + (−1)d, for ℓ = d
2
.

(C.6)

C.2 N = 4 characters

Analogously to the N = 2 case the (graded) characters of the N = 4 superconformal

algebra with central charge c = 3d, and d even, in the Ramond sector are defined as

chN=4
d,h− c

24
,ℓ(τ, z) = TrHh,ℓ

((−1)F qL0−
c
24 e4πizT

3
0 ), (C.7)

where h and ℓ are the eigenvalues of L0 and T
3
0 of the highest weight state belonging

to the representation Hh,ℓ. As in the N = 2 case unitarity requires h ≥ d
8
.

The characters [135] are given by (using conventions from [136])

• Massless representation exist for h = d
8
, ℓ = 0, 1

2
. . . , d

4
and are given by

chN=4
d,0,ℓ (τ, z) =

i

θ1(τ, 2z)

θ1(τ, z)
2

η(τ)3

∑

ε=±1

∑

m∈Z

ε
e4πiε((

d
2
+1)m+ℓ)(z+ 1

2
)

(1− y−εq−m)2
q(

d
2
+1)m2+2ℓm.

(C.8)
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In particular for ℓ = 0 this may be written as

chN=4
d,0,0 (τ, z) =

−i

θ1(τ, 2z)

θ1(τ, z)
2

η(τ)3

∑

m∈Z

q(
d
2
+1)m2

y(d+2)m 1 + yqm

1− yqm
. (C.9)

• Massive representation exist for h > d
8
, ℓ = 1

2
, 1, . . . , d

4
and are given by

chN=4
d,h− c

24
,ℓ(τ, z) = iqh−

2ℓ2

d+2
− d

8
θ1(τ, z)

2

θ1(τ, 2z)η(τ)3

(

ϑ d
2
+1,2ℓ(τ, z +

1

2
)− ϑ d

2
+1,−2ℓ(τ, z +

1

2
)

)

,

(C.10)

where

ϑP,a(τ, z) =
∑

n∈Z

q
(2Pn+a)2

4P y2Pn+a . (C.11)

With the help of the N = 4 characters combinations of massless N = 2 charac-

ters which are even in z can be expressed in the following way

chN=2
d,0, 1

2
(τ, z) + chN=2

d,0,− 1
2
(τ, z) = (−1)

d+1
2 φ0, 3

2
(τ, z)chN=4

d−3,0,0(τ, z) , (C.12)

chN=2
d,0, 3

2
(τ, z) + chN=2

d,0,− 3
2
(τ, z) = (−1)

d+1
2 φ0, 3

2
(τ, z)

(

chN=4
d−3,0,0(τ, z) + chN=4

d−3,0, 1
2
(τ, z)

)

. (C.13)

Likewise the even-z combination of the massive N = 2 characters can be written as

chN=2
d,n,l (τ, z) + chN=2

d,n,−l(τ, z) = (−1)2l+
d−1
2 φ0, 3

2
(τ, z)chN=4

d−3,n, 1
2
(l− 1

2
)(τ, z) . (C.14)

D Calabi-Yau manifolds and toric geometry

In this appendix we will briefly summarize some properties of Calabi-Yau manifolds.

In particular we will also give a short overview of their realization in weighted pro-

jective spaces and toric geometry.

D.1 Basic definitions and properties

In this subsection we give the general definitions and basic properties of CY man-

ifolds. We follow mostly [95, 137]. A CY d-fold X is a compact Kähler manifold

having d-complex dimensions and fulfilling one of the equivalent properties

i) X has vanishing first Chern class, c1 =
1
2πi

[R].

ii) X admits a Ricci flat metric.

iii) The holonomy group of X is a subgroup of SU(d).40

40Mostly CY d-folds are supposed to have exactly SU(d) holonomy. We will often refer to such
CY d-folds as being genuine CY d-folds.
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iv) X admits a covariant constant spinor.

v) X has a unique nowhere vanishing holomorphic d-form Ω .

The Hodge numbers (dimensions of the Dobeault cohomology ) fulfil the following

relations

• hp,0 = hd−p,0 since Hp(X) ≃ Hd−p(X), which follows by contraction with the

(d, 0) form Ω.

• hp,q = hq,p by complex conjugation.

• hp,q = hd−q,d−p by Poincare duality.

• h0,0 = 1 holds for any compact, connected Kähler complex manifold. For

simply-connected Kähler manifolds, which will be the case for most CY mani-

folds we consider (tori are a counterexample), we further have h1,0 = h0,1 = 0

.

The Hodge numbers can be nicely arranged in the so called Hodge diamond. For

d = 2, 3 it takes the general form:

1

0 0

1 20 1

0 0

1

,

1

0 0

0 h1,1 0

1 h2,1 h1,2 1

0 h1,1 0

0 0

1

. (D.1)

D.2 Calabi-Yau manifolds as hypersurfaces in weighted projective am-

bient spaces

In this section we will discuss the construction and properties of CY manifolds con-

structed as hypersurfaces in weighted projective spaces. We follow [95, 138] for the

construction in weighted projective space.

Compact manifolds cannot be constructed as submanifolds of Cn, however one

can construct them as hypersurfaces in (weighted) projective space and generaliza-

tions thereof. We start by the defining a generalized C∗(:= C \ {0}) action on Cn+1

through

λ · z = λ · (z0, . . . , zn) = (λw0z0, . . . , λwnzn), (D.2)

where λ ∈ C∗ and the non-zero integer wi is called the weight of the homogeneous

coordinate zi. Using this action we define an equivalence relation ∼ on Cn through

z ∼ z′ ⇔ ∃λ ∈ C∗ : z′ = λ · z (D.3)
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and the equivalence class of a point is denoted by [z]. Then the weighted projec-

tive space with weights wi, i = 0, . . . , n, is defined by Pn[w0, . . . , wn] = Pn[w] :=

(Cn+1 \ {0})/ ∼. A hypersurface Xd[w] in weighted projective space is defined as

the vanishing locus of a quasi-homogeneous polynomial p(λ · z) = λdp(z), where d is

called the degree of p(z),

Xd[w] = {[z0 : · · · : zn] ∈ Pn|p(z) = 0}. (D.4)

The first Chern class of Xd[w] vanishes if d =
∑n

i=1wi. In order for Xd to be non-

singular, we require dp(z) = p(z) = 0 only to hold at 0(:= [0 : · · · : 0]), which is

not in Pn. A necessary condition for such a polynomial to exist is that the Poincaré-

polynomial, defined by

P (t) =
n
∏

i=0

1− td−wi

1− twi
(D.5)

is indeed a polynomial, i.e., that the set of all multiples of 1/(d − wi) includes the

set of all multiples of 1/wi. A simple check for this condition is to see if P (0) is an

integer. The Euler number of Xd[w] is given by

χ =
1

m

m
∑

k=1

m
∑

l=1

∏

gcd{l,k}·
wi
m

∈Z

wi −m

wi

(D.6)

which was proven in [138] based on [139].

D.3 Calabi-Yau manifolds as hypersurfaces in toric ambient spaces

The constructions above may be generalized in different ways. We want to consider

hypersufaces in toric varieties next. We will mostly follow [140, 141] in the following

discussion.

Toric varieties are generalisations of weighted projective space. Roughly speaking

they are obtained by introducing additional coordinates and an appropriate number

of additional equivalence relations of the form (D.2, D.3). We start by defining the

necessary objects.

Let N be a n-dimensional lattice and NR the real vector space carrying the lat-

tice then:

-An r-dimensional cone σn in NR, finitely generated by v1, . . . , vs ∈ NR, s ≥ r is

defined by

σn = {λ1v1 + · · ·+ λsvs|λi ≥ 0 for 1 ≤ i ≤ s} (D.7)

An r-dimensional cone is called simplicial if it is generated by r (linear independent)

vectors. An n-dimensional cone is called basic if it is generated by a basis of the

lattice N.
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-A strongly convex rational polyhedral cone is defined to be an n or lower dimensional

cone, with 0 as its apex, bounded by finitely many hyperplanes (‘polyhedral’), edges

spanned by lattice vectors (‘rational’) and not containing a complete line (‘strongly

convex’).

-A face of a cone σ is defined to be either σ itself or the intersection of σ with a

hyperplane bounding it

-A fan is defined to be a finite collection of cones such that all faces of cones and

all intersection of cones also belong to the fan. For a fan Σ we define Σ(n) to be the

n-dimensional cones in Σ.

Let Σ be a fan consisting of a strongly convex rational polyhedral cones. For

each one dimensional cone in Σ with primitive generator vi, i = 1, . . . , k assign a

homogeneous coordinate zi. Then the generalisation of the action (D.2) and the

equivalence relation (D.3) on this Ck is the following :

(z1, . . . , zk) ∼ (λq
1
j z1, . . . , λ

qkj zk) if
k
∑

i=1

qijvi = 0 (D.8)

where qij ∈ Z and gcd(qij, i = 1, . . . , k)=1 (this corresponds to k − n independent

relations so that (locally) we have an n-dimensional manifold.)

Further similar to excluding 0 in the definition of the weighted projective space we

need to exclude points where certain zi are zero simultaneously. The set that needs

to be excluded is defined by

ZΣ :=
⋃

I

{(z1, . . . , zk) : zi = 0 ∀i ∈ I} (D.9)

where the union
⋃

I is taken over all sets I ⊂ {1, . . . , k} for which {vi : i ∈ I}
does not belong to a cone in Σ. Removing the set ZΣ from Ck is the equivalent to

saying that several zi are allowed to vanish simultaneously only if the corresponding

vi belong to the same cone.

If all n-dimensional cones of Σ are basic the toric variety is given by the quotient

of Ck \ZΣ by the equivalence relations (D.8). In the case that a n-dimensional cone

is not basic, i.e., it is spanned by {v1, . . . , vn} that do not span the lattice N but only

a sublattice, say N(v1, . . . , vn), additional relations will exist, which form an abelian

group isomorphic to N/N(v1, . . . , vn). In this situation we will in addition have to

factor Ck \ ZΣ by this group as well. This will lead to orbifold singularities which

can be removed by appropriate

subdivision of the fan 41. In addition singularities will arise if the fan contains cones

41This corresponds to introducing additional coordinates and additional relations. Thereby the
previous singular point is replaced by a smooth manifold. This procedure is referred to as ‘blow
up’.
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which are not simplicial. These again can be cured by subdivision of the fan. A toric

variety is smooth if and only if the fan consist of simplicial and basic cones only. It

is compact if and only if the support of the fan covers the lattice.

We may think of an n-dimensional cone σ as representing coordinate patches. More

concretely let σ be generated by v1, . . . , vn, then the associated coordinate patch is

Uσ = {(z1, . . . , zk)|zi ≥ 0}. Lower dimensional cones represent regions of overlap

where patches are glued together.

In the next step we want to specify the polynomials whose vanishing locus will

define the CY. Starting with a lattice N and a fan Σ, Σ(1) = {v1, . . . , vk}, we consider
the dual lattice of N , M := Hom(N,Z). Then we define the polyhedron ∆ through

∆ := {w ∈M |〈vi, w〉 ≥ −1, i = 1, . . . , k}. (D.10)

Then consider the (Laurent) polynomial given by

f∆ :=
∑

w∈∆

aw

k
∏

i=1

z
〈w,vi〉+1
i (D.11)

where aw ∈ C are parameters. Under a scaling as in (D.8) f∆ transforms homoge-

neously. Now the polynomial equation f∆ = 0 is well defined. We further define the

dual polyhedron ∆∗ by

∆∗ = {v ∈ NR|〈v, w〉 ≥ −1 , ∀w ∈ ∆〉}. (D.12)

∆ is called reflexive if ∆∗ is a lattice polyhedron, i.e., if the vertices of ∆∗ ⊂ NR lie

in N . Note that (∆∗)∗ = ∆.

To a pair of reflexive polyhedra (∆,∆∗) we can again associate the fan defined by

Σ(∆) = {complete rational fan whose cones are the cones over (D.13)

the faces of ∆ with apex at the origin}

Since we want the fan to consist of simplicial basic cones we need a maximal star

triangulation of the polyhedron.

It was shown by Bartyrev that given a pair of reflexive polyhedra (∆,∆∗) the

hypersurface defined by the vanishing of a generic polynomial defined by ∆ is a

smooth CY manifold for n ≤ 4. For n ≤ 3 the toric variety itself is ensured to be

smooth by reflexivity. For n = 4 the toric variety may have point like singularities,

which however are missed by the generic hypersurface.

Exchanging the role of ∆ and ∆∗ above gives rise to the mirror CY. There exist

combinatorial formulas, also found by Bartyrev [142], for the Hodge numbers of the

CY as sums over lattice points of faces of the involved polyhedra, see also [141].
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There are 16 reflexive 2 dimensional polyhedra. They describe elliptic curves.

All 4319 three dimensional reflexive polyhedra have been classified in [130]. They

describe K3 surfaces.

Finally all 473,800,776 reflexive 4 dimensional polyhedra have been classified in [143]

and can be accessed on [81]. They rise to 6 dimensional CY’s and hence are important

for string compactifications to 4 dimensions.

E Conformal bootstrap

In this appendix we will give a brief summary the conformal bootstrap, as introduced

in [114], sections 2-4, for the topological string partition function on genus one fibered

CY 3-folds with N-sections for N ∈ {2, 3, 4}.
A Calabi-Yau is said to be genus one fibered over a base B if there exists a

surjective map π : X → B s.t. the generic fiber over B is a torus. If the projection

admits a section X is called elliptically fibered. We use the convention that a genus

one fibration in general does not have a section but only a N -section intersecting

the generic fiber N -times, i.e., it corresponds to N points that can be identified

in each fiber. Moving along closed paths in the base of the fibration these points

will generically experience a monodromy (this distinguishes them from a union of

N sections). In our notation a genus one fibered manifold with N -sections does not

have N ′-sections with N ′ < N and in particular it has no section.

We start by considering an elliptically fibered 3-foldM with base B and projection π.

By the Shioda-Tate-Wazir theorem [144] its homology group H4(M) is degenerated

by the three types of divisors:

i) vertical divisors Di = π−1D̃i, where D̃i ∈ H2(B).

ii) fibral divisors consisting of rational curves fibered over a divisor in B.

iii) sections, which can be split into holomorphic sections, intersecting every fiber

in a point, and rational sections, that intersect every smooth irreducible fiber in a

point.

By convention an elliptic fibration has at least one section (which can be either

holomorphic or rational). One can choose any section to be the zero section. This

enables one to canonically identify every fiber with a torus, C/(Z + τZ), using the

intersection with the zero section as the origin. Addition of points on the fiber defines

a group law in the fiber which may be extended to the rational sections and defines

the Mordell-Weil group MW (M). A basis of H4(M) is then given by the zero section

and a set of sections that are linear independent in the Mordell-Weil group together

with a basis of vertical divisors and fibral divisors.

For genus one fibered threefolds the above may be generalised [129] by consid-

ering k-sections instead of sections. One can pick a ‘zero k-section’ and act on it

with an appropriate generalisation of the Mordell-Weil group to obtain a basis of

k-sections.
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For an elliptically fibered CY manifold M one can define the Shioda map σ :

MW (M) → H4(M,Z), which is a homomorphism from the Mordell-Weill group to

H4(M,Z). It can uniquely be defined in terms of its intersection properties [145].

This definition may then be generalized to genus one fibrations with N -sections in

the following way. Start by defining the inner product

〈, 〉 : H4(M)×H4(M) → H2(B), (S, S ′) 7→ −π(S · S ′). (E.1)

Then for an N -section E of a CY 3-fold one defines σ(E) := E +D where D is the

unique linear combination of the zero-N -section, vertical divisors and fibral divisors

s.t. σ(E) is orthogonal to the subspace spanned by those divisors in H4(M) w.r.t.

〈·, ·〉.
Irreducible curves in M will arise from either curves in the base or from rational

curves that are fibers of fibral divisors or from isolated rational curves over points

of the base (the latter two will collectively be called fibral curves). One can expand

the topological string partition function Ztop. = exp(
∑∞

g=0 λ
2g−2Fg) in the following

manner

Ztop.(τ,m, t, λ) = Z0(τ, λ)



1 +
∑

β∈H1,1(B,Z)

Zβ(τ,m, λ)Q
β



 (E.2)

where one finds that for an elliptic fibration or for a genus one fibration with N -

sections, N ∈ {1, 2, 3, 4}, the Kähler modulus τ should be such that Nτ is the

complexified volume of the generic fiber. Further m are the complexified volumes of

the fibral curves and Qβ = exp(2πi
∑

i β
iti), where ti, i = 1, . . . , h1,1(B) are shifted

volumes of curves in the base. This shift is linear in τ and was first observed for

elliptic figurations in [146, 147].

Modular properties of the topological string partition function are consequences of

the general transformation behaviour under monodromies in the stringy Kähler mod-

uli space.

The automorphic properties of Ztop can be derived from the wave function interpre-

tation of Ztop [148], which was investigated in, e.g., [149, 150].

Assume M is elliptic or genus one fibration. Parametrize the Kähler form ω as

ω = τ · (E0 +D) +
r
∑

i=1

mi · σ(Ei) +

rk(G)
∑

i=r+1

mi ·Df,i−r +

b2(B)
∑

i=1

t̃i ·D′
i (E.3)

where Df,i denotes a basis of fibral divisors,i = 1, . . . , rk(G) 42, Ei, i = 0, . . . , r are

independent N -sections; D′
i are vertical divisors dual to the curves Ci =

1
n
E0 · Di,

42The notation rk(G) arises from the ‘F-theory-dictionary’ discussed in Appendix A of [114].
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with Di = π−1D̃i, i = 1, . . . , b2(B), in the sense that

D′
i · Cj = Nδij. (E.4)

The ‘zero N -section’ E0 is shifted by D, the unique vertical divisor s.t. Ẽ0 = E0+D

is orthogonal to all of these curves Ci. Furthermore the shifted Kähler parameters

ti, i = 1, . . . , h1,1(B) are defined to be

ti = t̃i +
ãi
2N

τ, with ãi =

∫

M

Ẽ2
0 ·Di. (E.5)

One assumes that there are no fibral divisors at a generic point of the complex

structure moduli space of M .

Then assuming an expansion as in (E.2) one can make the following ansatz for

the expansion coefficients Zβ(τ,m, λ),

Zβ(τ,m, λ) =
1

η(Nτ)12·c1(B)·β

φβ(τ,m, λ)
∏b2(B)

l=1

∏βl

s=1 φ−2,1(Nτ, sλ)
, (E.6)

where c1(B) is the first Chern class of the base, the numerator is an element

φβ(τ,m, λ) ∈M∗(N)[φ−2,1(Nτ, •), φ0,1(Nτ, •)] ·∆2N(τ)
1−

rβ

N
mod 1 (E.7)

where M∗(N) denotes the ring of modular forms for Γ1(N), • stands for any elliptic

parameter z ∈ {λ,m} and the exponent of ∆2N(τ) is determined by the congruence

relation

1− rβ
N

≡ 1

2

[

Nc1(B)− ã

N

]

· β mod 1. (E.8)

The weight of φβ is given by

w = 6c1(B) · β −
∑

l

βl (E.9)

and the index w.r.t. the topological string coupling λ is

rλβ =
1

2N
β · (β − c1(β)). (E.10)

The index matrix w.r.t. the geometric elliptic parameters mi, i = 1, . . . , rk(G) is

rβij =
1

N
·
{ −1

2
π∗(σ(Ei) · σ(Ej)) · β for 1 ≤ i, j ≤ r

−1
2
π∗(Df,i ·Dfi) · β for r < i, j ≤rk(G)

0 otherwise

. (E.11)
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F Higgsing of the gauge group

In this appendix we will explain in some detail how the gauge group of the models of

table 4 and 5 can be Higgsed by giving vacuum expectation values (vev’s) to scalars

in the hypermultiplets. We take the necessary branching rules from [151]. For more

on Higgsing see for example [99, 152–154].

For concreteness sake we will study the third model of table 5. Before Higgsing

we have the following gauge group and matter content, coming from the twisted and

untwisted sector

SO(14)× SO(14)× U(1)2 (F.1)

4(14,1) + 4(1,14) + (64,1) + (1,64) + 8(1,1) .

The matter content is labelled by the representations under the two SO(14) groups,

i.e. we have left out the U(1) charges. Counting degrees of freedom we find the

numbers of vector- and hypermultiplets Nv = 184 and Nh = 248. We will start by

explaining how to Higgs the first SO(14) factor.

For this we notice the following branching rules

SO(14) ⊃ SO(13) : 14 → 13+ 1 , 64 → 64. (F.2)

Giving a vev to one 14 will break SO(14) to SO(13). One 13 will get ‘eaten’ by the

broken generators of the gauge fields (turning them massive) and the result is the

following gauge group and matter spectrum

SO(13)× SO(14)× U(1)2 , (F.3)

3(13,1) + 4(1,14) + (64,1) + (1,64) + 12(1,1).

We may check that Nh − Nv = 235 − 171 = 64 is unchanged. In the next step we

give a vev to a 13 and use the branching rules

SO(13) ⊃ SO(12) : 13 → 12+ 1 , 64 → 32+ 32′. (F.4)

Similar to before a 12 gets ‘eaten’ by the broken generators of SO(13) and we find

the following gauge group and matter spectrum after Higgsing

SO(12)× SO(14)× U(1)2 , (F.5)

2(12,1) + 4(1,14) + (32,1) + (32′,1) + (1,64) + 15(1,1).
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Two more similar steps lead to the following gauge group and matter spectrum

SO(10)× SO(14)× U(1)2 , (F.6)

4(1,14) + 2(16,1) + 2(16,1) + (1,64) + 18(1,1).

The branching rules

SO(10) ⊃ SU(5)× U(1) : 16 → 10(1) + 5̄(−3) + 1(5), (F.7)

16 → 1̄0(−1) + 5(3) + 1(−5)

(the number in brackets give the U(1) charge) indicate that we can give a vev to

16 and 16 thereby breaking SO(10) to SU(5) where 10,10 and one scalar will get

‘eaten’ by the broken generators. The gauge group and spectrum after this step of

Higgsing are thus

SU(5)× SO(14)× U(1)2 , (F.8)

4(1,14) + 2(5,1) + 2(5,1) + (10,1) + (10,1) + (1,64) + 21(1,1).

In the next step we give a vev to 5, 5̄ and use the branching rules

SU(5) ⊃ SU(4)× U(1) : 5 → 4(1) + 1(−4), (F.9)

10 → 4(−3) + 6(2)

to obtain the gauge group and spectrum

SU(4)× SO(14)× U(1)2 , (F.10)

4(1,14) + 2(4,1) + 2(4,1) + (6,1) + (6̄,1) + (1,64) + 24(1,1).

We proceed by breaking SU(4) to SU(3) by giving a vev to 4, 4̄ and using the

branching rules

SU(4) ⊃ SU(3)× U(1) : 4 → 3(1) + 1(−3), (F.11)

6 → 3(−2) + 3̄(2).

We obtain the following gauge group and spectrum

SU(3)× SO(14)× U(1)2 , (F.12)

4(1,14) + 3(3,1) + 3(3,1) + (1,64) + 27(1,1).

We can continue in similar manner using 3(3,1) and 3(3̄,1) to Higgs SU(3) com-
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pletely and end up with

SO(14)× U(1)2 , (F.13)

4(1,14) + (1,64) + 37(1,1).

In the same way we may Higgs the second SO(14). The two U(1) factors in the

gauge group may be Higgsed by any of the charged scalars. Thus we end up with a

completely Higgsed gauge group and 64 neutral scalars.
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Delange-Pisot-Poitou. Théorie des nombres 16 (1974-1975) .

[51] S. D. Smith, On the head characters of the monster simple group, Finite

Groups—Coming of Age (Montreal, Que., 1982), volume 45 of Contemp. Math.,

pages 303 - 313. Amer. Math. Soc., Providence, RI, 1985 .

[52] I. B. Frenkel, J. Lepowsky and A. Meurman, A Moonshine Module for the Monster,

pp. 231–273. Springer US, New York, NY, 1985. 10.1007/978-1-4613-9550-8 12.

[53] R. Borcherds, Generalized kac-moody algebras, Journal of Algebra 115 (June, 1988)

501–512.

[54] S. P. Norton, Generalized moonshine, Proc.Symp.Pure Math. 47 (1987) 208–208.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[55] S. Carnahan, Generalized moonshine i: Genus zero functions, 0812.3440v3.

[56] S. Carnahan, Generalized moonshine ii: Borcherds products, 0908.4223v3.

[57] S. Carnahan, Generalized moonshine iv: Monstrous lie algebras, 1208.6254v3.

[58] M. C. N. Cheng, X. Dong, J. F. R. Duncan, S. Harrison, S. Kachru and T. Wrase,

Mock Modular Mathieu Moonshine Modules, 1406.5502.

[59] E. Witten, Elliptic Genera and Quantum Field Theory, Commun.Math.Phys. 109

(1987) 525.

[60] J. Troost, The non-compact elliptic genus: mock or modular, Journal of High

Energy Physics 2010 (Jun, 2010) .

[61] T. Kawai, Y. Yamada and S.-K. Yang, Elliptic genera and N=2 superconformal

field theory, Nucl. Phys. B414 (1994) 191–212, [hep-th/9306096].

[62] T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal Algebras and

String Compactification on Manifolds with SU(N) Holonomy, Nucl.Phys. B315

(1989) 193.

[63] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group,

Invent. Math. 94 (1988) 183–221.

[64] S. Kondo, Niemeier lattices, Mathieu groups, and finite groups of symplectic

automorphisms of K3 surfaces, Duke Math. J. 92 (04, 1998) 593–603.

[65] J. R. David, D. P. Jatkar and A. Sen, Product representation of Dyon partition

function in CHL models, JHEP 06 (2006) 064, [hep-th/0602254].

[66] M. C. N. Cheng, S. M. Harrison, R. Volpato and M. Zimet, K3 String Theory,

Lattices and Moonshine, 1612.04404.

[67] J. F. R. Duncan and S. Mack-Crane, Derived Equivalences of K3 Surfaces and

Twined Elliptic Genera, 1506.06198.

[68] N. M. Paquette, R. Volpato and M. Zimet, No More Walls! A Tale of Modularity,

Symmetry, and Wall Crossing for 1/4 BPS Dyons, JHEP 05 (2017) 047,

[1702.05095].

[69] M. R. Gaberdiel, D. Persson, H. Ronellenfitsch and R. Volpato, Generalized

Mathieu Moonshine, Commun. Num. Theor Phys. 07 (2013) 145–223, [1211.7074].

[70] A. Chattopadhyaya and J. R. David, Gravitational couplings in N = 2 string

compactifications and Mathieu Moonshine, JHEP 05 (2018) 211, [1712.08791].

[71] C. A. Keller and I. G. Zadeh, Lifting 1
4 -BPS States on K3 and Mathieu Moonshine,

1905.00035.

[72] C. A. Keller and I. G. Zadeh, Conformal perturbation theory for twisted fields,

J.Phys.A 53 (2020) 095401, [1907.08207].

[73] D. Zagier, Traces of singular moduli in ”Motives, polylogarithms and Hodge

Theory”, Lecture series 3, Intl, 2002.

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[74] T. Eguchi and K. Hikami, N=2 Superconformal Algebra and the Entropy of

Calabi-Yau Manifolds, Lett. Math. Phys. 92 (2010) 269–297, [1003.1555].

[75] W. P. Barth, K. Hulek, C. A. M. Peters and A. Ven, Compact Complex Surfaces.

Springer Berlin Heidelberg, 2004, 10.1007/978-3-642-57739-0.

[76] T. Eguchi and K. Hikami, Enriques moonshine, J. Phys. A46 (2013) 312001,

[1301.5043].

[77] S. Mukai, Lecture notes on K3 and Enriques surfaces Notes by Slawomir Rams,

2012.

[78] T. Eguchi and K. Hikami, N=2 Moonshine, Phys.Lett. B717 (2012) 266–273,

[1209.0610].

[79] M. C. N. Cheng, S. M. Harrison, S. Kachru and D. Whalen, Exceptional Algebra

and Sporadic Groups at c=12, 1503.07219.

[80] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional

N=2 gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014)

465–493, [1305.0533].

[81] M. Kreuzer and H. Skarke, “Calabi-Yau data.”

http://hep.itp.tuwien.ac.at/~kreuzer/CY/.

[82] A. P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALP - a

User Manual, in Strings, gauge fields, and the geometry behind: The legacy of

Maximilian Kreuzer (A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov and

E. Scheidegger, eds.), pp. 461–550. 2012. 1205.4147. DOI.

[83] E. Witten, On the Landau-Ginzburg description of N=2 minimal models,

Int.J.Mod.Phys. A9 (1994) 4783–4800, [hep-th/9304026].

[84] M. C. N. Cheng, F. Ferrari, S. M. Harrison and N. M. Paquette, Landau-Ginzburg

Orbifolds and Symmetries of K3 CFTs, JHEP 01 (2017) 046, [1512.04942].

[85] J. A. Harvey and G. W. Moore, Algebras, BPS states, and strings, Nucl.Phys.

B463 (1996) 315–368, [hep-th/9510182].

[86] G. Lopes Cardoso, G. Curio and D. Lüst, Perturbative couplings and modular
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