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Kurzfassung

Obwohl Kleinfeuerungsanlagen stärkeren Schwankungen des Wärmebedarfs unterliegen
als dies für Großanlagen der Fall ist, liegt das Hauptaugenmerk klassischer Ansätze
der Verbrennungsregelung auf der Handhabung stationärer Zustände. Wirtschaftliche
Aspekte sowie gesetzliche Emissionsbeschränkungen und die Anforderung nach immer
höheren Wirkungsgraden verlangen nach einem fortschrittlichen Regelalgorithmus, der
neben der Berücksichtigung transienter Vorgänge gleichzeitig kostengünstig in Imple-
mentierung und Wartung ist. Die vorliegende Arbeit beschäftigt sich mit der Regelung
einer Kleinfeuerungsanlage zur Verbrennung von Biomasse. Dabei kommt eine Regler-
struktur bestehend aus einem linearen, modellprädiktiven Regelalgorithmus und einem
Zustandsschätzer zum Einsatz. Die Aufgabe liegt darin, den gesamten Leistungsbereich
des zu untersuchenden Ofens lediglich mit einem solch simplen Ansatz zufriedenstel-
lend abzudecken. Eine Grey-Box-Modellierung des nichtlinearen Ofens bildet die Basis
für die Reglerauslegung und die Bestimmung eines optimalen Linearisierungspunktes,
wobei zur Bewertung der Optimalität eine passende Abstands-Metrik verwendet wird.
Da Kohlenstoffmonoxid einen wichtigen Indikator zur Beschreibung der Verbrennungs-
güte darstellt, ist eine Minimierung dieses Schadstoffes von großem Interesse. Aufgrund
des hochgradig nichtlinearen Oxidationsprozesses ist die direkte Regelung dieser Grö-
ße mit einem linearen Ansatz nur beschränkt realisierbar. Zur Regelung der Verbren-
nungsgüte wird die Sauerstoffkonzentration als Regelgröße herangezogen. Dabei wird
zusätzlich ein unteres Limit dieser Größe in der Formulierung des Regelalgorithmus im-
plementiert, um hohe Schadstoffbildung infolge ausgeprägten Sauerstoffmangels zu ver-
hindern. Die Performance des geschlossenen Regelkreises wird anhand experimenteller
Untersuchungen für die Verbrennung verschiedener biogener Brennstoffe gezeigt, wobei
sowohl im Stationärbetrieb als auch in den Übergangsphasen ein zufriedenstellendes
Ergebnis erreicht wird. Da Brennstoffparameter explizit in der Formulierung des Ofen-
Modells berücksichtigt werden, eröffnet sich eine einfache und zugleich kostengünstige
Möglichkeit, Brennstoffwechsel durch simple Umparametrierung des Modells zu reali-
sieren. Experimentelle Versuchsergebnisse verdeutlichen die Wichtigkeit der gewählten
Sauerstoffreferenz im Hinblick auf die Qualität der Verbrennung. Aus der Literatur
wird ein einfaches Modell der Kohlenstoffdioxid-Entstehung herangezogen, an den zu
untersuchenden Ofen angepasst und schließlich zur Vorgabe passender Referenzwerte
der Sauerstoffkonzentration verwendet. Der optimale Charakter dieser systematischen
Festlegung wird mittels Simulation bestätigt.
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Abstract

Although small-scale furnaces are subject to stronger fluctuations in heat demand com-
pared to larger facilities, widely used control strategies most often only consider steady
state operation. Economic aspects, emission regulations, and the steadily increasing
need for higher efficiency call for a versatile control algorithm taking transient opera-
tion into account while being cost-efficient in implementation and maintenance. This
work introduces an optimized control architecture, comprising a simple linear model
predictive controller and a state estimation, in order to cover the whole operating range
of an investigated small-scale biomass furnace. A grey-box model of the plant provides
a basis for controller design as well as for determination of an appropriate lineariza-
tion point by utilizing a gap metric. Among all pollutants, resulting from (incomplete)
combustion, carbon monoxide is of particular importance, as its occurrence strongly
indicates sub-par efficiency. However, the highly non-linear oxidation process impedes
direct controlling of carbon monoxide by means of a simple linear approach. Therefore,
the oxygen concentration in the flue gas is used as the emission-related control variable.
Additionally, input and oxygen constraints are implemented to account for saturation
of control variables and to prevent incomplete combustion, respectively. Experimen-
tal closed-loop results are presented for the combustion of different solid biofuels and
indicate satisfying control performance not only in steady state but also in transient
operation. Based on the introduced furnace model, which incorporates fuel-related pa-
rameters in an explicit manner, a simple and cost-efficient procedure for fuel switches
is outlined. Since the highly influential role of the applied oxygen reference on carbon
monoxide formation is significant in experimental results, a formation model from liter-
ature is used in an adapted formulation to provide emission-optimized reference values.
Closed-loop simulation results confirm an overall improvement based on systematically
picked oxygen references. The introduced overall control structure keeps complexity
low and simultaneously offers a wide variety of possibilities yielding increased control
performance along with minimized emission formation.
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Chapter 1

Introduction

Utilizing fire in a controlled way has played a major role in human evolution, not only
to provide warmth but also to repeal wild animals, cook food, and extend shelf-life
of perishable goods [1]. Combustion of biomass enhanced primeval life significantly,
and despite today’s wide range of energy sources it is still of vital importance. As it is
indirectly formed by solar irradiation from the sun, biomass is considered as a renewable
energy source (see definition in the box given below). Due to global climate change and
limited fossil fuels, this kind of energy source gained increased interest in recent years.

renewable energy sources [2]

Energy is considered renewable, if its source constantly regenerates itself.
Consequently, renewable energy sources are assumed to be inexhaustible
in human dimensions.

Out of numerous and partly inconsistent definitions of biomass, the ones presented in
the box below are reasonable in the given context of this work.

biomass

While IUPAC [3] defines biomass as

a material produced by the growth of microorganisms, plants,

or animals,

the definition according to Kaltschmitt et al. [2] explicitly excludes al-
ready fossilized phytomass and zoomass to facilitate differentiation from
fossil fuels.

1.1 Today’s significance of biomass combustion

Increasing shares of energy, especially for heating, rely on renewable energy sources,
whereby Sweden has taken a pioneering role in the EU, see Fig. 1.1a. A breakdown of

1
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1.1 Today’s significance of biomass combustion 2

(a) (b)

Figure 1.1: (a) Share of energy from renewable sources for heating and cooling,
depicted for the EU-28 and selected European countries [4]. Annual averages
are connected to guide the eye. (b) Breakdown of heat energy from renewable
sources according to its particular source of energy in 2019 in Germany [5].

heat energy generated in 2019 in Germany by utilizing renewable sources (Fig. 1.1b)
illustrates the important role of solid biofuels.

In urban areas large furnaces supply heat for many facilities, which exhibit a strongly
changing individual heat demand throughout the day. But, aggregation of these single
contributions comes along with a smooth and well-predictable total demand. Therefore,
such furnaces operate in steady state for most of the time, which facilitates highly
efficient and emission-optimized combustion. Additionally, high output power and long
operating life, accompanied by immense acquisition costs, justify sophisticated control
strategies improving the overall performance even further.

Conversely, in rural regions heat supply is more likely to be organized in a de-
centralized manner, carried out by small-scale furnaces with a nominal heat capacity
of less than 500 kW. Economic aspects of this market segment call for a simple and
cost-effective controller design, which is partially in contradiction to emission-related
objectives. Based on larger variations in the heat demand, related to this kind of appli-
cation, the need rises to account not only for steady-state but also for transient behavior
in an appropriate manner.

Furthermore, furnace manufacturers face challenges by introduced legal emission
regulations. Fig. 1.2 compares legal restrictions for small-scale furnaces that are effec-
tive in Austria and Germany, respectively (presented data are valid for furnaces with
a nominal heat capacity between 50 kW and 500 kW and utilized for heating rooms or
for warm water treatment). While the Austrian government limits emission of carbon
monoxide (CO), particulate matter (PM), and nitrogen oxides (NOx), it also states a
minimum required efficiency ηmin. Although, Germany’s actual law only acts on CO
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https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1.2 Combustion control of small-scale furnaces 3

Figure 1.2: Comparison of current legal emission regulations for small-scale
furnaces in Austria [6] and Germany [7]. Missing bars indicate no current
limitations.

and PM emissions, its limits are more restrictive in most cases. Among all these emis-
sions, CO is of vital importance, since it is well correlated with combustion quality -
see section 2.1.2 for detailed information.

1.2 Combustion control of small-scale furnaces

As mentioned above, combustion control comprises two main tasks: keeping track of a
required heat output and maintaining a high combustion quality. Usually, the released
heat energy is transferred from the flue gas to a heat medium, e.g. water, by using a
heat exchanger. Assuming a constant heat medium mass flow and a constant return
temperature, the heat output relates to the supply temperature Tsup, which is therefore
considered as a control variable from now on.

From a technical point of view, it would be favored to control CO emissions directly
in order to ensure a high combustion quality. Unfortunately, its highly non-linear
formation process complicates application of linear control approaches. Furthermore,
lack of an appropriate emission model as well as the availability of cost-efficient oxygen
(O2) sensors suggest the use of O2 concentration as the control variable related to
combustion efficiency. Additionally, its dynamic is by far less non-linear than the one of
CO, which enables an appropriate control performance for most industrial applications
by employing simple linear algorithms.
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1.2 Combustion control of small-scale furnaces 4

_

_

Tsup,ref
C1

C2

fuel mass flow

air mass flow
combustion

Tsup

O2O2,ref

Figure 1.3: Classical concept of combined power and combustion control based
on cascading loops with controllers C1 and C2.

Simple and cost-efficient design characterize classical approaches, while advanced con-
trol strategies come along with a higher design effort justified by an usually better
fulfillment of control objectives.

1.2.1 Classical approach

Classical industrial control strategies mostly rely on the simple proportional-integral-
derivative (PID) control algorithm and so they do for furnaces as well. Fig. 1.3 depicts
the widely used control concept for biomass furnaces, based on cascading loops with
two PID controllers C1 and C2 in total [2]. In this setup the outer loop controls Tsup

by adapting the fuel mass flow, and the inner loop keeps track of a desired oxygen
concentration O2,ref, which is defined according to the actual fuel mass flow. Note that
in real implementations C1 may also determine a part of the air mass flow based on a
fixed ratio to the fuel mass flow.

Since many furnaces operate in power ranges close to the nominal heat output for
most of the time, utilization of linear controllers is reasonable. But, as the independently
designed control loops inherently neglect obvious couplings, control performance further
decreases. To overcome this lack, at least in steady-state conditions, manufactures often
implement a feedforward controller and therefore force C1 and C2 to act deviation-
related.

Nonetheless, due to high furnace complexity all mentioned strategies are rarely
model-based but rather designed empirically in real applications. While extensive effort
is put into hardware optimization, an insufficient basis for the controller design yields
a performance undoubtedly worthy of improvement.

1.2.2 Advanced strategies

More advanced control strategies are capable of handling state transitions and not only
steady state operation according to efficiency perspectives. While model predictive ap-
proaches were already investigated in furnaces with high nominal heat output [8–11],
little was done for small-scale furnaces. Besides the design of dynamic feedforward con-
trollers reported in [12, 13], only Böhler et. al [14] dealt with model-based approaches

https://www.tuwien.at/bibliothek
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1.2 Combustion control of small-scale furnaces 5

for small furnaces. The latter presented simulation results obtained by using a fuzzy
model predictive controller for the very same furnace investigated within this work.
But, to combine the massive advantages, coming along with a model predictive strat-
egy, with the need of an economically justifiable solution, the implementation must be
as simple as anyway possible.

For this purpose, a simple linear model predictive controller (MPC) for a small-scale
biomass furnace is introduced in this work. The presented grey-box model of the fur-
nace is of low-order to facilitate fast computation, is combined with adaptions to serve
furnace characteristics, and enables helpful process insight due to the physical nature
of model parameters, see section 2.4. The implemented MPC (section 3) explicitly ac-
counts for the given overall furnace setup, covering an additional feedforward controller,
to maintain manufacturers’ empirical knowledge. Experimental closed-loop results ob-
tained for the combustion of different solid biofuels not only confirm applicability of
the chosen approach but also highlight the possibility of simple fuel switches by just
adapting fuel-related model parameters (section 4). Based on experimental results,
comprehensive simulations together with a model of the CO formation process, see
section 2.5 or [15], yield recommendations on how to choose O2 references and MPC
configuration appropriately to achieve a minimum of emissions.
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Chapter 2

Modeling

Besides high model accuracy, the model structure itself is equally important. Due to
limited computational power of the furnace hardware, a lumped model is preferred.
At the beginning of this chapter, the chemical process is outlined briefly to provide a
basic understanding of biomass combustion. After reviewing model approaches from
literature, the chosen process model together with its identification and validation is
presented.

2.1 Chemistry of biomass combustion in a nutshell

Only a small insight into the extensive field of combustion chemistry is given, whereby
it is appropriately selected to meet the necessary needs for the intended modeling
and control purpose. Hereinafter, chemical aspects related to the combustion of solid
biofuels, in particular wooden pellets and wood chips, are considered. If not otherwise
stated, following remarks are based on [2].

2.1.1 Fuel properties

More than 95 % of the dry matter of solid biofuels consist of only three biopolymers:
cellulose, hemicellulose, and lignin. The latter is a cross-linked polymer stiffening the
mixture of cellulose (unbranched polysaccharide) and hemicellulose (branched polysac-
charide). A simple approach neglects the exact chemical structure and only considers
the fuel as a mixture of its main elements, yielding an average elemental composition
of CH1.44O0.66 for wood. But, since fuels also contain water (H2O), incombustible com-
pounds (ash), and traces of other chemical elements, such a simple analytic study is
insufficient to determine heat-related fuel parameters. However, the net calorific value
qnet and gross calorific value qgr of the actual fuel can be identified by experimental
methods [16]. These parameters are of vital importance, as they are directly related to
the heat quantity accessible by combustion - definitions are given in the boxes below.

6
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2.1 Chemistry of biomass combustion in a nutshell 7

net calorific value qnet

The net calorific value is the heat produced by complete oxidation of
one unit of a fuel, combusted under isobaric conditions such that all the
water is vaporized.

gross calorific value qgr

In addition to the net calorific value, the gross calorific value assumes
that all the water is condensed. Therefore, the relation qgr ≥ qnet holds.

As no significant condensation takes place in the investigated furnace, the water content
wH2O plays a crucial role. Additionally, this parameter as well as the ash content aash

are subject to at least slight changes over different fuel batches. For the sake of clarity,
definitions are given below.

water content wH2O

The water content is defined as

wH2O =
mH2O

mfuel
, (2.1)

where mH2O is the mass of water bonded in the total fuel mass mfuel.

ash content aash

Similar to the water content, the ash content is defined as a mass ratio
according to

aash =
mash

mfuel
(2.2)

with mash as the ash mass.

Therefore, a comprehensive model has to account for changes in wH2O and aash. For this
purpose, the gross calorific value is adapted in such a sense that it is no longer related
to the total fuel mass mfuel but to the dry and ash-free mass, yielding the calorific value

qgr-ah,af =
qgr|s(

1 − wH2O|s

) (
1 − aash|s

) , (2.3)

where the suffix (.|s) denotes values gained by analyzing a fuel sample. Using the dry
and ash-free fuel mass as the actual heat source allows to conveniently incorporate
varying water and ash contents into the model description, see section 2.4.
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2.1 Chemistry of biomass combustion in a nutshell 8

2.1.2 Thermochemical conversion and emission formation

Since oxygen, as an oxidizer, strongly influences biomass combustion, the available
amount must be sufficiently high to enable complete combustion. In general, not pure
oxygen but ambient air with an average oxygen concentration of 21 Vol.-% is supplied
to the furnace. Therefore, the excess air ratio λ (see the box below) is introduced to
characterize the overall combustion but also to distinguish between different combustion
stages.

excess air ratio λ

This is the ratio of the actual available air mass ma to the air mass ma,min

that is stoichiometrically required for complete combustion, mathemat-
ically described by

λ =
ma

ma,min
. (2.4)

Figure 2.1 depicts the evolution of thermochemical biomass combustion in a schematic
manner. In the first stage, dehydration, the considered fuel mass is heated up to a
temperature of approximately 200°C , which is accompanied by evaporation of all the
water bonded in the organic matter. Besides this phase, also the next one, the pyrolytic
decomposition, takes place under exclusion of air (λ = 0). At temperatures between
150°C and 220°C macromolecules start to break down, forming gaseous decomposition
products. Up to 85 % of the organic matter are converted in this stage, which is largely
completed by reaching 500°C. Subsequently, air (primary air) is used as gasification
medium to convert residual carbon into combustible gases. While the first two stages
comprise endothermic reactions only, gasification is mainly accompanied by thermal re-
lease and therefore an increase in temperature. In the last stage, all products, resulting
from pyrolythic decomposition and gasification, undergo a homogeneous gasphase oxi-
dation in the presence of excess air (λ > 1). This is obtained by supplying an additional
air mass flow (secondary air). Highly exothermic oxidation results in products related
to a complete combustion (carbon dioxide CO2, H2O) as well as unwanted side products
(CO, unburnt hydrocarbons CnHm, nitrogen oxides NOx, PM), which are often referred
to as emissions. Since atmospheric molecular nitrogen (N2) is only partially involved
in the reaction, it is not explicitly stated as an output in Fig. 2.1. In addition to the
above mentioned combustion products, also the incombustible fuel components (ash)
remain as part of the overall residues.

Among all outputs, occurring CO emissions are most directly related to combustion
quality and are therefore ideally qualified to assess the completeness of combustion.
Furthermore, a characteristic relation between CO and λ holds, indicating the possibil-
ity to influence efficiency by adapting the air mass flow, see Fig. 2.2. While low values
of λ come along with at least local oxygen deficiency, high air mass flows decrease
combustion temperature. While both effects inhibit oxidation, values of λ between 1.5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.1 Chemistry of biomass combustion in a nutshell 9
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Figure 2.1: Evolution of thermochemical biomass conversion and emission for-
mation over time, depicted in a schematic fashion adapted from [2].
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2.2 Process description 10

Figure 2.2: Dependency of CO emissions on excess air ratio λ. Index n denotes
reference to standard cubic meters. Diagram shows qualitative data [2] for
automatically fed wood combustion.

and 2.5 provide promising results. Since λ is basically a convenient formulation of the
available amount of oxygen, the presented relation justifies the common practice of con-
trolling the oxygen concentration in order to ensure high combustion quality. However,
appropriate oxygen references must be defined to meet emission-related objectives, see
section 4.3 for a detailed discussion.

2.2 Process description

The investigated plant is a small-scale biomass grate furnace with a nominal heat out-
put of 100 kW, primarily designed for the combustion of wooden pellets. A schematic
drawing is depicted in Fig. 2.3. While the fuel mass flow ṁfuel is fed onto the grate, the
primary air mass flow ṁpa passes trough the fuel bed to enable gasification (compare
air flows in Fig. 2.1). To account for local differences in the composition of the com-
bustion gas, secondary air can be supplied through two different inlets, providing mass
flows ṁsa1

and ṁsa2
. After oxidation, the flue gas mass flow ṁfg leaves the chamber

with the freeboard temperature Tfb and enters the heat exchanger, in which most of the
heat is transferred to the water mass flow ṁw. Since the return temperature Tret and
ṁw are kept constant in the investigated experimental setup, the supply temperature
Tsup is directly proportional to the heat output. In addition to ṁfg with the flue gas
temperature Tfg, ash residues (mass flow ṁash) also leave the furnace.

A model of this furnace has to be detailed enough to serve the intended control
purpose but simple enough to allow fast computations even by utilizing low-cost hard-
ware. To serve this demand, a lumped model is preferred. Various modeling approaches
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2.3 Modeling approaches from literature 11

Tamb

ṁsa2

ṁfuel

ṁpa

ṁsa1

ṁash

ṁw,

ṁw,

Tsup

Tret

ṁfg,

ṁfg,

Tfg

Tfb

heat
exchanger

freeboard
subsystem

Figure 2.3: Basic furnace structure with mass flows and temperatures required
for modelling. To facilitate allocation of equations, the model is divided into
a freeboard and heat exchanger subsystem.

already exist in literature, whereby their applicability is discussed in the following sec-
tion.

2.3 Modeling approaches from literature

To serve the intended comparative purpose, presented equations are depicted in their
simplest possible formulation. Parameters that must be defined experimentally are
referred to as k with consecutively numbered subscripts to facilitate distinction. Here-
inafter, t in brackets denotes continues-time values.

Böhler et al. [14] and Placek et al. [17] calculate the mass mb of the fuel on the grate
using the simple mass balance

d

dt
mb(t) = ṁfuel(t) − ṁthd(t) (2.5)

with ṁfuel as the fuel mass flow fed onto the grate and ṁthd as the thermally converted
mass flow induced by thermal decomposition of the biomass. Other authors [18, 19]
suggest to consider the water mass flow ṁw,in and the mass flow ṁdfuel of dry solid

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.3 Modeling approaches from literature 12

biomass separately; relations are given by Eqs. (2.6) and (2.7).

ṁw,in(t) = wH2O ṁfuel(t − Td(t)) (2.6)

ṁdfuel(t) = (1 − wH2O) ṁfuel(t − Td(t)) (2.7)

An introduced dead time Td according to

Td(t) = k1
mw(t)

(1 − wH2O) ṁfuel(t)
(2.8)

accounts for fed mass flows to become effective after a certain delay in case of a long
grate. Therefore, the water mass mw on the grate is calculated by

d

dt
mw(t) = ṁw,in(t) − ṁw,ev(t) (2.9)

with the steam mass flow ṁw,ev given by the simple approach

ṁw,ev(t) = k2 mw(t). (2.10)

In this modeling strategy, the mass mdb of dry solid fuel on the grate is calculated by

d

dt
mdb(t) = ṁdfuel(t) − ṁthd(t). (2.11)

Biomass combustion itself is modeled by several authors [14, 18, 20] using a simple
approach according to

ṁthd(t) = k2 ṁpa(t) mb(t) (2.12)

with the primary air mass flow ṁpa. In contrast, Placek et al. [17] utilize volume in-
stead of mass flows, which induces an additional temperature dependency and therefore
increases model complexity.

Much has been written about disrupted combustion models [21–23]. Such ap-
proaches provide comprehensive analytic insight but lack of simplicity, which is es-
sential for the intended control purpose. As these models generally rely on a variety of
unknown parameters, identification procedure would become even more challenging.

A majority of model approaches from literature [14, 17–20] cover the thermal dy-
namic inside the combustion chamber by an ordinary heat balance taking relevant in-
and outputs into account. But, slight differences appear in the handling of heat losses.
While [14] directly incorporates radiation losses Q̇rad by means of a simplified form of
the Stefan-Boltzmann radiation law according to

Q̇rad(t) = k3T
3
fb(t), (2.13)

others [17,18] exclude such losses in general and only consider the storage effect of the
furnace lining. The related heat flow Q̇r is defined as

Q̇r(t) = k4 [Tfb(t) − Tr(t)] (2.14)
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2.4 Furnace model 13

with Tr as the temperature of the refractory lining. The differential equation

k5 mr
d

dt
Tr(t) = Q̇r(t) (2.15)

with mr as the mass of the refractory lining is then used to calculate Tr.
Since heat exchangers are the subject of extensive research, numerous models exist.

However, only few approaches are simple enough to meet stated needs. While a simple
heat balance always forms the basis, opinions differ in the matter of how to calculate
the exhaust gas temperature Tfg. Böhler et al. [14] use a first order low pass filter, based
on Tfb and an experimentally determined static gain, to define Tfg in an approximate
manner. A promising way to reduce model order is outlined by Bauer et al. [24], since
the heat flow Q̇W transferred in the heat exchanger is approximated without the need
to calculate Tfg, see Eq. (2.16).

Q̇W(t) = k6 [Tfb(t) − Tw(t)]k7 ṁfg(t)
k8 (2.16)

In this relation, Tw is the averaged water temperature in the heat exchanger and ṁfg

labels the flue gas mass flow, which is simply calculated as a sum of all air inflows and
the mass flow due to thermal decomposition of the biomass. Therefore, Tfg is given by
an algebraic relation resulting from a steady heat balance of the recuperator.

2.4 Furnace model

The presented model is based on above discussed modeling approaches from literature
(section 2.3) and adapted by appropriate terms to satisfy empirical findings gained
from open-loop experiments. Thus, an iterative procedure containing modeling (section
2.4.1), parameter estimation and model validation (section 2.4.2) yields the final model
structure. Please note that the following statements only consider the finally chosen
furnace model and present results from single iterations only in an implicit manner.

2.4.1 Model equations

For the sake of readability, all relations that are necessary to obtain a specific physical
quantity are grouped together.

Fuel mass on the grate

The current mass mb of the dry and ash-free fuel on the grate is obtained by the solid
mass balance

d

dt
mb(t) = ṁfuel,net(t) − ṁthd(t). (2.17)

With the total fuel mass flow ṁfuel, water content wH2O (Eq. 2.1), and ash content aash

(Eq. 2.2), the dry and ash-free fuel mass flow ṁfuel,net is defined according to

ṁfuel,net(t) = (1 − wH2O) (1 − aash) ṁfuel(t). (2.18)
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2.4 Furnace model 14

The mass flow due to thermal decomposition of the biomass, ṁthd, is calculated by

ṁthd(t) = kthd (ṁpa(t) + ṁpa0
) mb(t), (2.19)

where kthd is the constant combustion rate, ṁpa the primary air mass flow, and ṁpa0

represents a constant air mass flow, which constantly passes the inlet.

Oxygen concentration in flue gas

Based on [2], the oxygen concentration O2 in the flue gas after combustion is given by

TO2

d

dt
O2(t) = 21 Vol.-%

λ(t) − 1

λ(t)
+ kRthd

d

dt
Rthd(t) − O2(t), (2.20)

where TO2
is a time constant, λ the excess air ratio (see also Eq. 2.4), and Rthd

an additional state to account for the all-pass behavior, which is apparent in open-
loop experiments. Thereby, the factor kRthd

determines its contribution to the overall
dynamic. The total air mass flow ṁa is specified according to

ṁa(t) = ṁpa(t) + ṁpa0
+ ṁsa1

(t) + ṁsa2
(t) (2.21)

with the secondary air mass flows ṁsa1
and ṁsa2

. Resultant excess air ratio is then
calculated by

λ(t) =
ṁa(t)

kL Lmin ṁthd(t)
, (2.22)

where Lmin is the stoichiometric air-to-fuel ratio that is necessary for complete combus-
tion under ideal conditions and kL a factor to respect real circumstances. A closer look
at oxygen measurements obtained from open-loop experiments (see exemplary results
in Fig. 2.4a at 50 min and in Fig. 2.4b at 18 min) reveals all-pass dynamic and therefore
justifies the need for the additional state Rthd. Its dynamic is described by

d

dt
Rthd(t) = ṁthd(t) − ζ Rthd(t), (2.23)

where ζ = 1 · 1/s to ensure consistency regarding physical units.

Freeboard gas temperature

The freeboard temperature Tfb is calculated by the unsteady heat balance

mg cp,g
d

dt
Tfb(t) = Q̇in(t) + Q̇comb(t) − Q̇gas(t) − Q̇rad(t), (2.24)

with mg as the gas mass in the chamber, cp,g the specific heat capacity of the combustion
gas at elevated temperatures, Q̇in the incoming enthalpy flow accompanied by the air
and fuel mass flow, Q̇comb the heat released by combustion, Q̇gas the enthalpy flow
related to the gas mass leaving the freeboard, and Q̇rad the heat loss due to radiation.
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2.4 Furnace model 15

With cp,a and cp,fuel as the specific heat capacities of the ambient air and the fuel,
respectively, and Tamb as the ambient air temperature, the incoming enthalpy flow can
be written as

Q̇in(t) = ṁa(t) cp,a Tamb + ṁfuel(t) cp,fuel Tamb. (2.25)

Using the calorific value qgr-ah,af, introduced by Eq. (2.3), and the specific evaporation
enthalpy ∆He, the combustion heat is written as

Q̇comb(t) = ṁthd(t) qgr-ah,af − ṁfuel(t) wH2O ∆He. (2.26)

Since the flue gas mass flow ṁfg is calculated according to

ṁfg(t) = ṁthd(t) + ṁa(t), (2.27)

the enthalpy flow related thereto is given by

Q̇gas(t) = ṁfg(t) cp,g Tfb(t). (2.28)

Results of the iterative identification process have indicated increased model perfor-
mance by adapting the Stefan-Boltzmann radiation law in such a sense that temper-
ature will no longer be of fourth but rather third order, yielding heat loss Q̇rad to be
described by

Q̇rad(t) = krad σ
(
T 3

fb(t) − T 3
amb

)
(2.29)

with the Stefan-Boltzmann constant σ and the factor krad representing the thermally
effective surface.

Supply water temperature

Based on the simplified approach presented in [24], the heat flow Q̇w transferred from
the gas to the water side of the heat exchanger is calculated by

Q̇w(t) = kQ,1 [ṁfg(t) (Tfb(t) − Tw(t))]kQ,2 + Q̇rec(t), (2.30)

where kQ,1 and kQ,2 are constants used to appropriately shape the heat transfer, Tw is the
mean water temperature within the heat exchanger, and Q̇rec accounts for a proportion
of the heat loss Q̇rad that can be recuperated due to the given furnace design. Supply
temperature Tsup and constant return temperature Tret are used to approximate the
mean water temperature according to

Tw(t) =
Tsup(t) + Tret

2
. (2.31)

Recuperated heat output Q̇rec is calculated by

Q̇rec(t) = krec Q̇rad(t), (2.32)
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2.4 Furnace model 16

where krec labels the recuperation ratio. The condition krec ≤ 1 must hold, otherwise
this term violates the principle of conservation of energy.

Therefore, the supply temperature Tsup is given by the empirically adapted heat
balance

mw,he cp,w
d

dt
Tsup(t) = ksup + Q̇w(t) − ṁw cp,w (Tsup(t) − Tret) , (2.33)

with mw,he as the effective mass of water inside the heat exchanger, cp,w the specific
heat capacity of water, ksup a constant temperature offset, and ṁw the constant water
mass flow in the heating circuit.

Exhaust gas temperature

Although the exhaust gas temperature Tfg is only of minor importance for the control
objective, its simple use in the identification procedure is appealing. An algebraic
relation (Eq. 2.34), based on a stationary heat balance of the heat exchanger, is found
to provide an even better model performance than given by an unsteady approach like
reported in [14]. Temperature dependency yields the specific heat capacity cp,fg of the
exhaust gas to be smaller than the one related to the freeboard temperature.

Tfg(t) =
Q̇gas(t) + Q̇rec(t) − Q̇w(t)

ṁfg(t) cp,fg

(2.34)

2.4.2 Model identification and validation

Parameters of the introduced non-linear model can be reasonably divided into three
groups: the vector ϕ (Eq. 2.35) of known fuel related parameters, the vector χ (Eq.
2.36) of all other known parameters, and the vector θ (Eq. 2.37) of parameters not
determined until now.

ϕ = [wH2O aash qgr-ah,af]
T (2.35)

χ = [ṁpa,0 ṁw Lmin ∆He σ ζ Tamb Tret cp,g cp,a cp,fuel cp,w]T (2.36)

θ = [kthd kRthd
kL krad krec ksup kQ,1 kQ,2 TO2

mg mw,he]
T (2.37)

Open-loop experiments, utilized for identification and validation, are obtained by com-
bustion of wooden pellets. Experimental analyses [16, 25, 26] reveal the following fuel
properties

ϕpellets = [7.43 wt.-% 0.3 wt.-% 20348 J/g]T . (2.38)

Elements of χ are either natural constants, directly determined by measurement, calcu-
lated from reaction stoichiometry, or taken from substance tables - see numerical values
presented in Table 2.1.
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2.4 Furnace model 17

Table 2.1: Numerical values of known model parameters collected in χ.

variable value unit
ṁpa,0 2 kg/h
ṁw 4000 kg/h
Lmin 5.04 gair/gfuel

∆He 2440 J/g
σ 5.67 · 10−8 W/(m2 K4)
ζ 1 1/s

Tamb 25 °C

variable value unit
Tret 60 °C
cp,a 1.01 J/(g K)

cp,fuel 1.80 J/(g K)
cp,w 4.19 J/(g K)
cp,g 1.30 J/(g K)
cp,fg 1.08 J/(g K)

In order to determine the unknown parameters collected in θ, five open-loop measure-
ments are used for training and four other data sets for validation. The identification
purpose dictates the model formulation to rely on the input vector uid according to

uid(k) = [ṁsa2
(k) ṁsa1

(k) ṁfuel(k) ṁpa(k)]T (2.39)

and the output vector yid given as

yid(k) = [Tfb(k) O2(k) Tsup(k) Tfg(k)]T . (2.40)

Please note that k denotes the k-th element within a certain data set of N elements in
total. Therefore, the measured results (labeled by suffix m) of one experiment can be
written in the abbreviated form ZN as depicted in Eq. (2.41).

ZN =
{[

uid,m(k), yid,m(k)
]

, k = 1, . . . , N
}

(2.41)

In this work, model parameterization is carried out by utilizing the optimization-toolbox
implemented in MATLAB®, whereby a nonlinear least squares method, based on the
Levenberg-Marquardt approach, is applied. While the actual used identification proce-
dure considers all five open-loop measurements simultaneously, the following equations
illustrate the basic procedure [27, 28] by means of one data set.

Based on the model output ŷid, the cost function VN related to the prediction error
ε can be formulated as

VN(θ, ZN) =
1

N

N∑

k=1

[
yid,m(k) − ŷid(k, θ)

]T
W

[
yid,m(k) − ŷid(k, θ)

]

=
1

N

N∑

k=1

ε(k, θ)Tε(k, θ) (2.42)

with W as a diagonal weighting matrix used to emphasize individual outputs. Equation
(2.43) depicts the main objective, which is to find a parameter vector θ̂ that minimizes
VN.

θ̂ = arg min
θ

VN(θ, ZN) (2.43)
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2.4 Furnace model 18

This optimization provides an iterative procedure of the form

θ̂
(i+1)

= θ̂
(i+1)

(ZN, θ̂
(i)

) (2.44)

to find an improved solution in the actual calculation step (i+1) based on the cost
function VN and the previously found estimation θ̂

(i)
. Gradient method as well as

Newton’s method rely on a direct expansion of the cost function (Eq. 2.42) as a Taylor
series. As this is accompanied by either a low convergence rate (gradient method)
or increased computation time and global convergence problems associated with the
Hessian matrix (Newton’s method), quasi-Newton approaches were developed. Thereby,
expansion of the prediction error as a Taylor series, according to

ε(k, θ) ∼= ε(k, θ̂
(i)

) +
∂ε(k, θ)

∂θT

∣∣∣∣∣
θ=θ̂

(i)

(
θ − θ̂

(i)
)

, (2.45)

yields an approximated but always positive definite form of the Hessian matrix. Since
the results related to this approximation are only valid in the vicinity of the current
estimation θ̂

(i)
, Levenberg and Marquardt introduced an additional cost contribution

to penalize large changes of θ̂ within one iteration step, keeping
∣∣∣∣
∣∣∣∣θ̂

(i+1)
− θ̂

(i)
∣∣∣∣
∣∣∣∣
2

(2.46)

small. Thus, the so defined cost function J
(i)
N is given by

J
(i)
N (θ, ZN) =

1

N

N∑

k=1

ξ(k, θ, θ̂
(i)

)T W ξ(k, θ, θ̂
(i)

) + γ(i)
[
θ − θ̂

(i)
]T [

θ − θ̂
(i)

]
(2.47)

with the parameter γ to shape trade-off between prediction error minimization and

changes of θ̂. The mentioned term ξ(k, θ̂, θ̂
(i)

) is defined as

ξ(k, θ, θ̂
(i)

) = ε(k, θ̂
(i)

) − Ψ(k, θ̂
(i)

)
(

θ − θ̂
(i)

)
, (2.48)

where the local parameter sensitivity Ψ is given by

Ψ(k, θ̂
(i)

) =
∂ŷid(k, θ)

∂θT

∣∣∣∣∣
θ=θ̂

(i)

. (2.49)

Minimizing the cost function (Eq. 2.47) then yields the iterative Levenberg-Marquardt
procedure. Since estimation-related descriptions should only serve a supplementary
purpose within this work, Eq. (2.50) only depicts the optimization result schematically.

∂J
(i)
N

∂θ

!
= 0 −→ θ̂

(i+1)
(ZN, θ̂

(i)
) (2.50)
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2.4 Furnace model 19

Table 2.2: Model parameters collected in θ. Numerical values are found by
non-linear least squares method based on five training data sets.

variable mean value standard deviation unit
kthd 4.03 1.24 10−2 1/g
kRthd

9.95 2.17 s Vol.-%/g
kL 7.84 0.02 1

krad 2.30 0.01 103 m2 K
krec 0.739 0.004 1
ksup 1.33 0.01 103 W
kQ,1 2.16 0.01 W (s/(g K))kQ,2

kQ,2 0.928 0.002 1
mg 311 2 kg

mw,he 251 7 kg

Applying this search method to the non-linear furnace model and five training data sets
indicates insufficient estimation of TO2

. Subsequently, this parameter is excluded from
the identification algorithm, whereby comprehensive estimations find

TO2
= 16.7 min (2.51)

to provide suitable model performance. While table 2.2 comprises numerical values of
the estimated parameters, Fig. 2.4a presents related simulation results compared with
measurement values used for training. Validation is conducted by comparing simulation
results with measurement data sets not used for identification, see Fig. 2.4b. Stated
root mean squared error (RMSE) values provide a quantitative measure of model quality
and emphasize promising overall performance.

Despite the additional state Rthd (Eq. 2.23) that allows consideration of experimen-
tally captured all-pass behavior, the parameterized furnace model neglects this feature.
However, closed-loop results presented later on exhibit no significant deficit related
thereto. As it is furthermore implausible that a decrease in fuel mass flow causes a
harsh oxygen decrease, the suspicion raises that these peaks are artifacts induced by
inadequate access to manipulated variables within a short time span after a stepwise
change in open-loop experiments. And since furnace accessibility has been enhanced
between identification and closed-loop tests, insufficient mapping of this aspect can be
ignored.

2.4.3 Applicability

The presented modeling approach comprises parameters related to physical quantities
and therefore allows to capture various changes in furnace settings in an easy man-
ner. While combustion of different fuels is usually associated with a new identification
process, the introduced model can be adapted for this purpose by just changing the
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2.4 Furnace model 20

Figure 2.4: Simulation results of the non-linear furnace model compared to
exemplary measurements used for (a) training and (b) validation. Root mean
squared error (RMSE) serves as a model quality metric.

parameter vector ϕ (Eq. 2.35) appropriately. Section 4.2 outlines an experimental
validation by utilizing wood chips with two different water contents instead of wooden
pellets, which were already used for identification. Related fuel parameter vectors are
given by Eqs. (2.52) and (2.53).

ϕchips-1 = [35 wt.-% 0.3 wt.-% 19825 J/g]T (2.52)

ϕchips-2 = [20 wt.-% 0.3 wt.-% 19825 J/g]T (2.53)
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2.5 Emission models 21

Figure 2.5: Graphical representation of the utilized CO model [15]. Sharp limit
at 3500 ppm indicates sensor saturation.

2.5 Emission models

While the furnace model deals with O2, Tfb, and Tsup, emission formation is neglected
but is at least equally important. Since CO is of vital importance to assess combustion
efficiency (see section 2.1.2), an appropriate formation model would entail various ap-
plication possibilities. Böhler et al. [15] found a static formation model to be suitable
for the combustion of wooden pellets in the very same furnace investigated here. Fig.
2.5 depicts the relation, which relies on a neuronal network, between O2, Tfb, and CO.
Besides for simulation purposes, this work takes advantage of this previous finding to
determine emission-optimized reference values, see section 4.3.
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Chapter 3

Controller design

The conceptual architecture used for controlling the investigated furnace is depicted in
Fig. 3.1. Based on the furnace (section 2.4) covering the thermochemical conversion of
biomass and necessary hardware elements, which translate electrical signals into mass
flows, manufacturers often further enlarge furnace setups, aiming for simple handling
of steady-state operation. Empirically evolved software supplements utilized for this
purpose together with the basic hardware constitute the extended furnace (section
3.1). In order to maintain embedded empirical knowledge, any intended controller
must cope with such an at least partly circumstantial environment. Hereinafter, this
manufacturer-specific setup including a feedforward controller (section 3.1.2) and an
input interface (section 3.1.1) is assumed to be given and immutable.

To control the plant in its extended modification not only an observer (section 3.2.2)
but also an additional interface (reference interface - section 3.2.3) support the intended
MPC (section 3.2.1). On the one hand these additional algorithms enable and on the
other hand facilitate the overall control task, whereby grouping them together in a
block (extended controller - section 3.2) is reasonable.

Following paragraphs provide an understanding of furnace-extending algorithms
(section 3.1) followed by introducing the MPC in an appropriate formulation (section
3.2.1) and control-related supplements (sections 3.2.2 and 3.2.3).

3.1 Extended furnace

3.1.1 Input interface

The most common control strategy for small scale biomass furnaces is based on in-
dependently designed control loops using simple linear PI controllers [2]. To achieve
sufficient control performance by applying such simple approach, decoupling of the pro-
cess [29] and linear input-output behavior [30] are necessary prerequisites. Although
satisfying both conditions simultaneously is hardly possible, the mainly static plant
non-linearity enables a promising compromise. Its implementation together with the
hardware components, which are used to supply the actual mass flows, constitutes the

22
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ṁsa2 (t)
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ṁfuel(t)
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∆ffyref(k+1:k+Np)

T
s
u

p
,r

e
f
(k

:k
+

N
p
) MPC

(3.2.1)
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(3.2.2)

extended controller (3.2)

extended furnace (3.1)

input

interface

interface

(3.1.1)feedforward

controller

(3.1.2)

reference

(3.2.3)

furnace (2.4)

Figure 3.1: Conceptual architecture of the overall control structure. While presented furnace, its related input
interface, and feedforward controller together constitute the extended furnace, the extended controller comprises
an MPC, a state observer, and an interface calculating necessary reference values. Applied filtering and discretiza-
tion transforms measured time-continuous output value y(t) into its time-discrete counterpart y(k). Numbers in
brackets refer to sections describing the corresponding block.
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3.1 Extended furnace 24

input interface. A static but non-linear mapping according to

usyn(k) 7→ [ṁsa2
(t) ṁsa1

(t) ṁfuel(t) ṁpa(t)]T (3.1)

between the newly defined synthetic input vector usyn and the actual mass flows serves
as its mathematical description, also see the illustrative subfigure in Fig. 3.1 and section
3.1.2 including a simplified graphical representation (Fig. 3.3). For the sake of clarity,
the current time k Ts with Ts as the system sampling time is abbreviated by the actual
time step k. The scalar synthetic input pref as part of

usyn =
[
pref uT

]T
(3.2)

represents the current heat demand on a percentage basis and influences the transfor-
mation in the input interface in such a non-linear way, that the process considering
only the remaining synthetic input vector u is decoupled and exhibits linear input-
output behavior. As long as the actual heat output is close to the value according to
the predefined input pref, these conditions are fulfilled in an appropriate but still ap-
proximate manner. Consequently, while pref(k) is set only depending on the reference
supply temperature Tsup,ref(k), the controllable input vector diminishes and is defined
as u according to

uT = [ufuel upa usa] . (3.3)

For ease of readability, synthesized inputs, which basically lack of unambiguous physical
interpretations, are labeled by indices referring to their main influence on the mass flows.

3.1.2 Feedforward controller

A feedforward controller only relying on the heat demand simultaneously combines
simple operation with supplying an actual input vector u enabling high combustion
quality. However, this can only be guaranteed in case of a totally undisturbed furnace.
Therefore, it is inevitable to adapt the input vector uff, specified by feedforward control
only, by a deviation ∆ffu based on feedback according to

u = uff + ∆ffu. (3.4)

While performing trajectory planning in dynamic feedforward control allows for design-
ing the reference and disturbance behavior separately [31], here used static implemen-
tation

pref(k) 7→ uff = [ufuel,ff(k) upa,ff(k) usa,ff(k)]T , (3.5)

graphically depicted in Fig. 3.2, shortens its versatility. Ignoring dynamic furnace
behavior related thereto, obliges the feedback control to consider both, the reference and
disturbance reaction in a deviation-related fashion. As the intended model predictive
approach already includes the predictive property of trajectory planning inherently, a
dynamic extension of the existing static feedforward controller would be redundant.
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3.1 Extended furnace 25

Figure 3.2: Static feedforward relationship (Eq. 3.5) between pref and items in u.

Additionally, using Eq. (3.5) enables a simplified representation (Fig. 3.3) of relations
comprised in the input interface - Eq. (3.1). For the sake of brevity, ṁpa and ṁsa1

are
accumulated to one massflow ṁpsa.

Figure 3.3: Relations within the input interface. While each column considers
influence of pref and one item of u = [ufuel upa usa]

T, mass flows are organized
line-by-line. Note that in each diagram the remaining values of u are chosen
according to Eq. (3.5), allowing depicted simplified representation.
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3.2 Extended controller

3.2.1 MPC

Based on the state space representation of the augmented furnace (furnace and input
interface) with the state vector xm ∈ R

nx, the output vector y ∈ R
ny according to

Eq. (3.6), and the controllable input vector u ∈ R
nu, Eq. (3.2), one linear MPC is

established.
xm = [mb Rthd O2 Tfb Tsup]T

y = [Tfb O2 Tsup]T
(3.6)

The deviation-related control setup gives rise to a demand for modifying the well known
MPC formulation, see appendix A or [32], appropriately. Hereinafter, deviations from
a chosen linearization point (subscript: L) are denoted by

∆L(⋆) = (⋆) − (⋆)L, (3.7)

where (⋆) is a placeholder for the considered variable. Therefore, the discrete state
space representation of the linearized model at time step k is given by

∆Lxm(k+1) = Am ∆Lxm(k) + Bm ∆Lu(k)

∆Ly(k) = Cm ∆Lxm(k)
(3.8)

with the system matrix Am ∈ R
nx×nx, the input matrix Bm ∈ R

nx×nu , and the output
matrix Cm ∈ R

ny×nx. The wide range of steady-state operating points, which results
from the whole operating range (30 to 100%) of the heat demand pref together with the
feedforward controller, constitute all possible linearisation points. In order to compare
different linear models regarding their ability to be controlled by a single linear algo-
rithm, the ν-gap metric introduced by Vinnicombe [33] and applied by [14] for similar
purposes offers an appropriate method (for more details about this procedure also see
appendix C).

Therefore, Fig. 3.4 compares 20 linear models relying on different linearization
points, which are unambiguously defined by their percentage heat demand pref,L and
chosen evenly distributed within the operating range. Gap metrics ν(output, input) for
all possible input-output combinations reveal that essentially pref-dependent relations
incorporate restrictive non-linearities. But by neglecting pref as a controllable input,
these models only differ slightly from each other in a ν-gap sense, underpinning above
mentioned input-output linearization behavior of the input interface. Thus, the relation
between ufuel and Tfb remains the critical one and is therefore used to find an appropriate
linearization point by minimizing gap metric to all other linearized models within the
operating range.

Thus, it can be concluded that one linear MPC is capable of controlling the furnace
sufficiently. Furthermore, deviations from the finally chosen linearisation point are
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Figure 3.4: Gap metrics ν of all possible input-output combinations for 20 linear models of the furnace model
enlarged by the input interface. While diagrams related to a certain item of the output vector y are arranged
line-by-line, each column represents influence of one specific item of the synthetic input vector usyn.
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3.2 Extended controller 28

approximately equal to deviations from the steady-state operating point related to the
actual feedforward control input uff. Thus

∆L(⋆) ≈ ∆ff(⋆) = (⋆) − (⋆)ff (3.9)

with ∆ff(⋆) as the deviation from the feedforward-induced steady-state operating point
(⋆)ff holds for the whole operating range. Choosing the linearization point by minimizing
the ν-gap value and using relation (3.9) yield the discrete state space representation
shown in Eq. (3.10).

∆ffxm(k+1) = Am ∆ffxm(k) + Bm ∆ffu(k)

∆ffy(k) = Cm ∆ffxm(k)
(3.10)

In order to eliminate steady-state offsets, the original plant model is augmented by
adding ny integrators. Applying the difference operation

∆(⋆)(k+1) = ∆ff(⋆)(k+1) − ∆ff(⋆)(k) (3.11)

the incremental formulation

∆xm(k+1) = Am ∆xm(k) + Bm ∆u(k)

∆ffy(k+1) = ∆ffy(k) + Cm ∆xm(k+1)
(3.12)

based on Eq. (3.10) is obtained. With the augmented state vector

x(k) =

[
∆xm(k)
∆ffy(k)

]
, (3.13)

the state space representation of the augmented model is given by

x(k+1) = Ax(k) + B∆u(k)

∆ffy(k) = Cx(k)
(3.14)

with the matrices

A =

[
Am 0nx×ny

CmAm Iny

]
, B =

[
Bm

CmBm

]
,

C =
[
0ny×nx

Iny

]
.

(3.15)

Note that - providing a general statement by using a, b as substitutes - 0a×b denotes a
zero matrix of size (a × b) and Ia denotes an identity matrix of size (a × a).

With Nc as the number of time steps within the control horizon and Np the number
of time steps within the prediction horizon, the vectors of stacked incremental inputs
∆U and stacked predicted outputs Y are defined by

∆U =
[
∆u(k)T ∆u(k+1)T . . . ∆u(k+Nc−1)T

]T
(3.16)

Y =
[
∆ffy(k+1|k)T ∆ffy(k+2|k)T . . . ∆ffy(k+Np|k)T

]T
, (3.17)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.2 Extended controller 29

respectively. Thus, the prediction can be written compactly in the form of

Y = F x(k) + Φ ∆U , (3.18)

where the matrices are given as

F =
[(

CA1
)T (

CA2
)T

. . .
(
CANp

)T
]T

(3.19)

Φ =




CB 0ny×nu
. . . 0ny×nu

CAB CB . . . 0ny×nu

CA2B CAB . . . 0ny×nu

...

CANp−1B CANp−2B . . . CANp−NcB




(3.20)

With Y ref as the vector of stacked references within the prediction horizon according
to

Y ref =
[
∆ffyref(k+1)T ∆ffyref(k+2)T . . . ∆ffyref(k+Np)T

]T
(3.21)

the cost function J for optimization is determined by

J = ∆UT Ru∆U + (Y ref − Y )T
Qy (Y ref − Y ) + Jsc, (3.22)

where the term Jsc accounts for additional costs due to soft constraints and is yet to be
defined. The weighting matrices Ru, representing costs for increasing control inputs,
and Qy, penalizing control errors, are structured as

Ru = diag([ru ru . . . ru︸ ︷︷ ︸
Nc times

]), Qy = diag([qy qy . . . qy︸ ︷︷ ︸
Np times

]) (3.23)

with
ru = diag([rfuel rpa rsa]), qy = diag([qTfb

qO2
qTsup

]), (3.24)

comprising the scalar weighting factors for each in- and output, respectively. Minimizing
the cost function (3.22) without considering any constraints yields the optimal control
sequence ∆U ∗ according to

∆U ∗ =
(
ΦTQyΦ + Ru

)−1
ΦTQy (Y ref − F x(k)) . (3.25)

However, various real plant conditions could require restrictions of the possible solution
space. As system identification conducted to estimate model parameters mostly relies on
data from furnace operation in the vicinity of steady-state operating points, a constraint
on the amplitude of ∆ffu is reasonable. The limits

∆ffu{min, max} =




∆ffufuel,{min, max}

∆ffupa,{min, max}

∆ffusa,{min, max}


 (3.26)
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3.2 Extended controller 30

must be chosen with respect to the absolute limits of u. Based on vector ∆ffU , com-
bining the deviation-related inputs within the control horizon, according to

∆ffU =




∆ffu(k)
∆ffu(k+1)

...
∆ffu(k+Nc−1)




= T u,1 ∆ffu(k − 1) + T u,2 ∆U (3.27)

with the matrices

T u,1 =




Inu

Inu

...
Inu




T u,2 =




Inu
0nu×nu

. . . 0nu×nu

Inu
Inu

. . . 0nu×nu

...
Inu

Inu
. . . Inu




, (3.28)

adduced hard input constraints are expressed as

T u,1∆ffumin ≤ ∆ffU ≤ T u,1∆
ffumax. (3.29)

Because CO emissions strongly increase, if oxygen concentration falls below certain
values (see Fig. 2.2 and [15]), a bottom limit is required. Compared with input-related
constraints, hard limitations of output or state values could restrict feasibility of the
optimization problem. The vector of predicted deviation-related oxygen concentrations
Y O2

is obtained by applying a transformation matrix T O2
on the vector of stacked

predicted outputs Y according to

Y O2
=




∆ffO2(k+1|k)
∆ffO2(k+2|k)

...
∆ffO2(k+Np|k)




= diag([0 1 0, 0 1 0, . . . ])
︸ ︷︷ ︸

T O2

Y . (3.30)

In order to ensure feasibility a slack variable s ∈ R
0+ is introduced to weaken the

intended bottom limit, yielding condition

Y O2
≥ Y O2,min − s 1Np×1 (3.31)

with Y O2,min as the vector of minimum permissible oxygen concentrations within the
prediction horizon. Note that 1Np×1 denotes a vector of ones with dimension (Np × 1).
Fig. 3.5 presents two possible approaches to specify future limits. While option (a)
represents a constant limit ∆ffO2,min relative to the steady-state oxygen concentration
O2,ff, resulting from feedforward control only, option (b) implies a constant absolute
bottom limit O2,min, whereas their mathematical implementations are given by Eqs.
(3.32a, 3.32b), respectively.

Y O2,min =





1Np×1 ∆ffO2,min . . . (a)

1Np×1 O2,min − O
pred
2,ff . . . (b)

(3.32)
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k k+1 k+2 k+3 k+4 k+Np−1 k+Np

time

soft constraint (a) active soft constraint (b) active

(b)

(a)

0

O2

O2,ff

(a
):

∆
ff

O
2

,m
in

=
co

n
st

.

(b
):

O
2

,m
in

=
co

n
st

.
Figure 3.5: Constraint options acting on O2. While option (a) introduces a
relative limit, option (b) restricts O2 in an absolute fashion. Time-discrete
values are connected smoothly to guide the eye.

Thereby, the vector O
pred
2,ff combines feedforward-induced steady-state oxygen concen-

trations O2,ff within the prediction horizon and is defined as

O
pred
2,ff = [O2,ff(k+1) O2,ff(k+2) . . . O2,ff(k+Np)]T . (3.33)

Stated vector elements are obtained by using the reference interface, see section 3.2.3.
Constraint option (a) represents a reasonable approach if feedforward control is designed
to provide low-emission steady state operation. But as experimental results together
with the CO model suggest much lower oxygen reference values than steady-state values
obtained by feedforward control only, see section 4.3, absolute constraint option (b)
becomes favorable.

Introducing additional costs Jsc according to

Jsc = c1s + c2s
2 (3.34)

with c1, c2 ∈ R
0+ allows influencing soft constraint’s strength. Therefore, considering s

as an additional decision variable and neglecting immutable terms in Eq. (3.22) yield
the overall quadratic cost function

J =

[
∆U

s

]T

H

[
∆U

s

]
+ fT

[
∆U

s

]
(3.35)

with the matrices

H =

[
Ru + ΦTQyΦ 0

01×Ncnu
c2

]
, (3.36)
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3.2 Extended controller 32

fT =
[

−2 (Y ref − F x(k)) QyΦ, c1

]
. (3.37)

Equation (3.35) subject to the constraints, rewritten as combined inequalities, expressed
as 



T u,2 0Ncnu×1

−T u,2 0Ncnu×1

−T O2 Φ −1Np×1

01×Ncnu −1




[
∆U

s

]
≤




T u,1

(
∆ffumax − ∆ffu(k−1)

)

T u,1

(
−∆ffumin + ∆ffu(k−1)

)

T O2F x(k) − Y O2,min

0


 (3.38)

constitutes the conclusive quadratic programming problem . By applying the receding
horizon principle, deviation-related input vector ∆ffu at the actual time step k is set to

∆ffu(k) = ∆ffu(k−1) + ∆u(k)

= ∆ffu(k−1) + [Inu
0nu×nu

. . . 0nu×nu
] ∆U ∗

(3.39)

with ∆U ∗ as the solution found by optimization.

3.2.2 Observer

Based on the furnace model including the input interface, an extended Kalman filter [34]
is applied to estimate model states and therefore overcome lack of full state measurabil-
ity. As the separation principle allows for independent controller and observer design,
actual plant circumstances are considered to dictate appropriate covariance matrices of
measurement and process noise.

Because the plant outputs correspond directly to model states, the observer provides
on the one hand the estimated state vector x̂m(k) but on the other hand estimated plant
outputs ŷ(k) as well. Since the Kalman filter accounts for corrupted signals, using es-
timated values and not raw measurement data as MPC inputs is favorable.

Appendix B supplies fundamentals of Kalman-filterung for the interested reader.

3.2.3 Reference interface

Furnace operators’ main focus is obtaining a required supply temperature Tsup,ref and
heat demand Pref related thereto, given as

Pref = ṁwcp,w (Tsup,ref − Tret) . (3.40)

Because the supply temperature Tsup is directly measurable, it is chosen as the main
reference and as in the given furnace setup an external control valve ensures a constant
return temperature Tret, the heat output is directly proportional to it anyway.

Besides controlling the heat output, it is equally important to provide high combus-
tion quality accompanied by high efficiency and low emission formation. While legal
constraints essentially restrict CO emissions [6, 7], their highly non-linear formation
process complicates direct incorporation of CO as a control variable by using a simple
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3.2 Extended controller 33

linear MPC. Nonetheless, a non-linear but static relation between CO, oxygen concen-
tration O2, and freeboard temperature Tfb was found in a previous work [15] indicating
that appropriately chosen reference values for O2 and Tfb are sufficient to ensure low
CO emissions. Furthermore, O2 was found being the main influence on the formation
process, which justifies common practice of realising emission control based on control-
ling O2 only. Therefore, the reference interface as part of the extended controller must
provide appropriate deviation-related reference vectors ∆ffyref according to

∆ffyref =




∆ffTfb,ref

∆ffO2,ref

∆ffTsup,ref


 = yref − yff (3.41)

for every time step within the prediction horizon. Empiric or model based approaches
yield the necessary relation, which is stored in tabular form and can be expressed as

Tsup,ref(k+1:k+Np) 7→ yref(k+1:k+Np) (3.42)

using the notation

(⋆)(a :a+b) =




(⋆)(a)
(⋆)(a+1)

. . .

(⋆)(a+b)




(3.43)

with a, b as substitutes to provide a general statement. Section 4.3 offers detailed
discussion on how to select references.

Because the control algorithm relies on a deviation-related formulation, absolute
reference values, estimated state, and estimated output values must be related to corre-
sponding steady-state values resulting from feedforward control only. For this purpose
the reference interface incorporates feedforward-driven steady-state simulation results
depending on the reference supply temperature. This can be expressed as

Tsup,ref(k) 7→ xm,ff(k) (3.44)

Tsup,ref(k :k+Np) 7→ yff(k :k+Np). (3.45)

Using this data set enables calculation of all necessary deviations in every time step.
Note that feedforward-induced steady-state oxygen concentrations, see Eq. (3.33), are
inherently given as part of yff(k :k+Np).

Additionally, the reference interface must provide pref, the actual heat demand on a
percentage basis, according to

pref(k) =
Pref(k)

Pnom
(3.46)

as an input of the feedforward controller and input interface, where Pnom is the nominal
furnace power.
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Chapter 4

Results and discussion

In the following, results of the closed-loop introduced in section 3 are presented for com-
bustion of different solid biofuels. While all used MPC configurations possess a predic-
tion horizon with a length of Np = 180 elements and a control horizon with a length of
Nc = 90 elements, situation-specific demands dictate actual weighting matrices, which
therefore may vary slightly from experiment to experiment. As providing a heat output,
expressed as a required supply temperature Tsup, and enabling high combustion quality,
related to a specific O2 concentration, constitute the overarching objective, freeboard
temperature Tfb must be considered more as a result of these demands rather than as
an independent control variable. Therefore, its importance diminishes, which is repre-
sented by a negligibly small weighting. Unless otherwise stated, the weighting factors
are set according to

ru = diag([rfuel rpa rsa]) = diag([10 2.5 1]), (4.1)

qy = diag([qTfb
qO2

qTsup
]) = diag([0.01 0.75 10]). (4.2)

For all experiments the required supply temperature Tsup,ref is chosen in a way to cover
the whole power range that is accessible by the actual fuel. Further on, a constant
system sampling time of Ts = 10 sec is used in each experiment, defining the prediction
horizon to be of 30 min length.

4.1 Closed-loop results for wooden pellets

At first, without a deeper insight in emission formation it is reasonable to assume
feedforward control to yield high steady-state combustion quality due to longstanding
empirical improvements. Therefore, the initial approach relies on reference values yref

that are identical with output values yff, which only result from feedforward control
based on Tsup,ref and correlated pref according to Eqs. (3.40) and (3.46). Related ex-
perimental output results for combustion of wooden pellets are depicted in the three
upper diagrams of Fig. 4.1a.

Due to the purely static feedforward controller, harsh changes of pref directly cause
rapid load changes on actuators. In order to prevent such excessive loads, the reference
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4.1 Closed-loop results for wooden pellets 35

Figure 4.1: Experimental closed-loop output results obtained by utilizing in-
troduced controller design for combustion of different solid biofuels. Output
results as well as measured and estimated CO emissions for wooden pellets
are conducted by applying (a) references according to ∆ffyref = 0 and (b) an
empirically adapted O2 reference. Using wood chips with a water content of
35 wt.-% and 20 wt.-% yields results depicted in (c) and (d), respectively. Col-
ored background highlights O2 value ranges that cause additional costs due
to violation of the implemented soft constraint. Grey areas in (c) indicate
interruption due to automatic furnace cleaning.
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4.1 Closed-loop results for wooden pellets 36

interface incorporates a moving average filter with a window length of 90 time steps,
corresponding to 15 min. Its purpose is to smooth changes of pref based on Tsup,ref within
the prediction horizon. Therefore, the applied relative oxygen constraint, according to
Eqs. (3.31) and (3.32a) with ∆ffO2,min = 2 Vol.-% and cost coefficients c1 = c2 = 10,
possesses continuous changes starting 15 min before reference steps.

The results clearly indicate appropriate convergence towards reference values in
steady state but also satisfying transition behavior, which is in agreement with sim-
ulation results shown in [14] for the very same furnace. Based on a comparison be-
tween the simulated closed-loop results using an MPC and the currently employed PI
control strategy, which was additionally presented in [14], we can conclude that the
implemented MPC offers significant improvements compared with classical control ap-
proaches. Among many other aspects, the penalizing effect of soft constraints contribute
to this enhancement, whereas its influence is impressively illustrated in Fig. 4.1a as the
oxygen concentration never falls significantly short of the applied limit.

Estimated CO emissions obtained according to section 2.5 exhibit good agreement
with measured values, see bottom diagram of Fig. 4.1a. However, considerable amount
of CO emissions, especially occurring in the lower power range, indicates chosen ref-
erences to be inappropriate in terms of low emissions. Peaks in the first hour are
associated with low oxygen concentrations, while increased CO emissions in the time
span between 1 h and 4 h 15 min could result either from a low freeboard temperature
Tfb or a high O2 concentration. As increasing Tfb and keeping track of the given supply
temperature reference Tsup,ref are contradictory to each other, emission formation can
only be influenced by adapting the remaining O2 reference. In case of a constant fuel
mass flow an increase in the O2 concentration is related to increased air mass flows and
therefore a shorter residence time in the chamber. This favors incomplete combustion,
especially if a low freeboard temperature inhibits reaction time.

These observations suggest to increase the O2 reference during high power periods
and decrease it in lower power regions. Maintaining the same controller configuration
but applying such an empirically adapted O2 reference yield closed-loop results de-
picted in Fig. 4.1b. While experimental results confirm intended emission reduction,
insufficient line-out of the O2 concentration to the given set point stands out. Due to
the unchanged soft limit implementation, still done in a simple relative fashion, actual
references are partly situated within the constrained value range. Subsequently, mini-
mizing control error would cause additional costs related to constraint violation, forcing
optimization to find a compromise between these opposing cost contributions.

Therefore, the simple constraint implementation according to Eq. (3.32a) turns out
to be obstructive for emission reduction, calling for an absolute bottom limit as intro-
duced by Eq. (3.32b). Apart from that, CO minimization requires a methodical rather
than the above-presented empirical approach to determine O2 references. Based on both
aspects, section 4.3 covers closed-loop simulations presenting a promising approach to
achieve emission reduction.
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4.2 Fuel flexibility

Although the investigated furnace is mainly designed for the combustion of wooden
pellets, minor changes in furnace settings allow other solid biofuels to be utilized as
well. Up to now, such a fuel switch includes adaption of actuator’s working ranges
followed by potentially protracted and therefore cost-intensive controller adjustments
to account for differing fuel properties.

However, the presented analytic modeling approach (section 2.4) provides benefits,
since model parameters related to the fuel and furnace settings can be adapted easily
without a new parameter identification. Adapting the model parameters in the above
stated sense for combustion of wooden pellets with a water content of 35 wt.-% and
20 wt.-% yields closed-loop output results displayed in Figs. 4.1c and 4.1d, respectively.
Oxygen references, which are considered to be only of secondary importance in this
paragraph (main focus lies on fuel flexibility), were chosen in an empirically based style
similar to Fig. 4.1b.

All in all, results for combustion of wood chips with a water content of 35 wt.-% (Fig.
4.1c) show a satisfying control performance by utilizing introduced controller settings
unaltered. Applying slight changes in weighting factors (Eqs. 4.1 and 4.2) according to

rpa = 0.5, qO2
= 3 (4.3)

yields results depicted in Fig. 4.1d. This adjustment was introduced to increase costs
related to insufficient line-out behavior of oxygen relative to the contribution account-
ing for violating the soft constraint. This helps to overcome still inadequate relative
constraint formulation. Nonetheless, further experiments using the initial weightings
demonstrated comparable results (not shown in this work). Due to the overlapping
O2 constraint, the control error of oxygen would just increase slightly in the time span
between 2 h 30 min and 3 h 45 min.

On the whole, one MPC configuration is capable of controlling combustion of dif-
ferent solid biofuels by just replacing model parameters appropriately, providing a fast
and cost-effective approach for fuel switches. This novel application additionally con-
firms validity of the introduced model structure and emphasizes its versatile application
possibilities.

4.3 Emission reduced control

While above considerations highlight the importance of an appropriately chosen O2

reference in order to reduce CO emissions, lack of a systematic determination lets
optimization remain empirically driven. But, besides applying the introduced CO model
(section 2.5) for simulation purposes, its purely static relation between O2, Tfb, and CO
offers a simple approach to find optimal references. Minimizing the CO emissions,
based on this model, yields an emission-optimal O2 reference for a given Tfb reference.
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Using the CO model of the actual furnace under investigation a constant O2 reference
of 7 Vol.-% was found to fulfill this objective. The model additionally reveals that
O2 concentrations below 5 Vol.-% favor excessively high CO formation, providing the
reasonable absolute bottom limit of O2,min = 5 Vol.-% as part of the soft constraint
according to Eqs. (3.31) and (3.32b).

Based on these suggestions a closed-loop simulation was carried out, see Fig. 4.2,
and compared to already depicted results obtained by applying an empirically adapted
O2 reference (Fig. 4.1b). To improve distinguishability, experimental and simulated
O2 results are shown separately in Figs. 4.2b and 4.2c. Results of Tfb are omitted,
since they are only of secondary importance. Simulation utilizes an adapted MPC
configuration according to

ru = diag([2.5 2.5 1]), (4.4)

qy = diag([0.01 20 20]) (4.5)

to stronger account for demonstrated importance of the O2 concentration and to fa-
cilitate influence on the fuel mass flow, enhancing control performance. Furthermore,
constraint’s cost coefficients are now set to c1 = c2 = 105 to harden the introduced
absolute bottom limit.

While shorter transition periods of Tsup for the first two reference steps confirm
higher control performance, the third reference step, which is related to a change in
heat demand from minimum to maximum, is marked by a higher rise time, see Fig.
4.2a. As the residual O2 concentration immediately prior to the third reference step is
intentionally lower in simulation than in experiment, the MPC inhibits harsh changes
to keep track of the O2 reference and to ensure the required minimum O2 concentration.
This intensified oxygen orientation provides intended emission reduction (Fig. 4.2d),
whereas the higher peak at 5 h 10 min results from the static CO model, which is not able
to handle highly dynamic transitions sufficiently. Experimental data support this state-
ment since even lower oxygen concentrations being apparent during the last transition
period cause by far lower CO emissions than simulated. Note that this argumentation
is valid as the freeboard temperatures obtained by experiment and simulation are al-
most identical during the considered time span. Therefore, further research is needed
to provide a comprehensive insight in emission formation dynamics. However, the cho-
sen configuration setup provides an appealing compromise between emission peaks and
control performance, suitable for most practical applications.
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4.3 Emission reduced control 39

Figure 4.2: Experimental closed-loop results for combustion of wooden pellets
and applying an empirically adapted O2 reference (data already shown in Fig.
4.1b) are compared with simulation results obtained by adapting the O2 ref-
erence in a model-based fashion, implementing an absolute O2 soft constraint,
and adjusting MPC’s weighting matrices. Whilst experimental and simulation
results for Tsup and CO are compared in (a) and (d), respectively, O2 results
are depicted separately in (b) and (c), for the sake of clarity.
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Chapter 5

Conclusion

Within this work, a single linear MPC has been introduced to control a small-scale
biomass furnace. Experimental closed-loop results confirm sufficient control perfor-
mance within the whole power range, not only in steady-state operation but also in
transient periods. Furthermore, combustion of different solid biofuels reveals that the
implemented approach incorporates a pleasant method for fuel switches, done by a
simple adaption of fuel-related model parameters. Additionally, the chosen controller
setup preserves manufacturer’s empirical knowledge, given in the form of software sup-
plements, and keeps complexity and costs for implementation and maintenance at bay.

While direct controlling of CO must be relinquished due to its highly non-linear
formation process, an adjusted version of a formation model from literature [15] pictures
a promising way to determine O2 references according to emission minimization. While
simulation results clearly underpin the hypothesis of emission reduction related to an
appropriate O2 reference, experimental validation should be part of further research.
Interestingly, this approach can be applied to any small biomass furnace without the
need of additional sensors. This embodies a promising path to span the gap to large
and cost-intensive furnaces, which may be already controlled by sophisticated strategies
allowing to handle CO directly as a control variable. Besides its forward-looking nature,
a model predictive algorithm also takes possible constraints into account. Experimental
and especially simulated results indicate improved emission behavior by implementing
a bottom limit for the O2 concentration with respect to its contribution to the CO
formation process.

While defining the output constraints in a soft sense guarantees feasibility, designing
the cost function in a quadratic manner allows fast solvers to be used. Therefore, low-
cost standard hardware is sufficient to conduct all necessary computations in every time
step.

As the introduced controller is based on one of the simplest model predictive for-
mulations, it is on the one hand easy to implement and to maintain, but offers on the
other hand a variety of additional features compared to the widely used PID control
schemes. In combination with a model of the CO formation process it provides a setup
that is able to meet high efficiency as well as emission-related requirements. Therefore,

40
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5 Conclusion 41

this work should act as a guideline describing how to take a first but necessary step
away from classical methods to fulfill upcoming and even more restrictive limitations
in the future.

To ease migration, the feedforward controller and the input interface, which were
solely designed by the manufacturer, were consciously included into the overall concept
on a one-to-one basis. Nonetheless, a more open access to the actual furnace hardware
without any obstacles, concerning empirically developed add-ons, would be preferable
in order to unfold MPC’s full potential.

Besides this aspect, further research on the static CO model is worthy of consid-
eration to possibly provide improved O2 references. Despite its good accordance with
experimental results for combustion of wooden pellets, similar models for other fuels
are hardly discussed in literature. Since they would enable to successfully apply the
introduced strategy for emission reduction more generally, their development is highly
promising. Additionally, formation models for other emissions could be designed and
included to find appropriate references for the O2 concentration. Another way to incor-
porate such emissions is to include appropriate additional terms in the cost function.

Further cost contributions could not only consider emission aspects but also include
the demand for high efficiency in an explicit fashion. In the future, additional con-
straints or cost contributions could be used to migrate safety-relevant entities into the
MPC formulation, which would reduce the complexity of the overall control scheme.

Employing estimation algorithms to account for varying fuel properties or water
contents, similar to those presented in [9, 35], could be another step towards increased
performance. Estimation results could be either included as a disturbance variable or
used to update the furnace model on a regular basis.

Up to now, the supply temperature reference was assumed to be given precisely.
Especially, if a furnace is used to heat just a few or even a single facility, predicting the
heat demand for the next 30 min is challenging. Therefore, intensive research on how to
provide appropriate predictions is of vital importance to exploit predictive controller’s
full potential.
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Appendix A

Fundamentals of discrete-time

linear MPC

Model predictive control schemes gained increased interest in recent years. Linear
discrete-time formulations combine moderate implementation effort with comprehensive
additional features not provided by classical control approaches. The following remarks
are based on literature [32,36] and serve as a compendium of how to implement a simple
linear model predictive controller (MPC). After discussing the basic formulation with
and without constraints, this chapter closes with a short recap of stability issues.

A.1 Basic concept of model predictive control

While many different model predictive control schemes exist, the basic concept always
remains unaltered. Based on a process model and actual measurements, future control
inputs u are calculated by optimizing an appropriately chosen cost function. Figure
A.1 depicts this situation for a single-input-single-output system at the actual time step
k. The main objective is to determine future inputs, which can be varied within the
control horizon comprising Nc time steps, in such a way to attain the best possible
control performance within the prediction horizon consisting of Np time steps.

Since the process model is utilized to predict plant outputs y, modeling and param-
eter identification are of considerable importance. Besides deviations from reference
values yref, also restrictions of inputs, output constraints and so on can be included
into the optimization problem, which increases applicability of such advanced control
strategies even further.

Hereinafter, a liner discrete-time model predictive formulation based on state space
representation of the process model is discussed in detail. Other model predictive
approaches are comprehensively discussed in [32].
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A.2 Linear discrete-time formulation 43

yref

y

u

k-1 k k+1

k+Nc-1

k+Nc

k+Np-1

k+Np

time

time

past references future references

computed future inputspast inputs

past outputs predicted outputs

Figure A.1: Illustrative representation of a model predictive control procedure
at the actual time step k. Without loss of generality, a single-input-single-
output system is considered.

A.2 Linear discrete-time formulation

Suppose a linear discrete state space model of the considered plant to be given at time
step k by

x̃m(k+1) = Am x̃m(k) + Bm ũ(k) + Em z̃(k)

ỹ(k) = Cm x̃m(k)
(A.1)

with the state vector x̃m ∈ R
nx , the controllable input vector ũ ∈ R

nu , the disturbance
vector z̃ ∈ R

nz , the output vector ỹ ∈ R
ny , the system matrix Am ∈ R

nx×nx , the input
matrix Bm ∈ R

nx×nu , the disturbance matrix Em ∈ R
nx×nz , and the output matrix

Cm ∈ R
ny×nx . Since the algorithm being presented within this chapter relies on actual

measurements, actual inputs and disturbances are assumed to not directly influence the
outputs. To provide a general approach, which is also applicable for models gained by
linearization of a non-linear description, deviations from a chosen steady-state operating
point are declared by

(⋆̃) = (⋆) − (⋆)op, (A.2)

where (⋆) is a placeholder for the considered variable.
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A.2 Linear discrete-time formulation 44

To eliminate steady-state offsets, the plant model is augmented by adding ny integrators.
Applying the difference operation

∆(⋆)(k+1) = (⋆̃)(k+1) − (⋆̃)(k) (A.3)

on Eq. (A.1) yields the incremental formulation as follows:

∆xm(k+1) = Am ∆xm(k) + Bm ∆u(k) + Em ∆z(k)

ỹ(k+1) = ỹ(k) + Cm ∆xm(k+1).
(A.4)

By introducing the augmented state vector x according to

x(k) =

[
∆xm(k)

ỹ(k)

]
, (A.5)

the state space representation of the augmented model is given by

x(k+1) = Ax(k) + B∆u(k) + E∆z(k)

ỹ(k) = Cx(k)
(A.6)

with the matrices

A =

[
Am 0nx×ny

CmAm Iny

]
, B =

[
Bm

CmBm

]
, E =

[
Em

CmEm

]
, C =

[
0ny×nx

Iny

]
.

Note that - providing a general statement by using a, b as substitutes - 0a×b denotes a
zero matrix of size (a×b) and Ia denotes an identity matrix of size (a×a). To provide a
concise description, vector Y aggregates predicted outputs within the prediction horizon
as follows:

Y =
[
ỹ(k+1|k)T ỹ(k+2|k)T . . . ỹ(k+Np|k)T

]T
. (A.7)

Thus, the prediction can be written compactly as

Y = F x(k) + Φu ∆U + Φz ∆Z, (A.8)

where ∆U denotes the vector of stacked incremental inputs and ∆Z the vector of
stacked incremental disturbances. Definitions of vectors and matrices being present in
Eq. (A.8) are given below.

∆U =
[
∆u(k)T ∆u(k+1)T . . . ∆u(k+Nc−1)T

]T
(A.9)

∆Z =
[
∆z(k)T ∆z(k+1)T . . . ∆z(k+Nc−1)T

]T
(A.10)

F =
[(

CA1
)T (

CA2
)T

. . .
(
CANp

)T
]T

(A.11)
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A.2 Linear discrete-time formulation 45

Φu =




CB 0ny×nu
. . . 0ny×nu

CAB CB . . . 0ny×nu

CA2B CAB . . . 0ny×nu

...

CANp−1B CANp−2B . . . CANp−NcB




(A.12)

Φz =




CE 0ny×nz
. . . 0ny×nz

CAE CE . . . 0ny×nz

CA2E CAE . . . 0ny×nz

...

CANp−1E CANp−2E . . . CANp−NcE




(A.13)

Based upon that, a reasonable and still simple cost function J for optimization may be
formulated according to

J = ∆UT Ru∆U + (Y ref − Y )T
Qy (Y ref − Y ) + Jsc. (A.14)

While the first term penalizes harsh changes of the controllable input, the second term
accounts for deviations of the predicted outputs Y from a given reference Y ref, which
is defined as

Y ref =
[
ỹref(k+1)T ỹref(k+2)T . . . ỹref(k+Np)T

]T
. (A.15)

Furthermore, the cost contribution Jsc accounts for potential soft constraints, see section
A.3.3. The weighting matrices Ru, representing costs for increasing control inputs, and
Qy, penalizing control errors, are structured as

Ru = diag([ru ru . . . ru︸ ︷︷ ︸
Nc times

]), Qy = diag([qy qy . . . qy︸ ︷︷ ︸
Np times

]), (A.16)

where
ru = diag([r1 r2 . . . rnu

]), qy = diag([q1 q2 . . . qny
]) (A.17)

comprise the scalar weighting factors for each input and output, respectively. Minimiz-
ing the cost function (Eq. A.14) without considering any constraints (and therefore
also Jsc = 0) yields the optimal control sequence ∆U ∗ according to

∆U ∗ =
(
ΦT

u QyΦu + Ru

)−1
ΦT

u Qy (Y ref − F x(k) − Φz ∆Z) . (A.18)

Note that the presented formulation enables to account for disturbances influencing
plant behavior. Since most practical applications lack of appropriate knowledge con-
cerning acting disturbances, ∆Z = 0 holds in such cases.
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A.3 Consideration of constraints 46

A.3 Consideration of constraints

A major benefit of model predictive control schemes is the ability to explicitly account
for present limitations for the controllable inputs as well as output and state values.
Thereby, the overall optimization problem incorporates these restrictions by narrowing
the solution space according to appropriate inequality constraints. Besides the formu-
lation of two different types of input constraints (sections A.3.1 and A.3.2), output
constraints and the related soft implementation (section A.3.3) are discussed in the fol-
lowing. Section A.3.4 then summarizes the conclusive optimization problem including
presented limitations.

A.3.1 Rate constraints on input

Some applications rise the need to restrict the rate of change of the controllable inputs
by introducing lower and upper limits defined by

∆u{min, max} =




∆u1,{min, max}

∆u2,{min, max}
...

∆unu,{min, max}




. (A.19)

As these constraints should apply for the whole control horizon, the decisive condition
is given as

∆Umin ≤ ∆U ≤ ∆U max (A.20)

with limitations according to

∆U {min,max} =




Inu

Inu

...
Inu




︸ ︷︷ ︸
T u,1

∆u{min, max}. (A.21)

To provide a formulation that is consistent with the optimization problem, Eq. (A.20)
is rewritten in terms of the decision variable ∆U as follows:

[
−INcnu

INcnu

]
∆U ≤

[
−T u,1 ∆umin

T u,1 ∆umax

]
. (A.22)

A.3.2 Amplitude constraints on input

Since the most common type of restrictions acts on the amplitude of the controllable
inputs, this section is of considerable importance for almost every design procedure.
As the actual algorithm requires thresholds to be set relative to the operating point
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A.3 Consideration of constraints 47

chosen for modeling (see Eq. A.1), the implemented limits ũ{min, max} (Eq. A.23) must
be determined with respect to the absolute limit values of u.

ũ{min, max} =




ũ1,{min, max}

ũ2,{min, max}
...

ũnu,{min, max}




(A.23)

Based on the vector of stacked incremental inputs ∆U , the vector of stacked inputs Ũ

within the control horizon is calculated by

Ũ =




ũ(k)
ũ(k+1)

...
ũ(k+Nc−1)




= T u,1 ũ(k − 1) + T u,2 ∆U , (A.24)

where ũ(k − 1) is the value of the controllable input at the previous time step and
matrix T u,2 is defined as follows:

T u,2 =




Inu
0nu×nu

. . . 0nu×nu

Inu
Inu

. . . 0nu×nu

...
Inu

Inu
. . . Inu




. (A.25)

With the permissible range according to

T u,1ũmin ≤ Ũ ≤ T u,1ũmax, (A.26)

the compact constraint formulation of absolute limits on the input values follows to
[

−T u,2

T u,2

]
∆U ≤

[
−T u,1 [ũmin − ũ(k − 1)]

T u,1 [ũmax − ũ(k − 1)]

]
. (A.27)

A.3.3 Output constraints

Besides input constraints, defining limits for output or state values might be inter-
esting as well. This could render additional control loops unnecessary and therefore
reduce overall complexity. However, output constraints similar to above discussed in-
put constraints could result in an infeasible optimization problem. To overcome this
lack, threshold values ỹ{min, max}, according to

ỹ{min, max} =




ỹ1,{min, max}

ỹ2,{min, max}
...

ỹny,{min, max}




, (A.28)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

A.3 Consideration of constraints 48

will no longer be considered as hard but rather soft limits. To be more precise, the
permissible range is now defined as

T y ỹmin − T ys ≤ Y ≤ T y ỹmax + T ys (A.29)

with the matrix T y given by

T y =




Iny

Iny

...
Iny




(A.30)

and s > 0 as the so-called vector of slack variables, which is defined as

s =
[

s1 s2 . . . sny

]T
. (A.31)

These slack variables allow the lower and upper limits to be shifted, and determination
of their actual values has thereby to be integrated into the optimization problem. By
introducing additional costs Jsc of the form

Jsc = C ls + sTCqs, (A.32)

the strength of the implemented limits can be adapted by appropriately selected weight-
ing factors w ∈ R

0+ comprised in matrices C l and Cq according to

C l =
[

wl,1 wl,2 . . . wl,ny

]
, (A.33)

Cq = diag
[

wq,1 wq,2 . . . wq,ny

]
, (A.34)

respectively. Note that the presented cost contribution Jsc (Eq. A.32) stems from the
demand to maintain the quadratic form already applied in Eq. (A.14). While another
cost function might fulfill the actual control demand more appropriately, a more com-
plex solver would be needed. Since this usually comes along with increased computation
time, such an adaption should be justified by simulation or experiment. Finally, the
output constraints can be rewritten as




−Φu −T y

Φu −T y

0ny×Npnu
−Iny




[
∆U

s

]
≤




−T y ỹmin + F x(k) + Φz ∆Z

T y ỹmax − F x(k) − Φz ∆Z

0ny×1


 . (A.35)

A.3.4 Conclusive optimization problem

Considering s as an additional decision variable and neglecting immutable terms in Eq.
(A.14) yield the overall quadratic cost function J in case of active soft constraints as

J =

[
∆U

s

]T

H

[
∆U

s

]
+ fT

[
∆U

s

]
(A.36)
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with the matrices

H =

[
Ru + ΦT

u QyΦu 0Ncnu×ny

0ny×Ncnu
Cq

]
, (A.37)

fT =
[

−2 (Y ref − F x(k) − Φz ∆Z) QyΦu, C l

]
. (A.38)

Equation (A.36) obeys the above introduced constraints, which are rewritten as com-
bined inequalities and jointly expressed as




−INcnu
0Ncnu×ny

INcnu
0Ncnu×ny

−T u,2 0Ncnu×ny

T u,2 0Ncnu×ny

−Φu −T y

Φu −T y

0ny×Ncnu
−Iny




[
∆U

s

]
≤




−T u,1 ∆umin

T u,1 ∆umax

−T u,1 [ũmin − ũ(k − 1)]
T u,1 [ũmax − ũ(k − 1)]

−T y ỹmin + F x(k) + Φz ∆Z

T y ỹmax − F x(k) − Φz ∆Z

0ny×1




. (A.39)

Therefore, the conclusive quadratic programming problem consists of Eqs. (A.36) and
(A.39).

A.4 Receding horizon principle

Optimization yields ∆U ∗ as the solution given by Eq. (A.18) or found by solving the
quadratic programming problem considering inequality constraints. By applying the
receding horizon principle, the controllable input vector ũ at the actual time step k is
calculated by

ũ(k) = ũ(k−1) + ∆u(k)

= ũ(k−1) + [Inu
0nu×nu

. . . 0nu×nu
] ∆U ∗.

(A.40)

A.5 Stability

Stability is a major concern in all control applications and so it is for model predictive
schemes as well. In the following, three different approaches being able to guarantee
stability of a discrete-time MPC with constraints are discussed briefly. While Fig. A.2
depicts these methods schematically, the interested reader is referred to a comprehensive
review published in [37] or to a more illustrative recap presented in [36].

Hereinafter, it is assumed that the plant model perfectly fits reality and no distur-
bances occur (z̃ = 0). Furthermore, an equilibrium point characterized by x̃ = 0 and
ũ = 0 should exit and has to be stabilized.
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x(k+j)

x(k+j)

x(k+j)

j

j

j

MPC active

MPC active

MPC active

terminal constraint

N

N

N

a)

b)

c)

terminal cost

terminal constraint for unstable modes

terminal set constraint

auxiliary stabilizing
controller active

Figure A.2: Schematic representation of different approaches to guarantee MPC
closed-loop stability: (a) terminal equality constraints, (b) terminal costs (and
terminal equality constraints for unstable modes), (c) terminal set constraints.
Illustration adapted from [36].

A.5.1 Terminal equality constraints

Among all presented approaches, introducing terminal equality constraints is the sim-
plest one. The initial optimization problem is thereby extended by the additional
equality constraint

x̃(k+Np|k) = 0 (A.41)

effective at the end of the prediction horizon, see Fig. A.2a. If the overall optimization
problem is feasible and provides a global minimum in each time step, closed loop-
stability is guaranteed. The proof related thereto can be simply shown by utilizing an
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appropriate Lyapunov function [36]. However, restriction (A.41) might entail infeasi-
bility damping applicability of this simple approach.

A.5.2 Terminal costs

Infinite-horizon optimal control problems yield closed-loop stability if the considered
plant is detectable and can be stabilized in the given configuration. The very same
basic idea is now applied to guarantee stability in case of a model predictive control
algorithm, which results in a cost function Jtc,s based on an infinite horizon and given
by

Jtc,s(k) =
∞∑

i=1

{
ỹ(k+i|k)T qy ỹ(k+i|k) + ∆ũ(k+i-1)T ru ∆ũ(k+i-1)

}
. (A.42)

Since changes of the control action can only take place within the control horizon,
∆ũ(k+i-1) = 0 holds for i > Nc. Thus, the cost function can be rewritten as

Jtc,s(k) =
Nc∑

i=1

{
ỹ(k+i|k)T qy ỹ(k+i|k) + ∆ũ(k+i-1)T ru ∆ũ(k+i-1)

}
+ . . .

x̃(k+Nc|k)T Q x̃(k+Nc|k)

(A.43)

with Q as a solution of the discrete Lyapunov equation given by

AT
m Q Am = Q − CT

m qy Cm. (A.44)

Therefore, the last term of Eq. (A.43) represents an additional cost contribution pe-
nalizing states at the end of the control horizon, see Fig. A.2b. If Am only exhibits
eigenvalues inside the unit circle, which is valid for asymptotically stable plants, Eq.
(A.44) provides a unique positive definite solution Q. As x̃(k+Nc|k)T Q x̃(k+Nc|k) is
thereby a Lyapunov function, stability in the sense of Lyapunov is guaranteed. It can be
shown, that under the assumption of R ≻ 0, Q ≻ 0 and present full state observability,
the relation

Jtc,s(k+1) = Jtc,s(k) − ỹ(k+1|k)T qy ỹ(k+1|k)
︸ ︷︷ ︸

≥0

− ∆ũ(k)T ru ∆ũ(k)
︸ ︷︷ ︸

≥0

≤ Jtc,s(k) (A.45)

implies that ||x̃||2 decreases over time. Consequently, there is no need to include ter-
minal costs if a stable plant is considered.

In case of unstable modes, they have to be separated by an eigenvalue/eigenvector
decomposition as follows

Am S = S Λ (A.46)

with S as the matrix of eigenvectors arranged column-by-column and Λ as a diagonal
matrix filled with the related eigenvalues. Based on the actual eigenvalue, S can be
split into unstable modes Su and stable modes Ss according to

S =
[

Su Ss

]
. (A.47)
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The unstable modes can be observed by the modal coordinates ξu given as

ξu(k) = Cu x̃(k) (A.48)

with matrix Cu found by

Cu

[
Su Ss

]
=

[
I 0

]
. (A.49)

To guarantee stability, modal coordinates ξu are forced to zero at the end of the control
horizon, see Fig. A.2b. Thus, the terminal equality constraint related thereto is given
by

ξu(k+Nc) = F u x̃(k) + Φu,u ∆U
!

= 0, (A.50)

with the matrices

F u = Cu ANc

m , Φu,u =
[
CuANc-1

m B CuANc-2
m B . . . CuB

]
. (A.51)

Although the last part of this approach is similar to the terminal equality constraints
presented in section A.5.1, this overall concept softens conditions to guarantee stability
since stable motions are not forced to vanish at the end of the control horizon any more.

A.5.3 Terminal set constraints

Since both methods mentioned above utilize some kind of terminal equality constraint,
feasibility is not guaranteed. The following approach generalizes the underlying problem
by assuming an auxiliary stabilizing controller to be active after the MPC horizon ends.
Therefore, the cost function can be written more generally as follows

Jtsc(k) =
Nc∑

i=1

l (x̃(k+i), ũ(k+i-1))
︸ ︷︷ ︸

stage costs

+ Vf (x̃(k+Nc))︸ ︷︷ ︸
terminal costs

, (A.52)

where the terminal costs relate to the stabilizing control algorithm. To guarantee sta-
bility, this fictitious controller must not run into constraints. For this purpose, one has
to determine a region - the so-called terminal set - Xf in which the MPC has to drive
the system at the end of the horizon, see Fig. A.2c. If the states x̃(k+Nc) are located
within this region, the auxiliary controller is thereafter able to stabilize the system for
all time without violating constraints. With X and U as the permissible ranges for the
state and input vector, respectively, the constraints for the overall optimization problem
can be written as

x̃(k+i) ∈ X ⊂ R
nx ∀i = 0, 1, . . . (A.53)

ũ(k+i) ∈ U ⊂ R
nu ∀i = 0, 1, . . . (A.54)

x̃(k+Nc) ∈ Xf ⊆ X. (A.55)

For a comprehensive review of how to determine such a terminal set, see [37].
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Appendix B

Fundamentals of Kalman-filtering

State estimation is of particular interest in many technical fields and evolved drastically
since 1960, when Rudolph E. Kalman published his famous arcticle [38]. Based on
least squares estimation, introduced by Carl F. Gauss in 1809 [39], Kalman established
an estimation algorithm by minimizing error variance. Not only its simple discrete-
time implementation but also the fact that this approach provides the optimal (linear)
filter for most applications stands out. Because of its paramount importance, only
the discrete-time formulation is discussed in detail in this chapter. Out of numerous
literature sources referring to this topic, the following remarks are mainly based on
[40, 41].

B.1 Process description

Assume a discrete state space model of the investigated plant to be given by

x(k) = Ad x(k-1) + Bd u(k-1) + Gd w(k-1) (B.1)

y(k) = Cd x(k) + Dd u(k) + v(k), (B.2)

with the state vector x comprising nx states, the output vector y consisting of ny

measurable quantities, the input vector u with nu elements, the vector of process noise
w of size nw, the vector of measurement noise v with ny items, the system matrix Ad,
the input matrix Bd, the input matrix for process noise Gd, the output matrix Cd,
and the direct input-output matrix Dd. Please note that matrices are of appropriate
size according to vector sizes mentioned above.

While the measurement noise v represents actually occurring fluctuations of the
measured values, process noise w is an abstract entity accounting for model uncer-
tainties. A model that perfectly matches the real plant would be sufficiently described
without additional process noise. Furthermore, there would be no need to estimate but
rather to just predict model states by using the perfect model. But since no model
is able to exhaustively fit reality, process noise is vital to consider limited confidence
in the chosen model. It is assumed that the noise processes are white, Gaussian dis-
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tributed, zero-mean and have known covarince matrices - see mathematical formulation
as follows.

w(k) ∼ N (0, Q(k)) (B.3)

Q(k) = diag [Q1(k) . . . Qnx
(k)] (B.4)

v(k) ∼ N (0, R(k)) (B.5)

R(k) = diag
[
R1(k) . . . Rny

(k)
]

(B.6)

Furthermore, no correlation between the noise processes should exist, whereby

Cov [v(k), w(k)] = 0 (B.7)

holds. As w has to be mean-free, any disturbances with a non-zero mean must be
included in the input vector u (if known) or have to be incorporated in the state vector
x as an additional unknown quantity.

While Eqs. (B.8-B.10) reveal that including Gd in Eq. (B.1) in an explicit man-
ner is not necessary, it is helpful for understanding stability issues (see section B.5).
Furthermore, the extended Kalman filter makes use of this formulation, even for the
measurement noise v (section B.6).

E [Gd w(k-1)] = 0 (B.8)

Var [Gd w(k-1)] = Gd Q(k-1) GT
d (B.9)

Gd w(k-1) ∼ N (0, Gd Q(k-1) GT
d ) (B.10)

B.2 Filter formulation

Based on the model (Eqs. B.1 and B.2), a first step towards an appropriate state esti-
mation provides prediction of model states x̂pred and outputs ŷpred for the actual time
step k as follows

x̂pred(k) = Ad x̂corr(k-1) + Bd u(k-1) (B.11)

ŷpred(k) = Cd x̂pred(k) + Dd u(k). (B.12)

Suppose that the corrected state estimate x̂corr(k-1) is already known from a previous
calculation step. To improve estimation results, deviations ∆y between the measured
values y and the predicted values ŷpred, according to

∆y(k) = y(k) − ŷpred(k), (B.13)

should be taken into account. Therefore, the predicted states x̂pred are adapted in the
form of

x̂corr(k) = x̂pred(k) + K(k) ∆y(k), (B.14)

where x̂corr(k) is the corrected state estimate at the actual time step and K(k) is
a time-variant gain matrix yet to be defined. Figure B.1 represents these relations
graphically.
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Kalman filter

u(k) plant model

Bd

Cd

Dd

z−1

z−1

x(k)

x(0) w(k) v(k)

y(k)

x̂pred(k)

ŷpred(k)

Ad

∆y(k)

x̂corr(k-1)

x̂(0)

x̂corr(k)

K(k)

Figure B.1: Conceptual architecture of the discrete-time Kalman filter estimat-
ing states at the actual time step k.

B.3 Derivation

Although the filter formulation is now given, the question remains how to appropriately
choose K(k) or rather which cost function has to be minimized in order to obtain
an optimal estimate. For this purpose, the estimation error of prediction ε̂pred and
correction ε̂corr are examined in detail. Coming from the following definitions

ε̂pred(k) := x(k) − x̂pred(k) (B.15)

ε̂corr(k) := x(k) − x̂corr(k) (B.16)

and using model and filter relations, the estimation errors can be written as stated by
Eqs. (B.17) and (B.18), respectively.

ε̂pred(k) = Ad x(k-1) + Bd u(k-1) + Gd w(k-1) − Ad x̂corr(k-1) − Bd u(k-1)

= Ad [x(k-1) − x̂corr(k-1)] + Gd w(k-1)

= Ad ε̂corr(k-1) + Gd w(k-1) (B.17)

ε̂corr(k) = x(k) − x̂pred(k) − K(k)
[
y(k) − ŷpred(k)

]

= x(k) − x̂pred(k) − K(k) [Cd x(k) + Dd u(k) + v(k) − Cd x̂pred(k) − Dd u(k)]

= [I − K(k) Cd] [x(k) − x̂(k)] − K(k) v(k)

= [I − K(k) Cd] ε̂pred(k) − K(k) v(k) (B.18)
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B.3 Derivation 56

By substituting ε̂pred in Eq. (B.18), the estimation error of prediction can be calculated
recursively as follows.

ε̂corr(k) = [I − K(k) Cd] Ad ε̂corr(k-1) + [I − K(k) Cd] Gd w(k-1) − K(k) v(k) (B.19)

Since the expected values of w and v are both zero, the dynamic of the expected
estimation error is completely determined by the homogeneous part (Eq. B.20) only.

E [ε̂corr(k)] = [I − K(k) Cd] Ad E [ε̂corr(k-1)] (B.20)

Therefore, two conditions could guarantee an (asymptotically) unbiased estimation.
If the initial estimate x̂(0) is identical to the true initial state vector x(0), expected
estimation error will be zero for all time. While this condition is never met in any
practical application, an asymptotically stable error dynamic ensures asymptotically
unbiased estimation anyway. Section B.5 presents a prerequisite that is necessary to
guarantee this behavior in case of a time-variant matrix K(k) chosen according to
Kalman’s algorithm. For now, assume this condition to be met.

Since the estimator is thus already unbiased due to its architecture, Kalman sug-
gested to further increase performance by minimizing error variances, resulting in the
cost function J(k) according to

J(k) = E
[
(x1 − x̂1)2

]
+ · · · + E

[
(xnx

− x̂nx
)2

]
= Tr

[
P̂ corr(k)

]
(B.21)

with x1, . . . , xnx
as the elements of x(k) and P̂ corr as the covariance matrix of the

estimation error related to correction. Based on Eq. (B.18), P̂ corr is calculated by

P̂ corr(k) = Cov [ε̂corr(k), ε̂corr(k)] = Var [ε̂corr(k)]

= Var [(I − K(k) Cd) ε̂pred(k) − K(k) v(k)]

= Var [(I − K(k) Cd) ε̂pred(k)] + Var [−K(k) v(k)] + . . .

2 Cov [(I − K(k) Cd) ε̂pred(k), −K(k) v(k)]
︸ ︷︷ ︸

=0 (non-causal dependency)

= (I − K(k) Cd) Var [ε̂pred(k)] (I − K(k) Cd)T + K(k) Var [v(k)] K(k)T

= (I − K(k) Cd) P̂ pred(k) (I − K(k) Cd)T + K(k) R(k) K(k)T (B.22)

with the covariance matrix P̂ pred of the estimation error related to prediction given by

P̂ pred(k) = Cov [ε̂pred(k), ε̂pred(k)] = Var [ε̂pred(k)]

= Var [Ad ε̂corr(k-1) + Gd w(k-1)]

= Var [Ad ε̂corr(k-1)] + Var [Gd w(k-1)] + 2 Cov [Ad ε̂corr(k-1), Gd w(k-1)]
︸ ︷︷ ︸

=0 (non-causal dependency)

= Ad Var [ε̂corr(k-1)] AT
d + Gd Var [w(k-1)] GT

d

= Ad P̂ corr(k-1) AT
d + Gd Q(k-1) GT

d . (B.23)
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B.4 One-step Kalman filter equations 57

Therefore, the still undetermined matrix K(k) is used to minimize the cost function
(Eq. B.21), which yields

∂ Tr
[
P̂ corr(k)

]

∂ K(k)
!

= 0 → K(k) = P̂ pred(k) CT
d

[
Cd P̂ pred(k) CT

d + R(k)
]−1

. (B.24)

Since R(k) and P̂ corr(0) are chosen as positive definite matrices, P̂ pred is also positive
definite for all time. Thus, the second partial derivative

∂2 Tr
[
P̂ corr(k)

]

∂2 K(k)
= 2

[
Cd P̂ pred(k) CT

d + R(k)
]T

(B.25)

is positive definite as well. Therefore, the so defined Kalman gain K is always accompa-
nied by a minimum of the cost function. Using relation (B.24) simplifies the calculation
of P̂ corr, Eq. (B.26).

P̂ corr(k) = [I − K(k) Cd] P̂ pred(k). (B.26)

B.4 One-step Kalman filter equations

For ease of legibility, recursive filter equations for a single calculation step are summa-
rized in the boxes given below.

prediction

x̂pred(k) = Ad x̂corr(k-1) + Bd u(k-1) (B.27)

ŷpred(k) = Cd x̂pred(k) + Dd u(k) (B.28)

P̂ pred(k) = Ad P̂ corr(k-1) AT
d + Gd Q(k-1) GT

d (B.29)

correction

K(k) = P̂ pred(k) CT
d

[
Cd P̂ pred(k) CT

d + R(k)
]−1

(B.30)

∆y(k) = y(k) − ŷpred(k) (B.31)

x̂corr(k) = x̂pred(k) + K(k) ∆y(k) (B.32)

P̂ corr(k) = [I − K(k) Cd] P̂ pred(k) (B.33)

Figure B.2 illustrates the estimation procedure to gain a state estimate at time step
k. While the graphical representation covers a model with only one state, presented
relations are still valid in a more general case with numerous states. Starting with
the corrected state estimate x̂corr at the previous time step k-1, Eqs. (B.27) and (B.28)
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prediction correctionpx

py

x

yŷpred(k)

x̂pred(k)x̂corr(k−1) x̂corr(k)

y(k)

∆y(k)

ε̂pred(k) ε̂corr(k)

x(k)

Figure B.2: Simplified graphical representation, adapted from [42], of the
Kalman filter algorithm to estimate the state vector at time step k.

provide the predicted state estimate x̂pred and output estimate ŷpred at the actual
time step k, respectively. Incorporating measured output values y(k) by Eq. (B.29)
and calculating Kalman gain using Eqs. (B.29) and (B.30) yield the corrected state
estimate x̂corr at the actual time step. As a basis for the next iteration, the covariance
matrix of the estimation error related to correction is calculated by Eq. (B.33).

B.5 Existence and stability

Full state observability of the pair (Ad, Cd) is sufficient for the existence of a Kalman
filter [43–45], since otherwise not all states uniquely affect measured values y.

However, it is more challenging to prove asymptotic stability of the Kalman filter
(see Eq. B.20). It was shown that full state controllability of the pair (Ad, Gd) and Q

being positive definite ensure asymptotic stability [43–45]. If the noise process is written
compactly according to Eq. (B.10), one can simplify this condition: the covariance
matrix Q̃ of the compactly written process noise has to be positive definite. This is
valid if process noises acting on different states are independent of each other and exhibit
non-zero variances. While the latter interpretation seems reasonable from a practical
point of view, a more formal approach is to look into the following formulation of the
covariance matrix of the estimation error related to prediction

P̂ pred(k) = Ad P̂ pred(k-1) AT
d + Ad K(k-1) Cd P̂ pred(k-1) AT

d + Q̃(k-1). (B.34)
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B.5 Existence and stability 59

This so-called discrete Riccati equation exhibits a steady solution of 0 for P̂ pred in
case the last term diminishes. Since each scalar process noise with zero variance in
the compactly written form is related to a zero value in the diagonal of Q̃, affected
elements of P̂ pred will eventually approach 0. Subsequently, associated elements of K

will vanish as well. Therefore, corresponding corrected state estimates will remain unaf-
fected, independent of how large occurring deviations ∆y will become. To sum up, too
small variances of process noise come along with biased estimation results, while too
large values result in a non-optimal estimation algorithm. As long as the chosen val-
ues cover real circumstances perfectly, the Kalman filter provides satisfying estimates.
But since almost every implementation hypothesizes constant noise covariances, sud-
den disturbances, which can be interpreted as sharp changes in the noise variance, lack
of appropriate consideration. To overcome this issue, process noise variances can be
chosen higher than expected during normal operation. Although, the filter is thus not
optimal anymore, increased robustness justifies this approach by far.

Lastly, it is worth mentioning that the Kalman filter is the optimal filter for a linear
system with Gaussian distributed noises and in spite of many publications it is still the
optimal linear filter even if noise processes are not Gaussian distributed.
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B.6 Extended Kalman filter 60

B.6 Extended Kalman filter

Based on the classic approach, the Kalman filter algorithm can be simply extended
to serve the need for state estimation of non-linear systems. Using the discrete-time
model, given by

x(k) = f (x(k-1), u(k-1), w(k-1)) (B.35)

y(k) = g (x(k), u(k), v(k)) , (B.36)

local linearization of the state and output equation provides the following matrices:

Ad(k-1) =
∂ f

∂ x

∣∣∣∣∣
x̂corr(k-1)

Cd(k) =
∂ g

∂ x

∣∣∣∣∣
x̂pred(k)

Gd(k-1) =
∂ f

∂ w

∣∣∣∣∣
x̂corr(k-1)

F d(k) =
∂ g

∂ v

∣∣∣∣∣
x̂pred(k)

Adapting the filter equations depicted in section B.4 by utilizing these linearizations
yield the equations of the extended Kalman filter algorithm - see boxes below.

prediction

x̂pred(k) = f (x̂corr(k-1), u(k-1), 0)

ŷpred(k) = g (x̂pred(k), u(k), 0)

P̂ pred(k) = Ad(k-1) P̂ corr(k-1) Ad(k-1)T + Gd(k-1) Q(k-1) Gd(k-1)T

correction

K(k) = P̂ pred(k) Cd(k)T
[
Cd(k) P̂ pred(k) Cd(k)T + F d(k) R(k) F d(k)T

]−1

∆y(k) = y(k) − ŷpred(k)

x̂corr(k) = x̂pred(k) + K(k) ∆y(k)

P̂ corr(k) = [I − K(k) Cd(k)] P̂ pred(k)
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Appendix C

Fundamentals of gap metric

Gap metrics were originally introduced by Zames and El-Sakkary [46] to study un-
certainty in feedback systems. Since then, gap metrics have been extensively applied
in the broad field of robust control. In this diploma thesis, the ν-gap metric, intro-
duced by Vinnicombe [33], was utilized to find an appropriate linearization point of
a non-linear plant model. Its supplementary role within this work justifies to neglect
mentioning comprehensive and complex fundamentals of robust control. While the fol-
lowing remarks only relate to practical application, mathematical aspects are excessively
presented and discussed in [33, 46, 47].

The ν-gap metric provides a value δν (P1, P2) with 0 ≤ δν ≤ 1 to assess the gap
between two linear transfer functions P1 and P2 in a closed-loop sense. Values close to
0 indicate that one controller is likely to sufficiently control both plants (P1 and P2),
while values close to 1 illustrate substantial differences in the closed-loop behaviors by
using one and the same controller.

Figure C.1: Exemplary gap map covering pairwise comparisons of 20 linear
models, depicted (a) completely and (b) reduced to the essential. Single results
are connected smoothly to guide the eye.
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C Fundamentals of gap metric 62

This scheme can be utilized to compare linear transfer functions resulting from the
approximation of a non-linear model in the vicinity of different linearization points.
Pairwise comparisons of many different linear models, which are characterized by lin-
earization points distributed within the whole operating range, are usually depicted
graphically, see an exemplary gap map in Fig. C.1a. Since δν (P1, P2) = δν (P2, P1)
holds by definition of a metric, only half of the diagram covers the whole information
(Fig. C.1b). Clearly, gap values of models compared with themselves vanish.

Graphically presented results are subsequently used to find a model that exhibits
the least maximum gap value to all other linear models. As a sufficiently small gap
thereby ensures satisfying control performance in the whole operating range by a single
linear controller, controller design itself has to consider only the so found linear model.
Besides determination of linearization points, this procedure is also helpful for defining
appropriate submodels in multilinear model approaches [48].
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