
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Towards a Visual Design and
Development Environment for the

Peer Model

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Matthias Schwayer, BSc

Matrikelnummer 00925825

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dr. Dipl.-Ing. Eva Maria Kühn

Mitwirkung: Projektass. Dipl.-Ing. Stefan Craß

Wien, 1. Juni 2020

Matthias Schwayer Eva Maria Kühn

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Towards a Visual Design and
Development Environment for the

Peer Model

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Matthias Schwayer, BSc

Registration Number 00925825

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dr. Dipl.-Ing. Eva Maria Kühn

Assistance: Projektass. Dipl.-Ing. Stefan Craß

Vienna, 1st June, 2020

Matthias Schwayer Eva Maria Kühn

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Matthias Schwayer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Juni 2020

Matthias Schwayer

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

First of all, I would like to thank Eva Kühn for her supervision of this thesis and for
providing me with interesting research opportunities in her team over the course of several
years. I would also like to thank Stefan Craß for his co-supervision and his extremely
helpful comments, which helped improve this thesis a lot. As soon as the modeler was
usable, Maximilian Irlinger used it as a basis for his diploma thesis. I would like to thank
him very much for acting as a beta tester and thus improving the result of this work.

For their continued support in all my endeavors, for teaching me early on to be curious,
to think for myself, and to work precisely I would like to express my deepest gratitude to
my parents, Hedwig and Karl. I also want to thank my sister, Cornelia, for accompanying
me on my way, for warning me when I was about to do something stupid, and for not
(always) reminding me if I did anyway.

A special thanks goes to Stephan Cejka, who has accompanied me through almost my
entire studies and worked with me on countless projects and courses as well as on our
joint Bachelor’s thesis. Additionally, I would like to thank my fellow students Albin,
Benjamin, David, Georg, Natalie, and Stefanie for their cooperation during our studies.
Representing all my colleagues at work, I want to thank especially Christian and Peter,
who took me in as a young colleague and became dear friends.

I would like to thank Cornelia and Stephan for proofreading this thesis on very short
notice.

Finally, I would like to express my deepest thanks to my beloved girlfriend Tini, who has
always motivated me over these last years to finish this thesis, even when I was less than
pleasant to be around.

In one form or another, every single one of them has made me who I am today and
without any of them, this thesis would not have been finished.
Thank You!

Some of the icons used in the modeler are designed by Freepik1 or Smashicons2 from
Flaticon (www.flaticon.com).

1https://www.flaticon.com/authors/smashicons
2https://www.flaticon.com/authors/freepik

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Immer mehr Geräte des täglichen Lebens können automatisiert, ferngesteuert und mit
Diensten oder anderen Geräten verbunden werden. Der Informationsaustausch zwischen
ihnen muss koordiniert und der Prozess, an dem sie beteiligt sind, muss orchestriert
werden.

Das Peer Model ist ein Ansatz zur Modellierung der Koordination nebenläufiger Systeme,
der auf den Prinzipien des Aktormodells, der Petri-Netze und der Tupelräume basiert und
von der Forschungsgruppe für Space Based Computing der TU Wien entwickelt wurde.
Um das Peer Model wurde eine Toolchain aufgebaut, die eine domänenspezifische Sprache,
mehrere Implementierungen, sowohl für unternehmensweite als auch eingebettete Anwen-
dungen, und eine grafische Notation umfasst. Bisher war die einzige Möglichkeit, grafische
Modelle für das Peer Model zu entwerfen, die Verwendung generischer Zeichenwerkzeuge
oder Handzeichnungen.

Die zentrale Forschungsfrage dieser Arbeit ist, wie die Software-Architektur einer visuellen
Entwicklungsumgebung für das Peer Model, das sich in aktiver Entwicklung befindet
und sich somit ständig weiterentwickelt, so gestaltet werden kann um mit möglichst
geringem Aufwand neue Funktionen zu unterstützen. Diese Arbeit steuert daher den
ersten grafischen Modellierer bei, der speziell für das Peer Model entworfen wurde, mit
dem Ziel einer besseren Benutzerunterstützung und einer breiteren Akzeptanz des Modells.
Um dies zu erreichen, sind die Arbeitsabläufe der Benutzeroberfläche so einfach, intuitiv
und benutzerfreundlich wie möglich gestaltet. Der Modellierer ist in C++ implementiert
und verwendet die Qt-Bibliothek als Grundlage für die grafische Benutzeroberfläche. Da
das Peer Model aktiv entwickelt wird, basiert der Modellierer auf einer erweiterbaren
Architektur und einer wartbaren Codebasis. Darüber hinaus speichert der Modellierer
nicht nur die Diagramme, sondern pflegt zusätzlich ein zugrunde liegendes semantisches
Modell, welches das mit Hilfe des Peer Models entwickelte Modell repräsentiert. Dieses
zugrundeliegende Modell ist auch die Grundlage für Funktionen wie Plausibilitätsprü-
fungen und Codegenerierung, die beide über ein Plugin-System implementiert werden.
Die Implementierung des Modellierers basiert auf der Evaluierung mehrerer bestehender
grafischer Modellierer für andere Kommunikations- und Koordinationsmodelle. Eine erste
Benutzerstudie wurde durchgeführt, um die Benutzerfreundlichkeit der Anwendung zu
evaluieren.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

An ever-growing number of everyday devices come with the ability to be automated,
remote-controlled, and connected to services or other devices. The information exchange
between them needs to be coordinated and the process they are involved in needs to be
orchestrated.

The Peer Model, developed by the Space Based Computing Research Group of TU
Wien, is an approach of modeling coordination of concurrent systems based on principles
of Actor Model, Petri Nets and Tuple Spaces. A toolchain has been built around it,
comprising a domain-specific language, several implementations, both for enterprise and
embedded applications, and a graphical notation. Until now, the only way to design
graphical models for the Peer Model was to use generic drawing tools or hand drawings.

The main research question of this thesis is how the software architecture of a visual
development environment for the peer model, which is in active development and thus
constantly evolving, can be designed to support new features with minimal effort. This
thesis therefore contributes the first graphical modeler designed specifically for the Peer
Model, with the aim of better user support and wider adoption of the model. To achieve
that, the user interface workflows are designed to be as simple, intuitive, and user-friendly
as possible. The modeler is implemented in C++ and uses the Qt library as its foundation
for the graphical user interface. Since the Peer Model is being actively developed, the
modeler is based on an extensible architecture and a maintainable code base. Further,
the modeler not only stores the diagrams but additionally maintains an underlying
semantical model, which represents the model developed with help of the Peer Model.
This underlying model is also the foundation for features like plausibility checks and
code generation, both of which are implemented via a plugin system. The modeler
implementation is based on an evaluation of several existing graphical modelers for other
communication and coordination models. An initial user study was conducted to evaluate
the application’s usability.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Peer Model . 2
1.2 Motivation . 3
1.3 Contribution . 4
1.4 Methodological Approach . 5
1.5 Outline . 5

2 Related Work 7
2.1 AsmEE . 8
2.2 BPEL Designer Project . 12
2.3 BPMN2 Modeler . 15
2.4 CPN Tools . 20
2.5 Extensible Coordination Tools . 27
2.6 Papyrus . 31
2.7 Peer Model Monitoring Tool . 36
2.8 Discussion . 37

3 The Peer Model 45
3.1 Entry . 45
3.2 Property . 46
3.3 Container . 47
3.4 Peer . 47
3.5 Wiring . 48
3.6 Link . 49
3.7 Service . 51
3.8 Coordination Example . 52

4 Requirement Analysis 55
4.1 Functional Requirements . 55
4.2 Non-Functional Requirements . 58

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Design & Implementation 61

5.1 Design Decisions . 61

5.2 Technologies . 63

5.3 Architecture . 66

5.4 Third Party Libraries . 74

6 Visual Modeling of Peer Model Applications 81

6.1 Visualization . 81

6.2 General User Interface . 82

6.3 Hierarchical Model Overview . 85

6.4 Managing Entry Types . 86

6.5 Creating and Opening Peers . 86

6.6 Creating and Editing Peer Contents 87

6.7 Working With Subpeers . 93

6.8 Plugin Configuration . 94

6.9 Using Model Checks . 94

6.10 Code Generation . 95

7 Evaluation 97

7.1 Comparison with Related Tools . 97

7.2 Requirement Fulfillment . 101

7.3 Usability Study . 104

7.4 Implementation in Retrospect . 110

8 Future Work 113

8.1 Localizability . 113

8.2 Live Debugging of the Peer Model . 113

8.3 Universal Plugin Containers . 114

8.4 User Interface Extensions . 114

8.5 Expression Model for Link Definition Parts 115

8.6 Project Search Box . 115

8.7 Support for Peer Model Extensions . 115

8.8 Type System for Peer Model Items . 116

8.9 Background Task for Model Checks . 116

8.10 Periodic Code Generation . 117

8.11 Deployment Support . 117

8.12 Simulation . 117

8.13 Model Checking and Verification . 118

8.14 Performance Analysis . 118

9 Conclusion 119

Appendices 121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A Usability Study 123

List of Figures 127

List of Tables 129

Acronyms 133

Bibliography 137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

There are more and more devices that come with the ability to be automated, remote-
controlled, and connected to services and other devices. These have wide fields of
application including home automation (e.g. lights, sunblinds, heating), household
appliances (e.g. dish washers, washing machines and dryers, refrigerators), consumer
electronics (e.g. televisions, audio systems, hard disk recorders), wireless sensor networks,
and many more. Increasing numbers of these devices also increases the need to coordinate
information exchange and data transfers, and orchestrate processes involving them.

Since a lot of these tasks cannot be run effectively on a single processor, an ever
growing number of tasks are distributed and executed on many processors. This is where
communication middleware and coordination models come into play. They support for
example the communication between distributed processes or the coordination of multiple
participants in a workflow. Communication middlewares achieve this by providing
communication features, e.g. for synchronization, message flow control, or guarantees
regarding message delivery. Coordination models, on the other hand, provide high-level
abstractions, and thus simplification, for possibly complex coordination mechanisms.
Using these supporting technologies usually results in shorter development time and less
errors, since a lot of the complex and error prone workflow is done by the middleware or
coordination model.

Many graphical notations are available for different situations to be used by the individuals
dealing with the development of process communication or coordination. Graphical
notations use abstractions to make it easier to deal with the complex situations described
by the respective models. Additionally, graphical models can give an overview of a system
in relatively short time that would otherwise require much more time when written in
prose or code. According to [29] the benefits of software visualization tools and therefore
also the reason they are used in the industry are:

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

• to save time and money,

• to comprehend software better,

• to improve productivity and quality,

• to cope with complexity,

• to find errors.

Petre argues in [72] that graphical notations for software do not necessarily guarantee
clarity, but that the use of a so-called secondary notation often determines how a
graphical model is perceived. The primary notation is, e.g., the graphical representation
of individual model elements or their relations, while the secondary notation includes
for example the way how whitespace is used to visually group logically related elements.
In addition to the graphical notation itself, the quality of a model design also depends
on the skill of the respective designer. This results in differences between the designs of
novices and experts. Usually experts are better at using secondary notation, which leads
to more easily comprehensible model designs, e.g. due to a more coherent layout.

The clear benefits of using coordination and concurrency models can be seen by the
fact that there are several well-known and extensively researched models to orchestrate
processes and coordinate workflows, e.g. Petri Nets [18, 73, 75], Reo [6], WS-BPEL [64],
and BPMN [66]. Because of the aforementioned advantages of using a graphical notation
for systems design and to support all the different kinds of users, like domain experts for
the modeled process or application developers, graphical editors have been created for
these models, e.g.:

BPEL BPEL Designer Project [1, 30]

BPMN BPMN2 Modeler [2]

Petri Nets CPN Tools [75]

Reo Extensible Coordination Tools (ECT) [3, 7]

This thesis subsequently deals with another coordination model, called Peer Model, which
does not yet have a graphical modeler, but one is developed in the course of this thesis.

1.1 Peer Model

The Peer Model (PM) [52, 53, 54] is being developed by Eva Maria Kühn et al. at
the Space Based Computing Research Group of TU Wien. It is an approach to model
coordination of concurrent systems based on principles of Petri Nets [18, 73, 75] and
Tuple Spaces [35] and is partly inspired by Abstract State Machines (ASMs) [17] and
Actors [4].

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Motivation

The PM’s main building blocks are termed peers, which are addressable resources that
encapsulate behavior. They have input and output containers holding typed data items
with coordination properties named entries. Their properties are used to, e.g., transport
application data or to influence how the PM handles entries. The internal behavior of a
peer is modeled using wirings that consume, transform and/or create entries. A wiring
comprises guards as input links that establish a precondition, optional service invocations
and actions as output links that do post-processing. Peers can also contain subpeers
to further abstract self-contained parts of their behavior. Wirings can use links to read
from and write to a subpeer’s containers. The basic workflow inside a peer starts with
entries being written into a container (explained in-depth in Chapter 3). Guard links of
wirings check, read, or take these entries and once all guards are satisfied move them into
the wiring’s internal container. Then the wiring can continue by executing its services
and finish by executing the action links.

1.2 Motivation

The Peer Model’s environment is aligned towards the toolchain in Figure 1 (which is
based on a figure from [20]). At its center stands the PM-DSL [37], which stands for Peer
Model domain-specific language. All the other tools in the PM environment are originally
planned around that CTL. The PM is actively developed and researched, which becomes
apparent from the already available parts that are shown as grey hexagons in the figure.

PM-DSL
[37]

Graphical
Modeling

Visualization
[26]

Graphical
Editor

Pattern
Composition

[80]

Enterprise
Implementation

Java
[20]

C# / .Net
[76]

Verification

LATEX
Documentation

[37]

Simulation

Embedded
Implementation

ANSI C
[37]

Dynamic C
[41]

Figure 1: Extended Peer Model Toolchain [20]. Blue parts are presented in this thesis,
grey parts are already available from other papers, and white parts are planned for future
PM research.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Two previous theses already dealt with the field of graphical modeling for the PM. The
first thesis extended the PM with pattern composition [80], which provides the possibility
of designing coordination patterns in form of reusable partial PM models. These patterns
can then be inserted and parameterized in other models. This work covered the semantics
and relations with the existing PM and a matching graphical visualization. In hand with
the second thesis a post-mortem visualizer of PM executions [26] was developed. This
enabled users to analyze PM traces graphically.

However, the PM users currently still can only use drawings either by hand or in a generic
drawing tool, like e.g. Microsoft Visio1, for visual design of models. This is due to the
fact that the PM lacks a graphical modeler that is designed specifically for it and thus
can use information about the underlying model to better support its users. Therefore
this thesis covers the PM toolchain’s graphical modeling and editor parts highlighted in
blue in Figure 1, to enable more users to use the PM for their system models and the
design of concurrent processes and to develop an application using the graphical notation
because they can rely on the tool support offered by a domain specific editor.

1.3 Contribution

This thesis aims to lay the groundwork for a visual development environment, called “Peer
Model Modeling Tool” (PMMT), to work with PM models. Therefore, the first version
of the PMMT was developed within the scope of this thesis. It contains a graphical
editor that is specifically designed for working with the Peer Model, a plausibility
checker that aids users by pointing out errors within the modeled system, and a code
generator that increases development productivity by creating the code scaffolding for
PM implementations. Such code generators are important to easily deploy the developed
applications to targeted devices and also simplify platform independence of applications.
The plausibility checker and code generator are both built upon a plugin system and
corresponding interfaces to provide developers with an easy method of supporting newly
developed PM implementations. For documentation purposes the models are exportable.

The visual representation of the designed model is an important part of understanding
how the application will work. It should show as little information as possible, but as
much as is needed to find flaws in one’s design. Therefore, this was one of the priorities
for this thesis and the PMMT. The ability to see the big picture with little details and
drilling down into the more detailed parts of the model eases the analysis of complex
models. This enables the developer to fully grasp the properties of the application. The
visual representation itself is only in part a result of this thesis, since the graphical
notation already specified in [52, 53, 54] was used as a starting point and adjusted to fit
a graphical modeler as well as exported diagrams.

Additionally, this thesis focuses on a clean and extensible architecture for the PMMT to
enable future application extensions with as little boilerplate code as possible. Another

1https://products.office.com/en-us/visio/flowchart-software/

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Methodological Approach

important point is the usability of the graphical user interface (GUI), which is designed to
be comfortable, intuitive, and easy to understand. Furthermore, constantly considering
the application’s performance during its development also goes hand in hand with the
focus on usability.

1.4 Methodological Approach

First of all related modelers were evaluated regarding their general structure and er-
gonomic workflows with regard to the supported coordination model.

Based on that evaluation of existing modelers and specific features of the PM the
requirements for a modeler were identified. Since the PM is an active research topic at
the Space Based Computing Research Group of TU Wien, the specification has evolved
since the start of this thesis. Therefore the supported PM features were specified together
with the PM Technical Board.

After that, a technology for the PMMT implementation was chosen with the found
requirements in mind and the software architecture with a plugin system was designed.
The design phase also includes decisions for some general GUI workflows. This thesis
focuses primarily on the visual modeling of PM models, which not only includes ergonomic
model designing, but also how to aid the users in finding errors within their models.
Therefore, some fundamental workflows, like scrolling and zooming behavior, were
evaluated.

Finally, the modeler for the PM was implemented including possibilities for plausibility
checking and code generation. This implementation was evaluated by comparing its
features to the related modelers and by checking the fulfillment of found requirements.
Additionally, a user study was conducted with a focus on the usability of the implemented
modeler.

1.5 Outline

The following chapters are structured as follows:

Chapter 2 discusses related modelers and their supported coordination models. Their
structure and features are analyzed in an attempt to find ergonomic workflows that aid
the users in designing their models.

Subsequently, for a deeper understanding Chapter 3 presents the details of the PM,
since it has only been laid out briefly in Section 1.1.

Based on the analysis of related modelers and specific needs of the PM, a requirement
analysis for the PMMT is conducted in Chapter 4.

An overview of the implementation of the PMMT is given in Chapter 5. This chapter
includes architecture and software design choices as well.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Chapter 6 explores the visual modeling of PM applications.

Chapter 7 then compares the PMMT to the related modelers, evaluates the fulfillment
of the introduced requirements, and presents the results of the conducted usability study.

Thereafter, Chapter 8 proposes research topics for future work to extend the PMMT’s
feature set and work towards an even more convenient development environment for the
Peer Model.

Finally, Chapter 9 concludes this thesis with a summary of the achieved results.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Related Work

This chapter introduces related modeling tools and their respectively supported modeling
concepts. The selection of tools is based in part on the works of Kühn, Craß, and
Schermann in [55, 80] and on other published research for modeling tools that support
the coordination models related to the Peer Model as mentioned in [52, 53, 54].

Since a visual development environment with a graphical modeler for the Peer Model is
also the main part of this thesis’ contribution, the main focus points for tool selection
are as follows:

• Availability of a graphical modeler for the model (alternatively a graphical visualizer
of the model),

• Code generation or deployment support, and

• Some way of automatically checking the model for errors.

The availability or support of the following additional features were also considered for
tool selection:

• Model animation,

• Simulation and model execution,

• Model checking and verification, and

• Performance analysis or profiling.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

At the first glance UPPAAL1 seemed appropriate for comparison as it is a graphical
model checker tool most commonly used for verification of protocols. However, it will
not be covered in this thesis, since there is no direct support for code generation.

Based on these criteria, each of the following sections presents one tool that supports a
coordination model related to the Peer Model. Additionally, the Peer Model Monitoring
Tool [26] is discussed, because it is designed specifically for the visualization of Peer
Model traces.

2.1 AsmEE

AsmEE stands for ASM Eclipse Environment [32] and it is an integrated development
environment for the Abstract State Machines (ASMs) formal method [16, 17]. It is part
of the ASMETA toolset2 [34], which also supports:

• animating executions of ASMs (AsmetaA) [14],

• simulating ASMs (AsmetaS) [33],

• validating ASMs (AsmetaV) [19],

• visualizing ASM models (AsmetaVis) [9], or

• generating code from ASM models (Asm2C++) [13].

2.1.1 Abstract State Machines

Abstract State Machines are a formal method for designing systems on a high level [15].
They are based on finite-state machines (FSMs) that operate on arbitrarily complex
states with pseudo-code describing the functions and transitions. For example, Figure 2
shows a finite state machine that parses the string “FSM” in which the control states
represent the input that has already been read and what input is accepted next. The
labels of the arcs between the states show the character that is read to trigger this state
transition. If the label starts with an exclamation mark, the match is negated, which
means that the transaction triggers if any character other than the specified one is read.
This FSM can also be written as a set of transitions shown in Table 1.

ASMs are a generalization of FSMs, because their state can be arbitrarily complex,
e.g. structured data. Analogously to FSM transitions, an ASM is defined by a set of
instructions, called rules, of the following form:

if condition then Updates

1http://www.uppaal.org/
2http://asmeta.sourceforge.net/index.html

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. AsmEE

start node1 node2 done

error

F

!F

S

!S

M

!M

Figure 2: A finite-state machine that parses the
string “FSM”.

Start State Input End State

start F node1

start !F error

node1 S node2

node1 !S error

node2 M done

node2 !M error

Table 1: Transition set of the finite
state machine in Figure 2.

If the condition is fulfilled, then the Updates are executed, which are a sequence of
mathematical update functions that operate on the state of this ASM. This mathematical
semantic model is the foundation for e.g. precise pseudo-code used by software architects
and developers, or high-level process description used by application domain experts.

The ASM method covers the whole software life cycle:

Requirements Analysis supports the creation and formulation of a concise and precise
ground model of the system. This model aims to meet the needs of all involved roles
from users and experts in the application domain to software architects, developers,
reviewers, and testers. To that end its abstraction level is at the application
domain, and it is formulated with domain-specific language, so that it can be fully
understood by all stakeholders. [16]

Design Refinement of the ground model is used to get from the system specification
to code in multiple iterations with stepwise refinement. Every aspect of the ground
model can be specified in detail with a “mathematically precise notion of structure
transforming pseudo-code” [16, p. 102]. This means that the system architecture
and components are iteratively specified in greater detail until it is specific enough
for the implementation. [16]

Documentation of the model is generated partly as a side product of the refinement
process. Since in every step an already fixed part of the system is described in
higher detail, the resulting intermediate models also reflect the design decisions
previously taken. Thus, these intermediate models explicitly describe the system
and software structure. [16]

Validation and Verification of models as well as resulting software systems is sup-
ported by tools like simulation, i.e. creating a runnable model and testing it, or
proving the correctness of the underlying mathematical model. [15]

Börger states in [16] that not a single ingredient of the ASM method is original, but what
makes it unique is its simplicity and the possibility to freely choose the most appropriate
method for the current task at hand.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

2.1.2 Integrated Development Environment

AsmEE currently features a textual editor for ASMs in the AsmetaL language [79],
which itself is based on the ASM metamodel (AsmM) [77]. According to the website
of the ASMETA toolset3, a graphical editor currently is being worked on and not yet
available. When creating a new ASM file in AsmEE, it contains simple example code for
the children’s game tic-tac-toe [25], which will be explained in the next section.

2.1.3 Visualization

AsmetaVis [9] is the visualization tool in the ASMETA toolkit, which can visualize models
written AsmEE. Figure 3 shows screenshots of the rules for the three-in-a-row children’s
game tic-tac-toe from the previous section, which are visualized by AsmetaVis. The
main rule (Figure 3a) means that if the game is not over (not(endOfGame)), if the
status is TURN_USER rule r_moveUser (Figure 3b) is executed, otherwise rule
r_movePC (Figure 3c) is executed.

(a) Main rule r_Main

(b) Rule r_moveUser (c) Rule r_movePC

Figure 3: Example ASM of tic-tac-toe game visualized by AsmetaVis [9].

2.1.4 Animation

AsmetaA [14] supports ASMs by displaying their complex state while the ASM is executed
interactively. Its animation view is shown in Figure 4. The left column has two blue

3http://asmeta.sourceforge.net/download/index.html

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. AsmEE

buttons at the top that execute the next step(s), either one interactive or one or more
random steps, where the number of random steps can be specified in the input box below.
The two tables on the right contain the functions and their values at specific states.
Upon starting AsmetaA all functions are in the bottom table, and they can be moved
to the top table by checking the box in the first column. In this way, users can select
specific functions in which they are interested, especially to maintain an overview in more
complex models. The buttons on the bottom left move all functions of a specific type
to the top or bottom table. The colors in the tables mark initial values (light blue) or
changed values in this step (light green).

Figure 4: Animation view of AsmetaA

2.1.5 Validation and Verification

The ASMETA toolkit helps users in validating ASMs by providing AsmetaS [34] to
simulate ASMs and AsmetaV [19] to validate ASMs in specific scenarios.

AsmetaSMV [8] enables users to verify ASMs by translating them to NuSMV specifications
[22]. These specifications can be expressed in both Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL). As of version 2, NuSMV supports model checking

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

techniques based on propositional satisfiability (SAT) as well as on Binary-Decision
Diagrams (BDD).

All three of these tools are text-based and interact with users via a console.

2.1.6 Code Generation

Bonfanti et al. presented an Eclipse plugin to generate C++ code for the Arduino platform
from ASMs in [13]. However, it is not yet included in the AsmEE Eclipse Environment.

2.2 BPEL Designer Project

The BPEL Designer Project4 is an Eclipse project that aims to support all WS-BPEL
2.0 development tasks within Eclipse.

2.2.1 WS-BPEL

WS-BPEL stands for Web Service Business Process Execution Language [64] and it is an
open-source standard maintained by OASIS5. It works with and as such is tightly coupled
with other protocols of the web services protocol stack (described in [46]), like Web Service
Description Language (WSDL)6, Simple Object Access Protocol (SOAP)7, and Unified
Description, Discovery, and Integration (UDDI)8. The goal is to orchestrate web services
with an executable language that enables users to specify how web services are used as
single actions to compose business processes. According to the specification [64], the
typical interaction models of such processes are request-response and one-way message
exchange sequences between peers that are stateful and possibly long-running. WS-BPEL
processes can be described in two ways: abstract or executable. Both possibilities have
the same expressive power because they have the same feature set available. While
executable processes are fully specified and thus can be executed, abstract processes
are explicitly marked as abstract and are not intended to be executed. They are only
partially specified and may hide operational details of the process that are not needed
for the intended descriptive use. To that end they may use opaque tokens or omit the
details entirely.

The main components used in WS-BPEL to describe business processes are:

Activities are used to describe the actions and workflow of the business process. A
process has exactly one main activity, which can be composed of other activities.
They are used to, e.g.:

4https://www.eclipse.org/bpel/
5https://www.oasis-open.org/
6https://www.w3.org/TR/wsdl20/
7https://www.w3.org/TR/soap/
8http://www.uddi.org/pubs/uddi_v3.htm

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. BPEL Designer Project

• invoke web services,

• wait for or reply to a specific message,

• update variables,

• generate faults,

• define a sequenced or parallel execution of other activities,

• conditionally or repeatedly (looped) execute activities,

• define a scoped activity with its own description of the main components,

• create a new activity type.

Partner Links describe the relationship between this process and all the partner web
services that are interacted with, while the function of the web service is already
described by WSDL. As the interaction is peer-to-peer, they model both the
consumer and provider side of the service.

Variables are used to hold the state information that is needed for stateful interaction
between web services.

Correlation Sets define the information that is used to correctly match associated
messages over the course of multiple web service interactions.

Fault Handlers are used to undo the partial work of a scope in which the fault occured.

Event Handlers react to either incoming messages or alarms that are set off after a
timeout of specific activities.

2.2.2 Graphical Editor

The graphical editor of the BPEL Designer (depicted in Figure 5) supports users in
keeping the whole designed process in mind, including the Partner Links, Variables,
Correlation Sets, and Message Exchanges in the collapsible toolbar right of the design
canvas. Additionally, the designed process can be displayed as its underlying XML-based
source file.

The editing workflow to place new actions and control structures in the process from the
Palette on the right is either to drag and drop them to the desired canvas position or
to first select them and then click the position on the canvas where the item should be
created. The items can then be parameterized in the Properties view (shown in Figure 6a),
where all details including partner links, ports and operations of the associated WSDL
file can be selected.

More detailed information about an item is displayed in the hover info tooltip that
appears when the mouse cursor is hovered above an item (see Figure 6b). The names of
items can be edited in the properties view or inline directly in the editor.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Figure 5: The BPEL Designer editor and palette views

Items can be selected by clicking or by dragging a selection rectangle like a lasso around
them. The properties view switches its contents to show the currently selected reference
item’s data. The selected items can be moved in the BPEL process by dragging them
with the mouse to the desired position.

Furthermore, the used WSDL files are not only available as text files, but can be visualized
as depicted in Figure 7. All the ports and operations are visualized together with their
respective inputs, outputs, and faults.

2.2.3 Process Execution and Deployment

The designed processes can be executed, for example, on an Apache Orchestration Director
Engine (ODE) Server9, which is software specifically designed to execute web services
written in WS-BPEL. Therefore, after adding a server to the project, the designed business
process can be deployed to that server. After successful deployment, the application runs
on the server and can be tested with the Web Services Explorer to check if everything is
as expected. BPEL Designer also supports debugging of the running processes.

9https://ode.apache.org/

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. BPMN2 Modeler

(a) Properties view

(b) Hover info tooltip

Figure 6: BPEL Designer’s item information views

2.2.4 Model Validation

Whenever the designed business process is edited, a background process checks the model
for validity. In case there is a problem, this is indicated in the graphical editor with an
error icon, in the textual editor with a red squiggled underline of the problematic parts,
and as entries in the table of the Problems view.

2.3 BPMN2 Modeler

The BPMN2 Modeler10 is an Eclipse Project for creating business processes with the aim
to provide a graphical modeling tool for BPMN2, which is easily adaptable to different
BPMN2 execution engines. It is part of the Eclipse SOA Platform Project11.

2.3.1 BPMN2

BPMN stands for Business Process Model Notation and is a standard for modeling
business processes that is managed by the Object Management Group (OMG) [66]. An

10https://www.eclipse.org/bpmn2-modeler/
11https://projects.eclipse.org/projects/soa

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Figure 7: Visualization of the WSDL file.

easily understandable notation for all business users and thus a bridge for the gap between
design and implementation of business processes is its primary goal.

The elements of BPMN are grouped into four basic categories:

Flow objects are the main elements of BPMN and comprise Activities, Events, and
Gateways.

An Activity is an action that has to be executed (e.g. the Develop Product

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. BPMN2 Modeler

Task in Figure 8). Activities can be atomic (Tasks), compound (Sub-Processes or
Transactions), or call other existing activities (Call Activity) to reuse them.

In contrast to activities, events happen and the business process reacts to them.
The Start events trigger the start and End events represent the result of the business
process. Intermediate events represent something happening during the process
and can either Catch, i.e. react to another event, or Throw, i.e. send a message to
another Pool (will be explained in the Swim Lanes category).

Gateways are junction points, where the flow of the business process can split up
into or join multiple paths. There are several different gateways. At the Exclusive
gateway only one of the alternative paths will be followed, whereas at the Inclusive
gateway all alternative paths will be executed. At an Event Based gateway the
path taken depends on the evaluation of an event. Parallel gateways will create
parallel paths without evaluating conditions and Complex gateways can be used to
model complex synchronization behavior. Finally there are two combined gateways:
Exclusive Event Based and Parallel Event Based. At the former an event is evaluated
to determine the path that will be followed. For the latter an event triggers the
execution of all parallel paths without evaluating the event itself.

Connecting objects connect flow objects and are divided into Sequence flows that
show the sequence of the business process (depicted in Figure 8 by the arrows
connecting events and activities), Message flows showing the transfer of messages
across organization borders (e.g. between Pools), and Associations that connect
Artifacts or text to flow objects.

Swim Lanes are used to graphically organize activities and can either be a Pool or a
Lane. Analogously to a swimming pool, pools can contain one or more lanes and are
used to model different organizations within the process. The BPMN specification
explicitly leaves the meaning of lanes to the modeler, but they usually model the
different functions, systems, or internal departments. Lanes are used to categorize
and organize activities.

Artifacts are used by designers to add more information to the model or diagram and
thus improve its readability. There are three different artifacts: Data Objects,
Groups, and Annotations. A data object defines either required or produces data of
an activity, groups are used to group activities together without affecting the flow,
and annotations are used to explain some part of the diagram in more detail.

The BPMN specification not only contains a graphical notation but also a mapping to
WS-BPEL and since version 2.0 the specification also defines execution semantics for its
elements [66].

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

2.3.2 Graphical Editor

The graphical editor of the BPMN2 Modeler enables users to design business processes in
a visual development environment. Figure 8 shows the editor view of a process diagram
with the Palette on the right. From there, users can select new items to place in the
process.

Figure 8: Editor view of a process in BPMN2 Modeler with Palette view.

The workflow of graphically editing processes starts by creating a new or opening an
existing process, which opens a window with the editor view showing a canvas. Like in
BPEL Designer new items can be placed on the canvas either via drag and drop or select
and click.

Figure 9a shows the Outline View, which gives a hierarchical overview of the model in
the currently active editor view. It is a tree view where child nodes can be collapsed and
expanded.

Existing items can be edited in a number of different ways. When the mouse cursor
hovers near or over the item, a contextual toolbar pops up (see Figure 9c) and shows
buttons to interact with the item. The waste bin icon on top deletes the item from the
model and the icons on the left open a new window with either a text editor for the item’s
documentation (top icon) or all available item properties to edit (bottom icon). Using
the bottom icons users can do the following actions (starting from the left): a) create a
connection to another activity by dragging the mouse cursor, b) morph the activity’s
type to another one, c) append a new event, d) append a new gateway, or e) append a
new activity.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. BPMN2 Modeler

(a) Outline view of the process (b) Context menu for activity item

(c) Contextual toolbar

Figure 9: Selected editor features of the BPMN2 Modeler.

Items can be selected by clicking the item or by clicking the canvas and dragging a lasso
around the items to select. Selected items can be resized using the displayed grabbing
handles in the corners. The text of an activity can be edited inline in an overlay text
box that appears after clicking the items text.

The item context menu (as shown in Figure 9b) provides all the actions from the context
toolbar as well as some general actions like Print, Copy, or Validate for the selected items,

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

some version management actions (Team, Compare With, Replace With), Export Diagram
to create a picture file of the selection, Show Source View to open the underlying XML
code describing the process, and Show Properties View to open the properties of the
selected item as a docked window.

Users can also use the keyboard to interact with the selected items in the editor view.
The cursor keys with a pressed modifier key can be used to move the currently selected
items and pressing the delete key will delete them.

2.3.3 Deployment

BPMN2 Modeler is a useful tool not only to design business processes, but also to support
software architects in directly deploying these business processes to a business process
engine, which in turn can execute and run the business process. For that the BPMN2
Modeler can be extended by Target Runtimes that support the deployment of designed
business process to so called Workflow Engines. The jBPM Target Runtime12 was
developed within the BPMN2 Modeler Project to demonstrate the extension possibilities
and in turn also influenced the design decisions of the extension points.

2.3.4 Model Validation

Similar to BPEL Designer (cf. Section 2.2.4), the model is validated in the background
while editing it. The problems are also displayed in the editor by error icons (e.g. the
Verify Requirements Task in Figure 8) and when hovering the mouse cursor above the
erroneous task, a popup tooltip will show more details.

2.4 CPN Tools

CPN Tools13 [75] combine a graphical editor, simulator, and analyzer for timed and
untimed, hierarchical Colored Petri Nets (CPNs). The tools support among others

• designing Petri Nets using the graphical editor,

• syntax checking and error highlighting in the editor,

• simulating and verifying designed Petri Nets, and

• analyzing the performance of Petri Nets.

2.4.1 Petri Nets

First presented in the thesis of Carl Adam Petri [73], Petri Nets or place/transition nets
(PT nets) are mathematical models for describing and reasoning about concurrent and

12http://www.jbpm.org/
13http://cpntools.org/

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. CPN Tools

distributed systems. Since then, they have been widely adopted, e.g. for the following
application areas:

• software design,

• modeling, simulation, and reasoning of concurrent systems,

• verification or performance validation of protocols, or

• workflow management systems.

The main components of Petri Nets are places, transitions, and tokens. The latter
represent units of resources that reside in places and are graphically represented by
dots. Places are resources that can contain zero or more tokens and are graphically
represented by circles. Transitions are the possible events in the modeled Petri net and
are represented by bars. Places can be connected to transitions with directed edges
called arcs. A transition can have input and output places depending on the direction of
the connecting arc. Once all of a transition’s input places have tokens, it is said to fire,
which means that the transition consumes the tokens from its input places and generates
tokens at its output places. This means that input places are pre- and output places
are post-conditions. Arcs can also have a so-called multiplicity that describes how many
tokens will be consumed or generated upon firing of the transition. The multiplicity also
means that a transition will only fire if all input places have enough tokens to satisfy the
arc’s multiplicity.

Over the years some extensions for Petri Nets have been introduced.

Colored Petri Nets [47] enable the distinction between different types of tokens by
adding colors to them. The colors can also be used to model arbitrarily complex
data that is carried by the tokens. Transitions are aware of token colors, which
enables them to only fire when tokens of specific colors are residing in the input
places.

Places also have a type that determines the colors of the tokens that can be held.
Additionally, another abstraction layer is introduced with the concept of variables
and bindings [57].

Furthermore, Colored Petri Nets also introduced support for hierarchies and reuse
of Petri Nets to cope with the fact that large Petri Nets easily became confusing.
Therefore subnets, called pages, can be referenced in other nets via so-called
substitution transitions. In the subpages there are special tags for port and socket
places. They build the interface through which the subpage communicates with its
calling Petri net’s surroundings.

Time in Petri Nets has been introduced independently by Merlin [62] and Ramchan-
dani [74] in 1974. There are basically three different ways to represent time in Petri
Nets: a) firing, b) holding, and c) enabling durations.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Firing durations assign each transition a duration, which changes the semantic of
the execution. The transition will still consume the tokens from its input places
(according to the arcs) when it becomes enabled, but it will only create the tokens
at its output places after the assigned firing duration has elapsed.

Holding durations are also assigned to transitions, but the execution semantic
stays unchanged, because instead of keeping the tokens in the transition they are
classified as available or unavailable (graphically represented by non-filled dots).
Such unavailable tokens become available once the holding duration elapsed and
only then can enable a transition. Previously the durations have also been assigned
to places instead, which has the same modeling power [10, 81].

Enabling durations can be assigned to a transition, which then must be enabled
for the duration before it fires. If, on the other hand, the durations are assigned
to a transition’s input arcs, the transition must either be enabled for the longest
duration [88] or every arc starts its countdown once the input place satisfies the arc
[28]. The latter changes the execution dynamic greatly, but is equally expressive as
the former as shown in [28].

According to [18] the names for Petri Nets incorporating time depend very much
on the particular author, but in general enabling durations are associated with
stochastic Petri Nets and time Petri Nets, while firing and holding durations are
used in timed Petri Nets.

Object Petri Nets extend tokens to model nets themselves, and thus fit the description
of “nets within nets”. These approaches enable modeling dynamic aspects of systems
and intend to overcome the static nature of Petri Nets. On one hand there have
been proposals that extend CPNs [60, 61], and on the other hand Valk proposes the
so-called Elementary Object System (EOS) in [86, 87]. An overview of the different
approaches and their analytical methods is presented in [63].

2.4.2 Graphical Editor

Upon starting CPN Tools an empty window is presented with only the so-called Index,
which is the light blue column on the left depicted in Figure 10. From there, one can
create new or load existing nets via marking menus [58] (shown in Figure 11a). These
marking menus are essentially circular context-sensitive menus, which are activated by
holding the right mouse button down. When it is released while the mouse cursor is
above a menu entry, this command is executed. The study conducted by Kurtenbach
and Buxton in [58] shows that marking menus are very efficient for a small number of
commands that require a screen position as input.

The nets and palettes are displayed in tabbed windows (called binders), where users have
a lot of freedom in rearranging the binders, dragging tabs to other binders or creating
a new one. The user interface of CPN Tools tries to leave as much freedom to users
as possible and support different individual workflows. The nets in Figure 10 show the
included example Hierarchical Protocol, with the top level net in the top left binder.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. CPN Tools

Figure 10: CPN Tools with Index on the left, some binders with nets, and some toolbox
palettes on the bottom right.

That net contains substitution transitions (recognized by the double borders) for the
Sender (bottom right binder), Network (bottom left binder), and two Receiver nets
(top right binder with two tabs). Each of these subpages have input and output places
with the same names as in the top level net (again recognizable by the double borders).

As previously mentioned, the user interface supports multiple different workflows. For
example to create new model items like places, transitions, and arcs the user needs to
click the desired item in the create toolbox and then click inside the net in the position,
at which the item shall be created. For arcs, the start and end points are selected
separately by two sequential clicks (depicted in Figure 11b). Another workflow is to open
the marking menu in the position of the net, where the item shall be created and execute
the according action. Again for creating arcs the end point has to be selected now. If the
arc should not go in a straight line from start to end point, clicking on free canvas space
will create intermediary points through which the arc will go. Alternatively, the arc can
be bent after creation by dragging an arbitrary point on its line to another position. An
intermediary point will be created at the position the mouse button is released.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

(a) Marking menu

(b) Select end point of new arc

Figure 11: Overview of CPN Tools’ editor features

The two example workflows essentially differ in two things. They are started either
via marking menu or via toolbox. Additionally, when starting from the marking menu,
the cursor is reset to normal selection mode after workflow completion. If on the other
hand starting from the toolbox, the cursor stays in creation mode until it is explicitly
deactivated or changed to another item in the toolbox.

In CPN Tools’ editor there are no extra windows to display or enter information about the
designed model. All names, expressions, conditions, and variables are shown and edited
in the designer directly beside or inside the model items themselves. This eliminates the
distance between a specific property and its editing interface and keeps the user’s focus
on the model. All the enumerated properties can be changed directly in the editor.

2.4.3 Checks and Code Generation

Syntax checks are run automatically as background tasks, while the nets are edited.
The checks are optimized and run only for the parts of the net that are affected by
changes. The results are visible via orange (unchecked or in progress) and red (for
errors) underlines of the net’s names in binder tabs, or outline glow of arcs, places, and
transitions. Further, speech bubbles show error messages for the failed syntax checks
next to the corresponding items. Figure 12 shows the red outline glow for the Sender
substitution transition in the top level net, the red underlines for the Sender net binder,
and the error speech bubble for the Send Packet transition within the net.

Code generation is coupled with the syntax checks. When nets are syntactically correct,
the simulation code is generated automatically in a background task. Furthermore, code
generation is run incrementally, such that even when some parts of a net contain syntax
errors, others that are correct can still be simulated.

Additionally, Simonsen presented a tool called PetriCode14 in [83], which takes models of
CPN Tools and generates code via templates. PetriCode requires the CPN model to be

14http://kentis.github.io/petriCode/

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. CPN Tools

Figure 12: The syntax check feedback in CPN Tools.

annotated with pragmatics [82], which are annotations that guide the code generation.
Currently, there are templates available for the JVM-based programming language
Groovy15.

2.4.4 Simulation and Analysis

The generated code is used for simulating designed nets. Users can control simulation
with the Sim palette shown in Figure 13. The controls are similar to those of a music or
video player’s and support from left to right:

Rewind to reset the net to its initial marking.

Stop a running simulation.

Single step to execute the selected enabled transition or any enabled transition of a page
if none is selected.

15http://www.groovy-lang.org/

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Play executes a specific number of steps that can be defined by the user, and the user
interface will be updated after each step.

Fast forward also executes a specific user-defined number of steps, but the user interface
will only be updated after all steps are completed.

Figure 13: Simulation controls and feedback in CPN Tools.

During simulation, enabled transitions are visualized with a green outside glow, and pages
with enabled transitions have a green underline in their binder tabs and in the index.
The token count at places is shown in green circles, and their contents are displayed
next to them in light green boxes. Bound variables are shown in yellow boxes with their
values. They all are updated during the simulation as described before.

Additionally to simulation, state space analysis is supported by CPN Tools, to aid users
in analyzing the designed nets. There are constraints as to which nets can be analyzed.
For example all places and transitions must have unique names, and all arcs must have
inscriptions, which are responsible for selecting the tokens from the input places. While
these constraints need not be met for simulation, state space analysis depends on them.
Each of the calculated markings has a unique number and users can switch from such
a marking to the simulator and inspect the marking and enabled transitions and thus
scrutinize the condition under which this marking came to be. Also the inverse direction
to switch from the simulation to the state space is possible. Among other things this
mechanism is useful for inspecting states that result from errors in the designed net.

Furthermore, [89] introduced simulation-based performance analysis of CPN models.
Monitors can be used to control and inspect a model without modifying the model’s

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. Extensible Coordination Tools

structure. There are several types of monitors like simulation breakpoint, place contents,
transition enabled, or data collection monitors. All of them can be used to observe the
model, but especially the latter is useful for collecting statistical data about the model
over the course of a simulation. It is also possible to run multiple independent simulation
repetitions and collect data over the course of all of them to increase the accuracy of
calculated confidence intervals.

2.5 Extensible Coordination Tools

The Extensible Coordination Tools (ECT)16 [7] are a set of plugins for the Eclipse
platform that build an environment to work with Reo [6] connectors. These plugins
include development tools for design and verification as well as runtime engines that
support execution of Reo connectors. Following next, a brief overview of Reo will be
given and the development tools comprising the ECT will be explained subsequently.

2.5.1 Reo

Reo [6] is a coordination language that models coordination using connectors. Every
connector models a specific coordination pattern between connected components that
are running their I/O operations through the connector. The individual components do
not need to know about any of that. Reo emphasizes that only the coordination logic is
modeled in a connector, not any application logic. This is called exogenous coordination
[5], which means “coordination from outside” of the coordinated entities.

Channels are the basic building blocks used in Reo. They represent a point-to-point
communication imposing a constraint on the data flow between their two ends. The ends
can be either source or sink ends. Source ends accept data into and sink ends dispense
data from the channel. The type of the channel is defined by the user and it specifies the
channel ends. There are some standard channel types (e.g. synchronous, asynchronous,
FIFO, filter, drain), which can be used to build sophisticated connectors.

Channel ends can be logically joined at so called nodes to create complex connectors.
Reo distinguishes source nodes (only source ends), sink nodes (only sink ends), and
mixed nodes (both source and sink ends). At nodes the data from sink ends is duplicated
to each connected source end. When there are multiple sink ends, one is selected
non-deterministically.

2.5.2 Graphical Editor

The graphical editor depicted in Figure 14 is arguably the most important tool, because
here the designers model their coordination system as Reo connectors. The depicted
connector Order has two sources (nodes a and b) and one sink (node c). Nodes a and

16Since the start of this thesis the ECT have been deprecated (see http://reo.project.cwi.nl/
v2/tools/), because the project wants to lose dependencies on Eclipse and Adobe Flash.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

b are connected by a SyncDrain channel, a and c by a Sync channel, and b and c by a
FIFO channel. The sources of Order are each linked with a writer and the sink is linked
with a reader. The connector orders all incoming data by synchronously taking a datum
from both writers. Since nodes a and b are connected to each other by a SyncDrain
channel, both of them must have a datum at the same time. The ordering of their data
is implemented by having a Sync channel between a and c, and a FIFO channel between
b and c. This causes the data from a to be delivered to c at the same time as the data
from b is put into the FIFO channel. Once c has delivered the data from a to the reader,
the data from the FIFO channel can be accepted and delivered to the reader.

Figure 14: The graphical editor in ECT showing an ordering connector.

Different components and channels are presented to the user in a Palette window (depicted
in Figure 15). From there, the users can see available parts and select which ones to use
in their model via the select and click mechanism already described in previous sections.

Figure 15: The palette for the graphical editor in ECT.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. Extensible Coordination Tools

Figure 16 shows the individual steps of how a new channel is created. After choosing
the channel type in the palette the channel is created by clicking the source node b
(Figure 16a), dragging the mouse to the sink node c (Figure 16b) and then releasing the
mouse button to commit the creation (Figure 16c). Items can be intuitively selected,
rearranged, and resized in the editor via grabbing handles and descriptions are edited
also directly in the editor.

(a) (b) (c)

Figure 16: Creating a new channel

The Project Explorer view (see Figure 17a) gives a hierarchical overview of all open
projects in the current Eclipse workspace. The items that have been placed in the
graphical editor are presented in a tree structure, so that users can drill down from top
to bottom to inspect the items they are looking for.

Information about the current selection is displayed in the Properties view (cf. Figure 17b).
The selection can be one or more items in the editor or an item in the Project Explorer
view. Furthermore, all details of the selected items can be edited in the Properties view.

(a) Project Explorer (b) Properties view

Figure 17: Overview of ECT’s features

2.5.3 Animation

ECT includes an animation view (depicted in Figure 18) to visualize the individual
steps of the coordination within a connector. For this an Adobe Flash animation of the
selected connector is generated and displayed in the window. On the left side there is a
list of animations that can be started by clicking on them. For more complex connectors

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

there can be multiple different animations in the list, which depend on the coordination
modeled by the connector and the connected coordinated components (displayed as
writers and readers). The data tokens are shown as blue and green pentagons and the
synchronous data flow is highlighted violet-blue along the channels. The red triangle
marks the sink of node c that is non-deterministically not executed in the current step of
the coordination sequence in Figure 18.

Figure 18: The animation view of the order connector in ECT.

2.5.4 Model Checker

For the support of model checking the designed connectors can be converted to so-called
Constraint Automata [12]. These Constraint Automata are semantic models that describe
the synchronization sequence executed by the connectors. Furthermore these automata
support composition as one can compose the automata of the used channels to derive
the automaton of a connector. The actual model checker uses logic similar to CTL and
was implemented as a model check view for ECT by Klüppelholz and Baier [45]. It also
has support for the verification of connector properties. For example, it can verify that
a connector can never get stuck in a deadlock, or it can check whether two connectors
have equivalent behavior.

2.5.5 Performance Analyzer

To analyze the performance of connectors, ECT supports another semantic model, namely
Quantitative Intentional Automata (QIA), which extend Constrained Automata with
quantitative properties like average delays of data flow between and arrival rates at
ports. Subsequently, the QIA are converted to continuous-time Markov chains [40], which
in turn are used as input to the PRISM model checker [59]. This approach supports
reasoning about average response times, whether deadlines are met, or other best and
worst case scenarios. Furthermore, QIA support composition, like Constraint Automata.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.6. Papyrus

2.5.6 Code Generator

The ECT support generation of executable Java code. This is achieved by first converting
the connectors to Constraint Automata, like with the model checker, which in turn is
used to create executable Java code. Jongmans et al. extend the features of the ECT
with the possibility of generating code for the orchestration of WSDL web services [44].

2.6 Papyrus

Papyrus17 is an Eclipse Modeling Framework-based tool for graphical UML2 modeling
[36]. It also supports SysML diagrams (cf. Figure 19) via the Papyrus SysML 1.4 18

extension.

2.6.1 SysML

SysML stands for Systems Modeling Language and it is managed by the OMG [67].
SysML started out as an open source project, was adopted by the OMG as specification
OMG SysML in 2006, and was published as ISO standard ISO/IEC 19514 [43] in 2017.
SysML extends UML2 [69] as a profile, which means it can strictly extend UML2 and
must not contradict any of its semantics.

The goal of SysML is to provide a modeling language not only for software systems, but
systems in a more general and broader sense. Thus, it strives to supply systems engineers
with the tools to analyze, design, specify, and verify complex systems [39]. Further, like
with the ASM method (cf. Section 2.1.1), SysML aims to improve data exchange between
different tools, and to bridge the gap between different engineering disciplines [67].

To reach that goal, SysML incorporates four types of diagrams, which are also known as
the four pillars of OMG SysML [39], describing:

• system requirements,

• behavior,

• structure, and

• parametric relationships.

As can be seen in the SysML diagram taxonomy in Figure 19, SysML uses some of the
existing UML2 diagram types unchanged, some diagram types are modified, and two new
diagram types are introduced, which are derived from existing UML2 diagram types.

17https://www.eclipse.org/papyrus
18https://www.eclipse.org/papyrus/components/sysml/0.10.0/

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Figure 19: The diagram taxonomy in OMG SysML. (Figure taken from [39])

Requirements Diagram

The Requirements Diagram is introduced to capture system requirements, map rela-
tionships between them, and most importantly connect the system model to text-based
requirements management tools. Users had to rely on use case diagrams for the description
of high-level requirements when using only pure UML2.

Each requirement has an identification and a textual description. Requirements can be
decomposed into more fine-grained requirements using the UML containment relationship.
Requirement derivation can be modeled with the deriveReqt dependency, to explicitly
show that a requirement is derived from another one. Rationale concepts can be added
to justify design decisions and provide contextual information. [39, 67]

Further, the Requirements Diagram supports cross connections to other diagrams in
the model. The refine dependency is used to show that other SysML model elements
(e.g. Activity or Use Case Diagrams) are refinements of a requirement. Model elements
that are designed to satisfy a requirement are linked to the specific requirement via the
satisfy dependency, and test cases are linked to requirements with the verify dependency.
[39, 67]

Parametric Diagram

In UML2 it was not possible for users to precisely describe constraints on system
parameters in a straightforward way. The Parametric Diagram was introduced to cope
with that. It is a specialization of the Internal Block Diagram, and constraints on system
parameters are described with constraints blocks. They contain a mathematical formula
to model the actual constraint, and the needed parameters of the formula. [39, 67]

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.6. Papyrus

The constraint blocks are used to: [67]

• describe the physical properties of the modeled system,

• express performance and quantitative constraints on system parameters,

• express relationships of functions within the model, and

• specify relationships between different variables of the system model.

Further, the constraint blocks are used to build a coherent network of constraints on
system parameters to enable a connection of the SysML model to engineering analysis tools
and analysis models, like performance and reliability models. These constraint networks
enable analysis tools to find critical performance parameters and their relationships to
other parameters, and they also make it possible to track these critical parameters over
the entire system life cycle. [67]

2.6.2 Graphical Modeler

The project welcome screen (shown in Figure 20a) shows some general information
about the SysML model and its views and provides a button to create new views (see
Figure 20b). The tab bar on the bottom of the overview window shows a tab for the
welcome screen and other already open views. If a view is not shown as a tab it can be
opened by clicking it in the Notation Views section in the right column of the welcome
screen.

(a) Papyrus project overview (b) Create new view

Figure 20: Papyrus SysML project information and views

The Model Explorer provides an overview of the current model as a tree (cf. Figure 21a).
From there, users can inspect the model hierarchy and open specific elements.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

When creating a new view, it opens automatically in a new tab of the Papyrus SysML
model and shows the editor with a palette on the right (see Figure 21b). The palette is
context-sensitive and shows only the items relevant for the currently open diagram type.
From there, new model elements can be placed in the diagram via the drag-and-drop
or select-and-click workflows already described in previous sections. Right after the
placement of the new item, its name is selected for editing and can be entered right in
the editor. Users can edit specific information of the currently selected model element
via the context-sensitive properties view (shown in Figure 21c). Some of the properties
can also be edited directly in the editor.

(a) Model Explorer view (b) Graphical editor with palette

(c) Context sensitive Properties view

Figure 21: Papyrus views of the model

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.6. Papyrus

(a) Edge creation context tools (b) Edge creation context menu

(c) Shape creation context tools

Figure 22: Overview of Papyrus editor features

Figure 22a shows the context-sensitive edge tools that appear when hovering above an
item. An edge in incoming or outgoing direction to another item can be created by
dragging the respective icon to the item that shall be connected. Then the context menu
in Figure 22b will be presented, where the actual type of the edge that will be created
can be chosen. After that, the name of the newly created edge is selected and can be
edited right in the editor. When hovering with the mouse cursor for a few seconds, the
context-sensitive shape creation tools shown in Figure 22c are displayed, from where
different shapes can be created right in the editor without the palette.

2.6.3 Model Execution

A requirement for the ability to execute models is a formal specification of the semantics
for the UML/SysML parts that are to be executed. The OMG standardized the execution
semantics of a subset of UML called Foundational UML (fUML) [70]. SysML inherits the
execution semantics, since it is a profile of UML. Another important part to enable model
execution was standardized as Action Language for fUML [68]. It formally specifies the
notation to represent structural model elements and their actions.

Based on these standards Tatibouët et al. presented a methodology for the formalization
of UML profile semantics in [85]. As they rely entirely upon the standards, their approach
ensures that the models using the formalized profiles are directly executable.

Papyrus provides model execution through an extension called Moka19. Moka includes
execution engines based on either fUML [70] or Precise Semantics of UML Composite
Structures (PSCS) [71]. The latter extends fUML with the specification of formal

19https://marketplace.eclipse.org/content/papyrus-moka

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

semantics for composite structures in UML, e.g. an fUML class with internal structure.
Using one of these execution engines, the model can then be run interactively, including
the ability to debug the model, set breakpoints, or inspect variables during the run. The
model is also animated while it is being executed.

2.6.4 Code Generation

Papyrus SysML supports code generation via extensions. For example, the Papyrus
Software Designer20 is another extension to the Papyrus UML editor that provides
the ability to generate source code for the C++ and Java programming languages.
Additionally, it is also possible to reverse-engineer the model from Java source code.
Another possibility is the template-based Acceleo21 extension developed by the OMG
inside the Eclipse project. It is an implementation of the MOFM2T specification [65] by
the OMG. In [84] the authors use it to generate Simulink models from SysML models.

2.7 Peer Model Monitoring Tool

The Peer Model Monitoring Tool was developed by Csuk as the contribution of his diploma
thesis [26]. It is a post-mortem analysis tool of PM execution traces (see Figure 23). It
automatically creates a visualization of the traced Peer Model in the Main View and
a Timeline of the execution trace. For that two input files are analyzed. The first file
contains the static structure of the model, and the second contains the trace with the
runtime information logged during Peer Model execution. Users can then investigate
the state of the model at every single point in the timeline with help of the provided
animation and the controls in the Sidebar.

Since the input file with the static model structure does not contain positional data on
the individual Peer Model items, the PM Monitoring Tool automatically calculates a
layout for the items and routes the links between containers and wirings. This algorithm
minimizes link crossings to provide an easy-to-understand view of the model. The static
view of the Peer Model shows the complete model in one pannable window to enable
users to easily trace the transported data. Peers can be collapsed to hide their contents
when they are not needed. The dynamic view, which becomes available after loading an
input file with the execution trace, is presented as an overlay on top of the static model.
Users can step through the events individually and thus trigger animations of the entries
moving along the links that transport them through the model. Entries are visualized as
color-filled circles that vary in size and opaqueness depending on some system properties
(see 24a). Additionally, the entries feature a detail view showing property keys and values
that can be activated for each individual entry by the user (cf. 24b).

20https://wiki.eclipse.org/Papyrus_Designer
21https://www.eclipse.org/acceleo/

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.8. Discussion

Figure 23: The window of the Peer Model Monitoring Tool, with the main sections
highlighted (taken from [26]).

2.8 Discussion

In this section we compare the related tools regarding their respective features for
graphical modeling based on the selection criteria from the beginning of this chapter.

As most of the compared modelers are based on Eclipse (AsmEE, BPEL Designer Project,
BPMN2 Modeler, Extensible Coordination Tools, and Papyrus), their user interfaces
have large overlaps. That primarily becomes apparent as they use the infrastructure
provided by the Eclipse project, like:

• the frame application called workbench,

• workspaces to organize projects (on disk or just logically),

• perspectives to provide plugin-specific views,

• the model explorer to display the model in a tree view,

• the properties view to edit details of different elements,

• the palette view to provide elements to place in the models, and

• the problems view to inform about errors in the model.

CPN Tools is not based on a framework but developed from the ground up with some
unusual controls and user interfaces. On one hand this is owed to the encouragement of
using two or more pointing devices, like a mouse and a trackball. On the other hand
the used marking menus [58] are a little unconventional in current software, as most
operating systems, applications, or tools present context menus as regular linear menus.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Table 2 attempts to give an overview of the related tools comparison at a glance. Columns
correspond to the analyzed systems, while the rows represent the compared features.
Each element shows the related tool’s fulfillment rating of the feature.

Feature A
sm

E
E

A
S
M

E
T

A

B
P

E
L

D
es

ig
n
er

B
P

M
N

2
M

o
d
el

er

C
P

N
T

o
ol

s

E
C

T

P
ap

y
ru

s

P
ee

r
M

o
d
el

M
on

it
or

in
g

T
o
ol

Graphical Editor ◦◦ •• •• •• •• •• ◦◦
Automatic Layouting ◦◦ ◦◦ ◦◦ ◦◦ ◦◦ ••
Context Menus •◦ •• •◦ •◦ •• •◦
Drag and Drop

Creating •◦ •◦ •• ◦◦ •◦
Moving •◦ •◦ •• •• •◦ ••
Resizing •◦ •◦ •• •• ••
Lasso Selection •• •• ◦◦ •• ••

File Export •◦ •◦ ◦◦ •• •◦
Information Overlay •• •◦ •• •◦ •◦ ••
Inline Text Editing •◦ •◦ •• •◦ •◦
Item Palette •• •• •• •• ••
Hierarchical Overview •• •• •• •• ••
Keyboard Shortcuts •• •• •• •• ••

Code Generation •◦ ◦◦ ◦◦ •◦ •• •• ◦◦
Deployment Support ◦◦ •• •• ◦◦ ◦◦ ◦◦ ◦◦
Error Checking •◦ •◦ •◦ •• •◦ •◦ •◦
Simulation •• ◦◦ ◦◦ •• •• ◦◦ •◦
Model Checking and Verification •• ◦◦ ◦◦ •• •• ◦◦ ◦◦
Performance Analysis ◦◦ ◦◦ ◦◦ •• •• ◦◦ ◦◦

Legend: •• completely fulfilled •◦ partially fulfilled ◦◦ not fulfilled

Table 2: Feature comparison of related tools

As the graphical editor feature of the compared tools is the most significant for this thesis,
it is split into subcategories to be compared in higher detail. The graphical editor’s
subfeatures are each compared on their own row, but their feature names are indented.
Since AsmEE currently does not feature a graphical editor, it does not have ratings in
the subfeature rows. The Peer Model Monitoring Tool also does not support creating
models. However, it has ratings in some of the graphical editor subfeatures, because it
supports customizing the display of the monitored models. The following sections discuss
the similarities and differences of all examined tools in detail.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.8. Discussion

2.8.1 Graphical Editor

The graphical editors are the main focus point of the related work, because they also are
the primary point of user interaction and, as such, probably the most important expected
outcome of this thesis.

AsmEE is the only selected editor that currently does not have a released graphical
editor, but the team behind the ASMETA toolset are working on one, which is still
experimental and not yet available for the public. The Peer Model Monitoring Tool is,
as the name already reveals, a monitoring tool that can be used to analyze logs of PM
implementations post mortem, and as such it also does not have a graphical editor.

All the other tools feature graphical editors with similar user interfaces designed for
interaction with a pointing device.

Automatic Layouting

Only the Peer Model Monitoring Tool automatically calculates a layout for the model
and positions the items in an optimal way such that the crossings of links are minimized.
The other tools rely on users to position the model items.

Context Menus

They all provide context menus, usually activated via a right mouse click, to access
actions related to the current context. The reason only BPMN2 Modeler and Papyrus
are marked as completely fulfilled is that they also feature contextual toolbars, which are
displayed when hovering the mouse pointer above or in the vicinity of an item.

Drag and Drop

Drag and drop gestures for the pointing device are in some kind supported by all editors,
but to get a more detailed comparison, this feature has also been subcategorized into
creating, moving, resizing, and selecting items.

Only CPN Tools supports creating all items by drag and drop. BPEL, BPMN2, and
Papyrus support that for some but not all possible items, and ECT do not support
drag-and-drop item creation at all. The latter only features a select-and-click workflow,
which also means that there is no preview before the item is actually created.

For moving and rearranging existing items in the designed model, all tools support a
drag-and-drop workflow. However, just CPN Tools, ECT, and the PM Monitoring Tool
have complete fulfillment ratings, because they display the moved items at all times just
as they will be displayed after dropping, while BPEL, BPMN2, and Papyrus have a
somewhat limited preview and thus only partial fulfillment ratings.

The same arguments apply for the fulfillment ratings of resizing existing items. CPN
Tools, ECT, and Papyrus have full preview during the resize, while BPEL and BPMN2
have only limited preview with the new outlines.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Selecting multiple elements by dragging a “selection rectangle” around them is supported
by BPEL, BPMN2, ECT, and Papyrus. CPN Tools on the other hand does not support
the selection of multiple elements, neither by selection rectangle nor by clicking with a
modifier key.

File Export

Of the compared tools with a graphical editor, only CPN Tools does not support exporting
the model as graphics files. All others support at least the export as pixel graphics
files. But as pixel graphics have serious limitations when being scaled, only ECT has a
complete fulfillment rating, because it also can export the models as vector graphics files,
which support scaling the model to all possibly needed sizes.

Information Overlay

Complete fulfillment of this feature is achieved by BPEL, because all the additional
information about individual orchestration items is displayed when hovering above them
with the mouse pointer. Even though CPN Tools does not show temporary information
overlays in the same way as BPEL, it gets a complete fulfillment rating, because all
necessary information is displayed next to the respective items directly in the editor view.
The PM Monitoring Tool provides additional detail information directly in the main view
via, e.g., a entry detail view and thus also receives complete fulfillment ratings. BPMN2,
ECT, and Papyrus fulfill this feature partially, because they have tooltips with limited
extra information about the items.

Inline Text Editing

CPN Tools is the only one that allows to edit all texts, descriptions, expressions, and
properties directly in the editor and therefore is the only tool with a complete fulfillment
rating. All others partially fulfill this feature with the ability to edit at least some
information and names directly within the editor, while most of the expressions have to
be entered in a separate properties view.

Item Palette

All compared tools feature some possibility to choose new elements to be created in the
model. The Eclipse-based editors (BPEL, BPMN2, ECT, Papyrus) have a palette view
and CPN Tools has a create toolbox, which shows available item types to be created in
the current context.

Hierarchical Overview

All editors have a view that shows a hierarchical overview of the designed model. The
Eclipse-based editors have a model explorer view as stated at the beginning of this section

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.8. Discussion

and CPN Tools have an Index, which shows a top level entry for each currently open
model. Below that top level entry the model is listed in a tree-like structure.

Keyboard Shortcuts

All the compared tools support some keyboard shortcuts, e.g. the delete key for deleting
selected items or key combinations to copy or cut selected items to and paste them
afterwards from the clipboard.

2.8.2 Code Generation

The evaluated tools need the ability to generate source code files, which represent the
designed model, to fulfill the code generation feature. It is further required that these
files can be compiled, interpreted or otherwise executed to obtain a runnable instance of
the designed model.

As such, the ASMETA toolset, CPN Tools, ECT, and Papyrus provide code generation
either via plugins (e.g. in ECT and Papyrus) or external tools that use designed models
as input files (e.g. ASM2C++ of the ASMETA toolset and PetriCode for CPN Models).

BPEL Designer Project and BPMN2 Modeler at the time of writing this thesis do not
provide the ability to generate code. Although, in theory it is possible to provide such
features analogously to Papyrus, because both tools are based on the Eclipse Modeling
Framework. As such it is possible to develop Eclipse extensions that use one of several
provided model transformation frameworks22.

2.8.3 Deployment Support

Deployment means the ability to create a runnable version of the designed model and
deploy it to a running server that in turn will execute the model. The BPEL Designer
Project supports deploying a designed model to an Apache Orchestration Director Engine
server. BPMN2 Modeler can deploy designed models to workflow engines, which can be
specified as a target runtime. These target runtimes are implemented as an extension
point of the modeler to easily support new runtimes. One such target runtime called
jBPM has been developed within the BPMN2 Modeler project.

2.8.4 Error Checking

In software development it is commonly accepted that the earlier in the software de-
velopment life cycle an error is found, the cheaper the correction of that error is [38].
Therefore, it is paramount in software development to find errors early to keep the cost
low. Additionally to highlighting errors in the graphical editor, this section evaluates how
identified errors are presented to users and whether there is support for guiding users to
the erroneous items.

22https://www.eclipse.org/modeling/transformation.php

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

All modelers, except ECT, perform error checks either when the model is saved, contin-
uously as a background task, or when implicitly requested. Found problems are then
visualized in the editor by highlighting the erroneous elements. CPN Tools also highlight
the hierarchical entries in the index to give an overview of the errors in the model, and
to guide the designers towards the problems. The Eclipse-based tools display the found
errors in a problems view to provide designers with an overview. The PM Monitoring
Tool checks the validity of input files and presents an error message to its user in case of
a problem.

ECT only allows actions in the editor that keep a valid model, which prevents model
inconsistencies by design. However, this covers only the actions inside the graphical
editor. Input fields for model properties or for simulation options are checked when they
are used. That may be fine if incompatible values are entered for simulation and users are
notified when trying to start simulation on the same input form. It is, on the other hand,
quite confusing if incompatible values are entered as properties of the model elements
and such an error is presented to the user out of context without a precise location. In
this case, the other modelers provide better guidance to find the actual problem.

2.8.5 Simulation

The support for simulating the execution of the designed model is used by the users as
another tool to find design flaws in their models. Simulation means the ability to execute
the model and inspect the properties of model elements during the execution.

The ASMETA framework supports the animation of the designed model using AsmetaA,
as described in Section 2.1.4. In the AsmetaA window users can monitor all the values of
model elements in a tabular form and execute the model one step at a time or multiple
steps at once. Further, user input can be generated randomly or entered by the users.
Additionally, users can validate the designed models against use case scenarios with
AsmetaV (see Section 2.1.5) to check if the model behaves as expected in the different
scenarios.

CPN Tools support simulating (cf. Section 2.4.4) the designed models directly in the
editor using the simulation controls. Properties of the places and transitions during the
simulation are also displayed directly in the editor.

ECT animates the possible flows of connectors in an animation view (see Section 2.5.3)
by highlighting the respectively active channels and displaying the flow of tokens between
the channels and nodes.

The Peer Model Monitoring Tool (described in Section 2.7) can replay a traced execution
of a Peer Model by analyzing two files: the static model information and the execution
trace. It provides a graphical view of the model, and users can use the provided timeline
control to inspect the data at all moments of the trace. However, since it does not support
interactive simulation this feature is only partially fulfilled.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.8. Discussion

2.8.6 Model Checking and Verification

AsmetaSMV (cf. Section 2.1.5) can be used as a stand-alone tool or integrated in AsmEE
to translate the created model into a specification for NuSMV. This approach enables
the analysis of CTL and LTL using techniques based on BDD as well as SAT.

CPN Tools features a state space analysis of CPNs (see Section 2.4.4) to help users
understand their designed nets. Once the state space is calculated, CPN Tools support
switching back and forth between a state space marking and the model.

ECT enables users to convert connectors to so-called Constraint Automata (cf. Sec-
tion 2.5.4), which represent a semantic model of the connector and serve as input for the
model checker.

2.8.7 Performance Analysis

CPN Tools supports performance analyses by monitoring model data over the course
of one or multiple simulation runs (described in Section 2.4.4). The collected data also
contains confidence intervals for multiple runs.

Additionally to Constraint Automata, ECT provides the possibility to convert connec-
tors to Quantitative Intentional Automata, which are an intermediate step to get to
continuous-time Markov chains, which are used as input for the PRISM model checker
(see Section 2.5.5). The latter can then be used to reason about, for example, average
response times, and best or worst case scenarios.

2.8.8 Conclusion

The analysis of related modelers shows a lot of features that are essential for a graphical
modeler, like well designed user interaction with simple workflows and the need to
offer actions directly in the vicinity of the treated items. It is also important to show
information directly in the editor, because this greatly helps keeping the focus on the
designed model. Additionally, ideally users get feedback from the editor whether the
designed model is, at least syntactically, valid. Thus, they can use such error messages to
easily and quickly find the problematic model items and fix them. Finally, generating code
directly from the model helps to shorten the time from design to a running application.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

(a) Visualization of entries depending on some properties

(b) Detail view of entries

Figure 24: Entries in the Peer Model Monitoring Tool (taken from [26])

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
The Peer Model

The Peer Model is a design and programming model for concurrent and coordinated
processes, which range from low-level implementations of network protocols to high-
level models of business processes. It was first introduced in [52] and is under active
development by Eva Maria Kühn et al. at the Space Based Computing Research Group
of TU Wien [49, 50, 53, 54, 55]. It is based on principles of Petri Nets [18, 73, 75] and
Tuple Spaces [35] and partly inspired by Abstract State Machines [17] and Actors [4].

The mentioned literature also provides visualizations for all the used concepts in the Peer
Model. These visualizations evolved over time together with the Peer Model with the
focus on getting a recognizable and understandable, but also an easily drawable visual
language.

The following sections will first present the components that make up the Peer Model
and then explain the behavior and dynamic interactions between these components.

3.1 Entry

The fundamental concept for data in the Peer Model is the so-called entry. Such an
entry has a type and several properties (see Section 3.2). While system properties are
provided by the Peer Model, entries can also have user-defined coordination properties
and application properties. The entry type has a unique name by which it is referred to
throughout the designed model and which thereby serves as a reference to the entry’s
properties for the user. System properties are needed by the Peer Model internals and
they can be modified by the application to affect how the Peer Model handles the entries.
Coordination properties allow to model complex application-specific coordination logic
of the designed application going beyond the available system properties. Application
properties can be used to store and transfer application data that can only be used by

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. The Peer Model

application logic, but not for coordination, e.g. the binary data output of a service (cf.
Section 3.7) needed as input by another service.

3.2 Property

A property in the Peer Model is a value with an associated name (e.g. name “ttl”
and value 100). The name can be hierarchical with the dot as level separator (e.g.
“ttl.exception”) to group several properties together. As can be seen by the two examples,
intermediate levels can be properties themselves and in that case have values. However,
they may also be used just for structuring several properties and thus do not necessarily
need values. Properties can affect entries, links, and wirings and they have a defined
data type, which can be one of the following:

Bool boolean value

Integer integer number

Float floating point number

Text arbitrary text

Address can point to another peer or a specific container

Duration an amount of time

As already mentioned, system properties are provided by the Peer Model internals and
needed to control how the Peer Model components handle entries. They have default
values, but can also be defined by the designer. Some examples of system properties are:

TTL (time-to-live) How long is an entry valid?

The entry is invalid after this time expires, at which it is converted to an exception
entry.

TTS (time-to-start) When does an entry first become valid?

The entry is inactive and thus is not considered by the runtime until this time
expires.

DEST (destination) Where should this entry be delivered to?

This property holds an address if the entry should be delivered to another peer’s
container.

FLOW (flow identification) Which workflow does this entry belong to?

This unique identification marks data as belonging to the same workflow. This
property is used to group entries together and, for example, explicitly show that
they are part of the same request.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Container

3.3 Container

Entries usually reside in containers when they are not currently handled by another
component. This shared containers’ functionality is based on eXtensible Virtual Shared
Memory (XVSM) spaces [23], because their coordination mechanisms are configurable
and they can be accessed via an extensible API.

The XVSM spaces provide several coordination mechanisms that determine which entries
are selected when accessed. For example, there are predefined coordinators for several
strategies:

any select items without any particular order

random select items at random

fifo first in, first out

lifo last in, first out

key select items with an unique key

label select items that have a specific label

linda select items using Linda template matching [35]

query select items based on a query, similar to SQL

Furthermore it is possible to provide custom coordinators, which makes it easy to extend
for a specific use case.

3.4 Peer

Peers are the eponymous main components of the Peer Model. They have an internal
structure and encapsulate behavior, which is not accessible from the outside. Peers are
uniquely addressable resources, which allows data to be sent to a specific peer. To receive
and send data, peers have a PIC (peer-in-container, similar to an inbox) and a POC
(peer-out-container, like an outbox), respectively.

Peers can also be nested, which means that a peer can contain other peers, which are
then called subpeers. This is useful for abstraction and encapsulation as a subpeer has
self-contained logic and the parent peer can only interact with a subpeer via its PIC and
POC.

The visual representation of a peer is depicted in Figure 25. It consists of a top rectangle
with the peer’s identifier, which is also used as a part of its address [48]. The rectangles
on the sides represent the containers PIC (left) and POC (right), while the content of a
peer is drawn inside the center rectangle. The content will be explained in detail in the
following sections.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. The Peer Model

Peer 1

Wiring 1

A2
B

A1
A

G1
A [2]

Figure 25: The visual representation of a peer.

3.5 Wiring

Comprised of links and services, wirings are responsible for the active operation of the
Peer Model. The visualization of wirings has already been depicted in Figure 25, where
the wiring is shown as the content of Peer 1. A wiring has a name, which is unique
within the parent peer. In the example, the name is Wiring 1 and it is shown in the
center of the wiring.

The individual steps of a wiring’s logic are represented by links. They transport entries
from their source to their destination. There are two types of links: guards and actions.
Each link connects the wiring with a container, except for the guard of an init wiring
explained later in this section and special cases explained in Section 3.6. Guards are
inputs to wirings, which means they have the container as source and the wiring as
destination, and actions are outputs from wirings, meaning their source is the wiring and
their destination is the connected container. Links have an identifier, which consists of a
letter representing the type, G for guards and A for actions, followed by a unique number
within the wiring for the type (cf. G1, A1, A2 in Figure 25). At least one guard link
is mandatory for every wiring. Additionally, a wiring can optionally have any number
of services (explained in Section 3.7) and action links. The graphical representation of
a link consists of a so-called base, which is located within the wiring and contains the
link identifier, and a connector to the corresponding container. The wiring shown in the
figure takes two entries of type A from the peer’s PIC with guard G1. It then writes one
entry of type A back into the PIC and writes one entry of type B into the peer’s POC.

Before a wiring starts to execute its logic, the prerequisites specified by the guard links
have to be fulfilled. This means that the source containers hold enough entries that
satisfy each link’s query (explained in Section 3.6). Once those prerequisites are fulfilled,
the wiring is said to fire, which means it now executes the guard links in the mentioned
order, followed by the services, and concludes with executing its action links again in
order of their numbering, all in one transactional step. That means a wiring is either
successfully executed as a whole, or it rolls back all the changes it made. The wiring’s

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6. Link

links can only access the containers of its parent peer or direct subpeers.

The wiring itself has a wiring entry collection, which is used as a temporary container for
the entries handled by the wiring. This means that entries delivered by the execution of
guards are stored in the entry collection. Each executed service gets its input entries
from there and delivers its output entries to the entry collection. The action links also
take entries from the entry collection. At the end of the wiring execution all remaining
entries are destroyed.

In addition to regular wirings with guards, services, and actions, there are so-called
init wirings, depicted in Figure 26. Every peer can have only one init wiring, which is
executed as soon as the peer is initialized. They are distinguished from regular wirings
by only having one special guard with an asterisk as its name. Init wirings can still have
services and actions just like regular wirings.

* Init A1
A

Figure 26: Visualization of an init wiring.

3.6 Link

The previous section already explained that links are used by their wirings to ensure
certain prerequisites. How this is accomplished is explained in the remainder of this
section. In addition to the already mentioned entry type of a link there are also other
parts that comprise its definition (a complete example is shown in Figure 27).

G1
A [ALL] [[weight > 4]]
<$w = weight> {DEST = Peer 1}

Entry type

Count specifier
Selector

Assignments Properties

Figure 27: Visualization of a link with all the parts that make up its definition.

Above the connector are the entry type, the count specifier and the selector, which make
up the query that defines what entries are handled by the link. Below the connector are
assignments and link property definitions, which can manipulate data of the handled
entries. The statements used in these fields may not only use fixed values, but also values
of previously set wiring context variables (cf. assignments). In such a case the variable
names are important, because they also specify the context of the associated value. If
the name starts with $$, it denotes a variable automatically defined and provided by the

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. The Peer Model

Peer Model runtime (e.g. $$PID for the identifier of the current peer). If it starts with $,
then it refers to a variable that is set explicitly by the user. If the name does not start
with $, it refers to a property of the transported entry.

Entry type requires the handled entries to have this type.

Count specifier specifies how many entries this link will transport and can be one of:

1. the special specifier ALL to select all available matching entries, which can
also be 0 entries,

2. the special specifier NONE to require that there is no matching entry in the
source container,

3. a bounded range (e.g. 6 4 for 0 to 4 entries, or [3, 5] for at least 3 and up to 5
entries),

4. an unbounded range (e.g. > 3 for at least 3 and up to all available entries),

5. omitted, then it defaults to exactly 1 entry.

Selector specifies which entries should be handled by the link. It has to correspond to the
coordinators that are used in the connected container (as explained in Section 3.3).
For example, the query coordinator provides the following possibilities:

1. An empty selector does not further restrict the considered entries.

2. Property values can be compared using the operators <, 6, >, >, =, 6=.

3. The result of a comparison can be inverted with the unary boolean negation
operator !.

4. The binary boolean operators AND and OR can be used to combine multiple
results.

The selector in Figure 27 specifies that only entries having a weight property value
greater than 4 should be considered by this link.

Assignments are a sequence of statements that can modify properties of transported
entries and set variables in the context of the wiring to, e.g., store the count
of actually selected entries when using ranges in the count specification. These
variables can be used in the definition fields of other links that are executed
afterwards or in later assignment statements of the current link, which is the reason
that the order of statements is important. Additionally, functions provided by the
Peer Model runtime can be used to, e.g., create a new flow identification and set it
in the transported entries.

Link Property Definitions are an unordered set of statements that set link properties
to fixed values or to the value of a previously set wiring context variable, e.g. when
the DEST property is set, the link will wrap all transported entries in a single
new container entry, where the count of the wrapped entries can be set as an entry
property.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.7. Service

How a link interacts with the connected container and its wiring is specified by a source
operation and a destination operation. In principle, all links must be connected to a
container, unless it is specified otherwise in the following descriptions.

The source operations are:

take consumes the entries, which means they are removed from the container after
reading. This is the default operation and is used in the previous examples.

read copies the entries and leaves the originals in the container.

create creates the entries specified by the link’s definition (entry type, count, assign-
ments). Guard links with this source action are not connected to a container.

The destination operations are:

write puts the entries into the container. This is the default operation and is used in
the previous examples.

shift puts the entries into the container and drops entries that do not fit the container
due to size restrictions, which depend on the container’s XVSM Coordinator.

delete does not put the transported entries into the container. Action links with this
destination action are not connected to a container. For example, this operation
type is used to explicitly model entries that satisfy guards of wirings, which do not
need the entries for its subsequent logic.

3.7 Service

Services are used to interface with and execute application logic from within the PM.
Once the wiring has executed all guards, the specified services are executed sequentially.
Each service gets the entries of the wiring entry collection (see Section 3.5) as input and
also puts its output entries there.

Besides execution of application logic, services can be used to interface with legacy
software. For that the service acts as a wrapper around existing software by converting
the input entries to the needed input format and converting the output to entries.

Figure 28 shows a wiring CallWrapA that takes one entry of type A via guard G1
and then calls the service WrapA. The service gets one entry of type A as input and is
expected to put one entry of type B into the wiring entry collection as output, which
then is moved by action A1.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. The Peer Model

Peer	2

CallWrapA

WrapA

A1
B

G1
A

* Init A1
A

Wiring	2G1
A [ALL] [[weight	>	4]]
<$w	=	weight>
{DEST	=	Peer	1}

LinkActions A2
B

A1
A

A3
C

G3
C

G2
B

G1
A

Figure 28: Visualization of a wiring with a service.

3.8 Coordination Example

A peer’s behavior is modelled using wirings, links, and services. We will look into that
behavior and inner workings of the peer model based on the baker peer of the bakery
example from [50]. The coordination challenge in this example consists of individual
bakers that get their orders from the bakery and are responsible for producing the dough
for the bakery’s products.

The wirings of the baker peer (shown in Figure 29) always act on a charge entry in the
PIC or an exception entry in case the time-to-live of the charge entry expired. This
charge entry is used to create 5 doughs sequentially, where the production of a dough
entry is split up into ordering the ingredients (cf. wiring ProduceDough1) and the actual
production of the dough using the delivered ingredient entries with the StirDoughService
in wiring ProduceDough2. Every produced dough entry is sent to the Bakery peer as soon
as it is finished, and when the baker either completes the charge of 5 doughs (cf. wiring
ChargeComplete) or the charge times out (cf. wiring ChargeIncomplete), the Bakery
peer is notified to deliver the produced doughs of this charge using its flow identifier.
The remainder of this section explains the baker peer’s coordination logic in detail.

Upon startup of the Peer Model runtime, when the Baker peer is instantiated, the Init
wiring gets executed and action link A1 creates1 an entry of type charge in the PIC
with properties for a new flow identifier fid, a dough count (k) of 0 kg, phase set to 1,
and a time-to-live of 500.

The next wiring, ProduceDough1, takes a charge entry from the PIC with a dough
count less than 5 and phase equal to 1. Then action A1 puts the charge entry back into
the PIC and sets the phase property to 2. As last action of this wiring A2 creates an
entry of type sendIngredients and the properties fid with the current wirings flow ID
($$FID), baker set to the current peer’s identifier ($$PID), neggs marking the needed
eggs unit count to 4, nflour marking the needed flour unit count to 10, and a time-to-live
of 10. Additionally, the destination (dest) of the created entry is set to Bakery, so that it
is sent to the bakery, which can then send the incredients to this peer’s PIC.

Wiring ProduceDough2 starts by taking the charge entry from the PIC with G1 if
it has a dough count less than 5 and phase equal to 2, then it takes 4 entries of type
egg with guard G2 and 10 of type flour with guard G3, as they were ordered in wiring

1 The action’s source operation create is symbolized by the * notation and the not connected line.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.8. Coordination Example

ProduceDough1. After all guards are satisfied, the taken entries are put into the wiring’s
entry collection and the StirDoughService is executed, which uses the egg and flour
entries to produce the dough. Once the service is finished, action A1 increases the dough
count k on the charge entry and sets it back to phase 1. At last, action A2 puts the
produced dough entry with the current wiring’s flow ID and destination Bakery into the
POC.

The ChargeIncomplete wiring deletes2 an exception entry with guard G1, which is
created when the time-to-live of the charge entry expires. The exception entry’s etype
property is set to charge in order to show what the original entry’s type is. Additionally,
the original entry itself is embedded within the exception entry, but not further needed in
this coordination logic. Then action A1 creates1 a new charge entry in the PIC with the
same properties as in the Init wiring, and action A2 creates a deliver entry in the POC
with the current wiring’s flow ID and destination set to Bakery, such that the bakery
delivers the incomplete dough charge to the oven.

The last wiring ChargeComplete deletes2 a charge entry with dough count equal to 5
from the PIC with guard G1. Then actions A1 and A2 are the same as in the previous
wiring to first create1 a new charge entry in the PIC and secondly create a deliver entry
in the POC to be sent to the bakery, to initiate the delivery of the complete charge of
doughs to the oven.

2 The guard’s destination operation delete is symbolized by the not connected line.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. The Peer Model

B
a
k
e
r

C
h
a
rg
e
C
o
m
p
le
te

A
2

d
e
liv
e
r

<
fi
d
	=
	$
$
F
ID
,	
k
	=
	5
>

{d
e
s
t	
=
	B
a
k
e
ry
}

A
1

c
h
a
rg
e

<
fi
d
	=
	n
e
w
F
ID
()
,	
k
	=
	0
,

p
h
a
s
e
	=
	1
,	
tt
l	
=
	5
0
0
>

G
1

c
h
a
rg
e
[[
k
	=
=
	5
]]

C
h
a
rg
e
In
c
o
m
p
le
te

A
2

d
e
liv
e
r

<
fi
d
	=
	$
$
F
ID
>

{d
e
s
t	
=
	B
a
k
e
ry
}

A
1

c
h
a
rg
e

<
fi
d
	=
	n
e
w
F
ID
()
,	
k
	=
	0
,

p
h
a
s
e
	=
	1
,	
tt
l	
=
	5
0
0
>

G
1

e
x
c
e
p
ti
o
n
[[
e
ty
p
e
	=
=
	c
h
a
rg
e
]]

P
ro
d
u
c
e
D
o
u
g
h
2

S
ti
rD

o
u
g
h
S
e
rv
ic
e

A
2

d
o
u
g
h

<
fi
d
	=
	$
$
F
ID
>

{d
e
s
t	
=
	B
a
k
e
ry
}

A
1

c
h
a
rg
e

<
k
	=
	k
	+
	1
,	
p
h
a
s
e
	=
	1
>

G
3

fl
o
u
r
[1
0
]

G
2

e
g
g
[4
]

G
1

c
h
a
rg
e
[[
k
	<
	5
	A
N
D
	p
h
a
s
e
	=
=
	2
]]

P
ro
d
u
c
e
D
o
u
g
h
1

A
2

s
e
n
d
In
g
re
d
ie
n
ts

<
fi
d
	=
	$
$
F
ID
,	
b
a
k
e
r	
=
	$
$
P
ID
,

n
e
g
g
	=
	4
,	
n
fl
o
u
r	
=
	1
0
,	
tt
l	
=
	1
0
>

{d
e
s
t	
=
	B
a
k
e
ry
}

A
1

c
h
a
rg
e

<
p
h
a
s
e
	=
	2
>

G
1

c
h
a
rg
e
[[
k
	<
	5
	A
N
D
	p
h
a
s
e
	=
=
	1
]]

*

In
it

A
1

c
h
a
rg
e

<
fi
d
	=
	n
e
w
F
ID
()
,	
k
	=
	0
,

p
h
a
s
e
	=
	1
,	
tt
l	
=
	5
0
0
>

Figure 29: Baker peer (from the example in [50])

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Requirement Analysis

This chapter analyzes the features of related modelers and develop requirements for the
PMMT based on the discussion in Section 2.8. A focus shall be put on features that
facilitate usability to encourage the usage of the PMMT when working with PM models.

Since it would be presumptuous to create a full-fledged integrated and visual development
environment on the first try, the focus of this thesis shall be to create a minimal viable
product (MVP). This again aims to encourage the usage of the PMMT by first providing
a smaller, more basic, but coherent feature set that can iteratively be extended with new
features and integrated with existing PM tools. Several features that were deemed out of
scope for an MVP will be discussed in Chapter 8.

The requirements are split into functional (FR) and non-functional (NFR) requirements
[21]. The difference between these two requirement types is that FRs describe what a
system can do, while NFRs are a description of a system’s property, characteristic, or
quality (e.g. performance, maintainability, usability, or efficiency).

4.1 Functional Requirements

The following functional requirements have been identified for the PMMT:

Graphical PM Editor (FR01)

The actual core feature shall be a graphical editor for the PM supporting users in
designing models on a drawing canvas. This includes an underlying semantical model of
the PM that corresponds to the shown graphics. It shall be possible to rearrange the
graphics via mouse interaction (e.g. drag and drop, or point and click), without losing
the semantic connections between containers and wirings represented by links.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Requirement Analysis

In light of the fact that we want to achieve an MVP, the first version of the PMMT shall
support the PM building blocks described in Chapter 3 with the following restrictions:

a) It suffices to model containers as PIC or POC. The details of the underlying XVSM
containers can be skipped.

b) A link’s selector, assignments, and properties do not need to be mapped to an
underlying semantic model. For the first PMMT version these properties can be
stored as simple strings and it is left to the users to provide them in an appropriate
form for the intended use.

c) Only a single service per wiring needs to be supported, because in the first PMMT
version this can be a wrapper service, which abstracts the calls to other services.

These restrictions should be addressed and removed in future work.

Routing of Links (FR02)

The lines of links connecting e.g. containers and wirings shall be routed automatically.
The links should also cross each other as little as possible. Other rectangular obstacles
like wirings, subpeers, and services should also be taken into account when routing links.
Their areas should be avoided as long as this is possible and thus, the links should be
routed around them.

Entry Type Editor (FR03)

An interface to define the contents of entries shall be provided, where properties can
be added, changed, or removed. Each property shall be assigned a type (like integer,
floating point, or boolean value), a default value according to the type, and a description.
System properties shall also be displayed, but must not be removed from entries.

Inline Text Editing (FR04)

The user interface shall provide interactions to edit texts in place whenever this is possible.
For example see the following steps:

1. double click on name of peer or wiring.

2. display a cursor directly where the name is shown.

3. change the name.

4. finish editing when enter is pressed.

The idea is to not force the user to change focus to another user interface, but instead
keep the attention where it already is. In CPN Tools this is the case, while in the BPMN2
Modeler texts can be edited either in the properties pane or in the properties window,
which opens after a double click.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Functional Requirements

Context-Sensitive Menus (FR05)

All actions that involve an element in a model shall be provided near the element itself,
e.g. show controls when hovering the mouse pointer over an element, or show a menu
after a (right) click. That way, when a user looks at an element and wants to change its
properties, focus can stay on the element while doing so. When on the other hand the
user wants to inspect a related element, that element can be opened, shown, or selected
after clicking on a control or menu.

Toolbox (FR06)

A toolbox with all available model elements shall be available where the user can drag
items and drop them in an open model to create that item where it is dropped. Users
can have a look at all available model elements and easily place them in their models.

Structural Overview (FR07)

An overview of the current model shall be provided to help users in locating specific
elements within the model. An example for this is the outline view in the BPMN2
Modeler. All the elements within the model are shown in a tree view.

Plausibility Checks (FR08)

Since a model built in a modeler has not just a syntactic but also a semantic meaning
attached to its elements (in contrast to a drawing in a graphics program), there shall
be provided a mechanism to detect problems in the model. These inconsistencies or
errors should be shown to the users in a way such that they can easily change focus to
the causal element in the model. The user’s focus should be guided from the detected
inconsistency to the actual element in the model, enabling the user to efficiently fix the
error.

Support for Runnable Model (FR09)

A common use case for the PMMT is to design coordination of concurrent processes,
which makes it very important to support a runnable model of the actual design as this
greatly reduces the turnaround times in the development process. Therefore the PMMT
shall be able to generate code for the various implementations of the PM and thus help
to reduce the time from the design to a testable software product. Furthermore, this can
be used to generate the platform-independent PM-DSL [53] from the designed model as
well, which makes the integration of already existing PM tools much easier and faster.

Graphic Export (FR10)

The PMMT shall be able to export the designed models as graphic files, which is not
only useful for documentation purposes, but also supports a consistent look of the PM in
future research publications, since the PM is an active research project.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Requirement Analysis

4.2 Non-Functional Requirements

There are also non-functional requirements that shall be met by the PMMT:

Extensibility (NFR01)

The PMMT shall provide a plugin system for plausibility checks and code generation, to
enable the support of many different implementations of the Peer Model. Furthermore,
since they can read the complete model and produce files, plugins could be used as an
export interface, e.g. to create another graphical representation. Also transformations on
the model could be implemented in such a plugin, for example to transform the model to
an output format that allows for model verification. This creates a lot of possibilities for
plugin developers.

Usability (NFR02)

Users shall be able to easily find their way around the PMMT, without long introductions
and tutorials. The aim is to provide a tool for working with the PM and keeping the users’
focus on the designed model, not on the tool that is meant to support them. This means
the user interface shall be intuitive and provide functionality where it is anticipated.

Maintainability (NFR03)

In the past, software was delivered on floppy disks and later CD-ROMs, some even on
USB drives, which meant that once the medium was created, there was little to no chance
of fixing errors later. Then, with the rise of the Internet it suddenly was possible to
deliver patches or hotfixes that modify a software installation and fix errors. Since today
most of the software is downloaded as a whole from the Internet, it also has gotten much
easier to fix errors after the software’s initial release. This increased pace of software
release cycles makes it even more important to keep the future maintainability of the
software in mind when designing it in the first place.

For that reason, the software architecture of the PMMT should be modular to enable the
integration of new features without having to change too much of the existing code. This
also means that the PMMT should be designed in a way to keep the needed boilerplate
code for new features as minimal as possible.

Portability (NFR04)

The PMMT’s code should be portable, which means it should be possible to create a
running executable of the PMMT for different platforms (e.g. Apple macOS, GNU/Linux,
Microsoft Windows) without much effort.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Non-Functional Requirements

Data Compatibility (NFR05)

The PMMT shall store its project data in a way that can be read in updated versions.
In other words, newer versions of the PMMT shall be able to read project data saved
with older versions. This shall ensure that PM projects are not lost by updating to a
newer version of the PMMT. For the first version the format shall be text-based for easier
human understanding of the saved data. A change to a binary format for smaller project
file size shall be taken into account when designing the serialization of project data.

Performance (NFR06)

The performance of the PMMT is very important, because users typically do have a very
low threshold for unresponsiveness of graphical user interfaces, which can be as low as 0.7
seconds according to [27]. Therefore, user actions in the PMMT shall have low latency,
such that users immediately get feedback of the application. Long running actions must
not freeze up the application user interface, but rather run in the background with
according user feedback. This aims most importantly to not scare off users with a slow,
sluggish user interface, but also to contribute to good usability.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Design & Implementation

This chapter first introduces the principal design decisions. Next the implementation de-
tails of the PMMT are discussed. These include the presentation of possible programming
languages and graphical user interfaces, the architectural choices, which are influenced by
the underlying technology, and finally the different possibilities for existing third party
libraries, which might prove useful for specific tasks.

5.1 Design Decisions

The following design decisions are based in part on the takeaways of the related modelers
presented in Chapter 2 as well as on the found requirements of the previous chapter.

The user interface of the PMMT shall be designed as a Multiple-Document Interface
(MDI), which has a main application window that contains the other documents as child
windows or MDI windows. All related tools, except the PM Monitoring Tool, are designed
as MDI applications, where every model diagram is edited within its own MDI window.
This has the advantage of providing a common user interface in the main window that
controls the respectively active child window. The common user interface includes, e.g.,
tool bars, status bars, or tool windows. The user interfaces themselves are made up
of control elements called widgets. They can be simple widgets with a single task, like
buttons, check boxes, and text boxes, or they can be more complex widgets that visualize
data in form of a list or tree view. Additionally, custom widgets can be arbitrarily nested
and display any other widgets.

Since virtually all diagram editors are operated with a pointing device (e.g. a mouse),
it makes sense to use a drag and drop workflow wherever this is useful. This workflow
is also used by all related tools. For example, users click model items in the editor and
drag them to the desired position or they click a palette item in a tool window and drag
it into the editor to create it at the dropped position. Such a palette window shall also

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

be provided, which shows the available model items, like wirings, links, services, and
subpeers. From there users can drag a desired item and drop them into the editor to
create a new item.

Each peer shall be edited in its own MDI window within the application window. Firstly,
this clearly separates the peers and forces users to design clear interfaces between peers,
because the entries are sent to other peers by properties. Secondly, this is also common
practice among the related tools, except the PM Monitoring Tool, which shows the whole
model in a single view to enable users in following the flow of entries. The peer is edited
on a so-called canvas that can, in theory, become infinitely large and the user can change
the zoom factor at will and scroll within the window. Subpeers hide their contents when
they are displayed in their parent peer, but users have a simple possibility to open the
subpeer in their own editor window and also to open the parent peer editor window from
a subpeer. As stated in requirement FR01, only one service per wiring will be supported
in the MVP implementation of the PMMT.

The PMMT aligns all its items in the graphical editor on a grid, to ensure that there is
enough space for the items to display their information and keep them neatly arranged.

Links connect to containers of either their own enclosing peer or its subpeers. Users can
drag them around freely within the peer and when they are connected to a container, the
links will dock to the container. This behavior distinguishes two cases, namely whether
the link is connected to a container or not. If connected, the links try to keep their
vertical position relative to the wiring. If not connected on the other hand, the links
keep their relative position to the wiring. This enables designers to draw the model and
move wirings around later to, e.g., increase model clarity without changing the graphical
representation of the moved wiring.

Newly created links get the next free number for their type (guard or action) within the
wiring. This guarantees that the numbers are unique. They can be rearranged within
the wiring as it best fits the graphical model representation. However, since it is not
expected that they will be created exactly in the order that they shall be executed, there
will be user actions to change the number of individual links as well as renumbering all
links within the wiring according to their positional order.

According to requirement FR01, the selector, assignments, and properties of links are
internally not modeled as abstract data structures but as plain strings. This enables
users to design models with all necessary information, but they are required to take their
target code generator into account, because they can only use features by their target
Peer Model runtime.

Entry types are not edited within the graphical editor but rather in a separate window,
which provides a tabular view of all entry types in the current project and their respective
contents. A configuration file specifies the available system properties.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Technologies

5.2 Technologies

The choice of programming language and GUI toolkit to use for the implementation
of the PMMT needs to consider the following factors, which are partly based on the
requirements in Chapter 4:

Extensibility The chosen programming language needs to provide a way to extend
the final product to fulfill NFR01. This means that either it is possible to deliver
compatible executable extensions for the already deliverd product later on, or that
extension points for such a matter need to be developed explicitly if such a system
is not provided by the programming language.

Maintainability NFR03 requires the chosen technologies to enable the software devel-
opers and architects to design the program in a modular way, which will support
its later maintainability.

Performance The implemented program needs to be responsive at all times to fulfill
NFR06. This means that the GUI must provide feedback to users as fast as possible,
because of user’s typically very low threshold for unresponsiveness.

Portability The programming language and GUI toolkit need to be available on multiple
platforms and should support the developers by keeping the code explicitly written
for each platform at a minimum. The focus should be on a single code base
maintained by the developers that results in executable programs on multiple
platforms to fulfill NFR04.

For the development of the Peer Model Monitor (cf. Section 2.7) an evaluation of suitable
technologies for a graphical program has been conducted in [26]. The same choices for
programming languages (C#, C++, and Java) and GUI toolkits (.Net, Qt, and JavaFX)
are also viable for this thesis and will be considered for the implementation of the PMMT.
Javascript and Python will be considered as additional possible programming languages.
Since the choice of GUI toolkit often dictates the programming language to use [27], one
cannot be chosen without considering the other, which leads to the evaluation of the
combinations in the following sections.

5.2.1 C# / .Net

Although .Net1 is available cross-platform, the native user interface only supports Mi-
crosoft Windows and Apple macOS. As such it is not yet a viable alternative for this
thesis, because GNU/Linux users would not be able to use the PMMT without consider-
able effort (e.g. using a virtual machine, which in turn would influence the application’s
performance for the worse).

1https://dotnet.microsoft.com/

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

5.2.2 C++ / Qt

C++ is a compiled language with static typing and compilers available for all major
platforms. Together with Qt2 this programming language and GUI framework support a
lot of platforms from a single code base. The approach can be summarized as write once,
compile anywhere. Qt provides a lot of rich widgets and user interface components, as well
as abstractions to operating system and hardware, which means that it is quite easy to
have a single code base with very little code for explicitly supporting different platforms.
This means the code compiles for every platform and produces an executable application
specifically for that platform, and thus fulfills the portability requirement (NFR04). There
is comprehensive and detailed documentation available for all its individual modules.
Although most of the code is standard C++ code in Qt, there are some nonstandard
extensions to support a more concise and decoupled way for events, packaging of resources
directly in the executable, and the user interface designer of Qt Creator3. These extensions
are the Meta Object Compiler (MOC), Resource Compiler (RCC), and User Interface
Compiler (UIC), which themselves create standard C++ header and source files that
need to be compiled and linked together with the other files they resulted from. In C++
the programmers are responsible for the memory management. That means that memory
is explicitly allocated and also freed. This might seem a bit tedious at first, but with the
C++ programming technique called Resource Acquisition Is Initialization (RAII)4, the
lifetime of resources like memory, open files, open sockets, etc. is bound to the lifetime of
an object, which in turn frees the resource in its destructor. Additionally, this explicit
resource handling results in better memory and runtime efficiency [27], because resources
are freed as soon as they are not needed anymore, and there is no additional runtime
needed for the garbage collector.

5.2.3 Java / JavaFX

Java is also a compiled language with static typing, but in contrast to C++ it does
not compile to machine code. Instead it is compiled to Java bytecode, which is itself
interpreted by the Java Virtual Machine (JVM). This means that all platforms that have
an implementation of the JVM can execute the compiled program, which results in a
compile once, run anywhere approach. JavaFX 12 supports all major platforms and also
contains a lot of features and widgets. Since Java abstracts the hardware with its JVM,
it is quite easy to support multiple platforms and operating systems. On the other hand
the additional layer of the JVM between compiled bytecode and machine code naturally
takes a toll on the runtime efficiency, because the JVM has to interpret the bytecode
[11, 27]. Since Java uses garbage collection for the disposal of allocated memory that
is not used anymore, this does not only have an impact on the runtime efficiency, but

2https://www.qt.io/
3https://www.qt.io/development-tools
4Resources are acquired in the constructor of an object and freed in its destructor. Each object

encapsulates one resource and as such is the handle of this resource. For example, smart pointers use this
to prevent memory leaks.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Technologies

also on memory efficiency, because the unused memory is only freed in the next garbage
collection run. Until then, the program still owns the unused memory, which continues
to count as consumed memory.

5.2.4 Javascript / CSS / CSS

Javascript (JS) is, as the name predicts, a scripting language that, together with Hypertext
Markup Language (HTML) and Cascading Style Sheets (CSS), is a core technology of
the World Wide Web. JSON was used primarily in the browser, until, with the release
of Node.js5, a JSON runtime environment outside the browser was available. This
was the beginning of the so-called Javascript everywhere paradigm, which enabled the
development of a complete web application, frontend and backend, in JSON. In the
beginning Node.js started with Google’s open source JSON engine V8, which together
with an event loop and an I/O library are the foundation of the runtime environment.
Since Node.js interprets the JSON code directly, this approach could be summarized as
write once, run anywhere. For the development of desktop GUI applications there are at
least two possibilities: Electron6 or NW.js7. Both of them are GUI frameworks and use
the rendering engine of the Chromium project to display CSS, CSS, and JSON websites
as a graphical desktop application. This also reveals a drawback of this approach, namely
that this application ships a full browser, which is composed of Chromium’s rendering
engine and the V8 JSON engine. Not only does this increase the size of the resulting
application, but also the startup time is much worse compared to a similar application
written in C++ or Java. Additionally, the interpretation of the JSON code is significantly
slower compared to a compiled language like C++. Another drawback of essentially
shipping a web browser is that Chromium has a rather large memory footprint. The
simple Electron demo application8 that displays a window showing supported features
uses around 100 MB of memory and 150 MB of disk space. In comparison the final
implementation of the PMMT with the bakery model from [50] consumes about 60 MB
of memory with the Bakery Peer open and about 12 MB of disk space.

5.2.5 Python / PyQt

Python is an interpreted language with dynamic typing. The reference implementa-
tion CPython is available on all major platforms. CPython is itself written in the C
programming language, and compiles Python code to an intermediary bytecode similar
to Java, that is then executed by CPython’s virtual machine. Additionally, there are
other implementations like PyPy, which complies with Python 2.7 and 3.5, but features
a just-in-time compiler (JIT) that gives it a significant performance improvement over
CPython [78]. Qt is natively developed in C++, but also offers language bindings for
Python, which provides all the features described before. In Python developers also

5https://nodejs.org
6https://electronjs.org/
7https://nwjs.io/
8https://github.com/electron/electron-api-demos

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

do not need to concern themselves with explicit memory management, because it is
done automatically and transparently. CPython uses reference counting and garbage
collection internally and frees memory as soon as it is not referenced anymore, which
is similar to using RAII in C++. Since Python is not compiled to a single executable
file, distribution of a finished program is not as simple as passing along the compiled
program in C++. There are various ways to distribute Python programs. One would be
the Python package manager pip, which is platform independent, but requires an already
present and configured Python installation on the target computer. Another is to create
individual setup packages for each targeted platform, which can be quite complicated,
since the setup frameworks are different for the major platforms.

5.2.6 Conclusion

Since C# / .Net was not considered due to the fact that GNU/Linux support is not
yet possible, and all the remaining candidate pairs support the extension of already
delivered applications, they have been compared in terms of runtime efficiency and
memory efficiency. Dalheimer specifically compares Qt and Java in [27] and Back and
Westman compare programming languages used in Google Code Jam in [11]. The result
of the candidate’s comparison is shown in Table 3. Based on these results and the
previous experience and preference of this thesis’ author C++ / Qt has been chosen as
the programming language and GUI framework to build the PMMT.

runtime memory executable
efficiency efficiency size

C++ / Qt ∗ ∗ +
Java / JavaFX + ∼ ∗

Javascript / CSS / CSS ∼ − −

Python / Qt + + ∗

∗ great + good ∼ medium − bad

Table 3: Comparison of programming languages and GUI frameworks

5.3 Architecture

The PMMT is implemented with a layered architecture to make future changes in the
software as straightforward as possible and thus also satisfy NFR03. The idea behind
the layered approach is that each layer can only access the layers below, but not the ones
above. Additionally, the code is partitioned into modules to separate their concerns. This
modular structure of the PMMT’s implementation is shown in Figure 30. The individual
modules are represented by boxes with their name in it. Some of the modules are divided
further into submodules, to also separate the concerns within the module.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Architecture

main

editor

items command

canvas widgets

ui

dialog window

frame widgets

adapter utils

mvc

init

project

plugin

framework plugins

interface

model

modeldata

exceptions serialization

common log resources

external libraries

libavoid cereal spdlog

Qt

C++ STL

Figure 30: Architecture and module structure of PMMT

The modules have been separated with C++ namespaces in code and by building
individual static or dynamic libraries in the build process. This has also been done where
feasible for the external libraries, which are at the bottom of the architecture stack and
on which the rest of the PMMT implementation may depend.

The choice of C++, its Standard Template Library (STL), and the Qt framework have
already been discussed in Section 5.2, and the choice of other external libraries (libavoid,
cereal, and spdlog) will be discussed in detail in Section 5.4. The remainder of this

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

chapter focuses on the modules implemented in PMMT and their respective concerns.

5.3.1 Modular Structure

In Figure 30, starting from the bottom right on top of the external libraries are the
modules common, log, and resources. The first contains common utility constructs that
can be used all over the rest of the project, e.g. a RAII helper class for freeing resources
on destruction, fuzzy floating point comparison functions, or a wrapper class for used
file system paths. The log module contains the logging utilities and acts as a wrapper
around the external logging library, which can therefore easily be exchanged with another
one. At the moment the resources module only contains a wrapper class for the icon files,
which are compiled into the executable. That class also is responsible for instantiating
the icon objects exactly once for the running executable.

On the next layer is the exceptions module, which contains the class hierarchy of exceptions
to be thrown if unexpected error cases are encountered during runtime. These exception
classes also use the logging facilities to record all errors in the log. The serialization
module contains classes for reading and writing data in a persistent format that is used
to load data from and save data to disk. This format is versioned, thus supports data
compatibility and ensures that newer software versions can read files saved in older
versions. Additionally, there is a base interface for scanning all written data, which can
be used to search for specific values.

The following layer contains the model module, which comprises all classes that encap-
sulate the data elements (cf. Figure 31). The Element class is instantiated for every
single item in the designed model, e.g., for every peer, wiring, service, link, and subpeer.
Additionally, every entry type and system property are stored as single Element instances
as well as one instance for the project settings. The generic data available for every type
is stored directly in the Element class. Each item has a unique Key within the project,
which is stored in the field key and contains its type and unique number within the type.
The available types are mapped by enumeration Type. The key is used for references
between items and thus represent the model hierarchy via the fields container (top-level
container element), parent (direct parent element), and reference (generic referenced
element). The changesCounter and deleted fields store meta-information about the
element for the undo support. The uuid field stores an universally unique identifier,
which can be used in the future to match an element across project boundaries where it
might have different keys in different projects. The instanceNumber is generally used
for the numbering of elements within a parent, which currently means the guards and
actions of a wiring. The attribute field is used to set a specific attribute of an element,
e.g., whether a container is a PIC or a POC. The name field stores a user-defined name
of an element, while the id field stores a programmatically generated identifier. The
interface IElementDetail is used by the element to store the detail data for its specific
element type. This detail data is contained in the submodule modeldata. There is one
implementation class for each element type that needs detail data, which cannot be
represented by the general parts of the element class. There are also container classes for

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Architecture

the model elements and keys that enable organizing multiple model elements, like lists,
sets, or hash maps, and a class for building the display names of single elements.

model

modeldata

Element

– attribute : Attribute
– changesCounter : uint
– container : Key
– deleted : bool
– detail : IElementDetail
– id : string
– instanceNumber : uint
– key : Key
– name : string
– parent : Key
– reference : Key
– uuid : Uuid

<getter and setter>

≪interface≫

IElementDetail

+ clone() : IElementDetail

Key

– number : uint
– type : Type

<getter and setter>

≪enum≫

Type

ProjectSettings
Property
EntryType
Peer
Container
SubPeer
Wiring
Action
Guard
Service

EntryTypeData LinkData PeerData

ServiceData WiringData

ProjectSettings Property

Figure 31: Class diagram for modules model and modeldata

On top of the model sits the project module, which contains the classes responsible for
organizing the data of a whole project. Figure 32 shows the class diagram for the module.
The Instance class is a handle for the stored project that is used throughout the code to
read from and write to the project. The Tx class and its specializations, ReadOnlyTx
and UpdateTx, are used together with a project instance to manage read and update
transactions. The Query class is used to read specific elements by their keys or query all
elements from the project that match specified filter criteria. The last group of classes in
this module is concerned with delivering notifications about data changes in the project.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

It is comprised of the Notifier class, which is part of every internal project. It uses
instances of the Notification class, which are sent to widgets that are connected to
the notifier. The Receiver is a helper class that is used by the widgets to handle the
connection to a project’s notifier. Finally, the IObserver interface is implemented by the
widgets that want to receive notifications through the receiver. The internal package
contains the classes responsible for the in-memory storage of the model elements of the
current project. The Element class stores a model element in the state of a specific
transaction and the needed information like its transaction identifier. The next layer, the
Entry class, contains one element in all historical states that are still needed by open
transactions, which are used, e.g., for handing over a consistent state of the project to
another function. The Type class contains all entries of a specific element type and the
Project class stores all elements of one project partitioned into their respective types.

project

internal

1 n 1 * 1 1..k

1

1

≪use≫

≪use≫

≪use≫

≪use≫

≪use≫

≪use≫
*

0..1

Project Type Entry Element

Notifier

Instance

Query

Tx

ReadOnlyTx

UpdateTx

Notification

IObserver

Receiver

Figure 32: Class diagram for the project module

The plugin module provides the PMMT’s plugin interface for extensions in the interface
submodule, which is explained in more detail in Section 5.3.2. It also contains the
implementation of the plugin framework that consumes the implemented plugins through
their interface. This includes the plugin manager responsible for loading the plugins into
memory from disk and providing access to them for the rest of the PMMT. Further, the
Peer Model factory is implemented in this module, which creates a copy of a PMMT
project in the form that is specified by the plugin interface and then passed to the plugins.
This is to ensure that plugins do not have direct access to the internal project data of
the PMMT.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Architecture

The init module is responsible for initializing newly created projects. This means, creating
the default data within the empty new project required by a fully initialized and running
PMMT application. At the moment this includes creating a project settings element
and all the properties specified in the property configuration file of the installation
directory. An example of this configuration file is shown in Table 4. The file is a plain
text tab-separated file, where the heading is a comment line starting with a # sign and
with the following column contents:

Type comma-separated list of item types for which this property is available

ID unique property identifier

Short identifier abbreviation (intended for most often used ID’s)

Description free text describing the property’s semantics

Data Type this property’s data type

Value the default value, if no other value is explicitly set

Type ID Short Description Data Type Value

Entry,Link dest d Destination Address
Entry,Link dest.exc Destination Exception Address
Entry,Link dest.iop Destination IOPeer Address
Entry,Link ttl tl Time to Live Duration 0
Entry,Link tts ts Time to Start Duration 0
Link mandatory mn Mandatory Bool true

Table 4: Example configuration file for Peer Model properties

The next layer contains the module mvc, which stands for the MVC-Pattern [31]. It
comprises classes implementing Qt’s model/view architecture framework9 depicted in
Figure 33. The Qt abstract item model is an abstract base class for the model part of
this framework. The model classes implemented in this module provide the model part
of the framework for the PMMT project data. This ensures simple rendering in the Qt
standard view classes like list views, tables, or tree views, as well as editing the data via
Qt standard delegates like check boxes, text edit fields, or combo boxes.

The ui module is the first layer having a dependency on Qt’s graphics classes, as it is
also responsible for creating the PMMT’s graphical user interface. This module contains
the base classes for all widgets and windows used in the PMMT. This module is further
divided into submodules to keep their respective concerns separated and their interfaces
clear. The utils submodule contains helper classes abstracting drag and drop data,

9https://doc.qt.io/qt-5/model-view-programming.html

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

Figure 33: Overview of Qt’s model/view architecture (taken from 9)

keyboard shortcuts, or zooming data, to be used by the other ui classes. The adapter
submodule has classes for the abstraction of communication between widgets in the
same window. For example, the buttons in a window-specific toolbar execute adapter
commands that have been registered by other widgets before. The frame module contains
the more specific base classes for the different window types that make up the application
frame, like MDI windows, docking windows, or window toolbars. Finally, the dialog,
widget, and window submodules contain the classes for the specific implementations of
the respective items. This includes the main window, all the menus, toolbars, docking
and MDI windows, and dialogs.

On the next layer is the editor module, which contains the implementation of the actual
graphical Peer Model editor widget. It comprises the widget itself, the wrapper classes for
Qt’s graphics scene and view, the editor toolbar, a customized scroll bar implementation,
and clipboard and grid handling functions. The editor’s widgets submodule contains
implementations for editor-specific widgets to be shown in windows of the ui module. The
canvas submodule comprises classes implementing a scrollable canvas within the graphics
scene, which enable the scrolling of a graphic item’s contents. This was implemented as
a trial whether it is useful to scroll the contents of a peer, but was ultimately disabled.
It remains in the code base, because a peer’s content still is a canvas on which users
place the contained items. The support for undo and redo actions is based on Qt’s undo
framework10, which provides classes for undo commands, stacks, groups, and views. The
command submodule contains the implementations of specific undo commands for each
action in the graphical editor. Every MDI window has its own undo stack, where the
command implementations are stored as long as it is open. The undo group provides
a single pair of undo/redo actions for all grouped undo stacks, and thus for the whole
application. The undo view is currently unused, but could be used in the future to

10https://doc.qt.io/qt-5/qundo.html

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Architecture

display the undo actions in an undo stack. Finally, the graphic items that represent the
individual elements of a Peer Model with which users interact in the graphical editor are
implemented in the items submodule.

On the topmost layer is the main module, which contains the main function and is
responsible for implementing the startup function and preparing the application, which
includes preparing the application fonts and the default font size, setting application
information, parsing command line arguments, loading available plugins, and finally
opening the main window.

5.3.2 Plugin Interface

The plugin mechanism in PMMT is built on top of Qt’s plugin mechanism11 for extending
Qt applications. This mechanism uses a shared library for each implementation of a
single plugin. These shared libraries are different for each platform (as are the application
executables themselves, cf. Section 5.2.2), e.g. dynamic link library (dll) on Microsoft
Windows, dynamic library (dylib) on Apple macOS, or shared object (so) on GNU/Linux.
These shared libraries are then loaded during runtime of the PMMT, and can thus be
easily installed even after the initial installation of the application.

Since the shared libraries contain executable code specific to each platform, they have to
be compiled for each platform individually. Consequently, a different shared library needs
to be distributed depending on the platform the PMMT is installed on. For the future,
a mechanism to distribute a file containing shared libraries for all supported platforms
should be considered, to make plugin distribution easier for end users.

The infrastructure within PMMT consists of several parts that work together:

• a plugin manager that discovers and loads shared libraries in the PMMT installation
during application startup,

• an interface that defines the possible functionality of a plugin implementation,

• an interface for a plugin collection, to support distributing multiple plugins in a
single shared library, and

• a data transfer model, which contains the available information the plugin imple-
mentations can work with.

Figure 34 shows the interfaces that make up the plugin interface to be implemented
by a developer. The base interface IPlugin describes the basic features of the plugin,
which are its name and identifier. Additionally, there are methods for editing and storing
preferences specific to this plugin. Then, there are two derived plugin interfaces with
specific features for each use case: IModelChecker and ICodeGenerator. The model

11https://doc.qt.io/qt-5/plugins-howto.html

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

plugin

10..*

≪interface≫

IPlugin

+ getId() : QString
+ getName() : QString
+ getPreferences() : QByteArray
+ getPreferencesWidget() : QDialog
+ hasPreferences() : bool
+ setPreferences(QByteArray) : void

≪interface≫

ICodeGenerator

+ generate(dto::PeerModel) : bool

≪interface≫

IModelChecker

+ check(dto::PeerModel) : QList<dto::Issue>

≪interface≫

IPluginCollection

+ getPlugins() : QList<IPlugin>

Figure 34: Class diagram of the plugin interface

checker plugin has a single method for checking the passed data transfer model for e.g.
errors, design inconsistencies, or unsupported features, which returns a collection of
discovered issues to be reported back to the user. The code generator plugin on the other
hand currently has a single method for creating the code from the passed data transfer
model. The plugin is responsible to store the generated code on disk.

The IPluginCollection interface is a workaround for Qt’s plugin mechanism limitation
of only one top level plugin per shared library. It essentially just returns a list of base
plugins that are contained within this shared library. Each of them has to fully implement
either the model checker or code generator plugin. This enables plugin developers to ship
related plugins in a single shared library, for example the code generator for a specific
PM implementation and the according plausibility checker, which ensures that only PM
features are used in the model that are supported by the PM implementation.

Currently there is one configuration file for the PMMT, which contains the PM system
properties and has already been explained in the description of the init module.

5.4 Third Party Libraries

For certain parts of PMMT implementation, third party libraries have been incorporated,
because there is no need to reinvent the wheel in areas that are non-essential to this thesis’
research. Therefore, the following sections will each explain specific parts of PMMT that
have been implemented based on a third party library.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Third Party Libraries

5.4.1 Logging

Log files are usually the first place to look for errors, when an application does not do
what is expected of it. Therefore having log files and writing meaningful messages in
them is an important part of supporting users, when there is no way to access their
machine, let alone debug the application.

There are multiple possibilities for the implementation of the logging mechanism in
PMMT. The first would be the naive approach to implement it from the ground up only
depending on facilities provided by C++ itself. Another one is to use logging classes of
the Qt framework, which have basic support for logging to the application’s console, but
all handling of log files, their rotation, and customized configuration of where the logs
are written to would also have to be developed from the ground up. A third approach is
to use an existing logging library that already supports all the necessary features.

The naive C++ only and the Qt logging approach were rejected, due to the fact that
there are available logging libraries that have been rigorously tested, are fast, and easy
to use. Therefore, spdlog12 was chosen as logging facility. To minimize the dependency
on a specific library, spdlog is not directly used by the rest of PMMT’s code. Instead
a wrapper class is used throughout PMMT’s code base to make an exchange of spdlog
against another library as easy as possible, should the need arise.

Spdlog can be used as a header-only library, which means it only consists of C++ header
files and will be compiled completely into the resulting application binary file. Another
possibility is to link spdlog as a static library, which enables faster compile times, but
makes the setup more complicated. In both cases spdlog depends on a compiler supporting
the C++11 standard, which enables customizable, feature-rich, and type-safe formatting
based on C++ template parameter packs. Further, spdlog provides support for different
log targets (e.g. to rotated log files, to the console, to syslog) as well as custom log
targets that can be tailored to the application’s exact needs. Finally, the log messages
can be filtered based on their severity, and the thresholds can be modified during compile
time as well as runtime.

5.4.2 Serialization

To enable users to save their designed models and resume working on them at a later time,
the PMMT’s project data needs to be saved to and loaded from disk. This transformation
of C++ objects in memory to a format that can be portably saved to disk or transmitted
over a network, and back to equivalent C++ objects from that portable format is called
serialization.

Like in the previous chapter with logging, there are again multiple possibilities to
support serialization in the PMMT. Two approaches have been rejected early on: the
naive implementation from the ground up based only on bare C++ features, and an
implementation based solely on Qt’s datastream, XML stream, or JSON objects. In

12https://github.com/gabime/spdlog

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

comparison to using a library, these could make it harder to change the serialization
format in the future, or to provide portability across platforms with, e.g., different
endianness.

Since the approaches to implement from the ground up were rejected, several libraries
were considered as basis for PMMT’s serialization:

• Apache Avro13

• Apache Thrift14

• Boost.serialization15

• cereal16

• MessagePack17

• Protocol Buffers18

Apache Avro, Apache Thrift and Protocol Buffers require an additional build step with
their own compiler to create C++ header and source files from their own CTL, which is
used to describe the objects to be serialized. Since this leads to own serialization classes
that contain the data to be serialized, there are two options of using them. Either keep
them as they are and require an additional step to copy data to and from the classes
used in the PMMT project, or incorporate the PMMT project classes into the respective
serialization classes and lose the clearly separated interface. Both options are suboptimal
and therefore these libraries have been rejected.

MessagePack is a binary data serialization format that is supported by over 50 imple-
mentations in different programming languages and environments. It does not need a
CTL file to describe the serialized objects, but instead the data to be serialized is written
into a message pack stream one field, member, or variable at a time. There is support
for serializing custom classes at once, but since MessagePack is a serialization format,
most C++ implementations do not explicitly support versioning of the serialized data
and instead leave this to the user.

Boost.serialization and cereal are similar in the way these libraries are used to serialize
structures. They both do not need CTL descriptions of the objects to be serialized and
can serialize structures to a binary format and XML. Further, they support versioning of
the output to ensure data compatibility with future application versions. They are able
to serialize single fields as well as custom structures or classes at once, even for classes
that cannot be altered, by providing a way to extend the serialization non-invasively.
Additionally, cereal is a header-only library like spdlog and supports serializing to a
portable binary format and to JSON.

Based on the comparison in Table 5, cereal is used to serve as base library for the
serialization of PMMT’s project data. The decisive features are that there is no need for

13https://avro.apache.org/
14https://thrift.apache.org/
15https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
16https://github.com/USCiLab/cereal
17https://msgpack.org/
18https://developers.google.com/protocol-buffers/

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Third Party Libraries

a CTL and thus an extra build step, it can be used non-invasively with existing classes,
it supports portable binary, JSON, and XML formats, it supports versioning for the
individual serialized classes, and it is a header-only library that is compiled directly into
the binary, without the need to link another static library. Listing 5.1 shows how a model
element, in this case a guard link, is stored in JSON format using cereal. The detail
data specific for each element type shows how cereal handles polymorphic pointers. A
polymorphic_id together with a ptr_wrapper are stored, and the latter then contains the
actual data.

1 {

2 "key": { "type": "Guard", "nr": 4 },

3 "changesCounter": 58,

4 "deleted": false,

5 "id": "",

6 "name": "",

7 "instanceNr": 3,

8 "uuid": "{1065da92-9967-445e-939e-0d8d3e57df8a}",

9 "container": { "type": "Peer", "nr": 1 },

10 "reference": { "type": "Container", "nr": 1 },

11 "parent": { "type": "Wiring", "nr": 3 },

12 "attribute": "Undefined",

13 "hasDetail": true,

14 "detail": {

15 "polymorphic_id": 6,

16 "ptr_wrapper": {

17 "valid": 1,

18 "data": {

19 "bLeft": true,

20 "entryType": { "type": "EntryType", "nr": 4 },

21 "count": 10,

22 "selector": "",

23 "assignments": "",

24 "properties": "",

25 "sourceType": "LinkSource_Take",

26 "destinationType": "LinkDestination_Write",

27 "position": { "x": 0.0, "y": 80.0 },

28 "gridHeight": 2,

29 "canvasPositionOtherEnd": { "x": 0.0, "y": 380.0 },

30 "shapeEndGridYOffset": 1

31 }

32 }

33 }

34 }

Listing 5.1: Serialization in JSON format of a model element

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Design & Implementation

Apache Apache Boost Protocol
Avro Thrift serialization cereal MessagePack Buffers

No CTL
Non-invasive
Formats

Binary
JSON
XML

Portable ∼

Versioning
Header-only

fully supported ∼ partially supported

Table 5: Comparison of third party serialization libraries

5.4.3 Link Routing

An integral part of the Peer Model designs are the wirings and their links, which are
connected to containers of either their parent peer or direct subpeers of them. As they
are the most important part of the logic within a peer, the links should have as little
crossings as possible to enable a clear layout and reduce complexity. This can either be
achieved by letting designers place the links themselves, or by providing an algorithm
that takes care of the link routing. The manual approach implies that users will have
to manually correct the links every time they rearrange peer contents. The algorithm
approach on the other hand will take care of routing the links to their connected point. It
further ensures that links and other peer contents do not overlap each other. Therefore,
the whole peer logic is visible to the designers.

Such an approach to automatic line routing while avoiding obstacles is presented by
Wybrow in his doctoral thesis [90]. The resulting library, called libavoid, together with
libcola for constraint-based graph layouting and two other libraries form the Adapta-
grams19 library of tools for adaptive diagrams. According to the website, the libraries
are also used for, e.g., Inkscape20 (a vector graphics drawing tool) and Graphviz21 (a
graph visualization software), both of which are free and open source software.

In the PMMT libavoid is used for routing the links between wirings and their respectively
connected containers. To that end, each peer has an associated libavoid router that is
concerned with finding the best connection from the link port to its connected container.
Routed links avoid the area of wirings and subpeers by adding these areas as obstacles
to the router. This means the areas of wiring bodies, which are comprised of the wiring’s

19http://www.adaptagrams.org/
20https://inkscape.org/
21https://www.graphviz.org/

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Third Party Libraries

rectangles with their name, the link ports with their identifiers, and the service rectangles,
as well as the areas of subpeer items. Link connections are added to the router as
connectors, which are then routed in their shortest possible, orthogonal path to their
respective destination point, while avoiding overlaps with other links or obstacles. This
makes it possible to reroute all links when obstacles or links are moved within the peer,
and thus enables links to take better routes if they are not obstructed anymore.

The routing algorithm also has a feature called nudging, which moves overlapping
connectors apart by a small distance. This feature is not as useful in the PMMT as it
is in other drawing tools, because the Peer Model displays the link parameters along
the connector. In an attempt to get around the nudging and still retain the automatic
routing feature, while keeping the connectors from overlapping, all the coordinates in
the graphic editor are converted from Qt graphic scene to grid coordinates. The grid
coordinates are visualized as dots in Figure 35.

Figure 35: Dotted grid coordinates in the editor

The dots represent the points in the grid, which are 20 pixels apart in each direction. So
if a wiring has a height of 80 pixels in the graphic scene, it is 4 grid units in height and
added to the libavoid routing algorithm with the grid unit height. This results in links
always being apart at least 1 grid unit, because links are only routed directly on the grid
coordinates, and thus ensuring enough space for the routed link’s information.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Visual Modeling of Peer Model

Applications

This chapter first presents changes to the existing Peer Model visualization of links and
then the visual modeling workflows for creating, editing, checking, and generating code
from Peer Model projects. The main point of consideration is the sequence of actions and
events of these workflows in the Peer Model Modeling Tool. Additionally, this chapter
also discusses alternative approaches to the ones actually implemented in the PMMT,
which have been considered, but have ultimately been discarded or postponed to future
work due to the aim of creating an MVP.

6.1 Visualization

Most of the Peer Model visualization in the PMMT conforms to previously presented
graphical notations in [52, 53, 54]. One essential thing that has changed is how the
different link operations are distinguished. Earlier publications modeled them with
different arrow heads and additional textual operation types along the link connector
(see Figure 36).

Figure 36: Visualization of links in [53]

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Visual Modeling of Peer Model Applications

In comparison to this, the textual operation type was removed in an attempt to clear up
space along the connector for the link parameters. Additionally, the link operation was
split into source and target operations, such that now there are three different operations
each that can be arbitrarily combined. They are each visualized at the according end of
the link connector. Guards have the source operation at the container side and target
operation at the wiring side of the connector, and actions vice versa. Figure 37 shows how
the PMMT displays links with the resulting changes and Table 6 lists the link operations
of each link in the picture.

Link Source Operation Target Operation

G1 take delete
G2 read write
G3 create shift

A1 read shift
A2 create write
A3 take delete

Table 6: Link operations in Figure 37LinkOperations

LinkOperations

A3
C

A2 * B

A1 * A

G3* C

G2* B

G1
A

Figure 37: Visualization of links’ source and destination operations

6.2 General User Interface

6.2.1 Starting the PMMT

Initially, users have to choose if they want to start a new Peer Model project, or continue
working with an existing one. For that purpose the project dialog shown in Figure 38 is
displayed when opening PMMT. If the user chooses to create a new project, the main
window will be displayed immediately. If an existing project is opened, first the native
operating system’s file open dialog is displayed, where the desired PMMT project file is
selected. After that also the main window is displayed.

Other possible approaches of greeting users after application start include showing the
main window with a welcome page or showing just a welcome window. This page or
window should offer more options than just open or create, for example opening the last

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. General User Interface

recently used projects, help topics, or a news feed of recently added application features.
For now the project dialog is sufficient, but this should be considered as a future feature.

Figure 38: Create or open project dialog

6.2.2 Main Window

The main window is shown in Figure 39, with the integral parts of the PMMT: a) the
menu bar, b) the tool bar, c) two docking windows, and d) the MDI area.

Figure 39: PMMT main window

6.2.3 Menu Bar

The menu bar at the top in this case is not part of the main window itself, because in
Apple macOS and some Linux desktop environments a global menu bar is used rather
than an individual menu bar in each window like in Microsoft Windows. The menu bar
contains entries for saving the current project and for controlling the currently shown
docking windows (see Figure 40).

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Visual Modeling of Peer Model Applications

Figure 40: File and view menus

6.2.4 Tool Bar

A tool bar (cf. Figure 39) with the most commonly used actions in Peer Model editing is
displayed either right below the menu bar or at the top of the main window, depending
on the operating system’s use of a global or individual menu bar. The icons from left to
right trigger the following actions:

1. open an existing project

2. save the current project

3. undo the last action

4. redo the last undone action

5. create a new peer and open the editor

6. open the entry type editor

7. open the plugin manager

8. start code generation

6.2.5 Tool Windows

Figure 39 also shows two tool windows docked on the left and at the bottom of the main
window. All the tool windows can be closed and opened via the previously described
view menu in the menu bar. They can also be docked at all sides of the MDI area. If
there is not enough space on the display (e.g. small notebooks), the tool windows can
also be stacked on top of each other. This is shown in the Toolbox window of the figure,
where at the bottom of the window a tab bar with the window titles is displayed. The
desired window can be displayed by clicking on the according tab. It is also possible to
undock the tool windows and move them around freely on all available screens.

6.2.6 MDI Area

In the MDI area the editor and plugin manager windows will be displayed. MDI stands
for Multiple Document Interface and it implies that each peer is displayed and edited in
its own MDI subwindow, which is displayed in the MDI area. Usually the MDI area will
take up the most display space when working with Peer Models. Currently MDI windows
can only be displayed in the MDI area of the main window. Future work on the PMMT
should enable displaying MDI windows in separate MDI areas and thus providing better
support for multiple screens.

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Hierarchical Model Overview

6.3 Hierarchical Model Overview

The model explorer gives the user a hierarchical overview of the currently open project
(see Figure 41). The tree view shows a parent node for peers and one for entries. For
each peer that exists in the project, a node is created below the peer parent node. All
child items of the peer (wirings, links, services, and subpeers) are again displayed at their
hierarchical position in the model. Users can jump from the tree item to the actual item
in the editor by double clicking on it. This will open the editor window of the according
peer, select the item, and make sure it is visible in the editor. Further, items that allow
a user-defined name can also be renamed in the model explorer by clicking its name once
when already selected.

The model explorer could be extended in future work to increase its usability. For example,
when working in the editor, the model explorer could mirror the current selection and
also select the item that is currently selected in the editor. Another possibility would be
to extend the drag and drop features by enabling to drag an entry type onto a link to
set its entry type property, or onto a wiring to directly create a link with the dropped
entry type. Additionally, a dragged wiring could be copied and created in the peer it is
dropped into.

Figure 41: Model explorer window
85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Visual Modeling of Peer Model Applications

6.4 Managing Entry Types

The entry editor window (shown in Figure 42) can be opened via the corresponding tool
bar button. The window shows two tables next to each other, the one on the left lists the
currently available entry types, the one on the right lists the properties of the selected
entry type on the left.

The tool bar on the left side of the window has an add button and a delete button. They
are dependent on the currently active context, which means they add a new entry type
when the left table is active, and a new user-defined property for the currently selected
entry type when the right table is active. The delete button works analogously for the
currently selected entry type or user-defined property.

Properties in the Peer Model can have subproperties and they are represented with their
parent properties ID and a dot as prefix, e.g. “dest.exc”. Another approach would be to
change the right table to a tree view with multiple columns, where the subproperties are
represented as child nodes of their parents.

The entry editor window is designed as a master-slave view, where the left table showing
the entry types is the master table and the right table is the slave table, which shows
the properties of the entry type that is currently selected in the master table. The
columns in the slave table correspond to the system property configuration file explained
in Section 5.3.1. The column Sys shows if this property is a system property, which is a
read-only information for users. The identifier of a property in the ID column can be
nested by using a “.” as separator and a list entry for parent properties is not necessary
to create sub-properties. Columns ID, Value, and Description are edited via text fields
similar to spread sheet applications. In the Datatype column users can choose from a list
of available data types from a drop-down box. An alternative to that design would be to
only use a single tree view with columns, where each entry type is a parent node in the
tree, and all its properties are child nodes.

Both of the described alternatives could be implemented in future work, possibly with an
option for users to select their preferred view. Additionally, future work should consider
adding support for further data types like user-defined enumerations, lists and sets.

6.5 Creating and Opening Peers

New peer items can be created by clicking the icon with the peer symbol in the tool bar
of the main window (see Figure 39). The editor for the newly created peer will then be
displayed in the MDI area. Existing peer items are opened by double clicking them or
one of their content items in the model explorer.

A future extension could provide a search field that provides a full-text search within the
current project, from where the existing peers could also be opened.

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.6. Creating and Editing Peer Contents

Figure 42: Entry editor window

6.6 Creating and Editing Peer Contents

Chapter 2 already discussed some different workflows of creating new model items in
the related modelers and Section 5.1 presented the drag and drop workflow as a design
choice for the PMMT. The Toolbox shown in Figure 43 serves the purpose of a palette
view, from which new items can be created.

Figure 43: Toolbox with peer content items

Additionally, the context menu of a peer’s or subpeer’s name field provides an action for

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Visual Modeling of Peer Model Applications

replacing this peer’s contents with the contents of another peer (shown in Figure 44). This
is a first approach to using peers as templates. For future work it should be considered to
implement a pattern-based approach, like the one described in [55]. Another possibility
could be to implement an approach based on a type system for peers and wirings, where
all peers and wirings are instances of underlying types, like objects and classes in the
classical object-oriented programming paradigm.

Figure 44: Peer’s editor window with context menu

Figure 44 also shows the peer editor window tool bar, which is located at the left window
frame. The top button deletes the currently selected editor items, while the next two
buttons export the whole peer as a graphics file for, e.g., documentation purposes. There
is one button for each currently supported format, namely Portable Document Format
(PDF) and Scalable Vector Graphics (SVG).

In the beginning of the implementation of the PMMT, also the select and click workflows
was implemented for creating wirings, where users first click the item in the palette and
thereby change the mode of the mouse cursor to creating that selected item. A subsequent
click in the editor now creates the selected item. However, with the implementation of
further item types only the drag and drop workflow was updated accordingly. Nonetheless,
it would easily be possible to also revive the select and click workflow, and improve the
combination and use of both workflows in the editor in future work.

The following sections will describe the similarities and differences between the creation
workflows of the different item types.

6.6.1 Creating Wirings

Figure 45 shows the steps for creating a new wiring. The starting point is an open editor
with an empty peer, in which the wiring will be created.

1. The wiring is dragged from the toolbox on the left.

2. The mouse cursor shows the wiring icon while dragging.

3. A preview wiring is shown as soon as it could be dropped.

After dropping the wiring at the desired position in the peer, it is created like it was
shown in the preview. The only difference is that during the preview its name just says
“Wiring” and after creation the wiring’s data in the model is populated with default

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.6. Creating and Editing Peer Contents

data. This results in displaying an instance number after “Wiring” that is unique for this
wiring instance. When creating multiple wirings, they all have a unique name, which
can be changed in the text edit widget that is displayed in place after clicking a selected
wiring’s name. Every wiring can be changed into an init wiring via its context menu.

Figure 45: Creating a wiring

6.6.2 Creating Subpeers

Since subpeers are within the hierarchy of their parent peer on the same level as wirings,
they can be created analogously to wirings. The internal logic of a subpeer is not visibile
in the parent peer editor. For that, the subpeer has to be opened in its own editor
window (cf. Section 6.7).

6.6.3 Creating Services

The drag and drop workflow for creating services is again similar to creating wirings and
subpeers, but since they are not direct children of a peer it is slightly different. The
main difference is that the service preview is only displayed when the mouse cursor is
dragged into a wiring item, which is shown in Figure 46a. The name also changes when
the service is created, due to the same reasons as with the wiring.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Visual Modeling of Peer Model Applications

(a) Preview when creating a service (b) Created service after drop

Figure 46: Creating a service item

6.6.4 Creating Links

The workflow for creating links is quite similar to creating services, as links are also
direct child items of wirings. The difference is that links can be placed on the left and
right sides of wirings rather than at the top. The two types of links, guards and actions,
behave equally when creating them. They also show a preview of the link to be created
(see Figure 47a). Links again have the same behavior described for all previous items
with populating the item’s data after creation, and thus displaying the correct name as
shown in Figure 47b. The rules for numbering have already been explained in Section 5.1.
As the position of links within wirings is important for their execution sequence, they
can also be placed before or between already existing links. This does not result in
automatic renumbering of existing links, which can be achieved via the wiring’s context
menu. Alternatively, the numbering of links can be corrected manually via the link’s
context menu.

(a) Preview when creating a link

(b) Created link after drop

Figure 47: Creating a link item

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.6. Creating and Editing Peer Contents

6.6.5 Connecting Links to Containers

Links can be connected to containers in two ways. The first one is to grab the link end
on the far side of the wiring with the mouse button (shown in Figure 48a) and drag it to
the edge of the container it should be connected to. There the mouse button is released
and the link is connected to the container as shown in Figure 48b.

(a) Grab link for moving

(b) Connected link

Figure 48: Connecting a link to a container

The second way to connect links to containers also supports connecting all links on the
same side of a wiring. The link ends will stay at their relative position to their parent
wiring when it is moved. This can be used to grab and move the wiring such that the
link ends connect to the container and drop the wiring at that position. Now the links
are connected to the container and will stay connected to it, even if the wiring is moved
again.

6.6.6 Edit Link Parameters

Links show by default only those parameters that have meaningful data (i.e. non-default
data set by the user) except for the entry type, which is always visible. Each parameter
has a placeholder text, to show which link parameters are available. Since users will want
to change a link’s parameters, all of them are displayed when hovering with the mouse
cursor above the area of a link in the editor (see Figure 48a).

The entry type can be selected from the menu shown in Figure 49a, which is displayed after
clicking on the placeholder. In accordance with requirement FR01 all other parameters
are text-based and can be edited by double clicking the placeholders, which will display
a text editor widget right in the position of the placeholder. Figure 49b shows this text
editor widget with a text cursor for the selector, and the populated text of the selector is
shown in Figure 49c.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Visual Modeling of Peer Model Applications

(a) Edit link’s entry type

(b) Start editing link’s selector

(c) Populated link’s selector

Figure 49: Editing a link’s parameters

The idea behind showing only link parameters with meaningful data and hiding all others,
except when editing them, is to provide a view of the model, that is:

as simple as possible, but not simpler

— Roger Sessions paraphrasing Albert Einstein1

This means that all the information of the model’s behavior is visible, but all unnecessary
information for understanding the model, like parameter placeholders, are hidden.

The difference between showing all information fields of a link and showing only the ones
with meaningful data can be seen in Figures 49b and 49c. In the latter only the entry
type and the selector are displayed, because count 1 is the default value and assignments
and link properties are empty.

Since currently the selector, assignments, and link properties are text-based parameters,
there is only basic text input support for these fields. Future work should definitely
include improvements on this situation, e.g., by providing context-sensitive automatic
text completion on known properties or variables, or by offering a dialog for creating
these link parameters.

1According to https://quoteinvestigator.com/2011/05/13/einstein-simple/ this
quote stems from Roger Sessions, when paraphrasing an aphorism of Albert Einstein.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.7. Working With Subpeers

6.7 Working With Subpeers

When interacting with subpeers of a peer, they are in the hierarchy similar to wirings,
namely direct children of their parent peer. Links from wirings can connect to a subpeer’s
PIC or POC the same way as they connect to their parent peer’s containers. However,
since subpeers themselves have contents as any other peers, there are some other criteria
to consider that are unique to subpeers.

Firstly, in contrast to standard top level peers their fully qualified names represent the
actual hierarchy, when editing the contents of a subpeer. This means that the complete
hierarchy of parent peers is prefixed to the subpeer’s name. Let’s examine the displayed
names with the following example: the model has a top level peer P1, which contains a
subpeer SP2, which itself contains a subpeer SP4. The names of the items are displayed
as follows when editing the contents of

• P1:

– P1’s own name and fully qualified name are the same and always displayed as
“P1”, because it is the top level peer.

– SP2’s name is displayed as “SP2”, because in the contents of P1 the hierarchy
is obvious.

– SP4 is not yet visible, as the contents of subpeers are not visible from the
parent peer.

• SP2:

– SP2’s fully qualified name is displayed as “P1 / SP2”, to accurately represent
its hierarchy and that it is not a top level peer. If SP2’s own name is edited,
only the part after the last “/” sign, namely “SP2” can be edited.

– SP4’s name is displayed as “SP4”, analogously to “SP2” when editing P1.

• SP4:

– SP4’s fully qualified name is displayed as “P1 / SP2 / SP4”. Analogously to
SP2, only the last part “SP4” is editable.

Apart from the naming scheme, the second thing to be considered is the workflow for
users when working with subpeers. The creation has already been discussed, but once
the subpeer is created, users need to edit its contents. Since after its creation the subpeer
is also displayed in the model explorer, users can open them from there to start editing
its contents. Another possibility is to open the subpeer’s context menu via right mouse
click and use the menu entry to open the subpeer’s editor window. On the other hand,
the workflow from editing the subpeer’s contents to getting to the parent peer’s contents
should also be considered. This can be achieved via the context menu available in the
subpeer’s editor by right clicking the subpeer’s name field (as shown in Figure 50). The
other menu action, which replaces this subpeer’s contents with those of another peer,
has already been explained in Section 6.6.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Visual Modeling of Peer Model Applications

Figure 50: Subpeer’s context menu

6.8 Plugin Configuration

The available plugins can be configured in the plugins window (shown in Figure 51),
which can be opened either via the tools entry in the menu bar or the tool bar button.
This window gives an overview of the available plugins, shows and controls their current
status (enabled or disabled), shows whether they are a model check or code generation
plugin, and also provides access to the preferences of each plugin. The preferences are
specific to each plugin and transparent to the PMMT, which means they currently are
implemented by the plugin developers themselves. Future work could include work on a
common framework for plugin preferences, which further supports plugin developers in
creating customizable plugins.

Figure 51: Plugin manager window

6.9 Using Model Checks

Model check plugins help users to identify possible problems within their models, for
example if there are any links without a connected container that need a connected
container to read entries from, or if there are any links that do not have a valid entry
type selected. The results of a model check run are shown in Figure 52.

The workflow of running a model check currently relies on an explicit start by the user.
This can be done by first opening the model check window via the view menu and then
clicking the button on the left with the checkmark icon in the model check window (see
Figure 52). This will run all enabled model check plugins on the current model. After all
plugins finished, the combined results are displayed in the table.

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.10. Code Generation

Figure 52: Model check result window

Users can then use the check results in the table to investigate erroneous model items by
double clicking the respective line. This will open and display the editor of the peer that
contains the causal model item, select it, and change e.g. the link’s background to red
criss-cross lines (cf. Figure 53).

Figure 53: Erroneous item shown in editor

Another approach to running the model checks would be to continuously run them as a
background task instead of requiring the user to explicitly start them. Additionally, the
error markings could be displayed as soon as the errors are discovered and as long as
they are not corrected, instead of just showing them once the erroneous item is put into
focus from the results window. Together these two features could be implemented in a
future extension.

6.10 Code Generation

The ability to create code from the designed model is provided via code generation
plugins. A code generation run with all enabled plugins can be started by users via the
export button in the tool bar (the rightmost one in Figure 39).

The PMMT currently provides two code generation plugins, which write a text-based
tab-separated dump of the complete model to the application’s standard output. The
first one uses the single plugin implementation per shared library and the second one
provides a collection of plugins in one shared library. These are meant to provide an
example for future plugin developers, as they show how to use the information provided
by the individual element types.

In the future, the approach of explicitly invoking code generation could be extended to
be executed regularly in a background job, such that there always is code in a configured
directory on disk, which represents the current status of the model.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Evaluation

After the Peer Model Modeling Tool has been implemented, this chapter presents its
evaluation by comparing it to the related tools of Chapter 2, and checking the fulfillment of
the found requirements from Chapter 4. Additionally, a first user study was conducted to
get some insight into the usability of the graphical user interface. Finally, a retrospective
view of the implementation choices described in Chapter 5 concludes this chapter.

7.1 Comparison with Related Tools

In Chapter 2 several related tools have been explored and compared regarding their
graphical editor features and auxiliary model development features. Since these tools
have been used to analyze the necessary features for a graphical model editor and an
integrated model development environment, the PMMT implemented for this thesis will
now be compared to the related tool’s features. The result is shown in Table 7 and will
be discussed in the following paragraphs.

7.1.1 Graphical Editor

The graphical editor is the main feature that was implemented in the PMMT, because it
also is the main focus point of this thesis. The following features enable efficient and
easy usage of the graphical editor.

Automatic Layouting

PMMT does currently not support automatic layouting of items in the graphical editor,
but link connectors are routed automatically while still avoiding other editor items.
The other presented editors have neither support for automatic layouting nor do they
avoid other items with lines connecting editor items. However, it might prove useful to
implement the automatic layouting algorithm of the PM Monitoring Tool [26] in the

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation

PMMT and provide users the possibility to use it at their own discretion, e.g. to relayout
specific peers or selected items.

Context Menus

In PMMT’s graphical editor, context menus are used to provide access to context-sensitive
actions, e.g. reordering links within a wiring. Additionally to general context menus that
are accessed by a right mouse button click, there are some menus that are accessible once
the mouse pointer enters the vicinity of certain model elements. For example, the height
of wiring links can be changed by dragging the height handles displayed below the link’s
identifier, or the properties of a link that still do not have a value are shown once the
mouse pointer moves in the vicinity of that link.

Drag and Drop

New items are created in PMMT by dragging them from the toolbox into the editor
and dropping them right where they should be created. Existing items can be moved by
dragging them to the desired position. Selected items can be resized by dragging their
border to the desired new size. To select multiple items in the editor, the mouse pointer
can drag a lasso selection around them, and once the mouse button is released, all model
elements within the created selection rectangle will be selected.

File Export

PMMT supports exporting designed models as SVG and PDF files. Since these are both
scalable graphics, they can be used to print in every size without pixelization. Direct
export as pixel graphics, e.g. PNG files, is not supported, which leads to the partial
fulfillment rating. However, this can be implemented as a future extension of the PMMT.

Information Overlay

In PMMT’s editor all information necessary to understand the model design is already
shown directly within the editor itself. This is quite similar to the way CPN Tools provide
the information about the designed model and renders any additional information overlay
useless.

Inline Text Editing

All the texts in PMMT’s models can be edited in the graphical editor, exactly where
they are displayed. There is no need for additional dialogs just for editing an element
identifier.

Item Palette

The toolbox provides an overview of all available items that can be placed in the model.
From there they can be dragged into the model to create new items.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.1. Comparison with Related Tools

Hierarchical Overview

The model explorer provides a tree view of the current project and thus a hierarchical
overview of the designed model. All the peers of the model are shown with their child
elements, which assists users in discovering the model top down.

Keyboard Shortcuts

PMMT supports keyboard shortcuts in different application areas, e.g. for deleting
selected items in the graphical editor or entry editor, opening an existing project, or
saving the current project. The shortcuts are shown directly in the menus and conform
to the operating system standard.

7.1.2 Code Generation

Generating code from the designed model is supported by PMMT via code generation
plugins, which provide the ability to add new code generators without changing the
PMMT application itself. The available code generators are presented in the plugin
configuration window described in Section 6.8.

7.1.3 Error Checking

Similar to code generation plugins, there is an interface for model checker plugins. This
enables users to provide their own customized error checks in such a plugin without the
need to change the PMMT application. The errors found by these plugins are presented
in the model check table, which gives an overview of all discovered problems within the
model. By double clicking individual issues, the respective erroneous item is opened,
focused, and marked as erroneous by highlighting it with a special color. However, the
PMMT only highlights the erroneous item itself and not all parent items, as it is done by
CPN Tools, which would make discovery of the item even easier. This could be achieved
in future development.

7.1.4 Future Work

The following features have not been addressed explicitly in this thesis, but are subject
to future extensions of the PMMT.

• Deployment Support (cf. Section 8.11)

• Simulation (cf. Section 8.12)

• Model Checking and Verification (cf. Section 8.13)

• Performance Analysis (cf. Section 8.14)

The application architecture was designed to be modular and extensible, and should thus
make it easy to, e.g., provide new plugin interfaces to integrate these features.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation

Feature P
M

M
T

A
sm

E
E

A
S
M

E
T

A

B
P

E
L

B
P

M
N

2

C
P

N
T

o
ol

s

E
C

T

P
ap

y
ru

s

P
ee

r
M

o
d
el

M
on

it
or

in
g

T
o
ol

Graphical Editor •• ◦◦ •• •• •• •• •• ◦◦
Automatic Layouting •◦ ◦◦ ◦◦ ◦◦ ◦◦ ◦◦ ••
Context Menus •• •◦ •• •◦ •◦ •• •◦
Drag and Drop

Creating •• •◦ •◦ •• ◦◦ •◦
Moving •• •◦ •◦ •• •• •◦ ••
Resizing •• •◦ •◦ •• •• ••
Lasso Selection •• •• •• ◦◦ •• ••

File Export •◦ •◦ •◦ ◦◦ •• •◦
Information Overlay •• •• •◦ •• •◦ •◦ ••
Inline Text Editing •• •◦ •◦ •• •◦ •◦
Item Palette •• •• •• •• •• ••
Hierarchical Overview •• •• •• •• •• ••
Keyboard Shortcuts •• •• •• •• •• ••

Code Generation •• •◦ ◦◦ ◦◦ •◦ •• •• ◦◦
Deployment Support FW ◦◦ •• •• ◦◦ ◦◦ ◦◦ ◦◦
Error Checking •• •◦ •◦ •◦ •• •◦ •◦ •◦
Simulation FW •• ◦◦ ◦◦ •• •• ◦◦ ••
Model Checking and Verification FW •• ◦◦ ◦◦ •• •• ◦◦ ◦◦
Performance Analysis FW ◦◦ ◦◦ ◦◦ •• •• ◦◦ ◦◦

Legend: •• completely fulfilled •◦ partially fulfilled ◦◦ not fulfilled
FW will be addressed in future work (see also Chapter 8)

Table 7: Graphical editor feature comparison of PMMT with related tools

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Requirement Fulfillment

7.2 Requirement Fulfillment

The following sections revisit the requirements identified in Chapter 4 and check whether
the implemented PMMT application fulfills them adequately.

7.2.1 Graphical PM Editor (FR01)

The graphical editor is the core feature of the implemented PMMT and provides a
drawing canvas to design PM models. It supports user interactions with the designed
model via mouse and keyboard actions, while keeping the underlying semantic model
intact and in sync with the displayed model.

7.2.2 Routing of Links (FR02)

Connected links in the editor are routed automatically, e.g., from wirings to the connected
containers, while avoiding crossings with other links or overlaps between links and wirings
or subpeers as far as algorithmically possible. Rerouting of links is triggered whenever an
item is created, moved, resized, or deleted. This is achieved by integrating the libavoid
library of the Adaptagrams library of tools for adaptive diagrams [90].

7.2.3 Entry Editor (FR03)

PMMT provides a window for managing the entry types of the designed model in a table
view (cf. Figure 42). Users can create, edit, and remove entry types as a whole as well
as single properties of a specific entry type. The properties have an identifier, a type, a
default value, and a description, all of which can be changed by the user.

7.2.4 Inline Text Editing (FR04)

All item identifiers and free text properties (like link properties or assignments) are edited
directly in the graphical editor view as demanded in the requirement (cf. Figure 49b).
There is no need for dialog windows to enter a new text. Only the properties that are
chosen from a list of available values and are not free text are chosen from context menus,
like a link’s entry type or the link’s order within the wiring.

7.2.5 Context-Sensitive Menus (FR05)

PMMT provides model item actions directly in the context menu of that item. This
includes for example: changing a link’s entry type, changing the numbering of links
within a wiring without moving them, renumbering all links of a wiring according to
their graphical position, or replacing a subpeer’s content with another peer’s.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation

7.2.6 Toolbox (FR06)

The Toolbox window (cf. Figure 43) provides an overview of all available Peer Model
items that can be placed in the model. From there users can drag the desired item and
drop them in the peer at the position where they want to create the item.

7.2.7 Structural Overview (FR07)

The Model Explorer window (shown in Figure 41) keeps users informed about the current
state of the designed PM by showing the project contents in a hierarchical way. The
model items are visualized in a tree view with every peer as a parent node for their
respective child items, such that users can inspect every peer top down.

7.2.8 Plausibility Checks (FR08)

The PMMT features a model checker mechanism based on the plugin system, so that
new checks can be created without the need of changing the PMMT application itself.
Results of the executed checks are shown to the user in the model check window (shown
in Figure 52). The erroneous items involved in the error can be highlighted (cf. Figure 53)
and put into focus by double clicking the error entry in the model check result table.

7.2.9 Support for Runnable Model (FR09)

The second implemented plugin interface in the PMMT integrates code generation plugins.
They are used to generate code for Peer Model runtimes, which in turn can then execute
the designed models. This achieves support for integrating multiple PM implementations
as desired in the requirement.

7.2.10 Graphic Export (FR10)

The PMMT supports the export of designed peers as SVG and as PDF files. Both are
scalable graphics and thus can be printed in different sizes without becoming blurred or
pixelated. The exported images contain only the link properties that have meaningful
content, which improves the readabilty of the exported peer while still containing all
necessary information to understand the peer’s functionality.

7.2.11 Extensibility (NFR01)

The PMMT application’s plugin framework loads all available plugins during startup and
users can choose which ones should be used in the plugin manager window (cf. Figure 51).
Additionally, it is relatively easy to provide new plugin interfaces and integrate them
into the PMMT, because they are clearly separated in the application’s architecture.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Requirement Fulfillment

7.2.12 Usability (NFR02)

The PMMT application aims to provide a simple workflow and keep actions close to the
items acted upon. Most of the features described in the functional requirements and in
Chapter 6 are aimed to support the fulfillment of this requirement. A usability study
has been conducted for evaluation, which showed very positive overall feedback and is
explained in more detail in Section 7.3.

7.2.13 Maintainability (NFR03)

The architecture of the PMMT, described in detail in Section 5.3, is designed modularly
and built up in layers, which helps to integrate future extensions at the necessary layer
and only requires changes to the modules directly interacting with the extension. The
needed boilerplate code for, e.g., new model items is also kept to a minimum, because all
current model items are based on a base class that contains all common functionality.

7.2.14 Portability (NFR04)

Since the PMMT is developed using C++ and the Qt framework, and all used third
party libraries are also available in source code, it can be compiled for every platform
that provides a C++17 standard conforming compiler toolchain and standard library.
This includes Apple macOS, GNU/Linux, and Microsoft Windows. For the development
of the PMMT application a Docker1 image has been used to enable development on all
platforms for which a Docker engine is available. Docker itself is based on light-weight
virtual machines, named containers, and keeps the development environment isolated
inside the docker container without affecting the host operating system.

7.2.15 Data Compatibility (NFR05)

The project data of the PMMT is saved to disk using the cereal third party library
(explained in Section 5.4). The data on disk contains the version it was written with, and
thus the PMMT is able to open files written by older versions. This ensures that saved
projects can be opened with future versions of the PMMT application and are not lost
by updating to a newer application version. On the other hand, this also implies that
future application versions need to support all previously supported features or explicitly
take care of such incompatibilities. If needed, a future extension of the PMMT could also
support saving in an older project format, which is a minor extension for the serialization
interfaces, but introduces other problems, e.g. what to do with new features not yet
available in older formats.

7.2.16 Performance (NFR06)

A special attention was paid to the PMMT’s performance throughout the development
process: design decisions, technology choices, software architecture design, and finally

1https://www.docker.com/

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation

the implementation. The functionality tests in the development phase as well as the
user study showed no application freezes or other performance problems. Since both,
the functionality tests and the user study, worked with relatively small models, which
are comparable in size with the example in [50], a more comprehensive performance and
scalability evaluation of the PMMT should be conducted as future work.

7.2.17 Overview

All of the functional and non-functional requirements identified in Chapter 4 have been
fulfilled completely, which is shown in Table 8 below.

ID Requirement Fulfillment

FR01 Graphical PM editor
FR02 Routing of links
FR03 Entry editor
FR04 Inline text editing
FR05 Context sensitive menus
FR06 Toolbox
FR07 Structural overview
FR08 Plausibility checks
FR09 Support for runnable model
FR10 Graphic export

NFR01 Extensibility
NFR02 Usability
NFR03 Maintainability
NFR04 Portability
NFR05 Data Compatibility
NFR06 Performance

Legend: completely fulfilled

Table 8: Fulfillment of the identified requirements

7.3 Usability Study

This section explains the details of the user study, that has been conducted to evaluate
the PMMT’s usability.

7.3.1 Study Setting

The study was conducted by teleconference and screen sharing, due to the physical
distancing measures involved in the fight against the COVID-19 pandemic. The study’s
setup was the same for all participants. It started with an introduction to the Peer Model

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Usability Study

that explained all the individual parts based on Chapter 3. After that the PMMT’s
user interface was explained in a quick hands-on overview. Finally, the participants
had to complete the modeling assignments, which are explained in detail in the next
section. Every participant’s result was documented using a questionnaire (cf. appendix
Chapter A).

The group of 10 study participants was structured as shown in Figure 54. 4 participants
were younger than 30 years, 3 were between 30 and 40 years old, and 3 were 50 years or
older. 5 were female and 5 male. 3 had an advanced level of previous modeling knowledge,
3 had beginner level, and 4 had no previous knowledge. 5 had a highest education level
of the Austrian matura (general university entrance qualification) and 5 are currently
studying at a university or already had their degrees. 6 of the participants work in
software engineering, either development or quality assurance, the others are a public
servant, a scientific researcher, a pharmaceutical drug safety officer, and a student office
clerk.

40.0 %

< 30 Years

30.0 %

30 − 49 Years

30.0 % ≥ 50 Years

(a) by age

50.0 %

Female

50.0 %

Male

(b) by gender

40.0 %

No Experience

30.0 %

Beginner Level

30.0 % Advanced Level

(c) by previous modeling knowledge

50.0 %

Matura

50.0 %

University

(d) by highest level of education

Figure 54: Group structure of the study participants

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation

7.3.2 Modeling Assignments

At first the participants were presented the TomatoFactory peer (shown in Figure 55,
which was modeled after the peer in [51]) printed on paper and asked to model it in the
PMMT, to familiarize themselves with the editor.

TomatoFactory

GarbageWiring

A1
wastebin
<garbage	=	$g	+	$w>

G2
wastebin
<$g	=	garbage>

G1
tomato [[weight	<	5]]
<$w	=	weight>

ProduceWiring

FruitPressService

A1
pulp

G1
tomato [[color="red"	&&	weight	>	5]]

* Init A1
wastebin
<garbage	=	0>

Figure 55: TomatoFactory peer (modeled after [51])

Following that, participants were asked to extend their tomato factory model according
to the following instructions:

1. Create new peer KetchupBottleFactory.

2. Send produced pulp to the KetchupBottleFactory peer using the action’s DEST
property.

3. Create new entry types: a) ketchup b) salt c) sugar d) vinegar

4. Create new wiring CookWiring with following content:

a) Guard that takes 20 pulp entries.

b) Guard that takes 4 sugar entries.

c) Guard that takes 2 vinegar entries.

d) Guard that takes 1 salt entry.

e) Service CookingService that combines and pasteurizes the ingredients.

f) Action that delivers all created ketchup entries to the POC.

The study coordinator observed the participants while they worked on the modeling
assignment. The participants were allowed to ask any questions arising during the
assignment for them to complete the tasks. All the asked questions and the provided
answers and hints were documented, which are to be evaluated in the study results.

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Usability Study

7.3.3 Results

Assignments

Figure 56a shows to what percentage the participants completed the study assignments.
In the first modeling assignment the participants had to use the PMMT to model a Peer
Model presented as a figure, which was completed 100 % by 5 participants. Another
3 finished the presented model completely in the graphical editor, but did not create
the used properties in the entry type editor window. The models of the 2 remaining
participants each contained one mistake, e.g., a wrong link source operation or a wiring
with only one action link A2 instead of A1. Only one of those 2 results is shown as an
outlier in the figure, because the model also missed the properties in the entry type editor
window. The second modeling assignment with the textual instructions was completed
100 % by 9 participants. Only 1 participant had a wrong count specifier on a created
guard link.

The time needed for completing the individual study assignments is presented in Fig-
ure 56b. In the first assignment were two outliers with just below 22 and 19 minutes,
both of the participants do not have a background in software engineering. The others
range from 7 minutes 10 seconds to 13 minutes 35 seconds with a median of 9 minutes
10 seconds. 6 of the participants finished below 10 minutes, 5 of them with a software
engineering background. This leaves only 1 participant with a software engineering
background that took longer than 10 minutes. The second assignment has a median
finish time of 7 minutes 54 seconds and only 2 participants took longer than the upper
quartile of 10 minutes 46 seconds. 3 participants were faster than the lower quartile of 5
minutes 41 seconds and 1 other paricipant finished below 6 minutes, which makes a total
of 4 participants faster than 6 minutes.

Figure Instructions

92 %

94 %

96 %

98 %

100 %

(a) Completion rate

Figure Instructions

3:20

6:40

10:00

13:20

16:40

20:00

23:20

(b) Completion time (in min:sec)

Figure 56: Results of the modeling assignments

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation

The participants asked for help regarding the following problems, which arised in the
assignments. The most common questions, which were asked by 5 participants each in
the second assignment, were how the DEST property is to be specified on the action link
and how the count is specified on the guard links. 4 participants asked where the link
source operation can be changed. 3 participants had a problem with the creation of new
services and links, which need to be dragged into the wiring. 2 participants each had
problems with:

• an issue in the PMMT regarding the peer content edge, where links could be
dragged outside the peer content,

• finding the button to open the entry type editor,

• the visual similarity between subpeers and wirings with a service, and

• starting and committing text field edits, which is done via double click and the
return key, respectively.

1 participant each had a question

• how to create a new peer,

• how to reorder the links within a wiring,

• regarding the usability of the entry type editor, and

• how to assign a value to an entry property on a link.

Feedback

An overview of the participants’ questionnaire ratings of the PMMT is shown in Figure 57.
The general design of the graphical user interface was rated clear by 9 participants and
rather clear by 1 participant, while all 10 participants think the readability and font size
is suitable.

The next questionnaire section, regarding the graphical editor, concerned modeling PM
models with the PMMT. The handling was rated simple by 3 participants, rather simple
by 6 participants, and rather complicated by 1 participant. The intuitiveness of the
editor interface was rated rather simple by 4 participants and simple by 6 participants.
9 participants rated the modeling workflow practical and 1 participant rated it rather
practical.

In the questionnaire section regarding the PMMT’s plausibility check the overall handling
was rated rather simple by 6 participants and simple by 4 participants. All 10 participants
rated the user guidance from the presented error message in the table to the actual error
within the model with simple. The error messages of the plausibility checks were rated
rather comprehensible by 2 participants and comprehensible by 8 participants.

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Usability Study

The last section in the questionnaire concernes the handling of PMMT’s code generator,
which is rated rather simple by 1 participant and simple by 9 participants.

0 2 4 6 8 10

General Design

Readability

Handling

Intuitiveness

Workflow

Handling

User Guidance

Comprehensibility

Handling
Code Generator:

Plausibility Checker:

Graphical Editor:

Graphical User Interface:
9

10

3

6

9

4

10

8

9

1

6

4

1

6

2

1

1

participants

−−
−
+

++

Figure 57: Questionnaire ratings for the PMMT

The textual feedback from the questionnaire was generally very positive. The participants
liked the very intuitive workflow, the clear and simple editor interface, and that the
handling of the editor seemed very familiar. This also resulted in the opinion that there
is no need of prior knowledge to finding one’s way around the modeler. One participant
highlighted the good performance when moving items within the editor. Automatically
hiding the detail information of links that do not contain meaningful data was also
positively received. When this information is displayed, the different formatting with
single or double square brackets, angle brackets, or curly braces helped the users to
identify the contained information. One participant found it very convenient that links
are automatically connected to containers when the wiring is moved and the links collide
with the container border.

The questionnaire also revealed some known bugs in the code that handles rearranging
links within a wiring and keeping the relative connector position accordingly. The problem
that was mentioned most often in the questionnaire is that text changes in the editor are
discarded if not commited with the return key. This should be changed to only discard on
pressing the escape key and commit the changes in any other case. Only accepting ALL
and NONE in the count specifier if they are written in uppercase was also mentioned as
improvable by accepting regardless of the case. One participant also noted the missing
visual feedback when pressing the tool bar buttons (only in Apple macOS) or that there
is no success message, when no problems were found in a plausibility check. Access to

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation

the plausibility check window was also mentioned as being too hidden in a menu, which
should also be accessible through a tool bar button.

Apart from fixing the known bugs and remedying these shortcomings, the study partic-
ipants also suggested some features to further improve the usability. One participant
suggested to automatically change a wiring’s height to the minimal used height by the
links when double-clicking the lower border, which is similar to the automatic width
calculation of columns in almost all spreadsheet applications. A link’s currently not
edited text fields should be hidden while editing another text field to ensure that they do
not overlap or otherwise impede editing the contents and thus always keep the currently
edited text readable. Another participant suggested to connect links automatically to
the container on the corresponding side of the wiring. A further suggestion was to run
the model checks automatically after changes in the model, but also keep the feedback
non-intrusive to keep the users focus on their tasks.

Conclusion

The usability study’s sample size is admittedly quite small, but nevertheless a positive
trend can be recognized by the results. Although the study revealed some minor problems
in the graphical user interface that should be addressed in the continued development
of the PMMT, the overall feedback and ratings of the application were very positive in
nature. While most of the problems that have arisen can easily be fixed in the continued
development of the modeler, others must be addressed by the PM Technical Board, e.g.,
the visual similarity between the graphical representations of a subpeer and a wiring
with a service. The improvements suggested by the study participants should also be
considered for implementation as most of them seem quite practical. Finally, another
usability study in a larger setting should be conducted in the future to further evaluate
the PMMT and probably compare it directly to other graphical editors.

7.4 Implementation in Retrospect

The previous sections have already analyzed how the PMMT compares to the related
tools and whether the found requirements are fulfilled by the application. This leaves a
retrospective view of the implementation of the PMMT to be discussed in this chapter.

7.4.1 Technology Choices

C++ as the chosen programming language and the Qt framework as platform abstraction
and graphical user interface library proved to be a good fit for the development of the
PMMT. A lot of the provided window and widget features could be used out of the box
and were easily integrated in the application. The graphics scene, used for the graphical
editor, was different than regular widget-based graphical user interfaces and took a little
longer to get used to, but with the excellent documentation provided by Qt this was not
too big of a problem. Additionally, Qt’s signal-slot mechanism for connecting events and

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.4. Implementation in Retrospect

event handlers was easy to use and helped to keep the concerns of single components
clearly separated.

A lot of the implementation was done on Apple macOS, while automatic builds were
executed on a Microsoft Windows machine every time the code was pushed to the server
repository. Later in the development phase, the build system was also set up as a docker
container, such that it could be easily reproduced without the need of manually setting
up the build environment.

7.4.2 Architecture

The layered and modular application architecture, described in Section 5.3, turned out to
work well during implementation of the PMMT and grouping related features in a module
also helped to structure the code. Necessary extensions to the PMMT that emerged
during the implementation phase were easily implemented into this clearly structured
code base.

Furthermore, the conceived plugin interface architecture (cf. Section 5.3.2) is already
being used to create a general code generation plugin that supports a multitude of target
programming languages via simple configuration [42]. This work also helped to reveal
issues of the plugin interface during the development phase, and thus improve the quality
of the interface for future users.

7.4.3 Third Party Libraries

The cereal and spdlog libraries were very useful in the beginning of the development
phase, because they contributed a lot to the development speed. They were easily
integrated into PMMT’s code base, while still keeping a thin abstraction layer around
spdlog and keeping the touching points with spdlog at a minimum, such that it could
be exchanged for another library without much effort if that should be necessary in the
future. Although this was not done in the same fashion for cereal in a trade-off for type
safety, the overlaps between PMMT code and cereal’s library code are limited to only
the modeldata and serialization modules.

The integration of libavoid for automatic routing of links was not quite as straightforward
at the start, because overlapping connectors get automatically moved apart from each
other by libavoid’s routing algorithm, so that they do not overlap anymore. Since the
links of PMMT need space around their lines to show the link’s properties, this feature
of libavoid is not as helpful for PMMT as it is for graphic diagram editors. At the time
of implementation it was not possible to disable exactly this feature, so a workaround
was implemented, which is described in Section 5.4.3).

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Future Work

In this chapter several opportunities for future research around this thesis’ results are
presented. Since the aim of this thesis was to create an MVP, some of the following
opportunities are features that were not deemed important enough to be implemented
as part of this thesis. They could be implemented in the future, to close the gap to the
related tools of Chapter 2. Other features might present a different modeling approach
or view to the same underlying data, which could improve the usability of the PMMT.
Finally, since the Peer Model itself evolved over the course of writing this thesis, there
are new features that need to be supported in the graphical editor and the underlying
model.

8.1 Localizability

The implementation of PMMT already uses the Qt framework’s facilities for internation-
alization of displayed texts. It just does not provide other languages than English at the
moment, because this was not deemed important enough for the MVP. This means that
extending the application to support other languages than English should be a quite
straightforward task, and could also be accomplished by crowd-sourcing it as part of the
planned open source development of the PMMT.

8.2 Live Debugging of the Peer Model

An interesting extension to the PMMT, which would make a huge difference in developing
an application, is to integrate the possibility of debugging the designed model. This would
include single stepping through code, inspecting all the data, or setting break points to
halt execution. Additionally to being a useful feature for the developers, this would also
bring the PMMT a lot closer to being a full integrated development environment (IDE).

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Future Work

8.3 Universal Plugin Containers

At the moment, plugins for the PMMT have to be compiled separately for each supported
platform to create the required binary files. As part of opening the PMMT’s development
to the open-source community, a build server or service should be implemented that
automatically compiles the code for all supported platforms and creates a universal plugin
container. This container can then be used by the PMMT application to extract only
the binaries matching the running application’s platform. This approach would greatly
improve the plugin handling for end users, because they do not need to worry about the
plugin’s application platform.

Based on this universal plugin containers, a plugin server can be created, which hosts
the plugins for PMMT applications to download. This server can also distribute digital
signatures of the plugins to guarantee that they have not been modified by any third
party.

8.4 User Interface Extensions

Some possibilites of future extensions of the user interface have already been discussed
in Chapter 6: (a) replacing the project dialog with a welcome page (cf. Section 6.2.1),
(b) support for dragging MDI windows out of the main window to improve multi-display
support (cf. Section 6.2.6), (c) extending model explorer functionality with mirrored
selections and better support for drag and drop (cf. Section 6.3), (d) an alternative tree
view in the entry type editor as well as additional supported data types (cf. Section 6.4),
(e) a project-wide full-text search for finding and opening items (cf. Section 6.5),
(f) additional support for the select and click workflow (cf. Section 6.6), and (g) improved
support for plugin preferences in the plugin framework (cf. Section 6.8). The following
sections present possible future extensions that have not yet been discussed.

8.4.1 Open Peers from the Tool Bar

Currently, new peers are created from a tool bar button and existing ones are opened
from the model explorer by double clicking the tree item. A tool bar menu with a menu
item to create new peers and a list of menu items representing the currently existing
peers could be used to unify access to new and existing peers. The same menu item
could then seamlessly be included in the menu bar.

8.4.2 Hierarchical Error Highlighting

The CPN Tools hierarchically mark all items as erroneous if they contain at least one
erroneous child item. This enables users to see at the first glance if there are any errors
in their model. Since that also helps users in finding the errors, this would be a nice
feature to integrate in the PMMT.

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.5. Expression Model for Link Definition Parts

8.5 Expression Model for Link Definition Parts

In the current implementation of the PMMT a link’s definition parts, especially the query
selectors, assignments, and properties, are entered and stored as plain text, and thus
requires the used model checker and code generator plugins to parse the entered selectors
themselves and report errors. In the future, the entered text should be converted to
an expression model directly in the editor. This way the user interface can be easily
changed to a wizard-based approach, where users can choose the individual parts of these
expressions from a list (e.g. like the formula editor in Microsoft Excel), and even if the
user interface stays a text box, the storage already is an expression model that is also
passed to the different plugins, which then do not have to implement a parser, but rather
can just check the expression model for unsupported expressions.

8.5.1 Syntax Highlighting

Based on this expression model, it would be useful to highlight the entered values
according to the expected syntax, such that users can more easily see if there is a problem
when they are just entering the text. Since the underlying Qt controls already provide
support for syntax highlighting, this can easily be integrated in the PMMT.

8.5.2 Semantic Text Completion

The users would also benefit greatly if the text input of these link parameters provided
semantic text completion. For example, if the user starts typing an assignment, the
editor can provide a list of suggestions matching the already typed beginning, which the
user can choose from in order to complete the input.

8.6 Project Search Box

Currently, there is no way to search for the usage of a specific text in the PMMT project.
This is usually not too big a problem for small projects, but it might become a problem
for developers as the projects grow. To improve developer efficiency, a global search
box could be provided (e.g. in the tool bar) that supports searching for occurrences of
an entered text either in the whole project, or in a narrower context, e.g., only in link
properties or element identifiers.

8.7 Support for Peer Model Extensions

Kühn et al. already introduced the concept of composable design patterns into the
Peer Model [55]. They have not been implemented yet, because they were deemed not
important enough for the MVP. Nonetheless, they should be supported by the PMMT
in the future. Once there is support for the patterns themselves, the PMMT could
be further extended to also support libraries of patterns to be stored independently of

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Future Work

the project file. This would enable one user group to focus on the development and
implementation of specific patterns to be used by others, and thus bring another level of
abstraction. The end users of this pattern libraries can then focus solely on their problem
at hand and reuse existing tested coordination patterns.

Craß et al. present a decentralized access control model suitable for the Peer Model in
[24]. It uses a PM meta model and additional containers in each peer to store the policy
information that controls interactions between autonomous peers. Future work should
put a focus on supporting the design of access control within the Peer Model, because
security grows more important every day. Additionally, support for the meta model
would also enable the full feature set of the PM Java enterprise implementation [20],
which makes use of additional containers for storing the current state of the PM and for
dynamically allocating new PM items.

The concept of distributed flexible wiring transactions (FWTX) presented by Kühn in
[50] was not considered for the PMMT, because its functionality can also be bootstrapped
by using other PM features. This should be implemented in future extensions of the
PMMT, because it simplifies the visualization of the PM by abstracting the transactional
features that otherwise have to be modeled explicitly.

Another extension not implemented in the MVP are assertions in the Peer model, which
have been introduced by Kühn et al. in [56]. They present asynchronous runtime assertions,
which are closely related to links and use the already available query mechanism of the
Peer Model.

8.8 Type System for Peer Model Items

In the current PMMT implementation peers, wirings, and services are specific instances in
the designed model, and it is the responsibility of the code generator plugins to transform
them into runnable code, which might need further adaption by the developer. Creating a
type system for the PM items, like classes and objects in the object-oriented programming
paradigm, where the user first designs the type of an item and then instantiates it in
a concrete model, could improve the reusability of already designed coordination logic.
This approach also needs a new concrete model editor, where the more generally designed
item types are instantiated and configured to fit a very specific and concrete use case. It
should also be considered how this approach would work together with the composable
design patterns. However, it must be considered that changes to a peer type might have
far-reaching unpredictable consequences to other peer instances than the one currently
edited. This situation might not always be desirable.

8.9 Background Task for Model Checks

At the moment, the model checks have to be started explicitly by the user to calculate the
current errors in the model, which are then displayed in the result table. Erroneous items

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.10. Periodic Code Generation

are only highlighted as such if they are focused upon by double clicking the entry in the
result table. For the users it would be helpful if the model checks were run continuously
in a background task, and found errors were highlighted in all views of the model on the
fly as soon as they were discovered. This would greatly shorten the time between a user
action and the visualization of the error directly in the editor. Additionally, the actions
would be reduced a user has to take to find errors in the designed model.

8.10 Periodic Code Generation

Similar to the model check plugins, the code generators are only run when explicitly
requested by the user clicking the export button in the tool bar. This could also be
executed periodically in a background task, to always keep an up-to-date version of the
generated code on disk, which already contains the latest changes in the editor. As this
might cause a higher performance load depending on the computer, it would be useful to
provide options for disabling this feature, such that each user can choose for a specific
project whether code generation should be run periodically in the background.

8.11 Deployment Support

The BPEL Designer Project and BPMN2 Modeler provide support for the deployment of
a designed business process or workflow to an application server, which then executes
the modelled workflow. Creating a Peer Model application server with the ability to host
Peer Model applications would prove useful, as such a Peer Model server could be used
to coordinate and orchestrate several existing services. This can be seen as an addition
to the code generation plugins, which also support creating a runnable instance of the
designed model. To accurately model the distributed nature of the Peer Model, special
attention must be paid to the deployment to distributed PM runtimes.

8.12 Simulation

The integration of simulation features into the PMMT would greatly help users in
understanding their designed models and also to look for logical errors in their designs.
This includes providing inspection features that can, e.g., display the values of entries,
like the simulation features in CPN Tools. Another interesting aspect would be to provide
animation of the involved Peer Model items directly in the graphical editor, as described
in Section 2.5.3. This visual feedback could be useful for developers to understand the
flow of entries in their model. It might also be useful to create the possibility to choose the
executing Peer Model implementation for the simulation, such that the implementations
can be compared more easily. It might be useful to support the monitoring features of
the Peer Model Monitoring Tool [26] directly within the graphical editor, either based on
the same logging format or on a new interface without the need of log files.

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Future Work

8.13 Model Checking and Verification

It would be interesting to see verification tools for the Peer Model in the future, which
can be used to prove the correctness of designed models, and integrate them in the PM
toolchain (cf. Figure 1). The PMMT could generate PM-DSL, which could then be
verified. Additionally, graphical feedback of the verification could then be integrated into
the PMMT. This would greatly improve the application range of the PMMT and the
Peer Model itself.

8.14 Performance Analysis

Analyzing the performance of a designed model and thus identifying possible bottlenecks
in the application is an important feature to finetune an already working application or
workflow. As such, the performance analysis of a designed Peer Model should provide
statistics for peers, wirings, or links, which tell the developer about entry throughput,
waiting times, partial wiring firings (e.g. when not all guards are satisfied), or raised
exceptions. This could be integrated into the PM toolchain analogously to the previous
section.

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 9
Conclusion

This thesis introduced the Peer Model Modeling Tool, the first graphical modeler specifi-
cally tailored to the Peer Model. Its main goal is to support users of the Peer Model in
designing their models. Starting off with the already established graphical notation of the
Peer Model, the visualizations of link operations were adjusted to fit both an interactive
editor and an exported Peer Model diagram. The implemented application is intended
as a starting point towards a full-fledged graphical development environment for the
Peer Model. Thus the implementation focused on a modular design that can be easily
extended with new features in the future. Already existing and established graphical
tools for other underlying models have been evaluated and compared with regard to their
features, and subsequently been used to gather requirements for the PMMT. With the
requirements in mind, several technologies have been evaluated for their suitability before
C++ and the Qt framework were selected as foundation for the PMMT.

Previously used generic drawing tools for PM designs were not suitable for error checking
or code generation, because they were purely graphical diagrams and thus lacked an
underlying semantic model. The PMMT allows users to visually design their PM models
and have an underlying semantic model that represents their graphic models. This is the
basis for all further use of the designed model, like the implemented model checking and
code generation features. Since the PM is still evolving and new implementations of the
PM runtime are developed, the model checker and code generator interfaces are based on
a plugin system. Thus new plugin implementations supporting new PM runtimes can be
provided without the need of modifying the application itself. A thesis that is currently
in progress takes this a step further by creating a plugin based on a template language
[42] that can support many different target formats.

The focus during development of the graphical editor was to create user interface workflows
that are as simple as possible and that are intuitive for the users. This resulted in a
workflow similar to a self-assembly kit, where new items can be created by dragging
them from the tool box and dropping them in the model editor at the desired place.

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

9. Conclusion

Rearranging existing items in the graphical editor is also as simple as dragging them to
the desired new place and editing them is mostly accomplished via context menus.

Subsequently, the PMMT was evaluated against the already established graphical editors
for other tools and the fulfillment of the established requirements was checked. Addi-
tionally, an initial user study has been conducted to investigate the usability amongst
the target user group. The generally very positive results of this study show that the
implementation of the user interface and workflows is going in the right direction. Finally,
this thesis concludes with discussing possible future research topics and extensions to the
PMMT.

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
. Appendices

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Usability Study

This chapter describes the details of the questionnaire used in the usability study.
Section “Aufgabe” was used to evaluate each participant’s performance in the modeling
assignments (cf. Section 7.3.2) and, thus, is the only part of the questionnaire that was
filled out by the author. After the assignment was completed, the participants filled
out the remaining parts of the questionnaire. In Section “Angaben zur Person” the
participants provided information about themselves, like age, gender, job description,
highest level of education, and whether they had previous modeling knowledge. Next, in
Section “Bewertung” they rated the PMMT in the categories (a) general user interface
and readability, (b) modeling (handling, intuitiveness, workflow), (c) plausibility checks
(handling, user guidance, comprehensibility), and (d) code generator handling. Finally,
the participants answered open questions about their impression of the PMMT in Section
“Fragen zu PMMT”, e.g., what did they miss or what was positive/negative.

Aufgabe

1. Modellieren nach Vorlage

Zeit:

Hilfe:

Ergebnis:

2. Modellieren nach Anleitung

Zeit:

Hilfe:

Ergebnis:

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Usability Study

Angaben zur Person

3. Alter: � unter 30 Jahre � 30 - 49 Jahre � 50+ Jahre

4. Geschlecht: � männlich � weiblich � divers

5. Beruf:

6. Höchster Bildungsgrad:

� Pflichtschule

� Fachschule / Lehre

� Matura / Meister

� Universität

7. Vorkenntnisse Modellierung:

� Keine Erfahrung

� Anfänger/in

� Fortgeschrittene/r

� Experte/Expertin

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bewertung

Bewerten Sie folgende Eigenschaften:

Allgemein

8. Gestaltung der Oberfläche: übersichtlich � � � � unüberschaubar

9. Lesbarkeit und Schriftgröße

� zu klein � passend � zu groß

Modellierung

10. Bedienung kompliziert � � � � einfach

Wie war die Handhabung des Modelers?

11. Intuitivität schwer/aufwändig � � � � einfach/schnell

Wie waren die benötigten Aktionen / Bausteine zu finden?

12. Workflow umständlich � � � � praktisch

Wie waren die Tätigkeitsabläufe?

Plausibilitätsprüfung

13. Bedienung kompliziert � � � � einfach

Wie war die Bedienung der Plausibilitätsprüfung?
(zB: Fenster öffnen, Prüfung starten)

14. Benutzerführung kompliziert � � � � einfach

Wie war die Führung von der Problemanzeige zum verursachenden Objekt?
(zB: Finden des problematischen Editorelements ausgehend vom Fenster
der Plausibilitätsprüfung)

15. Verständlichkeit unverständlich � � � � verständlich

Wie verständlich waren die Problemmeldungen?

Code Generator

16. Bedienung kompliziert � � � � einfach

Wie war die Bedienung des Code Generators?

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Usability Study

Fragen zu PMMT

17. Welche Funktionen fehlen besonders?

18. Was ist positiv aufgefallen?

19. Warum sind diese Dinge positiv aufgefallen?

20. Was ist negativ aufgefallen?

21. Warum sind diese Dinge negativ aufgefallen?

22. Was wäre eine bessere Lösung?

126

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

1 Extended Peer Model Toolchain . 3

2 A finite-state machine that parses the string “FSM”. 9

3 Example ASM visualized by AsmetaVis 10

4 Animation view of AsmetaA . 11

5 The BPEL Designer editor and palette views 14

6 BPEL Designer’s item information views 15

7 Visualization of the WSDL file. 16

8 Editor view of a process in BPMN2 Modeler with Palette view. 18

9 Selected editor features of the BPMN2 Modeler. 19

10 CPN Tools with Index on the left, some binders with nets, and some toolbox
palettes on the bottom right. 23

11 Overview of CPN Tools’ editor features 24

12 The syntax check feedback in CPN Tools. 25

13 Simulation controls and feedback in CPN Tools. 26

14 The graphical editor in ECT showing an ordering connector. 28

15 The palette for the graphical editor in ECT. 28

16 Creating a new channel . 29

17 Overview of ECT’s features . 29

18 The animation view of the order connector in ECT. 30

19 The diagram taxonomy in OMG SysML. (Figure taken from [39]) 32

20 Papyrus SysML project information and views 33

21 Papyrus views of the model . 34

22 Overview of Papyrus editor features . 35

23 The window of the Peer Model Monitoring Tool, with the main sections
highlighted (taken from [26]). 37

24 Entries in the Peer Model Monitoring Tool (taken from [26]) 44

25 The visual representation of a peer. 48

26 Visualization of an init wiring. 49

27 Visualization of a link with all the parts that make up its definition. . . . 49

28 Visualization of a wiring with a service. 52

29 Baker peer (from the example in [50]) . 54

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

30 Architecture and module structure of PMMT 67
31 Class diagram for modules model and modeldata 69
32 Class diagram for the project module . 70
33 Overview of Qt’s model/view architecture 72
34 Class diagram of the plugin interface . 74
35 Dotted grid coordinates in the editor . 79

36 Visualization of links in [53] . 81
37 Visualization of links’ source and destination operations 82
38 Create or open project dialog . 83
39 PMMT main window . 83
40 File and view menus . 84
41 Model explorer window . 85
42 Entry editor window . 87
43 Toolbox with peer content items . 87
44 Peer’s editor window with context menu 88
45 Creating a wiring . 89
46 Creating a service item . 90
47 Creating a link item . 90
48 Connecting a link to a container . 91
49 Editing a link’s parameters . 92
50 Subpeer’s context menu . 94
51 Plugin manager window . 94
52 Model check result window . 95
53 Erroneous item shown in editor . 95

54 Group structure of the study participants 105
55 TomatoFactory peer (modeled after [51]) 106
56 Results of the modeling assignments . 107
57 Questionnaire ratings for the PMMT . 109

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

1 Transition set of the finite state machine in Figure 2. 9
2 Feature comparison of related tools . 38

3 Comparison of programming languages and GUI frameworks 66
4 Example configuration file for Peer Model properties 71
5 Comparison of third party serialization libraries 78

6 Link operations in Figure 37 . 82

7 Graphical editor feature comparison of PMMT with related tools 100
8 Fulfillment of the identified requirements 104

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Listings

5.1 Serialization in JSON format of a model element 77

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acronyms

API application program interface. 47

ASM Abstract State Machine. 2, 8–12, 31, 45, 127

AsmEE ASM Eclipse Environment. xiii, 8–12, 37–39, 43, 100

ASMETA ASM metamodeling framework. 8, 10, 11, 38, 39, 41, 42, 100

BDD Binary-Decision Diagram. 12, 43

BPEL Business Process Execution Language. xiii, 2, 12–15, 18, 20, 37–41, 100, 117, 127

BPMN Business Process Model Notation. xiii, 2, 15–20, 37–41, 56, 57, 100, 117, 127

CPN Colored Petri Net. xiii, 2, 20–26, 37–43, 56, 98–100, 114, 117, 127

CSS Cascading Style Sheets. 65, 66

CTL Computation Tree Logic. 11, 30, 43

CTL Computation Tree Logic. 3, 76–78

ECT Extensible Coordination Tools. xiii, 2, 27–31, 37–43, 100, 127

FIFO first in, first out. 27, 28

FSM finite-state machine. 8, 9, 127

fUML Foundational UML. 35, 36

GUI graphical user interface. 5, 63–66, 129

HTML Hypertext Markup Language. 65

IDE integrated development environment. 113

ISO International Organization for Standardization. 31

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

JS Javascript. 65

JSON Javascript Object Notation. 65, 75–78, 131

JVM Java Virtual Machine. 25, 64

LTL Linear Temporal Logic. 11, 43

MB megabyte. 65

MDI Multiple-Document Interface. 61, 62, 72, 83, 84, 86, 114

MVC Model-View-Controller. 71

MVP minimal viable product. 55, 56, 62, 81, 113, 115, 116

ODE Orchestration Director Engine. 14

OMG Object Management Group. 15, 31, 32, 35, 36, 127

PDF Portable Document Format. 88, 98, 102

PIC Peer-In-Container. 47, 48, 52, 53, 56, 68, 93

PM Peer Model. 2–6, 36, 39, 40, 42, 51, 55–59, 61, 62, 74, 97, 101, 102, 104, 108, 110,
116–119

PM-DSL Peer Model domain-specific language. 3, 57, 118

PMMT Peer Model Modeling Tool. 4–6, 55–59, 61–63, 65–68, 70, 71, 73–76, 78, 79,
81–84, 87, 88, 94, 95, 97–111, 113–120, 123, 126, 128, 129

PNG Portable Network Graphics. 98

POC Peer-Out-Container. 47, 48, 53, 56, 68, 93, 106

PSCS Precise Semantics of UML Composite Structures. 35

QIA Quantitative Intentional Automata. 30

RAII Resource Acquisition Is Initialization. 64, 66, 68

SAT propositional satisfiability. 12, 43

SOA service-oriented architecture. 15

SOAP Simple Object Access Protocol. 12

SQL Structured Query Language. 47

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

SVG Scalable Vector Graphics. 88, 98, 102

SysML Systems Modeling Language. 31–36, 127

UDDI Unified Description, Discovery, and Integration. 12

UML Unified Modeling Language. 31, 32, 35, 36

WS-BPEL Web Service Business Process Execution Language. 2, 12, 14, 17

WSDL Web Service Description Language. 12–14, 16, 31, 127

XML eXtensible Markup Language. 13, 20, 75–78

XVSM eXtensible Virtual Shared Memory. 47, 51, 56

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] BPEL Designer Project. https://projects.eclipse.org/projects/soa.
bpel. [online, last accessed on 2018-02-27].

[2] BPMN2 Modeler. https://www.eclipse.org/bpmn2-modeler/. [online, last
accessed on 2019-02-20].

[3] Extensible Coordination Tools (ECT). http://reo.project.cwi.nl/reo/

wiki/Tools. [online, last accessed on 2018-11-13].

[4] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

[5] Farhad Arbab. What do you mean, coordination? Bulletin of the Dutch Association
for Theoretical Computer Science (NVTI), 19:10–21, 1998.

[6] Farhad Arbab. Reo: A Channel-based Coordination Model for Component Compo-
sition. Mathematical structures in computer science, 14(3):329–366, 2004.

[7] Farhad Arbab, Christian Koehler, Ziyan Maraikar, Young-Joo Moon, and José
Proença. Modeling, Testing and Executing Reo Connectors with the Eclipse Co-
ordination Tools. In 5th International Workshop on Formal Aspects of Component
Software (FACS), volume 8, 2008.

[8] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. AsmetaSMV: A Way
to Link High-Level ASM Models to Low-Level NuSMV Specifications. In Abstract
State Machines, Alloy, B and Z (ABZ 2010), volume 5977 of LNCS, pages 61–74.
Springer, 2010.

[9] Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, and Elvinia Riccobene. Visual
Notation and Patterns for Abstract State Machines. In Software Technologies:
Applications and Foundations (STAF 2016), volume 9946 of LNCS, pages 163–178.
Springer, 2016.

[10] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Syn-
chronization and Linearity: An Algebra for Discrete Event Systems. John Wiley &
Sons Ltd, 1992.

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[11] Alexandra Back and Emma Westman. Comparing Programming Languages in Google
Code Jam. Master’s thesis, Chalmers University of Technology and University of
Gothenburg, 2017.

[12] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling component
connectors in Reo by constraint automata. Science of Computer Programming, 61
(2):75–113, 2006.

[13] Silvia Bonfanti, Marco Carissoni, Angelo Gargantini, and Atif Mashkoor. Asm2C++:
A Tool for Code Generation from Abstract State Machines to Arduino. In NASA
Formal Methods (NFM 2017), volume 10227 of LNCS, pages 295–301. Springer,
2017.

[14] Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. AsmetaA: Animator for
Abstract State Machines. In Abstract State Machines, Alloy, B, TLA, VDM, and Z
(ABZ 2018), volume 10817 of LNCS, pages 369–373. Springer, 2018.

[15] Egon Börger. The ASM Method for System Design and Analysis. A Tutorial
Introduction. In Frontiers of Combining Systems (FroCoS 2005), volume 3717 of
LNCS, pages 264–283. Springer, 2005.

[16] Egon Börger. The Abstract State Machines Method for High-Level System Design
and Analysis. In Formal Methods: State of the Art and New Directions, chapter 3,
pages 79–116. Springer, 2010.

[17] Egon Börger and James K. Huggins. Abstract State Machines 1988-1998: Commented
ASM Bibliography. Bulletin of the EATCS, 64:105–127, 1998.

[18] Fred D. J. Bowden. A Brief Survey and Synthesis of the Roles of Time in Petri Nets.
Mathematical and Computer Modelling, 31(10):55–68, 2000.

[19] Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra.
A Scenario-Based Validation Language for ASMs. In Abstract State Machines, B
and Z (ABZ 2008), volume 5238 of LNCS, pages 71–84. Springer, 2008.

[20] Stephan Cejka. Enabling Scalable Collaboration by Introducing Platform-
Independent Communication for the Peer Model. Master’s thesis, Technische
Universität Wien, 2019.

[21] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On Non-Functional
Requirements in Software Engineering. In Conceptual modeling: Foundations and
applications, volume 5600 of LNCS, pages 363–379. Springer, 2009.

[22] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An
OpenSource Tool for Symbolic Model Checking. In Computer Aided Verification
(CAV 2002), volume 2404 of LNCS, pages 359–364. Springer, 2002.

138

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[23] Stefan Craß, Eva Kühn, and Gernot Salzer. Algebraic Foundation of a Data Model
for an Extensible Space-Based Collaboration Protocol. In Proceedings of the 2009
International Database Engineering & Applications Symposium (IDEAS ’09), pages
301–306. ACM, 2009.

[24] Stefan Craß, Gerson Joskowicz, and Eva Kühn. A Decentralized Access Control
Model for Dynamic Collaboration of Autonomous Peers. In Security and Privacy
in Communication Networks (SecureComm 2015), volume 164 of LNICST, pages
519–537. Springer, 2015.

[25] Kevin Crowley and Robert S. Siegler. Flexible Strategy Use in Young Children’s
Tic-Tac-Toe. Cognitive Science, 17(4):531–561, 1993.

[26] Maximilian Csuk. Developing an Interactive, Visual Monitoring Software for the
Peer Model Approach. Master’s thesis, Technische Universität Wien, 2014.

[27] Matthias Kalle Dalheimer. Qt vs. Java: A Comparison of Qt and Java for Large-Scale,
Industrial-Strenght GUI Development. Technical report, Klarälvdalens Datakonsult
AB, 2010.

[28] Michel Diaz and Patrick Sénac. Time Stream Petri Nets a model for timed multimedia
information. In Application and Theory of Petri Nets (ICATPN 1994), volume 815
of LNCS, pages 219–238. Springer, 1994.

[29] Stephan Diehl. Software Visualization. In Proceedings of the 27th international
conference on Software engineering (ICSE ’05), pages 718–719. ACM, 2005.

[30] Thomas Friese, Matthew Smith, Bernd Freisleben, Julian Reichwald, Thomas Barth,
and Manfred Grauer. Collaborative Grid Process Creation Support in an Engineering
Domain. In High Performance Computing (HiPC 2006), volume 4297 of LNCS,
pages 263–276. Springer, 2006.

[31] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[32] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. AsmEE: an Eclipse
plug-in in a metamodel based framework for the Abstract State Machines. In First In-
ternational Conference on Eclipse Technologies (ECLIPSE-IT), 2007. https://cs.
unibg.it/gargantini/research/papers/asmee_eclipeit07.pdf. [on-
line, last accessed on 2020-05-29].

[33] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A Metamodel-based
Language and a Simulation Engine for Abstract State Machines. Journal of Universal
Computer Science, 14(12):1949–1983, 2008.

[34] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Model-Driven
Language Engineering: The ASMETA Case Study. In Proceedings of the Third

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

International Conference on Software Engineering Advances (ICSEA), pages 373–378.
IEEE, 2008.

[35] David Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

[36] Sébastien Gérard, Cédric Dumoulin, Patrick Tessier, and Bran Selic. Papyrus: A
UML2 Tool for Domain-Specific Language Modeling. In Model-Based Engineering
of Embedded Real-Time Systems (MBEERTS 2007), volume 6100 of LNCS, pages
361–368. Springer, 2007.

[37] Thomas Hamböck. Towards a Toolchain for Asynchronous Embedded Programming
based on the Peer-Model. Master’s thesis, Technische Universität Wien, 2015.

[38] Bill Haskins, Jonette Stecklein, Brandon Dick, Gregory Moroney, Randy Lovell, and
James Dabney. Error Cost Escalation Through the Project Life Cycle. INCOSE
International Symposium, 14(1):1723–1737, 2004.

[39] Matthew Hause. The SysML Modelling Language. In 15th European Systems
Engineering Conference, volume 9, pages 1–12. INCOSE, 2006.

[40] Holger Hermanns and Joost-Pieter Katoen. The How and Why of Interactive Markov
Chains. In Formal Methods for Components and Objects (FMCO 2009), volume
6286 of LNCS, pages 311–337. Springer, 2009.

[41] Georg Holasek. Evaluation of the Peer Model Framework on a RCM4300 Evaluation
Board. Bachelor’s thesis, Technische Universität Wien, 2014.

[42] Maximilian Irlinger. PMTL - A Template Language for the Peer Model. Master’s
thesis, Technische Universität Wien, in preparation.

[43] ISO/IEC 19514:2017. Information technology – Object management group sys-
tems modeling language (OMG SysML). Standard, International Organization for
Standardization, Geneva, Switzerland, March 2017.

[44] Sung-Shik T. Q. Jongmans, Francesco Santini, Mahdi Sargolzaei, Farhad Arbab,
and Hamideh Afsarmanesh. Automatic Code Generation for the Orchestration of
Web Services with Reo. In Service-Oriented and Cloud Computing (ESOCC 2012),
volume 7592 of LNCS, pages 1–16. Springer, 2012.

[45] Sascha Klüppelholz and Christel Baier. Symbolic model checking for channel-based
component connectors. Science of Computer Programming, 74(9):688–701, 2009.

[46] Heather Kreger. Fulfilling the Web Services Promise. Communications of the ACM,
46(6):29—-34, 2003.

[47] Lars Michael Kristensen, Søren Christensen, and Kurt Jensen. The practitioner’s
guide to coloured Petri nets. International Journal on Software Tools for Technology
Transfer (STTT), 2(2):98–132, 1998.

140

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[48] eva Kühn. Peer Model: Agile Middleware and Programming Model for the Coordi-
nation of Parallel and Distributed Flows. Technical report, Institute of Computer
Languages, TU Wien, 2012.

[49] Eva Kühn. Reusable Coordination Components: Reliable Development of Coopera-
tive Information Systems. International Journal of Cooperative Information Systems,
25(04):1740001, 2016.

[50] Eva Kühn. Flexible Transactional Coordination in the Peer Model. In Fundamentals
of Software Engineering (FSEN 2017), volume 10522 of LNCS, pages 116–131.
Springer, 2017.

[51] Eva Kühn and Sophie Therese Radschek. An Initial User Study Comparing the
Readability of a Graphical Coordination Model with Event-B Notation. In Software
Engineering and Formal Methods (SEFM 2017), volume 10729 of LNCS, pages
574–590. Springer, 2017.

[52] Eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas Scheller.
Peer-Based Programming Model for Coordination Patterns. In Coordination Models
and Languages (COORDINATION 2013), volume 7890 of LNCS, pages 121–135.
Springer, 2013.

[53] eva Kühn, Stefan Craß, and Thomas Hamböck. Approaching Coordination in
Distributed Embedded Applications with the Peer Model DSL. In 40th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA), pages 64–68.
IEEE, 2014.

[54] eva Kühn, Stefan Craß, Gerson Joskowicz, and Martin Novak. Flexible Modeling of
Policy-Driven Upstream Notification Strategies. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing (SAC ’14), pages 1352–1354. ACM, 2014.

[55] eva Kühn, Stefan Craß, and Gerald Schermann. Extending a Peer-based Coordi-
nation Model with Composable Design Patterns. In 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP), pages
53–61. IEEE, 2015.

[56] eva Kühn, Sophie Therese Radschek, and Nahla Elaraby. Distributed Coordination
Runtime Assertions for the Peer Model. In Coordination Models and Languages
(COORDINATION 2018), volume 10852 of LNCS, pages 200–219. Springer, 2018.

[57] Olaf Kummer. Introduction to Petri Nets and Reference Nets. Sozionik Aktuell, 1:
7–16, 2001.

[58] Gordon Kurtenbach and William Buxton. User Learning and Performance with
Marking Menus. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’94), pages 258–264. ACM, 1994.

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[59] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic Sym-
bolic Model Checker. In Computer Performance Evaluation: Modelling Techniques
and Tools (TOOLS 2002), pages 200–204. Springer, 2002.

[60] Charles Lakos. From Coloured Petri Nets to Object Petri Nets. In Application and
Theory of Petri Nets (ICATPN 1995), pages 278–297. Springer, 1995.

[61] Christoph Maier and Daniel Moldt. Object Coloured Petri Nets - A Formal Technique
for Object Oriented Modelling. In Concurrent Object-Oriented Programming and
Petri Nets, volume 2001 of LNCS, pages 406–427. Springer, 2001.

[62] Philip Merlin. A study of the Recoverability of Computer Systems. PhD thesis,
University of California, 1974.

[63] Toshiyuki Miyamoto and Sadatoshi Kumagai. A Survey of Object-Oriented Petri
Nets and Analysis Methods. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 88(11):2964–2971, 2005.

[64] OASIS wsbpel-v2.0-OS. Web Services Business Process Execution Language Version
2.0. Specification, Organization for the Advancement of Structured Information Stan-
dards, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html.

[65] OMG formal/2008-01-16. MOF Model to Text Transformation Language, v1.0.
Specification, Object Management Group, 2008. https://www.omg.org/spec/
MOFM2T/1.0/.

[66] OMG formal/2013-12-09. Business Process Model and Notation (BPMN). Specifica-
tion, Object Management Group, 2013. https://www.omg.org/spec/BPMN/.

[67] OMG formal/2017-05-01. OMG Systems Modeling Language Version 1.5. Specifica-
tion, Object Management Group, 2017. https://www.omg.org/spec/SysML/
1.5.

[68] OMG formal/2017-07-04. Action Language for Foundational UML Version 1.1.
Specification, Object Management Group, 2017. https://www.omg.org/spec/
ALF/1.1/.

[69] OMG formal/2017-12-05. OMG Unified Modeling Language (OMG UML) Version
2.5.1. Specification, Object Management Group, 2017. https://www.omg.org/
spec/UML/2.5.1/.

[70] OMG formal/2018-12-01. Semantics of a Foundational Subset for Executable UML
Models Version 1.4. Specification, Object Management Group, 2018. https:

//www.omg.org/spec/FUML/1.4/.

142

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[71] OMG formal/2019-02-01. Precise Semantics of UML Composite Structures Version
1.2. Specification, Object Management Group, 2019. https://www.omg.org/

spec/PSCS/1.2/.

[72] Marian Petre. Why Looking Isn’t Always Seeing: Readership Skills and Graphical
Programming. Communications of the ACM, 38(6):33–44, 1995.

[73] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Technische
Hochschule Darmstadt, 1962.

[74] Chander Ramchandani. Analysis of Asynchronous Concurrent Systems by Petri
Nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, 1974.

[75] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank
Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren Christensen, and Kurt
Jensen. CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets.
In Applications and Theory of Petri Nets (ICATPN 2003), volume 2679 of LNCS,
pages 450–462. Springer, 2003.

[76] Dominik Rauch. PeerSpace.NET : Implementing and Evaluating the Peer Model
with Focus on API Usability. Master’s thesis, Technische Universität Wien, 2014.

[77] Elvinia Riccobene and Patrizia Scandurra. Towards an Interchange Language for
ASMs. In Abstract State Machines 2004. Advances in Theory and Practice (ASM
2004), volume 3052 of LNCS, pages 111–126. Springer, 2004.

[78] Armin Rigo and Samuele Pedroni. PyPy’s Approach to Virtual Machine Construc-
tion. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications (OOPSLA ’06), pages 944–953.
ACM, 2006.

[79] Patrizia Scandurra, Angelo Gargantini, Claudia Genovese, Tiziana Genovese, and
Elvinia Riccobene. A Concrete Syntax derived from the Abstract State Machine
Metamodel. In Proceedings of the 12th International Workshop on Abstract State
Machines (ASM 2005), pages 345–368, 2005.

[80] Gerald Schermann. Extending the Peer Model with Composable Design Patterns.
Master’s thesis, Technische Universität Wien, 2014.

[81] Joseph Sifakis. Performance evaluation of systems using nets. In Net Theory and
Applications, volume 84 of LNCS, pages 307–319. Springer, 1980.

[82] Kent Inge Fagerland Simonsen. On the use of Pragmatics for Model-based Develop-
ment of Protocol Software. In Proceedings of the International Workshop on Petri
Nets and Software Engineering (PNSE), volume 723, pages 179–190, 2011.

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[83] Kent Inge Fagerland Simonsen. PetriCode: A Tool for Template-Based Code
Generation from CPN Models. In Software Engineering and Formal Methods (SEFM
2013), volume 8368 of LNCS, pages 151–163. Springer, 2013.

[84] Andrea Sindico, Marco Di Natale, and Gianpiero Panci. Integrating SysML with
Simulink using Open-Source Model Transformations. In Proceedings of 1st Inter-
national Conference on Simulation and Modeling Methodologies, Technologies and
Applications (SIMULTECH 2011), pages 45–56, 2011.

[85] Jérémie Tatibouët, Arnaud Cuccuru, Sébastien Gérard, and François Terrier. For-
malizing Execution Semantics of UML Profiles with fUML Models. In Model-Driven
Engineering Languages and Systems (MODELS 2014), volume 8767 of LNCS, pages
133–148. Springer, 2014.

[86] Rüdiger Valk. Petri Nets as Token Objects. In Application and Theory of Petri Nets
(ICATPN 1998), volume 1420 of LNCS, pages 1–24. Springer, 1998.

[87] Rüdiger Valk. Object Petri Nets. In Lectures on Concurrency and Petri Nets (ACPN
2003), volume 3098 of LNCS, pages 819–848. Springer, 2003.

[88] Bernd Walter. Timed Petri-Nets for Modelling and Analyzing Protocols with Real-
Time Characteristics. In Proceedings of the IFIP WG 6.1 Third International
Workshop on Protocol Specification, Testing and Verification (PSTV), pages 149–159.
IBM Research, 1983.

[89] Lisa Wells. Performance analysis using CPN tools. In Proceedings of the 1st
International Conference on Performance Evaluation Methodolgies and Tools (VAL-
UETOOLS ’06), pages 59–68. ACM, 2006.

[90] Michael Wybrow. Using semi-automatic layout to improve the usability of diagram-
ming software. PhD thesis, Monash University, 2008.

144

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Introduction
	Peer Model
	Motivation
	Contribution
	Methodological Approach
	Outline

	Related Work
	asmee
	bpel Designer Project
	bpmn2 Modeler
	cpn Tools
	ect
	Papyrus
	Peer Model Monitoring Tool
	Discussion

	The Peer Model
	Entry
	Property
	Container
	Peer
	Wiring
	Link
	Service
	Coordination Example

	Requirement Analysis
	Functional Requirements
	Non-Functional Requirements

	Design & Implementation
	Design Decisions
	Technologies
	Architecture
	Third Party Libraries

	Visual Modeling of Peer Model Applications
	Visualization
	General User Interface
	Hierarchical Model Overview
	Managing Entry Types
	Creating and Opening Peers
	Creating and Editing Peer Contents
	Working With Subpeers
	Plugin Configuration
	Using Model Checks
	Code Generation

	Evaluation
	Comparison with Related Tools
	Requirement Fulfillment
	Usability Study
	Implementation in Retrospect

	Future Work
	Localizability
	Live Debugging of the Peer Model
	Universal Plugin Containers
	User Interface Extensions
	Expression Model for Link Definition Parts
	Project Search Box
	Support for Peer Model Extensions
	Type System for Peer Model Items
	Background Task for Model Checks
	Periodic Code Generation
	Deployment Support
	Simulation
	Model Checking and Verification
	Performance Analysis

	Conclusion
	Appendices
	Usability Study
	List of Figures
	List of Tables
	Acronyms
	Bibliography

