
A Framework for Modernizing
Domain-Specific Languages

From XML Schema to Consistency-Achieving

Editors with Reusable Notations

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Patrick Neubauer

Registration Number 1028573

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Mag. Dr. Manuel Wimmer

The dissertation has been reviewed by:

Davide Di Ruscio Werner Retschitzegger

Vienna, 8th July, 2020

Patrick Neubauer

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

A Framework for Modernizing
Domain-Specific Languages

From XML Schema to Consistency-Achieving

Editors with Reusable Notations

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Patrick Neubauer

Matrikelnummer 1028573

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Mag. Dr. Manuel Wimmer

Diese Dissertation haben begutachtet:

Davide Di Ruscio Werner Retschitzegger

Wien, 8 Juli, 2020

Patrick Neubauer

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Erklärung zur Verfassung der

Arbeit

Patrick Neubauer

7 Barbican Mews, YO10 5BZ York, Vereinigtes Königreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8 Juli, 2020

Patrick Neubauer

v

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Acknowledgements

I would like to thank my supervisor, Prof. Manuel Wimmer, for challenging my in-
tellectual abilities and guiding me towards the successful completion of my doctoral
studies. I would like to express my deepest appreciation to my committee members
Prof. Werner Retschitzegger and Prof. Davide Di Ruscio for reviewing my work and
providing encouraging feedback. I wish to express my deepest gratitude to Prof. Dimitris
Kolovos and Prof. Richard Paige for enabling me to join the Enterprise Research group
at the University of York and providing unwavering inspiration and constructive feedback
during many valuable discussions. I also had the great pleasure of working with Dr
Robert Bill and sincerely appreciate his tremendous patience and cooperation during
the experimentation and implementation of software components. Especially cheerful
to me during this time were Dr Konstantinos Barmpis and Dr Thanos Zolotas who I
worked within the research projects CROSSMINER and TYPHON at the University
of York. I am extremely grateful to Dr Tanja Mayerhofer and Dr Philip Langer who
not only introduced me to the world of academia but also guided me in compiling my
first peer-reviewed work. Dr Mayerhofers’ attention to detail, which started early in her
advisory role in my Masters’ thesis, significantly steered the success of this thesis. I also
very much appreciate Dr Javier Troja, Dr Martin Fleck, and Dr Alexander Bergmayr
and in particular their instrumental role in challenging and motivating me to pursue this
work. I would like to pay my special regards to Prof. Gerti Kappel and Prof. Christian
Huemer for playing a decisive role in recruiting me for the ARTIST research project
and introducing me to Prof. Richard Paige and thus qualifying me to work in an H2020
European research project and enabling me to work on-site at the University of York.
I would also like to extend my deepest gratitude to the great advice received from Dr
Fady Medhat for reviewing this thesis and providing invaluable guidance in structuring
this thesis. And last but not least, I am deeply indebted to my family and friends and
in particular my sister Elisa Neubauer and Viesturs Kaugers who never questioned my
ability to succeed and kept pushing me towards completing this chapter of my life.

vii

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Kurzfassung

Die Einführung von Extensible Markup Language (XML)-Schemadefinitionen (XSDs)
stellte einen enormen Fortschritt im Entwurf domänenspezifischer Sprachen (DSLs)
dar, da dadurch die formale Definition und maschinelle Verarbeitbarkeit von Domänen-
Modellen, wie zum Beispiel das Erfassen von Vokabular und gültigen Sätzen, möglich
wurde. Dadurch steigt die Notwendigkeit, integrierte Entwicklungsumgebungen (IDEs)
automatisiert zu erstellen und zu warten, um inhärente XML-Einschränkungen, wie zum
Beispiel die Syntax von starren Klammern, zu umgehen und um die Formalisierung von
gültigen Domänenmodellen zu ermöglichen.

Aktuelle Rahmenwerke modellgetriebener Entwicklung und Sprachentwicklung bie-
ten verschiedene Techniken und Tools, welche die Konstruktion von DSLs grundlegend
unterstützen. Nichtsdestotrotz ist es bisher nicht gelungen Unterschiede, welche durch
Metamodellen, durch der Transformation und Synthese von XSDs und Sprachgram-
matiken aufgedeckt werden, zu automatisieren. Metamodelle, welche von Grund auf
unterschiedlich zu Sprachgrammatiken sind, stellen für die Konstruktion und Anwendung
von Sprachnotationen somit eine Herausforderung dar. Aktuell sind wissenschaftliche An-
sätze aus dem Bereich modellgetriebenen Sprachentwicklung zwar in der Lage, dedizierte
Validatoren, Kontextassistenten und Quickfix-Anbietern nahtlos in domänenspezifische
IDEs zu integrieren, deren Implementierung und Wartung erfordert jedoch weiterhin
Expertise und Arbeitsaufwand im Bereich der Sprachentwicklung.

Im Rahmen dieser Arbeit werden drei Ansätze vorgeschlagen, welche die oben ge-
nannten Probleme adressieren. Zunächst wird ein Ansatz vorgeschlagen, welcher die
Lücken in der Transformation von Strukturkomponenten schließt und Metamodelle mit
strukturellen Einschränkungen aus XSDs anreichert. Dadurch wird die Erstellung von
DSL-Grammatiken aus XSD-basierten Sprachen automatisiert. Als Nächstes wird eine
Herangehensweise präsentiert, bei der domänenspezifische IDEs mit genauen Validatoren,
sinnvollen Kontextassistenten und kostengünstigen Quickfix-Anbietern automatisch ge-
neriert werden können, indem zur Laufzeit suchbasierte Softwareentwicklung eingesetzt
wird. Der Dritte Ansatz beschreibt wie im Rahmen der Modellierung von Sprachen
domänenstrukturunabhängige Textnotationen formuliert werden können. Das Entkop-
peln von Repräsentations- und Strukturinformationen in Grammatikdefinitionen sowie
das Bereitstellen eines Sprachstil-Rahmenwerkes automatisiert die Konstruktion von
Grammatiken aus beliebigen Metamodell- und Stilspezifikationen.

ix

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Die Nützlichkeit der vorgeschlagenen Ansätze ist demonstriert durch die Evaluierung
der entwickelten prototypischen Implementierungen auf Grundlage der Anwendung eines
umfassenden Industriestandards für die Klassifizierung und Beschreibung von Produkten,
dem Vergleichs mit aktuellen Rahmenwerken der Sprachentwicklung, der Integration
in ein Werkzeug der Unterstützten Modellierung sowie der Durchführung individueller
Einzelfallstudien wie Cloud-Topologie und Orchestrierungsmodellierung.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Abstract

The introduction of Extensible Markup Language (XML) Schema Definitions (XSDs)
represented a tremendous leap towards the design of domain-specific languages (DSLs)
by enabling machine processibility of domain models conforming to formally described
language grammar, i.e. capturing vocabulary and valid sentences. Consequently, it
elevated the need for automating the creation and maintenance of dedicated and modern
integrated development environments (IDEs) evading inherent XML limitations, such
as rigid angle-bracket syntax, as well as enabling the support of valid domain model
construction.

Techniques and tools provided by model-driven engineering frameworks and language
workbench frameworks offer elementary assistance during the initial implementation of a
DSL. These frameworks, however, fail to automate DSL generation due to disparities
exposed by the transformation and synthesis of XSDs, language grammars, and meta-
models. Moreover, fundamental differences in the nature of language grammars and
metamodels challenge the construction and application of language notations. Although
language workbenches are capable of integrating seamlessly dedicated validators, context
assistants, and quick fix providers into domain-specific IDEs, their implementation and
maintenance still requires proficient language knowledge and development.

This thesis contributes towards addressing the above-mentioned problems. First,
it proposes an approach to generate automatically DSL grammars from XSD-based
languages by bridging gaps in the transformations of structural components, and by
enriching metamodels with structural constraints imposed by XSD restrictions. Second,
it proposes an approach to generate automatically domain-specific IDEs with accurate
validators, sensible context assistants, and cost-effective quick fix providers by employing
search-based software engineering at runtime. Third, it proposes an approach to formu-
late domain structure-agnostic textual notations for modeling languages by decoupling
representational from structural information in grammar definitions, and by providing a
language style framework capable of generating grammars from arbitrary metamodels and
style specifications. In order to demonstrate the usefulness of the proposed approaches,
the developed prototypical implementations are evaluated based on a comprehensive
industrial standard for the classification and description of products, a comparison
with state-of-the-art language workbench frameworks, integration with model assistance
tooling, and individual case studies such as cloud topology and orchestration modeling.

xi

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and problem . 1
1.2 Objective and methodology . 5
1.3 Structure of work . 9

2 Preliminaries and running example 11
2.1 Technical spaces . 11
2.2 XMLware . 13
2.3 Grammarware . 19
2.4 Modelware . 24
2.5 Summary and comparison of technical spaces 32

3 Related work 37
3.1 Bridges between technical spaces . 37
3.2 Language workbenches . 43
3.3 Design of textual notations . 51
3.4 Model composition and management . 57
3.5 Summary . 58

4 XML Schema modeling integration and assistance 61
4.1 Introduction . 62
4.2 Background . 64
4.3 Challenges . 65
4.4 Requirements . 67
4.5 Approach . 74
4.6 Evaluation based on cloud topology and orchestration modeling 96
4.7 Evaluation based on industrial conveyor-belt system modeling 106
4.8 Analysis . 116

xiii

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.9 Summary . 118

5 Consistency-achieving integrated development environment 121
5.1 Introduction . 122
5.2 Background . 124
5.3 Challenges . 125
5.4 Requirements . 126
5.5 Approach . 127
5.6 Evaluation . 142
5.7 Analysis . 152
5.8 Summary . 163

6 Reusable notation-template language and design framework 165
6.1 Introduction . 166
6.2 Background . 168
6.3 Challenges . 169
6.4 Requirements . 170
6.5 Approach . 170
6.6 Evaluation . 182
6.7 Analysis . 194
6.8 Summary . 197

7 Conclusion and future work 199
7.1 Summary . 199
7.2 Future Work . 202

List of Figures 205

List of Tables 207

Acronyms 209

Bibliography 213

Appendices 233
Space transportation service language XML Schema definition 235
Space transportation service language Ecore metamodel 240
Space transportation service language OCL constraints in Ecore metamodel . . 241
Space transportation service default grammar 243
Space transportation service ECSS-generated grammar 246
Default notation-template model . 250
Example space transportation service model . 252
IntellEdit integration with XMLText . 254
Library language XML Schema definition . 255

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 1
Introduction

S
oftware language engineering constitutes an emerging field focusing primarily
on language definition, parser building, and compiler construction [215, 121, 75].
Traditionally, there has been a strong focus on language design to provide machine-

readable and executable formats. In recent decades, there has been a shift towards paying
more attention to concrete syntax, i.e. the notation or visual representation of a language,
due to the growing need of program creation and maintenance by non-programming
domain experts, and the emergence of powerful tools for the definition of Domain-Specific
Languages (DSLs) that automate the construction and maintenance of complex language
implementation artifacts, such as compilers and parsers [84, 65, 92].

1.1 Motivation and problem

One of the primary motivations for developing a novel language is to make the construction
and maintenance of instructions (programs) more efficient for their primary stakeholder,
i.e. the end-user (henceforth referred to as domain expert), who composes programs
by employing tools offered by the implementation of a language. Ideally, a language
offers (i) a suitable level of abstraction, (ii) a fitting balance between expressiveness
and conciseness, (iii) an assurance mechanism for critical properties, and (iv) rigorous
semantics [131].

Several studies report that Domain-Specific Languages (DSLs) are more expressive and
easier to use in their domain of application compared to GPLs, such as Extensible Markup
Language (XML) and Java, and consequently tend to raise productivity and improve
maintenance [210, 222]. For example, DSLs enable the construction of terminology that
is closer to their domain than GPLs [133], i.e. they offer generic language constructs,
such as elements and attributes in XML Schema Definition (XSD) and classes and
class members in Java, the support for domain-specific notations, as well as explicit
separation of knowledge in the system in the natural structured form of its domain, such

1

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

as car and horsepower in a DSL for the specification of vehicles. Thus, DSLs enable
domain experts to exert their existing domain proficiency during activities, such as the
reading and learning of notations. More specifically, a repeated empirical study on the
comparison of GPLs and DSLs reports that the latter outperform the former in thirteen
out of thirteen cognitive dimensions, primarily categorized into learning, perception, and
evolution despite the participants’ superior experience in the former [91, 130].

In summary, for DSLs to become successful, it is crucial that: (i) the entrance barrier
for the development of DSLs and, in particular, language exploitation-based DSL design,
is lowered; (ii) elaborated tool support is available, such that productivity gains can be
achieved by accelerating model creation and maintenance, as well as fault resolution; and
(iii) language notations can be constructed closely to their domain of representation, so
that domain experts are able to make use of their existing domain proficiency. Finally,
the construction of such DSL implementations requires the least amount of language
engineering expertise to outline the preliminaries for both minimal intervention by highly
skilled language engineers, and the extended scope of domain experts.

In general, DSLs are constructed by following either the language invention design
pattern, i.e. DSL construction from scratch, or the language exploitation design pattern,
i.e. DSL construction based on existing (formal) language specifications [152]. In the latter
case, it is essential to provide mechanisms to generate comprehensive implementations
with the least amount of developer intervention in order to lower the barrier for the
manifestation of DSLs built by language exploitation.

In 1998, the World Wide Web Consortium (W3C) introduced the fully machine-
processible XML that represents a tremendous leap towards easing the design of language
specifications by leveraging the idea of a generic editing, parsing, and validation method-
ology. In 2004, W3C recommended the XML Schema Definition (XSD) as a new standard
to describe formally a DSL and verify the conformance of XML documents to their DSL
[97]. On the one hand, for some XSD-based languages, such as the prominent Business
Process Model and Notation, dedicated tool support, such as textual and graphical
IDEs, has been made available. On the other hand, for a vast amount of XSD-based
languages, dedicated tool support is lacking. XSD-based languages, however, represent
ideal candidates for the construction of DSLs by following the language exploitation
design pattern. More specifically, methodologies and techniques made available by Model-
Driven Engineering (MDE) [31] and, in particular, Model-Driven Language Engineering
(MDLE) [136, 113] lower the entrance barrier to capture and manage primitive models
containing domain-specific information, by semi-automating the generation of dedicated
Integrated Development Environments (IDEs) [127].

XML has primarily been designed as a machine-processible format composed of
immutable concrete syntax. More specifically, users of XML-based languages are bound
to tree-based angle-bracket syntax that is described as verbose and complex in terms
of human comprehension [13]. One of the main consequences of immutable generic
textual concrete syntax is its limitation to improve upon human comprehension and,
therefore, maintainability. It has been shown that several low-level primitives, which

2

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.1. Motivation and problem

are often entirely syntactical, represent one of the most substantial cognitive barriers for
end-users [144].

Therefore, in order to overcome the limitations of inflexible XML syntax, it is
necessary to construct dedicated DSL implementations with customized units of symbols
for domain-specific concepts and relationships. The development and maintenance of DSL
implementations from scratch, however (i.e. DSL development based on the language
invention design pattern), involves performing a series of complex and error-prone tasks
that require highly skilled language engineering expertise [86, 205, 117]. Therefore,
for existing formal language specifications, such as XSDs, the less exhaustive language
exploitation design pattern may be preferred [152].

Favre et al. highlight that an important property of technological spaces1 is that
there is no “best technological space.” Rather, the choice depends on the problem at
hand. A case in point is that, while there are machine-oriented languages, like XML, on
one side of a spectrum, there are also human-oriented languages, like UML. Technological
spaces are not islands, and the notation of bridges between spaces offers extensive value
if facilitated. For example, the construction of bridges between such languages may
improve the comprehensibility and, thus, the maintainability of DSLs. Further, it has
been suggested that effective DSL implementations are designed for both machines, as
well as humans [72, 75]. Generally, the former requires formal language definitions, such
as abstract syntaxes, that enable straightforward machine-processing, while the latter
requires the definition of concrete syntaxes or units of symbols that emphasize human
perception, cognition, and usability [155].

Although MDE and language workbench frameworks, such as Xtext, can generate
metamodels from XSDs and DSL grammar from metamodels, these bridges are neither
integrated with each other nor complete [140, 218]. This would mean that intervention by
a language engineer is required to transform concepts and types that are not considered
by existing transformations. In particular, challenges introduced by the migration of
mixed content and wildcards, data types and restrictions, as well as identifiers and
references that may be defined as part of an XSD need to be addressed. Furthermore,
effective language migration is challenged by the maintenance of backward-compatibility
and interoperability between DSL models and existing language implementations, such
as XML applications.

Although efficiency gains in the construction of textual modeling language imple-
mentations have been attributed to the reduction of initial engineering workload and
complexity through the emergence of language workbenches, and to the application of
automation techniques for the generation of executable language artifacts, such as parsers,
serializers, and basic IDEs, several obstacles that impede the practical development,
maintenance, and use of dedicated IDEs prevail. This implies that dedicated IDEs of
textual modeling languages that retain syntactical model correctness and offer vigorous

1Kurtev et al. define a technological space as “a working context with a set of associated concepts,
body of knowledge, tools, required skills, and possibilities.”[140]

3

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

tooling, such as model consistency-preservation and low-cost consistency-repair, known
from the IDEs for popular GPLs, such as Eclipse for Java, still remain the exclusive result
of highly skilled language engineering expertise combined with domain knowledge—a
combination that is rarely found in practice [86, 205, 117, 152].

Although it has been shown that notations of DSLs are better learned by domain
experts compared to notations of GPLs [48], the latest developments in construction
and maintenance of dedicated textual language notations is still challenging due to
the development of DSL grammar requiring the execution of a series of complex and
error-prone tasks [49]. This is why the construction and maintenance of dedicated IDEs is
limited to developers with significant expertise in the design and engineering of languages,
a fact which holds back the industrial adoption of DSLs.

The engineering of a DSL is usually initiated by the construction of an artifact that
captures the concepts and relationships that are inherent in their domain of represen-
tation. Typical artifact types include variations of grammars and metamodels2—each
of inherently different nature [122]. Generally, grammars are employed to describe do-
main concepts and their textual representation, using production rules and terminal
rules respectively. Conversely, metamodels are employed to capture the concepts and
relationships of a domain but not their syntactical constructs. Although state-of-the-art
language workbenches provide mechanisms to generate grammars from metamodels and
vice-versa, they provide a single (default) notation, i.e. graphical or textual, that has to
fit the needs of all types of domain experts or requires dedicated language engineering
skills for adaptation and extension. The construction of bridges between metamodels and
grammars, in particular, is commonly approached by introducing annotations in meta-
models or metamodel-to-grammar transformations. The construction and maintenance
of such bridges, however, are inherently complex and error-prone due to the fundamental
differences between metamodels and grammars. Moreover, bridges between metamodels
and grammars that employ metamodel annotations or metamodel-to-grammar trans-
formations are not metamodel-agnostic and, thus, not applicable to arbitrary domains.
Therefore, building a particular notation for a modeling language that instantiates either
of the above-mentioned bridges, thus encoding style information as (part of) the annota-
tions in the metamodel, the metamodel-to-grammar transformation, or the adaptation
of grammar that has been generated as a result of instantiating the constructed bridge,
neglects reusability. For example, building a DSL, such as a vehicle DSL mentioned
above, through the construction of metamodel-annotations, a metamodel-to-grammar
transformation, or generated grammar-adaptation that reflects a white-space aware nota-
tion does not enable employing white-space aware styling to a DSL reflecting concepts
and relationships in the domain of biology.

In summary, problems in the migration of language structure and, in particular, the
integration of modeling languages from XSDs, the development and maintenance of
dedicated IDEs, and textual language notations have been presented and analyzed. The

2DSLs that employ metamodels to represent domain-specific concepts and relationships are also
referred to as modeling languages.

4

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.2. Objective and methodology

following section outlines the objectives of this thesis and, in particular, the tackling of
the presented problems, as well as the fundamental methodology used during the iterative
constitution and evaluation of the individual contributions of this thesis.

1.2 Objective and methodology

This thesis aims at addressing the challenges of Domain-Specific Language (DSL) mod-
ernization and the bridging of the technical spaces XMLware, Modelware, and Grammar-
ware [139, 218]. The goal of this thesis is to advance the: (i) automated migration of
modeling languages from XSD-based languages; (ii) automated generation of consistency-
achieving IDEs from formally constrained language structures; and (iii) modeling and
application of textual notations among arbitrarily structured modeling languages.

In particular, the following research questions are addressed in this thesis.

(I) Is language exploitation suitable for the automated migration of backward-compatible
textual modeling languages from XSDs and integrated modeling assistance?

(II) Are formal constraint specifications in structural language specifications suitable
for the automated generation of consistency-achieving language implementations?

(III) Are metamodel-agnostic definitions of textual language notations suitable for
the development and maintenance of representations of domain concepts and
relationships?

Textual
modeling language

NotationDedicated IDEStructure

XML Schema integration
and assistance framework

Modeling
assistance

Model
transformation

C 1

Metamodel
generation

Basic notation
customization

Reusable notation-template
language and design framework

Notation-template language and IDE

Notation
design

Grammar
generation

Template
extension

Consistency-achieving IDE
generation and runtime framework

Content
assistance

Model
validation

IDE
generation

C 2

Restrictions
integration

IDE
runtime

Model
repair

integrated
consistency
resolution,

preservation,
and repair

assisted
language structure

design and integration

integrated
notation-template

design and
extension

Artefact

Component A Component B

C #

Contribution #

C 3

implementation
used

Figure 1.1: Contributions of this thesis.

These research questions have been addressed in this thesis resulting in three contri-
butions (cf. Figure 1.1) that are summarized below.

5

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

Contribution 1: Automated migration and integrated modeling assistance
for modeling languages by XML Schema-based language exploitation. This

contribution (cf. C1 in Figure 1.1) provides an approach and implementation that
automates the migration of textual modeling languages by employing the language ex-
ploitation design pattern on XML Schema descriptions. In particular, the limitations
of state-of-the-art bridges between the technical spaces of XMLware, Modelware, and
Grammarware are exposed in a reproduction study and subsequently conquered [162].
As a result, the basic requirements for sovereignty from immutable angle-bracket syntax
are established, and an integration for automated modeling assistance is provided [192].
Further, the implementation of the approach is evaluated in the context of a large
and complex industrial standard that is formally represented as a set of XML Schema
descriptions. Furthermore, in order to achieve the backward-compatibility of migrated
languages to existing languages and, particularly, XML-based applications, a generic bidi-
rectional transformation for model serialization and parsing is constructed, thus, enabling
language users to take advantage of the amenities of both comprehensive handcrafted
implementations of an existing language, where available, and the implementation of a
migrated language in the more powerful and less restrictive technical space of Modelware.
This contribution addresses research question (I).

Contribution 2: Consistency-achieving IDE generation and runtime for

formally constrained structural language specifications. This contribution (cf. C2
in Figure 1.1) provides an approach and implementation that automates the generation
of consistency-achieving language implementations, i.e. dedicated language IDEs and
tool support, for modeling languages in general and for XSD-migrated languages in par-
ticular [164, 165]. Advanced IDE features, which are the result of highly skilled language
development expertise known from popular GPL implementations, such as Java, and
particularly IDEs, such as Eclipse and IntelliJ, include precise validation reports, sensible
content-assist suggestions, and low-cost model repair solutions that are automatically
generated from formally constrained structural language specifications and, particularly,
Ecore metamodels that are constrained by OCL expressions. More specifically, model
repair solutions are generated and ranked by the development and employment of a
custom search technique for model repair, tackling the state space explosion problem
by dividing the state space into three stages, and executing them in parallel. Thus,
repair solutions for timely visualization are generated for the end-user. This contribution
addresses research question (II).

Contribution 3: Textual notation modeling language and framework for
the definition and application of style models that are structure-agnostic,

structure-dependent, or a combination thereof. This contribution (cf. C3 in
Figure 1.1) provides an approach for the definition and application of textual language
notations by introducing a language for capturing concrete representations of abstract
concepts and relationships that may be structure-agnostic, structure-dependent, or a
combination thereof. The approach is implemented by a concrete syntax specification
language, inspired by the Cascading Style Sheets (CSS) language for markup language

6

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.2. Objective and methodology

documents, such as those of the Hypertext Markup Language, and a framework that
enables the construction of style models, containing grammar rule templates and injection-
based property selection, and the application thereof to arbitrary metamodels [163].
The approach aims at reducing the redundancy between metamodel and grammar
elements that is introduced by employing state-of-the-art language workbenches for the
development of textual modeling languages and, particularly, the model-first approach
in which language development is initiated by metamodel construction and followed by
grammar generation and adaptation. This contribution addresses research question (III).

Select
XML Schema

(with Restrictions)

Ecore metamodel
(with OCL

expressions)

Select
Ecore metamodel

(with OCL
expressions)

XMLware
scenario

Generate
adapted Ecore

metamodel (with
OCL expressions)

Modelware
scenario

Generate IDE with
IntellEdit runtime-support

Select or create style
model

Generate Xtext default
notation-based

grammar

XML Schema (with
Restrictions)

Style model

Generate style
model-based Xtext

grammar

(Style model-based) Xtext
grammar referencing
(constrained) Ecore

metamodel

Figure 1.2: Primary flows of operation integrating the contributions of this thesis.

Figure 1.2 illustrates the primary flows of operation that integrate the contributions of
this thesis in form of an UML activity diagram. First, a (formally constrained) language
structure is selected. More specifically, in the Modelware and XMLware scenario an Ecore
metamodel (with OCL expressions) and XML Schema definition (with XML Schema
Restrictions) is selected respectively. In the latter case, the first contribution of this thesis
is responsible for establishing Ecore metamodels from structural language specifications in
XML Schema definitions. Second, Xtext grammar which references the respective input

7

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

Ecore metamodel (with OCL expressions) is generated immediately (and thus follows the
Xtext grammar default notation) or subsequently to the selection or creation of a style
model. In the latter case, the third contribution of this thesis addresses the generation
of style model-based Xtext grammar. Third, the second contribution of this thesis
accounts for the generation of consistency-achieving IDEs from (style model-based) Xtext
grammars which reference (constrained) Ecore metamodels and offer precise validation
reporting, sensible content-assistance, and economical model repair.

The design science paradigm has been applied as the fundamental methodology
that constitutes and evaluates the contributions of this thesis. Design science is a
constructive methodological approach, according to which knowledge is created by
building and evaluating innovative artifacts. Hevner et al. presented a conceptual
framework, composed of seven guidelines, that illustrates the application of design science
in information systems research [104]. These seven guidelines have been applied in this
thesis as described in the following.

1. Design as an Artifact. This thesis provides the theoretical foundation, as well as
the implementation of a set of contributions. Notably, the following artifacts have been
produced as the outcomes of this thesis:

• A framework for automating the migration and integrated modeling assistance of
textual modeling languages from XSDs;

• A framework for automating the generation of executable language implementations,
i.e. dedicated language IDEs, from formally constrained language structures that
offer vigorous tool support through accurate validation, sensible content-assist, and
low-cost quick fix solutions;

• A language and framework for the definition of style models, i.e. textual language
notations, as well as the application of style models to arbitrary metamodels for
the automated generation of executable language implementations.

2. Design Evaluation. The artifacts developed in the course of this thesis have
continuously been evaluated to determine whether they are useful, as well as to guide
the direction of further development (cf. Runeson and Höst [187]).

3. Research Contributions. The main research contribution of this thesis is the
experience gained in the development of an approach to bridge the technological space of
XMLware with textual modeling language implementations that tackle the limitations of
existing approaches, as well as the theoretical foundations and implementation thereof.
A detailed description of individual research contributions is presented in Sections 4, 5,
and 6.

8

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.3. Structure of work

4. Research Rigor. The existing set of works in the area of Domain-Specific Language
(DSL) engineering and the bridging of technological spaces has been explored during
the course of this work, and cited where appropriate. Thus, existing literature and tool
implementations have been surveyed for individual scientific contributions, as well as
artifact evaluation strategies and their applicability within the context of this work.

5. Design as a Search Process. All artifacts in this thesis have been constructed in
an iterative fashion. First, all techniques and solutions have been evaluated manually
on systematically developed scenarios, such as reproduction studies, in order to provide
an initial verdict on their feasibility. The approach has been generalized capturing
these simple scenarios. Subsequently, more complex scenarios have been evaluated and
automated until either the initially defined target was reached, or their automation
rendered itself too cumbersome or not possible at all. During this search, alternative
paths have been identified and pursued.

6. Communication of Research. The research has been disseminated through well-
known communication channels in the MDE, software language engineering, as well as
the general computer science community. Individual contributions of this thesis have
been published in the following periodicals, venues, and co-located workshops or events:

• International Conference on Software Language Engineering (SLE, ACM)

• International Conference on Software Analysis, Evolution, and Reengineering
(SANER, IEEE)

• Doctoral Symposium at International Conference on Software Technologies: Appli-
cations and Foundations (STAF, Springer)

• International Journal of Computer Languages, Systems and Structures (COMLAN,
Elsevier)

• International Workshop in OCL and Textual Modeling at Conference on Model
Driven Engineering Languages and Systems (OCL at MODELS, ACM/IEEE)

1.3 Structure of work

This thesis is structured according to its elaborated contributions. In what follows, an
overview of this thesis is provided that briefly describes the contents of each chapter.
Some of the contributions of this thesis have already been published in peer-reviewed
venues, such as workshops, conferences, and journals. Hence, the contents of these
publications overlap with the contents of this thesis.

Chapter 2: Preliminaries and running example. The aim of this chapter is to introduce
the basic concepts on which the contributions are founded. In particular, the technical
spaces XMLware, Modelware, and Grammarware are introduced and, in particular,

9

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

their mechanisms for capturing language structure and structural constraints. Finally,
technological spaces are summarized with a comparison of individual terminology.

Chapter 3: Related work. This chapter introduces the latest developments in: (i) the
bridging of technological spaces; (ii) language engineering through the application of
language workbenches; and (iii) the design of textual notations for DSLs.

Chapter 4: XML Schema modeling integration and assistance. This chapter presents
the contribution of this thesis regarding the automated migration of textual modeling
language implementations from XSDs based on the language exploitation design pattern,
as well as a reproduction study. Further, integrated modeling assistance for XSD descrip-
tions is presented alongside an evaluation of XML Schema-based language exploitation
involving an XSD-based industrial specification for classification and product descriptions.
Finally, the latest developments in the bridging of technological spaces (i) modelware and
grammarware, (ii) XMLware and modelware, and (iii) XMLware and grammarware are
compared with the proposed approach for the automated migration of textual modeling
languages from XSD.

Chapter 5: Consistency-achieving integrated development environment. This chapter
presents the contribution of this thesis concerning the automated generation of consistency-
achieving language implementations from formally constrained language structures,
alongside a custom approach for mitigating the state-space explosion problem in a timely
manner. Moreover, an evaluation is presented that compares IDE tooling generated by
state-of-the-art language workbenches and IDE tooling generated by the implementation
of this contribution and, in particular, model validation, content-assist, and model repair.

Chapter 6: Reusable notation-template language and design framework. This chapter
presents the contribution of this thesis regarding the development and application of
textual language notations that are structure-agnostic, structure-dependent, or a combi-
nation thereof. Further, an evaluation is presented that compares the cost of adapting
language grammar that has been generated from structural language specifications with
the construction and application of style models yielding similar language grammar and,
thus, executable language implementations. Finally, the latest developments of textual
notation design are compared with the proposed contribution for the construction and
maintenance of textual notations for modeling languages.

Chapter 7: Conclusion and future work. This chapter summarizes the contributions
of this thesis, points out their limitations, and gives directions for future lines of inquiry.

10

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 2
Preliminaries and running

example

T
his chapter introduces the elementary concepts and technologies on which the
contributions of this thesis are founded. First, the general notion of technical
spaces is introduced alongside an example language for the definition of space

transportation services. Second, the technical spaces of XMLware, grammarware, and
modelware are presented. Third, different methodologies for capturing the structural
semantics and constraints that are employed by individual technical spaces are compared
and summarized.

2.1 Technical spaces

A technical space is defined as a working context with a set of associated concepts,
body of knowledge, tools, required skills, and possibilities. Simply put, a technical
space is a representation of a designated technology at a higher level of abstraction,
intended to enable reasoning about the correlation and the individual characteristics of
heterogeneous technologies. Bézivin and Kurtev [139] argue that individual technologies
may have emerged in rather isolated communities with dedicated knowledge, skills,
tooling, educational support, literature, and research venues, consequently impeding the
development and maintenance of implementations that rely on the integration of various
technologies. The understanding of the advantages and disadvantages of individual
technical spaces, as well as their common characteristics and complimentary features,
however, is of paramount importance to improve knowledge transfer and, ultimately,
accomplish integration. Bridging technical spaces refers to the ability to integrate with or
interact among individual technologies. In other words, a bridge between two technical
spaces enables the transferring of artifacts from one technical space to another. The aim
of bridging technical spaces is to combine the capabilities that are offered by individual

11

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

technical spaces for the purposes of enabling reuse and lowering the cost of solution
development. In addition, building bridges to technical spaces that (already) provide
the desired capabilities renders the need of costly (re-)implementation superfluous. For
example, a multitude of standards, such as the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [26], are often formally defined by means of XSD
documents. Subsequently, such XSD documents are employed as formal blueprints for the
implementation and maintenance of supporting language infrastructure (e.g. dedicated
tools and complex engines) providing the ability to edit, visualize, and execute conforming
XML documents. Although dedicated tools, such as IDEs and visual notations, and
execution engines, such as cloud orchestration engines for instance, are available for some
(prominent) XSDs (e.g. Vino4TOSCA [35] and OpenTOSCA [25] in the case of TOSCA),
a multitude of XSD-based Domain-Specific Languages (DSLs) fail to obtain the resources
required for the development and maintenance of supporting language infrastructure.
Consequently, domain-experts, i.e. the end-users of DSL implementations, are unable
to escape the limitations of a particular technical space (e.g. immutable angle-bracket
notation in the case of XMLware), or exploit the capabilities that are available in (other)
technical spaces (e.g. cost-effective implementation of dedicated tooling and notation).

The attempt to bridge technical spaces imposes several problems [218, 24]. First,
semantic incompatibilities between technical spaces render the transformation of artifacts
difficult or impossible. In other words, while a concept, such as the definition of terminal
rules for the specification of language notations, exists in one technical space, such as
grammarware, it may not exist in another technical space, such as XMLware. Second,
the differences in expressiveness among technical spaces may result in loss of information.
This means that, while a concept can be expressed in one technical space, it may not
be expressible in another technical space. Third, there may exist a multitude of options
or alternatives to transform an artifact from one technical space to another. Therefore,
while there may (only) exist a singular type of representation for a particular artifact
in one technical space, such as attributes in XMLware, there may exist a multitude of
types of representation in another technical space, such as attributes and references in
modelware, i.e. each intended for a distinctive purpose.

The upcoming sections present the technical spaces of XMLware, grammarware, and
modelware, most notably, their individual mechanisms for the definition of structural
semantics and constraints that are illustrated on a language for the specification of
space transportation services that is defined by the following concepts and relationships:
a SpaceTransportationService can own launch sites, spacecrafts, and engine types; a
Spacecraft with name, relaunch-cost, stages, manufacturer, country of origin, physical
properties, functions (such as being an orbital launcher or intercontinental transport
vehicle), and launch sites; a Stage with name, such as booster or spacecraft, an engine
type, and physical properties; a PhysicalProperty with type, such as length, volume or
mass, unit, and value; a LaunchSite with name, location, operator, number of launchpads,
operational status, and physical properties.

12

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. XMLware

2.2 XMLware

XMLware, also referred to as Documentware, is the technical space [139] of XML and,
in particular, XSD, which enables the definition of markup languages [73, 34]. XML
is standardized by the World Wide Web Consortium (W3C) and represents a widely
accepted representation and exchange format for structured and semi-structured data.
XML documents are constrained by well-formedness, and are validated, e.g. based on
XSD or XML Document Type Definitions (DTDs) documents.

2.2.1 Extensible markup language

XML is a markup language that enables the definition of structured and semi-structured
data and documents, and is intended to be a generic exchange format that is applicable
across different platforms that is simple to use [33]. Moreover, the XML Specification
describes the intent of XML-encoded documents to be both human-readable and machine-
readable [34]. Although the advent of XML represents a leap towards the definition
of languages, existing literature highlights the limitations of XML documents, and
presents alternatives in regards to human-processibility [84, 185, 199]. The key concepts
illustrated in the XML Specification include the declaration and encoding of XML
documents, the processing of XML documents, the specification of content and markup in
XML documents, and the use of markup tags and markup attributes in XML documents.

Declaration and encoding. An XML document is represented as a string, i.e. a
sequence of characters, that follows an explicit encoding, such as UTF-8, i.e. a one-byte
encoding that conforms to the ISO 10646/Unicode standard specification [21]. For
example, an XML document declaration that indicates the application of XML version
1.0 and UTF-8 character encoding is specified at the beginning of the document by the
statement <?xml version="1.0" encoding="UTF-8"?>.

Processing. An XML processor, i.e. also referred to as XML parser, analyzes and
constructs a structure of the information depicted by the content of the XML document
being processed, and returns the result to the caller of the XML processor, i.e. the
application requesting to process an XML document.

Content and markup. XML documents are split into markup and content that are
typically distinguished by syntactic rules, such as opening and closing angle-brackets for
the former, and any valid stream of characters for the latter, i.e. following the document
character encoding. For example, <manufacturer>Acme Corporation </manufacturer>
marks Acme Corporation as manufacturer, while the string Acme Corporation without
the enclosing manufacturer tag may indicate mixed content, i.e. capable of capturing
attributes, elements, and free-form text.

Markup tags. A tag that indicates markup in an XML document is either defined by a
start and end, or an empty element tag. For example, <manufacturer> </manufacturer>

13

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

indicates a start- and end-tag and <manufacturer/> an empty element tag. The latter
is typically employed to markup elements that either do not contain information or
specify information (only) by the mechanism of attribute values, such as <manufacturer
name=’Acme Corporation’/>.

Markup attributes. Attributes that indicate markup in an element of an XML
document are composed of name-value pairs and appear within the context of a tag or,
put differently, angle-brackets that enclose the markup indicated by a tag. For example,
<country code=’US’> </country> indicates the use of attribute code with value US in
the context of the element country.

2.2.2 XML Schema definitions

At the time of writing, XML Schema Definition (XSD) had been first standardized by the
World Wide Web Consortium (W3C) in 2004 (version 1.0), and its last standardization
occurred in 2012 (version 1.1), through a two-part recommendation [202, 28]. Part one of
the recommendation describes the XSD language, and its ability to define the structure
and constraints of conforming XML documents. Part two of the recommendation describes
the use of XSD for the definition of datatypes that may be employed in an XSD and
XML document, representing a superset of datatypes that are made available by XML
Document Type Definitions (DTDs). Consequently, XSDs are employed particularly to
specify formally valid compositions of XML documents.

In what follows, the principal components of the XSD Specification are presented
by means of an example language for the specification of space transportation services.
More specifically, Listings 2.1–2.5 provide excerpts of the XSD specification of the space
transportation services domain (full version in Appendix 1) in order to illustrate the
XSD concepts document and encoding, namespaces, elements and particles, complex types,
attributes, groups, and simple types.

Document and encoding. Listing 2.1 line 1 declares the type of the document as
XML version 1.0 with character encoding UTF8, i.e. a variable width character encoding
that is capable of encoding all valid code points in Unicode by the use of one to four
bytes of eight bits each [109].

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsd:schema

3 xmlns:sts="http://cs.york.ac.uk/ecss/examples/spacetransportationservice"

4 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

5 targetNamespace="http://cs.york.ac.uk/ecss/examples/

spacetransportationservice">

6 <!-- ... -->

7 </xsd:schema>

Listing 2.1: Document, encoding, and namespace in XML Schema Definition.

14

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. XMLware

Namespaces. Namespaces represent a mechanism to evade name clashes that occur
when mixing XML documents from different XML applications with elements of the
same name. Listing 2.1 lines 3–5 declare the namespaces xmlns:sts, i.e. the namespace of
the space transportation services domain, and xmlns:xsd, i.e. the namespace of the W3C
for the XSD version of the year 2001, and targetNamespace, i.e. the namespace that this
XSD document is intended to target and validate.

Elements and particles. In general, elements in XSD are defined by xsd:element.
Elements that only contain text and commonly assign the attribute type with value
xsd:string, xsd:decimal, xsd:integer, xsd:boolean, xsd:date, or xsd:time are referred to as sim-
ple elements. Elements that assign the attribute type with values such as sts:LaunchSite,
sts:EngineType, and sts:Spacecraft (lines 3–5 in Listing 2.2) are referred to as custom
elements and require the definition of custom types (type definitions of sts:LaunchSite,
sts:EngineType, and sts:Spacecraft are depicted in Appendix 1). Moreover, the attributes
minOccurs and maxOccurs in an xsd:element illustrate examples for element particles that
indicate the minimum and maximum number of times an element may be instantiated.

1 <xsd:complexType name="SpaceTransportationService">

2 <xsd:sequence>

3 <xsd:element maxOccurs="unbounded" minOccurs="0" name="launchSites" type="

sts:LaunchSite"/>

4 <xsd:element maxOccurs="unbounded" minOccurs="0" name="engineTypes" type="

sts:EngineType"/>

5 <xsd:element maxOccurs="unbounded" minOccurs="0" name="spacecrafts" type="

sts:Spacecraft"/>

6 </xsd:sequence>

7 </xsd:complexType>

Listing 2.2: Element, particles, and sequence in XML Schema Definition.

Sequences. Elements that are enclosed by a sequence must appear in the same or-
der as that declared (lines 2–6 in Listing 2.2). Hence, valid instances of the element
SpaceTransportationService require instances of LaunchSite to occur before instances of
EngineType, and instances of EngineType to occur before instances of Spacecraft.

Complex Types. Listing 2.3 represents the definition of the complex types EngineType
and NamedElement. The former (lines 5–11) extends the latter (lines 1–3), as defined
by the attribute base in element xsd:extension (line 7) and, thus, inherits the (required)
attribute name.

1 <xsd:complexType abstract="true" name="NamedElement">

2 <xsd:attribute name="name" type="xsd:string" use="required"/>

3 </xsd:complexType>

4

5 <xsd:complexType name="EngineType">

6 <xsd:complexContent>

7 <xsd:extension base="sts:NamedElement">

8 <xsd:attribute name="fuelKind" type="xsd:string"/>

15

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

9 </xsd:extension>

10 </xsd:complexContent>

11 </xsd:complexType>

Listing 2.3: Complex types, sequence, and attributes in XML Schema Definition.

Attributes. Lines 5–7 in Listing 2.4 declare attributes that are capable of holding the
value of type “xsd:string”, “xsd:string”, and “xsd:integer” respectively. Further, the use
of an attribute may be mandatory or optional and is indicated by the attribute use in
xsd:attribute. For example, line 7 indicates that the use of the attribute relaunchCostIn-
MioUSD in complex type Spacecraft is required. Thus, valid instances of Spacecraft
necessarily specify a value for the relaunch cost in millions of US dollars.

1 <xsd:complexType name="Spacecraft">

2 <xsd:complexContent>

3 <xsd:extension base="sts:NamedElement">

4 <!-- ... -->

5 <xsd:attribute name="manufacturer" type="xsd:string"/>

6 <xsd:attribute name="countryOfOrigin" type="xsd:string"/>

7 <xsd:attribute name="relaunchCostInMioUSD" type="xsd:integer" use="

required"/>

8 </xsd:extension>

9 </xsd:complexContent>

10 </xsd:complexType>

Listing 2.4: Attributes in XML Schema Definition.

Groups. Model groups and attribute groups represent a macro mechanism for the reuse
of elements and attributes, and may be created by enclosing definitions of xsd:element
and xsd:attribute with xsd:group (lines 3–5 in Listing 2.2), and xsd:attributeGroup (lines
5–7 in Listing 2.4) respectively.

Simple Types. Generally, simple types define constraints on a base type. For example,
Listing 2.5 defines the simple type PhysicalPropertiesType that may be instantiated with
value “LENGTH”, “WIDTH”, “DIAMETER”, “PERIMETER”, “AREA”, “VOLUME”,
or “MASS”. In the following, a more detailed introduction on restrictions is provided.

1 <xsd:simpleType name="PhysicalPropertyType">

2 <xsd:restriction base="xsd:string">

3 <xsd:enumeration value="LENGTH"/>

4 <xsd:enumeration value="WIDTH"/>

5 <xsd:enumeration value="DIAMETER"/>

6 <xsd:enumeration value="PERIMETER"/>

7 <xsd:enumeration value="AREA"/>

8 <xsd:enumeration value="VOLUME"/>

9 <xsd:enumeration value="MASS"/>

10 </xsd:restriction>

11 </xsd:simpleType>

Listing 2.5: Simple type in XML Schema Definition.

16

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. XMLware

2.2.3 Restrictions

The XML Schema specification introduces a mechanism for the definition of acceptable
values in XML documents that are referred to as restrictions and facets [28]. In general,
restrictions may be imposed on values, a set of values, a series of values, whitespace
characters, length, and datatypes. In what follows, several kinds of restrictions that
may be defined by an XSD document are illustrated using the example of the space
transportation services domain.

Series of values. Listing 2.6 defines an element that is restricted by a series of values
intended to represent country codes, as defined by ISO 3166 [108]. For instance, a valid
value for the country of origin of a spacecraft is composed of exactly two uppercase
letters of the English alphabet, such as “CH” for the country code of Switzerland. This
constraint is realized by restricting the use of string to match the pattern attribute value
“[A-Z][A-Z]” (line 4).

1 <xsd:attribute name="countryOfOrigin">

2 <xsd:simpleType>

3 <xsd:restriction base="xsd:string">

4 <xsd:pattern value="[A-Z][A-Z]"/>

5 </xsd:restriction>

6 </xsd:simpleType>

7 </xsd:attribute>

Listing 2.6: Series of values restriction in XML Schema Definition.

Values. Listing 2.7 defines a constraint on the decimal number value that is used to
represent the attribute locationLatitude, i.e. part of the location definition of a launch site
for spacecrafts. More specifically, valid values for a latitude degree, such as “-80.604333”,
range from “-180” to “+180” degrees (west and east coordinates of the Prime Meridian)
are constrained by creating a restriction based on “xsd:decimal” (line 3), and define
children xsd:minInclusive and xsd:maxInclusive with values “-180” (line 4) and “180”
(line 5) respectively.

1 <xsd:attribute name="locationLongitude">

2 <xsd:simpleType>

3 <xsd:restriction base="xsd:decimal">

4 <xsd:minInclusive value="-180"/>

5 <xsd:maxInclusive value="180"/>

6 </xsd:restriction>

7 </xsd:simpleType>

8 </xsd:attribute>

Listing 2.7: Values restriction in XML Schema Definition.

Length. Listing 2.8 depicts the definition of the attribute fuelKind that is restricted to
a sequence of 128 characters for the representation of propellants, such as “Liquid Oxygen

17

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

/ Rocket Propellant-1 (LOX / RP-1)”. More specifically, the element xsd:restriction with
attribute base value xsd:string and child element xsd:length with value “128” is defined
(lines 3–5).

1 <xsd:attribute name="fuelKind">

2 <xsd:simpleType>

3 <xsd:restriction base="xsd:string">

4 <xsd:length value="128"/>

5 </xsd:restriction>

6 </xsd:simpleType>

7 </xsd:attribute>

Listing 2.8: Length restriction in XML Schema Definition.

Set of values. Listing 2.9 defines a restriction on a set of values that represent valid
functions of a spacecraft. In particular, the element Function defines an xsd:restriction
with attribute base value “xsd:string” and child elements xsd:enumeration with val-
ues referring to Mars colonization, Earth lunar transport, multiplanetary transport,
intercontinental transport, and orbital launcher (lines 3–9).

1 <xsd:element name="Function">

2 <xsd:simpleType>

3 <xsd:restriction base="xsd:string">

4 <xsd:enumeration value="MARS_COLONIZATION"/>

5 <xsd:enumeration value="EARTH_LUNAR_TRANSPORT"/>

6 <xsd:enumeration value="MULTIPLANETARY_TRANSPORT"/>

7 <xsd:enumeration value="INTERCONTINENTAL_TRANSPORT"/>

8 <xsd:enumeration value="ORBITAL_LAUNCHER"/>

9 </xsd:restriction>

10 </xsd:simpleType>

11 </xsd:element>

Listing 2.9: Set of values restriction in XML Schema Definition.

Whitespace characters. Listing 2.10 defines a restriction on the value for the operator
of a launch site for spacecrafts. In this example, the value of attribute operator is defined
as an xsd:simpleType with a xsd:restriction that is based on type “xsd:string” and child
element xsd:whiteSpace with value “preserve”. Thus, it enables the representation of
postal addresses that may contain whitespace, such as line-breaks.

1 <xsd:attribute name="operator">

2 <xsd:simpleType>

3 <xsd:restriction base="xsd:string">

4 <xsd:whiteSpace value="preserve"/>

5 </xsd:restriction>

6 </xsd:simpleType>

7 </xsd:attribute>

Listing 2.10: Whitespace characters restriction in XML Schema Definition.

18

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Grammarware

In summary, the technical space of XMLware offers the formalization of domain-specific
concepts through elements, attributes, and (restricted) types that may be introduced
within XSD documents, thus capturing the structural semantics and constraints of
DSLs. The notation of DSLs that are defined in the technical space of XMLware,
however, is bound to the use of angle-brackets, i.e. reported to constrain human-
processibility [84, 185, 199], or require the implementation and maintenance of dedicated
handcrafted IDEs, which, ideally, match the capabilities offered by modern Integrated
Development Environments (IDEs).

2.3 Grammarware

The technical space [139] of grammarware comprises a set of concepts, body of knowledge,
tools, required skills, and possibilities in the context of language grammar [122]. Context-
Free Grammar (CFG), class dictionaries, and tree and graph grammars represent examples
of formalism and notations that are employed in the technical space of grammarware.
Grammars are applied for a variety of purposes, such as the definition of the concrete
and abstract syntaxes of Domain-Specific Languages (DSLs), as well as formal blueprints
for the construction of language infrastructure, also referred to as grammar-dependent
software. In the following sections, DSLs are briefly introduced alongside the parser
generator Another Tool For Language Recognition (ANTLR) tool for the automated
generation of DSL infrastructure, such as dedicated language parsers. Furthermore, the
CFG formalism is introduced with a particular focus on the Extended Backus–Naur
Form (EBNF) [110] and its application for the definition of the structural semantics and
constraints of a DSL for the specification of space transportation services.

2.3.1 Domain-specific languages

The major difference between General-Purpose Languages (GPLs) and DSLs is that the
former are broadly applicable across domains, while the latter are employed for specific
domains of application. For example, Java may be utilized in the implementation of
object-oriented software for a wide variety of application domains. To the contrary, the
Structured English Query Language (SQL) may (only) be employed for the definition of
relational database queries, and reflects how people use tables to obtain information [41].
In comparison, DSLs focus on particular domains of application and, generally, aim at
higher levels of abstraction than GPLs. Moreover, the construction of a DSL is usually
the outcome of a collaborative effort between language engineers and domain experts.
As a result, DSLs tend to ease and speed up the development of applications for specific
domains compared to the application of GPL libraries [134, 132]. Moreover, the results
of empirical studies indicate that DSLs increase performance in all three groups of the
cognitive dimensions framework by Blackwell et al. [30] and, particularly, in the closeness
of mappings, diffuseness, error-proneness, role expressiveness, and viscosity [134].

19

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

Tool Support

Another Tool For Language Recognition (ANTLR) is a popular tool in the technical
space of grammarware for the automated generation of executable finite-state machines
from language grammars that are capable of recognizing grammar-conforming language
instances [175]. More specifically, ANTLR generates the source code for left-to-right
parsers, also referred to as leftmost derivation and LL parser, and tree parsers that enable
the processing of Abstract Syntax Trees (ASTs) from Context-Free Grammars (CFGs)
that follow the EBNF, also (simply) referred to as EBNF grammars [175].

2.3.2 Context-free grammar

CFG is employed for the definition of the syntax and hierarchical structure of a language.
A CFG is composed of a start symbol and sets of terminal symbols, non-terminal symbols,
and production rules [4]. In the following, the grammar depicted in Listing 2.11 is used
to describe the concepts that appear in CFGs.

1 S → NP V P
2 NP → The N
3 V P → V | NP
4 V → flies | operates

5 N → Spacecraft | LaunchSite

Listing 2.11: Example of a context-free grammar.

A terminal symbol is also referred to as token, and represents an elementary symbol in
the language defined by a CFG. For example, Listing 2.11 presents the terminal symbols
“The” (line 2), “flies” and “operates” (line 4), and “Spacecraft” and “LaunchSite” (line 5).

The left-hand side of a production rule represents a non-terminal symbol, also referred
to as syntactic variable. For example, Listing 2.11 presents the non-terminal symbols S,
NP, VP, V, and N.

A start symbol is represented by a non-terminal symbol and denotes the entry point
for the construction of a sentence in the language represented by a CFG. For example,
line 1 in Listing 2.11 presents the start symbol S.

The language of a CFG is composed of all possible sentences that can be derived
by a number of steps from the start symbol. Therefore, a sentence of a language is a
sequence of terminal symbols that is derived from the CFG of the language. Stated
differently, a sentence is composed of terminal symbols that occur in the alphabet of
the language defined by the CFG. As an example, Listing 2.11 specifies a language
with alphabet “The”, “flies”, “operates”, “Spacecraft”, and “LaunchSite”. Although a
sentence of a language may be legal, i.e. constructed by terminal symbols that occur
in the language alphabet, it may not be meaningful. As an example, the grammar in
Listing 2.11 is able to generate sentences that are composed of the nouns “Spacecraft”
and “LaunchSite”, and the verbs “operates” and “flies”. Therefore, both sentences that
are meaningful, such as “The LaunchSite operates” and “The Spacecraft flies”, and less

20

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Grammarware

meaningful, such as “The LaunchSite flies”, may be legally constructed. For example, the
sentence “The Spacecraft flies” is derived as illustrated in Listing 2.12, and described by
the following five steps. Firstly, start symbol S produces non-terminal symbols NP and
VP. Secondly, production rule NP generates terminal symbol “The” and non-terminal
symbol N. Thirdly, production rule N yields terminal symbol “Spacecraft”. Fourthly,
production rule VP produces non-terminal symbol V. Fifthly, production rule V creates
terminal symbol “flies”.

1 S → NP V P → The N V P → The Spacecraft V P → The Spacecraft V → The Spacecraft

flies

Listing 2.12: Example of CFG sentence derivation.

A production rule is composed of a left-hand side, an arrow, and a right-hand side.
The non-terminal symbol that makes up the left-hand side of a production rule is also
referred to as head. The right-hand side of a production rule is also referred to as
body, and may be composed of a series of terminal symbols, non-terminal symbols, and
logical symbols or separators. More specifically, the right-hand side of a production rule
is represented by either a sequence or selection of terminal symbols (lines 4 and 5 in
Listing 2.11), a sequence or selection of non-terminal symbols (lines 1 and 3), or both
(line 2) and logical symbols or separators indicating that either may be selected for the
construction of a sentence, e.g. production rule V line 4 states the either terminal symbol
“flies” or “operates” is produced. In case the body of a production rule states a sequence
(as opposed to a selection), all symbols are necessarily applied for the derivation of a
sentence. For example, line 1 defines the production rule S with a sequence composed of
the production rules NP and VP.

Extended Backus–Naur Form

The Extended Backus–Naur Form (EBNF) [110], i.e. an extended version of the
Backus–Naur form (BNF), is employed for expressing CFGs and is, thus, applicable
to the definition of both the structural semantics and notation of DSLs. Listings 2.13
and 2.13 present an excerpt of the space transportation service language defined by the
use of BNF and Extended BNF grammar respectively, and highlight production rules in
bold. In contrast to the XMLware technical space, employing CFG requires the definition
of the complete alphabet of the DSL being represented through BNF or EBNF grammar
rules. For example, lines 1 and 3 in Listing 2.13 define terminal rules for Letter and Digit
respectively. Similarly, lines 5 and 7 define the concept of Character and String. More
specifically, a Character is represented by either a Letter, a Digit, an underscore, or an
empty space, while a String is represented by a sequence of one or more Characters that
are enclosed by either double-quotes or single-quotes. Further, the concept of Identifier
and Integer is defined in lines 9 and 11 respectively. More specifically, the former begins
with a Letter, and may be followed by a sequence of Letter, Digit, and underscore, while
the latter starts with a Digit and may be followed by a sequence of Digits.

21

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

1 Letter :== ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’

L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’

| ’Y’ | ’Z’ | ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’

| ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ |

’w’ | ’x’ | ’y’ | ’z’ ;

2

3 Digit :== ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ ;

4

5 Character :== Letter | Digit | ’_’ | ’ ’ ;

6

7 String :== ’"’ Character { Character } ’"’ | "’" Character { Character } "’"

;

8

9 Identifier :== Letter { Letter | Digit | ’_’ } ;

10

11 Integer :== Digit { Digit } ;

12

13 Spacecraft :== ’Spacecraft’ Identifier

14 [’stages’ Stage { Stage }]

15 [’functions’ Function { Function }]

16 [’physicalProperties’ PhysicalProperty { PhysicalProperty }]

17 [’manufacturer’ String]

18 [’countryOfOrigin’ String]

19 ’relaunchCostInMioUSD’ Integer ;

Listing 2.13: Example of an original BNF grammar.

EBNF extends the meta-notation of BNF and allows the definition of shorter versions
of production rules by introducing * (Kleene Star), + (Kleene Cross), question mark,
and rounded parentheses for zero or more occurrences, one or more occurrences, zero or
one occurrence, and grouping. For example, BNF does not offer the explicit specification
of one or more occurrences of Stage in Spacecraft and, thus, requires to denote a sequence
consisting of a single occurrence of Stage that is followed by an occurrence of zero or
more occurrences of Stage (line 14 in Listing 2.14). EBNF offers the ability to define
one or more occurrences of Stage by the use of the + operator and, thus, increases the
conciseness of production rules (line 2 in Listing 2.14).

1 Spacecraft :== ’Spacecraft’ Identifier

2 (’stages’ Stage+)?

3 (’functions’ Function+)?

4 (’physicalProperties’ PhysicalProperty+)?

5 (’manufacturer’ String)?

6 (’countryOfOrigin’ String)?

7 ’relaunchCostInMioUSD’ Integer ;

Listing 2.14: Spacecraft production rule employing Extended BNF.

2.3.3 Terminal rules

Although regular expressions present a powerful mechanism for the definition of context-
free languages, their application for the specification of structural constraints within

22

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.3. Grammarware

CFGs may result in grammar rules that are complex and verbose in both construction
and maintenance. For instance, a simple constraint, such as restricting the value of
a character sequence to exactly two consecutive uppercase letters (cf. corresponding
XMLware-based solution depicted in Listing 2.6), may be introduced by UpperCaseLetter,
i.e. a dedicated terminal rule that defines the alphabet of uppercase letters (line 1 in
Listing 2.15), and the CountryOfOrigin production rule, i.e. defining two consecutive
occurrences of the UpperCaseLetter terminal rule (line 3).

1 UpperCaseLetter :== ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ |

’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’

W’ | ’X’ | ’Y’ | ’Z’ ;

2

3 CountryOfOrigin :== UpperCaseLetter UpperCaseLetter ;

Listing 2.15: EBNF-based restriction of country of origin value to two uppercase letters.

Further, a restriction of the value of location latitude to decimal numbers that range
from -180 to 180 may be introduced by UnsignedDecimal, i.e. a dedicated terminal rule
for the representation of an unsigned decimal number (line 1 in Listing 2.16) and a
dedicated production rule defining all possible occurrences (lines 3–11). More specifically,
the former (line 1) defines an UnsignedDecimal to be composed of a single Digit that
may be followed by a decimal point “.” and one or more instances of Digit; the latter
(lines 3–11) defines the optional occurrence of a negative sign “-” (line 4), i.e. indicating
a negative decimal number, followed by either the occurrence of an UnsignedDecimal
(line 5), a Digit and an UnsignedDecimal, a sequence of the Digit “1” followed by either
the Digit “0”, “1”, “2”, “3”, “4”, “5”, “6”, or “7” and an UnsignedDecimal (line 9), or a
sequence of the Digit “1” that is followed by the Digits “8” and “0” and (optionally) a
decimal point “.”, and one or more occurrences of the Digit “0” (line 11). In contrast, the
corresponding XMLware-based solution depicted in Listing 2.7 is notably more concise.

1 UnsignedDecimal :== Digit (’.’ Digit+)?

2

3 LocationLongitude :==

4 (’-’)?

5 (UnsignedDecimal)

6 |

7 (Digit UnsignedDecimal)

8 |

9 (’1’ (’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’) UnsignedDecimal)

10 |

11 (’1’ ’8’ ’0’ (’.’ ’0’+)?)

Listing 2.16: EBNF-based restriction of location latitude value to decimal numbers from
-180 to 180.

Further, a restriction on the length of the character sequence of FuelKind may only be
introduced by a dedicated production rule for the representation of a character sequence
that is composed of a maximum of 128 characters. Listing 2.17 illustrates the production

23

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

rule of FuelKind that limits the value FuelKind to a maximum of sixteen consecutive
characters. Similarly to the restriction imposed on country of origin, the corresponding
XMLware-based solution for the restriction of location latitude (cf. Listing 2.8) is (likewise)
more concise.

1 FuelKind :== Character? Character? Character? Character? Character? Character

? Character? Character? Character? Character? Character? Character?

Character? Character? Character? Character?

Listing 2.17: EBNF-based restriction of fuel kind value for character sequences with
maximum length of sixteen characters.

Moreover, in order to support line-breaks in character sequences (required to represent
the postal address within attribute operator of launch site), the production rule Character
(line 5 in Listing 2.14) may be extended to support carriage return and new lines within
the values of attribute operator (cf. Listing 2.18). The corresponding XMLware-based
solution is depicted in Listing 2.10.

1 Character :== Letter | Digit | ’_’ | ’ ’ | \r | \n ;

Listing 2.18: EBNF-based extension of operator value for multi-line support.

Finally, in order to restrict the value of attribute Function to a set of predefined
values, a production rule may be defined that specifies terminal values separated by
logical or operators (cf. listing 2.19). The corresponding XMLware-based solution is
depicted in Listing 2.9.

1 Function :== ’MARS_COLONIZATION’ | ’EARTH_LUNAR_TRANSPORT’ | ’MULTIPLANETARY_

TRANSPORT’ | ’INTERCONTINENTAL_TRANSPORT’ | ’ORBITAL_LAUNCHER’

Listing 2.19: EBNF-based restriction of function value.

In summary, the technical space of grammarware enables the specification of grammar,
by means of EBNF grammar rules, and thus captures the structural semantics and
constraints of DSLs. Moreover, in contrast to the immutable angle-bracket notation
employed by the technical space of XMLware, EBNF terminal rules allow the specification
of terminal symbols or tokens that define the notation of textual DSLs. As illustrated
in Section 2.3.3, the apprehension and maintenance of semantic constraints in EBNF
grammars is complex and verbose in comparison to both XSD restrictions (Section 2.2.3)
and textual formal constraints (Section 2.4.3) employed in the technical space of XMLware
and modelware respectively.

2.4 Modelware

The technical space [139] of modelware comprises a set of concepts, a body of knowl-
edge, tools, required skills, and possibilities in the context of Model-Driven Engineering
(MDE) [170]. In general, the definition of modeling languages is based on the Meta Object

24

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Modelware

Facility (MOF) standard, composed of a set of layers, and the Eclipse Modeling Frame-
work (EMF), which offers a quasi-reference implementation for the MOF standard [168].
More specifically, several Model-Driven Language Engineering (MDLE) frameworks, such
as Xtext and the Graphical Modeling Framework (GMF), offer workbenches for the
development of textual and graphical modeling languages, also referred to as modeling
languages, and in particular the definition of the structural semantics and constraints of
modeling languages.

2.4.1 Model-driven engineering

Model-Driven Engineering (MDE) is a software engineering paradigm that considers
models as first-class citizens instead of exclusive artifacts of documentation. Basically,
MDE is a software development approach in which models play a central role in all
software engineering processes by abstracting real-world systems for specific purposes
and, hence, enables focusing on different aspects that are of interest to individual
stakeholders [191]. Consequently, the employment of models is rendered applicable to all
engineering disciplines, as well as domains of application [54]. In comparison, the Model-
Driven Development (MDD) approach, at the same level of abstraction as MDE, centers
around requirements, analysis and design, and implementation disciplines [10]. One of
the primary goals of applying MDE in software engineering is to enable the rigorous
specification of systems instead of informal documentations. In other words, MDE focuses
on prescriptive modeling, i.e. the specification of system design and implementation in the
form of blueprints that support planning and validation prior to realization, rather than
descriptive modeling, i.e. the documentation of system knowledge, such as requirements
and domain analysis [137]. MDE enables the alleviation of platform complexity imposed
by third-generation languages, such as Java and C#, and the efficient articulation of
domain concepts by the application of lessons learned from the development of high-
level platform and language abstractions. Moreover, in contrast to third-generation
languages, i.e. based on general-purpose notations, such as interface and class in Java,
the application of MDE and, in particular, the activity of metamodeling, allows to match
precisely the structural semantics and notations of languages that are intended to serve
a specific domain of application. In other words, MDE acts as an engineering paradigm
that aims at easing the complexity imposed by the definition of structural semantics and
in particular by enabling explicit expressibility of concepts and relationships that result
from the design of languages targeting specific domains [191].

Modeling stack

The modeling stack is composed of four layers in the Object Management Group (OMG)
Standard Modeling Stack (cf. left-hand side of Figure 2.1) that are directly supported by
the Meta Object Facility (MOF) [10, 168]. In general, a model and a metamodel may
be defined as an instance of the metamodel of a modeling language, and as an instance
of a metamodeling language respectively. The uppermost layer in the modeling stack is
represented by the meta-metamodel layer (M3), offering a metamodeling language that

25

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

enables the definition of a modeling language. In MOF, the uppermost layer is instantiated
from its own model and, thus, offers a solution for the recurring problem of how to set
the initial metamodel in the metamodeling process. The metamodel layer (M2) enables
the expression of the linguistic components and relationships of a domain in the form of
a metamodel, i.e. instantiating concepts that are made available by the metamodeling
language (M3), that defines the structural semantics of the modeling language being
constructed (M2). The model layer (M1) allows the definition of models that define
snapshots of a real-world phenomenon, i.e. part of the system being represented, by
instantiating the concepts that are made available by its modeling language (M2). The
lowermost layer in the modeling stack is represented by the real-world elements layer (M0)
and captures snapshots of real-world phenomena, such as the execution of a software
system at a specific point in time.

Essential Meta-Object
Facility Layers

Model

Metamodel

Meta-metamodel

Real-world
elements

instance of

instance of

instance of

M0

M1

M2

M3

Snapshot

Modeling
Language

Metamodeling
Language

defines

defines

expressed using

expressed using

defines

representsinstance of

Figure 2.1: Modeling stack based on the layers of the Essential Meta-Object Facility [10,
168, 137].

26

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Modelware

2.4.2 Modeling languages

Modeling languages manifest as General-Purpose Modeling Languages (GPMLs), generic
Unified Modeling Languages (UMLs) or a dedicated EMF-based language that defines
domain-specific structural semantics and constraints. Gray et al. [90] define the activity
of domain-specific modeling as tightly coupled with a language that is linked to the
domain over which it is valid. Simply put, DSMLs represent languages that are tailored
to a specific domain of application [152].

Kleppe [121] introduces DSMLs as the creation of domain-specific languages using
metamodels. She highlights that the definition of a DSML requires considerable effort
and, thus, finding answers on how to define such languages in a consistent, coherent,
comprehensible and easy manner is of great importance. Her approach describes the
creation of metamodels for use in the development of DSMLs.

According to Schmidt, DSMLs are based on technologies offered by the technical
space of modelware, and enable the formalization of application structure, behavior, and
requirements within particular domains through the application of metamodels for the
definition of concepts and relationships among concepts that may appear in a domain, as
well as key semantics and constraints that are associated with such concepts [191].

The definition of a DSML is initiated by activities for the abstraction, conceptualiza-
tion, and synthesis of domain knowledge or, put simply, the identification and capturing
of concepts and relationships that may manifest in a particular application domain. The
conduct of these activities requires knowledge about the application domain and is, thus,
usually the result of direct interaction among domain experts, namely representatives
of domain knowledge, and modeling language engineers [152, 119]. The development of
modeling languages is considered challenging as it requires expertise both in the domain of
application, as well as the engineering of modeling languages, which is rarely manifested
in practice [152].

In general, modeling languages are constructed based on a metamodeling language (cf.
right-hand side of Figure 2.1), enabling the specification of a metamodel, also referred
to as abstract syntax and Abstract Syntax Tree (AST). The metamodel of a modeling
language captures the concepts and relationships that may be instantiated by a model
of the modeling language. In other words, a metamodel is a model that defines the
structural semantics of a modeling language. An instance that conforms to a modeling
language is referred to as a model. The notation of a modeling language, also referred to
as concrete syntax, defines the visual representation of the concepts and relationships
captured by the metamodel. Moreover, a modeling language may define a multitude of
notations to accommodate different types of stakeholders.

Tool support

Model-Driven Language Engineering (MDLE) frameworks, such as the EMF-based
frameworks Xtext and Graphical Modeling Framework (GMF), facilitate the development

27

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

of modeling languages by leveraging advances in IDE technology of mainstream IDEs. In
particular, Xtext employs automation, e.g. for the creation of language-specific parsers,
serializers, and textual IDEs that provide basic syntax highlighting, content-assistance,
folding, jump-to-declaration, and reverse reference look-up across multiple models [70, 85].
Their validation, content-assistance, and quick fix resolution capabilities, however, are
limited, not only due to unavailable information, such as semantic constraints, but also
due to the capacity in which available information is exploited. As an example, validators
typically highlight an entire class as invalid instead of (only) the feature that violates a
constraint, thus rendering the identification and resolution of errors more difficult and
time-consuming. A more detailed summary of the Xtext framework is presented alongside
other language workbench frameworks in Section 3.2.

Essential Meta-Object Facility and Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) is the quasi-reference implementation of the Meta
Object Facility (MOF) standard and, in particular, the Essential Meta Object Facility
(EMOF) compliance point [168]. The EMF provides a closed and strict metamodeling
architecture and code generation facility for building tools and applications based on a
structured data model that is serialized in the form of an XML Metadata Interchange
(XMI) document. More specifically, the EMF defines the model on the uppermost
layer to conform to itself (meta-metamodel on layer M3 in Figure 2.1), as well as the
correspondence of every model element with a model element on the layer above (model
elements on layers M1–M3) respectively.

In the EMF, an Ecore model—also referred to as EMF-based metamodel or AST—
corresponds to layer M2 in MOF (cf. Figure 2.1), instantiates the reflexive meta-
metamodel on layer M3, and enables the capturing of the concepts, properties, and
relationships that are components of a real-world system (real-world elements in Figure 2.1)
and, in particular, the structural semantics of modeling languages. Further, the layer
M1 in the EMOF represents instances specifying actual values for concepts, properties,
and relationships, as defined in their corresponding Ecore model, i.e. located on layer
M2. The principal components of the Ecore metamodeling language are illustrated in
Figure 2.2 and are described below.

In general, the concepts of class, attribute, and reference, known from the Object-
Oriented Programming (OOP) paradigm, are referred to as EClass, EAttribute, and
EReference in the Ecore metamodeling language, located on layer M3, respectively.
The abstract class EModelElement may define a multiple cardinality-reference with
name eAnnotations and type EAnnotation for the indication of annotations, such as
manually applicable language extensions, and is extended by the classes EAnnotation
and ENamedElement. The abstract class ENamedElement is extended by the classes
EPackage, EClassifier, and ETypeElement, and defines an attribute with name name
and type EString. The class EPackage represents the root element in Ecore metamodels
and may contain a multitude of instances of type EClassifier, i.e. indicated by the
multiple cardinality containment-reference eClassifier. It also defines an attribute with

28

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Modelware

name nsURI and type EString indicating the Uniform Resource Identifier (URI) of a
package namespace. The abstract class EClassifier is extended by the classes EClass
and EDatatype. The class EClass defines an attribute with name abstract and type
EBoolean for the indication of abstract classes, a multiple cardinality-reference with name
eSuperTypes and type EClass for the indication of inheritance, and a multiple cardinality
containment-reference with name eStructuralFeatures and type EStructuralFeature for the
indication of the structure of an attribute or reference. The abstract class ETypeElement is
extended by the abstract class EStructuralFeature, i.e. extended by the classes EReference
and EAttribute respectively. The class EAttribute defines a single cardinality-reference
with name eAttributeType and type EDatatype. The class EReference defines an attribute
with name containment and type EBoolean indicating containment references, an optional
single cardinality-reference with name eOpposite and type EReference, and a single
cardinality-reference with name eReferenceType and type EClass.

Figure 2.3 illustrates the Ecore-based structural semantics specification of the space
transportation services language. More specifically, the principal components of Ecore,

Legend

ENamedElement
name: EString

EAnnotation

EPackage
nsURI: EString

EClassifier

EDatetype EClass
abstract: EBoolean

EReference
containment: EBoolean

0..1 eOpposite EAttribute

EStructuralFeature

ETypeElement
lowerBound: EInt

upperBound: EInt

EModelElement EClass

EClass

EClass
abstract = true

EClass

*eClassifiers

*eStructuralFeatures

eAttributeType

eSuperTypes

*

eReferenceType

*

eAnnotations

parent

child

EReference

ESuper type

EReference
containment = true

Figure 2.2: Principal components of the Ecore language metamodel.

29

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

such as (abstract) classes, attributes, and (containment) references, are instantiated by
the following concepts and relationships in the space transportation service language
definition (cf. Figure 2.3): a class with name SpaceTransportationService defines multiple
cardinality containment-references for launch sites, launch schedule, engine types, and
spacecrafts; an abstract class with name NamedElement that is extended by the classes
that define space transportation services, launch sites, engine types, and spacecrafts; a
class with name EngineType that defines the attribute FuelKind with type EString; a
class with name LaunchSite that defines the attributes locationLatitude, locationLon-
gitude, operator, numberOfLaunchpads, and operational with types EDouble, EDouble,
EString, EInt, and EBoolean respectively, as well as the multiple cardinality-reference
with name physicalProperties and type PhysicalProperty; a class with name Spacecraft
that defines the attributes functions, manufacturer, countryOfOrigin, and (mandatory)
relaunchCostInMioUSD with types (enumeration) Function, EString, EString, and EInt
respectively, as well as the multiple cardinality-references named stages, launchSites
(i.e. sites for which the spacecraft is certified for launch), and physicalProperties and
type Stage, LaunchSite, and PhysicalProperty respectively; a class with name Launch-
Schedule that defines the multiple cardinality containment-reference launchEvents for
launch events; a class with name LaunchEvent that defines the attributes missionTitle
and startDateTime with types EString and EDate respectively, as well as the single
cardinality-references with names spacecraft and launchSite.

LaunchSite

[0..*]
launchSites

[0..*]
physicalProperties

Spacecraft

[0..*] functions: Function

manufacturer : EString

countryOfOrigin : EString

relaunchCostInMioUSD : EInt

<< abstract >>
NamedElement

name : EString

LaunchSite

locationLatitude : EDouble

locationLongitude : EDouble

operator : EString

numberOfLaunchpads : EInt

operational : EBoolean

PhysicalProperty

type : PhysicalPropertyType

unit : EString

value : EDouble

[0..*]
stages

Stage

engineAmount : EInt

EngineType

fuelKind : EString

SpaceTransportationService

[0..*]
launchSites

[1..1]
engineType [0..*]

physicalProperties

[0..*] physicalProperties

<< enumeration >>
PhysicalPropertyType
LENGTH

WIDTH

PERIMETER

AREA

VOLUME

MASS

<< enumeration >>
Function

MARS_COLONIZATION

EARTH_LUNAR_TRANSPORT

MULTIPLANETARY_TRANSPORT

INTERCONTINENTAL_TRANSPORT

ORBITAL_LAUNCHER

First Stage

Intermediate
Stage

Second
Stage

LaunchSchedule

LaunchEvent

missionTitle: EString

startDateTime: EDate

[0..*] launchEvents
[1..1]

spacecraft
[1..1]
launchSite

[1..1]
launchSchedule

[0..*]
spacecrafts

[0..*]
engineTypes

Figure 2.3: Ecore metamodel defining the structural semantics of the space transportation
service modeling language.

30

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.4. Modelware

2.4.3 Structural constraints

The standardized Object Constraint Language (OCL) [40] represents a textual formal
constraint language that is widely used to increase precision in the structural semantics
of modeling languages with unambiguous and rigorous constraints. Therefore, OCL
complements the limited expressiveness of modeling languages. OCL constraints are
captured as invariants that employ a typed, declarative, and side-effect free specification
language that is based on first-order predicate logic, and offers navigation and querying
facilities for (meta)models. Typed refers to OCL expressions that evaluate to a predefined
OCL type or a type defined in the model, where the OCL expression is applied, and
must conform to the rules and operations of that type. Declarative implies that OCL
excludes the ability to define imperative constructs, such as assignments. Side-effect
free means that OCL expressions may constrain or query and may not change the state
of a system. Specification implies that the OCL language definition does not include
implementation guidelines and implementation details. Moreover, OCL has been designed
as a compact language that enables the supplementation of information in various forms
through concise expressions. As a result, OCL enables the definition of: invariants that
state all necessary conditions that must be satisfied in a valid language instantiation;
query operations; initialization of properties of a class; derivation rules expressing how
the value of derived model elements are computed; and operation contracts that enable
the imposition of pre- and post-conditions to operations.

For example, a constraint that restricts the value of the attribute countryOfOrigin to
two consecutive uppercase letters may be introduced by the invariant twoUpperCaseChars
(lines 1–3 in Listing 2.20), i.e. restricting the length of the value of countryOfOrigin
to a size of exactly two (line 2), and evaluating the equality of the uppercase-value of
countryOfOrigin (left-hand side of equation in line 3) with the value of countryOfOrigin
(cf. right-hand side of equation in line 3). The corresponding XMLware and grammarware
solution for the restriction of attribute countryOfOrigin is depicted in Listings 2.6 and 2.15
respectively.

1 invariant twoUpperCaseChars:

2 countryOfOrigin.size() = 2 and

3 countryOfOrigin.toUpperCase() = countryOfOrigin;

4

5 invariant angleDecimal:

6 locationLatitude >= -180 and locationLatitude <= 180;

7

8 invariant maxLength:

9 fuelKind.size() <= 128;

Listing 2.20: OCL invariants defining the structural constraints of the space transportation
service modeling language.

Moreover, a constraint that restricts the value of the attribute locationLatitude to
decimal numbers with value between -180 and 180 may be introduced by the invariant
angleDecimal (lines 5–6 in Listing 2.20), i.e. restricting the value of locationLatitude to

31

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

be both equal or greater than -180 and less or equal to 180. The corresponding XMLware
and grammarware solution for the restriction of attribute locationLatitude is depicted in
Listings 2.7 and 2.16 respectively.

Further, a constraint on the length of a character sequence, such as the value of
fuelKind, may be introduced by the invariant maxLength (lines 8–9 in Listing 2.20), i.e.
restricting the length of the FuelKind attribute to a size of less than or equal to 128.
The corresponding XMLware and grammarware solution for the restriction of attribute
fuelKind is depicted in Listings 2.8 and 2.17 respectively.

In order to provide support for line-breaks in character sequences, i.e. required to
represent the postal address within the attribute operator, the EMF employs an HTML
encoded line feed character for line-break representation within instances of EString.
Therefore, no additional invariant is required to fulfill the requirement of supporting line-
breaks in character sequences. When employing textual language workbench frameworks,
however, such as Xtext, which build on both the technical spaces of modelware and
grammarware, the limitations of grammarware prevail. The corresponding XMLware and
grammarware solution for the restriction of attribute operator is depicted in Listings 2.10
and 2.18 respectively.

Finally, the restriction of values of type Function to a predefined set of character
sequences is realized by the use of enumerations (cf. top-right rectangle in Figure 2.3).
The corresponding XMLware and grammarware solution for the restriction of the value
of type Function is depicted in Listings 2.9 and 2.19 respectively.

In summary, the technical space of modelware enables language engineers to capture
the structural semantics and constraints in metamodels and formal constraints respec-
tively, thus facilitating the definition of DSMLs. Although textual language workbench
frameworks, such as Xtext, facilitate the development of DSMLs by automating the gen-
eration of language infrastructure, such as IDEs, the capabilities provided by validation,
content-assistance, and quick fix resolution are limited despite the availability of concise
domain-specific structural constraints that are formulated through OCL invariants. More
specifically, several shortcomings of OCL are reported in the literature and include: poor
support for user feedback; no support for warnings; no support for dependent constraints;
limited flexibility in context definition; and no support for repairing invariants [126].
Furthermore, the popular language workbench Xtext builds upon both the technical
spaces of modelware and, in particular, the EMF, while grammarware does not provide
mechanisms for the design and reuse of textual notations that are applicable to arbitrary
domains of application.

2.5 Summary and comparison of technical spaces

The OMG Standard Modeling Stack is composed of four layers, i.e. the meta-metamodel
layer M3, the metamodel layer M2, the model layer M1, and the real-world layer M0.
In what follows, the modeling stack is employed to illustrate the location of individual

32

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.5. Summary and comparison of technical spaces

artifacts of the technical spaces of XMLware, modelware, and grammarware, as well as
the correspondence among them (cf. Figure 2.4).

The system is located in the real world (layer M0) and represents a snapshot of the
artifact represented by layer M1 at a particular point in time.

Layer M1 is captured by a document, model, and program in XMLware, modelware,
and grammarware respectively. More specifically, a document in the technical space of
XMLware is represented by an XML document, i.e. instantiating elements of a particular
schema located in layer M2. Similarly, a model in the technical space of modelware may
be represented by an XML Metadata Interchange (XMI) document, i.e. instantiating
elements defined by a metamodel located in layer M2. Likewise, a program in the technical
space of grammarware is represented by a textual document, i.e. instantiating elements
defined by a particular grammar located in layer M2.

Layer M2 is represented by a schema, metamodel, and grammar in XMLware, mod-
elware, and grammarware respectively. More specifically, a schema in the technical

Real-world

Modelware

Model

Metamodel

Metamodel
language

System

instance of

instance of

represents

instance of

Grammarware

Program

Grammar

Grammar
language

instance of

instance of

represents

instance of

XMLware

Document

Schema

Schema
language

instance of

instance of

represents

instance of

M0

M1

M2

M3

Figure 2.4: Comparison of technical spaces XMLware, modelware, and grammarware on
the four-layer modeling stack (cf. Figure 2.1).

33

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Preliminaries and running example

space of XMLware is represented by an XML Schema Definition (XSD) document, i.e.
instantiating elements of a particular schema language located on layer M3. Similarly, a
metamodel in the technical space of modelware may be represented by an Ecore model,
i.e. instantiating elements defined by the Ecore metamodel language located in layer M3.
Likewise, a grammar in the technical space of grammarware may be represented by a
EBNF grammar, i.e. instantiating elements defined by a grammar language, such as the
Xtext grammar language [22], located in layer M3.

Layer M3 is represented by a schema language, metamodel language, and grammar
language in XMLware, modelware, and grammarware respectively. More specifically,
a schema language in the technical space of XMLware is represented by the XSD
Specification, i.e. reflexively instantiating elements defined in the XSD Specification [202].
Similarly, a metamodel language in the technical space of modelware may be represented
by the Ecore metamodeling language, i.e. reflexively instantiating elements defined in the
Essential Meta Object Facility (EMOF) specification [168]. Likewise, a grammar language
in the technical space of grammarware may be represented by an EBNF grammar, such
as Xtext grammar, i.e. reflexively instantiating elements defined in the Xtext grammar
language.

XMLware Modelware Grammarware

Methodology Semi-structured
markup

EMOF CFG

Structural semantics XSD document Ecore model EBNF grammar

Structural constraints XSD restrictions OCL invariants Terminal rules

Notation Angle-bracket Graphical, textual, or
hybrid

Textual

Tooling Generic or dedicated
XML-based IDE

Reflective, generated
default, or dedicated
Eclipse-based IDE

ANTLR-based lexer
and parser

Table 2.1: Comparison of technical spaces XMLware, modelware, and grammarware.

Table 2.1 summarizes the technical spaces of XMLware, modelware, and grammarware
presented in Sections 2.2, 2.3, and 2.4 respectively. The methodology in the technical
space of XMLware, modelware, and grammarware is based on semi-structured element and
attribute markup, the EMOF specification [168], and CFG respectively. The specification
of structural semantics for a DSL of the technical space of XMLware, modelware, and
grammarware is performed by the use of XSD documents (Section 2.2.2), the Ecore
models (Section 2.4.2), and EBNF grammar (Section 2.3.2) respectively. Structural
constraints for a DSL in the technical space of XMLware, modelware, and grammarware
are defined by the use of XSD restrictions (Section 2.2.3), OCL invariants (Section 2.4.3),
and terminal rules (Section 2.3.3) respectively. The notation for a DSL in the technical
space of XMLware, modelware, and grammarware is defined by immutable angle-bracket

34

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.5. Summary and comparison of technical spaces

syntax, graphical, textual, or hybrid syntax, and textual EBNF grammar respectively.
The tooling offered for DSLs that manifest in the technical space of XMLware, modelware,
and grammarware may include a generic XML-based or dedicated handcrafted editor,
a reflective, generated (default) or dedicated handcrafted EMF-based editor, and an
ANTLR-generated lexer and parser respectively.

In summary, XMLware, grammarware, and modelware represent the technical spaces
that comprise markup languages, language grammars, and MDE respectively. XMLware
offers technologies for the representation, exchange, and validation of structured and
semi-structured data. The immutable syntax-limitation of XML renders the technical
space of XMLware unable to cope with notations that deviate from the use of angle-
brackets and is, thus, rendered inapplicable to the definition of DSLs with customized
notations, such as the Human-Usable Textual Notation (HUTN) [93]. Technologies
offered by modelware and, in particular, for the construction of modeling languages,
intend to overcome the shortcomings of high-level GPLs in regards to platform complexity
and the effectiveness of expressing domain concepts [191]. The EBNF, as well as the
EMOF, represent metasyntax notations employed for the definition of meta-languages,
such as the Xtext grammar language and the Ecore language. Next, meta-languages that
are based on EBNF and EMOF are employed for the definition of DSLs and modeling
languages respectively.

Moreover, although the combination of Ecore and OCL by the EMF enables modeling
language engineers to capture both structural semantics, as well as constraints, the
limitations of OCL restrict generated IDEs from providing accurate validation, sensible
content-assist, and low-cost quick fix solutions. Furthermore, popular frameworks, such
as the EMF and Xtext, do not provide mechanisms for the design and reuse of textual
notations that are applicable to arbitrary domains of application.

The following three chapters of this document present the contributions of this thesis
to the above-summarized problems. More specifically, Chapter 4 presents an approach for
the automated migration of textual modeling language implementation from XSDs based
on the design pattern of language exploitation. Chapter 5 presents an approach for the
automated generation of consistency-achieving DSML implementations from structurally
constrained metamodels and, in particular, Ecore metamodels that are refined by OCL
invariants. Chapter 6 presents an approach for the development and application of textual
language notations that are structure-agnostic, structure-dependent, or a combination
thereof.

35

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 3
Related work

T
his chapter outlines literature related to the contributions of this thesis and in
particular work on the bridging of technical spaces, language workbenches and
the engineering of languages, and the design of textual notations. It also includes

a brief overview of language composition and model management in general. Note that
although some approaches may only appear in a specific section of this chapter, they
may present work that overlaps with other sections of this chapter. The differences and
commonalities between individual works presented in the literature and the proposed work
on the automated generation of modeling language grammars from XML Schema-based
languages, the automated generation of SBSE-driven domain-specific IDEs, and domain
structure-agnostic reusable textual notations for modeling languages are analyzed in
Sections 4.8, 5.7, and 6.7, respectively.

3.1 Bridges between technical spaces

In general, the bridging of technical spaces for the development and maintenance of
modeling languages is typically initiated by either employing the model-first approach or
the grammar-first approach. In the former, a modeling language is manifested through
the creation of a domain-specific language metamodel, i.e. capturing the concepts,
attributes, and relationships in the form of an abstract syntax representation, and the
generation of domain-specific language grammar, i.e. interlacing the domain-specific
language model with a predefined textual representation that acts as the concrete syntax
representation of the language being constructed. In the latter, a modeling language
is manifested by the creation of domain-specific language grammar that is followed by
the derivation of a domain-specific language model. Next, in both the model-first and
grammar-first approaches, an executable modeling language implementation may be
generated by employing a language workbench framework (cf. Section 3.2).

37

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

In the following, related work on the bridging of technical spaces is presented by
categorizing existing approaches depending on their source technical space, i.e. XMLware,
grammarware, and modelware, or, in other words, the technical space to which an
approach may be applied. An analysis that compares the proposed approach with
existing work is presented in Section 4.8.

3.1.1 XMLware

XMLware to modelware Moreover, several approaches for realizing the engineer-
ing of XMLware to modelware [189, 147] exist. Schauerhuber et al. [189] present an
approach on the mining of metamodels from existing language specifications and, in
particular, XML Document Type Definitions (DTDs) that is based on a semi-automatic
model transformation and MOF-based metamodels. The model transformation is (only)
semi-automatic if it is split into an automatic step that establishes an initial version
of the target metamodel based on unambiguous concept-correspondences between the
DTD and MOF, and a manual step that forces the developer to validate and eventually
refactor the initial metamodel. Their approach is showcased in the creation of a meta-
model for the web modeling language WebML from the accompanying tool WebRatio
that employs DTD-based language specifications of WebML and Extensible Stylesheet
Language Transformation (XSD)-based model-to-code transformations for code gen-
eration. The evaluation of this approach highlights that completeness is achieved, i.e.
enabling the transformation of WebML DTD-conforming XML instances to WebML Ecore
metamodel-conforming models, without losses. Further, quality in terms of expressiveness,
accuracy and understandability is improved by the resolution of unfit cardinalities, the
introduction of package structure, inheritance and roles, and the partial resolution of
IDREF-typed XML attributes into native references in Modelware. The limitations of
this approach include but are not limited to the requirement of manually refactoring
generated metamodels, as well as tooling implementations that rely on heuristics and
incomplete solutions.

From XML and UML to Xtext and GMF Eysholdt and Rupprecht present a
report [71] on the migration of a modeling environment from XSD and UML to Xtext
and GMF. The context of their report is represented by 150 software developers employed
within several business units that include the German pharmacies clearing house, the
clearing and IT for German health care professionals, and pharmacy administration
systems. Their goal is to address the inefficiency of a legacy modeling environment
by migration to a modernized modeling environment. More specifically, XML-based
modeling is described as inefficient due to the verbose syntax of XML and the lack of
tool support, for example, customized validation, content-assist for references to model
elements and files, and assistance with the modeling of textual expressions that involve
arithmetic and logical terms. In particular, five XSD and UML-based languages have
been migrated to five Xtext and GMF-based languages with textual and graphical IDEs
that operate on the same textual model, referred to as “Xtext-models” in their work. In

38

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. Bridges between technical spaces

other words, changes made by employing the graphical IDE are persisted by the serializer
of the textual modeling language. Their migration of XSD-based languages to textual
modeling languages is described as guided by a series of steps that include replacement
of angle-bracket tags with tag-name, followed by (if available) a tag-identifier and curly
braces, removal of remaining angle-brackets, removal of XML directives and metadata
such as namespaces declarations, determination and verification of default values for
attribute and element values, removal of XML attributes and elements with values equal
to derived default values, introduction of import statements to improve conciseness, e.g.
by the use of Java class names, restructuring where reasonable, e.g. consolidation of
separate listings for table columns and class attributes into class attributes containing
optional column specifications, and implementation of a well-readable, writable, and
understandable textual modeling language notation. Moreover, two Xtend [22] model-
to-model transformations have been implemented to enable re-use of a generator that
produces code from XML files, and more precisely from serialized textual models to
XML documents, referred to as “XML-models” in their work. The completeness and
correctness of these model-to-model transformations have been evaluated by round-trip
testing, and to be more specific, a sequence of steps that involve loading, transforming,
and serializing (original) XML documents as textual models; loading, transforming, and
persisting textual models as (resulting) XML documents; and comparison of original
and resulting XML documents on relevant differences. In conclusion, it is reported
that the productivity issues of the legacy modeling infrastructure have been solved by
the employment of a new modeling infrastructure and, in particular, by reducing the
time span to generate code from models from minutes to seconds, model validation and
error or warning notifications that occur before code generation, automatically executed
validation rules, powerful model editing assistance, such as content assist, find-references,
open model elements, and navigation, and textual and graphical model out-of-sync risk
elimination by use of a single serializer instantiated by both the textual and graphical
modeling language.

XML to annotated Java class translation Chodarev et al. [43, 44] present an
approach for the development of a translator between XML and a DSL with customized
concrete syntax. The motivation of their approach is to address the challenges, compli-
cations and time expenditure, associated with the re-implementation of languages that
are already formally defined, such as XML-based languages. In summary, their solution
approaches these challenges through the development of a translator that is both capable
of reading documents in a notation that is different from the notation of the source lan-
guage, as well as write documents in the notation of the source language for the purpose
of reusing source language tooling. Their approach is composed of a series of steps that
include the application of the Java Architecture for XML Binding (JAXB) framework [79]
and, in particular, the JAXB XML binding compiler for the transformation of XSD
documents to Java classes, the extension of generated Java classes with Yet Another Java
Compiler compiler (YAJCo) [179] annotations, the use of the YAJCo tool to generate
a parser and pretty-printer for the translation of XML documents to annotated Java

39

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

classes, and the use of the YAJCo tool and an intermediary representation to generate a
parser and pretty-printer for annotated Java classes to instances with a different textual
notation. Their approach targets Java developers, as the extracted language structure is
represented by Java classes and the notations are defined by Java class annotations.

3.1.2 Grammarware

Grammar-driven approaches [218, 138, 111, 39] exist, in which metamodels are generated
out of existing grammar definitions.

Grammar-first: EBNF to MOF Bridge Wimmer et al. [218] propose a generic
bridge between the technical spaces of grammarware and modelware that is based on a
formally defined relationship between Context-Free Grammars (CFGs) and Meta Object
Facility (MOF)-based metamodels presented by Analen et al. [5]. More specifically, their
approach presents a semi-automated bridge between individual EBNF-based grammars
and corresponding sentences, and individual MOF-based metamodels and corresponding
models respectively. This approach is motivated by the need to make the interoperability
between the technical spaces of grammarware and modelware a less tedious task. In
brief, the approach proposes to generate automatically a metamodel from EBNF-based
grammar, and then optimize the resulting metamodel. The latter is semi-automatically
refined by employing model transformations automatically and metamodel annotations
manually. As a result, a bridge is created that enables the transformation of sentences to
corresponding models that conform to an EBNF-based grammar and corresponding MOF-
based metamodel respectively. More specifically, their approach operates on layers M1 to
M3 (cf. Figure 2.4) and utilizes the reflexivity property of EBNF for the construction
of an attributed grammar that both implements an individual EBNF-based language
grammar, as well as transformation rules that represent the correspondences between
EBNF and MOF. Subsequently, two parsers are automatically generated that are capable
of parsing an EBNF-based language grammar and conforming sentences to initial versions
(referred to as “raw” in [218]) of metamodel and models respectively. Next, optimized
versions (referred to as “condensed” in [218]) of metamodel and models are created by the
automated execution of transformation rules to eliminate undesired properties, such as
some anonymous classes that have been introduced by the initial grammar-to-metamodel
transformation. Afterwards, language engineers annotate these optimized metamodels
attaching additional semantics, such as data types, and employ a transformation that
transforms them into final versions of metamodels (referred to as “customized” in [218]).
Their work builds upon Analen et al. [5] by additionally taking layer M1 into account or,
in other words, the transformation of individual EBNF-conforming sentences to individual
MOF-conforming models.

Grammar-first: EBNF to MOF Bridge by elimination of non-semantic infor-
mation Kunert et al. [138] present a similar approach to Wimmer et al. [218] that (also)
employs annotations. Additional semantics, however, are supplemented by grammar

40

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. Bridges between technical spaces

annotations, as opposed to metamodel annotations. Consequently, initially generated
metamodels are not refined by the attachment of additional semantics and, therefore,
the loss of information by re-generating metamodels, i.e. resulting in overwritten meta-
models, is eliminated. Additionally, metamodel quality is based on its applicability for a
particular purpose that is characterized by its level and efficient use of abstraction and,
in particular, the elimination of syntactical information, such as terminal symbols and
identifiers, and its ability to be employed for the transformation of conforming models
to models that conform to another metamodel. The hypothesis of their approach is
that the elimination of non-semantic information from metamodels that are generated
from grammars provides a vantage point for the application of model transformations.
Although their approach does not attach additional information to the metamodel that
is generated from grammar, refactored versions of the metamodel and conforming models
are created by the application of a metamodel and model transformation respectively.

Gra2MoL J. Cánovas et al. presented Grammar-to-Model Language (Gra2MoL) [111]—
a model-driven software evolution or modernization approach that supports bridging
grammarware and modelware through the application of a dedicated rule-based transfor-
mation language and engine. The process of model-driven software evolution is described
as requiring the extraction of models from legacy software that is represented by source
code, i.e. conforming to a particular programming language. Therefore, the construction
of a bridge from grammarware to modelware is motivated by scenarios that involve the
evolution of source code. Gra2MoL realizes such evolution scenarios by extracting models,
i.e. conforming to a target metamodel, from source code, i.e. conforming to the grammar
of a programming language, as defined and executed by a Gra2MoL transformation model
and execution engine respectively. The primary difference of Gra2MoL and existing
model-to-model transformation languages, such as ATLAS Transformation Language
(ATL) [114] and Epsilon Transformation Language (ETL) [125] is that Gra2MoL was
specifically designed for the transformation of programming language source code to mod-
els. More precisely, the source element in a Gra2MoL transformation rule is represented
by a grammar element, as opposed to a source metamodel element, as in ATL and ETL
transformation rules. From an implementation perspective, however, Gra2MoL employs
modelware to capture the syntax tree of the parsed source code through a metamodel
that consists of the concepts Tree, i.e. the root node of the syntax tree; Leaf, i.e. a
terminal symbol; and Node, i.e. a non-terminal symbol composed of one or many children
nodes. Further, the correspondence between metamodel elements, i.e. representing the
syntax tree, and symbols in grammar definitions includes metaclass and non-terminal,
primitive type and terminal, attribute and terminal in the right-hand side of a rule, and
containment reference and non-terminal in the right-hand side of a rule.

From Grammars to Accurate Metamodels Butting et al. [39] presented an ap-
proach for the translation of MontiCore [135] grammars, i.e. EBNF-like grammars, to
restricted Ecore metamodels. In brief, they realize the generation of Ecore metamodels
from MontiCore grammars by translating CFGs to Java classes, and generating a parser

41

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

to transform textual models to corresponding instances of these Java classes. Further,
the translation of textual models, i.e. models conforming to a MontiCore grammar, to
instances of a (corresponding) Ecore metamodel is realized by leveraging the resource
serialization-capability provided by the EMF. Implicit cardinalities that are imposed
by grammar rules are translated into linear equation systems and embedded into meta-
models. Model validation is performed by employing individual constraint solvers that
are generated for each class in a given metamodel. Thus, the bridging of grammarware
and modelware is facilitated by automating the specification of restrictions for (naive)
metamodels that are generated from grammars. The problem that is being tackled by
this approach relates, on the one hand, to the lack of integration of grammars with Ecore
that would allow access to a rich set of existing tooling that is available to Ecore-based
languages and, on the other, to the availability of validation by means of parsers, i.e. gen-
erated from grammars, that requires additional effort to be realized in the technical space
of modelware, especially for the implication of cardinality constraints on Ecore-based
languages. More specifically, solving these problems would allow the semi-automated gen-
eration of potentially complete prototypes, such as Sirius [211] and Xtext [70] IDEs, that
otherwise requires significant effort due to the translation of grammars to metamodels, as
well as the development of IDE implementations from scratch. The approach presented
by Butting et al. translates grammar rules to metamodel concepts and, in particular,
MontiCore-extended CFGs, covering the complete EBNF, to Ecore metamodels that
are augmented with OCL constraints. More specifically, non-terminal definitions are
transformed into equally named concepts and associations in Ecore metamodels; cardi-
nalities, such as arbitrary occurrences, non-empty occurrences, and optional occurrences,
are transformed into implicitly expressed cardinalities in MontiCore; disjunctions, i.e.
requiring the selection of exactly one alternative, are transformed into exclusive disjunc-
tions in MontiCore, i.e. only allowing the instantiation of one alternative but not both;
and non-terminal references are transformed into non-terminal references that allow the
creation of associations to classes in MontiCore, i.e. instead of referencing a generic type
such as a String.

3.1.3 Modelware

Early approaches for realizing the engineering of modelware to XMLware include those
presented by Bird et al. [27] and Conrad et al. [47].

Bird et al. [27] presented work on the use of Object-role modeling (ORM) (a graphical
and conceptual modeling technique) to ease the design of XSDs. Note that this work has
been published before the release of the Eclipse Modeling Framework (EMF). The ORM
approach employs objects and roles to capture the semantics of a universe of discourse, as
well as the specification of constraints, such as uniqueness, subset, mandatory role, and
frequency. Their approach entails an algorithm that enables generating XSDs from ORM
conceptual data models. The authors report that they discovered a variety of different
solutions to realize the mapping from ORM to XSD, and outline their solution as aiming
to increase the connectivity of resulting XML documents and reduce data redundancy.

42

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Language workbenches

ORM has been selected as a candidate to design XSDs due to: its modeling support that
is more advanced in comparison to that provided by UML and ER; its linguistic basis
and role-based notation that allows model validation with domain experts by sample
populations and natural verbalization; and its stability in comparison to attribute-based
approaches.

Conrad et al. [47] presented work on the conceptual modeling of DTDs using UML
as the connecting link between software engineering and document design, by describing
a transformation from UML class diagrams, i.e. the static part of UML, to DTDs.
Therefore, their work is challenged by determining a suitable mapping that reflects the
semantics of the UML specification in terms of a DTD. The realization of their approach
required the extension of UML and presents an early endeavour to bridge the gap between
UML-based object-oriented software design and DTD.

In addition, more recent metamodel-driven approaches that generate grammars out
of existing metamodels, such as EMFText [101] and HUTN [159], or link metamodels
with grammars, such as TCS [115], are introduced in Section 3.2.

Summary In conclusion, this section presented bridges between the technical spaces
of XMLware, modelware, and grammarware, including XMLware to modelware (Schauer-
huber et al. [189]), a case study-based migration of XML and UML to Xtext and GMF
(Eysholdt et al. [71]), XML to annotated Java class translation (Chodarev et al. [43, 44]),
annotation-based EBNF to MOF transformation (Wimmer et al. [218] and Kunert et
al. [138]), rule-based transformation (Gra2Mol [111]), translation of MontiCore (i.e.
EBNF-like) grammars to restricted Ecore metamodels (Butting et al. [39]), and two early
approaches in the transformation of modelware to XMLware (Bird et al. [27] and Conrad
et al. [47]).

3.2 Language workbenches

This section presents language workbenches in chronological order of appearance.1 Lan-
guage workbenches are represented by frameworks and tools that enable the engineering
of modeling language implementations that may include a range of handcrafted and/or
(semi)automatically generated features, such as dedicated IDEs, validation, content-assist,
and model repair solutions [84]. Section 5.7 presents an analysis of the proposed contri-
bution on the automated generation of consistency-achieving DSML implementations
with a selection of language workbenches that are summarized in the following.

MetaEdit+ Smolander et al. presented MetaEdit+ [195, 206]—a repository-based
tool for the creation of modeling languages and code generators. MetaEdit+ originally
emerged as a metaCASE research prototype that was developed between 1988 and 1995,
and commercialized by the company MetaCase in 1993. The definition of modeling

1Note that some works were published at the same time or very near to that.

43

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

languages in MetaEdit+ is based on the dedicated metamodeling language Graph-Object-
Property-Port-Role-Relationship (GOPPRR) [195] that is applied to capture the design
of metamodels and model instances. More specifically, GOPPRR-based metamodels may
define objects, properties, relationships, and roles such as entities in entity-relationship
diagrams, textual labels in diagrams, lines between shapes in diagrams, and directed
arrowheads indicating the end of a data flow relationship. Moreover, the application of a
modeling language is restricted by rules and constraints that are realized as bindings,
i.e. describing valid combinations between connection typos and object types by the use
of objects, roles, relationships, and ports, default values, and regular expressions, i.e.
validating input values. Models in MetaEdit+ may be accessed by a set of IDEs and
browsers, and include four types of representations: graphical diagrams, matrices, tables,
and tree views. Further, the concepts of object, property, role, relationship, and port may
be defined as graphical symbols through the MetaEdit+ Symbol Editor. The MetaEdit+
tool architecture includes an object-oriented repository system for concurrent multi-user
access based on a transaction and locking system. The evolution of metamodels in
MetaEdit+ is handled by the specification of model transformations that update models
that conform to previous versions of the metamodel and is realized either by operation
on the API or the definition of XML-based transformations. MetaEdit+ code generation
definitions are created either by the use of an IDE that employs a dedicated scripting
language, a web services API, or intermediate files.

Intentional Software Simonyi et al. presented the Domain Workbench approach [194]
that is based on the notion of structured IDEs, structured source code, and generative
programming for the purpose of establishing Intentional Software, i.e. complex system
intentions that are encoded and maintained by the application of high-level domain
vocabulary, relationships, and rules. The early goals of combining structured source
code and structured IDEs were to improve compiler performance and support the
implementation of syntax-directed IDEs. In contrast, in regards to the latter combination,
the goal of the Domain Workbench is to separate the syntax from the domain and, thus,
allow notational flexibility. The Domain Workbench IDE applies the What You See Is
What You Get (WYSIWYG) technique to software sources, and represents software in
an intentional tree that is separated from the underlying representation of generated
software such as source code [38]. Generative programming represents a technique in
which domain(-specific) code is provided to a generator for producing target code, i.e.
the final program code that is either compiled or interpreted, and represents the behavior
intended by the domain code. Thus, generative programming primarily focuses on the
implementation of code generators that produce target code from parameterized domain
code and increase efficiency by domain code maintenance and generator re-execution.
The process of establishing intentional software entails a domain schema that acts as
an interface between the domain workbench and a generator, and is implemented and
maintained by both domain experts and programmers; domain code that is maintained
by domain experts; and a generator that is implemented and maintained by programmers
and defines the processing of domain code to target code. As a result, the generator

44

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Language workbenches

implementation represents a manifestation of engineering design choices, platforms, and
code patterns.

Rascal Klint et al. presented Rascal [123, 16]—a DSL and IDE for meta-programming
that merges existing concepts and language features for the analysis and manipulation
of source code, the reverse- and re-engineering of software systems, and the mining of
software repositories. The goal of Rascal is to eliminate the overhead from analysis
and transformation tool integration by offering an environment for the construction
and experimentation of analyses and transformations that is usable by a large group of
developers. The key features of Rascal include integrated syntax definitions, build-in
data types, constructs for analysis and transformation, and an ecosystem of libraries.
Integrated syntax definitions refer to the declaration of CFGs within the Rascal code
and the application of concrete syntax trees and non-terminals as first-class values and
types respectively. More specifically, syntactic features in Rascal are based on the SDF.
Build-in data types (also) refer to the ability of applying values for pattern matching,
such as the production of concrete syntax trees from Rascal-based grammar definitions,
and represent the primary mechanism for case distinction in Rascal. Constructs for
analysis and transformation refer to the use of lists, maps, sets, and relations for the
expression of analysis tasks, such as aggregation and projection in Rascal’s scripting
language Rscript and the computation of the McCabe complexity [149] of methods in
a Java project. The ecosystem of libraries refers to re-usability and language-specific
functionality based on the employment of libraries.

EMFText Heidenreich et al. presented EMFText [101, 102]—an EMF-based language
workbench for the development of textual languages from Ecore models and the genera-
tion of accompanying tool support2. The concrete syntax of EMFText-built languages
are defined by a dedicated concrete syntax specification language that is based on the
EBNF, relies on ANTLR for parser generation, and follows the concept of convention
over configuration, i.e. the preference of compactness over expressiveness. EMFText
offers support for generating textual languages from Ecore models that follow the design
of Human-Usable Textual Notation or Java. The abstract syntax of EMFText-built
languages are defined by Ecore models and, thus, rely on Essential Meta Object Facility
(EMOF) (cf. Section 2.4.2). The static semantics of a language refers to the use of
algorithms for static analyses, such as name analysis and static type resolution, and is
implemented in EMFText by a default name resolution mechanism and (alternatively)
by the use of the JastEMF tool [37] for the specification of static semantics of Ecore
models through Reference Attribute Grammars (RAGs) [98]. The dynamic semantics
of a language refer to the meaning of language artifacts and may be defined in EMF-
Text by operational and translational semantics. Typically, the former refers to the
implementation of GPL-based interpreters, while the latter to that of code generators.
In summary, the process of developing a language in EMFText entails the following

2The EMFText guide is available online at https://github.com/DevBoost/EMFText/blob/
master/Core/Doc/org.emftext.doc/pdf/EMFTextGuide.pdf.

45

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://github.com/DevBoost/EMFText/blob/master/Core/Doc/org.emftext.doc/pdf/EMFTextGuide.pdf
https://github.com/DevBoost/EMFText/blob/master/Core/Doc/org.emftext.doc/pdf/EMFTextGuide.pdf
https://www.tuwien.at/bibliothek

3. Related work

steps: specification of an Ecore-based language metamodel; specification of concrete
syntax through the use of EMFText’s dedicated concrete syntax specification language;
(optionally) specification of static semantics by utilizing reference resolvers or JastEMF;
(optionally) specification of dynamic semantics, e.g. by implementation of an interpreter
or post-processor; generating IDE tooling; and (optionally) customizing IDE tooling, e.g.
by adaptation or implementation of syntax highlighting, content-assist, and quick fix
solutions.

MontiCore Krahn et al. presented MontiCore [135]—a framework for composition-
based DSL development. MontiCore employs a dedicated language for the specification
of DSLs that may be categorized as meta-grammarware, as it represents an extension of
CFGs with the capabilities known from modelware and OOP, in particular, inheritance
and language embedding. The former allows the incremental development of changes to
a language, while the latter the combination of language fragments into (new) coherent
languages. Although the arguments against the integrated definition of both abstract
and concrete syntaxes are discussed by Krahn et al. (i.e. “languages may have different
concrete but only one abstract syntax” and “abstract syntax is often different from concrete
syntax so that tasks of semantic analysis can focus on the structure of the language without
being overrun by syntactical issues”), MontiCore employs such an integrated definition
motivated by simplicity and catering for unskilled language developers who neglect
consistency among separated definitions [135]. As a result, the bidirectional mapping
between abstract and concrete syntaxes is not retained, in contrast to other approaches,
such as the Textual Concrete Syntax (TCS) [157, 82]. A MontiCore-based DSL is defined
by its MontiCore grammar and used to derive abstract syntax representations and, more
specifically, an EBNF version of its MontiCore grammar that is subsequently supplied to
the ANTLR tool to generate a predicated-LL(k) parser. The key differences between
CFGs that employ the EBNF and MontiCore grammar include the ability of the latter
to represent constructs, such as abstract classes, interfaces, associations, and (detailed)
cardinality, i.e. based on exact numbers instead of (only) zero, one, or many. MontiCore
realizes the ability of language embedding by allowing the specification of external non-
terminals in its grammar. In more detail, external non-terminals, i.e. also referred to as
bottom non-terminals in grammar fragments [141], are used on the right-hand side of
production rules and represent MontiCore’s mechanism to continue parsing according
to the grammar of the embedded language. Grammar inheritance in MontiCore is
realized in the same way as the LISA tool [148] and, more specifically, by enabling the
specification of a set of grammars from which all production rules are inherited by a new
grammar, as opposed to integrating an existing set of grammars into a new grammar. In
addition, the MontiCore ecosystem provides a tool for the implementation of generative
and analytic tools for DSLs, such as Eclipse plugins and DSL-specific IDEs, which focuses
on modular decoupled development, the integration of different languages, multi-platform
executability, flexible configuration, and API support for recurring generator-related
tasks.

46

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. Language workbenches

Spoofax Kats et al. presented Spoofax [118]—a platform for the design of textual DSLs
in an integrated environment that offers declarative metalanguages for syntax definition,
name binding, type analysis, program transformation, and code generation. For example,
Syntax Definition Formalism (SDF)3 and NaBL represent Spoofax metalanguages for
the specification of syntax and name bindings respectively. More specifically, the former
is used to describe both concrete and abstract syntaxes in the form of templates that
combine lexical and context-free syntax, while the latter is used to define declarative name
bindings and scope rules. The implementation of Spoofax entails a mapping of declarative
language designs, i.e. instances that conform to their metalanguages, to parameters of a
set of language-parametric runtime systems. In a nutshell, Spoofax metalanguages are
bootstrapped to derive Spoofax-based IDEs for language designs specified by the use of
their metalanguages.

Xtext Eysholdt et al. presented Xtext [70]—a language workbench framework that
enables the construction of modeling language implementations with sophisticated features
similar to modern IDEs for GPLs. Xtext builds on the Eclipse Modeling Framework (EMF)
(cf. Section 2.4.2) and implements modeling languages (cf. Section 2.4.2) typically by
following the grammar-first or model-first approach (cf. Sections 2.3 and 2.4 respectively).
The former entails the construction of Extended Backus–Naur Form (EBNF) grammar
and derivation of an associated Ecore metamodel, i.e. an abstract representation of the
language under construction. The latter entails the construction of an Ecore metamodel
and the generation of (default) grammar, i.e. targeting a HUTN-like visual appearance.
The selection of either approach is usually the result of an engineer’s familiarity with it
in a particular technical space [139, 218]. Thus, grammarware engineers, i.e. language
developers that are more familiar with traditional CFGs as opposed to metamodels,
frequently follow the grammar-first approach. In contrast, modelware engineers, i.e.
language developers that are more familiar with MDE-based technologies than with
language grammars, commonly follow the model-first approach. Although Xtext supports
both, the main focus is to provide grammars at the front-end and metamodels at the
back-end in order to facilitate tool interoperability [171, 223].

Next to either the employment of the grammar-first or model-first approach, a
dedicated ANTLR-based parser [174] and skeleton IDE are generated and manually
refined by supplying customized implementations of validation rules, content-assistance,
and quick fix solutions. The reasoning behind choosing Xtext as a candidate language
workbench framework for the implementation and evaluation of the contributions of
this thesis include but are not limited to: rich feature-support such as mentioned above;
integration and re-engineering of formal constraint language OCL [217]; the official nature
and maturity of a project such as Eclipse that continuously participates in the Eclipse
release train [83] and, thus, offers a stable release schedule; detailed documentation [22]
offering valuable assets for the development of third-party implementations; and an active
community that operates a forum3 and offers support to developers.

3The Eclipse TMF (Xtext) Community Forum is available online at https://www.eclipse.org/

47

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.tuwien.at/bibliothek

3. Related work

Cedalion Lorenz et al. presented Cedalion [146]—an approach that follows similar goals
as approaches of the language workbench category in the Language Oriented Programming
(LOP) paradigm, i.e. also including categories for approaches that build on internal DSLs
and external DSLs. Their approach differs from other language workbenches, such as
Jetbrains MPS [176], Spoofax [118], and Intentional Software [194], by providing external
DSL tooling to internal DSLs, as opposed to providing external DSLs with the tooling of
internal DSLs. In other words, Cedalion represents an IDE workbench that hosts internal
DSLs. Their focus is on overcoming the limitations of internal DSLs in regards to the
definition of syntax and semantics that are the inherent consequence of the host language
confinement. Moreover, their motivation is that the implementation of internal DSLs is
more cost-effective when compared to external DSL implementations. Their approach is
implemented as an Eclipse-based IDE that features static validation and projectional
editing, i.e. based on direct Abstract Syntax Tree (AST) manipulation, as opposed to
the parsing of character sequences. As a result of projectional editing, concrete syntax
definitions in Cedalion require the specification of projection definitions, i.e. statements
that formalize the visualization of language concepts, that are analogous to grammar
production rules except that the result is visualized through rendering instead of parsing.
The evaluation of their approach is based on a case study in the domain of biology and,
in particular, the design of DNA microarrays for molecular biology research.

SugarJ Erdweg et al. presented SugarJ [68]—an approach that offers library-based
syntactic extensibility based on the Spoofax language workbench [118]. This approach
is implemented through the Eclipse-plugin Sugarclipse and offers support for the host
languages Java, Haskell, and Prolog. A more detailed summary of their approach is
presented in Section 3.2.

Jetbrains Meta Programming System Pech et al. presented the Java-based tool
Jetbrains Meta Programming System (MPS) [176] that is based on the concept of
projectional editing (also referred to as structured editing [213] and syntax-directed
editing [120]), thus enabling the use of syntactic forms that are non-parseable and non-
textual, such as mathematical symbols and tables. In general, syntax-directed IDEs
constantly operate on an AST and instantiate AST elements as templates with holes,
i.e. act as placeholders, that are continuously filled as the user provides further input.
Consequently, programs in such IDEs are syntactically valid and unambiguous at any point
in time. The goal of MPS is to increase developer productivity through the composition
and modularization of languages. The implementation of a language through the use of
MPS entails the definition of abstract syntax, concrete syntax, IDE functionality, type
system, and code generator rules that are briefly introduced below. The abstract syntax
of MPS languages is defined by their structure, constraints, and behavior. Language
structure includes concepts, properties, and relationships. Language constraints define
restrictions on the values of language properties and references. Language behavior relates
implementation methods with language concepts. The concrete syntax of MPS languages

forums/index.php?t=thread&frm_id=27.

48

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.tuwien.at/bibliothek

3.2. Language workbenches

is defined by their projectional IDE and, in particular, by the assignment of visual
notations to language concepts. As a result, grammar and parsing is neglected and the
use of non-parsable notations enabled. In regards to IDE functionality, MPS languages
may be customized by the use of scoping rules and dataflow aspects that determine the
results displayed in the code-completion menu and highlight unreachable code errors
respectively. In terms of the type system in MPS, an engine that evaluates types on
correctness is provided for build-in types. The support for dedicated type rules and
associated error- or warning-reporting in MPS is discussed in Section ??. Further, MPS
languages may define transformation rules that employ template-based model-to-model
transformations and model-to-text generators to create target language program code
in the form of a model, and textual program code that is compatible with the target
language compiler respectively.

Eco Diekmann et al. presented Eco [60]—a tool implementation of an approach to
edit composed programs that is based on an incremental parser extended with language
boxes. The motivation of Eco is to enable the composition of arbitrary syntaxes, while
maintaining the operation on a valid syntax tree, (as in syntax-directed IDEs such as
JetBrains MPS), in order to implement IDE features such as name binding analysis. In a
nutshell, the goal of Eco is to solve the issues of syntax-directed IDEs. Each language box
in Eco has its own type, e.g. SQL, incremental parser (maintaining its own parse tree
as its value), and editor. Language boxes allow the embedding of languages inside one
another and expose consistent interfaces to a global tree (referred to as “Concrete Syntax
Tree” in [60]) that integrates the internal trees of individual language boxes and allows
to render programs on the screen. Incremental parsing constitutes an online process
and, in particular, involves the continuous parsing and updating of user input and parse
trees. Eco implements an incremental parsing algorithm presented by Wagner [214] and
extends it to create Abstract Syntax Trees (ASTs). More precisely, every non-terminal in
the parse tree is extended by a new attribute that references a corresponding AST node,
while the AST directly references tokens in the parse tree. The advantage of sharing
tokens between the parse tree and the AST is that token values are kept updated. Eco
saves files in a custom tree format, as opposed to the source code typically applied by
parser-based IDEs. The implementation of incremental ASTs in Eco relies on the fact
that AST nodes are only created from the parse tree, with no references created from
AST child to parent nodes. More specifically, Eco creates ASTs from parse trees by
employing a rewriting language, similar to TXL [50] and Stratego [32], that provides the
option to define a single rewrite rule alongside each production rule. Eco employs ASTs
for the implementation of IDE features, such as scoping rules and code completion, by
implementing a subset of the Name Binding Language approach by Konat et al. [129].

Racket Felleisen et al. presented Racket [77, 78]—a language-oriented approach to
problem solving. The Racket language is inspired by Lisp and Scheme and represents an
untyped functional language. The implementation of a Racket-based language entails the
development of a compiler that maps client programs to a target language, an interpreter

49

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

that continuously traverses client programs, Redex reduction semantics [76], a linguistic
derivative of an existing Racket language, or a combination thereof. In general, Racket
programs are structured into modules that may each employ a different language. Further,
the mapping that a Racket module specifies to a particular language is used to publish
the implementation of a language, as well as its customization, such as syntax coloring
and static analysis. Hence, the development of a Racket-based language may entail the
addition, subtraction, and re-interpretation of runtime facilities and constructs from
a base language such as core Racket. Racket uses a descendant of Scheme and Lisp’s
hygienic macro system [45] for the representation of syntactic terms by virtue of syntax
objects, i.e. containing both the properties of the source syntax and those defined by
a language developer, as well as the specification of rewriting rules for the translation
of language modules into the Racket core syntax. More specifically, Racket syntax
objects are data structures that include syntax properties and symbolic representations
of program fragments. DrRacket, i.e. the IDE of Racket, employs a tool that exploits
information supplied by Racket macros, such as syntax bindings and syntax properties,
to customize user experience during source code manipulation.

Melange Degueule et al. presented the Melange framework [59] that may be employed
for the assembly and customization of DSLs from legacy artifacts through the use of
specific constructs for the representation of operational semantics and abstract syntax.
The Melange framework is bundled as a set of Eclipse plug-ins and composed of a meta-
language and supporting tooling for the implementation of DSLs as first-class citizens
that may be restricted, reused, extended, or adapted into other DSLs. Further, DSLs
that are built with Melange employ Xtext or Sirius for the implementation of textual
or graphical IDEs respectively. Melange builds on the EMF Ecore language and the
Xtend programming language [22] for the expression of abstract syntax and operational
semantics respectively. More specifically, operational semantics are defined by the use
of aspects that have been introduced as annotations in a Melange-customized extension
of the Xtend programming language. The Melange language specifies the concept of a
language to be defined by a metamodel and semantics. The composition of the former is
a set of classes and of the latter a set of aspects. Consequently, aspects are employed to
weave behavior into the classes of a metamodel that define a language.

Ensō Loh et al. presented Ensō [145]—a two-level approach to data abstraction that
entails the definition of data description and manipulation mechanisms, and the use of
such mechanisms for the specification of various kinds of data. In other words, Ensō
offers an implementation of the concept of Managed Data that is based on data model
bootstrapping, i.e. the use of data models to describe themselves, and the interpretation
of data models by enabling programmers to define the behavior of data manipulation
operations. The motivation of Ensō is to tackle the limitations of predefined data
structuring mechanisms that may be insufficient for the implementation of common
data management requirements, such as caching, persistence, transactions, and access
control. The implementation of Ensō is based on the reflective capabilities of the Ruby

50

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.3. Design of textual notations

programming language. The key components of Ensō include schemas, data managers,
and integration. Schemas define the structure and properties of data in a self-describing
manner, i.e. similar to the MOF meta-metamodel and the BNF grammar, and are loaded
into memory by a boostrapping mechanism. Data managers are responsible for the
creation and manipulation of schema-conforming data instances and may be composed by
a stack of managers to combine behavior. Finally, integration refers to the management of
data instances as practiced by a programming language, such as objects in an OOP-based
programming language.

Summary In conclusion, this section provided an overview of existing frameworks and
tools for the engineering of DSMLs and, in particular, approaches that are based on
bindings and transformations (MetaEdit+ [195, 206]), generative programming (Inten-
tional Software [194]), integrated syntax definitions and pattern matching (Rascal [123]),
concrete syntax convention over configuration (EMFText [101, 102]), meta-grammarware
(MontiCore [135]), metalanguages for the specification of syntax and name bindings
(Spoofax [118]), grammar-first and model-first development (Xtext [70]), projection
(Cedalion [146] and Jetbrains MPS [176]), language boxes and production rule rewriting
(Eco [60]), compiler development (Racket [80, 78]), annotations and transformations
(Melange [59]), and data manipulation operations (Ensō [145]). Section 5.7 analyzes
DSML engineering frameworks in comparison with the proposed approach on the auto-
mated generation of consistency-achieving DSML implementations.

3.3 Design of textual notations

This section presents literature on visual language representations by focusing on work
on the specification of textual notations.

Classification of Concrete Textual Syntax Mapping Approaches Goldschmidt
et al. [89] presented a classification of existing concrete textual syntax mapping approaches,
as well as the identification of a set of issues associated with incremental parsing, model
updating, and partial and federated views. This classification distinguishes between
three different cases: (i) manual development or auto-generation of a metamodel from
an existing formal language specification, such as a language grammar, (ii) manual
development of grammar based on an existing metamodel, and (iii) manual development
of a mapping between an existing metamodel and grammar. Moreover, existing work
can be categorized [89] into solutions that (i) bridge grammar-first and model-first, such
as [218] and [116], (ii) offer grammar-based code transformation for MDA, i.e. the
direct attachment of visual representation specifications to existing models, such as
in the Textual Concrete Syntax (TCS) approach [115], MontiCore [135], the Human-
Usable Textual Notation (HUTN) [159], the Textual Editing Framework (TEF) [190], the
JetBrains Meta Programming System (MPS) [112], and Gymnast [88], and (iii) differ
from previous categories, such as the Eclipse IDE Meta-tooling Platform (IMP) [42], the

51

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

Eclipse Textual Modeling Framework (TMF)4,5, and Intentional Programming [194]. A
more detailed summary of some of these works is presented alongside other language
workbenches in Section 3.2.

Human-Usable Textual Syntax Notation Muller et al. [159] presented an expe-
rience report on the use of the Human-Usable Textual Notation (HUTN) as a bridge
between modelware and grammarware. The goal of their work is to enable the generation
of parsers and IDEs for textual modeling languages defined by metamodels. Their
motivation is to facilitate low turn-around time for DSL prototyping. Their approach
entails the generation of grammar from MOF-based metamodels that follows the OMG
HUTN Specification [93] and can be supplied to grammarware tools that automate
the generation of parsers and IDE implementations for DSLs. The main advantages of
HUTN-based languages include: universal applicability to MOF-based models; suitability
for the automated generation of parsers; and design-conformance with human-usability
criteria. Muller et al., however, reported that there are several ambiguities in the HUTN
Specification. For example, syntax tree ambiguities may be introduced by: keyword
attributes; class contents such as references; and class instance references. Solutions to
eliminate these ambiguities are proposed and implemented in a HUTN parser generator
integrated into the Kermeta workbench. Similarly to Muller et al., Rose et al. [185]
presented an implementation of HUTN that provides a generic concrete syntax for MOF-
based metamodels. They encountered similar problems and employed the same solutions
as Muller et al. In addition, they encountered a problem related to syntactic shortcuts for
HUTN adjectives and, in particular, that terminal rules AttributeName and ClassName
(cf. HUTN Specification [93]) produce the same token type, which causes ambiguity.
Their solution to the latter is realized by the adaptation of the HUTN grammar to require
HUTN adjectives to be prefixed with the symbol of a colon. In summary, they identified
means in which HUTN can be applied to improve the productivity of MDE. For example,
HUTN may be used to increase the quality of test suites for verifying model management
operations such as model-to-model transformations.

Textual Concrete Syntax Jouault et al. presented Textual Concrete Syntax (TCS) [115]—
an extension to the ATLAS Model Management Architecture (AMMA) [23] framework
with a dedicated DSL for the definition of concrete textual representations that is also
referred to as Textual Concrete Syntax Specification Language (TCSSL) [158]. The
objective of their approach is to enable bi-directional translation of grammarware models,
referred to as “text-based DSL sentences” in their work, and their equivalent model
representation that is motivated by the reduction of redundancy between the specification
of metamodels and grammars, such as that introduced by the duplicated definition of
element-multiplicity, and the re-use of existing grammarware tooling. Hence, the goal is
to provide a bridge between modelware and grammarware by linking metamodel elements

4Xtext [65] is the only component mentioned on the Eclipse TMF website.
5The Eclipse TMF project is available online at https://www.eclipse.org/modeling/tmf/.

52

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.eclipse.org/modeling/tmf/
https://www.tuwien.at/bibliothek

3.3. Design of textual notations

with the textual notation of a DSL and, in particular, by employing a sequence of trans-
formations on TCS models and metamodels. Their approach defines textual concrete
syntaxes through associations of syntactic elements, e.g. language-specific keywords,
with metamodel elements by the application of model annotations. The definition of
TCS-based DSLs entails employing TCS models alongside metamodels for the generation
of annotated grammar and IDE that is built on TCS services, i.e. released as part of
the AMMA framework. More precisely, the AMMA framework provides several DSLs
for the definition of DSL components and, in particular, KM3 for domain concepts,
ATL for transformations, and TCS as a bridge between modelware and grammarware
based on KM3 and ANTLR version 2, i.e. a parser generator for LL(k) grammars. The
bridge between modelware and grammarware that is proposed by TCS employs a pair of
translators that consist of an injector and an extractor, and is generated by grammar
and a metamodel respectively. The former employs a grammarware model for the pro-
duction of a corresponding modelware model. The latter uses a modelware model for the
production of a corresponding grammarware model. In both cases, grammarware and
modelware models conform to an ANTLR-based grammar and a KM3-based metamodel
that captures the structural semantics of a particular domain respectively.

The basic constructs of TCS include primitive templates and class templates. The
former define the lexer token that corresponds to a data type in the metamodel. The
latter define the representation of a class in the metamodel and consist of a sequence of
syntactic elements. While the former may be defined multiple times for the same data
type, the latter may only be defined once for the same class. The syntactic elements
that are used within class templates include keywords, special symbols, and properties.
Keywords are reserved words with specific meaning and are defined between double
quotes. Special symbols correspond to separators or operators such as curly braces.
Properties refer to structural features that are defined by attributes and references in a
metamodel class or one of its super classes.

Additional constructs of TCS include abstract class templates, conditionals, operators,
and a symbol table. Abstract class templates permit the navigation of the inheritance
hierarchy and are realized as an alternative in the non-terminal rule that corresponds
to the subclass(es) of their associated class. Conditionals impose requirements to the
presence of syntactic element sequences. TCS employs a symbol table to manage cross-
references. Operators are defined with a priority, may be referred to by operator templates,
and are employed by the generated LALR(1) parser during shift-reduce conflicts.

Furthermore, in regards to coding style and indentation, TCS models may define
blocks, special symbol spacing, and custom separators. Blocks are delimited by square
brackets and contribute indentation information. Special symbol spacing definitions
specify the prefix and suffix of symbols and may, thus, be employed to enable whitespace
support. Example use cases of custom separators include the forced serialization of spaces
and line feeds.

The implementation of TCS employs text-to-model traceability by keeping track of
lines and columns to visualize links and tool-tips in models. Moreover, a generic textual

53

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

IDE is provided that may be parameterized by information from TCS models to provide
a tree representation of models.

Textual Concrete Syntax Analysis and Synthesis Muller et al. [156, 157] pre-
sented an experiment in the field of MDE that proposes bidirectional mappings between
abstract and concrete syntax specifications, both of which conform to the same meta-
language, such as MOF or Ecore, and thus do not intend to bridge technical spaces
but rather remain within the technical space of modelware. Their work highlights the
complexity of such mappings, as well as the perception that grammar may be considered
as metamodel but not vice-versa, as investigated in an earlier work [122]. The metamodel
of their concrete syntax language is composed of: an abstract class Rule, i.e. representing
the root element, with sub-classes Class and Feature that reference a class and a property
in their abstract syntax language respectively; a class Template that is used to specify
the relationship between a class in the abstract syntax model and one or many Rule
classes; and the classes Iteration and Value that are employed to establish the relationship
between the properties and values of a class in the abstract syntax model. In their work,
the generation of operational tooling is achieved by the use of templates, and includes
parsers and text generators.

Textual Editing Framework Scheidgen et al. presented the Textual Editing Frame-
work (TEF) [190]—an approach to embed generated EMF-based textual model IDEs
into graphical and tree-based IDEs that are created with GMF. The goal of TEF6 is
to enhance the effectiveness of graphical modeling IDEs, which act as host IDEs that
partly rely on textual representations, such as mathematical expressions, by enabling
language engineers to provide styles (referred to as “notational descriptions” in Scheidgens
work) for metamodel elements based on “TSL”, i.e. their dedicated notation description
language composed of a combination of Context-Free Grammar (CFG) and BNF elements
that are augmented with uni-directional mappings to a domain metamodel. They report
that the initial and final approaches for updating the model employed the MVC pattern
and background parsing respectively. The method of background parsing allows textual
models to be used as primary artifacts, i.e. as opposed to EMF models. Language
engineers that employ TEF may provide a complete or partial textual notation mapping
for a metamodel. In the case of the latter, engineers have to make sure that all elements
of a metamodel that are intended to be instantiated in the embedded textual IDE are
defined in the (partial) notation specification. Further, TEF introduces the component
of a layout manager that allows the creation of whitespaces for a set of roles and, more
specifically, those that represent a space, an empty string, a statement, the start of a
block indentation, and the end of a block indentation. The authors of this work conclude
that in cases where both textual and graphical notations are to be defined, such as for
graphical IDEs that embed a textual editor, it may be more natural to integrate both

6The TEF documentation is available online at https://www2.informatik.hu-berlin.de/

sam/meta-tools/tef/documentation.html.

54

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/documentation.html
https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/documentation.html
https://www.tuwien.at/bibliothek

3.3. Design of textual notations

types of notation descriptions in a single notation description to increase conciseness and
coherence.

SugarJ Erdweg et al. [68] presented SugarJ—a Java library-based approach for the
development of language extension modules, such as IDE support, domain syntax, and
static analyses, for embedding DSLs into the Java host language. The goal of their
approach is to provide the ability to express domain concepts using domain syntax that
is neglected by many approaches for embedding DSLs into a host language, i.e. primarily
focusing on the integration of domain concepts at the semantic level. SugarJ employs the
concept of syntactic sugar for the definition of object language grammar extensions that
are activated and composed by the use of library import statements. SugarJ employs the
Syntax Definition Formalism (SDF) [99] and transformation language Stratego [64] for
defining the syntax of grammars and desugaring implementations respectively. Desugar-
ing transformations are responsible for the transformation of extended syntax to base
syntax, i.e. the syntax of the host language, and entail incremental parsing and grammar
adaptation that results in an abstract syntax tree. SugarJ encapsulates syntactic lan-
guage extensions as libraries that define both syntax extensions, as well as desugaring
transformations. Further, these libraries are imported and declared at the topmost level
of files (only) to allow the SugarJ compiler to interleave parsing and desugaring at the
granularity of top-level entries.

EMFText Heidenreich et al. presented EMFText [101, 102]—an approach for defining
visual textual representations for Ecore-based metamodels, as well as generating textual
IDEs from such definitions. A more detailed summary of EMFText is presented alongside
other language workbenches in Section 3.2.

Sirius Viyović et al. presented Sirius [211]—an Eclipse project that enables the devel-
opment of graphical modeling languages by following the model-first approach that is
initiated by the construction of a metamodel, referred to as “domain model” in Sirius.
Although the contributions of this thesis focus on textual modeling languages, Sirius
represents a popular language workbench that is, similarly to Xtext [70], based on the
EMF, and employed for the creation of graphical DSMLs. Moreover, Sirius conceptually
separates abstract from concrete representations by the use of a set of mapping models,
referred to as “viewpoint specification models” in Sirius, that define the appearance,
structure, and behavior of a Sirius IDE in harmony with the abstract domain-specific
concepts captured by its associated metamodel [184]. In a nutshell, these mapping models
capture the visual graphical representation of metamodel elements in a Sirius-based graph-
ical modeling language IDE. More precisely, different types of mapping models include:
representation descriptions that define the type of representation, such as diagrams,
tables, and trees; representation extensions defining additional functionality for customiz-
ing representations; validation rules that may be used to define validation procedures
and quick fix repair suggestions; and Java extensions that specify supplementary IDE
functionality, such as commands and gestures.

55

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

Concrete and Abstract Syntax Transformation Bridge Herrera et al. presented
a domain-specific transformation language to bridge concrete and abstract syntaxes that
facilitates the construction of (complex) bridges between grammars and metamodels by
language engineers of a dedicated DSL [103, 36]. In general, their work differs to the
proposed approach by facilitating the construction of bridging specifications between
dedicated metamodels and grammars as first-class citizens instead of metamodel-agnostic
notational specifications. Thus, the effective construction of valid bridges between domain
metamodels and grammars requires language engineers to be fully aware of actions and
tool specifications available on both sides of the bridge.

Multi-paradigm modeling Tendeloo et al. [200] presented an approach based on
multi-paradigm modeling, and explicit modeling of mappings between abstract and
concrete syntaxes. The goal of their approach is to enable the definition of multiple
different notations for the same abstract concept, referred to as “front-end” and “back-
end” in their work respectively. Their approach explicitly distinguishes between back-
end and front-end by the responsibility for the perceptualizing, comprehending, and
(meta-)modeling of concepts by the former, and the rendering of models on a specific
platform, such as Scalable Vector Graphics (SVG), by the latter. Consequently, the
back-end handles the transfer of models, e.g. as JavaScript Object Notation (JSON)
files transferred over network sockets, and the front-end the mapping of concepts to a
specific platform. Although the interface of the front-end is described independently from
a specific platform, both front-end and back-end are required in order to implement the
same platform-independent render’s interface.

Layout-Sensitive Languages Amorim et al. [57] presented a perspective on the
tooling for parsing and pretty-printing of layout-sensitive languages by the declara-
tive specification of indentation rules. They highlight that state-of-the-art language
workbenches offer little support for layout-sensitive languages and, thus, restrain their
development. Their approach illustrates the specification of indentation rules and their
use for the automated derivation of layout-sensitive parsers and pretty-printers. The
authors highlight that the annotation of CFG production rules with layout constraints is
a rather verbose and low-level procedure implied by the comparison of lines and columns
of tokens of different sub-trees. As a result, their approach provides the ability to specify
(common) indentation declarations that involve Landin’s offside rule [142], i.e. indicating
tokens that occur further to the left than the first line as invalid structures, the alignment
and indentation of constructs, and tree selectors. Their approach creates abstract repre-
sentations of program structure and layout through the use of the Box language [208].
In comparison, their distinction between indentations and newline-indentations, i.e. en-
forcing the start of a target sub-tree to occur further to the right than another sub-tree,
renders the specification of the latter less cumbersome than an equivalent implementation
that employs the Xtext grammar language, i.e. involving the definition of offside rules
through the use of synthetic tokens.

56

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.4. Model composition and management

Summary In conclusion, this section introduced existing work on the design of visual
presentations and specifically those that target textual representations, namely HUTN
(i.e. a single notation for all purposes), background on tool support for layout-sensitive
languages, and approaches that are based on the explicit modeling of mappings between
abstract syntax and concrete syntax (i.e. realized as transformations at model- or code-
level). Section 6.7 analyzes works in comparison with the proposed approach on the
design and application of reusable textual styles for modeling languages.

3.4 Model composition and management

Erdweg et al. [67] presented work that is based on the idea of language-oriented software
development [152], and that language composition is required for realizing language-
oriented software projects. Their goal is to provide a separate DSL for each domain
occurring in a project and employ these DSLs together. They present five forms of
language composition: language extension, i.e. the combination of a base language with a
language extension, which inherently depends on and reuses the base language; language
restriction, i.e. the extension of the base language validation phase offering the capability
of rejecting non-conforming language instances; language unification, i.e. the combination
of independent languages, which is rarely practiced due to challenges imposed by deep and
bidirectional integration requirements, such that the implementation of both languages
can be reused unchanged solely by supplementing glue code; language self-extension, i.e.
the extension of a host language by reusing and retaining its own implementation, e.g.
by reusing the host language compiler; and language extension composition, i.e. the
combination of multiple different language extensions for offering combined language
features.

This section briefly introduces existing work in the field of model management and,
in particular, the ModelGen operator [12], Higher-Order Transformations (HOTs) [204],
and Epsilon [172].

ModelGen Atzeni et al. presented ModelGen [12]—an implementation of the Model-
Gen operator initially illustrated by Bernstein [20]. Conceptually, the ModelGen operator
is based on the management of models from a high-level perspective by the application
of generic model operations, such as matching, merging, and composing, in sequences to
enable complex integration scenarios. In a nutshell, the ModelGen operator defines a
general pattern which uses bridges on the meta-language level to derive transformations
on the language- and instance levels. The implementation provided by Atzeni et al.
includes the use of ER and UML diagrams and the relational data model. Tradition-
ally, this pattern is proposed and used in the database field for schema-independent
transformations, but it is also applicable in language engineering.

Higher-Order Transformations Tisi et al. [204] highlighted the need for the direct
manipulation of model transformations to address more complex applications of modeling

57

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

and transformation paradigms. They argue that the same flexibility and uniformity
of the model-driven paradigm can be applied to the transformation infrastructure by
introducing the concept of transformation models. Such transformation models include
the input of HOTs, a different class of model transformations.

Epsilon Kolovos et al. presented Epsilon [172]—an integrated and uniform platform
for model management in MDE that typically involves operations on models that are
expressed by a variety of languages and technologies. Epsilon provides a set of interopera-
ble languages for task-specific operations, such as comparison, validation, transformation,
merging, and refactoring, that are built on an implementation sharing operational se-
mantics, and abstract and concrete syntaxes. Primarily, the architecture of Epsilon
consists of five layers: the model connectivity layer, enabling the management of hetero-
geneous models in a uniform manner; a core language that offers a set of generic features
that may be reused by task-specific languages; a set of languages that target distinct
model management tasks; and a workflow layer that enables the integration of individual
task-specific language tasks and, in particular, their composition, execution, debugging,
and monitoring. More specifically, the model connectivity layer provides a uniform
interface for the access of heterogeneous models through the use of the Epsilon Object
Language [124], i.e. the core language in the Epsilon platform. The set of task-specific
languages is composed of a language for model validation (Epsilon Validation Language),
model comparison (Epsilon Comparison Language), model merging (Epsilon Merging
Language), model-to-model transformation (Epsilon Transformation Language), and
in-place model transformation (Epsilon Wizard Language).

3.5 Summary

In general, users of modelware and grammarware approaches rely on language engineers
handcrafting transformation rules between either individual grammar rules or terminal
rules and metamodel elements. Neglecting the automated transformation of XML Schema
definitions to grammar specifications makes it impracticable for language engineers to
rapidly prototype textual modeling language implementations for existing XML Schema
definitions. The generation of language grammar from metamodels is still challenged by
the requirement of manual customization and extension by language engineers [162]. For
example, the report on the migration of a modeling environment from XML/UML to
Xtext/GMF presented by Eysholdt and Rupprecht [71] requires language engineers to
manually perform customizations to grammars generated from imported XML Schema
definitions. Izquierdo et al. [111], Kunert et al. [138], and Butting et al. [39] present
approaches based on ANTLR and EBNF-based grammar evolution and thus do not
consider language specifications in form of XML Schema definitions or metamodels.

The inherent differences between grammars and metamodels render the construction
and maintenance of complex structural constraints infeasible in the former type of lan-
guage specification. Model-Driven Language Engineering (MDLE) frameworks such as

58

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.5. Summary

Xtext [70], DrRacket [80], and MetaEdit+ [195, 206] address the infeasibility of language
grammars to capture complex structural language restrictions by enabling engineers to
specify them as part of language metamodels such as OCL invariants in Ecore metamod-
els. The facilitation of language specifications with complex structural restrictions for
automating the generation of language IDEs with built-in model validation, content assist
and model repair, however, is limited or nonexistent. DrRacket and MetaEdit+ allow
language specification to include complex structural restrictions, however, require engi-
neers to provide implementations for visualizing error locations and recovery of contract
validity. Xtext, JetBrains MPS, Melange, Spoofax, and SugarJ provide partial support
for structural constraints. Melange and Xtext rely on the OCL interpreter provided
by EMF for the validation of models of languages defined by Ecore metamodels that
are augmented with OCL invariants. Therefore, errors in models are reported coarsely
(e.g. by visualizing entire sub-structures as erroneous) and content-assist proposals may
introduce constraint violations (e.g. by suggesting the use of illegal tokens).

Predominant flows of operation in the specification of visual textual representations
presented in literature include the following three categories.

First, manual development or automated generation of domain-specific metamodels
from grammar specifications such as demonstrated by Spoofax [118], SugarJ [68], and Mon-
tiCore [39, 135]. Spoofax and SugarJ require language engineers to construct and maintain
(complex) bi-directional transformations. Spoofax employs host language grammar-
dependent transformations to weave and unweave library-based notation-specifications in
and out of Java, Haskell, and Prolog. Similarly, SugarJ specifies notations by construction
and maintenance of bi-directional transformations through Java host language extension
modules. MontiCore approaches the challenge of reducing redundancy and improving
maintenance by employing EBNF-like grammars (i.e. acting as artifacts to capture both
structure and representation) to generate metamodels and implementations. Notation
that is specified for each structural concept of a domain, however, introduces redundancy
among concepts following the same type of representation. The reduction of redundancy
achieved by notation-specifications for types of structural concepts are not considered in
MontiCore.

Second, manual development of grammar specifications based on domain-specific
metamodels such as demonstrated by TCS [115], TCSSL [158], and TEF [190]. TCS
employs a sequence of transformations on metamodels alongside models of a dedicated
DSL to specify associations to elements in individual metamodels. TCSSL is based on the
specification of bidirectional mappings between AST and CST by means of EBNF-like
rules. TEF requires the implementation of complete concrete syntax specifications for
metamodel elements that are intended to be instantiated.

Third, manual development of mappings between domain-specific metamodels and
grammar specifications such as demonstrated by EMFText [101, 102] and Herrera et
al [103, 36]. Although EMFText offers the capability to customize the appearance of
languages beyond textual tokens, such as the definition of text color, it does so on the
basis of individual metamodels and relying on a dedicated generator implementation to

59

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. Related work

pick up such specifications during editor generation. Herrera et al. present an approach
that builds on the construction and maintenance of (complex) bridges-specifications
between grammars and metamodels. Bridge-effectiveness, therefore, is challenged by the
level of awareness and application of actions and tool specifications that are available on
both sides of a bridge.

A more detailed analysis between related work outlined in this chapter and the
contributions of this thesis is presented in Sections 4.8, 5.7, and 6.7.

60

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 4
XML Schema modeling

integration and assistance

A
multitude of Domain-Specific Languages (DSLs) have been implemented by means
of XML Schema definitions. While such DSLs are well adopted and flexible,
they lack modern DSL IDE functionality. Moreover, since XML is primarily

designed as a machine-processible format, XML-based artifacts lack comprehensibility
and, therefore, maintainability. In order to tackle these shortcomings, a bridge between
XML Schema-based languages and textual modeling languages is proposed [162]. This
bridge exploits existing seams between the technical spaces of XMLware, modelware,
and grammarware, and closes identified gaps. The resulting approach is able to generate
Xtext-based IDEs from XML Schema definitions that provide powerful IDE functionality,
basic customization options for the appearance of textual concrete syntax, and round-trip
transformations which enable the exchange of data between the technical spaces in
question. Further, the approach is integrated into the implementation of a modeling
and metamodeling assistant to enable developers to import and query domain-specific
knowledge embodied by XMLware artifacts, as well as facilitate the construction of novel
modeling languages. The approach is evaluated by means of a case study on TOSCA,
which is an XML-based standard for defining Cloud deployments, as well as a use case
involving the development of an industry standard-conforming modeling language by
facilitating the integration into a modeling and metamodeling assistant. The results
show that the approach enables bridging XMLware with modelware and grammarware in
several ways, which go beyond existing approaches, and allows the automated generation
of IDEs that are at least equivalent to IDEs manually built for XML-based languages.
Figure 4.1 recaptures the contributions of this thesis and highlights the contribution of
this chapter, which is the exploitation of XML Schema-based language specifications for
the automated generation of the structural components of textual modeling language
implementations.

61

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

Textual
modeling language

NotationDedicated IDEStructure

XML Schema integration
and assistance framework

Modeling
assistance

Model
transformation

C 1

Metamodel
generation

Basic notation
customization

Reusable notation-template
language and design framework

Notation-template language and IDE

Notation
design

Grammar
generation

Template
extension

Consistency-achieving IDE
generation and runtime framework

Content
assistance

Model
validation

IDE
generation

C 2

Restrictions
integration

IDE
runtime

Model
repair

integrated
consistency
resolution,

preservation,
and repair

assisted
language structure

design and integration
integrated

notation-template
design and
extension

Artefact

Component A Component B

C #

Contribution #

C 3

implementation
used

Figure 4.1: Contribution presented in this chapter.

The remainder of this chapter is organized as follows. Section 4.1 introduces the
approach and its motivations. Section 4.2 briefly recaptures XML, XML Schema, and
language workbench frameworks. Section 4.3 provides an overview of the challenges
imposed by the existing chain of transformation from XMLware to grammarware. Sec-
tion 4.4 details the gaps between XMLware, modelware, and grammarware by reclaiming
the running example language introduced in Chapter 2. Section 4.5 presents the ap-
proach, its implementation and the modeling assistant integration in detail. Section 4.6
demonstrates an evaluation based on the migration of a standardized cloud modeling
language. Section 4.7 presents the evaluation of the XMLText assistant integration
based on the construction of a modeling language implementation for the specification of
industry standard-conforming conveyor-belt systems. Section 4.8 analyzes and compares
the proposed approach with related work. Finally, Section 4.9 concludes the chapter by
summarizing the presented work.

4.1 Introduction

XML has been primarily designed as a machine-processible format following fixed angle-
bracket syntax. More specifically, XML-based languages are bound to angle-bracket
syntax that is described as verbose and complex in terms of human comprehension and
are, therefore, difficult to maintain [13]. While for prominent XML-based languages, such
as OASIS’s TOSCA [173], advanced IDE implementations are handcrafted, for others,
such as the Artificial Intelligence Markup Language (AIML) [216], no dedicated IDE is
available. In the latter case, language users are bound to the application of angle-bracket
syntax.

Tackling these major limitations requires breaking out of the inflexible XML syntax
by providing support for the construction of modeling languages (henceforth simply

62

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.1. Introduction

referred to as modeling languages). While state-of-the-art Model-Driven Language
Engineering (MDLE) [113] frameworks, such as Xtext [70], enable the development of
modeling languages, as well as the accompanying customized concrete syntax and rich
language workbenches, handcrafting DSML implementations from XML-based languages
with such frameworks is a complex, error-prone, and time-consuming task that requires
advanced language-engineering skills. Additionally, Xtext-based modeling language
implementations that ought to replace XML-based languages often neglect backward
compatibility with the comprehensive set of applications that have been built to support
these languages. Moreover, state-of-the-art MDLE frameworks allow the tailoring of
modeling languages to target domain expert-familiar syntax that is rarely implemented
by general-purpose notations [191].

Such modeling language implementations, however, have to be either constructed
from scratch or derived from existing languages. Although the latter seems promising, it
opens up a wide range of obstacles in the form of conformity and compatibility issues
between the implementation of an existing language and its derived counterpart. For
example, existing approaches derive metamodels from source languages for the purpose
of generating grammars. Grammar is disconnected from its original metamodel and, as
such, loses metamodel-conformity and the applicability of round-trip transformations
within the technical spaces of XMLware and grammarware.

In order to overcome these issues, the proposed approach facilitates the modernization
of XML Schema-based languages with modelware and grammarware [122] through the ex-
traction of metamodels from existing XML Schema definitions, the adaptation of extracted
metamodels to facilitate the production of effective language grammars, the generation of
both customized language grammars and workbenches from adapted metamodels, and the
enabling of round-trip transformations between original XML Schema-based languages
and their modernized modeling language counterparts by automatically generating model
serializers and parsers to ensure backward-compatibility.

The proposed framework combines the advantages of XMLware and grammarware, i.e.
machine-processibility and re-use of extensive XMLware applications, and customized tool
support and improved maintainability respectively, by introducing support for round-trip
transformation. The XML to Xtext (XMLText) framework is evaluated based on a
cloud modeling language use case in which the XML-based TOSCA language specification
is employed to generate an executable modeling language implementation. Moreover,
XMLText is integrated into a metamodeling and modeling assistant, and employed
for the construction of a conveyor-belt system modeling language that conforms to an
XML-based industry standard specification for production systems. Therefore, evaluating
the framework’s ability to produce modeling language implementations that conform
to XML-based standard specifications, as well as feature modern editing capabilities
and enable round-trip compatibility for language instances will facilitate the use of
existing XML-based tools and engines. The evaluation criteria include completeness of
the generated language elements and validity of XSD-conform XML instances that are
round-trip-transformed to grammar-conform modeling language models and vice versa.

63

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

4.2 Background

Prior to the introduction of the Extensible Markup Language (XML), most data formats
were binary and, therefore, solely machine-readable and machine parsable. Focus was
primarily on processibility by machines rather than human developers and domain experts.
Furthermore, since such data formats were also proprietary, they could only be read
either by a single application or by a very small number of applications. As such, they
are not suitable for the distributed inter-communicating systems that are in place today.

With the introduction of the fully machine-processible XML by the World Wide
Web Consortium (W3C) [33] in 1998, a tremendous leap towards easing the design of
software languages was achieved, which leverages the idea of having a generic editor,
parser, and validation methodology. In 2004, W3C recommended the XML Schema
Definition (XSD) [202] as a novel standard to specify and verify formally elements in
an XML document that conforms to an XML Schema definition. Although the original
design goals specify that “XML documents should be human-legible and reasonably
clear” [33], the syntax of XML cannot be altered to fit the representation of a particular
domain.

Many DSLs have been defined by means of XML Schema definitions. For instance, the
XML Schema definition of RSS specifies a web feed format to publish frequently updated
information. DSLs are software languages that are meant to target specific problem
domains, rather than solving all kinds of problems like General Purpose Languages
(GPLs). Fowler [84] defines a DSL as “a computer programming language of limited
expressiveness focused on a particular problem domain”. While XML-based DSLs are
bound to the non-customizable textual concrete syntax of XML, MDLE frameworks, such
as Xtext, allow the development of DSMLs, i.e. modeling languages defined by means of
metamodels [205] that include fully customizable textual concrete syntaxes. Therefore,
the textual concrete syntax of a modeling language can be tailored to a notation that is
familiar to domain experts. For example, in order to target comprehensibility, the syntax
of a modeling language may be based on notations such as OMG Human-Usable Textual
Notation (HUTN) [185] or YAML Ain’t Markup Language (YAML) [17], i.e. generic
serialization formats that focus on human comprehensibility.

Contemporary MDLE frameworks are capable of automatically generating powerful
DSL workbenches from abstract language syntaxes that include parsers, serializers,
lexers, pretty printers, and sophisticated IDEs. Xtext is a prominent Eclipse-based
MDLE framework that enables the development of textual modeling languages. Further,
it is tightly integrated with the Eclipse Modeling Framework (EMF) and covers all
aspects of a textual modeling language infrastructure, including the generation of basic
implementations of lexer, parser, and an Eclipse IDE featuring syntax highlighting,
background parsing, error indication, content assist, hyperlinking, quickfixing, and
outline views.

Therefore, Xtext has been chosen as the underlying language workbench framework
for the development of XMLText. More specifically, Xtext supports naming valida-

64

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.3. Challenges

tion, concrete syntax semantics, composable syntax/views, and refactoring IDE service.
Moreover, Xtext represents an official Eclipse project that is mature and continuously
participates in the Eclipse release train with an advanced and stable release schedule [83].
Further, the extensive documentation and active community, i.e. through the Eclipse
forum “TMF (Xtext)”,1 of Xtext present valuable assets for the development of third
party software.

The following provides a brief overview of different types of language composition
and the integration of OCL in Ecore and Xtext.

4.3 Challenges

MDLE frameworks, like Xtext, accelerate the development of modeling languages to
a great extent. They cover all aspects of a textual language infrastructure, including
the default generation of a lexer, parser, as well as feature-rich IDEs that offer syntax
highlighting, error indication, and content assist. At the same time, they provide
language engineers with the power to customize entirely the look and feel (i.e. the
textual concrete syntax) of modeling languages and tailor them to specific domains and
notations—a customization that is not available to XML-based languages due to their
fixed concrete syntax. Although implementations of transformations and generators that
are offered by Xtext and EMF may be chained together (henceforth referred to as Default
Transformation Chain and illustrated by Figure 4.2), they expose several gaps which
challenge the automated modernization of XML Schema-based languages with modeling
languages. More specifically, these gaps occur between the technical spaces [140] of
XMLware, modelware, and grammarware and are detailed below.

From XML Schema to Ecore Metamodel. The EMF XSD Importer can be
employed to produce an Ecore-based metamodel (henceforth referred to as default
metamodel) from an existing XML Schema (cf. 1 in Figure 4.2). More specifically, a
default metamodel is produced in which a schema maps to an EPackage in the Ecore
language metamodel (cf. Figure 2.2), a complex type definition maps to an EClass, a
simple type definition maps to an EDataType, and an attribute declaration or element
declaration maps to an EAttribute where the type maps to an EDataType, or to
an EReference where the type maps to an EClass. On the one hand and from a
modeling perspective, XML Schema is not as expressive as Ecore. For example, the type
of the target of a reference is not described in XML Schema. In addressing some of these
issues, EMF provides a set of manually applicable extensions to XML Schema definitions
in the form of annotations. On the other hand and from a markup perspective, the
XML Schema specification enables the expression of serialization details that cannot be
represented in terms of Ecore metamodels [197]. Although EMF considers such details
by means of EAnnotations that are attached to the metamodel for the representation

1The Eclipse TMF (Xtext) forum is available at https://www.eclipse.org/forums/index.

php?t=thread&frm_id=27.

65

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.eclipse.org/forums/index.php?t=thread&frm_id=27
https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

Modeling Language

Ecore

Metamodel

Model API

Ecore Model1
(abstract syntax)

DSML Model1
(concrete syntax)

Default Transformation Chain

B

Markup Language

XML Schema

EMF XSD

Importer

1

XMLware

XML Instance1
A

Le
g
e
n
d
:

conforms

to

transformed

to

transformed to and from

(bi-directional)

Modelware

Textual Modeling

Language
Xtext

Workbench

Xtext Grammar

Grammarware
Xtext

Grammar

Generator

2

Figure 4.2: Overview of the Default Transformation Chain.

of extended metadata, the interpretation of such metadata depends on the capability
and implementation of the subsequently employed tool or language workbench.

From Ecore Metamodel to Xtext. Alongside the generation of the default meta-
model by the EMF XSD Importer, the EMF is employed to generate a Java-based model
API that acts as in-memory representation for metamodel-conforming instances (hence-
forth referred to as models). Additionally, a default metamodel is used as input for the
Xtext Grammar Creator [203] to generate a corresponding Xtext-based grammar (cf. 3
in Figure 4.3). More specifically, the Xtend-based implementation of the Xtext Grammar
Creator is employed to generate grammar constructs for a limited set of Ecore structures
and, in particular, EClass, EEnum, and EDataType. Consequently, the Xtext Grammar
Creator produces grammar (henceforth referred to as default grammar) that typically
requires adaptation and extension to enable the construction of grammar-conforming
instances (henceforth referred to as sentences) that capture any concept that may occur
in a particular domain. More specifically, this is achieved by decoupling a grammar from
its associated default metamodel (henceforth referred to as decoupled grammar) and by
the removal of the metamodel import-statement, the adaptation of grammar rules and
terminal rules, and the introduction of a grammar-based metamodel, i.e. a metamodel
that is automatically derived from grammar. In this case, the model API that has been
generated from the default metamodel, i.e. established by the EMF XSD Importer, is
rendered ineffective in respect to the decoupled grammar and is thus replaced by a model
API that is automatically generated from the decoupled grammar.

It is important to note that the introduction of decoupled grammar causes the loss of
backward-compatibility to XMLware applications due to the failure of round-trip trans-
formations at instance level. Therefore, the tool support for round-trip transformations

66

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.4. Requirements

(cf. Figure 4.2) that is offered by Xtext and EMF for XML instances (i.e. conforming
to their associated XML Schema) and sentences that employ decoupled grammar is
rendered ineffective. Consequently, existing tool support fails to transform sentences that
conform to decoupled grammar into models that conform to the default metamodel that
is imported and employed by the default grammar. Moreover, existing tool support for
the transformation of models that conform to the default metamodel, i.e. established by
the EMF XSD Importer, into valid sentences that conform to the decoupled grammar
similarly fails. In other words, the instance-level transformation that is depicted by
B in Figure 4.2 fails to handle concepts that have been removed or introduced by the

decoupled grammar (i.e. in comparison to the grammar generated by the Xtext Grammar
Creator from the default metamodel.

Although the production of executable modeling language implementations from
XML Schema definitions may be automated by instantiating a chain that employs the
EMF XSD Importer and the Xtext Grammar Creator (henceforth referred to as Default
Transformation Chain), doing so exposes several gaps between the technical spaces of
XMLware, modelware, and grammarware. More specifically, instantiating the Default
Transformation Chain entails the following steps: Firstly, a source language that is
specified by an XML Schema definition specification feeds into the EMF XSD Importer
to yield a corresponding default metamodel. Secondly, the obtained metamodel is supplied
to the Xtext Grammar Creator to produce a default grammar. Thirdly, the obtained
default grammar is employed by the Xtext framework to generate an implementation of
the target modeling language.

4.4 Requirements

In the next paragraphs, a series of gaps are introduced by the instantiation of the Default
Transformation Chain, which must be handled by the approach. These gaps are illustrated
based on a language for space transformation services that has been introduced as a
running example language in Chapter 2.

4.4.1 Identifiers and references

The EMF XSD Importer transforms attributes of type xsd:ID (exemplified by line
4 in Listing 4.1) to Ecore attributes of type java.lang.String that have set the
ID property to true. Likewise, attributes of type xsd:IDREF (e.g. line 16) are
transformed to Ecore attributes of type java.lang.String, whose instances may
hold any valid character sequence. Lines 1–2 and 7–8 in Listing 4.2 illustrate the XML
Schema concept for identifiers and references by means of an XML instance of the space
transportation service elements engineType and stage (the latter specifies the engine type
of a spacecraft stage) respectively. Finally, the Xtext Grammar Creator produces terminal
rules that contain placeholder keywords for both data types xsd:ID and xsd:IDREF

(cf. Listing 4.3). Thus, the Default Transformation Chain neglects the concept of
EReference that is available within the technical space of modelware, and acts as a

67

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

native construct for capturing typed references, i.e. references to a particular type that
is defined by a metamodel. It is important to note that the XML Schema concepts ID
and IDREF act as identifiers and references that are global to the document in which
they occur. In other words, the XML Schema specification does not define the concept
of type-based referencing that is known in typical GPL implementation, such as the Java
programming language.

1 <xsd:complexType name="EngineType">

2 <xsd:complexContent>

3 <xsd:extension base="sts:NamedElement">

4 <xsd:attribute name="engineTypeId" type="xsd:ID" use="required"/>

5 <xsd:attribute name="fuelKind" type="xsd:string" use="required"/>

6 </xsd:extension>

7 </xsd:complexContent>

8 </xsd:complexType>

9

10 <xsd:complexType name="Stage">

11 <xsd:complexContent>

12 <xsd:extension base="sts:NamedElement">

13 <xsd:sequence>

14 <xsd:element maxOccurs="unbounded" minOccurs="0" name="physicalProperty"

type="sts:PhysicalProperty"/>

15 </xsd:sequence>

16 <xsd:attribute name="engineTypeId" type="xsd:IDREF" use="required"/>

17 <xsd:attribute name="engineAmount" type="xsd:integer" use="required"/>

18 </xsd:extension>

19 </xsd:complexContent>

20 </xsd:complexType>

Listing 4.1: XML Schema identifier and identifier reference concept defined within space
transportation service complex types EngineType and Stage respectively.

1 <engineType engineTypeId="M1D" fuelKind="Subcooled LOX / Chilled RP-1" name="

Merlin1D" />

2 <engineType engineTypeId="M1DV" fuelKind="LOX / RP-1" name="Merlin1DVacuum" />

3

4 <spacecraft countryOfOrigin="USA" launchSite="NKSC"

5 manufacturer="SpaceY" name="FalconHeavy" relaunchCostInMioUSD="90">

6

7 <stage engineAmount="9" engineTypeId="M1D" name="FirstStage" />

8 <stage engineAmount="1" engineTypeId="M1DV" name="SecondStage" />

9

10 <function>ORBITAL_LAUNCHER</function>

11

12 <physicalProperty type="LENGTH" unit="m" value="70.0" />

13 <physicalProperty type="DIAMETER" unit="m" value="70.0" />

14 <physicalProperty type="WIDTH" unit="m" value="12.2" />

15 <physicalProperty type="MASS" unit="kg" value="1420788.0" />

16

17 </spacecraft>

Listing 4.2: XML instance of space transportation service elements engineType and stage
employing the XML Schema identifier and identifier reference concept respectively.

68

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.4. Requirements

1 ID0 returns type::ID:

2 ’ID’ /* TODO: implement this rule and an appropriate IValueConverter */;

3

4 IDREF returns type::IDREF:

5 ’IDREF’ /* TODO: implement this rule and an appropriate IValueConverter */

;

Listing 4.3: Grammar produced by Xtext Grammar Creator from XML Schema identifier
and identifier reference concept.

4.4.2 Mixed content and wildcards

XML Schema defines the wildcard element type xsd:any that allows to specify any type
of markup content in XML documents. In other words, xsd:any enables the extension
of an XML document with an element that is not (further) restricted by an XML Schema
definition. The EMF XSD Importer translates such types to metaclasses containing
feature maps that represent ambiguous language concepts, whose handling is delegated
to the underlying parser and serializer implementations. As the Xtext Grammar Creator
neglects the support of such implicitly modeled language concepts, however, these are
not represented at grammar level and thus cannot be instantiated. Furthermore, XML
Schema defines mixed complex type elements, i.e. allowing character data to appear
within the body of the element. Similarly to the identifiers and references gap, however,
the Xtext Grammar Creator produces terminal rules containing a placeholder keyword
for any occurrence of xsd:complexType with attribute mixed set to true (cf. line
16 in Listing 4.6), such as for the element that defines the operator of a launch site (cf.
lines 7–14 in Listing 4.4). Listing 4.5 exemplifies the structure of mixed content in an
XML document that conforms to the XML Schema definition depicted by Listing 4.4.

1 <xsd:complexType name="LaunchSite">

2 <xsd:complexContent>

3 <xsd:extension base="sts:NamedElement">

4 <xsd:sequence>

5 <xsd:element maxOccurs="1" minOccurs="1" name="launchSiteId" type="xsd:

ID" />

6 <xsd:element maxOccurs="unbounded" minOccurs="0" name="physicalProperty"

type="sts:PhysicalProperty" />

7 <xsd:element name="operator">

8 <xsd:complexType mixed="true">

9 <xsd:sequence>

10 <xsd:element name="operatorName" type="xsd:string" />

11 <xsd:element name="operatorService" type="xsd:string" />

12 </xsd:sequence>

13 </xsd:complexType>

14 </xsd:element>

15 </xsd:sequence>

16 <xsd:attribute name="locationLatitude" type="xsd:decimal" use="required"

/>

17 <xsd:attribute name="locationLongitude" type="xsd:decimal" use="required"

/>

69

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

18 <xsd:attribute name="numberOfLaunchpads" type="xsd:integer" use="required"

/>

19 <xsd:attribute name="operational" type="xsd:boolean" use="required" />

20 </xsd:extension>

21 </xsd:complexContent>

22 </xsd:complexType>

Listing 4.4: XML Schema mixed content concept defined within the space transportation
service launch site operator element.

1 <launchSite launchSiteId="NKSC" locationLatitude="-80.65085" locationLongitude="

28.524058"

2 name="KennedySpaceCenter" numberOfLaunchpads="3" operational="true"

nextScheduledLaunchTime="16:00:00">

3 <operator>

4 The <operatorName>SpaceY</operatorName> operator offers

5 <operatorService>private-client service</operatorService>

6 </operator>

7 </launchSite>

Listing 4.5: XML document instantiating a space transportation service launch site
operator conforming to an XML Schema definition that employs the concept of mixed
content.

1 LaunchSite returns LaunchSite:

2 ’LaunchSite’

3 launchSiteId=ID0

4 ’{’

5 ’name’ name=String0

6 ’locationLatitude’ locationLatitude=Decimal

7 ’locationLongitude’ locationLongitude=Decimal

8 ’numberOfLaunchpads’ numberOfLaunchpads=Integer

9 ’operational’ operational=Boolean

10 (’physicalProperty’ ’{’ physicalProperty+=PhysicalProperty (","

physicalProperty+=PhysicalProperty)* ’}’)?

11 ’operator’ operator=OperatorType

12 ’}’;

13

14 OperatorType returns OperatorType:

15 {OperatorType}

16 ’OperatorType’

17 ;

Listing 4.6: Grammar produced by the Xtext Grammar Creator from an XML Schema
definition that employs the XML Schema concept of mixed content.

4.4.3 Data types and restrictions

The W3C Recommendation on XML Schema data types [28] describes a set of built-in
data types for different kinds of data, such as numbers, dates, character sequences,
identifiers, and references. Listing 4.7 illustrates the XML Schema built-in data types

70

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.4. Requirements

xsd:string and xsd:dateTime employed as base data types for the restriction of
attributes missionTitle (cf. lines 7–13) and startDateTime (cf. lines 16–22) within
the element launchEvent of complex type LaunchSchedule (i.e. an element that
may occur as part of a space transportation service). More specifically, line one indicates
the definition of XML namespace prefix xsd and lines nine and eighteen illustrate the
use of XML Schema built-in data types xsd:string and xsd:dateTime respectively.
Line nineteen restricts the latter data type to instances that match the defined pattern
and, in particular, instances conforming to the format YYYY-MM-DDTHH:MM:SSZ (i.e.
with YYYY, MM, DD, HH, MM, SS, and Z indicating year, month, day, hour, minute, second,
and universal time zone respectively). The EMF XSD Importer transforms XML Schema
data types to custom data types in modelware that are mapped to Java types. The
Xtext Grammar Creator, however, transforms any metamodel data type to a placeholder
terminal symbol that replaces the actual data type. Therefore, the grammar created by
the Default Transformation Chain does not allow the construction of instances that may
store values for variables of an arbitrary data type. The consequence of this limitation also
impacts the instantiation of the XML Schema concept of restrictions. For example, in the
case of a restricted attribute of type xsd:string, i.e. assuming that the type definition
of the resulting grammar attribute is substituted with the Xtext built-in STRING terminal
rule, the attribute created in the Xtext grammar is interpreted differently: a character
sequence in XML Schema is interpreted with and without its surrounding quotes in Xtext
and EMF respectively. Finally, Listing 4.8 illustrates an XML document that conforms
to the XML Schema definition depicted in Listing 4.7, i.e. employing the XML Schema
concept of data types and restrictions by instantiating a space transportation service
launchSchedule.

1 <xsd:schema xmlns:sts="http://cs.york.ac.uk/ecss/examples/

spacetransportationservice" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://cs.york.ac.uk/ecss/examples/

spacetransportationservice">

2

3 <xsd:complexType name="LaunchSchedule">

4 <xsd:sequence>

5 <xsd:element maxOccurs="unbounded" minOccurs="0" name="launchEvent">

6 <xsd:complexType>

7 <xsd:attribute name="missionTitle" use="required">

8 <xsd:simpleType>

9 <xsd:restriction base="xsd:string">

10 <xsd:maxLength value="42" />

11 </xsd:restriction>

12 </xsd:simpleType>

13 </xsd:attribute>

14 <xsd:attribute name="launchSiteId" type="xsd:IDREF" use="required"/>

15 <xsd:attribute name="spacecraftId" type="xsd:IDREF" use="required"/>

16 <xsd:attribute name="startDateTime">

17 <xsd:simpleType>

18 <xsd:restriction base="xsd:dateTime">

19 <xsd:pattern value="\d{4}-\d\d-\d\dT\d\d:\d\d:\d\dZ"/>

20 <!-- requires UTC as time zone (i.e. indicated by Z), e.g.:

71

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

2004-04-12T13:20:00Z -->

21 </xsd:restriction>

22 </xsd:simpleType>

23 </xsd:attribute>

24 </xsd:complexType>

25 </xsd:element>

26 </xsd:sequence>

27 </xsd:complexType>

28

29 </xsd:schema>

Listing 4.7: XML Schema data type and restrictions concept defined within the space
transportation service launchSchedule element.

1 <launchSchedule>

2 <launchEvent missionTitle="GPS III-03 navigation satellite deployment"

startDateTime="2020-01-31T12:00:00Z" spacecraft="FH" launchSiteId="NKSC"

/>

3 <launchEvent missionTitle="AFSPC-44 payload deployment (classified)"

startDateTime="2020-09-30T12:00:00Z" spacecraft="FH" launchSiteId="NKSC"

/>

4 </launchSchedule>

Listing 4.8: XML document instantiating a space transportation service launchSchedule
by employing the XML Schema concept of data types and restrictions.

1 LaunchSchedule returns LaunchSchedule:

2 {LaunchSchedule}

3 ’LaunchSchedule’

4 ’{’

5 (’launchEvent’ ’{’ launchEvent+=LaunchEventType ("," launchEvent+=

LaunchEventType)* ’}’)?

6 ’}’;

7

8 LaunchEventType returns LaunchEventType:

9 ’LaunchEventType’

10 ’{’

11 ’missionTitle’ missionTitle=MissionTitleType

12 ’launchSiteId’ launchSiteId=IDREF

13 ’spacecraftId’ spacecraftId=IDREF

14 (’startDateTime’ startDateTime=StartDateTimeType)?

15 ’}’;

16

17 MissionTitleType returns MissionTitleType:

18 ’MissionTitleType’ /* TODO: implement this rule and an appropriate

IValueConverter */;

19

20 StartDateTimeType returns StartDateTimeType:

21 ’StartDateTimeType’ /* TODO: implement this rule and an appropriate

IValueConverter */;

Listing 4.9: Grammar produced by Xtext Grammar Creator from an XML Schema
definition that employs the concept of data types and restrictions.

72

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.4. Requirements

4.4.4 Basic notation customization

XML has been primarily designed as a machine-processible format composed of immutable
concrete syntax. Therefore, users of XML-based languages are bound to angle-bracket
syntax that is described as verbose and complex in terms of human comprehension.
This impedes maintainability [13]. It is important to note that the technical space of
XMLware does not foresee a concept to customize concrete syntax and, thus, does not
require handling during the exploitation of XML Schema-based language specifications.

4.4.5 Summary

Listing 4.10 depicts a space transportation service instance that is encoded in XML.
More specifically, it describes a space transportation service that is composed of two
engine types with identifier M1D and M1DV that are referenced within FirstStage and
SecondStage of the spacecraft named “Falcon Heavy” and identified by FH. Furthermore,
the modeled spacecraft is described by a set of physical properties that define the length,
diameter, width, and mass of the vehicle. Additionally, the model specifies an operational
launch site named “Kennedy Space Center” and identified by NKSC. Finally, the modeled
launchSchedule describes two launch events with an individual mission title and start
date time, as well as the spacecraft FH and launch site NKSC.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <sts:SpaceTransportationService

3 xmlns:sts="http://cs.york.ac.uk/ecss/examples/

spacetransportationserviceXsdSource"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://cs.york.ac.uk/ecss/examples/

spacetransportationserviceXsdSource spacetransportationservice.xsd ">

6

7 <engineType engineTypeId="M1D" fuelKind="Subcooled LOX / Chilled RP-1" name="

Merlin1D" />

8 <engineType engineTypeId="M1DV" fuelKind="LOX / RP-1" name="Merlin1DVacuum"

/>

9

10 <launchSite launchSiteId="NKSC" locationLatitude="-80.65085" locationLongitude="

28.524058"

11 name="KennedySpaceCenter" numberOfLaunchpads="3" operational="true">

12 <operator>NASA</operator>

13 </launchSite>

14

15 <spacecraft spacecraftId="FH" countryOfOrigin="USA" launchSite="NKSC"

16 manufacturer="SpaceY" name="FalconHeavy" relaunchCostInMioUSD="90">

17

18 <stage engineAmount="9" engineTypeId="M1D" name="FirstStage"/>

19 <stage engineAmount="1" engineTypeId="M1DV" name="SecondStage"/>

20

21 <function>ORBITAL_LAUNCHER</function>

22

23 <physicalProperty type="LENGTH" unit="m" value="70.0" />

24 <physicalProperty type="DIAMETER" unit="m" value="70.0" />

73

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

25 <physicalProperty type="WIDTH" unit="m" value="12.2" />

26 <physicalProperty type="MASS" unit="kg" value="1420788.0" />

27 </spacecraft>

28

29 <launchSchedule>

30 <launchEvent missionTitle="GPS III-03 navigation satellite deployment"

startDateTime="2020-01-31T12:00:00Z" spacecraftId="FH" launchSiteId="

NKSC" />

31 <launchEvent missionTitle="AFSPC-44 payload deployment (classified)"

startDateTime="2020-09-30T12:00:00Z" spacecraftId="FH" launchSiteId="

NKSC" />

32 </launchSchedule>

33

34 </sts:SpaceTransportationService>

Listing 4.10: Example XML document instantiating a space transportation service
(excerpt).

Table 4.1 summarizes the (lack of) support of XML Schema language concepts by
the Default Transformation Chain (cf. Figure 4.2) and in particular the transformation
of the space transportation service XML Schema definition to a corresponding default
metamodel (cf. 1) and the default metamodel to a corresponding default grammar (cf.
2) by focusing on language constructs that are instantiated in the space transportation

service specification. The column “Supported” denotes whether a particular source
language concept (i.e. defined within the space transportation service XML Schema
definition) is being transformed to a corresponding grammar construct (i.e. captured
within the space transportation service default grammar) or not, which means that it
has been unable to specify corresponding values.

4.5 Approach

The approach proposes bridging XMLware, modelware, and grammarware. Therefore,
the goal is to provide a framework that automatically modernizes XML Schema definition
to metamodel-based languages, which provide flexible syntax, rich language workbenches,
and access to model-based techniques such as transformation, validation, and code gener-
ation. In order to achieve this goal, the transformations of the Default Transformation
Chain are adapted and extended by the introduction of new transformations that tran-
scend the gaps presented in Section 4.4. Figure 4.3 depicts the conceptual overview of
the XMLText framework.

Similar to the Default Transformation Chain, the first step is to transform a given
XML Schema to an Ecore Metamodel by facilitating the EMF XSD Importer 1 . In order
to tackle the gaps associated with Ecore-based feature maps, which cause the production
of empty grammar rules, the default metamodel is refactored (henceforth referred to as
adapted metamodel) by replacing feature maps with generic concrete constructs (cf. 2 in
Figure 4.3). Next, the adapted metamodel is used as input for generating the grammar. In
order to store actual values for attributes, however, the Xtext Grammar Creator (cf. 3

74

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

XML Schema

Concept Definition
Supported

by DTC
Notes

Element xsd:element ✓ Grammar rule is created

Attribute xsd:attribute ✓
Feature in grammar rule is

created

Containment (through nesting) ✓
Grammar rule is created and

rule call stated

Mixed content mixed=“true” ✗

Ecore feature map is
neglected in grammar

generation

Wildcard
xsd:any,

xsd:anyAttribute
✗

Ecore feature map is
neglected in grammar

generation

Restriction xsd:restriction ✗
Non-conforming
interpretation

Data type
type=“xsd:string”

(example)
✗

Placeholder terminal and a
TODO-comment replaces

data types

Identifier and
reference

type=“xsd:ID”
and

type=“xsd:IDREF”
✗

Placeholder terminal replaces
identifier value

Table 4.1: Overview of XML Schema language concepts and their (lack of) support by
the Default Transformation Chain.

in Figure 4.3) is enhanced by creating, importing, and referencing a library of data types.
Moreover, basic customization of the textual concrete syntax of the target modeling
language is achieved by the supply of a configurable grammar rule template.

In order to restore forward and backward compatibility of the adapted metamodel,
introduced by the XMLText framework, it is necessary to refactor existing transfor-
mations (cf. A in Figure 4.3) to act upon the execution of round-trip transformations
on instance level. Therefore, the deserializer (i.e. reading XML Instances and creating
in-memory model representations that conform to the adapted metamodel), as well as
the serializer (i.e. storing models as XML Instances), are refactored. As a result of
evading the process of decoupling generated grammar from its metamodel, transformation
B can be reused. With the introduction of transformation 2 and the adaptation of

75

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

Modeling Language

Ecore

Metamodel

Model API

Ecore Model1
(abstract syntax)

DSML Model1
(concrete syntax)

XMLText framework2

B

Markup Language

XML Schema

EMF XSD

Importer

1

XMLware

XML Instance1
A

Le
g
e
n
d
:

conforms

to

transformed

to

redefined

transformation

introduced

transformation

Modelware

Textual Modeling

Language
Xtext

Workbench

Xtext Grammar

Grammarware
Xtext

Grammar

Generator

3

Figure 4.3: Overview of the XMLText framework

transformations 3 and A , the XMLText framework overcomes the limitations of
existing bridges between XMLware and grammarware, thus enabling the automated
modernization of XML-based languages with modeling languages as detailed below.

4.5.1 Metamodel generation

The aforementioned adapted metamodel addresses the following gaps.

Identifiers and references. The gap associated with global identifiers and refer-
ences is tackled by transformation 2 and, in particular, by replacing model attributes
of type xsd:IDREF with references to the metaclass EObject, which represents the
uppermost class in the hierarchy of the Ecore language. Although such references
allow objects to reference any kind of object, an xsd:IDREF attribute may only ref-
erence elements owning an xsd:ID attribute. Thus, transformation 3 introduces a
necessary refinement in the generation of a grammar rule for every attribute of type
xsd:IDREF, which (only) allows to reference objects that own an attribute of type
xsd:ID. Therefore, a new set of terminal rules is defined (cf. the example in Listing 4.11)
that enables the subsequently generated IDE to provide support for the referencing of
objects through content assist. Listing 4.12 illustrates grammar that is produced by
XMLText from the XML Schema concept of identifiers and identifier references. More
specifically, the specification of an XML Schema identifier attribute is exemplified by
engineTypeId=ID0 in line five and defined by rule ID0 in lines 20–21, referring to the
import in line one. Further, the specification of XML Schema attributes of type IDREF
is exemplified by engineTypeId=SourceElementType in line fifteen and defined by
rule SourceElementType in lines 23–24. In both the cases of ID and IDREF, the

76

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

rule QualifiedName applies and, thus, enables definition and referencing by means of
dot-separated identifier names (cf. lines 29–30).

1 IDREFS returns ecore::EString:

2 IDREF (’,’ IDREF)*;

3

4 IDREF returns ecore::EString:

5 QualifiedName;

6

7 QualifiedName returns ecore::EString:

8 ID (=>’.’ ID)*;

Listing 4.11: Grammar rules enabling the XML Schema concept of identifiers and identifier
references (excerpt).

1 import "http://www.eclipse.org/emf/2003/XMLType" as type

2

3 EngineType returns EngineType:

4 ’EngineType’

5 engineTypeId=ID0

6 ’{’

7 ’name’ name=STRING

8 ’fuelKind’ fuelKind=STRING

9 ’}’;

10

11 Stage returns Stage:

12 ’Stage’

13 ’{’

14 ’name’ name=STRING

15 ’engineTypeId’ engineTypeId=SourceElementType

16 ’engineAmount’ engineAmount=Integer

17 (’physicalProperty’ ’{’ physicalProperty+=PhysicalProperty (","

physicalProperty+=PhysicalProperty)* ’}’)?

18 ’}’;

19

20 ID0 returns type::ID:

21 QualifiedName;

22

23 SourceElementType returns SourceElementType:

24 ’(’ referencingAttribute=[ecore::EObject|IDREF])? ’)’;

25

26 IDREF returns ecore::EString:

27 QualifiedName;

28

29 QualifiedName returns ecore::EString:

30 ID (=>’.’ ID)*;

Listing 4.12: Grammar produced by XMLText from the XML Schema identifier and
reference concepts (excerpt).

1 SpaceTransportationService {

2

3 engineTypes {

77

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

4 EngineType M1D {

5 name "Merlin 1D"

6 fuelKind "Subcooled LOX / Chilled RP-1"

7 },

8 EngineType M1DV {

9 name "Merlin 1D Vacuum"

10 fuelKind "LOX / RP-1"

11 }

12 }// engineTypes

13

14 spacecrafts {

15 Spacecraft FalconHeavy {

16 manufacturer "SpaceY"

17 countryOfOrigin "USA"

18 relaunchCostInMioUSD 90

19

20 stages {

21 Stage FirstStage {

22 engineAmount 9

23 engineType (M1D)

24 },// FirstStage stage

25 Stage SecondStage {

26 engineAmount 1

27 engineType (M1DV)

28 }// SecondStage stage

29 }// stages

30

31 }// FalconHeavy spacecraft

32

33 }// spacecrafts

34

35 }// SpaceTransportationService

Listing 4.13: Example of a sentence employing the XML Schema identifier and reference
concepts.

Mixed content and wildcards. The definition of mixed content and wildcards is
rendered by the EMF XSD Importer through the creation of attributes of type EFeatu-
reMapEntry. Since the Xtext Grammar Creator neglects feature maps, however, XML
Schema concepts that are rendered as feature maps in modelware are not represented in the
resulting grammar. In order to cope with the occurrence of feature maps, the metamodel
adaptation step (cf. 2 in Figure 4.3) replaces feature maps with generic concrete
constructs for which grammar rules are generated. Figure 4.4 illustrates the abstract
class AnyGenericConstruct, extended by the classes AnyGenericElement and
AnyGenericText, that is introduced to enable the support for wildcards, i.e. elements
that are not (further) restricted by an associated XML Schema definition. In other words,
the former represents the notion of wildcards in terms of xsd:any, while the latter
represents mixed content appearing either prior to or after an XML tag.

Listing 4.14 depicts the grammar generated from the adapted metamodel by the

78

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

Properties

[1..*] anyGenericElement

AnyGenericConstruct

AnyGenericElement AnyGenericText[0..1] childElem

AnyGenericAttribute

[0..*] anyGenericAttr

Figure 4.4: Explicit modeling structures replacing feature maps

Xtext Grammar Creator. The abstract class AnyGenericConstruct is translated to
an equally named grammar rule delegating either to the grammar rule AnyGeneric-
Element generated for the metaclass AnyGenericElement or to the grammar rule
AnyGenericText generated for the homonymous metaclass.

In turn, the attributes elemName and elemValue of AnyGenericElement repre-
sent the name and value, i.e. any valid character sequence, of the XML tag (cf. lines 12–13
in Listing 4.14) respectively. Moreover, AnyGenericElement may contain any number
of attributes represented by the anyGenericAttr attribute of type AnyGeneric-

Attribute (cf. line 15). More specifically, the latter attribute is composed of a name
and value that is represented by attrName and attrValue respectively (cf. lines 25–
27). Additionally, an AnyGenericElement may contain a number of generically typed
element children, as represented by the childElem of type AnyGenericElement (cf.
line 16). Furthermore, the rule AnyGenericText (cf. line 18) is capable of holding any
character sequence by means of the attribute textValue and, thus, the representation
of mixed content that might occur in a sentence. Finally, based on the grammar in
Listing 4.14, sentences with a structure as depicted in Listing 4.15 can be constructed.

1 Property returns Property:

2 ’Property’

3 ’{’

4 anyGenericElem+=AnyGenericConstruct (’,’ anyGenericElem+=AnyGenericConstruct)

*
5 ’}’;

6

79

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

7 AnyGenericConstruct returns AnyGenericConstruct:

8 AnyGenericElement | AnyGenericText;

9

10 AnyGenericElement returns AnyGenericElement:

11 {AnyGenericElement}

12 elemName=STRING

13 (’:’ elemValue=STRING)?

14 ’{’

15 (anyGenericAttr+=AnyGenericAttribute (’,’ anyGenericAttr+=AnyGenericAttribute)*)

?

16 (’{’ childElem+=AnyGenericElement (’,’ childElem+=AnyGenericElement)* ’}’)?;

17

18 AnyGenericText returns AnyGenericText:

19 {AnyGenericText}

20 ’{’

21 (textValue=STRING)?

22 ’}’;

23

24 AnyGenericAttribute returns AnyGenericAttribute:

25 attrName=STRING

26 ’:’

27 attrValue=STRING;

Listing 4.14: Grammar generated from Property class containing an attribute of type
AnyGenericConstruct as depicted in Figure 4.4.

1 Property {

2 "operator": "The " {

3 operatorName: "SpaceY" {

4 " operator offers " {

5 operatorService: "private-client service"

6 }

7 }

8 }

9 }

Listing 4.15: Example of a sentence instantiating the XML Schema concept of mixed
content within the technical space of grammarware.

Data types. As mentioned above, the Xtext Grammar Creator does not create rules
for metamodel data types. Therefore, both the specification of terminal rules, as well
as calls to these rules, are missing. In order to overcome this limitation, a library for
Xtext data types (henceforth referred to as type library) is constructed, which defines
terminal rules for XML Schema data types. Further, transformation 3 in Figure 4.3
is refactored so that the terminal rules defined by the type library are employed by the
grammar of the modeling language being constructed. Listing 4.16 depicts an excerpt of
the type library defining a terminal rule for a valid time value, as outlined in the XML
Schema specification [202].

1 import "http://www.eclipse.org/emf/2003/XMLType" as type

2

80

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

3 terminal DATETIME returns type::DateTime:

4 (

5 (’1’..’9’)(’0’..’9’)(’0’..’9’)(’0’..’9’)

6 ’-’

7 (’0’..’1’)(’0’..’9’)’-’(’0’..’3’)(’0’..’9’)

8 ’T’

9 (’1’..’0’)(’0’..’9’)’:’(’1’..’0’)(’0’..’9’)’:’(’1’..’0’)(’0’..’9’)

10 ’-’

11 (’1’..’0’)(’0’..’9’)’:’(’1’..’0’)(’0’..’9’)

12 ’Z’

13);

Listing 4.16: Type library terminal rule for the representation of date and time in universal
time zone.

XML Schema restrictions. The handling of restrictions in XML Schema defini-
tions is presented in Section 5.5.6 (i.e. illustrating the integration of XMLText with the
approach for consistency-achieving IDEs, outlined in Chapter 5). In brief, the support for
XML Schema restrictions is extended by the transformation of restrictions into formal
constraints and the facilitation of language definitions that are composed of metamodels
and formal constraints for the automated generation of modeling language implementa-
tions with enhanced IDEs (i.e. enabling precise model validation, consistency-preserving
content assistance, and consistency-restoring model repair).

4.5.2 Basic notation customization

In the following, an initial approach towards the customization of notation that overcomes
rigid XML syntax is illustrated. The notation that is used to specify a model of the
textual modeling language depends on the definition of terminal symbols in the language
grammar. The Default Transformation Chain employs the Xtext Grammar Creator and,
thus, creates a generic concrete syntax. Although the necessity to change symbols in
language implementations has been raised [84], the Xtext framework language engineers
manually refactor either the generated grammar rules or the transformation represented
by the Xtext Grammar Creator. In the former case, however, the grammar rules of
every generated grammar have to be refactored manually, i.e. a process that neglects
reuse. Although the latter case, i.e. the refactoring of the Xtext Grammar Creator
transformation, is applicable to arbitrary Ecore-based metamodels, it has to be repeated
for every style of customized concrete syntax.

XMLText enables the modification and exchange of different concrete syntax specifica-
tions through the introduction of a template mechanism that is composed of exchangeable
template files that define a set of textual concrete symbols that are to be employed by the
target language. For example, the notation of variable value specifications is defined by
the Human-Usable Textual Notation (HUTN) [185] and YAML Ain’t Markup Language
(YAML) [17] in terms of equal signs and colons respectively. Hence, the character or char-
acter sequence that is defined in line two of Listing 4.17 renders the terminal symbol for

81

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

variable value specification (cf. VariableValueSpecificationTerminalSymbol)
to be represented by a colon.

1 InterPackageReferenceTerminalSymbol = ’.’

2 VariableValueSpecificationTerminalSymbol = ’:’

3 PropertyMemberOpenTerminalSymbol = ’{’

4 PropertyMemberCloseTerminalSymbol = ’}’

Listing 4.17: Example of basic notation customization template.

The result of employing the basic notation customization template defined by List-
ing 4.17 is illustrated by the language grammar in Listing 4.18. For example, lines 5–8
and 11 employ the terminal symbol for variable value specification.

1 LaunchSite returns LaunchSite:

2 ’LaunchSite’

3 launchSiteId=ID0

4 ’{’

5 ’name’ VariableValueSpecificationTerminalSymbol name=STRING

6 ’locationLatitude’ VariableValueSpecificationTerminalSymbol locationLatitude=

Decimal

7 ’locationLongitude’ VariableValueSpecificationTerminalSymbol

locationLongitude=Decimal

8 ’numberOfLaunchpads’ VariableValueSpecificationTerminalSymbol

numberOfLaunchpads=Integer

9 ’operational’ operational=Boolean

10 (’physicalProperty’ PropertyMemberOpenTerminalSymbol physicalProperty+=

PhysicalProperty ("," physicalProperty+=PhysicalProperty)*
PropertyMemberCloseTerminalSymbol)?

11 ’operator’ VariableValueSpecificationTerminalSymbol operator=OperatorType

12 ’}’;

13

14 QualifiedName returns ecore::EString:

15 ID (=>InterPackageReferenceTerminalSymbol ID)*;

16

17 terminal VariableValueSpecificationTerminalSymbol:

18 ’:’;

19

20 terminal PropertyMemberOpenTerminalSymbol:

21 ’{’;

22

23 terminal PropertyMemberCloseTerminalSymbol:

24 ’}’;

25

26 terminal InterPackageReferenceTerminalSymbol:

27 ’.’;

Listing 4.18: Grammar of space transportation service LaunchSite generated by XMLText
by applying the basic notation customization template depicted in Listing 4.17.

Note that the implementation of the basic notation customization in XMLText is
substituted by a more powerful approach, i.e. the Ecore Concrete Syntax Specification
Language (ECSS) language that is presented in Chapter 6.

82

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

4.5.3 Modeling assistance

This section presents work on the integration of XMLText and the implementation of a
modeling and metamodeling assistance approach [192] that is henceforth referred to as
modeling assistant. More specifically, XMLText is integrated into the modeling assistant
to enable developers of modeling languages to import and map language concepts from
XML-based artifacts to shared domain-specific concept repositories during the phase of
language development. In other words, this section illustrates an approach for bridging
the gap between language engineering and domain expertise modeling by empowering
the process of ingraining domain-specific knowledge embodied by artifacts originating
from the technical space of XMLware.

The remainder of this section is structured as follows. First, the heterogeneous mod-
eling assistance approach is introduced within the context of MDE. Second, an overview
of the approach and its motivation is provided. Third, the handling of heterogeneous
sources, such as XML Schema definitions, by the employment of a common data scheme
and the management of constraints is presented. Forth, the architecture of the assistant
as well as its integration with the XMLText framework is described in a nutshell. Fifth,
the core components of the assistant are presented briefly. Finally, the work on the
modeling assistant integration is summarized.

Section 4.7 presents an evaluation of XMLText within the context of modeling
assistance and in particular the development of an industry standard-conforming modeling
language. The approach is evaluated in more detail in three different areas, which include
the usefulness of language engineering, the capability to capture information mapped by
the assistant for the technical spaces of XMLware and modelware, and the proficiency of
integration of the XMLText framework.

Introduction

The field of MDE advocates the active use of models throughout the life cycle of software
development, thus, encouraging the application of models for the definition, analysis,
testing, simulation, execution, code generation, and maintenance of software [31, 191, 54].
In general, models may be constructed with the use of GPMLs, such as the UML [94], or
modeling languages [152], i.e. containing tailored domain-specific primitives and concepts
that accurately abstract a domain and may lead to simpler and more intentional models.
The abstract syntax of a modeling language is described by a metamodel, i.e. also a
model, typically described by means of a class diagram that acts as a description for any
set of models that are considered valid. Thus, the construction of models and metamodels
is a recurrent and central activity in MDE projects [106]. Moreover, high-quality models
and metamodels are pivotal for the success of MDE projects, as they capture the most
important concepts of a domain or describe the features of a system.

Nevertheless, metamodels are commonly constructed from the ground up, with no
mechanisms for the reuse of existing domain knowledge. This situation comes into contrast
with modern programming IDEs that offer support for code completion or the use of a

83

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

given API [182]. In the field of MDE, however, modelers carry the burden of creating
metamodels from scratch. For this reason, modelers would greatly benefit from flexible
access and reuse of existing knowledge that is available in a domain and, in particular,
from various technological spaces such as XMLware, modelware, and ontologies.

In order to improve this situation for the technical space of XMLware, the XMLText

framework is integrated into a modeling assistant approach, which attains information
from the technical space of XMLware by means of extraction and mapping of XML Schema
definitions and XML documents to a common data scheme. Subsequently, the modeling
assistant provides a platform to visualize uniformly and query heterogeneous information,
as well as prioritize and aggregate query results in order to facilitate the construction of
novel (meta)models. The modeling assistant approach is manifested in the Extremo tool
and extended with the XMLText framework by means of an Eclipse extension point for
the integration of information sources that originate from the technical space of XMLware.
The usefulness of the integration of XMLText in the modeling assistant (henceforth
referred to as XMLText assistant integration) has been evaluated during the creation
of a modeling language for industry standard-conforming production systems and, in
particular, by employing the eCl@ss standard [63]. Moreover, the XMLText assistant
integration is evaluated according to its ability to be integrated with the modeling
assistant in order to exploit domain knowledge from XML Schema definitions and XML
instances, as well as to employ domain knowledge for the construction of an industry
standard-conforming conveyor-belt system.

Motivation and overview

Many technical tasks in software engineering require access to knowledge found in a
variety of formats, ranging from documents in natural language, to semi-structured and
structured data. There is a current trend to make such information readily available and
easily embedded in different types of artifacts generated during the software construction
process [150]. For example, in the programming community, efforts are made to profit
from code repositories, such as Github, and Q&A sites, such as StackOverflow, in order
to automate tasks associated with coding and documentation [14, 177]. Some of these
approaches are based on artifact collection, for example by distributed mining and
processing of software repository resources [188, 128]. Following this trend, the objective
of the modeling assistant is to enable the engineer to gather and query heterogeneous
resources and make them available for the construction of novel (meta)models. In general,
the task of creating high-quality metamodels is complex due to the involvement of two
distinctive roles: a domain expert, i.e. having in-depth knowledge of a particular domain,
and a metamodeling expert, i.e. experienced in the design of class-oriented metamodels.
Nevertheless, the metamodeling expert is frequently unsupported in the construction of
metamodels and, in particular, during the process of decision-making, which is based on
tacit domain knowledge or under-specified language requirements. In this scenario, the
metamodeling expert also assumes the role of domain expert and, thus, may misinterpret
or omit domain concepts that will subsequently compromise the quality of the resulting

84

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

metamodel.

Metamodels within a domain are not entirely different from one another due to recur-
ring patterns and the application of common idioms in the representation of concepts [15].
For example, during the construction of a language to describe behavior, designers
typically resort to accepted specification styles, which include variants of languages such
as state machines, workflows, and rule-based or data-flow languages, enriched with the
concepts of a particular domain. The metamodeling expert or designer of a language can
obtain this information from sources such as metamodels, XML Schema definitions, and
XML documents. Moreover, having access to a variety of information sources helps to
obtain the necessary domain knowledge, vocabulary, and technical terms required to build
a metamodel for a particular domain. This situation also applies to the construction of
metamodel-conforming instances. In this case, it may be helpful to support the querying
of information sources and knowledge bases, e.g. by enabling the filtering of relevant
information from a metamodel based on the use of a specific data type.

Technological

spaces
Modeling assistant

Eclipse

infrastructure

Repository Set

Descriptor
(Ecore, XML Schema …)

Description
(XMI, XML instances…)

<<conforms to>>

Query
Facility

Constraint
Facility

Visualization
support

(for repositories, queries
and constraints)

XMLText framework

Resource integration
(for meta-level and model-

level information)

Integration with a
modeling tool

5

2

3

Assistant
manager

Heterogeneous Information sources

1 4

Visual model editor

Figure 4.5: Approach overview

For this purpose, the modeling assistance approach illustrated in Figure 4.5 may be
useful for the creation of models at any meta-level. The XMLText assistant integration
is based on the integration of XMLText with the modeling assistant tool. Although
XMLText is independent from modeling tools, such as the modeling assistant, it has been
designed to integrate easily with a wide range of tools (label 1). The modeling assistant
is based on the creation of a set of repositories (label 2), in which heterogeneous data
descriptions, such as XML Schema definitions and Ecore metamodels, and heterogeneous
data sources, such as XMI-based models and XML documents, are injected. More
specifically, heterogeneous information is represented in a uniform way through the
application of a common data scheme. Further, extensible facilities for the uniform and
flexible query of the repository (label 3) are provided alongside basic services for synonym
search and word sense analysis. Heterogeneous constraints may also be persisted and
evaluated in the repository by the use of an external facility (label 4). The results of

85

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

the queries for each source in the repository may be aggregated and ranked according to
individual suitability and relevance. Subsequently, information sources and query results
may be visualized, e.g. by means of a visual model IDE or viewer (label 5).

Several scenarios have been identified in which the integration of XMLText in the
modeling assistant may be useful. They can be generally classified in three categories:
firstly, in creating models and metamodels; secondly, in creating artifacts describing a set
of other artifacts, such as model-based product lines [53, 178] or model transformation
reuse [52]; finally, the integration of XMLText in the modeling assistant may be useful:

• as support for the development of new domain metamodels. This way, domain
concepts and vocabulary can be sought in external sources specified by means of
XML Schema definitions and XML documents;

• in creating models for a particular domain. In this case, model elements conforming
to the same or similar metamodel can be incorporated into the model being built,
and heterogeneous information sources can be queried in order to extract concrete
data values;

• in designing a “concept” metamodel [52], i.e. a minimal metamodel that gathers
the core primitives, such as workflow specifications, within a domain. Furthermore,
concepts can be used as the source metamodel of a model transformation, and
reused, so they can be bound to a particular metamodel. This task implies the
querying and understanding of a variety of metamodels for a particular domain
and, as such, the assistant becomes useful;

• in aggregating multiple existing models into a model-based product line [53, 178].
In this approach, a description of the space of possible features of a software system
is created, typically through a feature model. The choice of features implies the
selection of a software model variant. This way, there is a need for understanding an
existing family of models and for describing their variability. One possible approach
is to merge or superimpose all model variants (leading to a so-called 150% model)
and use “negative variability”, i.e. the removal of deselected artifacts [53, 178];

• in detecting “bad smells” [154] or signs of bad modeling practices [2], such as
isolated nodes and abstract classes with no children in a set of resources, through
the execution of technology-specific or domain-specific queries over a repository.

Common data scheme

The common data scheme (cf. Figure 4.6) focuses on the need to capture information from
several data sources stored in a variety of formats, and is arranged by the provision of a
mechanism to organize and classify information from an arbitrary number of meta-levels.
Heterogeneous sources, such as XML Schema definitions and XML documents, are then
integrated by establishing transformations into the common data scheme. Section 4.5.3

86

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

presents the architecture design with the support for the integration of heterogeneous
information sources.

* resources

DataProperty

value : String

type : Type

ObjectProperty

NamedElement

name : String

properties *

*

*
resourceElements

SemanticNode

supers *

Resource

uri : String

1 range

Repository

name : String

projectPath: String

abstract : boolean

subs *

* describes

* descriptors

RepositoryManager

lowerBound : int

upperBound : int

* repositories

type : String

name : String

body : String

*
constraints

«enumeration»

Type

string

int

boolean

float

double

key : String

value : String

ResourceElement

* metadata

inverseOf
0..1

Figure 4.6: The common data scheme (package dataModel)

More specifically, each file or information source is represented by a Resource, which
can be aggregated into Repository objects. Each resource contains a collection of
SemanticNodes, i.e. entities that are added to account for different technical spaces [140].
In other words, semantic nodes are elements that gather knowledge from (original) source
elements and, hence, serve as an abstraction for managing heterogeneous information.
Resources can be nested to account for hierarchical organization. For example, in the
Ecore language, models and packages are nested.

Resources, nodes, and properties are NamedElements that are identified by their
name and can act both as descriptors, i.e. be a type or class, and be described by other
elements, i.e. be instances of other elements. Further, the common data scheme may
accommodate instance-relations found in heterogeneous technical spaces, which include
descriptor-only elements, such as meta-classes in metamodels; described-only elements,
such as objects in models; and elements that are both descriptors of other elements
and at the same time are described by others, such as clabjects2 applied in multi-level
modeling [11]. Hence, the common data scheme is meta-level agnostic, as the same

2A clabject is a model element that has both type and instance facets and, hence, holds both
attributes, i.e. field types or classes, and slots, i.e. field values or instances.

87

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

concepts may be represented by both models and metamodels, both classes and objects,
and both attributes and slots, which may increase simplicity and generality [9].

NamedElements may be associated with MetaData to account for technology-specific
details that do not fit into the common data scheme. For example, when reading an
Ecore metamodel, it may be necessary to store whether an object property represents
a composition or the potency3 of an element respectively. Additionally, a Resource,
which is also a NamedElement, may manifest conformance relations between artifacts,
such as models and metamodels, XML Schema descriptions and XML documents, thus
permitting the representation of a simple mega-model [61].

SemanticNodes can take part in generalization hierarchies with the support of multiple
inheritance and may be tagged as abstract. Generalization hierarchies are supported
at any meta-level, such as class-level and object-level, to account for approaches where
inheritance may occur at the level of objects [56]. A node is made of a set of properties
(DataProperty) and a set of links to other nodes (ObjectProperty), both of which define
cardinality intervals. Similar to nodes, properties unify the concepts of attribute, i.e. a
specification of required properties in instances, and slot, i.e. a holder for values. The
common data scheme supports a range of neutral basic data types (Type enumeration),
such as string, int, boolean and double. For generality, the value of the property is stored
as a String. Finally, any element may have Constraints attached. The handling of
heterogeneous constraints is presented in Section 4.5.3.

Table 4.2 illustrates how individual technologies and in particular elements at different
meta-levels are mapped to the common data scheme. More specifically, meta-levels of the
technical spaces of modelware and XMLware are represented by Ecore metamodels, i.e.
a widely used implementation of the Meta Object Facility (MOF) OMG standard [168]
distributed as a core component of the EMF [197], and XML Schema definitions, i.e.
XML-based documents conforming to the W3C XML Schema specification [202].

EMF supports two meta-levels and the mapping is direct. Figure 4.7 shows a schema
of how the translation from Ecore into the common data scheme is performed. At the
top, the figure shows that both a metamodel (i.e. named ecore model in Figure 4.7) and
a model (i.e. serialized in XMI format) are transformed into a Resource. In this case,
a Resource object from a model is described by a Resource of a metamodel. Similarly,
elements within both the metamodel and model follow the latter translation scheme.
Both EClass and EObject are transformed into SemanticNode with a suitable descriptor
relation, and the same applies for references and attributes. At the model-level (i.e. EMF
compiled mode), links and slots are represented as Java fields, whose value is obtained
via getter methods.

Figure 4.8 depicts the translation of XML Schema definitions, i.e. acting as language
definitions, and XML documents. This case is conceptually similar to EMF. At the
top, the figure shows that an XML Schema definition, i.e. serialized as XML Schema

3The potency of an element is represented by zero or a positive number that accounts for the
instantiation depth of an element at subsequent meta-levels [11].

88

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

Common data
scheme

Modelware XMLware

Meta-level (types)

Resource Ecore file/EPackage XML Schema file

SemanticNode EClass xsd:element

Property (abstract) EStructuralFeature
xsd:complexType

xsd:element

ObjectProperty EReference
Nested xsd:element
IDREF attribute

DataProperty EAttribute xsd:attribute

Property.supers EClass.eSuperTypes
xsd:element

type attribute

Constraint OCL EAnnotation xsd:restriction

Model/data level (instances)

Resource XMI file XML file

SemanticNode EObject XML element

ObjectProperty Java reference
Nested xsd:element
IDREF attribute

DataProperty Java attribute XML attribute

Table 4.2: Mapping different representation technologies to the common data scheme

definition (XSD) file, is transformed into a Resource in the common data scheme. Then,
as a result of XML Schema definitions being described in the XML format, the Resource
object from the document is described by the Resource of the schema as indicated by the
descriptor association from Resource to Resource.

The elements within an XML Schema definition and an XML document follow a
similar translation. For example, an XML element is transformed into a SemanticNode
with a descriptor relation to the respective xsd:element. Moreover, an XML element or
XML attribute is transformed either into an ObjectProperty or a DataProperty depending
on the type it specifies. More specifically, in the case of type xsd:IDREF and any other
type, an ObjectProperty and DataProperty is created respectively. The former and latter
are indicated by a descriptor association from ObjectProperty to ObjectProperty and a
descriptor association from DataProperty to DataProperty respectively.

89

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

:Ecore

:XMI

:Resource

:Resource

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant

:EClass :SemanticNode

:SemanticNode

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant
:EObject

:EReference

Java reference

:ObjectProperty

:ObjectProperty

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant

:EAttribute

Java attribute

:DataProperty

:DataProperty

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant

Figure 4.7: Injecting Ecore (meta)models into the common data scheme.

XML Schema file

XML element

:Resource

:Resource

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:element :SemanticNode

:SemanticNode

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant
XML element

Nested xs:elment /

xs:attribute (xs:IDREF)

Nested XML element /

attribute (xs:IDREF)

:ObjectProperty

:ObjectProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:attribute

XML attribute

:DataProperty

:DataProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

Figure 4.8: Injecting XML Schema descriptions into the common data scheme.

Heterogeneous constraints

As described in the previous section, the common data scheme creates SemanticNodes to
store the knowledge found in elements, properties, and links to other nodes.

In addition, restrictions may be specified that limit the set of possible instantiations.
For example, a class in a metamodel may contain OCL invariants that all valid objects
of that class must obey. Similarly, elements in XML Schema definitions may contain
restrictions on properties of a given data type. These may be used to define patterns
on character sequences (regular expressions), restrictions on the length of character
sequences (min/max/exact length), and handling of white spaces, among others.

Figure 4.9 depicts the facility to store heterogeneous constraints in the common data
scheme, as well as the mechanism for constraint interpretation. Constraints may be
attached to any NamedElement, i.e. extended by Resource, SemanticNode and Property,
and thus cover the basic restriction scenarios that may occur in a technical space.
Moreover, a Constraint has a type that identifies the type of the constraint, such as
OCL, as well as the name and body, i.e. capturing the actual constraint specification.
The support for the evaluation of heterogeneous constraints, such as OCL invariants
and XML Schema restrictions, may be provided by extending the modeling assistant.

90

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

type: String

name: String

body: String

RepositoryManager

* constInterpreters

«extensible»

ConstraintInterpreter

type: String

Constraint

«from dataModel»

NamedElement

name : String

1 appliedTo boolean eval(c: Constraint, n: NamedElement)

* constraints

Constraint

Result

1 constraint

* unsat

evaluations

«from dataModel»

Resource

0..1 context

*

* evals

JavaObject

1 trace

Figure 4.9: Constraint storage and interpretation mechanism.

Chapter 5 presents the contribution of this thesis in regards to the automated generation
of consistency-achieving language implementations from formally constrained language
structures and, in particular, the implementation of a constraint interpreter, which may
extend the modeling assistant with the capability to evaluate OCL-based constraint
specifications. In general, constraint interpreters extend the class ConstraintInterpreter,
declare support for specific constraint types, and implement the evaluate method. This
method receives a constraint and an instance of the element to which the constraint is
attached, and returns a boolean indicating whether the element satisfies the constraint.
Similar to query results, constraint results are reified using ConstraintResult objects, i.e.
holding elements that do not satisfy the constraint, and organized in the context of the
enclosing Resource. Similar to format assistants, the addition of constraint interpreters is
realized by means of Eclipse extension points, i.e. interfaces that may be implemented
by external components that provide customized functionality.

Architecture and tool support

The modeling and metamodeling assistance tool is made of a Core component, which
provides support for the common data scheme and includes subcomponents for the
integration assistance, search, and constraint interpretation, as depicted in Figure 4.10.
The XMLText framework contributes to the XsdAssistant by providing access to
information from XML Schema descriptions and XML documents through the employment
of the XMLware to modelware facility and the XMLware resource handler. Further, the
XsdAssistant contributes data to the Repository manager in the Core component of the
modeling assistant. In order to allow for scalability, the repository is persisted using
NeoEMF [18], a model persistence solution designed to store models in NoSQL datastores.
NeoEMF is based on a lazy-loading mechanism that transparently brings model elements
into memory only when they are accessed, and removes them when they are no longer
needed. The UI component permits visualization and interaction with the resources

91

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

Assistant
manager

<<Data model>>

Core
XsdAssistant

EcoreAssistant
Repository
manager

Query facility

Constraint
interpreter facility

contributes to

<<Eclipse plugin
infrastructure>>

UI

controls

communicates

with
<<neoEMF>>

model

persistence

assistant

search

constraint

interpreter

contributes to

contributes to
Constraint

Interpreter

SimpleSearch
Configuration

contributes to
XMLware to modelware

facility

XMLware resource handler contributes to

renders

<<Eclipse plugin

infrastructure>>

XMLText

framework

Figure 4.10: Architecture of modeling assistant with XMLText integration.

and query results. A set of views, commands, wizards, and actions has been defined to
control access to the repository, the list of query results, and the constraint validation
facilities. By extending this component, it is possible to integrate the modeling assistant
with external modeling tools.

Core components and integration mechanism

Figure 4.11 shows the component model of the modeling assistant with XMLText

integration. The Core components of the modeling assistant consist of the Repository
manager, i.e. controlling access to the common data scheme and managing the process
of integrating information sources, such as those provided by XMLText assistant
integration for the technical space of XMLware; the Query facility, i.e. enabling the
extension of the query mechanism; and a Constraint interpreter facility, i.e. enabling the
support and extension of different constraint formats and interpreters.

For each part, a set of extension points have been defined. For example, the assistant
extension point enables support for new data formats, i.e. realized by the implementation

92

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

Repository

manager
Query

facility

Assistant Core

Constraint

Interpreter facility

RegexDataProperty

assistant search
constraint

interpreter

EcoreAssistant

SemanticNode

Search

Ocl
Constraint
Interpreter

… …
XsdAssistant

…

XMLText framework

XML Schema to

Ecore transformer
XML resource

loader and serializer

Grammarware

language generator

Figure 4.11: Component model of the modeling assistant with XMLText integration.

of a mapping from the format-specific structure, such as XML Schema definitions and
XML documents, to the common data scheme, as described in Section 4.5.3. A predefined
set of assistants, such as for EMF-based information sources, as well as a framework
for the creation of assistants, i.e. permitting the conceptual organization of assistants
as model-to-model transformations, has been created. Hence, an abstract class with
a number of methods is provided and must be overridden by a particular assistant to
act as rules in a transformation. With these methods, it is possible to create one or
more elements in the common data scheme, supporting one-to-many and many-to-one
mappings. In order to facilitate the construction of assistants, it is possible to define
class hierarchies and, thus, reuse import functionality.

In addition, transformations between two individual technical spaces may be reused.
For example, information that originates from the technical space of XMLware may
be imported into the modeling assistant by instructing the XMLText framework to
contribute resources to the technical space of modelware, as opposed to the specification
of a customized mapping to the common data scheme within an assistant implementation,
such as the XsdAssistant. More specifically, XML Schema elements and attributes
may be transformed into respective Ecore-based metamodel classes and attributes,
and subsequently processed by the EcoreAssistant. In this manner, a chain process is
constructed, which translates XML Schema definitions into instances that conform to

93

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

the presented common data scheme.

The search extension point provides extensibility for queries. Conceptually, user-
defined queries extend the corresponding metamodel. The extensions allow the definition
of custom, predicate-based, and composite queries by subclassing corresponding classes.
Finally, the constraint interpreter extension point permits the contribution of support
for the evaluation of new types of constraints, extending the metamodel in Figure 4.9.

Summary

This chapter presented the integration of the XMLText framework in an assistant
for modeling and metamodeling. The XMLText assistant integration enables the
modeling assistant to gather information from the technological space of XMLware
by facilitating the exploitation of XMLware artifacts and, in particular, by importing
XML Schema definitions and XML documents, as well as their respective mapping to
the common data scheme. The latter has been created to enable unified persistence,
querying, and visualization of information originating from heterogeneous sources. The
results of the presented evaluation, i.e. based on the eCl@ss standard and SigPML,
illustrate the usability of the XMLText assistant integration alongside the modeling
assistant in constructing a production system modeling language for the specification of
industry standard-conforming conveyor-belt systems. Further, the results indicate that
the common data scheme is able to capture heterogeneous information and, in particular,
information that originates from XMLware and modelware. Finally, the integration of
the XMLText framework within third-party modeling tools through the implementation
of the XsdAssistant has been achieved with few lines of code, whilst significantly more
effort was required for the implementation of the mapping of modelware artifacts to a
respective third-party data format, such as the common data scheme of the modeling
assistant at hand.

4.5.4 Model transformation

Listing 4.19 shows the result of employing the XMLware to grammarware instance-
level forward transformation provided by XMLText on the example of the space
transportation service XML document in Listing 4.10.

1 SpaceTransportationService {

2

3 engineTypes {

4 EngineType M1D {

5 name "Merlin 1D"

6 fuelKind "Subcooled LOX / Chilled RP-1"

7 },

8 EngineType M1DV {

9 name "Merlin 1D Vacuum"

10 fuelKind "LOX / RP-1"

11 }

12 }// engineTypes

13

94

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Approach

14 launchSites {

15 operational LaunchSite NKSC {

16 name "Kennedy Space Center"

17 locationLatitude 28.524058

18 locationLongitude -80.65085

19 operator "NASA"

20 numberOfLaunchpads 3

21 }

22 }// launchSites

23

24 spacecraft {

25

26 Spacecraft FH {

27

28 functions {

29 ORBITAL_LAUNCHER

30 }

31

32 name "Falcon Heavy"

33 manufacturer "SpaceY"

34 countryOfOrigin "USA"

35 relaunchCostInMioUSD 90

36 launchSites (NKSC)

37

38 stages {

39

40 Stage FirstStage {

41 engineAmount 9

42 engineType M1D

43 },

44

45 Stage SecondStage {

46 engineAmount 1

47 engineType M1DV

48 }

49

50 }// stages

51

52 physicalProperties {

53

54 PhysicalProperty {

55 type LENGTH

56 unit m

57 value 70.0

58 },

59 PhysicalProperty {

60 type DIAMETER

61 unit m

62 value 3.66

63 },

64 PhysicalProperty {

65 type WIDTH

66 unit m

95

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

67 value 12.2

68 },

69 PhysicalProperty {

70 type MASS

71 unit kg

72 value 1420788.0

73 }

74

75 }// FalconHeavy physicalProperties

76

77 }// FalconHeavy spacecraft

78

79 }// spacecrafts

80

81 launchSchedule {

82 LaunchEvent {

83 missionTitle "GPS III-03 navigation satellite deployment"

84 startDateTime "2020-01-31T12:00:00Z"

85 spacecraftId FH

86 launchSiteId NKSC

87 },

88 LaunchEvent {

89 missionTitle "AFSPC-44 payload deployment (classified)"

90 startDateTime "2020-09-30T12:00:00Z"

91 spacecraftId FH

92 launchSiteId NKSC

93 }

94 }

95

96 }// SpaceTransportationService

Listing 4.19: Example space transportation service model established by XMLware to
grammarware instance-level forward transformation.

4.5.5 Prototype implementations

The approach introduced in this chapter has been prototypically realized using the
EMF [197] and Xtext [70]. Additional information, such as slides, source code, and exam-
ples, of the XMLText and modeling assistant prototypes are provided at dedicated web
pages: https://xmltext.big.tuwien.ac.at and http://angel539.github.

io/extremo/.

4.6 Evaluation based on cloud topology and orchestration

modeling

This section describes the evaluation of the XMLText framework based on TOSCA [173],
a cloud topology and orchestration language standard that has initially been released
by the Organization for the Advancement of Structured Information Standards (OASIS)
in 2013. TOSCA enables the description of the structure of composite applications,

96

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://xmltext.big.tuwien.ac.at
http://angel539.github.io/extremo/
http://angel539.github.io/extremo/
https://www.tuwien.at/bibliothek

4.6. Evaluation based on cloud topology and orchestration modeling

such as cloud-based web services, as topologies that contain components and relation-
ships, as well as plans that capture component-exposed management tasks, such as the
creation or modification of web services. This use case emerged within the ARTIST
research project [207] and is motivated by establishing interoperability between the Cloud
Application Modeling Language (CAML) [19], i.e. a UML-based language and library
of UML stereotypes for the modeling of cloud application deployment specifications
developed within the ARTIST project, and the TOSCA language. More specifically, it
aims to establish interoperability between CAML and TOSCA to enable the reuse of
the TOSCA-based ecosystem [26], which includes the implementation of an execution
engine for TOSCA-conforming cloud application deployment descriptions. The TOSCA
language is formally defined by the TOSCA XML Schema definition, which in version
1.0 [173] contains 791 lines of code, 99 complex types, 11 simple types, 54 global types,
ten wildcards, two abstract types, and two global elements.

The evaluation of XMLText within the standardized TOSCA cloud topology and
orchestration specification is twofold. First, the modeling language that is produced for
TOSCA by the XMLText framework is compared with the Cloudify language, i.e. the
only available handcrafted textual modeling language for TOSCA at the point in time
when the evaluation was conducted. Second, the ability to transform XML documents
to models and sentences that conform to the TOSCA XML Schema definition, the
Ecore-based TOSCA metamodel, and the grammar of the TOSCA modeling language is
evaluated. Furthermore, the results that are produced by the transformation chain of
the opposite direction, i.e. from sentence to model and XML document, are evaluated
similarly.

4.6.1 Research questions and evaluation criteria

The common objectives to evaluate the approach and, in particular, the implementation of
the XMLText framework include establishing a verdict in regards to the completeness and
forward and backward compatibility of language implementations that are either generated
or handcrafted from XML Schema definitions. More specifically, the completeness of
an individual language implementation, i.e. acting as an executable manifestation of
a conceptual language, is defined by its coverage in regards to language concepts that
occur in a given XML Schema-based source language definition. Further, forward and
backward compatibility of an individual language implementation is defined by its ability to
employ existing language instances for the generation of respective language instances for
XMLware, modelware, and grammarware without the loss of conformance to associated
language definitions. Accordingly, the following research questions are formulated:

RQ1: Is the set of language concepts that are made available by the modeling language
that is generated from the TOSCA XML Schema definition at least as comprehensive
as the sets of language concepts that are made available by the modeling language that
is generated by the Default Transformation Chain, as well as the handcrafted TOSCA
language implementation represented by Cloudify?

97

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

RQ2: Is the execution of sentence-level transformations conformance-preserving with
respect to associated language definitions?

In regards to RQ1 , the criteria for comparing the set of language concepts that are
made available by the involved languages, which are the result of employing different
approaches (i.e. the DTC, XMLText, and handcrafted development), include the
language concepts reflected in the specification of the source language, as represented by
the XML Schema definition of TOSCA. In other words, a source language specification
acts as a container of the complete set of language concepts that are available in a given
source language, i.e. represented by the TOSCA standard [173]. Moreover, the capability
of an individual language implementation in regards to the instantiation of language
concepts that are specified within the Moodle reference example [25], i.e. the definition
of topology and orchestration for the Moodle open source course management system,
represents the instance-based validation criteria for the completeness of an individual
language implementation.

The criteria to evaluate RQ2 include the preservation of the conformance of instances,
as produced by the execution of round-trip transformations, in regards to their respective
language definitions, i.e. represented by the XML Schema definition, the Ecore metamodel,
and the Xtext grammar specification that are required to ensure forward and backward
compatibility of language instances. The units of analysis include source XML instances
and target XML instances, i.e. created by the transformation of source XML instances
to modeling language sentences that are subsequently serialized to target XML instances.
If the source XML instance, as well as the target XML instance, i.e. the result of
instantiating a round-trip transformation, conform to the (same) XML Schema definition
that has been employed to generate the respective modeling language implementation,
then sentence-level transformations preserve the conformance to respective language
definitions.

4.6.2 Procedure

In order to compare individual languages in regards to the occurrence of concepts that
appear in the TOSCA standard, individual implementations that are based on the
TOSCA XML Schema specification are taken into account. In brief, the following steps
are performed. First, the DTC is operated with the TOSCA XSD version 1.0 to generate
the TOSCADTC modeling language. Secondly, the XMLText framework is employed
by supplying the same TOSCA XSD to produce the TOSCAXMLText modeling language.
Third, the language concepts and features that appear in the TOSCA XSD-conforming
Moodle reference example are gathered and correlated with language concepts and features
that are reflected in the respective language implementations TOSCADTC, Cloudify, and
TOSCAXMLText.

More specifically, in order to construct the set of language concepts that are available in
the Cloudify language, the respective language parser implementation4 is analyzed based

4The employed Cloudify language parser is available at https://goo.gl/JzPL7U.

98

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://goo.gl/JzPL7U
https://www.tuwien.at/bibliothek

4.6. Evaluation based on cloud topology and orchestration modeling

on a comparison with the language concepts that are reflected in the TOSCA standard
specification. Furthermore, the unit of analysis in TOSCADTC, i.e. the modeling language
that is established by employing the DTC, is represented by the language constructs that
are depicted in the grammar of the TOSCADTC modeling language. Similarly, the unit of
analysis in TOSCAXMLText, i.e. the modeling language that is established by employing
the XMLText framework, is represented by the language constructs that are depicted
in the grammar of the TOSCAXMLText modeling language.

The answer to RQ1 is established by comparing TOSCA language concepts that
appear in the TOSCA Moodle5 [62] reference example, i.e. defined by the University of
Stuttgart, with the TOSCA language concepts that are available within the respective
modeling languages TOSCADTC, TOSCAXMLText, and Cloudify. The Moodle reference
example has been chosen, as it defines the topology details, as well as input and output
specifications for an orchestration workflow that is complete, i.e. it may be supplied to
the OpenTOSCA [25] container—an open source deployment and orchestration tool for
TOSCA—to perform the orchestration of the Moodle application to a cloud provider.

In order to evaluate RQ2, the equivalent Moodle reference example is employed as
used in the context of RQ1. More specifically, in order to establish compatibility with
existing TOSCA tools, round-trip engineering tests are performed that employ instance-
level transformations to transform the (source) Moodle XML document to a sentence,
subsequently transform the resulting sentence to a (target) Moodle XML document, and
then evaluate the resulting pair of Moodle XML documents in terms of their conformance
to the TOSCA XML Schema specification.

4.6.3 Results

In total, the Moodle reference example employs 19 different language concepts that
are specified in the TOSCA XML Schema definition. First, operating the Default
Transformation Chain and the XMLText framework with the TOSCA XML Schema
produced a set of two and 19 language concepts respectively (approximately 11% and
100%),which occur in the TOSCA standard and are instantiated by the Moodle reference
example. Second, Cloudify contains 11 language concepts (approximately 58%) that occur
in the TOSCA standard and are instantiated by the Moodle reference example. Therefore,
in regards to RQ1 , the produced TOSCAXMLText modeling language contains a set of
TOSCA language concepts that is approximately 89% and 42% more comprehensive
than respective sets of TOSCA language concepts made available by the TOSCADTC

modeling language and the handcrafted Cloudify language respectively.

Table 4.3 illustrates the availability of TOSCA language concepts, as instanti-
ated by the Moodle reference example, in the languages TOSCADTC, Cloudify, and
TOSCAXMLText. Therefore, the Cloudify language (only) permits the definition of a sub-
set of TOSCA language concepts and, hence, for example, lacks support for the concepts

5Moodle refers to an open source course management system.

99

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

TOSCA language concept availability

Moodle TOSCADTC Cloudify TOSCAXMLText

TDefinitions ✓ ✗ ✓

TImport ✓ ✓ ✓

TServiceTemplate ✗ ✗ ✓

TTopologyTemplate ✗ ✗ ✓

TNodeTemplate ✗ ✓ ✓

TRelationshipTemplate ✗ ✓ ✓

SourceElementType ✗ ✓ ✓

TargetElementType ✗ ✓ ✓

Property ✗ ✓ ✓

RequirementsType ✗ ✗ ✓

TRequirement ✗ ✗ ✓

CapabilitiesType ✗ ✗ ✓

TCapability ✗ ✗ ✓

TPlan ✗ ✓ ✓

TInputParameters ✗ ✓ ✓

TInputParameter ✗ ✓ ✓

TOutputParameters ✗ ✓ ✓

TOutputParameter ✗ ✓ ✓

TPlanModelReference ✗ ✗ ✓

Table 4.3: TOSCA concepts instantiated by the Moodle reference example and their
availability in TOSCADTC, Cloudify, and TOSCAXMLText.

100

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.6. Evaluation based on cloud topology and orchestration modeling

RequirementsType, CapabilitiesType, TServiceTemplate, and TTopology-

Template. Furthermore, although the Cloudify language allows the specification of
TPlan, the concepts TPlan and TDefinitions are mixed up. For example, a TPlan

in the Cloudify language may contain instances of TPolicy, defined as members of
TDefinitions and, thus, reflect a concept that is not foreseen by the TOSCA standard.
Moreover, the Cloudify language implementation does not offer round-trip transforma-
tions and, thus, neglects the compatibility of Cloudify instances with third-party tools,
such as the OpenTOSCA [25] container that consumes TOSCA XML Schema-conforming
instances to execute the orchestration of applications to cloud providers.

1 <?xml version="1.0" encoding="ASCII"?>

2 <tosca:DocumentRoot xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12">

3 <definitions id="MyCloudAppDefinition" name="MyMoodleApp Definitions"

targetNamespace="http://mytargetnamespace.com">

4 <serviceTemplate id="MyMoodleAppService" name="My Moodle App Service">

5 <topologyTemplate>

6 <nodeTemplate id="ApacheWebServer" type="ApacheWebServerType" name="

Apache Web Server">

7 <properties id="ApacheWebServerProperties">

8 <numCpus>1</numCpus>

9 <memory>1024</memory>

10 </properties>

11 <requirements>

12 <requirement id="ApacheWebServer_container" type="

SoftwareContainerRequirementType" name="container"/>

13 </requirements>

14 <capabilities>

15 <capability id="ApacheWebServer_webapps" type="

ApacheWebAppContainerCapabilityType" name="webapps"/>

16 </capabilities>

17 </nodeTemplate>

18 <nodeTemplate id="MyMoodleApp" type="CloudApplicationType" name="My

Moodle App">

19 <requirements>

20 <requirement id="MyMoodleApp_container" type="

ApacheWebApplicationContainerRequirement" name="container"/>

21 </requirements>

22 </nodeTemplate>

23 <relationshipTemplate id="MyMoodleApp_HostedOn_Apache" type="HostedOnType

" name="hosted on">

24 <sourceElement ref="MyMoodleApp_container"/>

25 <targetElement ref="ApacheWebServer_webapps"/>

26 </relationshipTemplate>

27 </topologyTemplate>

28 </serviceTemplate>

29 </definitions>

30 </tosca:DocumentRoot>

Listing 4.20: XML TOSCA Moodle instance (miniaturized).

1 TDefinitions MyMoodleAppDefinition {

2 name: "MyMoodleApp Definitions"

101

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

3 targetNamespace: "http://mytargetnamespace.com"

4 TServiceTemplate MyMoodleAppService {

5 name: "My Moodle App Service"

6 TTopologyTemplate {

7 TNodeTemplate ApacheWebServer {

8 name: "Apache Web Server"

9 type: ApacheWebServerType

10 Property ApacheWebServerProperties {

11 NumCpus: "1"

12 Memory: "1024"

13 }

14 RequirementsType {

15 TRequirement ApacheWebServer_container {

16 name: "container"

17 type: SoftwareContainerRequirementType

18 }

19 }

20 CapabilitiesType {

21 TCapability ApacheWebServer_webapps {

22 name: "webapps"

23 type: ApacheWebAppContainerCapabilityType

24 }

25 }

26 }

27 TNodeTemplate MyMoodleApp {

28 name: "My Moodle App"

29 type: CloudApplicationType

30 RequirementsType {

31 TRequirement MyMoodleApp_container {

32 name: "container"

33 type: ApacheWebAppContainerRequirement

34 }

35 }

36 }

37 TRelationshipTemplate MyMoodleApp_HostedOn_Apache {

38 name: "hosted on"

39 type: HostedOnType

40 SourceElementType ref: MyMoodleApp_container

41 TargetElementType ref: ApacheWebServer_webapps,

42 }

43 }

44 }

45 }

Listing 4.21: TOSCA modeling language Moodle model (miniaturized).

Figure 4.12 shows an excerpt of the Ecore-based TOSCA metamodel and Listing 4.10
depicts a miniaturized Moodle topology, as defined by a TOSCA Schema-conforming XML
document that specifies an application named MyMoodleApp, hosted on an Apache-

WebServer. Listing 4.19 displays the same Moodle topology definition, serialized in
a TOSCAXMLText modeling language grammar-conforming sentence. For example, the
XML element that is specified by xsd:element and named serviceTemplate (cf.

102

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.6. Evaluation based on cloud topology and orchestration modeling

TDefinitions

id: ID [1]

name: String [0..1]

targetNamespace: AnyURI [1]

TServiceTemplate

id: ID [1]

name: String [0..1]

TTopologyTemplate

TNodeTemplate

name: String [0..1]

RequirementsType

TRequirement

name: String [1]

[1..*]requirement

CapabilitiesType

TCapability

name: String [1]

[1..*]capability

[1]

capabilities

[1]

require-
ments

TRelationshipTemplate

name: String [0..1]

SourceElementType TargetElementType

[1]targetElement[1]sourceElement

TEntityTemplate

type: QName [1]

[0..*]nodeTemplate

[0..*]relationshipTemplate

Property

[0..1]properties

AnyGenericConstruct

[1..*]
anyGeneric-
Element

. . .

EObject

ref [1]

ref

[1]

topologyTemplate [1]

serviceTemplate

[1]

Figure 4.12: TOSCA language metamodel (excerpt).

line 4 in Listing 4.20) is transformed to the EClass TServiceTemplate in the Ecore
metamodel (cf. Figure 4.12), for which its instance appears in line 4 of Listing 4.21.
Furthermore, identifying attributes such as those specified by requirement in line 12
of Listing 4.20 are transformed to the identifying attributes – TRequirement in line
15 of Listing 4.21 in this case. Identifier references, represented by xsd:IDREF and
depicted in line 24 of Listing 4.20, are transformed to references to EObject in the
Ecore metamodel and appear as shown in line 40 of Listing 4.21. Moreover, the XML
element named properties refers to an xsd:any construct defined in the TOSCA
XML Schema. Therefore, this XML element is transformed to an AnyGenericElement

in the Ecore metamodel and appears as Property in line 10 of Listing 4.21. The
id attribute with value ApacheWebServerProperties, defined alongside the XML
element, is determined as the identifying AnyGenericAttribute of its container and,
therefore, placed between Property and the opening curly bracket.

In summary, the results on RQ2 indicate that the XMLText framework is forward-
and backward-compatible, i.e. XML documents that conform to the TOSCA XML
Schema definition are transformed to sentences that conform to the grammar of the
TOSCAXMLText modeling language and vice versa.

103

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

4.6.4 Threats to validity

Internal validity A threat to validity is the fact that the grammar of TOSCAXMLText

is manually compared with the language parser implementation of the Cloudify language.
The rationale behind this manual approach is that several differences between the Cloudify
language and the TOSCA language specification exist that concern the naming of language
concepts. As a result, some concept-correspondences between the two different language
implementations may have been missed. In order to mitigate this risk, the Cloudify
language documentation has been studied alongside the Cloudify parser implementation.
A second threat to validity is that the grammar of TOSCAXMLText contains a set of
TOSCA language concepts that is more comprehensive than those instantiated by the
Moodle reference example. Consequently, in order to confirm that TOSCA language
concepts, which are not employed by the Moodle reference example, are represented
correctly, additional TOSCA-based applications, covering the remaining set of language
concepts, must be considered.

External validity Concerning the external validity of the studies, the scope of the
presented evaluation may be too narrow, as it is based on a single language and a single
example (i.e. the TOSCA standard at the metamodel level and the TOSCA Moodle
reference example at the model level). Although the TOSCA standard specification
represents a relatively complex language, which imposes a variety of challenges during
the exploitation of its XML Schema-based formal language specification for establishing
a textual modeling language, although the Moodle example has a working reference
application, and although the validity of the presented approach is illustrated based
on a real-world case at both the level of metamodel and model, one cannot claim that
similar results may be achieved based on use cases that employ different sets of languages
and instances. Consequently, additional studies that cover different sets of language
constructs, made available by the XML Schema language specification [202], may reveal
gaps between XMLware, modelware, and grammar that eventually need to be tackled in
order to extend the applicability of the approach.

4.6.5 Summary and discussion

Table 4.4 presents a summary of the TOSCA language concepts and features employed
in the Moodle reference example and their availability in the language implementations
TOSCADTC, Cloudify, and TOSCAXMLText. In total, the Moodle reference example uses 19
different language concepts and 35 features defined in the TOSCA XML Schema definition.
Thus, the language implementations TOSCADTC, Cloudify, and TOSCAXMLText reflect
sets of concepts and features that respectively cover a total of 17%, 37%, and 98% of the
TOSCA standard concepts and features that are captured by the TOSCA-conforming
Moodle reference example.

In summary, the grammar of the TOSCADTC modeling language lacks essential
concepts, such as nodes and relationships, and is therefore not sufficient to represent the
Moodle reference example. Furthermore, although the Cloudify language parser contains

104

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.6. Evaluation based on cloud topology and orchestration modeling

TOSCA language concept and feature availability

Moodle DTC Cloudify XMLText

Concepts 19 2 / ~11% 11 / ~58% 19 / 100%

Features 35 7 / 20% 9 / ~26% 34 / ~97%

Combined 54 9 / ~17% 20 / ~37% 53 / ~98%

Table 4.4: Availability of TOSCA standard concepts and features in different languages
based on the Moodle reference example.

a more comprehensive set of language concepts and features than those available in the
TOSCADTC modeling language, it still lacks certain concepts, such as requirements and
capabilities. Moreover, for some of these missing concepts, such as TDefinitions,
features are scattered throughout different concepts in the Cloudify language. For exam-
ple, the parser rule models.Plan contains policies and relationships that are originally
located in TDefinitions. Therefore, the Cloudify language does not fully conform to
the TOSCA standard and, hence, requires the user to map TOSCA-conforming instances
to Cloudify-conforming instances manually. Finally, the TOSCAXMLText modeling lan-
guage allows to represent almost entirely the same information as depicted in the Moodle
reference example. In more detail, TOSCAXMLText lacks the representation of the xmlns
feature, which is represented in the root element of the metamodel. Therefore, except for
the occurrence of xmlns, the XMLText framework is able to perform round-trip trans-
formations between TOSCA-conforming XML instances and TOSCAXMLText-conforming
models facilitating the re-use of existing XMLware applications, as well as the advanced
capabilities of modern modeling languages. Moreover, three threats to validity have been
identified: (i) misinterpretation of language concepts and features due to their naming
differences in the Cloudify language and the TOSCA standard; (ii) consideration of a
subset of the TOSCA language represented by the TOSCA Moodle reference example,
i.e. representing a subset of possible TOSCA language concepts and features; and (iii)
the consideration of TOSCA as a representative for an XML Schema-based language,
i.e. considering a subset of language concepts and features that are made available by
the XML Schema language specification. As a countermeasure to (i), both the language
concepts and features that appear in the Cloudify language parser, as well as in the
Cloudify language documentation have been examined. In order to mitigate (ii), several
TOSCA-based examples may be employed. Due to the lack of available open source
TOSCA-based examples, however, the evaluation is limited to the Moodle reference
example. In dealing with (iii), TOSCA has been selected due to its relatively complex
language structure, which imposes several challenges when transforming the TOSCA
XML Schema definition into a textual modeling language implementation. One cannot
claim, however, that the established results in regards to the applicability of the approach
can be extended to languages that instantiate a different set of concepts that appear in

105

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

the XML Schema language specification [202].

Concept-coverage in generated and
handcrafted languages (RQ1): The
TOSCAXMLText modeling language con-
tains a set of TOSCA language con-
cepts that is approximately 89% and
42% more comprehensive than respective
sets of TOSCA language concepts made
available by the TOSCADTC modeling
language and the handcrafted Cloudify
language respectively.

Conformance-preservation in sentence-
level transformations (RQ2): The
produced results indicate that the
XMLText framework is forward- and
backward-compatible, i.e. XML doc-
uments that conform to the TOSCA
XML Schema definition are transformed
to sentences that conform to the gram-
mar of the TOSCAXMLText modeling lan-
guage and vice versa.

4.7 Evaluation based on industrial conveyor-belt system

modeling

This section presents the evaluation of the XMLText framework integration in the
modeling assistant within the context of constructing an industry standard-conforming
conveyor-belt production system modeling language. The aim is to answer the following
research questions.

4.7.1 Research questions and evaluation criteria

The overarching objective to evaluate the approach includes reaching a verdict on the
usefulness of the XMLText assistant integration and, in particular, its applicability in
the context of language engineering.

RQ1: How useful is the XMLText assistant integration in solving practical problems
in language engineering?

RQ2: How effective is the common data scheme in capturing heterogeneous informa-
tion mapped by the assistant integrations for XMLware and modelware?

RQ3: How much effort is involved in the integration of XMLText in third-party
tools?

In order to assess the usefulness of the XMLText assistant integration in solving
practical problems in language engineering, a use case is presented that employs the
XMLText assistant integration for the development of an industry standard-conforming
modeling language implementation, as well as its application for the modeling of a
conveyor-belt production system. The industry standard being employed in this case is
represented by the eCl@ss standard [63], an ISO/IEC-compliant international standard
for the unified and consistent definition and classification of products, materials, and
services alongside typical supply chains through the use of commodity codes.

106

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.7. Evaluation based on industrial conveyor-belt system modeling

In order to determine the effectiveness of the common data scheme (cf. Section 4.5.3)
in representing information that originates from the technological spaces of XMLware and
modelware, an analytical evaluation is conducted that computes the ability to capture
heterogeneous information provided by the XMLText assistant integration from XML
Schema descriptions and XML instances, as well as the Ecore assistant from Ecore
metamodels.

One of the salient features of the XMLText framework is the ability to be integrated
with third-party tools. Therefore, the proficiency of XMLText to be integrated by
modeling tools is evaluated by assessing the reach and limitations of the XMLText

framework integration in the modeling assistant.

4.7.2 Procedure

The procedure for the evaluation includes the following sequence of phases: outlining
the scope of the language, the process of collecting required resources, the import of
information into the common data scheme, the querying of information from the common
data scheme, and the construction of the target language metamodel and model. More
specifically, a modeling language for industrial production systems will be developed
that targets conveyor-belt system-modelers and, thus, aims to reduce the number of
components available in the eCl@ss standard to components for conveyor-belt systems.

Language scope. The scope of the development of the eCl@ss Process Modeling
Language (EPML) modeling language is to enable the construction of production system
models that conform to the eCl@ss standard. Moreover, the language includes elements
from conveyor-belt systems that must fulfill the constraints imposed by the eCl@ss
standard and the Signal Process modeling Language (SigPML)—a modeling language
dedicated to data flow processing presented as part of the GEMOC initiative [46].

Example model. Figure 4.13 and Figure 4.14 respectively illustrate the graphical
and tree-based representation of an example eCl@ss standard-conforming conveyor-belt
production system model adopted from the AutomationML and eCl@ss integration white
paper6. More specifically, the model contains electrical drives (i.e. instances of DC En-
gine), communication cables or ready-made data cables that represent SigPML connectors,
PC-based controls or field buses (i.e. decentralized peripherals, which represent controls),
controls in terms of inductive proximity switches, and sets of rectangular industrial
connectors, which represent connector systems. A DC Engine is connected to a Fieldbus
through a communication cable and a data cable with a set of industrial connectors. The
Fieldbus also has a connection with a Proximity Switch through a communication cable
and a data cable that use the industrial connectors that are supported by the Proximity
Switch.

6The AutomationML and eCl@ss integration white paper is available online at https://www.

automationml.org/o.red/uploads/dateien/1417686950-AutomationML%20Whitepaper%

20Part%201%20-%20AutomationML%20Architecture%20v2_Oct2014.pdf.

107

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.automationml.org/o.red/uploads/dateien/1417686950-AutomationML%20Whitepaper%20Part%201%20-%20AutomationML%20Architecture%20v2_Oct2014.pdf
https://www.automationml.org/o.red/uploads/dateien/1417686950-AutomationML%20Whitepaper%20Part%201%20-%20AutomationML%20Architecture%20v2_Oct2014.pdf
https://www.automationml.org/o.red/uploads/dateien/1417686950-AutomationML%20Whitepaper%20Part%201%20-%20AutomationML%20Architecture%20v2_Oct2014.pdf
https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

DC Engine

Proximity

Switch

Fieldbus

Communication

Cable Data Cable

Data Cable

Communication Cable

Production System

Production System Application

Block

Connector

Input Port

Output Port

Figure 4.13: Graphical representation of an example eCl@ss standard-conforming
conveyor-belt production system model.

Resource collection. In order to gather all the required elements, a set of repos-
itories and resources will be defined according to the common data scheme shown in
Figure 4.6. The resources are gathered from the GEMOC initiative, such as the SigPML
Ecore metamodel7 and the eCl@ss standard [63], i.e. defined in the form of several XML
Schema definitions and XML instances.8 Table 4.5 summarizes the number of instances
of the eCl@ss standard, as well as those of SigPML that are available on a meta-level. It
is important to note that the domain-specific concepts that are represented in the eCl@ss
standard are substantial in size. The basic and advanced specifications in the English
language alone consist of 41,000 product classes and 17,000 properties or approximately
15.5 gigabytes of data. Consequently, the extraction of desired concepts for conveyor-belt
system modeling requires the manual examination of a vast amount of resources, as well
as the eventual re-implementation of a target modeling language. Moreover, any update

7The SigPML metamodel is available online at http://bit.ly/32NqLgp.
8The resources of the eCl@ss standard are proprietary and have been made available by the eCl@ss

e.V. on request. A summary of available eCl@ss language resources may be found online at https:
//www.eclassdownload.com/catalog/eclass_releases.php.

108

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://bit.ly/32NqLgp
https://www.eclassdownload.com/catalog/eclass_releases.php
https://www.eclassdownload.com/catalog/eclass_releases.php
https://www.tuwien.at/bibliothek

4.7. Evaluation based on industrial conveyor-belt system modeling

Figure 4.14: Tree-based representation of an example eCl@ss standard-conforming
conveyor-belt production system model.

that is performed on XML Schema definitions and XML instances that represent the
eCl@ss standard may impact implementation in the target system and, thus, may involve
complex and time-consuming maintenance. In an effort to counteract these limitations,
the XMLText assistant integration will be employed.

Resource import. First, resources will be collected by employing the import func-
tionality offered by the EcoreAssistant and the XsdAssistant, building on the XMLText

framework [165]. More specifically, the XMLText framework transforms XMLware
artifacts, i.e. XML Schema definitions and XML instances, to corresponding modelware-
artifacts, i.e. Ecore metamodels and conforming models. Next, the EcoreAssistant will
be employed to map modelware-artifacts to the common data scheme in order to enable
their use by the modeling assistant.

Metamodel construction. Next, the Eclipse perspective of the assistant will be
integrated with the Sample Reflective Ecore Model Editor, as described by the architecture
of the assistant in Section 4.5.3.

109

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

XML Schema
concept in

eCl@ss standard

Number
of in-

stances

XML Schema file 30
Element 960

Element with
IDREF attribute

110

Attribute 104
Restriction 84

Ecore concept in
SigPML

Number
of in-

stances

Ecore
file/EPackage

1

EClass 14
EReference 18
EAttribute 10

OCL EAnnotation 0

Table 4.5: Number of individual XML Schema definitions and Ecore concepts collected
from input resources.

2

3

4

1

Figure 4.15: XMLText assistant integration with the Sample Reflective Ecore Model IDE
during EPML metamodel construction.

4.7.3 Results

Figure 4.15 is a screenshot from the construction of the EPML metamodel. More
specifically, 1 visualizes a set of resources in the repository view; 2 depicts the result
of querying the Ecore metamodel that has been constructed from the eCl@ss standard
by the XMLText assistant integration; 3 shows a context menu with the selection of
the functionality that triggers the traversion of class CATEGORIZATIONCLASS ; and
4 illustrates the application of desired concepts from the imported repositories in the

110

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.7. Evaluation based on industrial conveyor-belt system modeling

CATEGORIZATIONCLASS

Block Connector

Port

[0..*] ownedPort

Application

System

[1..1] ownedApplication

DICTIONARY

InputPort

OutputPort

[0..*] ownedBlock

[1..1] inputPort

[1..1] outputPort

Control ElectricalDrive SensorTechnology

Fieldbus

PCBasedControls

DCEngine ProximitySwitch

InductiveProximitySwitch

CableConnectorSystem

IndustryConnector

RectangularConnectorSet

ReadyMadeDataCable

CommunicationCable

Legend

Class

Class

Class

SigPML
Ecore

eCl@ss standard
XML instance

eCl@ss standard
XML Schema definition

Figure 4.16: Excerpt of EPML metamodel based on SigPML and the eCl@ss standard.

target language. For example, available concepts that represent an electrical drive in the
eCl@ss standard have been gathered by issuing a query for retrieving semantic nodes
that are named engine, which then facilitated the creation of corresponding concepts in
the metamodel of EPML. Further, several traversal functionalities, such as Reveal On
Repository, Go To Type, and Go To Domain, have been employed to gather respective
classes that are referenced as super-types and, thus, force EPML models to conform to
the eCl@ss standard.

The final outcome of the EPML metamodel construction process is shown in Fig-
ure 4.16. Rectangles colored in dark gray represent data flow process elements that
originate in the SigPML and include System, Application, Block, Connector, and Port.
Rectangles colored in light gray indicate eCl@ss standard concepts, such as electrical

111

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

drives, cables, controls, binary sensors,9 and connector systems. For example, the eCl@ss
standard class named CATEGORIZATIONCLASS represents the supertypes Block and
Connector in EPML. Additionally, subtypes of Block and Connector, such as Control
and Cable, are also instances of CATEGORIZATIONCLASS in the eCl@ss standard.
The distinction of individual instances of categorization classes introduces semantics in
EPML that enable the representation of concepts originating in SigPML and the eCl@ss
standard.

Table 4.6 summarizes the XMLText assistant integration transforming eCl@ss
standard resources from XMLware to modelware and, in particular, XML files to
XMI files to enable their handling by the modeling assistant. The meta-level con-
tains EPML.ecore as Resource, and references 18 individual XML Schema definitions
that are supplied by the eCl@ss standard and instantiated by the XML instance
eClass9_1_BASIC_EN_SG_27.xml (55.6 MB). More specifically, the meta-level is
represented by 525 types of semantic nodes, 500 types of object properties, 26 types
of data properties, and 88 types of constraints. Moreover, the model-level instantiates
487,746 semantic nodes, 805,097 object properties, 487,745 data properties, and 820,356
constraints.10 Note that SigPML contains thirteen types of semantic nodes that are not
instantiated and are, therefore, neglected in Table 4.6.

Number of instances

common data
scheme concept

Meta-level
(types)

Model-level
(instances)

Resource 1 1

SemanticNode 525
487,746
(4,071)

ObjectProperty 500
805,097
(23,752)

DataProperty 26 487,745
Constraint 88 820,356

Table 4.6: Instances of conveyor belt system components imported from the eCl@ss
standard to the common data scheme.

As a result, the modeling language constructed by employing the assistant reduces
the number of potential candidates for the conveyor-belt system components in the
eCl@ss standard by approximately 99.17% (97.05%), i.e. from 487,746 (805,097) to
4,071 (23,752) semantic nodes (object properties) that represent instances (references) of
CATEGORIZATIONCLASS and, thus, potential candidates for instances (references) of
(to) Block and Connector in SigPML.

9Binary sensors represent safety-related sensors in the eCl@ss standard.
10Note that the number of instances of constraints refers to the number of constraints defined at

meta-level and validated at model-level.

112

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.7. Evaluation based on industrial conveyor-belt system modeling

Finally, the XMLText framework is supplied with the file EPML.ecore—the meta-
model of the industry standard-conforming conveyor-belt system modeling language that
has been established by facilitating the modeling assistant with the XMLText assistant
integration—for the generation of EPMLText, i.e. an Xtext-based modeling language that
enables the construction of eCl@ss standard-conforming models, such as those depicted
by the concrete textual representation of the example EPML model in Listing 4.22.

1 System ConveyorBeltProductionSystem {

2 containedSuppliers CONTAINEDSUPPLIERS {

3 suppliers {

4 SUPPLIER {

5 org ORGANIZATION "eCl@ss" {

6 id "0173-1"

7 }

8 }

9 }

10 }

11 ownedApplication Application ConveyorBeltProductionSystemApplication {

12 ownedAgents {

13 DCEngine {

14 dateOfCurrentRevision "2004-09-27Z"

15 ownedPorts {

16 InputPort DC_Engine_Data,

17 OutputPort DC_Engine_Comm

18 }

19 },

20 InductiveProximitySwitch {

21 dateOfCurrentRevision "2015-11-13Z"

22 ownedPorts {

23 InputPort Inductive_Proximity_Switch_Comm

24 OutputPort Inductive_Proximity_Switch_Data

25 }

26 },

27 Fieldbus {

28 dateOfCurrentRevision "2013-11-28Z"

29 ownedPorts {

30 InputPort Fieldbus_Comm_IN, Fieldbus_Data_IN

31 OutputPort Fieldbus_Comm_OUT, Fieldbus_Data_OUT

32 }

33 }

34 }

35 ownedPlaces {

36 CommunicationCable Fieldbus_DCEngine_Communication_Cable {

37 dateOfCurrentRevision "2014-11-30Z"

38 itsInputPort DC_Engine_Comm

39 itsOutputPort Fieldbus_Comm_IN

40 },

41 ReadyMadeDataCable Fieldbus_DCEngine_Data_Cable {

42 dateOfCurrentRevision "2014-11-30Z"

43 itsInputPort Fieldbus_Data_OUT

44 itsOutputPort DC_Engine_Data

45 },

46 CommunicationCable Fieldbus_ProximitySwitch_Communication_Cable {

113

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

47 dateOfCurrentRevision "2014-11-30Z"

48 itsInputPort Fieldbus_Comm_OUT

49 itsOutputPort Inductive_Proximity_Switch_Comm

50 },

51 ReadyMadeDataCable Fieldbus_ProximitySwitch_Data_Cable {

52 dateOfCurrentRevision "2014-11-30Z"

53 itsInputPort Inductive_Proximity_Switch_Data

54 itsOutputPort Fieldbus_Data_IN

55 }

56 }

57 }

58 }

Listing 4.22: Concrete textual representation of an example eCl@ss standard-conforming
conveyor-belt production system model (simplified).

Moreover, EPML may be extended by either adding further eCl@ss standard specific
concepts, which represent instances of CATEGORIZATIONCLASS, to the metamodel or
by expressing the concept of blocks and connectors as concrete (instead of abstract) classes.
Consequently, the latter option moves the decision-making process for choosing the desired
eCl@ss standard elements from the metamodel level to the model level. Although the
assistant supports such cases by means of level-agnostic data handling, the chosen option
constrains EPML at metamodel level to limit the set of possible types that may be
instantiated at model-level in order to fit the purpose of modeling conveyor-belt production
systems. The XMLText assistant integration enables importing XML Schema definitions
that offer enumerations and extensible data types, as well as cardinalities, on features with
different configurations for the semantics of many. Furthermore, XML Schema definitions
offer the following three possibilities for element types: single inheritance, features, and
nesting of element types (i.e. hierarchies). XML Schema definitions only allow binary
unidirectional references and strict typing, with the exception of open points that allow
for any valid XML structure. XML Schema follows the classic two-level approach and
allows for local constraints. Without the reuse of the (existing) mapping implementation
of the EcoreAssistant (cf. Section 4.5.3), however, the mapping of the resulting modelware
artifact to the common data scheme requires a total of approximately 500 lines of code.
The full version of the XsdAssistant is available in the Github repository of the modeling
assistant11.

4.7.4 Threats to validity

As described in the three preceding subsections, the assistant has been used to support the
construction of a modeling language by reusing heterogeneous artifacts and, in particular,
an Ecore metamodel, a set of XML Schema definitions, and an XML instance. More
specifically, the degree to which the common data scheme of the assistant is able to

11The source code of the XMLText assistant integration Java class is available on-
line at https://github.com/angel539/extremo/blob/master/uam.extremo.extensions.

assistants/src/uam/extremo/extensions/assistants/XsdAssistant.java.

114

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://github.com/angel539/extremo/blob/master/uam.extremo.extensions.assistants/src/uam/extremo/extensions/assistants/XsdAssistant.java
https://github.com/angel539/extremo/blob/master/uam.extremo.extensions.assistants/src/uam/extremo/extensions/assistants/XsdAssistant.java
https://www.tuwien.at/bibliothek

4.7. Evaluation based on industrial conveyor-belt system modeling

accommodate information from heterogeneous sources and, in particular, XML-based
resources has been analyzed. Further, the proficiency of XMLText to be integrated
has been evaluated by the implementation of the XsdAssistant, namely by presenting
the integration of the XMLText framework with the modeling assistant. Although the
results are positive, a set of potential threats to the validity of the experiments were
identified and categorized according to the four basic types of validity threats [220].

Threats to construct validity. Construct validity is concerned with the relation-
ship between theory and observation. The presented case focuses on the evaluation of
the use of the XMLText assistant integration for XML Schema definitions and XML
instances, as employed by the eCl@ss e.V. and other third parties. Although the eCl@ss
specification represents an industrial standard and, thus, reflects realistic requirements,
the constructed modeling language for conveyor-belt systems has been constructed by
developers with limited knowledge on industrial production systems. Therefore, further
studies need to be performed in order to evaluate the capability of the modeling assistant
to support domain experts during the construction of modeling languages that fulfill
requirements that may supersede those covered by the presented use case.

Threats to conclusion validity. Conclusion validity is concerned with the rela-
tionship between treatment and outcome. The considered use case is composed of a set
of 18 individual XML Schema definitions, an XML document, and an Ecore metamodel
as input, and an Ecore metamodel and Xtext grammar as output. As such, it covers
the three technical spaces of XMLware, modelware, and grammarware. Although these
numbers are limited, they provide an indication of the usefulness, applicability, and
proficiency of XMLText, and its integration in the modeling assistant.

Threats to internal validity. Internal validity establishes a causal relationship
between the cause and effect of an event. Although the development of the XMLText

assistant integration was performed by the subject that developed the XMLText

framework, this was not involved in the development of the modeling assistant. Although
the integration of the XMLText in the assistant requires a small number of lines of code,
it may be more demanding for engineers that have not been involved in the development
of XMLText, the assistant or any third-party tool.

Threats to external validity. External validity refers to the domain to which the
findings of the evaluation can be generalized. On the one hand, the presented findings
illustrate the ability of the XMLText framework to be integrated with a modeling
assistant in order to facilitate the exploitation of XMLware artifacts and support the
construction of an industry standard-conforming modeling language for conveyor-belt
systems. On the other hand, the presented findings may be limited, and challenge the
ability of the XMLText framework to be integrated with third-party tools, such as the
metamodel repository tool MDEForge [183], and language engineering use cases that are
different to the one presented.

115

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

4.7.5 Summary

Usefulness of assistant integration (RQ1): The XMLText assistant integration
is useful in solving practical problems in language engineering as shown by its
capability to exploit XMLware resources and, in particular, by importing and
querying information to support the construction of a conveyor-belt system modeling
language, which conforms to the industrial eCl@ss standard specification [63].

Effectiveness in capturing heterogeneous information (RQ2): The effectiveness of
the common data scheme in capturing heterogeneous information has been shown by
the assistant integrations for XMLware and modelware and, in particular, by the
import of both the SigPML metamodel and the formal XML-based specifications of
the eCl@ss standard.

Third-party tool integration (RQ3): The amount of effort involved in the integration
of the XMLText framework with third-party tools has been illustrated by the imple-
mentation of the XsdAssistant requiring five lines of code to import and instantiate
the XMLware to modelware transformer, supply an XML Schema definition and
XML instance, and retrieve the resulting modelware artifact.

4.8 Analysis

This section describes the differences and similarities of the presented approach with the
bridging of the technical spaces of XMLware, grammarware, and modelware available in
the literature and, in particular, work outlined in Section 3.1.

On a general level, the presented approach applies the ModelGen operator of Atzeni et
al. [12]. This operator defines a general pattern, which uses bridges on the meta-language
level to derive transformations on the language and instance levels. This pattern also
fits the architecture presented in Figure 4.3. Traditionally, this pattern is proposed and
used in the database field for schema-independent transformations. It is also applicable,
however, in the field of language engineering.

With respect to the transformation chain presented in this chapter, a set of related
approaches exists, which covers certain aspects of this chain by focusing on the transitions
between the technical spaces involved. In what follows, bridges between the technical
spaces of XMLware, grammarware, and modelware (cf. Section 3.1) are compared with
the presented approach.

Contrary to the presented approach, users of modelware and grammarware approaches
typically handcraft transformation rules between either individual grammar rules or
terminal rules and metamodel elements, as opposed to relying on a generic and automated
transformation of XML Schema definitions.

Several approaches for realizing either forward engineering from modelware to XML-
ware [27, 47] or reverse engineering from XMLware to modelware [189, 147] exist (cf.

116

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.8. Analysis

Section 3.1.1). Previous work presents an approach for the generation of MOF-based
metamodels from DTDs [189]. More specifically, changing the applied source type, i.e.
DTDs as opposed to XML Schema definitions, as well as the transformation chain, applies
to modelware as opposed to grammarware. Neglecting the transformation of modelware
to grammarware makes it difficult for language engineers to prototype textual modeling
language implementations from XML Schema definitions quickly.

In regards to XMLware and grammarware, Eysholdt and Rupprecht present a report
on the migration of a modeling environment from XML/UML to Xtext/GMF [71] (cf.
paragraph “From XML and UML to Xtext and GMF” in Section 3.1.1). Their goal is
to modernize legacy modeling environments to overcome inefficiencies of XML caused
by verbose syntax and lack of tool support. In summary, their approach creates Ecore
metamodels from XML Schema definitions and then performs changes and customizations
of Xtext features to complete the implementation of the desired modeling language and
workbench. The completeness and correctness of textual model serialization and XML
document persistence is similarly evaluated by employing round-trip testing. Although
partial automation is reported through the use of facilities provided by the EMF, manual
customizations to imported XML Schema constructs have been made to address “glitches
in XML files” not further elaborated in their work. Thus, changes to the XML Schema
definitions represented by Ecore metamodels, as well as customizations of Xtext features,
are performed manually rather than through a generic and automated transformation
chain from XMLware to grammarware. For example, manual restructuring has been
employed where reasonable, such as in the merging of separate listings for table columns
and class attributes, into class attributes containing optional column specifications in the
presented language for the persistence of objects.

Chodarev [43] presents an approach for the development of a translator between
XML and a DSL with customized concrete syntax. This approach differs from the one
presented primarily in the following. First, abstract syntaxes are represented by Java
classes that are generated by the JAXB XML binding compiler [169] and annotated
with Java annotations, as opposed to metamodels that are generated by the EMF and
refactored with model-to-model transformations. Second, parsers are generated by the
use of the YAJCo parser generator, as opposed to Xtext and the underlying ANTLR tool.
Third, although the expressiveness of notation specifications in Chodarev’s approach
is higher than those offered by XMLText, i.e. without considering the option that
involves the (direct) adaptation of grammar to fit a particular notation, the example
in his work only employs annotations that are already offered by the out-of-the-box
YAJCo implementation, such as Before, After, Indent, Token, and NewLine (cf. Figure
5 in [43] and respective Java classes of YAJCo implementation [179]). Moreover, the
contribution presented in Chapter 6 addresses this shortcoming of XMLText through
the implementation of a dedicated framework for the specification of textual notations in
the form of style models that are employed alongside structural language specifications,
such as Ecore metamodels, in order to generate grammars that follow the notation
outlined by the respective style model. Fourth, both approaches evaluate the validity

117

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. XML Schema modeling integration and assistance

and completeness of the round-trip transformation implementation by comparing original
instances and instances produced by the execution of round-trip transformations.

Izquierdo et al. present Gra2MoL [111], in which users define transformations based
on language grammar. In comparison, Gra2MoL also employs an automated enrichment
process, referred to as “preprocessing step to render ANTLR grammar compatible with
Gra2MoL” and “metamodel adaptation” in Gra2MoL and the approach presented in this
chapter (cf. Section 4.5) respectively. The source language type in Gra2MoL, however, is
represented by ANTLR grammars, as opposed to XML Schema definitions. Therefore, at
instance-level, Gra2MoL focuses on the evolution of ANTLR-grammar source code, as
opposed to XML Schema-conforming XML documents. Moreover, the approach presented
in this chapter does not require the specification of individual transformations for the
migration of XML Schema-based languages to modelware and grammarware.

Compared to the approach presented by Wimmer et al. [218], automated metamodel
refinement is employed rather than a combination of manual metamodel annotations and
model transformations. Further, XML-based languages are transformed to grammarware,
as opposed to the transformation of EBNF-based languages to MOF-based languages, i.e.
grammarware to modelware.

Similarly to the approach presented by Kunert et al. [138], the work presented in this
chapter also employs a fully automated migration. As opposed to automating the migra-
tion of XML-based languages, however, their approach migrates EBNF-based languages
and eliminates syntactic information that is depicted in the generated metamodel. As a
result, their approach neglects backward compatibility and, in particular, the ability to
parse and serialize XML documents.

An approach for the translation of MontiCore [135] grammars, i.e. EBNF-like
grammars, to restricted Ecore metamodels is presented by Butting et al. [39]. Their
work represents a unidirectional transformation approach and is, thus, limited to the
translation of grammars to constrained metamodels. In other words, the translation of
constrained metamodels to grammars is not investigated and, thus, modifications that
are performed on such metamodels are not translated to the corresponding grammar
modifications.

4.9 Summary

This chapter presented the first contribution of this dissertation, namely the automated
exploitation of XML Schema-based language specifications for the generation of textual
modeling language implementations (cf. C1 in Figure 1.1). More specifically, individual
gaps between the technical spaces of XMLware, modelware, and grammarware have
been highlighted, and include individual XML Schema concepts such as mixed content,
wildcards, restrictions, identifiers and identifier references, data types, and rigid concrete
syntax. Next, an approach was developed, which fills identified gaps in the literature
through the construction of a transformation chain from XMLware to modelware and

118

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.9. Summary

modelware to grammarware by facilitating metamodel adaptation for the automated
generation of textual modeling language implementations from XML Schema definitions.
Moreover, the approach was integrated into a modeling assistant for the exploitation
of XMLware artifacts and, in particular, the import and querying of domain-specific
knowledge that is embodied by XML Schema definitions and XML documents, as well as
their application for the construction of (meta)models.

The implementation of the approach was evaluated in a case study and a use case.
The former involves the migration of a standardized cloud modeling language and a
respective reference model depicting the topology and orchestration of an open source
course management system. The latter involves the application of the modeling assistant
integration to the construction of an industry standard-conforming conveyor-belt pro-
duction system. More specifically, the assistant integration was evaluated in terms of its
usefulness for solving practical problems in language engineering, the effectiveness of the
employed common data scheme in capturing heterogeneous information and, in particular,
sources that are mapped from the technical space of XMLware, and the ability of the
XMLText framework to be integrated with the modeling assistant. In summary, both
evaluations indicate the ability of the presented approach to exploit XML Schema-based
language specifications for the automated migration of backward-compatible XMLware
to modelware and grammarware, as well as the assisted construction of modeling lan-
guages in the form of metamodels, and their subsequent application by the developed
framework for the automated generation of grammars and textual modeling language
implementations. Its usability for integrated modeling assistance and the automated
migration of backward-compatible modeling languages from XML Schema-based language
specifications has thus been demonstrated.

119

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 5
Consistency-achieving integrated

development environment

T
he previous chapter presented an approach to exploit XML Schema-based lan-
guage specifications for modeling assistance and automated generation of textual
modeling language implementations by adapting metamodels from XML Schema

definitions. This chapter focuses on the automated generation of consistency-achieving
IDEs through the facilitation of formal constraints that are specified alongside the meta-
model of a domain-specific modeling language (i.e. henceforth simply referred to as
modeling language). The advances of modeling languages and dedicated IDEs, i.e. created
with modern language workbenches, are recognized by domain experts as important and
powerful means to capture domain-specific information. Despite the fact that such IDEs
are proficient in retaining syntactical model correctness, they present major drawbacks in
preserving consistency in models which require language engineers to implement manually
IDEs facilitating language definitions with elaborated language-specific constraints. Con-
sequently, there is a demand for automating procedures to support language designers in
the construction of enhanced modeling language implementations and, ultimately, to assist
IDE users in both model construction, as well as model consistency violations resolution.
This chapter presents an approach to automate the creation of IntellEdit-generated
IDEs which offer automated validation, content-assistance, and quick fix resolution capa-
bilities that are beyond those created by state-of-the-art language workbenches and are
therefore capable to support domain experts in retaining and achieving the state of model
consistency. For validation, the causes of potential errors for violated constraints are
visualized, instead of only the context in which constraints are violated. The state-space
explosion problem is mitigated by the approach resolving constraint violations by increas-
ing the neighborhood scope in a three-stage process, seeking constraint repair solutions
presented as quick fix solutions to IDE users. The approach is evaluated based on a
modeling language for modeling service clusters. Figure 5.1 recaptures the contributions

121

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

of this thesis and highlights the contribution presented in this chapter.

Textual
modeling language

NotationDedicated IDEStructure

XML Schema integration
and assistance framework

Modeling
assistance

Model
transformation

C 1

Metamodel
generation

Basic notation
customization

Reusable notation-template
language and design framework

Notation-template language and IDE

Notation
design

Grammar
generation

Template
extension

Consistency-achieving IDE
generation and runtime framework

Content
assistance

Model
validation

IDE
generation

C 2

Restrictions
integration

IDE
runtime

Model
repair

integrated
consistency
resolution,

preservation,
and repair

assisted
language structure

design and integration
integrated

notation-template
design and
extension

Artefact

Component A Component B

C #

Contribution #

C 3

implementation
used

Figure 5.1: Contribution presented in this chapter.

The remainder of this chapter is organized as follows. Section 5.1 introduces and
the approach and its motivations. Section 5.2 briefly describes the integration of the
formal constraint language OCL in Ecore and Xtext. Section 5.3 and Section 5.4 present
the challenges and requirements of the approach presented in this chapter respectively.
Section 5.5 presents the approach and in particular the generation of enhanced IDEs, as
well as the facilitation of XML Schema restrictions in order to limit the set of valid model
instances. Section 5.6 demonstrates an evaluation based on a language for modeling
service clusters. Section 5.7 analyzes and compares the proposed approach with related
work and, in particular, in a comparison with state-of-the-art language workbench
frameworks. Finally, Section 5.8 concludes the chapter by summarizing the presented
work.

5.1 Introduction

Domain-Specific Modeling Languages (DSMLs) [119] encode the expertise of domain
experts [90], e.g. hospital process managers and mechatronics engineers, and are, hence,
languages designed for a specific class of problems allowing domain experts to describe
their problem on a higher level of abstraction than what is possible with General-Purpose
Modeling Languages (GPMLs) [87]. DSMLs are known to leverage domain expertise
and improve usability, comprehensibility, and maintainability compared to alternatives.
On the one hand, the benefits of modeling languages have long been recognized, but on
the other hand the development of advanced modeling language implementations still
requires extensive manual effort and the combined knowledge of domain and language
engineers, resulting in slow industrial adoption. Therefore, in order to advance the latest
developments in the maintenance and evolution of languages and systems created with

122

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.1. Introduction

them, the goal is to reduce significantly the cost associated with the creation and, thus,
the adoption of advanced modeling language implementations required by the currently
available approaches [84].

Model-Driven Language Engineering (MDLE) frameworks (i.e. also referred to as
language workbenches), such as Xtext [70], ease the out-of-the-box creation of powerful
modeling language implementations, including associated IDEs [84]. Typically, an
MDLE framework allows the creation of a language either by developing a metamodel
representing the language’s abstract syntax, which is subsequently used to generate a
modeling language implementation including language grammar, or by developing a
language grammar, which is automatically used to generate an associated metamodel.
Thus, MDLE frameworks provide the necessary means for automating the creation of
modeling language implementations with advanced IDE capabilities. The generated
modeling language implementations, however, require extensive manual implementation
for enabling precise validation, content-assistance, and quick fix capabilities. For example,
a metamodel containing formally specified consistency constraints, which restrict the
amount of stages of orbital launch vehicles, dictates that these must be less than or equal to
two in order to meet safety regulations. In this example, models that define vehicles with
a number of stages that is larger than two are considered invalid. In order to take formal
constraint specifications into account, however, the language developer has to manually
implement validation, content-assistance, and quick fix resolution using a general-purpose
programming language, such as Java, on top of the generated modeling language IDE.
Although enhanced IDEs, which offer precise validation, consistency-maintaining content
assist, and consistency-restoring model repair, facilitate the creation and modification of
consistency-achieving models, therefore increasing productivity in language use, the effort
and expertise that is required for their initial development and ongoing maintenance
often challenges their introduction in the first place. Moreover, models that are created
with modeling languages as well as IDE implementations themselves, evolve [74, 153].
Each time a metamodel or its associated formal constraint specifications are adapted,
handcrafted implementations of model validation, content assist, and model repair
typically require refactoring as well.

This chapter presents an approach to generate automatically precise model vali-
dation, content assist, and model repair capabilities for modeling languages based on
formal constraints that are defined alongside language metamodels. Hence, the approach
facilitates language definitions composed of metamodels and formal constraint speci-
fications for the automated manifestation of modeling language implementations that
include the aforementioned capabilities and is, thus, proficient in the reduction of the
cost associated with establishing and maintaining IDE implementations, as well as the
growth in efficiency associated with the creation and preservation of consistency-achieving
models. Formal constraint specifications may be added to modeling languages in terms
of Object Constraint Language (OCL) [40] constraints and Ecore annotations added to
metamodel elements. This approach extracts OCL invariants and Ecore annotations from
metamodels and analyzes them for the manifestation of enhanced modeling language

123

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

IDEs. Consequently, the following challenges must be resolved. First, the scope of infinite
possible paths to repair a given set of inconsistencies must be reduced to a level that is
practically applicable, e.g. as shown by Nentwich et al. in [160]. Second, the impact of
model repair solutions, i.e. represented by sequences of change actions, must be measured
to enable ranking according to cost [151]. The hypothesis is that the application of the
approach presented in this chapter increases both the effectiveness of the manifestation
of modeling language implementations, as well as the creation and editing of consistency-
achieving models. The approach is evaluated based on a modeling language for service
clusters and, in particular, by comparing the capabilities of the dedicated IDE generated
by Xtext and IntellEdit, i.e. an implementation of the approach, respectively. The
goal of the approach is to enable MDLE frameworks to be extended with the capability to
automate fully the generation of backward-compatible modeling languages with enhanced
IDE implementations from existing language specifications, such as XML Schema-based
languages [161]. Hence, the approach [164, 165] presented in this chapter focuses on the
particular aspect of increasing the effectiveness, i.e. in terms of quality and usability, of
modeling language IDEs by facilitating metamodels with formal constraint specifications
and apply them to reject statically semantically invalid models, as well as offering precise
model validation, consistency-preserving content assistance, and consistency-restoring
model repair solutions. More specifically, the latter are generated at runtime by facilitat-
ing Search-based Software Engineering (SBSE) techniques that entail the application of
search-based optimization, i.e. originally introduced in metaheuristic computation and
operations research. The implementation and evaluation of the approach has been made
available in the form of the Intelligent Editing (IntellEdit) framework. A ready-to-use
virtual machine image and Eclipse instance of the framework. Evaluation results may be
retrieved from https://intelledit.big.tuwien.ac.at.

5.2 Background

In what follows, a brief overview of the integration of OCL in Ecore and Xtext is provided.

OCL and Ecore Theisz et al. present a multi-level meta-modeling technique en-
abling the uniform self-contained interpretation of constraint semantics by encapsulating
constraint modeling constructs into their Dynamic Multi-Layer Algebra (DMLA) frame-
work [201], originally presented in 2015. In other words, as opposed to the combination of
EMF Ecore meta-models and OCL constraints, in which OCL expressions are treated as
external constraint notation or independent layers, their framework enables the interpreta-
tion of meta-model semantics including constraints in a uniform fashion. They define the
role of the XML schema-based network management configuration language YANG [29]
for data modeling purposes as being very similar to the Emfatic1 textual syntax for EMF
Ecore models. They argue that although meta-type definitions work very similarly in
both these languages, the introduction of additional type constraints is different. What

1The Emfactic language reference is available online at https://www.eclipse.org/epsilon/
doc/articles/emfatic/.

124

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://intelledit.big.tuwien.ac.at
https://www.eclipse.org/epsilon/doc/articles/emfatic/
https://www.eclipse.org/epsilon/doc/articles/emfatic/
https://www.tuwien.at/bibliothek

5.3. Challenges

is more, MOF [168] does not provide a genuine concept for pattern constraints. More
specifically, the EMF, i.e. the quasi-reference implementation of MOF, and in particular
EMF Ecore, does not provide an integrated solution for the specification of constraints
except lower-bound and upper-bound for cardinality in ETypeElements. For all other
purposes, OCL constraints are used to introduce restrictions in Ecore. As an alternative
to the use of OCL constraints, an ad-hoc solution for Ecore to incorporate additional
constraints in the meta-metamodel is to introduce a new type for each constraint type.
Doing so, however, does not solve the problem of validation. Their goal is to make
constraint definition an integral part of multi-level meta-modeling, as opposed to the
external definition of OCL in EMF Ecore, for the purpose of avoiding patchwork caused
by the separation of OCL and EMF Ecore and to enable advanced integrated constraint
definitions. Their approach builds on the idea of “interchangeable bootstraps” allowing
to handle both type and cardinality constraints through validation formulae, as well as
model constraints like all other elements in their framework.

OCL and Xtext Willink [217] presents work on the re-engineering of Eclipse OCL
that exploits the characteristics of the Xtext framework for enhancing tool support and,
in particular, the parsing and evaluation of OCL constraints. This work highlights the
limitation of the Eclipse MDT/OCL project2, which does not require significant semantic
analysis in order to create the AST for the OCL specification, resulting in repetitive action
code increasing the possibility for the introduction of errors. The resulting implementation
reduces the amount of manual input by 80%. Other limitations illustrated by this work
include overlapping syntaxes caused by ambiguities in the specification of OCL version
2.2 [167]; the 64 kilobyte size limit that is exceeded by the ANTLR grammar generated
for the complete OCL metamodel; and the ambiguity on how to establish Xtext grammar
that produces predictable and efficient results.

5.3 Challenges

The challenges addressed by the contribution presented in this chapter include automating
the generation of modeling language IDEs with increased accuracy of model validation and
the proposal of consistency-maintaining content assist suggestions, as well as consistency-
restoring model repair solutions. Consequently, as opposed to the visualization of
consistency violations with coarse granularity by indicating the entire model structures as
erroneous, the challenge is to isolate inconsistencies and narrow the display to locations
in a model where violations actually occur. A further challenge is to produce modeling
language IDEs that feature content assist functionality, which proposes suggestions
to IDE users that preserve model consistency, as opposed to introducing constraint
violations. Additionally, it is necessary to identify how to re-establish the consistency
of models which violate constraints. More specifically, model repair solutions which are
automatically generated must take complex dependencies between a set of models into

2The Eclipse MDT/OCL Project is available online at https://www.eclipse.org/modeling/
mdt/?project=ocl.

125

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.eclipse.org/modeling/mdt/?project=ocl
https://www.eclipse.org/modeling/mdt/?project=ocl
https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

account, as opposed to requiring the manual specification of model repair rules as part of
an individual modeling language implementation. As a result, the challenge is to develop
an approach that addresses the limitations of search-based optimization approaches, such
as MOMoT [81], and in particular address limitations in regards to the delivery of local
optimal solutions. More specifically, an approach must be developed that enables the
specification of multi-objective search problems (i.e. a result of the manifestation of
modeling language definitions consisting of a multitude of constraints), as well as the
procurement of neighborhood populations, while aiming to escape local optima solutions.

5.4 Requirements

The requirements to automate the generation of modeling language IDEs that enable
increased precision in model validation, consistency-maintaining content assist suggestions,
and consistency-restoring model repair solutions include the following.

5.4.1 Precise model validation

First, model inconsistencies must be isolated to facilitate fine-grained error localization.
Therefore, the result of the model validation process must deliver precise locations of
model inconsistencies. In other words, precise model validation must only include parts
of a model that are affected by a consistency violation or a set of consistency violations
and, thus, exclude parts of a model which are not affected by an inconsistency or a set of
inconsistencies.

5.4.2 Consistency-preserving content assistance

Second, content assist proposals that are suggested by a modeling language IDE must
retain model consistency. Therefore, the preservation of model consistency in regards
to the application of potential content-assistance proposals are required to be evaluated
beforehand. Moreover, sets of consistency-preserving content assist proposals must be
sorted according to individual quality and cost, in order to enable the visualization of
ranked proposals to IDE users.

5.4.3 Runtime model repair

Third, similar to the requirements associated with content-assistance, sets of model repair
solutions must be computed and ranked according to solution quality and cost. Although
MOMoT [81] allows the use of model constraints, their applicability is limited. For
example, constraint evaluation must be performed externally (i.e. by instantiating a
constraint solver), constraints may only be applied globally (i.e. constraint-evaluation
based on the entire model, as opposed to objects of a model), and solutions with higher
fitness must be indicated. More specifically, the latter behavior (i.e. the selection of
neighbors with higher fitness) renders the MOMoT tool unable to produce solutions such
as the simultaneous change of multiple features of a model. Therefore, a custom search

126

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

approach must be developed that addresses the limitations of search-based software
engineering approaches and, in particular, in regards to the generation of change actions
that maintain, improve, or restore model consistency.

In summary, it is necessary to develop an approach that enables both multi-objective
search, as well as escapes from local optima solutions. As such, it will be capable of
increasing model validation accuracy, i.e. in comparison to the generated default model
validator; maintenance of model-consistency when applying content assist suggestions;
and improvement or recovery of model consistency when applying model repair solutions.

5.5 Approach

The approach has been realized in the IntellEdit framework. The functionality of
the framework is applied both for the manifestation of IntellEdit-generated IDEs, as
well as during their execution. In what follows, the developed framework is illustrated
in terms of the generation of enhanced modeling language implementations and, more
specifically, a generic approach for more precise validation of constraints, as well as the
production of content assist suggestions and model repair solutions during runtime.

5.5.1 Overview and IDE generation

Language workbench frameworkModeling language specification

IntellEdit framework

IntellEdit
IDE generator

Default
IDE generator

countryOfOrigin	=	'U'
countryOfOrigin	=	'USA'
...

Model

Grammar

<<conforms to>>

Metamodel

Textual
formal
constraint

<<instance of>>

<<input metamodel>>
<<input grammar>>

<<generates>>

<<views/edits>>

<<extends>>

invariant	twoUpperCaseChars:
		countryOfOrigin.size()	=	2	and	
		countryOfOrigin.toUpperCase()	=
countryOfOrigin;

...
countryOfOrigin	=
		TwoUpperCaseChars
...
TwoUpperCaseChars:
('A-Z')('A-Z')

IntellEdit-generated IDE

Content assist provider

Quick fix provider

Validation provider

Figure 5.2: Manifestation of IntellEdit-generated IDEs.

IntellEdit represents the reference implementation of the approach that is built
on top of the Eclipse Modeling Framework (EMF) [197], Xtext [70], Multiobjective
Evolutionary Algorithm (MOEA) framework3, and OCL [40]. It has been specifically

3The MOEA framework is available online at http://moeaframework.org.

127

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://moeaframework.org
https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

created to leverage the power of comprehensive language definitions. As indicated in
Figure 5.2, the language engineer first applies the facilities of EMF to specify an Ecore-
based metamodel, i.e. a common standard for the specification of structural components
of a modeling language. Next, the language engineer augments the metamodel with
textual formal constraints in terms of OCL invariants, which enables the definition of
restrictions on the structural components captured in a metamodel (henceforth referred
to as constrained metamodel). In a nutshell, a model is considered valid if it fulfills all
the constraints defined by its metamodel. For example, an invariant in the constrained
metamodel of the space transportation service language restricts the value of the stages
attribute of Spacecraft instances which function as ORBITAL_LAUNCHER to an integer
number with a value that is less than or equal to 4. In this case, as opposed to visualizing
the entire Spacecraft element as erroneous, the IDE will reduce the set of invalid parts of
the model and thus provide more precise validation results.

Having completed the definition of the constrained metamodel, a conforming IntellEdit-
generated IDE provides a customized Validation provider, Content assist provider, and
Quick fix provider. In order to do so, both EMF default facilities, as well as the IntellEdit
Generator are employed. Moreover, by separating classes used for validation, content-
assistance, and quick fix resolution from other editing classes, IntellEdit enables the
straightforward injection into automatically generated files.

During the execution of an IntellEdit-generated IDE, which is used to construct and
manipulate models that represent instances of the modeling language definition, the IDE
issues runtime requests to the framework. Subsequently, IntellEdit, which employs the
MOEA framework during this step, establishes results for validation, content assistance,
and model repair, and relays them to the IntellEdit-generated IDE.

5.5.2 Model validation

IDEs that are generated by state-of-the-art tools tend to visualize single inconsistencies
in terms of the context in which the violation occurs instead of a more exact location, e.g.
the union of all minimal error causes. This is problematic, as the language modeler is
presented with imprecise information on the correctness and incorrectness of the model.
Proper visualization of error causes can contribute to a better modeling process that
avoids subsequent errors [181].

Definition of change action requirement types. The approach considers change
action requirement types that are constructed and evaluated in evaluation trees. For
the purpose of acquiring potentially relevant error locations, a runtime analysis of the
expression evaluation is performed by comparing expected result with actual result, and
the return locations where deviations occur. In order to do so, the expected result value is
stored as one or more of the following eleven change action requirement types that provide
a good basis for finding corrective changes with adequate performance (i.e. without
imposing noticeable waiting times to IDE users) in the first two layers of the search
algorithm. These change action requirement types may be seen as a specialization of the

128

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

1 name: fixgen

2 input: f ⊆ ChangeActionRequirements, (e, v) ∈ {(Expression, Result)}
3 output:SURE m : (Expression, Result)→ Car // result fixes

4 f ← f \ check(f, v)
5 m← (e, v) 7→ felse ∀a, b : (a, b) 7→ {}
6 u← f //unhandled fixes

7 for p ∈ availableGenerators(e.type())
8 (h, ms)← p.get(e, v, f)
9 u← u \ h
10 m← (a, b) 7→ (m(a, b) ∪ms(a, b))
11 if u 6= ∅
12 for (es, vs) ∈ subresults(e, v)
13 m← (a, b) 7→ (m(a, b) ∪ ((es, vs), Change))
14 for (es, vs) ∈ subresults(e, v)
15 ms ← fixgen(m(es, vs), (es, vs)
16 m← (a, b) 7→ (m(a, b) ∪ms(a, b))

Listing 5.1: Generation of change action requirements.

general model constraints to basic constraints on individual model element properties.
First, different types of expected results, generally corresponding to a simple set of
conditions or single values conditions, are represented by equal(v) and different(v) and
denote that expressions should have the same value or a different value than the one
given. Second, true and false correspond to equal(true) and equal(false) respectively. Next,
the expected results increase(v) and increaseexcl(v), as well as decrease(v) and decreaseexcl(v)

for integer numbers denote that a value should be at least or at most a specific value.
Moreover, contains(v) and excludes(v) denote that an expected set of results should or
should not contain the value v. Likewise, the anticipated size of an expected set of results
is indicated by minsize(c) and maxsize(c). Finally, the definition of change on the expected
result indicates that the criteria of a particular expression are not known. In this way, the
deviation of common change action requirements from OCL constraints by the application
of basic requirement types that include setting properties, performing various collection
operations, simple inequalities, boolean operations, and single-parameter functions with
a computable inverse set is achieved.

Evaluation of change action requirement types. The basic generation of change
action requirements, as defined above, is illustrated by ChangeActionRequirements in
Listing 5.1. In case the evaluation of a change action requirement yields a positive
result, i.e. the requirement is fulfilled, changes of existing sub-evaluations are not
required and, hence, propagation is skipped. On the one hand, expression types for
which expected results are known may be specified accordingly using a change action
requirement generator. On the other hand, expression types for which expected results
are not known have their most general expected result, i.e. change, propagated to all
sub-expressions.

There are several change action requirement generators which can be employed by
the approach. For operations with a finite operation table and a certain target value, all

129

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

1 input f : (x1, ..., xn)→ y Function, c1, ..., cn current assignment,
2 vexpected value
3 output r : P ((x1, ..., xn)) //setminimal changes

4 b = f−1(v)
5 bh ← {{(i, ki)|ki 6= xi}|(k1, ..., kn) ∈ b}
6 bh ← bh \ {A ∈ bh, ∃B ∈ bh : B (A}
7 r = {(r1, ..., rn)|A ∈ bh, ri =if∃(i, z) ∈ A then z elsexi end}

Listing 5.2: Preparation of change action requirement generator operation for finite
functions.

1 input: (e, v) ∈ {(Expression, Result)}, fChangeActionRequirements
2 output: (h, ms) ∈ {ChangeActionRequirements, Reqtable}
3 h← {fs|fs ∈ f, ∃x : fs = equal(t)}
4 ms ← (a, b) 7→ {}
5 for equal(t) ∈ h
6 sr ← {(ei, xi)|(ei, xi) ∈ subresults(e, v))
7 s← generateChangeReq(e, x1, ..., xn, t)
8 if s = ∅ //No fix, so don’t handle!

9 h = h \ equal(t)
10 else

11 for (ei, xi) ∈ sr //Add requirement values

12 ms = (a, b) 7→ ms ∪ {equal(ti)|(t1, ..., tn) ∈ s}

Listing 5.3: Application of change action requirement generator operation for finite
functions.

possibly expected results of a sub-expression are determined from the operation table,
i.e. set of operation results for input values. More specifically, assuming an operation
f(x1, ..., xn) = v with current sub-expression evaluations y1, ..., yn for all sub-expressions
and expected value v, a suitable change that fulfills f(y1, ..., y′

k, ...yn) = v is {yk → y′
k, ...}.

The computation of all suitable set-minimal changes is computationally intensive and,
thus, performed once for every operation on application startup, as depicted in Listing 5.2.
Listing 5.3 illustrates an algorithm that employs a change action to an existing evaluation.
More specifically, it handles all equal(x) requirements by computing base values, which
render the function to return the expected value x and recursively apply change action
requirements.

∨ A:false A:true

B:false A → true, B → true -
B:true - -

Table 5.1: Reduced table which renders the value of the logical disjunction to true.

Table 5.1 illustrates an example of a reduction table, which renders the result of the
expression containing a logical disjunction (i.e. denoted by ∨ and represented by or in

130

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

– Regulation
MAX_STAGE_COUNT := 2;

MAX_STAGE_ENGINE_COUNT := 4;
– Spacecraft
invariant regulationsFulfilled:

functions → includes(Function::MULTIPLANETARY_TRANSPORT)
or

stages → includes(self.engineAmount ≤ MAX_STAGE_ENGINE_COUNT) and

(if functions → includes(Function::INTERCONTINENTAL_TRANSPORT)
then stages → size() ≤ MAX_STAGE_COUNT

else functions → includes(Function::ORBITAL_LAUNCHER) endif);

Listing 5.4: Selected constraints in the space transportation service modeling language.

OCL) to true. Only in the case of both A and B being false, is propagation triggered. In
that case, both A and B may become true.

Further, for the boolean conditions v1=v2 and v1 6=v2, and expected values true and
false, the expected values can be propagated to equal(v2) and equal(v1) for the first
and second sub-expressions, i.e. v1=|6=v2 :=true|false respectively. For the rest of
the combinations, different can be applied. Similarly, increase and decrease are utilized
for the inequalities < and > respectively. Likewise, for inclusion and exclusion in set
memberships of expected boolean values, contains and excludes may be used respectively.
Furthermore, expected integer number values of set sizes are converted with minsize and
maxsize. Inclusions and exclusions of set selection operators, i.e. select, {x ∈ S|cond(x)},
are mapped to inclusions and exclusions of the source set S and an expected value of
true for every object that must be contained in the set, and false for every object that
must not be contained in the set. Set collections, i.e. collect,

⋃

y∈S x ∈ f(y), propagate
their excluded elements to f(y) and to remove y from S, where an unwanted value is
calculated, and their included elements yield an inclusion in f(y) as well as any additions
to S. The monotone operations ∪ and ∩ allow to propagate the expected results directly.
Likewise, additions allow propagating requests that increase and decrease values.

Following the propagation of the expected result, potentially erroneous sub-expressions
indicate cases in which the expected result does not match the actual result. As the
applied grammar reflects most model access operations, particularly object feature access
operations and object instance selection operations, error markers and annotations are
placed at locations where sub-expressions are violated and, therefore, the expected result
is not valid. By fulfilling change requirements for a sub-expression, this sub-expression
may evaluate to true and, thus, contribute to rendering the expression value to true.
Note that it may be sufficient to fulfill (only) a subset of available change requirements
to (re-)establish model validity.

Listing 5.4 illustrates selected constraints in the space transportation service modeling
language, which must be fulfilled to conform to the regulations imposed by the aviation
administration. More specifically, the number of engines and stages of a spacecraft are

131

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

functions->includes()

INTERCONTINENTAL_TRANSPORT

equal(MULTIPLANETARY_TRANSPORT)

MULTIPLANETARY_TRANSPORT

MULTIPLANETARY_TRANSPORT

equal(INTERCONTINENTAL_TRANSPORT)

stages->includes(self.engineAmount)

2

MAX_STAGE_

ENGINE_COUNT
4

functions->includes()

INTERCONTINENTAL_TRANSPORT

different(

INTERCONTINENTAL_TRANSPORT)

INTERCONTINENTAL_TRANSPORT

different(

 INTERCONTINENTAL_TRANSPORT)

INTERCONTINENTAL_TRANSPORT

stages->

 size()

4

decrease(2)

<=

false

=(true)

0.5

true

=(true)

=(false)

1.0
=if

false

=(true)

0.5

and

false

=(true)

0.5
<=

true

=(true)

1.0

or

false

=(true)

0.5
=

false

=(true)

0.0

or1

or2

and1

and2

if1

if2

stages

st1,st2,st3,st4

remove(st1)

remove(st2)

remove(st3)

remove(st4)

MAX_STAGE_

COUNT

2

Figure 5.3: Failed evaluation tree for the running example expression (cf. Listing 5.4).

restricted based on the functions of a spacecraft. The launchpads of spacecrafts that
function as MULTIPLANETARY_TRANSPORT are situated away from populated areas
and, thus, impose no restrictions on the spacecrafts themselves in terms of numbers of
stages and stage engines. Spacecrafts, however, that function as ORBITAL_LAUNCHER,
i.e. launching payloads into earth-orbit, or INTERCONTINENTAL_TRANSPORT, i.e.

132

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

offering transport between cities on earth, are restricted by a maximum of four engines per
stage. Moreover, spacecrafts that function as INTERCONTINENTAL_TRANSPORT
are further constrained by a maximum of two stages. Note that the assignment of
functions to spacecrafts follows a hierarchical order. For example, a spacecraft with non-
restrictive functionality MULTIPLANETARY_TRANSPORT may not (also) function
as a more restricted spacecraft, such as ORBITAL_LAUNCHER. Likewise, a spacecraft
which functions as an orbital launcher may not (also) function as an intercontinental
transport vehicle.

The evaluation tree of the failed constraint in Listing 5.4 is shown in Figure 5.11. The
syntactic tree is shown in a monospace font. Below each subexpression node, the current
result is listed first, followed by the expected result. The numbers in the top right indicate
the equality of actual result versus expected result. The constraint failed as a result of
the combination of spacecraft function being INTERCONTINENTAL_TRANSPORT
and the number of stages being too high.In other words, the number of stages of the
spacecraft must be equal to or smaller than 4, according to aviation administration
regulations for spacecrafts that function as orbital launchers or intercontinental transport
vehicles and as indicated by MAX_STAGE_ENGINE_COUNT. Solutions to restore
the validity of a constraint are computed by setting the expected value to true and
subsequently propagating the result. In the case where at least one subexpression of
the expression or evaluates to true, the expected value true is propagated to both subex-
pressions. The first subexpression is an equal, which is true if the value of functions
includes MULTIPLANETARY_TRANSPORT, so the expected value of functions is
set to MULTIPLANETARY_TRANSPORT and the expected value of MULTIPLANE-
TARY_TRANSPORT to INTERCONTINENTAL_TRANSPORT. In order to make the
and boolean expression true, both subexpressions must return true. The first subexpres-
sion returns true, such that no further propagation is performed. Similarly, the feature
set functions does not need further propagation. The second subexpression, however,
does not yet return true. Hence, if will evaluate to true for cases in which the condition is
fulfilled and the then-subtree is true, or the condition is not fulfilled and the else-subtree
is true; thus, both cases in the conditional equals are considered. This equals expression
is currently true and rendered to false by setting either subexpression to a different value.
The then-part is evaluated to true if the feature set stages of a spacecraft is lower than or
equal to 2, as dictated by the regulations of the aviation administration and indicated by
MAX_STAGE_COUNT. This proposes to decrease the feature set stages of a spacecraft
that functions as an intercontinental transport vehicle.

5.5.3 Content assistance

The approach ranks the discovered suggestions for content assistance so that the most
favorable are placed first. In principle, suggestions violating the lowest number of
constraints are considered favorable. Constraints are recursively evaluated by matching
the closest equivalent of a set of expected values with actual values of subexpressions.
The closeness measure in the approach is established by computing distance metrics for

133

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

types. More specifically, metrics for Strings and numbers are established by computing
the Levenshtein distance and the numeric equality e−|v1−v2| respectively. Moreover,
boolean operators are mapped to double operators, where true and false map to 0 and 1
respectively. Additionally, and and max are mapped to min and max respectively.

Considering the example in Figure 5.4, the only part of the expression which is not
completely true or false is the rightmost inequality, where the inequality is nearly fulfilled
(measure 0.5). This value is propagated to the top so the constraint is considered mostly
fulfilled.

5.5.4 Model repair

Model repair refers to the action of applying a quick fix solution—placed at locations
where model values are changed—that can be executed to increase model quality by
decreasing the number of constraints that are violated by a model. Zeller defines the
cause of an effect as the minimal difference between the world where the effect (i.e. in
the case of the approach, a constraint violation) occurs and an alternate world where
the effect does not occur [221]. Hence, in order to find the actual cause for a constraint
violation, the closest possible world in which the violation does not occur, is searched.
Thus, quick fix solutions are established by ranking them according to the least change
principle, i.e. favoring solutions that cause minimal differences in the manifestation of
their effect.

The approach employs different SBSE techniques for the discovery of quick fix solutions
through the application of a three-stage search process. More specifically, the search
process involves two types, with varying neighborhood search [95] for the exploration
of the search space: local search and global search. Both types of search processes
are executed in the background and continuously deliver solutions that are eventually
displayed to the IDE user. In case a model change occurs, previously found model repair
solutions are re-evaluated based on the current model. In general, new values and value
changes are randomly sampled for each specific data type. Moreover, changes are sampled
in a way that small changes are more likely than large ones. For example, the likelihood
of changing n + 1 characters is only ten percent of the likelihood of changing n characters.

Local search. The generic approach performs local search in two stages, i.e. a
small local search and a large local search. In general, model changes based on a single
violated constraint are explored, which either resolve the violation, i.e. the constraint
becomes true, or guide the constraint resolution closer to true, i.e. the involved model
change has a high score of resolving the violation. A simple hill climbing algorithm
with backtracking is used for the local search [8]. As expected, locally resolving an error
may yield to new violations in other model areas. Therefore, as a countermeasure, the
approach sorts quick fix solutions in terms of their score in resolving the single violation
and how many violations exist, i.e. including existing violations and new violations, in
the model after applying the solution. The small local search explores model changes
where the expression analyzer may find concrete possible changes for resolving a single

134

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

expression. More specifically, model changes include the application of equal, contains,
excludes, increase, and decrease on object features to reach the expected results. The
attempted value of model change operations increase and decrease refers to the extent of
what is applicable. The large local search considers changes for single violated expressions
as well. It considers, however, model changes involving the manipulation of all feature
values, as well as all object instances that occur as part of a constraint expression in
which the evaluated result does not match the expected result.

Global search. The generic algorithm for global search applies genetic search
techniques allowing arbitrary model changes on the entire model in order to discover a
broad range of model repair solutions that may not have been found yet by the execution
of the local search algorithm. Hence, as a short-cut, model repair solutions that result
from the execution of the global search algorithm may be applied directly as a result of
being selected by the IDE user. Practical implementations may consider multi-objective
search algorithms, such as the NSGA-II algorithm, i.e. also applied in IntellEdit, which
allows the consideration of the change amount, as well as the number of fixed and violated
constraints. Hence, the results that are displayed to the IDE user are based on the set of
changes that are made available by the current state of the Pareto-front.

The exemplary model (cf. Figure 5.11) may be repaired by a variety of repair actions
that directly fulfill the expression and may, thus, be proposed to the IDE user. For
example, changing the function of the modeled spacecraft from INTERCONTINEN-
TAL_TRANSPORT to MULTIPLANETARY_TRANSPORT or decreasing the number
of stages from 4 to 2.

5.5.5 IDE runtime

During the creation and manipulation of models by the IDE user (cf. Figure 5.4), several
interactions between the Advanced modeling language IDE and IntellEdit occur to provide
IDE assistance. Moreover, to make the most appropriate use of resources consumed
by the framework, any change made to the model is immediately communicated to
the framework. The two major components of the framework are represented by the
IntellEdit constraint interpreter and the IntellEdit content-assist and quick fix builder,
which contains a Local search engine as well as a Global search engine.

The general workflow entails the delivery of identified error location details by the
OCL interpreter employed by the approach to both the internal content-assist and quick
fix builder, as well as the external Validation provider in the IDE implementation. As a
result, the IDE user is provided with the validation results of the model currently created
or manipulated in the editor. Next, the editor’s Content assist provider requests and
retrieves any available results from the content-assist and quick fix builder. Therefore, in
the model used here as an example, a line stating “countryOfOrigin = ’U’” for the
spacecraft will result in the content-assist builder to prefer to insert character “A” at the
current cursor location. Finally, the editor’s Quick fix provider is continuously supplied
with new quick fix solutions by the content-assist and quick fix builder. Hence, as soon

135

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

Language workbench frameworkIntellEdit framework

IntellEdit
constraint interpreter

Default constraint interpreter

IntellEdit scoping and
quick fix builder

Model

Local search engine

Global search engine

<<views/edits>>

<<input model>>

<<extends>>

IntellEdit-generated IDE

Content assist provider

Quick fix provider

Validation provider

<<error locations report>>

<<error locations report>>

<<model completion
request>>

<<model completion
 response>>

@Cursor:
Insert	'K'

<<model repair
 response>>

Line	2:
'A'->''

#InvTwoUpperCaseChars:
Line	1:5,9

countryOfOrigin	=	'U'
countryOfOrigin	=	'USA'
...

Figure 5.4: Runtime of IntellEdit-generated IDEs.

as solutions, such as inserting the character “A” in line one or removing the character
“A” in line two, are found, they are made available to the quick fix provider and can,
therefore, be applied by the IDE user operating the editor.

5.5.6 Restriction integration and application example

The following presents the integration of the approach presented in this chapter with the
XML Schema modeling integration and assistance approach presented in Chapter 4 and,
in particular, the integration of IntellEdit with XMLText in the Intelligent XML
to Xtext Editing (XMLIntellEdit) framework [165]. More specifically, the following
illustrates the application of a language for libraries of books and customers, i.e. defined
by means of an XML Schema definition, with XMLIntellEdit by focusing on the
facilitation of XML Schema restrictions for the generation of enhanced modeling language
IDEs.

Figure 5.5 presents an overview of the XMLIntellEdit framework; a more de-
tailed illustration is provided by Appendix 2. XMLText realizes the modernization
of XMLware-based languages with modelware and grammarware by the transformation
of XML Schema definitions to metamodels (cf. 1a); the refactoring of metamodels to
facilitate the production of modeling language grammars (cf. 2); the generation of
modeling language implementations from metamodels (cf. 3); and the ability to perform

136

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

XMLware Modelware Grammarware

Basic
workbench

Enhanced
IDE

<<conforms to>>

<<instance of>><<instance of>>

3

4

Metamodel

Formal
constraints

XML Schema
definition

Restrictions

<xsd:simpleType	name="isbn">	
		<xsd:restriction	base="xsd:string">	
				<xsd:maxLength	value="32"/>	
		</xsd:restriction>	
</xsd:simpleType>

1b

1a

invariant	maxLengthAuthor:	
		self.author.size()	<=	32

2

Book	TheAlechemist	{	
		title	"The	Alchemist"
		author	"Paulo	Coelho"
		pages	208
		dimension	"5.3	x	0.5	x	8	in"
}

<book>
		<isbn>0062315005</isbn>
		<author>Paulo	Coelho</author>
		<title>The	Alchemist</title>
</book>

Figure 5.5: Overview of the XMLIntellEdit framework.

round-trip transformations for language-conforming instances. IntellEdit functions as
a framework for the automated generation of consistency-achieving modeling language
IDEs by addressing the limitation of state-of-the-art language workbench frameworks in
the preservation of model consistency for elaborated language-specific constraints. As
a result, the necessity to handcraft the implementation of dedicated basic workbenches
and enhanced IDEs (i.e. offering the capability of precise model validation, consistency-
preserving content assistance, and consistency-restoring model repair) is made redundant
for languages that are defined by a metamodel and formal constraints.

Modeling language IDEs that are generated by IntellEdit, however, employ a
runtime plugin which facilitates formal constraints in metamodels for computing change
actions that are eventually displayed as model repair solutions to IDE users (cf. Sec-
tion 5.5.5). Thus, in order to integrate XMLText with IntellEdit and subsequently
enable the use of the IDE runtime plugin (i.e. performing a three-stage neighborhood
search process for the assembly of change actions), it is necessary to supply formal
constraints alongside language definitions. More specifically, restrictions in XML Schema
definitions are facilitated for the generation of formal constraints and enhanced IDEs

(cf. 1a and 4 respectively). As a result, the developed three-stage neighborhood search
process is executed and, thus, computes the following kinds of concrete change actions.
First, the small local search algorithm computes change actions that resolve single ex-
pression violations. Second, the large local search algorithm computes change actions
that resolve single expression violations but takes into account all feature values and
object instances that are involved in single expression violations. Third, the global search
algorithm computes arbitrary change actions in the entire model.

1 <xs:simpleType name="nameType">

137

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

2 <xs:restriction base="xs:string">

3 <xs:maxLength value="32"/>

4 </xs:restriction>

5 </xs:simpleType>

6

7 <xs:simpleType name="isbnType">

8 <xs:restriction base="xs:string">

9 <xs:pattern value="[0-9]{3}-[0-9]{2}-[0-9]{4}-[0-9]{3}-[0-9]"/>

10 </xs:restriction>

11 </xs:simpleType>

12

13 <xs:simpleType name="dimensionType">

14 <xs:restriction base="xs:string">

15 <xs:pattern value="([0-9]|([1-9][0-9]+))([.][0-9]+)? x ([0-9]|([1-9][0-9]+)

)([.][0-9]+)? x ([0-9]|([1-9][0-9]+))([.][0-9]+)? (centimeters|cm|in|

inches)"/>

16 </xs:restriction>

17 </xs:simpleType>

18

19 <xs:complexType name="bookType">

20 <xs:sequence>

21 <xs:element name="name" type="xs:ID"/>

22 <xs:element name="title" type="xs:string"/>

23 <xs:element name="author" type="nameType"/>

24 <xs:element name="pages" type="xs:int"/>

25 <xs:element name="dimension" type="dimensionType"/>

26 </xs:sequence>

27 <xs:attribute name="isbn" type="isbnType" use="required"/>

28 </xs:complexType>

29

30 <xs:complexType name="customerType">

31 <xs:sequence>

32 <xs:element name="firstName" type="xs:string"/>

33 <xs:element name="lastName" type="xs:string"/>

34 <xs:element name="borrowedBookId" type="xs:IDREF" minOccurs="0"/>

35 </xs:sequence>

36 </xs:complexType>

Listing 5.5: Library language XML Schema definition (excerpt).

Listing 5.5 depicts an excerpt from an XML Schema definition file of the library
language4. Instances of the XML Schema complex type named customerType may specify
values for attributes firstName, lastName, and borrowedBookId. Similarly, instances
of the XML Schema complex type named bookType may define values for attributes
name, title, author, pages, dimension, and isbn. Moreover, the XML Schema simple type
named nameType, dimensionType, and isbnType defines valid values which instances of
the attribute named author, dimension, and isbn (i.e. employed by an XML Schema
complex type named bookType) may hold respectively. More specifically, nameType,
dimensionType, and isbnType define restrictions based on XML Schema type string by

4The complete version of the library language XML Schema definition can be found in Appendix 7.

138

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

restricting valid character sequences by a maximum length in the former and a matching
pattern in the latter two.

Valid instances of dimension must match the pattern defined by dimensionType and,
thus, conform to the format “X x Y x Z U” (i.e. with X, Y, Z, and U indicating the
length of each axis in a three-dimensional space and measurement unit respectively).
Moreover, valid instances of dimension are single or multi-digit and integer numbers, or dot-
separated float numbers. Valid instances of measurement unit are either centimeters,
cm, in, or inches. Valid instances of isbn must match the pattern defined by isbnType
and, hence, conform to the 13-digit ISBN format “III-GG-PPPP-TTT-C” (i.e. with
III, GG, PPPP, TTT, and C indicating the international article number, group, publisher,
title, and check digit respectively) as defined by the ISO standard 2108:2017 [107].

Book

name: EString

title: EString

author: EString

pages: EInt

dimension: EString

isbn: EString

[0..*] customers

Customer

firstName: EString

lastName: EString

Library

[0..*] books

borrowedBook

Figure 5.6: Library language metamodel (excerpt).

– Book
invariant maxLengthAuthor:

self.author.size() ≤ 32;
invariant patternDimension:

self.dimension.matches(’
([0-9]|([1-9][0-9]+))([.][0-9]+)? x
([0-9]|([1-9][0-9]+))([.][0-9]+)? x
([0-9]|([1-9][0-9]+))([.][0-9]+)?
(centimeters|cm|in|inches)’);

invariant patternIsbn:

self.isbn.matches(’[0-9]3-[0-9]2-[0-9]4-[0-9]3-[0-9]’);

Listing 5.6: Selected constraints in the library modeling language.

Figure 5.6 and Listing 5.6 illustrate the metamodel and selected formal constraints of

139

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

the library modeling language (i.e. allowing to capture libraries of books and customers)
generated by XMLIntellEdit through the supply of the XML Schema definition of the
library modeling language. Figures 5.7-5.9 depict screenshots of the library modeling
language IDE captured at runtime, and illustrate consistency-recovering model repair
solutions that are computed for the value of the attributes named author, dimension,
and isbn by ranked recursive constraint evaluation. More specifically, a closed match of
a set of expected values with actual values of subexpressions is selected based on the
Levenshtein distance metric [143].

Quick Fix for maxLengthAuthor

Figure 5.7: Model repair solutions for author attribute value in IntellEdit-generated
library modeling language IDE.

In the example illustrated in Figure 5.7, the highest ranked solution is represented
by a change action that replaces the value of attribute named author with the first 32
characters of the value of attribute named author.

Figure 5.8: Model repair solutions for dimensions attribute value in IntellEdit-
generated library modeling language IDE.

Figure 5.8 depicts an example in which the highest ranked solution is represented by
a change action that replaces the value “5.3 x 0.5 x 8 zoll” of attribute named
dimension with the value “5.3 x 0.5 x 8 cm” (i.e. essentially replacing the inconsis-
tent measurement unit “zoll” with a consistent measurement unit “cm”). Note that
in this case the first two solutions (i.e. “5.3 x 0.5 x 8 cm” and “5.3 x 0.5 x 8

in”) are equally ranked; however, due to alphanumeric ordering, the solution with value
ending in “cm” is displayed beforehand.

140

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.5. Approach

Quick Fix for patternIsbn

Figure 5.9: Model repair solutions for isbn attribute value in IntellEdit-generated
library modeling language IDE.

Figure 5.9 depicts the highest ranked solution in a change action that replaces the value
“978-0062315007” of attribute named isbn with the value “978-00-6231-500-7”
(i.e. essentially adding hyphen characters to fit the formatting of ISO standard 2108:2017 [107]).

5.5.7 Prototype implementations

The approach introduced in this chapter has been prototypically realized using the
EMF [197] and Xtext [70]. Additional information, such as slides, source code, and exam-
ples, of the IntellEdit and XMLIntellEdit prototype are provided at dedicated web
pages: https://intelledit.big.tuwien.ac.at and https://xmlintelledit.
big.tuwien.ac.at.

5.5.8 Limitations

First, the propagation for operations with a finite operation table and a certain target
value has (only) been implemented for the boolean operations and, or, not, implies, and
xor. Second, if the type of a collection source set S is finite, additions that do not yield
a matching f(y) are not (yet) avoided in the prototypical implementation. Third, the
content-assist algorithm considers feature additions and updates from at most 1,000
domain feature values. Fourth, although the application of IntellEdit-provided model
repair solutions, i.e. relying on the definition of cause and effect [221], may resolve errors,
IDE users may categorize them as workarounds as opposed to desirable solutions. Fifth,
for specific expressions, such as and, the OCL evaluation engine may only produce parts of
the result. For example, in case the first subexpression is false, the second subexpression
will not be evaluated and, thus, will cause the number of displayed validation errors to be
reduced. This behavior, however, may be adjusted by altering the implementation of the
evaluation engine. Sixth, an arbitrary function call that combines the value of more than
one variable is handled by the propagation of a change. Thus, errors in an OCL constraint
with a function call as defined in the latter may only be repaired by applying model
repair solutions that are found in the second and third layers of the search algorithm.

141

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://intelledit.big.tuwien.ac.at
https://xmlintelledit.big.tuwien.ac.at
https://xmlintelledit.big.tuwien.ac.at
https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

5.6 Evaluation

The evaluation of the approach implemented by the IntellEdit framework has been
conducted separately for validation, content-assistance, and quick fix resolution.

5.6.1 Research questions and evaluation criteria

The validation results provided by IntellEdit are evaluated based on whether they
improve the estimation of locations where a model should be changed to resolve errors.
The purpose of content-assist suggestions provided by IntellEdit is to support IDE
users in the development of consistent models. The purpose of evaluating model repair
solutions provided by IntellEdit is to determine whether they lead to a model with
fewer violated constraints.

Accordingly, the following research questions are formulated:

RQ1: Is the validation result produced by IntellEdit more precise than that produced
by Xtext?

RQ2: Is the application of content-assist suggestions produced by IntellEdit consistency-
preserving?

RQ3: Is the application of model repair solutions produced by IntellEdit consistency-
restoring?

In regards to RQ1, the criteria for precise validation are defined by the accuracy of
the error feature location. In other words, a validation result is precise if and only if it
indicates the location where the fault has originally been introduced. More specifically,
error locations are considered to be correct if the feature is indicated as erroneous for every
deleted feature value; the container of the feature is indicated as erroneous for deleted
objects; and the whole object is indicated as erroneous for created objects. Furthermore,
if a complete object is indicated as erroneous, its features are indicated as erroneous
as well. Finally, precision and recall of the approach and of Xtext are determined by
comparing the set of erroneously indicated features and objects.

In regards to RQ2, the criteria for evaluating content-assist suggestions are based
on the number of violated constraints by comparing the application of content-assist
suggestions produced by IntellEdit and the Xtext framework.

In regards to RQ3, the criteria for evaluating model repair solutions are based on the
number of constraint violations that exist in a model before and after the application of
a model repair solution.

5.6.2 Procedure

The subject of study is represented by a modeling language for modeling service clusters,
and defined by a metamodel and a set of formal constraints, i.e. facilitated by the
approach for the manifestation of enhanced IDE support, as described below.

142

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.6. Evaluation

Metamodel. The modeling language metamodel (cf. Figure 5.10) is composed
of classes representing services, clusters, and servers. A Service is defined in terms
of designSpeed, i.e. an integer number representing the speed for which a service is
intended to be used, and type, which may either be BESTEFFORT, WEAKCONTRACT,
FAILSAFE, or IMPORTANT, and has to be provided by exactly one cluster. A Cluster

has a designSpeed, i.e. an integer number representing the speed for which a cluster is
intended to be used, as well as one or multiple containing servers. Moreover, a cluster is
associated with one or more services, and up to one backup cluster. Finally, each Server

provides a speed.

[1..*] services

Cluster

name: EString

designSpeed: EInteger

Service

name: EString

designSpeed: EInteger

type: ServiceType

<< enumeration >>
ServiceType

BESTEFFORT

WEAKCONTRACT

FAILSAFE

IMPORTANT

Server

name: EString

speed: EInteger

[0..*] server

[1..1] providedBy

Figure 5.10: Modeling service cluster metamodel.

Formal constraints. Formal constraints are defined for servers, clusters, and services
(cf. Listing 5.7). For example, a Service is constrained by the type of service that it
provides. More specifically, it either has to have a BESTEFFORT service type with no
further restrictions or, in the case of a WEAKCONTRACT service type, its associated
cluster has to be designed for a speed that is equal to or greater than the designed speed
of the service itself. A FAILSAVE service type means that a backup cluster has to be
provided. The IMPORTANT service type further extends the restrictions associated with
the FAILSAFE service type by requiring the designed speed of the associated backup
cluster to be equal to or greater than the designed speed of the service itself.

Models. A set of randomized service cluster models are generated so that each model
contains twenty objects, and 100 associations and feature values. Moreover, erroneous
changes are introduced on valid models at arbitrary locations. Figure 5.11 illustrates an
example of a service cluster model. More specifically, it specifies a single IMPORTANT
service with speed 4 that is provided by Cluster WebCl. This cluster has a low-speed

143

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

– Service
invariant speedFulfilled: type =

ServiceType::BESTEFFORT or (
designSpeed ≤ providedBy.designSpeed and

(if type = ServiceType::IMPORTANT then

designSpeed ≤ providedBy.backup.designSpeed
else type = ServiceType::WEAKCONTRACT or

providedBy.backup 6= null endif));

Listing 5.7: Selected constraints in the service cluster modeling language.

backup, which is not sufficient (cf. speedFulfilled) since its design speed is lower than the
speed required by the main service. In the following, the handling of extended validation,
content-assistance and quick fix solution providers is illustrated based on this example.

services

c1:Cluster

name = "WebCl"

designSpeed = 5

s1:Service

name = "Main"

designSpeed = 4

type = IMPORTANT

r1:Server

name = "A"

speed = 5

server

providedBy

c2:Cluster

name = "Backup"

designSpeed = 3

r2:Server

name = "B"

speed = 4

server

backup

services

Figure 5.11: Modeling service cluster example model.

Evaluation tree. The evaluation tree of the failed constraint of the service cluster
modeling language is shown in Figure 5.12. The syntactic tree is shown in a monospace
font. Below each subexpression node, the current result is listed first, followed by the
expected result. The numbers at the top right indicate the equality of the actual and
expected results by means of a boolean value.

Model validation

The model validation results produced by the cluster service modeling language IDE
generated by Xtext and IntellEdit from the example model introduced above, are
illustrated in the left-hand and right-hand sides of Figure 5.13 respectively. In particular,
as opposed to visualizing all lines of the modeled service as erroneous, thus, indicating
that only these may be changed, the IntellEdit-generated IDE indicates the value
assignment-part of all lines which impact the consistency of the model. More specifically,
the IntellEdit-generated IDE indicates that the value of features designSpeed, type,
and providedBy of Service named Main, the value of reference backup of Cluster named
WebCl, and the value of feature designSpeed of Cluster named Backup render the model
inconsistent. In other words, it shows that the Service named Main with value 4 and
IMPORTANT of feature designSpeed and type respectively, must reference a Cluster which

144

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.6. Evaluation

type

IMPORTANT

equal(

BESTEFFORT)

BESTEFFORT

BESTEFFORT

equal(

 IMPORTANT)

designSpeed

4

providedBy.

 designSpeed
5

type

IMPORTANT

different(

IMPORTANT)

IMPORTANT

different(

 IMPORTANT)

IMPORTANT

providedBy.

backup

different(

@Backup)

@Backup

designSpeed

4

decrease(3)

<=

false

=(true)

0.8

true

=(true)

=(false)

1.0
=if

false

=(true)

0.8

and

false

=(true)

0.8
<=

true

=(true)

1.0

or

false

=(true)

0.8
=

false

=(true)

0.0

or1

or2

and1

and2

if1

if2

#p.backup.

 designSpeed
3

increase(4)

Figure 5.12: Failed evaluation tree for the service cluster expression in Listing 5.7.

references a backup cluster with value equal to or greater than 4 of feature designSpeed
(i.e. ensuring that at least the same speed is available for the modeled service in case
Cluster named WebCl becomes unavailable and Cluster named Backup must take over).

145

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

Figure 5.13: Model validation in Xtext-default (left-hand side) and IntellEdit-generated
service cluster modeling language IDE (right-hand side) respectively.

Content assistance

The constraint failed because the type was IMPORTANT, as opposed to BESTEFFORT,
and the designSpeed provided by the backup service was too low. In other words,
the designSpeed of a backup service must be equal to or greater than the designSpeed
of a service of type IMPORTANT for which it acts as backup service. Solutions to
restore the validity of a constraint are computed by setting the expected value to

146

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.6. Evaluation

true and subsequently propagating the result. In case at least one subexpression of
the expression or evaluates to true, the expected value true is propagated to both
subexpressions. The first subexpression is an equal, which is true if the value of type is
equal to BESTEFFORT, so the expected value of type is set to BESTEFFORT and the
expected value of BESTEFFORT to IMPORTANT. In order to make the and boolean
expression true, both subexpressions must return true. The first subexpression returns
true so that no further propagation is performed. Similarly, the feature designSpeed does
not need further propagation. The second subexpression, however, does not yet return
true. Hence, if will evaluate to true in cases where the condition is fulfilled and the
then-subtree is true, or the condition is not fulfilled and the else-subtree is true; thus, both
cases in the conditional equals are considered. This equals expression is currently true
and rendered to false by setting either subexpression to a different value. The then-part is
evaluated to true if the designSpeed of a service is lower than or equal to the designSpeed
of its associated backup service, thus, suggesting to decrease or increase the designSpeed
of a service or its associated backup service respectively.

As a result of content-assist suggestions provided by the approach for the purpose of
constructing consistent models, the following evaluation procedure is employed. First,
model containment hierarchies are randomly generated. Second, the result of the content-
assist suggestions are applied for feature assignment. More specifically, the content-assist
suggestions employed have the highest score in 0% (i.e. randomly), 25%, 50%, 75%,
and 100% of the cases, i.e. simulating the combination of random suggestions with
IntellEdit-provided suggestions. Finally, the number of violated constraints is compared.

Model repair

The goal of model repair is to reduce the number of violated constraints in the model
by employing quick fix solutions generated by the approach. More specifically, ten
IntellEdit quick fix suggestions, i.e. created as a result of the three-stage search
process, are applied to each model that has been generated based on random values.
Moreover, in order to mitigate the risk of choosing repair solutions which cause the
removal of violated parts of the model subsequently yielding empty models, their selection
is governed by the number of newly fulfilled violated constraints, as opposed to the
number of constraint violations which remain in the model.

Model repair solutions produced by the local search algorithm of the IntellEdit-
generated cluster service modeling language IDE from the example model introduced
above are depicted in Figure 5.14. More specifically, model repair solutions are ranked
according to individual cost and displayed in a context menu; solutions associated with
the lowest cost are ranked first. Model repair solutions that are produced by the local
and global search algorithms are indicated by a green and blue star respectively (cf.
Figure 5.15) in the context menu. The model repair solution listed first in the context
menu depicted in Figure 5.14 presents a single change action that involves changing the
value of feature designSpeed of Service named Main to 3 from 4. As a result of applying
the latter model repair solution, the value of designSpeed of Cluster named Backup is

147

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

Figure 5.14: Local search model repair solutions in IntellEdit-generated service cluster
modeling language IDE.

sufficient and the consistency of the model is restored. In other words, the designSpeed
of the backup cluster is equal to the designSpeed of the modeled service.

Model repair solutions produced by the global search algorithm of the IntellEdit-
generated cluster service modeling language IDE from the example model introduced
above are illustrated in Figure 5.15. The same syntax and semantics apply as for the
model repair solutions depicted in Figure 5.14 and described above. Figure 5.15, however,
visualizes the selection of a model repair solution produced by the global search algorithm
which is associated with a higher value in cost (i.e. 2̃.02 as opposed to 0̃.01) and involves
a series of change actions as opposed to the single change action selected in Figure 5.14.
More specifically, the selected solution represents a lower ranked solution consisting of
a set of change actions including the change of the value of the feature named type in
Service named Main to BESTEFFORT from IMPORTANT ; the change of the value of
the feature named designSpeed in Cluster named WebCl to 5 from 4 ; the change of the
value of the feature named name in Server named A to AOA from B; and the change
of the value of the feature named designSpeed in Service named Main to 11 from 4. In
other words, the solution illustrates a less prioritized model repair solution that has
been produced by global search (i.e. issuing a genetic search algorithm). Note that

148

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.6. Evaluation

Figure 5.15: Global search model repair solutions in IntellEdit-generated service cluster
modeling language IDE.

model repair solutions that are produced as described above may generate favorable
solutions in cases that involve a series of complex change actions that may be difficult to
be established by end users of modeling language IDEs.

5.6.3 Results

The following presents the results of employing Xtext and the IntellEdit framework in
terms of the capabilities of the generated implementations for model validation, content
assist, and model repair.

Model validation

Table 5.2 shows the evaluation results of the IntellEdit validation compared with the
Xtext validation for indicating erroneous locations in a model. In total, 6,442 evaluations
were performed on 50 generated models. The numbers on the left represent the average
precision and recall per single changed feature, and those on the right the average precision
and recall per single change. Hence, the left-hand numbers focus on large changes and
the right-hand numbers on small changes. The results state that the validation precision
achieved by IntellEdit is nearly three times as high as that achieved by Xtext. Thus,

149

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

the IntellEdit validation displays only erroneous features instead of indicating the
entire object as erroneous. Hence, it provides more accurate evidence on which parts of
the model should be changed. For example, in case a metamodel containing formally
specified consistency constraints, such as restricting the speed attribute of a Server

element to be represented by an integer number that is greater than 0, is used to derive a
modeling language IDE, it does not take into account such restrictions for displaying an
appropriate validation result. More specifically, it highlights the entire Server element
as erroneous and does not provide any quick fix to solve the violated constraint.

Feature IntellEdit Xtext

Precision 44.8% / 55.1% 14.0% / 21.4%

Recall 37.5% / 77.1% 41.5% / 65.2%

F-Measure 0.408 / 0.643 0.209 / 0.322

Table 5.2: Validation evaluation results (weighted/unweighted).

In terms of recall, IntellEdit produces a higher recall per expression, i.e. performing
better on expressions leading to small model changes, and a lower recall per edited feature.
The recall for larger changes in the evaluation results, however, is low overall. Hence, the
validation of IntellEdit doubles the F-measure compared with Xtext.

In terms of RQ1 , the validation result produced by IntellEdit (i.e. while keeping
recall measures of Xtext intact) indicates a three-fold improvement in precision in
comparison to the precision produced by Xtext.

Content assistance

The results depicted in Table 5.3 indicate that the IntellEdit content-assist provider is
effective in preserving constraints in models. On the one hand, highly scored IntellEdit

content-assist suggestions, i.e. suggestions that are listed at the top, do not introduce
constraint violations in the model. On the other hand, valid random assignments that do
not consider eventual restrictions introduced by formal constraints, i.e. similar to those
suggested by the Xtext default content-assist provider, are likely to introduce constraint
violations in the model. Thus, in terms of RQ2 , the application of content-assist
suggestions that are produced by IntellEdit alone are consistency-preserving.

Ratio of IntellEdit suggestions 0% 25% 50% 75% 100%

Constraint violation count average 8.8 6.5 3.8 2.4 0.0

Table 5.3: Constraint violations in the generated models.

150

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.6. Evaluation

Model repair

The results show that applying quick fix suggestions on 97 randomly generated models
leads to a reduction in the total number of violated constraints in 89 of the same models.
Moreover, the number of violated constraints could not be improved in eight models.
More specifically, one model contained the same number of violations and seven models
introduced further violations. Therefore, in terms of RQ3 , the application of model
repair solutions that are provided by IntellEdit are consistency-restoring and, in
particular, reduce the number of violated constraints from 7.9 to 2.6 (≈67%).

5.6.4 Threats to validity

The validity of the evaluation is limited by the subject of study, i.e. a modeling language
for designing service clusters, as well as randomly generated models, and hence may
not be representative for languages of different domains. Moreover, randomly generated
faults introduced in models may deviate from faults that are introduced by human
users. Similarly, the conflict-resolving change actions of human users may deviate from
change actions that are implied by content-assist and model repair solutions produced
by the approach. For instance, in the constraint violation in the example, a human
user may aim at increasing the speed of existing servers or adding new servers to meet
the service requirements, as opposed to weakening the service type from IMPORTANT
to BESTEFFORT. In other words, a human user may prefer the latter change action
over a series of change actions as a result of the lower number of change actions (i.e. a
representation of cost) required to obtain model consistency. Further, reverting erroneous
changes in error feature location is assumed to be correct. Different change actions may
exist, however, that lead to desired results. Hence, the evaluation does not clarify whether
increased precision leads to more desirable results for IDE users. Likewise, the preference
to create consistent, as opposed to inconsistent, models does not imply that the desired
result is arrived at with increased effectiveness, i.e. by a lower number of steps and
effort on the part of the IDE user. Although content-assist suggestions provided by the
approach are consistency-preserving and thus lead to consistency-maintaining models, it
cannot be claimed that effectiveness is increased in comparison to the employment of
change actions that do not preserve model consistency or introduce new inconsistencies,
such as those provided by the Xtext default modeling language IDE.

5.6.5 Summary

Precision of validation results (RQ1): The presented evaluation indicates that
IntellEdit raises the precision of validation results by a factor of three, while
maintaining the measurement of recall.

151

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

Consistency-preservation of content-assist suggestions (RQ2): The results indicate
that the combination of IntellEdit content-assist suggestions and valid random
assignments, such as those suggested by Xtext default IDEs, introduces model
constraint violations. Choosing IntellEdit content-assist suggestions only, however,
eliminates the introduction of constraint violations in the model.

Consistency-preservation of model repair solutions (RQ3): The application of model
repair solutions that are provided by IntellEdit have been shown to reduce the
number of violated constraints by a factor of approximately two over three (≈67%).
Thus, IntellEdit indicates locations in the model that are more likely to be relevant
for repairing violated constraints, produces consistency-preserving change actions
through content assistance, and seeks to restore model consistency by applying model
repair solutions which induce the lowest cost measured in change actions.

5.7 Analysis

In general, the generation of language grammar from metamodels through MDE techniques
and MDLE frameworks still suffers from several limitations, such as the ability to store
values for data type instances, and hence requires extensive manual customization and
extension by language engineers [162]. Moreover, to the best of the author’s knowledge,
no approach has been proposed in the technical space of grammarware that would allow
for the derivation of formal constraint-refined metamodels from language grammars. The
inherent limitations imposed by Context-Free Grammars (CFGs) render the construction
and maintenance of complex structural constraints for languages defined within the
technical space of grammarware infeasible (cf. Section 2.3.2). Formal constraints, however,
have become key components in MDE for expressing different kinds of (meta)model queries,
as well as the specification and manipulation of language requirements. Section 5.7.1 below
presents and compares a series of related approaches on model repair with the approach
presented in this chapter. Section 5.7.2 presents an analysis of language workbenches
in regards to their capability to restrict language definitions with formal constraint
specifications, as well as to enable the automated generation or manual specification of
model validation, content assist, and model repair mechanisms.

5.7.1 Model repair

Egyed et al. and Reder et al. [66, 180, 181] present an approach to assist IDE users in
fixing inconsistencies in UML models by generating a set of concrete changes, and their
impact on consistency rules. In [180] and [181], they focus on the cause of inconsistencies
by analyzing consistency rules and their behavior during validation. They also present
validation and repair in the form of linearly growing trees. The scalability of their
approach is evaluated based on the application of UML models and OCL rules; the results
indicate that validation and repair trees may be computed within a millisecond-range,
which demonstrates the applicability of tree-based data structures for the problem at

152

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.7. Analysis

hand. Although their approach is similar to the generation of basic repair rules, such as
change actions that insert a reference, the approach presented in this chapter differs in
the process of establishing model repair solutions that involve series of change actions.

Egyed et al. found that the performance of the brute force technique in generating
repair solutions is not adequate and, hence, decided to add manual specifications in the
form of value generation functions and (back)pointer specifications [66]. They follow the
same motivation as the approach presented in this chapter for automating the generation
of repairs for constraints that otherwise require the effort of language engineers to
implement model repair mechanisms. The approach presented in this chapter, however,
delivers language designers from the burden to handcraft model repair implementations,
and instead automates the creation of value generation functions and (back)pointer
references by adopting SBSE-techniques [96]. Further, manually implementing value
generation functions as well as (back)pointer specifications may be infeasible due to the
underlying problem of an infinite amount of possible repair solutions. Although providing
handcrafted implementations, which realize the mechanism of model repair, may increase
the effectiveness of a modeling language IDE, it may also (unintentionally) limit the
delivery of favorable model repair solutions. Finally, the approach presented by Egyed et
al. only supports the generation of model repair solutions which introduce new classes or
attributes in models where a constraint violation occurs. As a consequence, model repair
solutions that involve change actions in multiple locations cannot be generated.

Hegedüs et al. [100] present an approach to automate the generation of quick fix
solutions for modeling languages by taking a set of constraints and model manipulation
policies as input. Repair solutions are realized as a sequence of operations that are
computed by employing state space exploration techniques targeting a decrease in the
number of inconsistencies. Compared to the approach presented in this chapter, their
approach also looks for local and global model repair solutions. It does not consider,
however, the mechanism of content assistance or the validity of a model. Moreover, their
approach employs graph patterns to capture inconsistency rules and graph transformation
rules for change actions in model repair solutions, instead of textual formal constraints
and SBSE-techniques.

Silva et al. [55] describe a method for the generation of model repair solutions (i.e.
referred to as repair plans in their work) for inconsistent models using the configuration
of the search space to antagonize the problem of the infinite amount of possible repair
solutions. Compared to the approach presented in this chapter, their approach restricts
the exploration of search space by limiting the generation of repair solutions overall, the
applicability of models at hand, and the requirement to implement the mechanism of
model validation manually (referred to as inconsistency detection rules in their work).
Therefore, the quality of generated results may suffer, while language engineers are
still responsible for handcrafting and maintaining inconsistency detection rules. In
comparison, the approach presented in this chapter asynchronously searches for solutions
during runtime of modeling language IDE execution and, thus, may deliver model repair
solutions of higher quality compared to those generated within a more limited amount of

153

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

time.

Ali et al. [7] and Semeráth et al. [193] generate models which fulfill OCL invariants
through optimization and reasoning respectively. In comparison to the approach presented
in this chapter, however, their approaches only consider single-objective optimization. In
other words, the generated test models must fulfill the complete set of OCL invariants
and, thus, their approaches only consider the consistency of the entire model and not the
set of change actions that may be employed to restore model consistency. Therefore, their
work neglects the power of multi-objectiveness [58], which enables establishing model
repair solutions for change actions that are based on multiple conflicting optimization
objectives, such as validity and length of model repair solutions.

5.7.2 Language workbenches

For the purpose of evaluating the applicability of the approach, i.e. the specification of
structural constraints as part of language definitions for the automated generation of
enhanced modeling language IDEs, a set of language workbenches, including those listed
by the Language Workbench Challenge 20165 and Microsoft Visual Studio [51] are used.
In a nutshell, this analysis compares the capabilities of existing language workbenches.
In particular, it examines their ability to define formal constraints in general and based
on OCL, to establish constraint validation results manually and automatically, and to
deliver content assistance suggestions as well as model repair solutions manually and
automatically. Additionally, the compatibility of these language workbenches with the
approach presented in this chapter is analyzed.

More specifically, the capabilities that are offered by language IDEs created by a
particular language workbench are analyzed and include the following: first, the ability
of a language workbench in regards to the definition of languages which include formal
constraints, such as OCL invariants; second, the range of support that is provided by a
language workbench to language designers for the specification of model conformance
testing mechanisms, such as constraint-based model validation; third, the length of
support provided by a language workbench to language designers for the formulation
of model completion mechanisms, such as content-assist suggestions; fourth, the extent
of a language workbench in regards to the design of model repair mechanisms, such as
quick fix solutions; fifth, in case a language workbench enables the specification of formal
constraints as part of a language definition, the degree to which language definitions are
facilitated for the generation of IDEs that automatically instrument model validation,
model completion, and model repair.

The subjects of study of a language workbench are represented by a set of artifacts and
may include academic publications, direct communication with developers of a language
workbench, and the documentation and implementation of a language workbench. The
analysis also accounts for language workbenches that may not provide the support

5Language workbenches listed by the Language Workbench Challenge 2016 can be found online at
http://2016.splashcon.org/track/lwc2016.

154

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://2016.splashcon.org/track/lwc2016
https://www.tuwien.at/bibliothek

5.7. Analysis

for structural constraints but still offer approaches for the implementation of model
validation, content-assistance, and model repair solutions. Note that some workbenches,
such as the “Onion” language workbench, have been omitted because of the lack of
availability of artifacts such as publication, documentation, and implementation. Thus,
what follows presents the differences and similarities of the approach with approaches
on the specification of structural constraints in language workbenches as presented in
the literature and outlined in Section 3.2. In particular, these include the following
language workbenches: MetaEdit+ [195, 206], Intentional Software [194], Rascal [123],
EMFText [101, 102], MontiCore [135], Spoofax [118], Xtext [70], Cedalion [146], JetBrains
MPS [212], Eco [60], DrRacket [80], Melange [59], Ensō [209], SugarJ [68], Microsoft
Visual Studio [51]. Epsilon [186], and Whole Platform [196].

MetaEdit+ The MetaEdit+ Workbench [195, 206] was last released in February
2017 and offers the expression of constraints as data integrated in the metamodel.
Constraints, however, cannot be defined by the use of OCL. The website of the MetaEdit+
Workbench vendor metacase claims that neglecting the use of OCL prevents performance
issues. Moreover, it is claimed that the need for constraints in modeling languages is
small and may, therefore, be better expressed by the parameterization of constraint
templates6. Although the MetaEdit+ Workbench offers the ability to specify mechanisms
for constraint validation, content assist, and model repair, only constraint validation is
available automatically. Thus, language designers employing the MetaEdit+ Workbench
must manually establish implementations for content assist and model repair.

Intentional Software Intentional Software [194] represents a projectional language
workbench approach describing a domain workbench tool that enables viewing and editing
combinations of multiple domains. Domain schemas are described so as to define the
terms of a domain that are processed by a generator to deliver executable target code.
The Intentional Software approach does not provide source code, binaries, release notes,
and documentation. Further, the authors did not respond to e-mail enquiries. Thus,
it may not be claimed that Intentional Software supports the specification of formal
constraints within language definitions.

Rascal Rascal [123] was last released in November 20177 and has no built-in mechanism
or structure to define constraints. Moreover, Rascal does not offer a built-in constraint
solver, and requires language designers to define custom type constraints and manually
implement behavior to extract constraint specifications and solve matching constraints.
Similarly, model repair mechanisms may be handcrafted by language designers. List-
ings four, five, and six in [123] illustrate examples of language restrictions, extraction
algorithms, and constraint solving algorithms respectively. By disregarding the ability

6Further information is available online at the MetaEdit+ frequently asked questions page at https:
//www.metacase.com/faq/showfaq.asp?cate=MWB#MWBDoes_MetaEdit+_use_O.

7The Rascal Eclipse Update Site is located at https://update.rascal-mpl.org/stable/.

155

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.metacase.com/faq/showfaq.asp?cate=MWB#MWBDoes_MetaEdit+_use_O
https://www.metacase.com/faq/showfaq.asp?cate=MWB#MWBDoes_MetaEdit+_use_O
https://update.rascal-mpl.org/stable/
https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

to provide means to restrict language definitions through formal constraint specifica-
tions, Rascal is unable to facilitate language definitions for the automated generation
of implementations for the mechanisms of model validation, content assist, and model
repair.

EMFText EMFText [101, 102] was last released in May 20138 and offers a feature
metamodel that allows to specify constraints in terms of its language and expression.
Although the application of modeling language definitions based on metamodels and
OCL invariants is explored for generic static code analysis in languages of arbitrary
domains, the facilitation of such language definition for the automated generation of
model validation, content assist, and model repair functionality is neglected.

MontiCore MontiCore [135] represents a framework for the compositional develop-
ment of textual DSLs and associated tool support which was last updated in March
20199. Although languages in MontiCore are defined by means of EBNF-like MontiCore
grammars, concepts, such as associations and inheritance, that are known from meta-
modeling and facilitated by model-first approaches (cf. Section ??) are employed for the
construction of arbitrary graph structures. Butting et al. [39] present an approach for the
translation of MontiCore grammars to restricted Ecore metamodels. Krahn et al. [135]
argue that metamodels generated from grammars, such as Ecore metamodels that are
derived from Xtext grammars by facilitating the grammar-first approach of modeling
language construction (cf. Section ??), support a larger set of (valid) instances than
those supported by (corresponding) grammars. In other words, metamodels that are
derived from MontiCore grammars are less restrictive and, therefore, may indicate that
the expressiveness of MontiCore grammars is greater than that of Ecore metamodels
restricted by OCL invariants. Consequently, additional Java solvers are required to be
handcrafted by language engineers in order to capture the intricate and implicit cardinal-
ities of MontiCore grammars. Moreover, MontiCore grammars may define non-terminals
by embedding languages that are defined by means of externally available MontiCore
grammars. Similarly, handcrafted implementations must be provided to ensure that
the requirements of embedded languages are fulfilled. In comparison to the approach
presented in Chapters 4 and-5, metamodels with OCL invariants are generated from
XML Schema restrictions, as well as being employed for the generation of consistency-
achieving IDEs (as opposed to the generation of constrained metamodels from MontiCore
grammars). Although the authors reference the contribution described in Chapter 4 that
has resulted in the XMLText framework [162], they do not mention the contributions
that extend and merge the latter framework, manifested in IntellEdit [164] and XM-

LIntellEdit [165] respectively. In conclusion, MontiCore does not offer native means
to define languages with formal constraints. Although Butting et al. [39] present an

8The EMFText Eclipse Update Site is located at http://update.emftext.org/release/.
9The MontiCore distribution is available as archive file at http://www.monticore.de/

gettingstarted/monticore-cli-5.0.1.zip.

156

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://update.emftext.org/release/
http://www.monticore.de/gettingstarted/monticore-cli-5.0.1.zip
http://www.monticore.de/gettingstarted/monticore-cli-5.0.1.zip
https://www.tuwien.at/bibliothek

5.7. Analysis

approach which enables the generation of Ecore metamodels and OCL invariants from
MontiCore grammars, constraints are evaluated based on handcrafted Java solvers.

Spoofax Spoofax [118] is a platform for the design of textual DSLs in an IDE that
provides dedicated and declarative metalanguages for the definition of syntax, name
binding, type analysis, program transformation, and code generation. It was last released
in June 201910. Although Spoofax does not support OCL, constraint generation rules
that are directed to the abstract syntax of a language implementation may be specified.
In particular, the program transformation language Stratego is employed to define term
rewrite rules in the form “r : t1 –> t2 where s”. Thus, both manual and automated
constraint evaluation is available in Spoofax. Further, language engineers may provide
content assist by means of handcrafted implementations.

Xtext Xtext [70] was last released in September 201911. Xtext may be employed
in combination with Xpand, a Java-like statically typed template language that is
published alongside similar tools in the Eclipse Model to Text project12. Xpand provides
a language for checking constraints that is referred to as Check Language13 and represents
a Java dialect to restrict Xtext-based languages. The Check Language is a declarative
constraint language that is similar to OCL, and employs the expression syntax of Xpand.
Moreover, a check component may define guard conditions to restrict the application
of a check constraint to model elements that satisfy those guard conditions. The Xtext
framework enables language designers to provide implementations for model validation,
content assistance, and model repair. Although automated model validation in Xtext
provides coarse results, as discussed in this chapter and in particular Section 5.3, it
is fully automated. Content assistance and model repair, however, are only partially
automated. The content-assist implementation that is provided by default employs
the SimpleNameProvider that is based on looking up the name of an EAttribute and
concatenating the qualified name of its parent exported EObject [22]. The default
behavior of content assistance for cross-references is similar. Therefore, model repair
is only partially automated and, more specifically, it only provides repair actions for
refactoring reference names. It relies on language engineers to provide implementations
for more complex model repair resolution.

10The Spoofax Language Workbench release notes are available online at http://www.metaborg.
org/en/latest/source/release/stable.html.

11The Xtext Language Workbench release notes are available online at https://www.eclipse.

org/Xtext/releasenotes.html.
12Xpand is part of the Eclipse Model to Text project and available online at https://www.eclipse.

org/modeling/m2t/?project=xpand.
13Further details on the Check language are depicted in the Xpand documentation available

online at https://help.eclipse.org/photon/index.jsp?topic=/org.eclipse.xpand.doc/
help/Check_language.html.

157

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://www.metaborg.org/en/latest/source/release/stable.html
http://www.metaborg.org/en/latest/source/release/stable.html
https://www.eclipse.org/Xtext/releasenotes.html
https://www.eclipse.org/Xtext/releasenotes.html
https://www.eclipse.org/modeling/m2t/?project=xpand
https://www.eclipse.org/modeling/m2t/?project=xpand
https://help.eclipse.org/photon/index.jsp?topic=/org.eclipse.xpand.doc/help/Check_language.html
https://help.eclipse.org/photon/index.jsp?topic=/org.eclipse.xpand.doc/help/Check_language.html
https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

Cedalion Cedalion [146] was last released in June 201214 and is an approach for
the definition and application of internal DSLs, i.e. DSLs that are implemented as
libraries for a given host language, based on projectional editing and static validation.
Therefore, manual implementation for both types and checkers in dedicated Cedalion
code is necessary in order to evaluate whether an instance conforms to a specified type.

JetBrains MPS JetBrains Meta Programming System (MPS) [212] is a projectional
language workbench that was last released in March 202015 and enables the creation
of languages and IDEs that can be used to edit hierarchical or marked up text. In
contrast, text-based IDEs enable the editing of any document in the form of plain text
files. JetBrains MPS employs its own dedicated component (referred to as Constraints
aspect16) for the specification of structural constraints and the expression of constraints
that are not represented by the MPS Structural Language. More specifically, it enables
the restriction of relationships between nodes and allowed property values. Additionally,
the JetBrains MPS workbench offers an action language for the definition of change
actions (i.e. referred to as transformation actions) that are employed to realize the
mechanism of content assist. Although MPS offers automated validation and content
assistance for constraints specified in a dedicated constraint language, engineers must
handcraft the mechanism of model repair by resorting to a GPL. Similar to the Spoofax
language workbench, the specification of structural constraints in MPS is limited by
the expressiveness of its dedicated constraint language and, thus, deviates from the
expressiveness offered by mature formal constraint specification languages such as OCL.
For example, the specification of iterators in structural constraints, i.e. available in OCL,
is not provided. Hence, MPS and Spoofax may only be partially able to benefit from the
advantages that are provided by the approach presented in this chapter.

Eco Eco [60] is a language composition editor that enables the use of multiple program-
ming languages in a single file. It was last released in September 201817. The core of
this approach is represented by the extension of an incremental parser that allows the
nesting of languages by employing the notion of language boxes, in that each box has a
dedicated incremental parser that maintains its own parse tree. Eco implements a subset
of the Name Binding Language approach [129], which defines a declarative language for
specifying scoping rules and to avoid variables from different methods to “bleed” into each
other. The result is that only names visible to a given scope are shown as content-assist
suggestions. In conclusion, Eco does not support OCL or formal constraints, but instead

14The Cedalion project files are available online at https://sourceforge.net/projects/

cedalion/files/.
15A link to the JetBrains MPS release notes is available at https://www.jetbrains.com/mps/

download/.
16Constraints in JetBrains MPS User Guide are available online at https://www.jetbrains.com/

help/mps/constraints.html.
17The Eco language workbench is available online for download at https://soft-dev.org/src/

eco/.

158

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://sourceforge.net/projects/cedalion/files/
https://sourceforge.net/projects/cedalion/files/
https://www.jetbrains.com/mps/download/
https://www.jetbrains.com/mps/download/
https://www.jetbrains.com/help/mps/constraints.html
https://www.jetbrains.com/help/mps/constraints.html
https://soft-dev.org/src/eco/
https://soft-dev.org/src/eco/
https://www.tuwien.at/bibliothek

5.7. Analysis

employs simple scoping mechanisms for coping with individual contexts that may be
represented by multi-lingual instances.

DrRacket The DrRacket language workbench [80] offers the Racket language and
was last released in November 201918. Racket is a programming language for the
creation of new programming languages. A Racket programmer may annotate an existing
module with explicit types and expected type soundness. Language invariants are not
automatically protected by Racket. Language engineers of Racket-based languages build
on Miller’s proxy mechanism and, thus, may create customized proxies that monitor values
to guarantee basic invariants. More specifically, function access, immutable values, and
mutable structures of objects may be monitored. In conclusion, Racket does not support
OCL, and language designers may create customized types with basic invariants, as well
as handcraft proxy monitor implementations to enforce the consistency of invariants.

Melange The Melange language workbench [59] was last released in July 201719.
Melange allows to supplement static semantic rules expressed as OCL constraints in
Ecore metamodels. Thus, Melange relies on the EMF compiler, which is based on a
generator model that enables the generation of Java code from an associated Ecore
metamodel, and the Xtend compiler, which generates Java code from a Melange aspects
file. Moreover, Melange is operable within the EMF ecosystem and can be employed
with other EMF ecosystem tools, such as Xtext or Sirius. The Melange approach focuses
on the building of DSLs by safely assembling and customizing legacy DSL artifacts.
Although Melange supports the process of DSL creation by employing OCL constraints
in Ecore metamodels, it does not offer automated generation of IDE features, such as
model validation, content assist, and model repair.

Ensō The Ensō language workbench [209] was last updated in July 201920. Ensō is an
external language workbench with graphical and textual editing capabilities. Ensō-based
languages are defined by a schema or the model of its internal representation that may
be rendered textually or graphically. The mapping between text and object graphs may
be further controlled using predicates, i.e. constraint expressions on fields of objects in
the object graph. During parsing, the values of these fields are updated to ensure that
these constraints are fulfilled. In conclusion, Ensō does not support OCL. It employs
predicates, however, in order to control the mapping between text and object graphs.

SugarJ SugarJ [68] was last updated in April 201621. SugarJ offers encoding constraint
specifications as part of rules (referred to as desugaring rules) that define and transform

18The Racket download page is located at https://download.racket-lang.org.
19The Melange language workbench Eclipse Update Site is located at http://melange.inria.fr/

updatesite/releases/.
20The Enso language workbench Github project is located at https://github.com/enso-lang/

enso.
21The SugarJ Github project is located at https://github.com/sugar-lang/main.

159

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://download.racket-lang.org
http://melange.inria.fr/updatesite/releases/
http://melange.inria.fr/updatesite/releases/
https://github.com/enso-lang/enso
https://github.com/enso-lang/enso
https://github.com/sugar-lang/main
https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

extended syntax into host language syntax. Restrictions in SugarJ may be defined
using regular expressions in desugaring rules. By neglecting the support of model repair
mechanisms, however, and due to the limited expressiveness of regular expressions based
on a dedicated language, the approach presented in this chapter may not be applicable
in SugarJ. The applicability of a constraint system that separates the generation from
the verification of constraints may allow their interleaved execution with desugaring, as
opposed to interfering with the application of desugaring, and may form the focus of
future work. In conclusion, SugarJ does not support OCL. Although a dedicated regular
expression language is provided to enable constraint specification within desugaring rules,
no automated validation, content assist, and model repair mechansism are available.

Visual Studio Microsoft Visual Studio [51] offers no support for formal constraints.
Validators and rules that change model elements depending on other model elements may
be implemented manually to define model validation, content-assistance, and limited
model repair. The approach presented in this chapter may be applicable in Visual Studio
if the requirement of support for EMF/OCL is fulfilled.

Epsilon The Epsilon platform [186] was last released in September 201822. The Epsilon
language family includes the Epsilon Validation Language (EVL), an OCL-like validation
language that supports dependencies between constraints displayed to the user and the
specification of fixes in the Epsilon Object Language (EOL), which may be invoked to
repair inconsistencies. Epsilon is integrated with the EMF validation framework and
GMF. EVL supports OCL-like first-order logic operations, such as select, reject, and
collect. Work on EVL has identified some shortcomings of OCL and, in particular,
poor support for user feedback, no support for warnings, no support for dependent
constraints, limited flexibility in context definition, and no support for the repair of
constraint violations [126]. Language designers may employ EVL for the definition of
semi-automatic model repair mechanisms alongside invariants. Hence, compared to the
approach presented in this chapter, Epsilon does not automatically generate model repair
solutions for violated constraints. In conclusion, Epsilon offers EVL to enable the manual
specification of model repair functionality. Model repair solutions, however, are not
automatically generated. Moreover, as a result of EVL constraint specifications not being
defined as part of metamodels, the approach presented in this chapter may not be readily
applicable in Epsilon. The transformation of OCL constraints in metamodels to EVL
specifications, however, as well as the implementation of model repair solutions based on
EVL may ultimately enable the applicability of the approach presented in this chapter
within the Epsilon platform.

22The Epsilon stable Update Site is located at http://download.eclipse.org/epsilon/

updates/.

160

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://download.eclipse.org/epsilon/updates/
http://download.eclipse.org/epsilon/updates/
https://www.tuwien.at/bibliothek

5.7. Analysis

Whole Platform The Whole Platform [196] was last released in 2014 and updated
in November 201923. The Whole Platform is an Eclipse-based language workbench
that employs generative model driven technology for the design and implementation
of new languages and tools. In summary, the Whole Platform does not support OCL
or, according to its technical report, textual formal constraints. Thus, the support
for language constraints, model validation, content assist, and model repair must be
handcrafted by language engineers.

Language
workbench

Formal
constraint
definition

OCL

Manual
constraint
validation

Automated
constraint
validation

Manual
content
assist

Automated
content
assist

Manual
model
repair

Automated
model
repair

MetaEdit+ # # #

Rascal # # # N/A24 # #

MontiCore # # # # # # #

Spoofax G# # # # #

Xtext G# G# # G# G#

Jetbrains MPS G# # #

Eco # # # # # #

DrRacket # # # #

Melange G# G# # # # # #

Enso # # G# G# # # # #

SugarJ G# # G# G# # #

VisualStudio # # # # # #

Epsilon # # # #

Whole Platform # # # # # # # #

Table 5.4: Structural constraints in language workbenches (= full support; G#= partial
support; #= no support).

In summary, the results of this analysis are depicted in Table 5.4 and indicate that
none of the analyzed workbenches offer both the capability to extend language definitions
with formal constraint specifications, such as OCL invariants, or the application of formal
constraints for the automated generation of language IDEs with built-in validation,
content assistance, and model repair mechanisms. Moreover, the results of this analysis
also indicate that the restriction of languages with structural constraints is manifested
in the analyzed workbenches either by the application of workbench-specific languages,
GPL code, or a combination thereof. Note that, although the results of this analysis
include direct communication with tool developers, a comparison that involves the
employment of individual language workbenches for the development of comprehensive
language implementations may produce deviating results. Further, note that language

23The Whole Platform Github release page is located at https://github.com/wholeplatform/
whole/releases.

24Not enough information for an evaluation of manual scoping in Rascal could be retrieved.

161

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://github.com/wholeplatform/whole/releases
https://github.com/wholeplatform/whole/releases
https://www.tuwien.at/bibliothek

5. Consistency-achieving integrated development environment

workbenches that have not been updated for three years prior to November 2019, or for
which crucial information, such as documentation and implementation, has not been
made available, do not appear in Table 5.4. In particular, these include Intentional
Software [194], EMFText [101, 102], and Cedalion [146].

Full support for structural constraints is provided in Epsilon [186], DrRacket [80], and
MetaEdit+ [195, 206]. Epsilon, however, does not represent an actual language workbench,
which may be used to generate a modeling language, but a family of languages, including
the Epsilon Validation Language (EVL), which is based on similar concepts as OCL. Hence,
EVL may be used to formulate constraints that may be used in conjunction with other
EMF tools, such as Xtext, for the creation of modeling languages. More specifically, EVL
may be used to augment and evaluate structural constraints in Ecore models. Therefore,
the approach presented in this chapter may be extended to support the application of
EVL, and benefit from its advantages, such as support for dependent constraints and
enhanced flexibility in context definition [126]. DrRacket offers specification of structural
restrictions and automated validation of contracts. Further, DrRacket allows language
engineers to handcraft functions for the visualization of error locations and the recovery
of contract validity. MetaEdit+ employs a metamodeling language for the specification
of graphs, objects, properties, ports, roles, and relationships, and a scripting language
for the specification and automated validation of structural constraints. Moreover,
MetaEdit+ allows language engineers to implement validation, content assistance, and
model repair manually. MetaEdit+, however, represents a non-generative approach and,
thus, facilitates both language definition and application within the same tool instance.
As such, MetaEdit+ may only allow the non-generative part of the approach presented
in this chapter.

Xtext [70], JetBrains MPS [212], Melange [59], Spoofax [118], and SugarJ [68] provide
partial support for structural constraints. Both Xtext and Melange build on EMF by
means of language specifications in the form of Ecore metamodels that may be augmented
with OCL invariants and, thus, reflect the same means as the approach presented in
this chapter. Although Melange does not engage in the generation of modeling language
implementations, it may do so in conjunction with EMF-based tools, such as Xtext
or Sirius [211]. Hence, the capabilities of modeling languages that are specified by
employing Melange are limited by the EMF-based tool that is applied to generate
language implementations. Additionally, Melange provides a dedicated metalanguage
for the specification of model types that are based on the definition of groups of related
types, i.e. a set of constraints over admissible model graphs. Both Xtext and Melange
employ the default OCL interpreter that is provided by EMF, offering limited automated
validation, such as the display of error messages as illustrated in Figure 5.13. Moreover,
Xtext provides facilities for the manual specification of content-assist and model repair
behavior and offers automated generation of limited model validation and basic content
assistance for modeling languages.

162

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.8. Summary

5.8 Summary

This chapter presented an approach for leveraging formal language definitions with con-
straint specifications for the automated generation of modeling language implementations
with enhanced IDEs. The requirements imposed for the generation of solutions for content
assistance and model repair include the preservation of model consistency for the former
and the improvement or recovery of model consistency for the latter. In addition, rather
than highlighting entire sub-structures of models as erroneous and neglecting structures
which impact constraint violations, IntellEdit computes and visualizes consistency
violations in a fine-grained manner to IDE users, thus enabling precise localization and
eventual repair. Further, generated solutions are sorted according to quality and cost,
ranked, and visualized to IDE users. As a result, a custom search approach based
on SBSE-techniques has been developed, which proposes consistency-maintaining and
consistency-restoring change actions that are manifested as content-assist suggestions and
model repair solutions respectively. Therefore, challenges imposed by the requirements
of the presented approach and, in particular, the delivery of change actions that do not
introduce constraint violations, such as limitations of SBSE implementations, have been
addressed. More specifically, challenges include the procurement of neighborhood popula-
tions, the escape of local optima solutions, and the computation of optimal solutions that
are based on multi-objective search, thus enabling proposals that consist of simultaneous
change actions on multiple model features.

In conclusion, the application of the approach presented in this chapter enables
language designers to do away with the handcrafting of implementations of modeling
language IDEs by facilitating the automated generation of modeling language IDEs from
language definitions composed of metamodels and formal constraints. More specifically,
the presented approach enables the automated generation of modeling language IDEs with
precise validation, consistency-preserving content assistance, and consistency-restoring
model repair, all of which are capabilities far beyond those offered by state-of-the-art
language workbenches. Overall, the evaluation of the approach indicates a two-fold
improvement in validation precision over existing solutions, content assistance that
retains model validity, and model repair solutions that reduce the number of violated
constraints by approximately 67%.

163

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 6
Reusable notation-template

language and design framework

T
he previous chapter introduced an approach and tool for automating the generation
of enhanced modeling language implementations with IDEs that feature precise

validation, consistency-preserving content assist, and consistency-recovering model repair.
This chapter presents an approach composed of a language and framework for the design
and application of reusable modeling language notation templates that are metamodel-
agnostic (i.e. structure-independent), metamodel-dependent, or a combination thereof.

Domain-specific languages enable concise and precise formalization of domain concepts
and promote direct employment by domain experts. Therefore, syntactic constructs are
introduced to empower users to associate concepts and relationships with visual textual
symbols. Model-based language engineering facilitates the description of concepts and
relationships in an abstract manner. Concrete representations, however, are commonly
attached to abstract domain representations, such as annotations in metamodels, or
directly encoded into language grammar. Thus, they introduce redundancy between
metamodel elements and grammar elements. Against this background, an approach is
proposed that enables autonomous development and maintenance of domain concepts and
textual language notations in a distinctive and metamodel-agnostic manner by employing
notation-specification models containing grammar rule templates and injection-based
property selection. The implementation of the proposed notation-specification language is
showcased in a comparison with state-of-the-art practices during the creation of notations
for modeling language implementations that are based on the Eclipse Modeling Framework
and Xtext. Figure 6.1 recaptures the contributions of this thesis and highlights the
contribution presented in this chapter.

The remainder of this chapter is organized as follows. Section 6.1 introduces the
approach and its motivations. Section 6.2 provides a brief overview of the methodologies

165

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

Textual
modeling language

NotationDedicated IDEStructure

XML Schema integration
and assistance framework

Modeling
assistance

Model
transformation

C 1

Metamodel
generation

Basic notation
customization

Reusable notation-template
language and design framework

Notation-template language and IDE

Notation
design

Grammar
generation

Template
extension

Consistency-achieving IDE
generation and runtime framework

Content
assistance

Model
validation

IDE
generation

C 2

Restrictions
integration

IDE
runtime

Model
repair

integrated
consistency
resolution,

preservation,
and repair

assisted
language structure

design and integration

integrated
notation-template

design and
extension

Artefact

Component A Component B

C #

Contribution #

C 3

implementation
used

Figure 6.1: Contribution presented in this chapter.

and techniques upon which the approach is built. Section 6.3 and Section 6.4 present
the challenges and requirements of the approach presented in this chapter respectively.
Section 6.5 conceptually aligns the approach alongside the model-first and grammar-
first approaches, and presents the language and framework for the design of reusable
and extensible notation templates [163]. Section 6.6 presents the evaluation of the
approach on a case study based on usability indicators of Domain-Specific Languages
(DSLs) [105, 6]. More specifically, a set of popular open-source modeling languages
are retrieved from Github and employed to evaluate the integratability, expressiveness,
and conciseness of the approach and, in particular, the notation-template language in
comparison with handcrafted grammar and grammar produced by a state-of-the-art
metamodel-to-grammar generator. Section 6.7 analyzes and compares the proposed
approach with related work. Finally, Section 6.8 concludes the chapter by summarizing
the presented work.

6.1 Introduction

The engineering of a modeling language (cf. Section 2.4.2) is typically initiated by the
construction of an artifact that captures concepts and relationships inherent to the
domain being represented. Typical artifact types include variations of metamodels and
grammars—each, of inherently different nature [122]. Metamodels are commonly used to
capture concepts and relationships of a domain in the form of structural features such
as classes, attributes, and relationships. Grammars are employed to capture domain
concepts and relationships, as well as their visual representation by utilizing production
rules and terminal rules.

The design of a notation of a language is in fact the design of the user interface
of the given language. Therefore, the syntax of a language plays an important role

166

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.1. Introduction

in user acceptance and is, therefore, regarded as a crucial factor for the success of a
language [198]. For example, multiple different notations facilitate the integration of
various types of stakeholders and support numerous use cases by targeting particular
aspects of a domain [69]. The design of effective user interfaces, however, is an iterative
process by nature, as it requires the evaluation of individual alternatives involving the
testing of alternative notations in real-world conditions [166].

The classical approach to language development presumes that the syntax of a
language is constructed upfront and results in the complete specification of language
grammar that is augmented with semantic actions (i.e. functions that receive a list of
values from subordinate nodes and produce a value) and employed to generate a parser
for the given language [3]. Thus, modifying the syntax of a language typically requires
adaptation of semantic rules, which makes the reshaping of the notation of a language
a strenuous process. For example, modifying the syntax of a language to support the
combination of flexible declaration sequences and whitespace semantics requires to state
every possibly occurring sequence explicitly and causes the size of production rules to
multiply by the number of structural features occurring in the containing classes.

The separation of syntax and the structural features of a domain arises from the
motivation to increase notational flexibility by enabling the accommodation of various
notations, such as those observed in programming languages as well as other domains.
As a result, acknowledging the individual preferences of domain experts (shaped by their
respective backgrounds), leads to the establishment of notations that closely resemble
representations familiar to stakeholders, thus, driving greater user satisfaction.

Although state-of-the-art language workbenches, such as Xtext [70], provide means
to generate grammars from metamodels and vice-versa, they provide a single (default)
notation, i.e. either graphical, textual, or a combination thereof, that has to fit the needs
of every type of stakeholder, such as domain experts, or that requires dedicated language
engineering skills for adaptation and extension. The construction of a bridge between
metamodel and grammar, and in particular from metamodel to grammar, is commonly
approached by the introduction of annotations in metamodels or the construction of
metamodel-to-grammar transformations [5]. The construction and maintenance of such
bridges, however, is inherently complex and error-prone due to fundamental differences
between metamodels and grammars. Moreover, such bridges are often metamodel-
dependent (i.e. depend on a particular domain-specific metamodel) and are, thus, not
universally applicable to arbitrary domains.

In this chapter, the Ecore Concrete Syntax Specification (ECSS) framework—
a novel textual notation description language and toolkit that enables the definition
of both metamodel-dependent and metamodel-agnostic representations for EMF-based
modeling languages—is presented and employed for the adoption of diverse language
variants by automating the generation of textual modeling language implementations
with supporting editors and tools from Ecore metamodels. In summary, ECSS facilitates
the creation, extension, and reuse of textual notations (henceforth referred to as “style
models”, “ECSS models”, “notation-specifications”, and “notation-templates”), as well

167

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

as the generation of grammar and executable implementation of modeling languages from
pairs that consist of domain metamodels and style models.

6.2 Background

Model-Driven Engineering and Domain-Specific Languages. The work pre-
sented in this chapter specifically focuses on the construction and maintenance of textual
modeling languages or textual Domain-Specific Modeling Languages (DSMLs), i.e. the
employment of Model-Driven Engineering (MDE) in the context of DSLs [85], by con-
structing an approach on top of the Xtext language workbench that is built on the
EMF [70, 197]. More specifically, EMF is the quasi-reference implementation of the
Essential Meta Object Facility (EMOF) standard [168] and provides a closed and strict
metamodeling architecture, which defines the model on the uppermost layer to con-
form to itself, as well as the correspondence of every model element with a model
element of the layer above respectively. EMOF, as well as the Extended Backus–Naur
Form (EBNF) [219], represent DSLs to define languages in the form of metamodels
and Context-Free Grammars (CFGs), i.e. also referred to as “text-based concrete syn-
taxes” and “notations” respectively. In the EMF, an Ecore model—also referred to as
EMF-based “metamodel” or “abstract syntax”—corresponds to the M2-layer in EMOF
(cf. Figure 2.1) and acts as an abstract representation of the concepts, properties, and
relationships that are embodied in a real-world system. Further, the M1-layer in EMOF
represents instances that specify actual values for concepts, properties, and relationships
as defined in their corresponding M2-layer Ecore model.

Language Engineering and Workbenches. Language workbenches [84], such as
Xtext, are tools that provide a range of features, such as dedicated editors, model
transformations and validations, for modeling language specifications. In general, Xtext
employs the ANTLR parser generator [174] for the production of implementation artifacts,
such as lexers and parsers, and offers two different language-construction mechanisms,
i.e. typically selected as a result of an engineer’s familiarity with the technical spaces1

of grammarware and modelware [218]. On the one hand, grammarware engineers (i.e.
experienced with traditional CFGs) may construct CFGs and employ the Xtext mechanism
for deriving EMF-based metamodels. On the other hand, modelware engineers (i.e. skilled
with the application of MDE-based technologies), may develop EMF-based metamodels
and derive CFGs by employing metamodel-to-grammar transformations. Although Xtext
supports both, the main focus is to facilitate tool interoperability by providing grammars
at the front-end and metamodels at the back-end [171, 223].

1Technical space refers to a working context with a set of associated concepts, body of knowledge,
tools, required skills, and possibilities often associated with a given user community with shared know-how,
educational support, common literature, and scientific venues [139].

168

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.3. Challenges

6.3 Challenges

Despite the fact that state-of-the-art modeling language workbench frameworks facilitate
language development, for example by automating the generation of complex parser
implementations, they still restrict the development and maintenance of production-ready
modeling language implementations to engineers that are trained in the construction of
unambiguous EBNF-based grammars. For example, the Xtext framework proposes a
model-first approach that builds on a single notation that must either fit the needs of
different types of stakeholders or that requires modelware engineers to perform dedicated
language engineering tasks, such as customization and extension of model transformations,
grammar generators, or grammars themselves. More specifically, model transformations
or grammar generators, such as the state-of-the-art grammar generator of the Xtext
framework [70], produce grammars from domain-specific structural specifications such as
Ecore metamodels. Therefore, the development of modeling language implementations,
and more specifically the customization of the visual textual language notations, is
challenged by the language engineering skills of individual modelware engineers and,
in particular, their ability to ingrain notational information into language grammars
effectively.

Moreover, the implementation of a modeling language workbench framework steers
and constraints the method of creating and maintaining language implementations and,
in particular, language grammars. Thus, as opposed to focusing on language design,
such as the capturing of domain-specific concepts, language developers must handle
the peculiarities of maintaining customized, unambiguous grammars. For example,
performing changes in the structure of a domain, such as the addition, removal, or editing
of structural features that are represented by metamodel classes and attributes, must
be followed by the re-generation of grammar and, thus, the re-execution of any manual
steps that led to the final state of the previous version of the grammar.

Further, use cases which employ hand-crafted bridges between metamodels and
grammars challenge the maintenance of modeling language implementations as a result
of the inherently fundamental differences between metamodels and grammars and, in
particular, the complexity and structural dependence of mappings between metamodels
and grammars. Although tools, such as model transformations or grammar generator
implementations, are available for the construction of such mappings, they rarely manifest
as metamodel-agnostic bridges and are, thus, not universally applicable [5]. In other
words, these bridges are typically bound to either a specific metamodel (i.e. designed
to be applied to a specific set of domain-specific concepts), or a specific notation (i.e.
designed to yield the same representation for all domain-specific concepts), or both
(i.e. designed for a set of domain-specific concepts and the production of a dedicated
representation thereof).

169

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

6.4 Requirements

The requirements to establish an approach enabling reusable notation templates for the
design of textual modeling languages include the following.

The approach must be applicable within the context of model-first language devel-
opment and, thus, support the manifestation and maintenance of modeling language
implementations that are initiated by language developers and, in particular, model-
ware engineers, through the materialization of structural features in domain-specific
metamodels (i.e. acting as representations of domain-specific concepts and relationships).

Moreover, as opposed to combining the specification of concepts and notations in
a singular artifact, such as through the annotation of components in domain-specific
metamodels, the approach must separate language structure from language representation
to outline the fundamental premise of notation-reusability. Additionally, notation-
templates must be extendable and, therefore, enable the inheritance of specifications of
representation that are defined by (pre)existing notation-templates.

Further, the notation-template language must enable the design of textual represen-
tations that are metamodel-dependent, metamodel-agnostic, or a combination thereof.
Therefore, the notation-template language must facilitate notation-templates for a set of
domain-specific concepts and relationships (i.e. represented by a set of structural features
in an Ecore-based domain-specific metamodel), a domain-agnostic set of concepts and
relationships (i.e. represented by a set of structural features in individual domain-specific
metamodels2), and a set that combines domain-specific and domain-agnostic concepts
and relationships (i.e. represented by a set of structural features introduced by individual
domain-specific metamodels and the metamodel of the Ecore language itself).

Next, the approach must enable the facilitation of pairs that consist of metamodels
and notation-templates for the automated generation of grammars that act as artifacts
with overlapping structural and representational specifications as defined by metamodels
and notation-templates respectively.

Finally, the approach must provide a facility for the creation and maintenance of
notation-templates through the contribution of a dedicated IDE for the creation and
editing of notation-templates.

6.5 Approach

Within this section, the approach is outlined alongside its application to a domain-
specific model created as a case study. First, a typical language engineering use case is
introduced by illustrating the application of the state-of-the-art model-first and grammar-
first approach on the structure, model, and notational requirements of the domain-specific

2Structural features that are depicted in the Ecore language metamodel, such as EClass, EAttribute,
and EReference, are instantiated by Ecore-based domain-specific metamodels.

170

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Approach

language for modeling space transportation services (i.e. introduced throughout Section 2).
Second, the design principles, structural components, and selection modes of the notation-
template language are introduced. Third, the notation-template language is employed
to design a notation-template that fulfills the notational requirements of the space
transportation service language, as outlined in Section 6.4. Finally, the mechanism
that generates executable modeling language implementations from tuples that consist
of notation-template models and domain-specific metamodels is presented, and the
limitations of the contributed implementation are outlined.

6.5.1 Overview

Within this section, a typical language engineering use case [136, 121] is presented
that involves the construction of a modeling language by employing Xtext and the
EMF and, in particular, a metamodel for capturing the concepts and relationships
of space transportation services language. Moreover, this metamodel formulates the
foundation upon which model-first state-of-the-art practices (i.e. employing model-
to-text transformations and manual grammar adaptation), as well as the approach
presented in this chapter construct and modify grammars (i.e. embodying structural and
representational information).

Language Structure. The metamodel of the exemplary language (cf. Figure 2.3)
instantiates the core components of the Ecore language, such as (abstract) classes,
attributes, (containment) references, and enumerations. More specifically, the following
concepts and relationships are defined: a SpaceTransportationService may own launch
sites, launch schedules, spacecrafts, and engine types; a Spacecraft is defined by name,
relaunch-cost, stages, manufacturer, country of origin, physical properties, functions,
such as being an orbital launcher or intercontinental transport vehicle, and launch sites
for which it is certified for launch; a Stage is defined by name, engine type, and physical
properties; a PhysicalProperty is defined by type, such as length, volume or mass, unit,
and value; a LaunchSite is defined by name, location, operator, number of launchpads,
operational status, and physical properties; a LaunchSchedule is defined by name and
launch events; and a LaunchEvent is defined by mission title, start date and time, launch
site, and spacecraft.

Example Model. Figure 6.2 illustrates a handcrafted graphical model of an example
space transportation service that is composed of a spacecraft, a launch schedule, a launch
site, and two types of engines. The depicted spacecraft named Falcon Heavy functions
as ORBITAL_LAUNCHER, is manufactured by SpaceY, originates from the country USA,
has a relaunch cost of 90 million USD, and has a set of physical properties describing its
LENGTH, WIDTH, DIAMETER, and MASS. Further, the modeled spacecraft is composed
of two stages and, in particular, a first stage with nine engines of type Merlin 1D and
a secondary stage with a single engine of type Merlin 1D Vacuum. In addition, an
operational launch site named Kennedy Space Center is defined with operator NASA,

171

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

three launchpads, and a location based on latitude and longitude. Finally, a launch
schedule with two launch events is specified for the spacecraft and launch site described
above.

SpaceTransportationService

Launch Schedule

spacecraft

Launch Event

missionTitle: "GPS II-03 navigation satellite deployment"

startDateTime: "2020-01-31T12:00:00Z"

Launch Event

missionTitle: "AFSPC-44 payload deployment (classified)"

startDateTime: "2020-09-30T12:00:00Z"

Spacecraft FH

functions: { ORBITAL_LAUNCHER }

name: "Falcon Heavy"

manufacturer: "SpaceY"

countryOfOrigin: "USA"

relaunchCostInMioUSD: 90

Stages

Stage FirstStage

engineAmount: 9

Stage SecondStage

EngineTypes

EngineType M1D

name: "Merlin 1D"

fuelKind: "Subcooled LOX / Chilled RP-1"

EngineType M1DV

name: "Merlin 1D Vacuum"

fuelKind: "LOX / RP-1"
engineAmount: 1

LaunchSites

LaunchSite NKSC
name: "Kennedy Space Center"

operational: true

locationLatitude: 28.524058

locationLongitude: -80.65085

operator: "NASA"

numberOfLaunchpads: 3

PhysicalProperties

PhysicalProperty

type: LENGTH

unit: m

value: 70.0

PhysicalProperty

type: DIAMETER

unit: m

value: 3.66

PhysicalProperty

type: WIDTH

unit: m

value: 12.2

PhysicalProperty

type: MASS

unit: kg

value: 1420788.0

engineType

engineType

launchSite

Figure 6.2: Visual graphical model of an example space transportation service.

Notational Requirements. The requirements of the textual notation of the language
to be constructed include indentation-based layout (also referred to as offside-rules [142, 1],
representing the determination of code block-structure by means of indentation and
layout based on the concept of layout-sensitive languages [142, 1], such as Python, Haskell,
CoffeeScript, and YAML Ain’t Markup Language (YAML) [17]), and arbitrary order of
declaration (i.e. flexible or unordered sequence of instantiation). Listing 6.1 presents
an excerpt of the space transportation service model of Figure 6.2 (cf. complete model
depicted in Appendix 6) visualized by means of a textual notation that fulfills both of the

172

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Approach

requirements of indentation-based layout and arbitrary order of declaration. The former
allows the use of hidden tokens, such as whitespace, as separators instead of visible tokens,
such as curly brackets. The latter enables the use of alternative sequences (i.e. sequences
that are differentiated from those defined in a domain-specific metamodel). For example,
as opposed to restricting the occurrence of location coordinates to the beginning of a
launch site definition, they may appear at the end.

1 SpaceTransportationService:

2 launchSites:

3 name: KennedySpaceCenter

4 operator: NASA

5 operational: true

6 numberOfLaunchpads: 3

7 locationLatitude: 28.524058

8 locationLongitude: 80.65085

Listing 6.1: Instance of a space transportation service (excerpt).

Language implementation

Legend

Component

Subcomp. A Subcomp. B

reference

Grammar-first approach

Notation-template approach Model-first approach

transformation

Grammar

generate

Metamodel

reference
generate generate

Metamodel

Notation-template
model

Grammar
generate

generate

Textual
modeling language

Structure Tooling

Metamodel

generate

Grammar

reference

G1

#

Step

G2

G3

M1

M2

E1a

E1b E2

E3

adapt

M4

M3
Notation

Figure 6.3: Overview of steps involved in the manifestation of language implementations
as occurring in the approaches of model-first and grammar-first, and the approach
presented in this chapter.

The model-first approach [170] of constructing a textual modeling language (cf. top-
right gray rectangle in Figure 6.3) is typically applied by developers who are most
familiar with MDE, and is composed of the following steps: M1, i.e. construction of a
domain-specific metamodel (cf. result in Figure 2.3); M2, i.e. application of a generic
metamodel-to-grammar transformation (cf. excerpt and complete version of result in

173

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

Listing 6.2 and Appendix 3 respectively); M3, i.e. manual adaptation of generated
grammar to fulfill the notational requirements stated above (cf. excerpt and complete
version of result in Listing 6.3 and Appendix 4 respectively); and M4, i.e. generation
of language implementation (cf. center gray rectangle in Figure 6.3). Note that in the
case steps M2 and M3 are replaced by the creation and application of a dedicated
metamodel-to-grammar transformation (i.e. as opposed to the Xtext metamodel-to-
grammar transformation [203]), which is typically highly coupled to a specific metamodel,
requires the maintenance of both dedicated metamodel and metamodel-to-grammar
transformation.

1 Stage returns Stage:

2 ’Stage’ name=ID ’{’

3 ’engineAmount’ engineAmount=EInt

4 ’engineType’ engineType=[EngineType]

5 (’physicalProperties’ ’{’

6 physicalProperties+=PhysicalProperty

7 ("," physicalProperties+=PhysicalProperty)*
8 ’}’)?

9 ’}’;

Listing 6.2: Result of step M2—generated domain-specific grammar (excerpt).

In order to yield a textual modeling language that supports indentation-based layout
(i.e. prescribing that every non-whitespace token of a structure must be further to the right
than the token that initiated the structure), as well as a flexible order of specification, the
following adaptations on the generated grammar are performed. First, synthetic tokens
(i.e. offering the specification of whitespace-semantics employing synthetic terminal
rules) are introduced for the beginning and end of a line (cf. lines 1–2 in Listing 6.3).
Next, production rules are adapted to employ the specified synthetic tokens (cf. lines
6–11). Second, in order to support arbitrary order of declaration alongside whitespace-
semantics, every possibly occurring sequence must be depicted by the grammar, which is
accomplished by intermediating rule assignments with a vertical line (i.e. indicating a
logical or) and enclosing them with brackets ending with a star-character (i.e. indicating
zero or multiple occurrences). The combination of flexible sequences and whitespace-
semantics, however, requires to state every possibly occurring sequence explicitly and,
thus, causes the size of production rules to multiply by the number of structural features
occurring in the containing classes. In Xtext, the ampersand character “&” may used
to define an unordered group of two or more elements (i.e. indicating arbitrary order
of occurrence). The result of extending Listing 6.3) with support for arbitrary order of
declaration is depicted in Appendix 4.

1 terminal BEGIN: ’synthetic:BEGIN’;

2 terminal END: ’synthetic:END’;

3

4 Stage returns Stage:

5 name=ID ’:’

6 BEGIN

7 (

174

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Approach

8 (’engineAmount’ ’:’ engineAmount=EInt)

9 (’engineType’ ’:’ engineType=[EngineType|EString])

10 (’physicalProperties’ ’:’ BEGIN physicalProperties+=PhysicalProperty (

physicalProperties+=PhysicalProperty)* END)?

11)

12 END

13 ;

Listing 6.3: Result of step M3—manually adapted domain-specific grammar (excerpt).

The grammar-first approach of constructing a textual modeling language [170] (cf.
bottom-left gray rectangle in Figure 6.3) is typically applied by developers most ac-
quainted with grammar-based language engineering. It is composed of the construction
of a domain-specific grammar (cf. step G1), the application of a generic grammar-to-
metamodel transformation (cf. step G2), also referred to as metamodel-derivation, and
the generation of the language implementation (cf. step G3). Although step G2 may be
performed as a background process in Xtext, i.e. alongside step G3, possibly without
the language developers’ awareness, it represents an obligatory process in yielding the
executable implementation of a textual modeling language (cf. center gray rectangle in
Figure 6.3).

Model-first language engineering creates metamodels for capturing domain-specific struc-
tural semantics and constraints and, thus, represents the target application methodology
of the approach presented in this chapter. The approach, however, is also applicable for
use cases in which domain-specific metamodels are derived from grammars and employed
alongside notation-template models to generate executable implementations of textual
modeling languages which are based on grammars that follow the notation defined in
respective notation-template models.

6.5.2 Notation-template language

This section presents the design principles, as well as the structural and syntactic
components of the notation-template framework and language, and in particular its
implementation as represented by the ECSS framework and ECSS language respectively.

The ECSS notation-template language is designed to capture common styles of
textual syntaxes, such as YAML and JSON, and to support the automated generation of
Xtext grammars that follow the rules of such syntaxes. An initial catalogue of reusable
ECSS styles is available online at http://bit.ly/ecss-styles. ECSS is inspired
by CSS, which allows to style HTML code and offers straightforward composition, thus
aiming for similar composability and parameterizability. For example, developers must be
able to reuse, extend, and adapt notation templates by composition of notation-template
models.

The core structural component of the ECSS language (cf. Figure 6.4) is a Model that
may extend existing instances of notation-template models through imports, and contains

175

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://bit.ly/ecss-styles
https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

Model

PropertyRule TemplateRule

Selector Property

TemplateMatch SlotMatch

SingleSelector

Condition FormalExpression

PropertyValue

ForEachExpression

IfExpression

SlotCall

EvaluationCall

TemplateFunctionCall

TemplateParameterValue

0..* properties 0..* templates

0..1 selector 0..1 property

0..1
propertyValue

0..1 slotMatch0..1 templateMatch
0..* selectors

0..1 selector 0..1 first 0..1 second

0..1 condition

0..1 expression

0..1 expression

0..* parameterValue

0..* imports

Figure 6.4: Structural components of the notation-template language (excerpt).

a set of rules that define properties and templates. PropertyRules may be composed of a
selector and a property. Selectors may be composed of SingleSelector instances that may
contain a Condition that is defined by a FormalExpression, such as an OCL expression.
Each single selector selects a particular rule application instance. A Selector defines a
name and, thereby, selects rule applications with matching names. More specifically, the
name for a rule that has a single feature as a parameter refers to the name of the feature,
i.e. the name of the class in the case of a single class. Additionally, a Selector may select
subclasses by specifying the name of the rule that is named by its superclasses. Similarly
to HTML, a sequence of single selectors chooses rule applications based on their hierarchy.
More specifically, a rule application is chosen for a sequence of selectors if it matches
the last single selector, and also if a direct or indirect parent matches the remaining
selectors. In addition to basic names, selectors may also specify the admissibility of rule

176

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Approach

applications by employing OCL expressions.

Instances of Property may be composed of a TemplateMatch, a SlotMatch, and a
PropertyValue. A template match contains a name and associates a priority for using the
template name for the rule application under consideration. A SlotMatch contains a pair
composed of attributename and slotname and, thereby, defines the priority of an attribute
being matched to a slot. A property value associates a property of the rule application
to a certain value, which may be a constant or an OCL expression evaluation result. The
application of properties may be further limited by restrictive OCL expressions.

TemplateRules manifest as expressions, such as ForEachExpression and IfExpression,
or calls, such as EvaluationCall and TemplateFunctionCall, and may contain static
executed code parts and static outputs. A ForEachExpression triggers the generation
of code for each object in a parameter of the rule application. A TemplateFunctionCall
provides an opportunity to create a subsequent rule (subrule) application and may own
instances of TemplateParameterValue that originate from rule application parameters,
values calculated from property rules, and values of a slot (i.e. defined by a multiplicity
determining the minimum and maximum amounts of subsequent features that are
distributed in the slot). An EvaluationCall produces output based on a property value.
A TemplateFunctionCall produces output either as part of the parent rule (i.e. acting as
the container) or as a reference identifier (i.e. triggering content generation outside the
parent rule).

The primary syntactic components that may be employed by an ECSS model include
pronounceable keywords, such as import, template, rule, for, and if. Further, [%=...%]
defines (local) evaluation calls or value calls; [%...%] defines Java calls; and ::ruleName()
and ruleName() define template-activating character sequences for value insertion through
variable access and template function calls respectively.

6.5.3 Notation design, template extension, and IDE

The requirements imposed on the space transportation service language are fulfilled
by supplying the ECSS grammar creator with the Ecore metamodel and ECSS model
created in steps E1a and E1b of Figure 6.3 respectively. In particular, the ECSS model ws-
aware.ecss and arbitrary-order.ecss are created to fulfill the first and second requirement
respectively. Figure 6.5 depicts a screenshot of the notation-template language IDE
illustrating the design of the notation-template model file named “ws-aware.ecss”.

The rule whitespaceClassRule in Listing 6.4 defines that the features of a class are
indented (i.e. with respect to the class itself). More specifically, line 6 produces the
grammar rule header. Next, in case the class being processed has no associated attribute,
the initial content of a class is represented by classname followed by an empty space
and colon (cf. line 8). Alternatively, in case a class is composed of a set of attributes, a
rule call to the rule group nameDistRules is performed and a subrule selected (cf. line
10). Next, additional indentation is created for feature definitions that are returned by
the rule call attributeDistRules (cf. lines 12–14). The property rule NamedElement+

177

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

Figure 6.5: Screenshot of notation-template language IDE displaying ECSS model file
“ws-aware.ecss”.

178

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Approach

affects domain-specific metamodel classes that extend a class named NamedElement by
modeling its classname to be represented in uppercase characters (cf. line 19). The global
property rule, indicated by a star-selector, is metamodel-agnostic and specifies that the
classname of (any matching) class is defined by its name or, in other words, the name
of a class in its metamodel (cf. lines 23–26). Note that due to the (higher) priority of
2.0, defined by property rule NamedElement+, the global property rule with the (lower)
priority of 1.0 is only matched by classes that do not extend the class NamedElement.

1 import "default.ecss";

2

3 templateGen classGenTemplate extends classTemplate;

4

5 rule whitespaceClassRule: classGenTemplate :: classRules:

6 class.name " returns " class.name ":" "{" class.name "}"

7 [% if (slot_name.getValues().isEmpty()) {%]

8 " ’" classname "’ " " ’:’ "

9 [% } else {%]

10 nameDistRules(~name[0 .. 1])

11 [% }%]

12 ::BEGIN()

13 " (" attributeDistRules(~other[0 .. 99]) ")"

14 ::END()

15 ’;’

16 ;

17

18 NamedElement+ {

19 classname: ocl "rule.class.name.toUpperCase()"

20 priority(2.0);

21 }

22

23 * {

24 classname: ocl "rule.class.name" priority(1.0);

25 slot(name,name): 2.0;

26 }

Listing 6.4: Notation-template model for indentation-based layout (excerpt of ECSS

model file “ws-aware.ecss”).

The rule arbitraryAttributeDistr in Listing 6.5 defines a notation-template that fulfills
both the first and second notational requirement (i.e. indentation-based arbitrary order
of declaration) that is not entailed by the use of (simple) unordered groups (i.e. by use
of “&” only). More specifically, line 1 defines the import of the notation-template model
with file name “ws-aware.ecss” and, thus, instantiates an inheritance-based template
extension mechanism on the notation-template defined above. Next, line 8 defines the
initially occurring feature as arbitrary (i.e. any feature from the set of features of a class
may occur first). Following that, lines 10–11 encapsulate Java code that computes a list
of remaining class features that is subsequently iterated for the production of individual
feature occurrences that are indented (cf. lines 13–15).

1 import "wsaware.ecss";

179

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

2

3 template attributeTemplate: uk.ac.york.cs.ecss.newproc.AttributeXtendRule;

4 templateGen attributeGenTemplate extends attributeTemplate

5

6 rule arbitraryAttributeDistr: attributeGenTemplate :: attributeDistRules:

7 "("

8 for esf: features join ") | (" {

9 attributeRule(esf)

10 [% List<EStructuralFeature> subFeat = new ArrayList(features); %]

11 [% subFeat.remove(esf); boolean first = true; %]

12 "(("

13 for EStructuralFeature sub: subFeat join ") & (" {

14 attributeRule(sub)

15 } "))"

16 } ")";

Listing 6.5: Notation-template model for indentation-based arbitrary order of declaration
(excerpt of ECSS model file “arbitrary-order.ecss”).

6.5.4 Generation of grammar and language implementation

In this section, the process of generating grammars (cf. step E2 in Figure 6.3) that is
followed by the final step (cf. E3), i.e. the generation of executable textual modeling
language implementations as illustrated in Figure 6.6, is described in detail. The
grammar generator component of the ECSS framework produces textual modeling
language grammars based on ECSS models by substituting template parameters in
notation-template models with actual values and suitable subsequent values.

Complete Subrule Assocation

Rule Template

Parameter Values

Rule Value Assignment Process

Rule Template Application

Parameter Values

Rule Template

Rule template association
property rules

select root
rule template

Value
property rules

Value Slots

Rule Slots

Value Slot Association

Rule Slot Association

Complete Subrule Assocation

Rule Template

Parameter Values

Subrule Parameter Values

Rule-specific subrule Parameter extraction

select values for slots

Slot association
property rules

Distribute Parameters to Slots

For each rule slot
association

Rule template association
property rulese.g. features, classes

Generated Grammar
Rule (Part)

rule
generation

Class

Figure 6.6: Overview of the grammar generation workflow in the ECSS framework.

ECSS is built on template rules that act as code generating classes, producing code
based on values that are assigned to class fields. Class fields may manifest as (i) directly
assigned fields (i.e. field values determined by constructor parameters), (ii) styled fields

180

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Approach

(i.e. field values determined by property selectors), and (iii) slot fields (i.e. field values
derived from directly assigned fields that are distributed in slots based on priorities
computed from the set of available associations between slot and value). Moreover,
directly assigned fields may refer to model elements in the input metamodel; the value of
styled fields is the result of determining a rule template from the set of available priorities
in associations between slot and rule template. Initially, the root rule application is
selected using template property rules with their root class as a single parameter. In case
no root class is specified, this is automatically determined by the selection of the class,
which contains the highest number of (other) classes. Finally, variable associations of the
rule application are established depending on the rule application class and any subsequent
parameters that are derived from parameters of the rule. Then, property rules assign
property values to rule properties. Next, the priority of slot parameters is calculated by
applying slot value property rules and specific subsequent parameters that are distributed
among rule slot priorities and slot multiplicities. Next, the output-generating function of
the rule application (i.e. defined by values computed in the previous step) is executed
and dynamically calls subrules by selecting and similarly processing the most suitable
subrule templates (i.e. based on property rules and parameter types).

Priority Computation. Assuming that the class SpaceTransportationService repre-
sents the root class in the space transportation service language metamodel, it is converted
by employing the rule whitespaceClassRule (cf. Listing 6.4). As a result of the definition of
classGenTemplate, the variable class is set to the class parameters and every class feature
is distributed to slots as follows. First, values for non-slot fields (i.e. classname in this
case) are computed. Although SpaceTransportationService is a subclass of NamedElement
and, therefore, both associations for classname are possible, the association defined by
the NamedElement property rule is chosen due to its higher priority value. Second,
features are assigned to slots based on defined priority values or 1.0, if undefined. In
the example, the rule slot(name,name) defines a priority of 2.0 and, thus, causes the
attribute name and remaining attributes to be associated with the slot name and the slot
other respectively. The generation process in the example continues with a call to the
rule group nameDistRules (i.e. imported from the notation-template model in file named
default.ecss shown in Appendix 5) with feature name as a parameter for the non-empty
slot name. Finally, rule arbitraryDistRule is prioritized over rule defaultAttributeDistr
(i.e. similarly imported from default.ecss) due to its priority value being higher by 0.5.
Thus, attributeDistRules([engineAmount, engineType, physicalProperties]) is established
as a new rule call that is similarly executed.

6.5.5 Prototype implementation

The approach introduced in this chapter has been prototypically realized using the
EMF [197] and Xtext [70]. Additional information, such as slides, source code, and
examples, of the ECSS prototype is provided at a dedicated web page: https://

www-users.cs.york.ac.uk/neubauer/ecss/.

181

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www-users.cs.york.ac.uk/neubauer/ecss/
https://www-users.cs.york.ac.uk/neubauer/ecss/
https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

6.5.6 Limitations

Although the approach presented in this chapter is technology agnostic, the implementa-
tion of the ECSS framework is technologically based on the EMF and Xtext framework,
as well as the Java programming language. Therefore, executing the ECSS grammar
generator and notation-specification IDE requires running a Java virtual machine and
Eclipse with installed Xtext plugins. As a consequence, the support for different language
workbench frameworks and, in particular, those that build on technologies that are
fundamentally different from the EMF and the Java programming language will require
the (re)construction of behavior by following the principles of the targeted technology.

6.6 Evaluation

This section introduces the evaluation design based on the structure for conducting
and reporting case study research in software engineering by Runeson and Höst [187]:
objective, case, theory, research questions, method, and selection strategy. Both the
results and the threads of validity are presented. Ultimately, the obtained results are
discussed in the context of DSL engineering.

The objective of the study is to demonstrate the applicability of the proposed
approach and, in particular, notation-template language and its capability to capture
textual notations for DSLs in a more concise, expressive, and integratable manner, such
as the applicability of notation-template models to arbitrary domains (i.e. represented
by concepts and relationships in domain-specific metamodels) and the conciseness of
notation-templates in comparison to grammar specifications created by hand or generated
by the Xtext metamodel-to-grammar generator.

6.6.1 Research questions and evaluation criteria

The case study is represented by the proposed textual notation-specification language
and composed of a set of analysis units, which have been reported as paramount usability
indicators of DSLs [105, 6]. These include integratability, expressiveness, and conciseness.

The following declares a set of research questions that are designed to support
the evaluation objective, which is to evaluate the usability of the proposed notation-
specification language for modeling languages.

RQ1: Are ECSS models integratable with languages of arbitrary domains?

RQ2: Is the ECSS language capable of expressing the description of notations of textual
modeling languages?

RQ3: Are ECSS models more concise than notation-descriptions in grammar specifica-
tions?

Integratability. The integratability of a DSL is represented by its ability to integrate
with other applications, which may include other DSLs. It, thus, also represents factors

182

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.6. Evaluation

that decrease the cost of development and maintenance. Therefore, in the case of the
approach presented in this chapter, integratability refers to the ability to integrate a
textual notation-specification (represented by an ECSS model) with other domains
and, more specifically, arbitrary concepts that are defined as members of a domain (i.e.
captured by the structural components in the metamodel of a DSL).

Expressiveness. The expressiveness of a DSL refers to the degree that a language
represents the concepts of a domain directly. In other words, it measures the ability to
express the logic that is necessary for the respective application domain. Thus, in the
case of the proposed approach, expressiveness refers to the degree to which the intended
notation of a textual modeling language can describe the means of ECSS models.

Conciseness. The conciseness of a DSL refers to the economy of terms without harming
the artifact’s comprehension (i.e. short yet comprehensible statements). More specifically,
decreasing the occurrence of boilerplate code and inadequate representations enables faster
error detection and increases the ability to involve domain experts, both of which lower
the cost of development and maintenance. Consequently, in the case of the proposed
notation-specification language, conciseness refers to the ability to express intended
textual modeling language notations through brief and comprehensible ECSS models.

6.6.2 Procedure

This section presents the methodological steps to evaluate the approach presented in this
chapter and, in particular, its implementation by the ECSS framework. More specifically,
the expressiveness, conciseness, and integratability (i.e. the DSL usability factors outlined
in the literature [105]) of the ECSS language are measured based on the following types
of artifacts. First, a pre-existing handcrafted textual modeling language and its grammar
are referred to as source language and source grammar respectively. Second, a textual
modeling language and its grammar, which is generated by the Xtext state-of-the-art
metamodel-to-grammar transformation, are referred to as default language and default
grammar respectively. Third, a textual modeling language generated by the ECSS

framework (i.e. from combinations of domain-specific metamodels and ECSS model) and
its grammar are referred to as target language and target grammar respectively. Fourth, a
set of grammar metrics are established from components of the Xtext grammar language
metamodel and include parser rules, terminal rules, type reference rules, keywords,
alternatives, groups, assignments, and concrete syntax validation diagnostics (as reported
by the interface IConcreteSyntaxDiagnosticProvider3). Fifth, a set of ECSS models are
employed as notation specifications for the generation of variations of target languages.
These include “basicao.ecss”, “basicaouc.ecss”, “basicsq.ecss”, “basicnoao.ecss”, and
“basicnows.ecss”4.

3The implementation of org.eclipse.xtext.validation.IConcreteSyntaxDiagnosticProvider is available
online at http://bit.ly/2uuekKg.

4This set of ECSS models is available online at https://github.com/patrickneubauer/ECSS/
tree/master/styles.

183

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://bit.ly/2uuekKg
https://github.com/patrickneubauer/ECSS/tree/master/styles
https://github.com/patrickneubauer/ECSS/tree/master/styles
https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

Integratability. The integratability of the proposed language is evaluated according
to the following steps. First, the ECSS framework is applied to generate a set of
target grammars for each combination of ECSS models and domain-specific metamodels
(i.e. capturing innate domain concepts). More specifically, the former is represented
by “basicao.ecss” (i.e. a notation specification that produces grammars that allow the
creation of models following an arbitrary order of declaration), “basicaouc.ecss” (i.e.
a notation specification that produces grammars with uppercase keywords for classes
that extend the class named “NamedElement”), “basicsq.ecss”, “basicnoao.ecss” (i.e. a
notation specification that produces grammars that allow the creation of models following
a sequential order of declaration), and “basicnows.ecss” (i.e. a notation specification
that produces grammars that do not assign semantics to whitespace tokens occurring in
models). The latter is represented by the Ecore metamodel of a domain-specific language
in the set of subject languages. Second, for each generated target grammar, the count of
grammar rules (i.e. instances of terminal rules, enumeration rules, and parser rules) is
computed. Finally, in order to evaluate the integratability of the presented approach, the
mean and median of the count of grammar rules for each set of target languages that
has been generated from the same domain-specific metamodel are compared based on
equality.

Expressiveness. The expressiveness of the ECSS language is evaluated according to
the following steps. First, the Xtext metamodel-to-grammar transformation is employed
to generate a default grammar for each domain-specific metamodel in the set of subject
languages. Second, the ECSS framework is applied for the automated generation of a
target grammar for each pair that consists of a metamodel-agnostic ECSS model and a
domain-specific metamodel in the set of subject languages. More specifically, in order to
mitigate the risk of generating target languages that closely resemble the notation that
is depicted by a respective source grammar, a common metamodel-agnostic ECSS model
named “basicnoao.ecss” is employed for each language in the set of subject languages.
Third, for each language (i.e. source language, default language, and target language),
the respective grammar (i.e. source grammar, default grammar, and target grammar) is
employed to compute a set of grammar metrics that are composed of the number of parser
rules, terminal rules, type reference rules, keywords, alternatives, groups, assignments,
and concrete syntax validation diagnostics. Fourth, the percentile closeness between
instances of default language and source language, as well as target language and source
language, in each of the aforementioned grammar metric types is computed based on the
following respective formulas:

closenessDefGra,SrcGra = 1 −
∥

∥

∥

MetricT ypeDefGra−MetricT ypeSrcGra

MetricT ypeSrcGra

∥

∥

∥

closenessT rgGra,SrcGra = 1 −
∥

∥

∥

MetricT ypeT rgGra−MetricT ypeSrcGra

MetricT ypeSrcGra

∥

∥

∥

Fifth, the difference between the percentile closeness in individual metric types
(i.e. parser rules, terminal rules, type reference rules, keywords, alternatives, groups,
assignments, and concrete syntax validation diagnostics) of instances of default language

184

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.6. Evaluation

and source language, as well as target language and source language, is computed. Finally,
the mean and median of grammar metric type percentile closeness is computed for
default language and source language, as well as target language and source language,
to illustrate the expressiveness of the presented approach in comparison to the Xtext
metamodel-to-grammar transformation.

Conciseness. The method for gathering the artifacts required to determine the con-
ciseness of the ECSS language is initiated with a similar procedure as that described for
expressiveness. More specifically, the ECSS model named “basicnoao.ecss” that has been
applied by the framework alongside the respective domain-specific metamodel to produce
the target grammar automatically, is numerically quantified based on the following set
of metrics. First, the factor between LOCSrcGra (i.e. the total Lines of Codes (LOCs)
of the source grammar) and LOCECSS (i.e. the total LOCs of the ECSS model) is
computed. Second, the state-of-the-art metamodel-to-grammar transformation provided
by the Xtext framework is employed to obtain the default grammar that is subsequently
adapted to yield a parser capable of interpreting source models. Third, the increase in
conciseness of the ECSS model to the respective source grammar, as well as the default
grammar, is computed as follows:

concisenessEcss,SrcGra = 1 − LOCEcss

LOCSrcGra

concisenessEcss,DefGra = 1 − LOCEcss

LOCDefGra

Fourth, in order to address the risk of eventually existing additional semantics
represented by single- or multi-line comments and empty lines in respective grammars,
the increase in conciseness of the ECSS model is also computed based on the amount of
grammar rules (i.e. parser rules, enumeration rules, and terminal rules) as follows:

concisenessT rgGra,SrcGra = 1 −
GrammarRuleCountT rgGra

GrammarRuleCountSrcGra

concisenessT rgGra,DefGra = 1 −
GrammarRuleCountT rgGra

GrammarRuleCountDefGra

6.6.3 Selection strategy

The evaluation of the subject selection strategy is composed of the following steps: (i)
retrieval of publicly available Xtext projects from Github; (ii) sorting of retrieved
projects according to normalized popularity as indicated by the sum of the normalized
number of assignees, subscribers, and stargazers of a given project, where each normalized
number is computed by the subtraction of the average and division by standard division
over the entire set of values followed by the weight-distribution of assigneesweight = 0.1,
subscribersweight = 0.2, and stargazersweight = 0.7. Ultimately, a set of languages with a
normalized weighted popularity of ≥ 0.5 is obtained; (iii) filtering of projects that can be
compiled and provision of five or more conforming models; and (iv) selection of the first
ten projects (i.e. projects accepted in the previous step) as final subjects of the study.

185

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

6.6.4 Results

This section presents the results of the evaluation of the contributed framework and
notation-template language for textual modeling languages. The results of employing
the above described selection strategy are shown in Table 6.1. In total, 4,910 publicly
available Xtext projects have been retrieved. Further, the absolute, normalized, and
normalized and weighted popularity of the final selection of projects ranges from 79 to
2,910, 5.81 and 87.80, and 0.87 and 48.17 respectively.

Github Xtext project
owner / repository

Unified
grammar

name
Popularity

Popularity
(normalized)

Popularity
(normalized,

weighted)

antlr4ide / antlr4ide5 Antlr4 226 8.34 3.79

reTHINK-project / dev-service-framework6 ClassDiagram 79 7.80 0.96

puppetlabs / geppetto7 Module_2 570 59 8.93

cloudsmith / geppetto8 PP_1 219 7.57 3.53

puppetlabs / geppetto9 PP_2 570 59 8.93

temenostech / IRIS10 RIMDsl_2 121 11.17 1.93

sculptor / sculptor11 Sculptordsl 238 9.66 4

wesnoth / wesnoth12 WML_6 2910 87.80 48.17

uqbar-project / wollok13 WollokDsl 107 7.39 1.50

AKSW / Xturtle14 Xturtle 81 5.81 0.87

Table 6.1: Languages obtained by the execution of the selection strategy.

Integratability

Table 6.2 illustrates the grammar rule counts produced by the ECSS framework for
the sets of selected languages and notation-specifications. More specifically, the former
and latter are represented by domain-specific metamodels in the form of Ecore files and
ECSS models respectively. The number of grammar rules produced by the grammar
generator from a domain-specific metamodel and varying ECSS models is consistent.

5The Antlr4id Github project is located at https://github.com/antlr4ide/antlr4ide.
6The dev-service-framework Github project is located at https://github.com/

reTHINK-project/dev-service-framework.
7The Modules grammar of the Puppetlabs Geppetto Github project is located at https://bit.

ly/2KQraHH.
8The Cloudsmith Geppetto Github project is located at https://github.com/cloudsmith/

geppetto.
9The Puppetlabs Geppetto Github project is located at https://github.com/puppetlabs/

geppetto.
10The IRIS Github project is located at https://github.com/temenostech/IRIS.
11The Sculptor Github project is located at https://github.com/sculptor/sculptor.
12The Wesnoth Github project is located at https://github.com/wesnoth/wesnoth.
13The Wollok Github project is located at https://github.com/uqbar-project/wollok.
14The Xturtle Github project is located at https://github.com/AKSW/Xturtle.

186

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://github.com/antlr4ide/antlr4ide
https://github.com/reTHINK-project/dev-service-framework
https://github.com/reTHINK-project/dev-service-framework
https://bit.ly/2KQraHH
https://bit.ly/2KQraHH
https://github.com/cloudsmith/geppetto
https://github.com/cloudsmith/geppetto
https://github.com/puppetlabs/geppetto
https://github.com/puppetlabs/geppetto
https://github.com/temenostech/IRIS
https://github.com/sculptor/sculptor
https://github.com/wesnoth/wesnoth
https://github.com/uqbar-project/wollok
https://github.com/AKSW/Xturtle
https://www.tuwien.at/bibliothek

6.6. Evaluation

Thus, in terms of RQ1 , the produced results indicate that the ECSS framework is
able to generate target grammars successfully for every language in the set of selected
languages while maintaining grammar rule count consistency. This indicates that the
ECSS framework is integratable with the set of selected languages and the set of varying
ECSS models.

Unified
grammar

name
basicao.ecss basicaouc.ecss basicsq.ecss basicnoao.ecss basicnows.ecss

Antlr4 60 60 60 60 60

ClassDiagram 22 22 22 22 22

Module_2 22 22 22 22 22

PP_1 84 84 84 84 84

PP_2 84 84 84 84 84

RIMDsl_2 48 48 48 48 48

Sculptordsl 52 52 52 52 52

WML_6 22 22 22 22 22

WollokDsl 57 57 57 57 57

Xturtle 23 23 23 23 23

Mean 50 50 50 50 50

Median 47.4 47.4 47.4 47.4 47.4

Table 6.2: Grammar rule count of different variants of the target language.

Expressiveness

Tables 6.3, 6.4, and 6.5 present the absolute numbers of the grammar metrics that have
been computed for the set of selected source languages, default languages, and target
languages respectively, and from their respective grammars. The generation of target
grammars entailed the application of the ECSS model named “basicao.ecss”. Table 6.6
depicts the percentile closeness between the grammar metrics of pairs of default language
and source language (cf. Table 6.4 and Table 6.3 respectively). Table 6.7 depicts the
percentile closeness between the grammar metrics of pairs of target language and source
language (cf. Table 6.5 and Table 6.3 respectively). Note that the value “N/A” indicates
that a result could not be produced as a consequence of division by zero. For example,
the target language named “Module_2” has a count of zero enumeration rules.

Table 6.8 depicts the difference of the percentile closeness between the grammar
metrics of pairs of default language and source language (cf. Table 6.6) and the percentile
closeness between the grammar metrics of pairs of target language and source language
(cf. Table 6.7). In other words, Table 6.8 illustrates the percentile gain or loss in
grammar metric closeness between the Xtext metamodel-to-grammar transformation
(i.e. producing instances of default language) and the ECSS grammar generator (i.e.
producing instances of target language) in respect to instances of source language.

187

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

In terms of RQ2 , the produced results indicate that the ECSS framework is capable
of generating languages (from pairs that consist of domain-specific metamodels and
ECSS models) that are closer to handcrafted languages than languages produced by
the Xtext metamodel-to-grammar generator (from domain-specific metamodels) when
comparing instances of Xtext grammar components.

More specifically, the ECSS framework outperforms the Xtext metamodel-to-grammar
generator in percentile metric closeness in seven and five out of eight types of metrics
measured by mean and median respectively. In other words, supplying the ECSS

grammar generator with pairs consisting of a common and metamodel-agnostic ECSS

model and a domain-specific metamodel results in the production of languages that are
closer to handcrafted languages and, therefore, more expressive than those produced by
the Xtext metamodel-to-grammar generator.

Unified
grammar

name

Parser
rule

count

Enum
rule

count

Terminal
rule

count

TypeRef
rule

count

Key-
word
count

Alter-
natives
count

Group
count

Assign-
ment
count

Action
count

Valid-
ation
count

Antlr4 70 1 26 109 172 44 87 161 6 13

ClassDiagram 18 4 8 37 106 27 36 41 1 8

Module_2 58 0 6 72 146 23 56 74 7 9

PP_1 94 0 15 155 259 50 139 123 46 47

PP_2 94 0 15 155 259 50 139 123 46 47

RIMDsl_2 42 0 2 67 151 26 69 108 5 24

Sculptordsl 49 5 6 92 572 83 284 421 0 33

WML_6 18 0 18 36 114 28 36 26 0 1

WollokDsl 84 0 9 141 254 64 174 125 35 49

Xturtle 27 0 15 53 122 26 42 29 7 12

Mean 55.40 1 12 91.70 215.50 42.10 106.20 123.10 15.30 24.30

Median 53.5 0 12 82 161.5 36 78 115.5 6.5 18.5

Table 6.3: Grammar metrics of source languages.

Conciseness

Table 6.9 presents the total amount of LOC of the metamodel-agnostic ECSS model,
the source grammar, the default grammar, and the target grammar for each language
in the sets of selected languages. More specifically, LOCEcss is represented by the
LOC of the ECSS model named “basicao.ecss” and takes into account the LOC of
imported models (i.e. “noao.ecss” with 65 LOC and “nows.ecss” with 94 LOC). Further,
LOCSrcGra, LOCDefGra, and LOCT rgGra are represented by the LOC of the grammar
of the source language, default language, and target language respectively. Table 6.10
compares the conciseness between ECSS model and source grammar, ECSS model and
default grammar, target grammar and source grammar, and target grammar and default
grammar.

188

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.6. Evaluation

Unified
grammar

name

Parser
rule

count

Enum
rule

count

Terminal
rule

count

TypeRef
rule

count

Key-
word
count

Alter-
natives
count

Group
count

Assign-
ment
count

Action
count

Valid-
ation
count

Antlr4 59 1 0 113 283 9 152 112 50 53

ClassDiagram 19 4 0 43 99 9 41 43 14 21

Module_2 20 0 0 37 81 3 38 25 16 18

PP_1 74 0 0 139 390 8 209 148 65 66

PP_2 74 0 0 139 391 8 210 149 65 66

RIMDsl_2 48 0 0 110 242 6 138 124 41 63

Sculptordsl 49 5 0 133 739 12 414 518 41 80

WML_6 23 0 0 40 86 6 46 37 17 18

WollokDsl 59 0 0 124 310 8 158 126 51 65

Xturtle 31 0 0 60 105 7 57 33 24 30

Mean 45.60 1 0 93.80 272.60 7.60 146.30 131.50 38.40 48

Median 48.5 0 0 111.5 262.5 8 145 118 41 58

Table 6.4: Grammar metrics of default languages.

Unified
grammar

name

Parser
rule

count

Enum
rule

count

Terminal
rule

count

TypeRef
rule

count

Key-
word
count

Alter-
natives
count

Group
count

Assign-
ment
count

Action
count

Valid-
ation
count

Antlr4 50 1 4 101 177 15 82 106 43 46

ClassDiagram 15 4 3 39 65 16 26 40 11 18

Module_2 17 0 2 32 55 7 23 20 12 14

PP_1 78 0 3 143 235 22 115 136 62 63

PP_2 78 0 3 143 235 22 115 137 62 63

RIMDsl_2 42 0 4 99 152 12 80 118 35 54

Sculptordsl 42 5 4 119 188 19 131 449 36 69

WML_6 18 0 2 31 65 14 34 34 11 12

WollokDsl 51 0 3 112 187 15 109 122 44 58

Xturtle 19 0 2 37 62 14 23 20 12 17

Mean 41 1 3 85.60 142.10 15.60 73.80 118.20 32.80 41.40

Median 42 0 3 100 164.5 15 81 112 35.5 50

Table 6.5: Grammar metrics of target languages.

In terms of RQ3 , the produced results indicate that the employed ECSS model
is approximately 20 and 51 percent more concise by mean and median respectively,
than source grammar. Further, the employed ECSS model is approximately 36 and 57
percent more concise by mean and median respectively, when compared with default
grammar. Moreover, target grammar (i.e. grammar generated by the ECSS framework)
is approximately 31 and 32 percent more concise by mean and median respectively, than

189

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

Unified
grammar

name

Parser
rule

count

Enum
rule

count

Terminal
rule

count

TypeRef
rule

count

Key-
word
count

Alter-
natives
count

Group
count

Assign-
ment
count

Action
count

Valid-
ation
count

Antlr4 84.29% 100% 0% 96.33% 35.47% 20.45% 25.29% 69.57% -633.33% -207.69%

ClassDiagram 94.44% 100% 0% 83.78% 93.40% 33.33% 86.11% 95.12% -1200% -62.50%

Module_2 34.48% N/A 0% 51.39% 55.48% 13.04% 67.86% 33.78% -28.57% 0%

PP_1 78.72% N/A 0% 89.68% 49.42% 16% 49.64% 79.67% 58.70% 59.57%

PP_2 78.72% N/A 0% 89.68% 49.03% 16% 48.92% 78.86% 58.70% 59.57%

RIMDsl_2 85.71% N/A 0% 35.82% 39.74% 23.08% 0% 85.19% -620% -62.50%

Sculptordsl 100% 100% 0% 55.43% 70.80% 14.46% 54.23% 76.96% N/A -42.42%

WML_6 72.22% N/A 0% 88.89% 75.44% 21.43% 72.22% 57.69% N/A -1600%

WollokDsl 70.24% N/A 0% 87.94% 77.95% 12.50% 90.80% 99.20% 54.29% 67.35%

Xturtle 85.19% N/A 0% 86.79% 86.07% 26.92% 64.29% 86.21% -142.86% -50%

Mean 78.40% N/A 0% 76.57% 63.28% 19.72% 55.94% 76.23% N/A -183.86%

Median 81.50% N/A 0% 87.37% 63.14% 18.23% 59.26% 79.27% N/A -46.21%

Table 6.6: Percentile closeness between grammar metrics of pairs consisting of default
language and source language.

Unified
grammar

name

Parser
rule

count

Enum
rule

count

Terminal
rule

count

TypeRef
rule

count

Key-
word
count

Alter-
natives
count

Group
count

Assign-
ment
count

Action
count

Valid-
ation
count

Antlr4 71.43% 100% 15.38% 92.66% 97.09% 34.09% 94.25% 65.84% -516.67% -153.85%

ClassDiagram 83.33% 100% 37.50% 94.59% 61.32% 59.26% 72.22% 97.56% -900% -25%

Module_2 29.31% N/A 33.33% 44.44% 37.67% 30.43% 41.07% 27.03% 28.57% 44.44%

PP_1 82.98% N/A 20% 92.26% 90.73% 44% 82.73% 89.43% 65.22% 65.96%

PP_2 82.98% N/A 20% 92.26% 90.73% 44% 82.73% 88.62% 65.22% 65.96%

RIMDsl_2 100% N/A 0% 52.24% 99.34% 46.15% 84.06% 90.74% -500% -25%

Sculptordsl 85.71% 100% 66.67% 70.65% 32.87% 22.89% 46.13% 93.35% N/A -9.09%

WML_6 100% N/A 11.11% 86.11% 57.02% 50% 94.44% 69.23% N/A -1000%

WollokDsl 60.71% N/A 33.33% 79.43% 73.62% 23.44% 62.64% 97.60% 74.29% 81.63%

Xturtle 70.37% N/A 13.33% 69.81% 50.82% 53.85% 54.76% 68.97% 28.57% 58.33%

Mean 76.68% N/A 25.07% 77.45% 69.12% 40.81% 71.50% 78.84% N/A -89.66%

Median 82.98% N/A 20% 82.77% 67.47% 44% 77.48% 89.02% N/A 17.68%

Table 6.7: Percentile closeness between grammar metrics of pairs consisting of target
language and source language.

source grammar.

190

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.6. Evaluation

Unified
grammar

name

Parser
rule

count

Enum
rule

count

Terminal
rule

count

TypeRef
rule

count

Key-
word
count

Alter-
natives
count

Group
count

Assign-
ment
count

Action
count

Valid-
ation
count

Antlr4 -12.86% 0% 15.38% -3.67% 61.63% 13.64% 68.97% -3.73% 116.67% 53.85%

ClassDiagram -11.11% 0% 37.50% 10.81% -32.08% 25.93% -13.89% 2.44% 300% 37.50%

Module_2 -5.17% N/A 33.33% -6.94% -17.81% 17.39% -26.79% -6.76% 57.14% 44.44%

PP_1 4.26% N/A 20% 2.58% 41.31% 28% 33.09% 9.76% 6.52% 6.38%

PP_2 4.26% N/A 20% 2.58% 41.70% 28% 33.81% 9.76% 6.52% 6.38%

RIMDsl_2 14.29% N/A 0% 16.42% 59.60% 23.08% 84.06% 5.56% 120% 37.50%

Sculptordsl -14.29% 0% 66.67% 15.22% -37.94% 8.43% -8.10% 16.39% N/A 33.33%

WML_6 27.78% N/A 11.11% -2.78% -18.42% 28.57% 22.22% 11.54% N/A 600%

WollokDsl -9.52% N/A 33.33% -8.51% -4.33% 10.94% -28.16% -1.60% 20% 14.29%

Xturtle -14.81% N/A 13.33% -16.98% -35.25% 26.92% -9.52% -17.24% 171.43% 108.33%

Mean -1.72% N/A 25.07% 0.87% 5.84% 21.09% 15.57% 2.61% N/A 94.20%

Median -7.35% N/A 20% -0.10% -11.07% 24.50% 7.06% 4% N/A 37.50%

Table 6.8: Differences between percentile metric closeness of pairs consisting of default
grammar and source grammar (cf. Table 6.6), and target grammar and source grammar
(cf. Table 6.7).

Unified
grammar

name LOCEcss LOCSrcGra LOCDefGra LOCT rgGra

Antlr4 175 739 569 127

ClassDiagram 175 115 148 79

Module_2 175 255 138 52

PP_1 175 748 567 177

PP_2 175 768 568 177

RIMDsl_2 175 289 364 183

Sculptordsl 175 535 835 318

WML_6 175 98 156 79

WollokDsl 175 462 454 123

Xturtle 175 86 198 77

Mean 175 409.5 401.1 139.2

Median 175 375.5 411 125

Table 6.9: LOC of ECSS model, source grammar, default grammar, and target grammar.

6.6.5 Threats to validity

This section describes threats to validity as revealed by the presented evaluation.

191

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

Unified
grammar

name

conciseness

Ecss,SrcGra

conciseness

Ecss,DefGra

conciseness

TrgGra,SrcGra

conciseness

TrgGra,DefGra

Antlr4 76.32% 69.24% 38.14% 25%

ClassDiagram -52.17% -18.24% 26.67% 4.35%

Module_2 31.37% -18.24% 65.63% 0%

PP_1 76.60% 69.14% 22.94% -1.20%

PP_2 77.21% 69.19% 25% -1.20%

RIMDsl_2 39.45% 52.45% -9.09% 4%

Sculptordsl 67.29% 79.04% 13.33% 16.13%

WML_6 -78.57% -12.18% 38.89% 15.38%

WollokDsl 62.12% 61.45% 38.71% 16.18%

Xturtle -103.49% 11.62% 45.24% -9.52%

Mean 19.61% 36.35% 30.55% 6.91%

Median 50.78% 56.95% 32.41% 4.17%

Table 6.10: Comparison of ECSS model and source language, default language, and target
language in LOC of grammar and parser rule count.

Construct Validity The parameter values that have been chosen within the selection
strategy and, in particular, weight-distribution, weighted popularity, and number of
available source grammars, represent guiding preferences in sorting retrieved textual
domain-specific modeling languages. They, thus, determine the final selection of study
subjects. Choosing different parameter values for weight-distribution, weighted popularity,
and number of available source grammars may produce a different set of study subjects,
which subsequently may lead to different evaluation results. Although the said parameter
values have been chosen from previous experience with mining open-source software
artifacts [128, 188], the risk of diverging evaluation results caused by different parameter
values may be mitigated by re-executing the presented evaluation through the use of
different sets of parameter values. Moreover, compared to grammars that are produced by
the Xtext metamodel-to-grammar transformation or the ECSS framework (i.e. through
combinations of domain-specific metamodels and ECSS models), grammars that are
produced by hand may contain additional semantics, such as indentations and comments,
that may affect the conciseness based on LOC. In order to mitigate this risk, the results
of conciseness have been validated based on the number of grammar rules (i.e. parser
rules, enumeration rules, and terminal rules).

Internal Validity The direct quantification of performance (described in existing
literature [105] as a usability quantifier for DSLs), for example through execution time,
has not been considered. Grammar specifications that are similar, however, may lead to
the production of parsers with similar execution times, and adaptations of implementation
classes, such as model validators (i.e. neglecting the parsing of domain-specific models),

192

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.6. Evaluation

and have, therefore, been neglected. In order to mitigate this risk, individual grammar
specifications (i.e. instances of source grammar, default grammar, and target grammar)
have been employed to generate executable parsers and implementation classes.

External Validity External validity is concerned with the extent to which it is possible
to generalize findings and whether these findings are of interest to third-parties outside
the investigated case. On the one hand, the presented findings illustrate the potential of
the approach to be integrated with the EMF and Xtext framework. On the other hand,
the presented findings are limited to the said set of modeling languages and challenge
the potential of the approach to be integrated with third-party tools, such as language
workbench frameworks that are different to the EMF and Xtext framework. More
specifically, the ability to re-use the EMF and Java-based implementation of the ECSS

framework, and the effort required to implement similar behavior based on the codebase
of existing third-party tools requires further investigation for tools that deviate from
ANTLR-based grammars. Although a set of notation-specifications has been employed
to generate a set of target grammars from each domain-specific metamodel, the employed
set of modeling languages (captured by the abstract concepts depicted in respective
domain-specific metamodels) is not complete. In order to mitigate this risk, however,
the final set of modeling languages that has been employed for the evaluation of the
approach is composed of the most popular and, thus, relevant projects.

Reliability The usability quantifier for the conciseness of DSLs also includes compre-
hensibility. The interpretation of language notations that are depicted by grammars,
models, and (formal) standard specifications may depend on the experience and knowl-
edge of the participant at hand and, in particular, in the fields of language engineering
and MDE. Thus, participants with diverging experiences in those fields may produce
deviating results for conciseness. In order to determine the potential impact of the latter,
further studies must be conducted and, if required, measures to mitigate that risk may
need to be developed.

Conclusion validity Conclusion validity is the degree to which conclusions we reach
about relationships in our data are reasonable. The evaluation of the approach presented
in this chapter and, in particular, the set of metrics chosen for expressiveness represent an
instance in this category of threats. More specifically, the chosen set of metrics includes a
subset of classes that appear in the metamodel of the Xtext grammar language. In order
to mitigate this threat, a set of metrics has been chosen that is based on fundamental
grammar components, such as parser rules, enumeration rules, and terminal rules, as
well as a set of periphery grammar components, such as type reference rules, alternatives,
groups, assignments, and actions.

193

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

6.6.6 Summary

Integration with arbitrary domains (RQ1): The obtained results indicate that the
implementation of the approach is integratable with domain-specific languages that
are defined by means of Ecore metamodels.

Notation-specification language expressiveness (RQ2): The application of the ap-
proach, and in particular the metamodel-agnostic notation-specifications, to Ecore
metamodels of a set of popular Xtext-based languages produces language grammars
that express the components in the grammar of handcrafted languages more closely
when compared to respective language grammars that are produced by the Xtext
metamodel-to-grammar generator.

Conciseness of notation-specifications (RQ3): The conciseness of notation-
specifications that are modeled as ECSS models are approximately 20 and 51
percent more concise by mean and median respectively, than their handcrafted
counterparts.

6.7 Analysis

This section presents existing literature on the specification of visual textual representa-
tions and differentiates them from the approach presented in this chapter.

A classification of concrete textual syntax mapping approaches presented in [89]
distinguishes among approaches that are based on (i) manual development or auto-
generation of domain-specific metamodels from grammar specifications; (ii) manual
development of grammar specifications based on domain-specific metamodels; and (iii)
manual development of mappings between domain-specific metamodels and grammar
specifications. The approach presented in this chapter automates the generation of
grammar specification from pairs consisting of domain-specific metamodels and ECSS

models (i.e. acting as notation-specification) by instantiating a transformation that is
capable of both metamodel-agnostic and metamodel-dependent notation-specifications.
Therefore, according to the classification in [89], the approach presented in this chapter
represents a novel technique and may be categorized as automated development of
grammar specifications based on domain-specific metamodels and notation-specifications
that are structure-agnostic, structure-dependent, or a combination thereof.

In [115], concrete textual representations are defined using model annotations specified
in terms of a dedicated DSL. This approach represents an effort towards reducing redun-
dancy between the specification of metamodels and grammars (e.g. as introduced by the
duplicated definition of element-multiplicity) by employing a sequence of transformations
on Textual Concrete Syntax (TCS) models and metamodels. Compared to the approach
presented in this chapter, the definition of a DSL is achieved utilizing TCS models that
are similarly employed alongside metamodels for the generation of textual grammar. As a

194

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.7. Analysis

result of TCS models specifying associations to individual metamodel elements, however,
this approach does not enable the definition of domain metamodel-agnostic styles and,
thus, limits the application of styles to particular metamodels.

TCSSL [158] represents an approach to establish bidirectional mappings between
abstract syntax trees and concrete syntax trees by defining EBNF-like rules, which
differ from EBNF rules by having sub-rules that are triggered based on the inheritance
hierarchy depicted in abstract syntax trees. Compared to the approach presented in this
chapter, TCSSL also allows to define multiple different mappings based on the same
metamodel in order to provide different concrete representations of the same abstract
concepts (i.e. catering for the needs of different stakeholders). At the same time, it does
not allow to define concrete representations that are applicable to different metamodels.
Moreover, TCSSL requires language engineers to specify mapping rules manually for each
metamodel element as well as each concrete representation thereof, instead of employing
structure-agnostic notation-template models to arbitrary domain-specific metamodels.
Further, multiple pass-analysis checks need to be manually implemented in order to
address challenges, such as type checking and reference resolution mechanisms, that are
raised during the compiler construction process.

The Textual Editing Framework (TEF) [190] represents an approach to embed
generated EMF-based textual model editors into graphical editors created with GMF and
tree-based editors that are generated by the EMF. Compared to the approach presented
in this chapter, TEF similarly offers the capability to create style specifications for domain
metamodels. TEF, however, requires language engineers to implement manually complete
concrete syntax specifications (i.e. also referred to as “textual syntax language models”
in [190]) for elements in a domain-specific metamodel that are intended to be instantiated
within the context of the embedded textual editor. Although TEF presents a layout
manager to adapt the textual concrete syntax of a language, such as by customizing
whitespace, it is based on the metamodel of the Ecore language (i.e. it is structurally
defined by the components of the Ecore language metamodel) and, thus, ignores the
ability to define notation-specifications for individual domain-specific metamodels.

An approach that is built on the Spoofax language workbench and offers library-based
syntactic extensibility for the host languages Java, Haskell, and Prolog, based on the
Spoofax language workbench, is presented in [118]. More specifically, this approach
employs transformations to weave and unweave notational information (referred to as
“syntactic sugar”) in and out of host language notations respectively. In comparison to the
approach presented in this chapter, notation-specifications are represented as extensions
of host language grammar and involve the construction of transformations that depend
on the grammar of a particular host language, as opposed to decoupling notational
information from domain-specific concepts (i.e. captured by instances of a host language
in [118]). Consequently, this approach requires the construction and maintenance of
bi-directional transformations to enable grammar backward-compatibility.

SugarJ [68] presents an approach for the development of language extension modules
to embed DSLs into the Java host language by means of object language grammar

195

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Reusable notation-template language and design framework

extensions (referred to as “syntactic sugar” by Erdweg et al.). In comparison to the
approach presented in this chapter, this approach extends host language grammar
with notation-specifications by executing specifically constructed grammar-dependent
transformations (i.e. adding and removing style information from a particular grammar),
as opposed to the decoupling of notational information from domain-specific concepts
that are introduced by a domain-specific metamodel. Hence, by treating metamodels
and notation-specification models as first-class citizens, and the generation of target
grammars as a bridging-component to the generation of target language components,
such as dedicated IDEs, the approach presented in this chapter satisfies the need to
retain the backward-compatibility of language grammar and, subsequently, liberates
language engineers from creating and maintaining host language grammar transformations.
Furthermore, both host language grammar syntax sugar extensions (i.e. acting as notation-
specifications) and desugaring transformations (i.e. obligatory artifacts to obtain source
grammar specifications) depend on a particular grammar and are, therefore, not agnostic
to the application of individual domain-specific metamodels. As a consequence, this
approach imposes challenges on target languages due to dependencies that are introduced
between sugar libraries and modeling language components. Although SugarJ and
the approach presented in this chapter offer implementations that manifest as Java
source code and Eclipse-based IDEs, distinctive language workbench frameworks (i.e.
Spoofax and Xtext respectively) are employed. As a consequence, the creation and
customization of target language components, such as domain-specific IDEs, are driven
by the capabilities and limitations of the underlying language workbench framework. In
terms of commonalities, the implementation of both SugarJ and the approach presented in
this chapter manifest as Java programming language source code and offer Eclipse-based
IDEs.

EMFText [101, 102] presents an approach for the definition of textual representa-
tions and the generation of editors from Ecore-based metamodels. Similarly to the
approach presented in this chapter, ANTLR-based parser generation is employed and
concrete syntax rules15 may be defined based on domain-specific metamodel classes and
attributes. The definition and application of metamodel-agnostic notations, however, are
not considered. More specifically, if the condition on the right-hand side of a concrete
syntax rule is fulfilled, an instance of a domain-specific metamodel class or attribute (i.e.
specified by the name of the right-hand side of the concrete syntax rule) must be created.
In other words, notation-specifications in EMFText are tightly coupled to classes and
attributes captured by a domain-specific metamodel. Further, similar to Xtext, this
approach automates the generation of IDE features, such as syntax highlighting, basic
code completion, and reference resolution. Although EMFText features the capability
of customizing the appearance of textual tokens, such as the definition of text color, it
does so by relying on its own generator implementation to pick up such specifications
during editor generation. Therefore, the migration of non-native ANTLR specifications

15Further insights are provided in section 3 of the EMFText User Guide located
online at https://github.com/DevBoost/EMFText/blob/master/Core/Doc/org.emftext.

doc/pdf/EMFTextGuide.pdf.

196

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://github.com/DevBoost/EMFText/blob/master/Core/Doc/org.emftext.doc/pdf/EMFTextGuide.pdf
https://github.com/DevBoost/EMFText/blob/master/Core/Doc/org.emftext.doc/pdf/EMFTextGuide.pdf
https://www.tuwien.at/bibliothek

6.8. Summary

(i.e. containing additional information, such as the color of textual tokens) to other
ANTLR-based language workbench frameworks is rendered strenuous by the require-
ment to provide the implementation which interprets additional (non-native ANTLR)
information based on the API of the target language workbench framework.

MontiCore [39, 135] represents an approach that is based on the generation of (re-
stricted) Ecore metamodels, Java classes, and parsers from EBNF-like grammars (referred
to as MontiCore grammars in [135]). In general, this approach and the approach pre-
sented in this chapter target language engineers that are most familiar with grammarware
and modelware, and initiate the language development process by means of domain-
specific grammars and metamodels respectively. The process of language development
and, in particular, the construction of concrete and abstract syntax involves significant
redundancy. The approach presented in this chapter follows a similar motivation in
regards to the independent development of language components and, in particular, to
the reduction of redundancy and the improvement of maintenance. Finally, the imple-
mentation of MontiCore does not consider the independent modeling of abstract and
concrete syntax specifications, such as those represented by domain-specific metamodels
and notation-specifications.

A dedicated DSL for the construction of (complex) bridges between grammars
and metamodels is presented in [103, 36]. In general, their work differs to the ap-
proach presented in this chapter by promoting the construction and maintenance of
bridge-specifications between domain-specific metamodels and grammars, as opposed
to metamodel-agnostic notations. Thus, effective construction of valid bridges between
domain-specific metamodels and grammars requires language engineers to be fully aware
of the actions and tool specifications that are available on both sides of individual bridges.

6.8 Summary

This chapter presented an approach for the definition and maintenance of textual notations
applicable to domain-specific metamodels and may involve domain-agnostic and domain-
specific components. The approach is implemented based on EMF and Xtext, and
manifests as a framework, notation-template language, and IDE for textual style definition
and editing. Moreover, the approach implementation has been showcased based on the
creation of domain metamodel-agnostic notational definitions and, in particular, by
comparison with the model-first approach. The approach was evaluated based on a set
of popular Xtext-based languages (i.e. obtained from the open-source repository hosting
service Github) and indicates that the ECSS framework is integratable to domain-specific
languages that are defined by means of Ecore metamodels. Further, ECSS models are
approximately 20 and 51 percent more concise by mean and median respectively, than
their handcrafted counterparts. Finally, domain-agnostic ECSS models produce language
grammars that express the components captured by handcrafted grammars more closely
compared to language grammars that are produced by the Xtext metamodel-to-grammar
generator.

197

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 7
Conclusion and future work

T
he previous chapter introduced an approach composed of a language and a framework
for the design and application of reusable and extensible notation-template specifica-

tions that are structure-agnostic (i.e. agnostic to individual instances of domain-specific
metamodels), structure-dependent, or a combination thereof. The following summarizes
the contributions of this thesis and presents directions for future work.

7.1 Summary

This thesis presented efforts towards automating the modernization of domain-specific
languages through the contribution of a set of approaches and framework implementations
(cf. Figure 7.1) that enable the assisted integration of modeling languages from XML
Schema definitions, the generation of consistency-achieving IDEs, and the design and
application of reusable and extensible notation-template specifications. In what follows,
the contributions elaborated in the course of this thesis, and the conclusions drawn from
their evaluation are summarized.

Domain-specific modeling language modernization

Reusable notation-template
language and design

framework

Consistency-achieving IDE
generation and runtime

framework

XML Schema
integration and assistance

framework

Contribution 2Contribution 1 Contribution 3

Figure 7.1: Summary of the contributions of this thesis.

199

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Conclusion and future work

Contribution 1: XML Schema integration and assistance. The first part of
this contribution is published in [162] and entails the automated migration of textual
modeling language implementations from XML Schema definitions, based on the language
exploitation design pattern, and a reproduction study in the domain of cloud application
topology modeling. This work highlights the limitations in bridging XML-based languages
with textual modeling languages, and overcomes them by explicitly representing XML
Schema concepts, such as mixed content, wildcards, identifiers and identifier references,
and datatypes, in the technical space of modelware. As a result, the representation of
important characteristics of XML, such as semi-structured data, is enabled for textual
modeling languages, and the respective generation from XML Schema definitions is
automated. The approach is bundled into the XMLText framework and evaluated
based on completeness, which is measured according to the availability of domain-specific
concepts and relationships in the generated language. More specifically, an evaluation that
is based on an industrial language and, in particular, the OASIS TOSCA standard [173]
has been carried out. The results of this study indicate that the XMLText framework
significantly improves existing solutions and generates a respective textual modeling
language that is more complete in comparison to the handcrafted Cloudify DSL. The
second part of this contribution is published in [192] and entails the integration of
modeling assistance for XML Schema descriptions, and the evaluation of XML Schema-
based language exploitation involving the eCl@ss standard (i.e. an XML Schema-
based industrial specification for classification and product descriptions) [63]. More
specifically, the implementation of the approach has been integrated into the Extremo

modeling and metamodeling assistant to enable developers to import and query domain-
specific knowledge embodied by XMLware artifacts, as well as facilitate them for the
construction of novel modeling languages. This integration has been evaluated based on
the development of an eCl@ss standard-conforming modeling language implementation
and its subsequent application for the modeling of a conveyor-belt production system.
The results of this study indicate that: the integration of XMLText requires a limited
amount of effort (i.e. five LOC in the case of the Extremo assistant); the integration of
XMLText in Extremo is useful for solving practical problems in language engineering;
the common data scheme employed by the assistant is able to capture heterogeneous
information and, in particular, the import of the SigPML metamodel [46], as well as
the XML-based eCl@ss standard specification. Finally, the presented approach for
automating the migration of textual modeling languages from XML Schemas has been
qualitatively compared with the latest developments in the bridging of the technological
spaces of modelware and grammarware, XMLware and modelware, and XMLware and
grammarware.

Contribution 2: Consistency-achieving IDE generation and runtime. The
first part of this contribution is published in [164] and entails the automated generation
of consistency-achieving language implementations from formally constrained language
structures alongside a custom approach for the timely mitigation of the state-space
explosion problem. More specifically, an approach for leveraging language analysis and

200

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.1. Summary

SBSE-techniques for the automated generation and runtime support of advanced IDEs
has been presented. As a result, language designers are enabled to employ language
definitions that are refined with formal constraints and, in particular, Ecore metamodels
and OCL invariants for the automated generation of modeling language IDEs that offer
enhanced validation, content-assist, and quick fix solutions. In other words: consistency
violations are visualized in a fine-grained manner (i.e. as opposed to visualizing complete
sub-structures of a model as erroneous), thus enabling precise localization and eventual
repair; content assistance is provided that preserves model consistency; model repair
solutions are proposed that increase or fully recover model consistency. Further, generated
model repair solutions are sorted according to quality and cost to solicit the visualization
of ranked quick fixes to IDE users. The developed custom search approach procures
neighborhood populations, escapes local optima solutions, and computes optimal solutions
by employing a multi-objective search algorithm that constructs model repair solutions
that consist of simultaneous change actions on multiple model features. The second part
of this contribution is published in [165] and entails the automated generation of formal
constraint specifications from XML Schema data type restrictions, as well as the synthesis
of XMLText and IntellEdit into XMLIntellEdit. The implementation of this
contribution has been evaluated in a quantitative comparison of IDE tooling generated
by the Xtext language workbench, and IDE tooling generated by the implementation of
this contribution, relative to the effectiveness of model validation, content-assist, and
model repair. The results of this evaluation exhibit: a twofold improvement in validation
over existing solutions; content-assist suggestions that do not introduce new constraint
violations; model repair solutions that reduce the number of violated constraints by
approximately 67%.

Contribution 3: Reusable notation-template language and design. This con-
tribution is published in [163] and entails the development and application of notation-
template models that are structure-agnostic, structure-dependent, or a combination
thereof. This contribution is represented by an approach for the definition and main-
tenance of reusable and extensible textual notation-specifications, and implemented by
means of the ECSS framework and notation-template language based on the Eclipse

Modeling Framework and Xtext framework. This approach and, in particular,
ECSS models and their generated grammars have been quantitatively evaluated based
on integratability (i.e. applicability of notation-template models to arbitrary domains
represented by concepts and relationships in domain-specific metamodels), expressiveness,
and conciseness in comparison to both respective grammar specifications created by
hand and those generated by the Xtext metamodel-to-grammar generator. The study
subjects are represented by a set of popular open-source DSLs that have been obtained
from Github. The results of this study indicate that: the framework and, in particular,
ECSS models integrate with a set of popular open-source DSLs; structure-agnostic
notation-specifications expressed by means of ECSS models are closer to handcrafted
languages in comparison to grammars produced by the Xtext metamodel-to-grammar
generator; ECSS models are approximately 20% and 51% more concise by mean and

201

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Conclusion and future work

median respectively, than their handcrafted counterparts. Finally, the state of the art of
textual notation design has been analyzed in a qualitative comparison with the proposed
contribution for the construction and maintenance of textual notations for modeling
languages.

7.2 Future Work

This section briefly outlines directions for future work, building on the research conducted
in the course of this thesis. These future research directions originate in experiences gained
during the implementation of prototypes, as well as from the evaluation results obtained
by applying these prototypes in case studies. On the one hand, they concern the identified
limitations of the solutions proposed in this thesis and, on the other, research topics
furthering efforts towards automating the modernization of domain-specific languages.

Dissemination of ECSS framework evaluation. A line of future work is to dis-
seminate the ECSS framework by extending existing research [163] via the quantitative
evaluation presented in Section 6.6. This may prompt research on domain-specific
language workbenches that emphasizes the development and application of modular
languages through the independent development of abstract and concrete representations
of domain-specific concepts and relationships.

Extension of XML Schema data type support. With respect to future work, one
direction is to employ the approach implementation to a set of XML Schema definitions
that cover each type of data that is defined within the W3C Recommendation on XML
Schema data types [28] at least once, eventually addressing any potential gaps in the
transformation chain of the presented XML Schema-based language exploitation approach,
and extending the validity of existing evaluation results.

Synthesis of XMLIntellEdit and ECSS. Concerning the synthesis of XMLText

and IntellEdit into the XMLIntellEdit framework, one line of future work is to merge
the capabilities of XMLIntellEdit and ECSS into a common framework. The current
implementation of XMLIntellEdit relies on the grammar generation mechanism of
Xtext. Therefore, XML documents that are viewed and edited in an XMLIntellEdit-
generated IDE must conform to the customized metamodel for XML artifacts that
is employed by XMLIntellEdit. The current implementation of ECSS, however,
is limited by the support of structural language specifications that are defined using
domain-specific Ecore metamodels. Therefore, merging the ability of XMLIntellEdit

and ECSS to create customized domain-specific Ecore metamodels from XML Schema
definitions, and to generate textual modeling languages from pairs that consist of an XML
Schema definition and an ECSS model will extend the set of use cases, and provide a more
seamless modernization of XML Schema-based languages with modeling languages and
advanced IDEs (i.e. offering enhanced validation, consistency-achieving content-assist,

202

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.2. Future Work

and model repair). For example, this integration will allow the visualization of arbitrary
XMLware artifacts ruled by an ECSS notation-template specification.

An empirical study on the design and engineering of domain-specific lan-
guages. An additional direction of future research is to evaluate the impact of the
presented approach in regards to both assisted and automated modeling language con-
struction, in comparison to handcrafted language engineering in a set of domains, as
well as the involvement of both domain experts and language engineers. This evaluation
may also include extending the qualitative analysis of language workbench framework
implementations by quantitatively measuring the capability and performance of individual
modeling languages created by respective language workbenches, and the contributed
framework implementations, particularly in regards to the support for XMLware inte-
gration, model validation, content-assistance, model repair, and the design of textual
notations. More specifically, the comprehensibility and scalability of ECSS notation-
template models may be quantified in comparison to grammar specifications that are fully
or partially handcrafted (i.e. the generated grammars are subject to manual modifica-
tions) to support language workbench IDEs, such as the Xtext grammar IDE. The results
produced by such an evaluation will provide further quantitative and qualitative insights
on the performance, scalability, and usability of domain-specific language modernization
and the effectiveness of the contributed framework implementations.

UI improvements and quantitative performance analysis. A further line of
work includes UI improvements and quantitative performance analysis. The former may
include support for syntax-highlighting of Java code in ECSS models, while the latter
may include measuring the effect of applying different primitive type conversions (e.g.
multiplication, as opposed to min for the and operator). Such UI improvements and
analysis will quantify the impact on the performance of generating content-assist and
model repair solutions at runtime, and may improve usability.

203

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

List of Figures

1.1 Contributions of this thesis. 5
1.2 Primary flows of operation integrating the contributions of this thesis. 7

2.1 Modeling stack based on the layers of the Essential Meta-Object Facility [10,
168, 137]. 26

2.2 Principal components of the Ecore language metamodel. 29
2.3 Ecore metamodel defining the structural semantics of the space transportation

service modeling language. 30
2.4 Comparison of technical spaces XMLware, modelware, and grammarware on

the four-layer modeling stack (cf. Figure 2.1). 33

4.1 Contribution presented in this chapter. 62
4.2 Overview of the Default Transformation Chain. 66
4.3 Overview of the XMLText framework . 76
4.4 Explicit modeling structures replacing feature maps 79
4.5 Approach overview . 85
4.6 The common data scheme (package dataModel) 87
4.7 Injecting Ecore (meta)models into the common data scheme. 90
4.8 Injecting XML Schema descriptions into the common data scheme. 90
4.9 Constraint storage and interpretation mechanism. 91
4.10 Architecture of modeling assistant with XMLText integration. 92
4.11 Component model of the modeling assistant with XMLText integration. . . 93
4.12 TOSCA language metamodel (excerpt). 103
4.13 Graphical representation of an example eCl@ss standard-conforming conveyor-

belt production system model. 108
4.14 Tree-based representation of an example eCl@ss standard-conforming conveyor-

belt production system model. 109
4.15 XMLText assistant integration with the Sample Reflective Ecore Model IDE

during EPML metamodel construction. 110
4.16 Excerpt of EPML metamodel based on SigPML and the eCl@ss standard. . . 111

5.1 Contribution presented in this chapter. 122
5.2 Manifestation of IntellEdit-generated IDEs. 127
5.4 Selected constraints in the space transportation service modeling language. . 131

205

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.3 Failed evaluation tree for the running example expression (cf. Listing 5.4). . . 132

5.4 Runtime of IntellEdit-generated IDEs. 136

5.5 Overview of the XMLIntellEdit framework. 137

5.6 Library language metamodel (excerpt). 139

5.6 Selected constraints in the library modeling language. 139

5.7 Model repair solutions for author attribute value in IntellEdit-generated
library modeling language IDE. 140

5.8 Model repair solutions for dimensions attribute value in IntellEdit-generated
library modeling language IDE. 140

5.9 Model repair solutions for isbn attribute value in IntellEdit-generated
library modeling language IDE. 141

5.10 Modeling service cluster metamodel. 143

5.7 Selected constraints in the service cluster modeling language. 144

5.11 Modeling service cluster example model. 144

5.12 Failed evaluation tree for the service cluster expression in Listing 5.7. 145

5.13 Model validation in Xtext-default (left-hand side) and IntellEdit-generated
service cluster modeling language IDE (right-hand side) respectively. 146

5.14 Local search model repair solutions in IntellEdit-generated service cluster
modeling language IDE. 148

5.15 Global search model repair solutions in IntellEdit-generated service cluster
modeling language IDE. 149

6.1 Contribution presented in this chapter. 166

6.2 Visual graphical model of an example space transportation service. 172

6.3 Overview of steps involved in the manifestation of language implementations
as occurring in the approaches of model-first and grammar-first, and the
approach presented in this chapter. 173

6.4 Structural components of the notation-template language (excerpt). 176

6.5 Screenshot of notation-template language IDE displaying ECSS model file
“ws-aware.ecss”. 178

6.6 Overview of the grammar generation workflow in the ECSS framework. . . . 180

7.1 Summary of the contributions of this thesis. 199

1 Space transportation service language Ecore metamodel (spacetransportation-
service.ecore). 240

2 IntellEdit integration with XMLText . 254

206

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

List of Tables

2.1 Comparison of technical spaces XMLware, modelware, and grammarware. . . 34

4.1 Overview of XML Schema language concepts and their (lack of) support by
the Default Transformation Chain. 75

4.2 Mapping different representation technologies to the common data scheme . . 89
4.3 TOSCA concepts instantiated by the Moodle reference example and their

availability in TOSCADTC, Cloudify, and TOSCAXMLText. 100
4.4 Availability of TOSCA standard concepts and features in different languages

based on the Moodle reference example. 105
4.5 Number of individual XML Schema definitions and Ecore concepts collected

from input resources. 110
4.6 Instances of conveyor belt system components imported from the eCl@ss

standard to the common data scheme. 112

5.1 Reduced table which renders the value of the logical disjunction to true. . . 130
5.2 Validation evaluation results (weighted/unweighted). 150
5.3 Constraint violations in the generated models. 150
5.4 Structural constraints in language workbenches (= full support; G#= partial

support; #= no support). 161

6.1 Languages obtained by the execution of the selection strategy. 186
6.2 Grammar rule count of different variants of the target language. 187
6.3 Grammar metrics of source languages. 188
6.4 Grammar metrics of default languages. 189
6.5 Grammar metrics of target languages. 189
6.6 Percentile closeness between grammar metrics of pairs consisting of default

language and source language. 190
6.7 Percentile closeness between grammar metrics of pairs consisting of target

language and source language. 190
6.8 Differences between percentile metric closeness of pairs consisting of default

grammar and source grammar (cf. Table 6.6), and target grammar and source
grammar (cf. Table 6.7). 191

6.9 LOC of ECSS model, source grammar, default grammar, and target grammar. 191
6.10 Comparison of ECSS model and source language, default language, and target

language in LOC of grammar and parser rule count. 192

207

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Acronyms

ANTLR Another Tool For Language Recognition. 19, 20, 34, 35, 46, 47, 53, 58, 117,
125, 168

AST Abstract Syntax Tree. 20, 27, 28, 48, 49, 59, 125

ATL ATLAS Transformation Language. 41, 53

BNF Backus–Naur form. 21, 51

CAML Cloud Application Modeling Language. 97

CFG Context-Free Grammar. 19–21, 23, 34, 40–42, 45–47, 54, 56, 152, 168

CSS Cascading Style Sheets. 6, 175

CST Concrete Syntax Tree. 59

DSL Domain-Specific Language. 1–5, 9, 10, 12, 19, 21, 34, 35, 52, 53, 56, 57, 61, 156–159,
166, 168, 182, 183, 192–194, 197, 200, 201

DSML Domain-Specific Modeling Language. 122, 168

DTD XML Document Type Definition. 13, 14, 38, 43, 117

EBNF Extended Backus–Naur Form. 19–21, 34, 35, 40–42, 45–47, 58, 118, 156, 168,
169, 195, 197

ECSS Ecore Concrete Syntax Specification Language. 82

EMF Eclipse Modeling Framework. 25, 27, 28, 35, 42, 45, 47, 50, 54, 55, 59, 64, 88, 96,
117, 124, 127, 128, 141, 160, 162, 167, 168, 171, 181, 182, 193, 195, 197

EMOF Essential Meta Object Facility. 28, 34, 35, 45, 168

EPML eCl@ss Process Modeling Language. 107

ER Entity Relationship. 43, 57

209

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

ETL Epsilon Transformation Language. 41

EVL Epsilon Validation Language. 162

GMF Graphical Modeling Framework. 25, 27, 38, 58

GOPPRR Graph-Object-Property-Port-Role-Relationship. 44

GPL General-Purpose Language. 1, 2, 4, 6, 19, 35, 45, 47, 68, 158, 161

GPML General-Purpose Modeling Language. 27, 83, 122

HOT Higher-Order Transformation. 57

HTML HyperText Markup Language. 175

HUTN Human-Usable Textual Notation. 35, 45, 47, 51, 52, 57, 64, 81

IDE Integrated Development Environment. 2–6, 8, 10, 19, 28, 35, 37, 48, 51, 59, 61, 81,
83, 157, 196, 197, 199, 201–203

ISO International Organization for Standardization. 139, 141

JAXB Java Architecture for XML Binding. 39

JSON JavaScript Object Notation. 56, 175

KM3 Kernel Meta Meta Model. 53

LOC Lines of Code. 185

LOP Language Oriented Programming. 48

MDD Model-Driven Development. 25

MDE Model-Driven Engineering. 2, 3, 9, 24, 25, 35, 47, 52, 54, 58, 83, 84, 152, 168, 173,
193

MDLE Model-Driven Language Engineering. 2, 25, 27, 58, 63, 123, 152

MOF Meta Object Facility. 24, 25, 28, 38, 40, 51, 52, 54, 88, 117, 118

MPS Meta Programming System. 48, 49, 51

OASIS Organization for the Advancement of Structured Information Standards. 96

OCL Object Constraint Language. 6, 31, 34, 35, 59, 65, 89, 90, 110, 122–124, 127–129,
135, 141, 152, 154, 158, 161, 162, 176, 177

210

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

OMG Object Management Group. 25, 32

OOP Object-Oriented Programming. 28, 46, 51

ORM Object-role modeling. 42

RAG Reference Attribute Grammar. 45

SBSE Search-based Software Engineering. 37, 124, 153, 163, 201

SDF Syntax Definition Formalism. 45, 47, 55

SQL Structured English Query Language. 19

SVG Scalable Vector Graphics. 56

TCS Textual Concrete Syntax. 46, 53

TOSCA Topology and Orchestration Specification for Cloud Applications. 12, 61, 62,
96, 98, 104, 105, 200, 207

UML Unified Modeling Language. 3, 27, 38, 43, 57, 58, 83, 152

URI Uniform Resource Identifier. 29

W3C World Wide Web Consortium. 2, 13, 14, 64, 88

WYSIWYG What You See Is What You Get. 44

XMI XML Metadata Interchange. 28, 33, 112

XML Extensible Markup Language. 1–3, 5, 6, 8, 13, 35, 38, 42, 61–64, 73, 76, 78, 84–86,
88, 89, 105, 108, 112, 114, 200

XSD XML Schema Definition. 1–6, 8, 10, 12–14, 34, 38, 42, 64, 67, 69, 71, 74, 78, 98

XSD Extensible Stylesheet Language Transformation. 38

YAML YAML Ain’t Markup Language. 64, 81, 172, 175

211

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Bibliography

[1] Michael D. Adams. Principled Parsing for Indentation-sensitive Languages: Revis-
iting Landin’s Offside Rule. In The 40th Annual ACM Sigplan-sigact Symposium
on Principles of Programming Languages (POPL), Rome, Italy, pages 511–522,
2013.

[2] David Aguilera, Cristina Gómez, and Antoni Olivé. Enforcement of Conceptual
Schema Quality Issues in Current Integrated Development Environments. In
Proceedings of Advanced Information Systems Engineering - 25th International
Conference (CAiSE), Valencia, Spain, pages 626–640, 2013.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley series in computer science / World student
series edition. Addison-Wesley, 1986.

[4] Sethi Ravi Aho A., Lam M. and Ullman J. Compilers: Principles, Techniques and
Tools, 2nd Editio. Pearson Higher Education, 2007.

[5] Marcus Alanen and Ivan Porres. A Relation Between Context-Free Grammars and
Meta Object Facility Metamodels. Technical report, Turku Centre for Computer
Science, 2003.

[6] Diego Albuquerque, Bruno Barbieri Pontes Cafeo, Alessandro F. Garcia, Simone
Diniz Junqueira Barbosa, Silvia Abrahão, and António Ribeiro. Quantifying USAbil-
ity of Domain-specific Languages: An Empirical Study on Software Maintenance.
Journal of Systems and Software, 101:245–259, 2015.

[7] Shaukat Ali, Muhammad Zohaib Z. Iqbal, Andrea Arcuri, and Lionel C. Briand.
A Search-based OCL Constraint Solver for Model-based Test Data Generation.
In Proceedings of the 11th International Conference on Quality Software (QSIC),
Madrid, Spain, pages 41–50, 2011.

[8] Sabharwal Ashish and Selman Bart. S. Russell, P. Norvig, Artificial Intelligence: A
Modern Approach, Third Edition. Artificial Intelligence, 175(5-6):935–937, 2011.

[9] Colin Atkinson, Bastian Kennel, and Björn Goß. The Level-agnostic Modeling
Language. In Revised Selected Papers of Third International Conference on Software
Language Engineering (SLE), Eindhoven, the Netherlands, pages 266–275, 2010.

213

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[10] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003.

[11] Colin Atkinson and Thomas Kühne. Reducing Accidental Complexity in Domain
Models. Software and System Modeling, 7(3):345–359, 2008.

[12] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. Modelgen: Model Inde-
pendent Schema Translation. In Proceedings of the 21st International Conference
on Data Engineering (ICDE), Tokyo, Japan, pages 1111–1112, 2005.

[13] Greg J. Badros. JavaML: a markup language for Java source code. Computer
Networks, 33(1-6):159–177, 2000.

[14] Alessandra Bagnato, Konstantinos Barmpis, Nik Bessis, Luis Adrián Cabrera-Diego,
Juri Di Rocco, Davide Di Ruscio, Tamás Gergely, Scott Hansen, Dimitris S. Kolovos,
Philippe Krief, Ioannis Korkontzelos, Stéphane Laurière, Jose Manrique Lopez
de la Fuente, Pedro Maló, Richard F. Paige, Diomidis Spinellis, Cedric Thomas,
and Jurgen J. Vinju. Developer-centric Knowledge Mining from Large Open-source
Software Repositories (CROSSMINER). In STAF Workshops, volume 10748 of
Lecture Notes in Computer Science, pages 375–384. Springer, 2017.

[15] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso
Pierantonio. Automated Clustering of Metamodel Repositories. In Proceedings
of 28th International Conference on Advanced Information Systems Engineering
(CAiSE), Ljubljana, Slovenia, pages 342–358, 2016.

[16] Bas Basten, Jeroen van den Bos, Mark Hills, Paul Klint, Arnold Lankamp, Bert
Lisser, Atze van der Ploeg, Tijs van der Storm, and Jurgen J. Vinju. Modular
Language Implementation in Rascal - Experience Report. Science of Computer
Programming, 114:7–19, 2015.

[17] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML Ain’t Markup Language
(YAMLTM), Version 1.1, 2009.

[18] Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and David Launay.
Neo4emf, A Scalable Persistence Layer for EMF Models. In Proceedings of Modeling
Foundations and Applications - 10th European Conference (ECMFA), Held As Part
of STAF, York, UK, pages 230–241, 2014.

[19] Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel Wimmer, and Gerti
Kappel. Uml-based Cloud Application Modeling with Libraries, Profiles, and
Templates. In Proceedings of the 2nd International Workshop on Model-Driven
Engineering on and for the Cloud (CloudMDE) at MoDELS, Valencia, Spain, pages
56–65, 2014.

[20] Philip A. Bernstein. Applying Model Management to Classical Meta Data Problems.
In Online Proceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, Califonia, USA, 2003.

214

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[21] Jürgen Bettels and F. Avery Bishop. Unicode: A Universal Character Code. Digital
Technical Journal, 5(3):21–31, 1993.

[22] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd, 2016.

[23] Jean Bézivin, Frédéric Jouault, and David Touzet. An Introduction to the Atlas
Model Management Architecture. Rapport de recherche, 5:10–49, 2005.

[24] Jean Bézivin, Ivan Kurtev, et al. Model-based Technology Integration with the
Technical Space Concept. In Metainformatics Symposium, volume 20, pages 44–49,
2005.

[25] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak, and Sebastian Wagner. Opentosca - A Runtime for Tosca-
based Cloud Applications. In Proceedings of the 11th International Conference on
Service-oriented Computing (ICSOC), Berlin, Germany, pages 692–695, 2013.

[26] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. TOSCA:
Portable Automated Deployment and Management of Cloud Applications. In
Advanced Web Services, pages 527–549. 2014.

[27] Linda Bird, Andrew Goodchild, and Terry A. Halpin. Object Role Modeling and
XML-schema. In Proceedings of Conceptual Modeling - ER, 19th International
Conference on Conceptual Modeling, Salt Lake City, Utah, USA, pages 309–322,
2000.

[28] Paul V. Biron, Ashok Malhotra, and World Wide Web Consortium. XML Schema
Part 2: Datatypes Second Edition, 2004.

[29] Martin Bjorklund. YANG - A Data Modeling Language for the Network Configu-
ration Protocol (NETCONF), 2010.

[30] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green, Corin A.
Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes, Chrystopher L. Nehaniv,
Marian Petre, Chris Roast, Chris Roe, Allan Wong, and R. Michael Young. Cogni-
tive Dimensions of Notations: Design Tools for Cognitive Technology. In Proceedings
of the 4th International Conference on Cognitive Technology: Instruments of Mind
(CT), Warwick, UK, pages 325–341, 2001.

[31] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven Software
Engineering in Practice, Second Edition. Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers, 2017.

[32] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strat-
ego/xt 0.17. A Language and Toolset for Program Transformation. Science of
Computer Programming, 72(1-2):52–70, 2008.

215

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[33] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML). World Wide Web Journal, 2(4):27–66, 1997.

[34] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible Markup Language (XML), 1998.

[35] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, and David Schumm.
Vino4tosca: A Visual Notation for Application Topologies Based on TOSCA.
In Proceedings of On the Move to Meaningful Internet Systems (OTM) at the
Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE, Rome,
Italy, pages 416–424, 2012.

[36] Achim D. Brucker, Jordi Cabot, Gwendal Daniel, Martin Gogolla, Adolfo Sánchez-
Barbudo Herrera, Frank Hilken, Frédéric Tuong, Edward D. Willink, and Burkhart
Wolff. Recent Developments in OCL and Textual Modeling. In Proceedings of the
16th International Workshop on OCL and Textual Modeling at MoDELS, Saint-malo,
France, pages 157–165, 2016.

[37] Christoff Bürger, Sven Karol, and Christian Wende. Applying Attribute Gram-
mars for Metamodel Semantics. In Proceedings of the International Workshop on
Formalization of Modeling Languages, page 1, 2010.

[38] Lampson Butler. Personal distributed computing: The alto and ethernet software.
Addison-Wesley, 1988.

[39] Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann. Translat-
ing Grammars to Accurate Metamodels. In Proceedings of the 11th ACM Sigplan
International Conference on Software Language Engineering (SLE), Boston, Mas-
sachusetts, USA, pages 174–186, 2018.

[40] Jordi Cabot and Martin Gogolla. Object Constraint Language (OCL): A Definitive
Guide. In Advanced Lectures of 12th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems (SFM), Bertinoro,
Italy, pages 58–90, 2012.

[41] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A Structured English
Query Language. In Proceedings of 1974 ACM-SIGMOD Workshop on Data
Description, Access and Control, Ann Arbor, Michigan, USA, pages 249–264, 1974.

[42] Philippe Charles, Robert M. Fuhrer, and Stanley M. Sutton Jr. IMP: a Meta-tooling
Platform for Creating Language-specific Ides in Eclipse. In 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), Atlanta,
Georgia, USA, pages 485–488, 2007.

[43] Sergej Chodarev. Development of Human-friendly Notation for XML-based Lan-
guages. In Proceedings of the Federated Conference on Computer Science and
Information Systems (FedCSIS), Gdańsk, Poland, pages 1565–1571, 2016.

216

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[44] Sergej Chodarev and Jaroslav Porubän. Development of Custom Notation for XML-
based Language: A Model-driven Approach. Computer Science and Information
Systems, 14(3):939–958, 2017.

[45] William D. Clinger and Jonathan Rees. Macros That Work. In Conference Record of
the Eighteenth Annual ACM Symposium on Principles of Programming Languages,
Orlando, Florida, USA, pages 155–162, 1991.

[46] Benoît Combemale, Julien DeAntoni, Benoit Baudry, Robert B. France, Jean-
Marc Jézéquel, and Jeff Gray. Globalizing modeling languages. IEEE Computer,
47(6):68–71, 2014.

[47] Rainer Conrad, Dieter Scheffner, and Johann Christoph Freytag. XML Conceptual
Modeling Using UML. In Proceedings of Conceptual Modeling - ER, 19th Inter-
national Conference on Conceptual Modeling, Salt Lake City, Utah, USA, pages
558–571, 2000.

[48] Charles Consel, Fabien Latry, Laurent Réveillère, and Pierre Cointe. A Generative
Programming Approach to Developing DSL Compilers. In Proceedings of the 4th
International Conference on Generative Programming and Component Engineering
(GPCE), Tallinn, Estonia, pages 29–46, 2005.

[49] Steve Cook, Gareth Jones, Stuart Kent, and Alan Wills. Domain-specific Devel-
opment with Visual Studio Dsl Tools. Addison-Wesley Professional, first edition,
2007.

[50] James R. Cordy. The TXL Source Transformation Language. Science of Computer
Programming, 61(3):190–210, 2006.

[51] Microsoft Corporation. Modeling SDK for Visual Studio. Project website: https:
//msdn.microsoft.com/en-us/library/bb126413.aspx.

[52] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. A Component Model for
Model Transformations. IEEE Transactions on Software Engineering, 40(11):1042–
1060, 2014.

[53] Krzysztof Czarnecki and Michal Antkiewicz. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. In Proceedings of Generative
Programming and Component Engineering, 4th International Conference (GPCE),
Tallinn, Estonia, pages 422–437, 2005.

[54] Alberto Rodrigues Da Silva. Model-driven Engineering: A Survey Supported by the
Unified Conceptual Model. Computer Languages, Systems & Structures, 43:139–155,
2015.

217

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://msdn.microsoft.com/en-us/library/bb126413.aspx
https://msdn.microsoft.com/en-us/library/bb126413.aspx
https://www.tuwien.at/bibliothek

[55] Marcos Aurélio Almeida Da Silva, Alix Mougenot, Xavier Blanc, and Reda Ben-
draou. Towards Automated Inconsistency Handling in Design Models. In Proceed-
ings of Advanced Information Systems Engineering, 22nd International Conference
(CAiSE), Hammamet, Tunisia, pages 348–362, 2010.

[56] Juan De Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. Extending
Deep Meta-modeling for Practical Model-driven Engineering. The Computer
Journal, 57(1):36–58, 2014.

[57] Luís Eduardo de Souza Amorim, Michael J. Steindorfer, Sebastian Erdweg, and
Eelco Visser. Declarative Specification of Indentation Rules: A Tooling Perspective
on Parsing and Pretty-printing Layout-sensitive Languages. In Proceedings of the
11th ACM Sigplan International Conference on Software Language Engineering
(SLE), Boston, Massachusetts, USA, pages 3–15, 2018.

[58] Kalyanmoy Deb. Multi-objective Optimization. In Search Methodologies, pages
403–449. Springer, 2014.

[59] Thomas Degueule, Benoît Combemale, Arnaud Blouin, Olivier Barais, and Jean-
Marc Jézéquel. Melange: A Meta-language for Modular and Reusable Development
of Dsls. In Proceedings of the ACM Sigplan International Conference on Software
Language Engineering (SLE), Pittsburgh, Pennsylvania, USA, pages 25–36, 2015.

[60] Lukas Diekmann and Laurence Tratt. Eco: A Language Composition Editor. In
Proceedings of the 7th International Conference on Software Language Engineering
(SLE), Västerås, Sweden, pages 82–101, 2014.

[61] Zinovy Diskin, Sahar Kokaly, and Tom Maibaum. Mapping-aware Megamodeling:
Design Patterns and Laws. In Proceedings of 6th International Conference on
Software Language Engineering (SLE), Indianapolis, Indiana, USA, pages 322–343,
2013.

[62] Martin Dougiamas and Peter Taylor. Moodle: Using Learning Communities to
Create an Open Source Course Management System. In Proceedings of the World
Conference on Educational Multimedia, Hypermedia and Telecommunications (ED-
MEDIA), pages 171–178, 2003.

[63] eCl@ss e.V. eCl@ss Standard, Version 9.0, 2014.

[64] Visser Eelco. Stratego: A Language for Program Transformation Based on Rewriting
Strategies. In Proceedings of the 12th International Conference on Rewriting
Techniques and Applications RTA, Utrecht, The Netherlands, pages 357–362, 2001.

[65] Sven Efftinge and Markus Völter. oAW Xtext: A Framework for Textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit, 2006.

218

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[66] Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Generating and
Evaluating Choices for Fixing Inconsistencies in UML Design Models. In 23rd
International Conference on Automated Software Engineering (ASE), L’aquila,
Italy, pages 99–108, 2008.

[67] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language Composi-
tion Untangled. In International Workshop on Language Descriptions, Tools, and
Applications (LDTA), Tallinn, Estonia, page 7, 2012.

[68] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann.
Sugarj: Library-based Syntactic Language Extensibility. In Proceedings of the
26th Annual ACM Sigplan Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA), Part of SPLASH, Portland, Oregon, USA,
pages 391–406, 2011.

[69] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser,
Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning. The State of
the Art in Language Workbenches - Conclusions from the Language Workbench
Challenge. In Proceedings of the International Conference on Software Language
Engineering (SLE, pages 197–217, 2013.

[70] Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language Faster
Than the Quick and Dirty Way. In Companion to the 25th Annual ACM Sigplan
Conference on Object-oriented Programming, Systems, Languages, and Applications
(SPLASH/OOPSLA), Reno/tahoe, Nevada, USA, pages 307–309, 2010.

[71] Moritz Eysholdt and Johannes Rupprecht. Migrating a Large Modeling Environment
from XML/UML to Xtext/gmf. In Companion to the 25th Annual ACM Sigplan
Conference on Object-oriented Programming, Systems, Languages, and Applications
(SPLASH/OOPSLA), Reno/tahoe, Nevada, USA, pages 97–104, 2010.

[72] Jean-Marie Favre. Foundations of Model (driven) (reverse) Engineering : Models -
Episode I: Stories of the Fidus Papyrus and of the Solarus. In Language Engineering
for Model-driven Software Development, 2004.

[73] Jean-Marie Favre. Towards a basic theory to model model driven engineering. In
3rd Uml Workshop in Software Model Engineering, pages 262–271. Citeseer, 2004.

[74] Jean-Marie Favre. Languages Evolve Too! Changing the Software Time Scale. In
8th International Workshop on Principles of Software Evolution (IWPSE), Lisbon,
Portugal, pages 33–44, 2005.

219

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[75] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Andreas Winter. Guest
Editors’ Introduction to the Special Section on Software Language Engineering.
IEEE Transactions on Software Engineering, 35(6):737–741, 2009.

[76] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engi-
neering with PLT Redex. MIT Press, 2009.

[77] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay A. McCarthy, and Sam Tobin-Hochstadt. The Racket Mani-
festo. In 1st Summit on Advances in Programming Languages (SNAPL), Asilomar,
California, USA, pages 113–128, 2015.

[78] Daniel Feltey, Spencer P. Florence, Tim Knutson, Vincent St-Amour, Ryan Culpep-
per, Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Languages the
racket way. Language Workbench Challenge at the International Conference on
Software Language Engineering (SLE), 65, 2016.

[79] Joseph Fialli and Sekhar Vajjhala. The java architecture for xml binding (jaxb).
JSR Specification, 2003.

[80] Matthew Flatt. Creating Languages in Racket. Communications of the ACM,
55(1):48–56, 2012.

[81] Martin Fleck, Javier Troya, Marouane Kessentini, Manuel Wimmer, and Bader
Alkhazi. Model Transformation Modularization as a Many-Objective Optimization
Problem. IEEE Transactions on Software Engineering, 43(11):1009–1032, 2017.

[82] Frédéric Fondement, Rémi Schnekenburger, Sébastien Gérard, and Pierre-Alain
Muller. Metamodel-aware textual concrete syntax specification. Technical report,
2006.

[83] Eclipse Foundation. Eclipse Simultaneous Releases. Project website: https:

//projects.eclipse.org/releases.

[84] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific
Languages? Blog article: http://www.martinfowler.com/articles/

languageWorkbench.html.

[85] Martin Fowler. Domain-specific Languages. Pearson Education, 2010.

[86] Martin Fowler. Domain-specific Languages. The Addison-Wesley signature series.
Addison-Wesley, 2011.

[87] Ulrich Frank. Multi-perspective Enterprise Modeling: Foundational Concepts,
Prospects and Future Research Challenges. Software and System Modeling,
13(3):941–962, 2014.

220

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://projects.eclipse.org/releases
https://projects.eclipse.org/releases
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://www.tuwien.at/bibliothek

[88] Miguel Garcia and Paul Sentosa. Generation of Eclipse-based IDEs for Custom
DSLs. Technical report, Technical report, Software Systems Institute (STS), TU
Hamburg-Harburg, Germany, 2007.

[89] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Classification of Concrete
Textual Syntax Mapping Approaches. In Proceedings of the 4th European Conference
on Model Driven Architecture - Foundations and Applications (ECMDA-FA), Berlin,
Germany, pages 169–184, 2008.

[90] Jeff Gray, Sandeep Neema, Juha-Pekka Tolvanen, Aniruddha S. Gokhale, Steven
Kelly, and Jonathan Sprinkle. Domain-specific Modeling. In Handbook of Dynamic
System Modeling. 2007.

[91] Thomas R. G. Green and Marian Petre. USAbility Analysis of Visual Programming
Environments: A ’cognitive dimensions’ Framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996.

[92] Richard C. Gronback. Eclipse Modeling Project: A DSL Toolkit. Pearson Education,
2009.

[93] Object Management Group. Human-USAble Textual Notation Specification, Version
1.0, 2004.

[94] Object Management Group. Unified Modeling Language, Version 2.5, 2015.

[95] Pierre Hansen and Nenad Mladenovic. Variable Neighborhood Search. In Handbook
of Heuristics., pages 759–787. 2018.

[96] Mark Harman. The Current State and Future of Search Based Software Engineering.
In Workshop on the Future of Software Engineering (FOSE) at International
Conference on Software Engineering (ICSE), Minneapolis, Minnesota, USA, pages
342–357, 2007.

[97] Elliotte Rusty Harold and W. Scott Means. XML in a Nutshell. O’Reilly, 2001.

[98] Görel Hedin. Reference Attributed Grammars. Informatica (Slovenia), 24(3), 2000.

[99] Jan Heering, P. R. H. Hendriks, Paul Klint, and J. Rekers. The Syntax Definition
Formalism SDF - Reference Manual. Sigplan Notices, 24(11):43–75, 1989.

[100] Ábel Hegedüs, Ákos Horváth, István Ráth, Moisés Castelo Branco, and Dániel Varró.
Quick Fix Generation for Modeling Languages. In IEEE Symposium on Visual
Languages and Human-centric Computing (VL/HCC), Pittsburgh, Pennsylvania,
USA, pages 17–24, 2011.

[101] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. Derivation and Refinement of Textual Syntax for Models. In Proceedings
of the 5th European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA), Enschede, the Netherlands, pages 114–129, 2009.

221

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[102] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. Model-based Language Engineering with Emftext. In Revised Selected
Papers of International Summer School on Generative and Transformational Tech-
niques in Software Engineering (GTTSE), Braga, Portugal, pages 322–345, 2011.

[103] Adolfo Sánchez-Barbudo Herrera, Edward D. Willink, and Richard F. Paige. A
Domain Specific Transformation Language to Bridge Concrete and Abstract Syntax.
In Proceedings of 9th International Conference on Theory and Practice of Model
Transformations (ICMT), Held As Part of STAF, Vienna, Austria, pages 3–18,
2016.

[104] Alan R. Hevner. Design Science Research. In Computing Handbook, Third Edition:
Information Systems and Information Technology, pages 22: 1–23. 2014.

[105] Bernhard G. Humm and Ralf S. Engelschall. Language-oriented Programming Via
DSL Stacking. In Proceedings of the Fifth International Conference on Software
and Data Technologies (ICSOFT), Volume 2, Athens, Greece, pages 279–287, 2010.

[106] John Edward Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven
Engineering Practices in Industry: Social, Organizational and Managerial Factors
That Lead to Success or Failure. Science of Computer Programming, 89:144–161,
2014.

[107] Information and documentation — International Standard Book Number (ISBN).
Standard, International Organization for Standardization, London, UK, 2017.

[108] Codes for the representation of names of countries and their subdivisions – Part 1:
Country codes. Standard, International Organization for Standardization, Geneva,
CH, November 2013.

[109] Information technology – Universal Coded Character Set (UCS). Standard, Japanese
Industrial Standards Committee, Tokyo, Japan, 2017.

[110] Information technology – Syntactic metalanguage – Extended BNF. Standard,
American National Standards Institute, Washington, United States, 1996.

[111] Javier Luis Cánovas Izquierdo and Jesús García Molina. Extracting Models from
Source Code in Software Modernization. Software and System Modeling, 13(2):713–
734, 2014.

[112] JetBrains. Meta Programming System. Project website: http://www.

jetbrains.com/mps.

[113] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model Driven Language
Engineering with Kermeta. In Revisted Selected Papers of International Summer
School on Generative and Transformational Techniques in Software Engineering
(GTTSE), Braga, Portugal, pages 201–221, 2009.

222

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

http://www.jetbrains.com/mps
http://www.jetbrains.com/mps
https://www.tuwien.at/bibliothek

[114] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A Model
Transformation Tool. Science of Computer Programming, 72(1-2):31–39, 2008.

[115] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the Specification
of Textual Concrete Syntaxes in Model Engineering. In Proceedings of the 5th
International Conference on Generative Programming and Component Engineering
(GPCE), Portland, Oregon, USA, pages 249–254, 2006.

[116] Martin Karlsch. A Model-driven Framework For Domain Specific Languages.
Master’s thesis, Hasso-Plattner-Institute of Software Systems Engineering, 2007.

[117] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design guidelines for domain specific languages. Computing
Research Repository (CoRR), abs/1409.2378, 2014.

[118] Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench: Rules for
Declarative Specification of Languages and Ides. In Proceedings of the 25th Annual
ACM Sigplan Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA), Reno/tahoe, Nevada, USA, pages 444–463, 2010.

[119] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific Modeling - Enabling Full
Code Generation. Wiley, 2008.

[120] Amir A. Khwaja and Joseph E. Urban. Syntax-directed Editing Environments:
Issues and Features. In Proceedings of the ACM/SIGAPP Symposium on Applied
Computing: States of the Art and Practice SAC), Indianapolis, Indiana, USA,
pages 230–237, 1993.

[121] Anneke Kleppe. Software Language Engineering: Creating Domain-specific Lan-
guages Using Metamodels. Pearson Education, 2008.

[122] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an Engineering Discipline
for Grammarware. ACM Transactions on Software Engineering and Methodology,
14(3):331–380, 2005.

[123] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In Ninth IEEE
International Working Conference on Source Code Analysis and Manipulation
(SCAM), Edmonton, Alberta, Canada, pages 168–177, 2009.

[124] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon Object
Language (EOL). In Proceedings of the Second European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA), Bilbao, Spain,
pages 128–142, 2006.

[125] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon Transforma-
tion Language. In Proceedings of Theory and Practice of Model Transformations,
First International Conference (ICMT), Zürich, Switzerland, pages 46–60, 2008.

223

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[126] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. On the Evolution
of OCL for Capturing Structural Constraints in Modeling Languages. In Rigorous
Methods for Software Construction and Analysis, Essays Dedicated to Egon Börger,
pages 204–218, 2009.

[127] Dimitrios S. Kolovos, Louis M. Rose, James R. Williams, Nikolas Drivalos Ma-
tragkas, and Richard F. Paige. A Lightweight Approach for Managing XML
Documents with MDE Languages. In Proceedings of the 8th European Conference
on Modeling Foundations and Applications (ECMFA), Kgs. Lyngby, Denmark,
pages 118–132, 2012.

[128] Dimitris S. Kolovos, Patrick Neubauer, Konstantinos Barmpis, Nicholas Matragkas,
and Richard F. Paige. Crossflow: A Framework for Distributed Mining of Software
Repositories. In Proceedings of the 16th International Conference on Mining
Software Repositories (MSR), Montreal, Canada, pages 155–159. IEEE / ACM,
2019.

[129] Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser.
Declarative Name Binding and Scope Rules. In Revised Selected Papers of 5th Inter-
national Conference on Software Language Engineering (SLE), Dresden, Germany,
pages 311–331, 2012.

[130] Tomaz Kosar, Saso Gaberc, Jeffrey C. Carver, and Marjan Mernik. Program
Comprehension of Domain-specific and General-purpose Languages: Replication of
a Family of Experiments Using Integrated Development Environments. Empirical
Software Engineering, 23(5):2734–2763, 2018.

[131] Tomaz Kosar, Pablo E. Martínez López, Pablo Andrés Barrientos, and Marjan
Mernik. A Preliminary Study on Various Implementation Approaches of Domain-
specific Language. Information & Software Technology, 50(5):390–405, 2008.

[132] Tomaz Kosar, Marjan Mernik, and Jeffrey C. Carver. Program Comprehension of
Domain-specific and General-purpose Languages: Comparison Using a Family of
Experiments. Empirical Software Engineering, 17(3):276–304, 2012.

[133] Tomaz Kosar, Marjan Mernik, Matej Crepinsek, Pedro Rangel Henriques,
Daniela Carneiro da Cruz, Maria João Varanda Pereira, and Nuno Oliveira. Influ-
ence of Domain-specific Notation to Program Understanding. In Proceedings of the
International Multiconference on Computer Science and Information Technology
(IMCSIT), Mragowo, Poland, pages 675–682, 2009.

[134] Tomaz Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Crepinsek, Daniela Carneiro da Cruz, and Pedro Rangel Henriques. Comparing
General-purpose and Domain-specific Languages: An Empirical Study. Computer
Science and Information Systems, 7(2):247–264, 2010.

224

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[135] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: A Framework for
Compositional Development of Domain Specific Languages. International Journal
on Software Tools for Technology Transfer, 12(5):353–372, 2010.

[136] Thomas Kühne. What Is a Model? In Language Engineering for Model-driven
Software Development, 2004.

[137] Thomas Kühne. Matters of (meta-)modeling. Software and System Modeling,
5(4):369–385, 2006.

[138] Andreas Kunert. Semi-automatic Generation of Metamodels and Models From
Grammars and Programs. Electronic Notes in Theoretical Computer Science,
211:111–119, 2008.

[139] Ivan Kurtev, Mehmet Aksit, and Jean Bézivin. Technical Spaces: An Initial Ap-
praisal. In Proceedings of the International Conference on Cooperative Information
Systems (CoopIS), 2002.

[140] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological spaces: An initial
appraisal. International Conference on Cooperative Information Systems (CoopIS),
Distributed Objects and Applications (DOA), 2002, 2002.

[141] Ralf Lämmel. Grammar Adaptation. In Proceedings of the International Symposium
of Formal Methods for Increasing Software Productivity (FME), Berlin, Germany,
pages 550–570, 2001.

[142] Peter J. Landin. The Next 700 Programming Languages. Communications of the
ACM, 9(3):157–166, 1966.

[143] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals. In Soviet Physics Doklady, volume 10, pages 707–710, 1966.

[144] Clayton Lewis and Gary Olson. Empirical Studies of Programmers: Second
Workshop. chapter Can Principles of Cognition Lower the Barriers to Programming?,
pages 248–263. Ablex Publishing Corp., Norwood, New Jersey, USA, 1987.

[145] Alex Loh, Tijs van der Storm, and William R. Cook. Managed Data: Modular
Strategies for Data Abstraction. In ACM Symposium on New Ideas in Programming
and Reflections on Software (Onward!), Part of SPLASH, Tucson, Arizona, USA,
pages 179–194, 2012.

[146] David H. Lorenz and Boaz Rosenan. Cedalion: A Language for Language Oriented
Programming. In Proceedings of the 26th Annual ACM Sigplan Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA) at
SPLASH, Portland, Oregon, USA, pages 733–752, 2011.

225

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[147] Murali Mani, Dongwon Lee, and Richard R. Muntz. Semantic Data Modeling Using
XML Schemas. In Proceedings of Conceptual Modeling - ER, 20th International
Conference on Conceptual Modeling, Yokohama, Japan, pages 149–163, 2001.

[148] Mernik Marjan, Zumer Viljem, Lenic Mitja, and Avdicausevic Enis. Implementation
of Multiple Attribute Grammar Inheritance in the Tool LISA. Sigplan Notices,
34(6):68–75, 1999.

[149] Thomas J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, 2(4):308–320, 1976.

[150] Pierre André Ménard and Sylvie Ratté. Concept Extraction from Business Doc-
uments for Software Engineering Projects. Automated Software Engineering,
23(4):649–686, 2016.

[151] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and Resolving
Model Inconsistencies Using Transformation Dependency Analysis. In Proceedings
of 9th International Conference on Model Driven Engineering Languages and
Systems (MoDELS), Genova, Italy, pages 200–214, 2006.

[152] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-specific Languages. ACM Computing Surveys, 37(4):316–344, 2005.

[153] Bart Meyers and Hans Vangheluwe. A Framework for Evolution of Modeling
Languages. Science of Computer Programming, 76(12):1223–1246, 2011.

[154] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Françoise Le
Meur. DECOR: A Method for the Specification and Detection of Code and Design
Smells. IEEE Transactions on Software Engineering, 36(1):20–36, 2010.

[155] Daniel L. Moody. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering, 35(6):756–779, 2009.

[156] Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement, Michel Hassenforder,
Rémi Schneckenburger, Sébastien Gérard, and Jean-Marc Jézéquel. Model-driven
Analysis and Synthesis of Concrete Syntax. In Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems, Genova, Italy,
pages 98–110, 2006.

[157] Pierre-Alain Muller, Frédéric Fondement, Franck Fleurey, Michel Hassenforder,
Rémi Schneckenburger, Sébastien Gérard, and Jean-Marc Jézéquel. Model-driven
Analysis and Synthesis of Textual Concrete Syntax. Software and System Modeling,
7(4):423–441, 2008.

[158] Pierre-Alain Muller, Frédéric Fondement, and Benoît Baudry. Concrete Syntax
Definition For Modeling Languages. PhD thesis, École Polytechnique Fédérale De
Lausanne, 2007.

226

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[159] Pierre-Alain Muller and Michel Hassenforder. HUTN As a Bridge between Model-
ware and Grammarware-an Experience Report. In WISME Workshop at Models/uml,
pages 1–10, 2005.

[160] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Consistency
Management with Repair Actions. In Proceedings of the 25th International Confer-
ence on Software Engineering, Portland, Oregon, USA, pages 455–464, 2003.

[161] Patrick Neubauer. Towards Model-Driven Software Language Modernization. In
Joint Proceedings of the Doctoral Symposium and Projects Showcase at the Software
Technologies: Applications and Foundations (STAF), Vienna, Austria, pages 11–20,
2016.

[162] Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer, Javier Troya, and
Manuel Wimmer. XMLText: From XML Schema to Xtext. In Proceedings of the
ACM Sigplan International Conference on Software Language Engineering (SLE),
Pittsburgh, Pennsylvania, USA, pages 71–76, 2015.

[163] Patrick Neubauer, Robert Bill, Dimitris S. Kolovos, Richard F. Paige, and Manuel
Wimmer. Reusable Textual Notations for Domain-Specific Languages. In 19th
International Workshop in OCL and Textual Modeling (OCL) at IEEE/ACM 22nd
International Conference on Model Driven Engineering Languages and Systems
(MODELS), Munich, Germany, pages 67–80, 2019.

[164] Patrick Neubauer, Robert Bill, Tanja Mayerhofer, and Manuel Wimmer. Automated
Generation of Consistency-achieving Model Editors. In IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), Klagen-
furt, Austria, pages 127–137, 2017.

[165] Patrick Neubauer, Robert Bill, and Manuel Wimmer. Modernizing domain-specific
languages with XMLText and IntellEdit. In IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, Austria,
pages 565–566, 2017.

[166] Jakob Nielsen. Iterative User-interface Design. IEEE Computer, 26(11):32–41,
1993.

[167] Object Management Group (OMG). Object Constraint Language (OCL), Version
2.2, 2010.

[168] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification,
Version 2.5.1, 2016.

[169] Ed Ort and Bhakti Mehta. Java architecture for xml binding (jaxb). Technical
article: https://www.oracle.com/technical-resources/articles/

javase/jaxb.html.

227

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.oracle.com/technical-resources/articles/javase/jaxb.html
https://www.oracle.com/technical-resources/articles/javase/jaxb.html
https://www.tuwien.at/bibliothek

[170] Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack. Metamodeling
for Grammarware Researchers. In Revised Selected Papers of 5th International
Conference on Software Language Engineering (SLE), Dresden, Germany, pages
64–82, 2012.

[171] Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack. A Tutorial
on Metamodeling for Grammar Researchers. Science of Computer Programming,
96:396–416, 2014.

[172] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nikolaos Drivalos, and
Fiona A. C. Polack. The Design of a Conceptual Framework and Technical Infras-
tructure for Model Management Language Engineering. In 14th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS), Potsdam,
Germany, pages 162–171, 2009.

[173] Derek Palma and Thomas Spatzier. Topology and Orchestration Specification for
Cloud Applications Version 1.0, 2013.

[174] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[175] Terence John Parr and Russell W. Quong. ANTLR: A Predicated- LL(k) Parser
Generator. Software: Practice and Experience, 25(7):789–810, 1995.

[176] Vaclav Pech, Alex Shatalin, and Markus Voelter. Jetbrains MPS As a Tool for
Extending Java. In Proceedings of the 2013 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, Stuttgart, Germany, pages 165–168, 2013.

[177] Juri Di Rocco Phuong T. Nguyen and Davide Di Ruscio. Enabling Heterogeneous
Recommendations in OSS Development: What’s Done and What’s Next in CROSS-
MINER. In Proceedings of the Evaluation and Assessment on Software Engineering
(EASE), Copenhagen, Denmark, pages 326–331, 2019.

[178] Andreas Polzer, Daniel Merschen, Goetz Botterweck, Andreas Pleuss, Jacques
Thomas, Bernd Hedenetz, and Stefan Kowalewski. Managing Complexity and
Variability of a Model-based Embedded Software Product Line. ISSE, 8(1):35–49,
2012.

[179] Jaroslav Porubän and Dominik Lakatoš. YAJCo (Yet Another Java Compiler
compiler) is a language parser generator based on annotated model. Github project:
https://github.com/kpi-tuke/yajco.

[180] Alexander Reder and Alexander Egyed. Computing Repair Trees for Resolving
Inconsistencies in Design Models. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), Essen, Germany, pages 220–229, 2012.

228

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://github.com/kpi-tuke/yajco
https://www.tuwien.at/bibliothek

[181] Alexander Reder and Alexander Egyed. Determining the Cause of a Design Model
Inconsistency. IEEE Transactions on Software Engineering, 39(11):1531–1548,
2013.

[182] Martin P. Robillard, Robert J. Walker, and Thomas Zimmermann. Recommendation
Systems for Software Engineering. IEEE Software, 27(4):80–86, 2010.

[183] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. Col-
laborative Repositories in Model-Driven Engineering. IEEE Software, 32(3):28–34,
2015.

[184] Juri Di Rocco, Davide Di Ruscio, Hrishikesh Narayanankutty, and Alfonso Pieranto-
nio. Resilience in Sirius Editors: Understanding the Impact of Metamodel Changes.
In Workshop Proceedings of the ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems (MODELS), Copenhagen, Denmark,
pages 620–630, 2018.

[185] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona Polack. Con-
structing Models with the Human-usable Textual Notation. In Proceedings of 11th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS), Toulouse, France, pages 249–263, 2008.

[186] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona Polack. The
Epsilon Generation Language. In Proceedings of the 4th European Conference on
Model Driven Architecture - Foundations and Applications (ECMDA-FA), Berlin,
Germany, pages 1–16, 2008.

[187] Per Runeson and Martin Höst. Guidelines for Conducting and Reporting Case Study
Research in Software Engineering. Empirical Software Engineering, 14(2):131–164,
2009.

[188] Beatriz A. Sánchez, Konstantinos Barmpis, Patrick Neubauer, Richard F. Paige,
and Dimitrios S. Kolovos. Restmule: Enabling Resilient Clients for Remote Apis. In
Proceedings of the 15th International Conference on Mining Software Repositories
(MSR), Gothenburg, Sweden, pages 537–541, 2018.

[189] Andrea Schauerhuber, Manuel Wimmer, Elisabeth Kapsammer, Wieland Schwinger,
and Werner Retschitzegger. Bridging Webml to Model-driven Engineering: From
Document Type Definitions to Meta Object Facility. IET Software, 1(3):81–97,
2007.

[190] Markus Scheidgen. Textual Modelling Embedded into Graphical Modelling. In Pro-
ceedings of the 4th European Conference on Model Driven Architecture - Foundations
and Applications (ECMDA-FA), Berlin, Germany, pages 153–168, 2008.

[191] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.
IEEE Computer, 39(2):25–31, 2006.

229

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[192] Ángel Mora Segura, Juan de Lara, Patrick Neubauer, and Manuel Wimmer. Au-
tomated Modeling Assistance by Integrating Heterogeneous Information Sources.
Computer Languages, Systems & Structures, 53:90–120, 2018.

[193] Oszkár Semeráth, Ágnes Barta, Ákos Horváth, Zoltán Szatmári, and Dániel Varró.
Formal Validation of Domain-specific Languages with Derived Features and Well-
formedness Constraints. Software and System Modeling, 16(2):357–392, 2017.

[194] Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional Software.
In Proceedings of the 21th Annual ACM Sigplan Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA), Portland, Oregon,
USA, pages 451–464, 2006.

[195] Kari Smolander, Kalle Lyytinen, Veli-Pekka Tahvanainen, and Pentti Marttiin.
Metaedit - A Flexible Graphical Environment for Methodology Modeling. In
International Conference on Advanced Information Systems Engineering (CAiSE),
pages 168–193, 1991.

[196] Riccardo Solmi. Whole Platform. PhD thesis, University of Bologna, 2005.

[197] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition.

[198] Mark Strembeck and Uwe Zdun. An Approach for the Systematic Development of
Domain-specific Languages. Software: Practices and Experiences, 39(15):1253–1292,
2009.

[199] Gilbert Tekli, Richard Chbeir, and Jacques Fayolle. A Visual Programming
Language for XML Manipulation. Journal of Visual Languages and Computing,
24(2):110–135, 2013.

[200] Yentl Van Tendeloo, Simon Van Mierlo, Bart Meyers, and Hans Vangheluwe.
Concrete Syntax: A Multi-paradigm Modelling Approach. In Proceedings of the
10th ACM Sigplan International Conference on Software Language Engineering
(SLE), Vancouver, Bc, Canada, pages 182–193, 2017.

[201] Zoltán Theisz and Gergely Mezei. An Algebraic Instantiation Technique Illustrated
by Multilevel Design Patterns. In Proceedings of the 2nd International Workshop
on Multi-level Modelling at the 18th International Conference on Model Driven
Engineering Languages & Systems, Ottawa, Canada, pages 53–62, 2015.

[202] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures Second Edition, 2004.

[203] Karsten Thoms and Miro Sprönemann. Ecore to Xtext Grammar Creator Xtend
transformation (Ecore2XtextGrammarCreator.xtend). Source code located at
https://tinyurl.com/ybon2dvl.

230

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://tinyurl.com/ybon2dvl
https://www.tuwien.at/bibliothek

[204] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin.
On the Use of Higher-order Model Transformations. In Proceedings of the 5th
European Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA), Enschede, the Netherlands, pages 18–33, 2009.

[205] Juha-Pekka Tolvanen and Steven Kelly. Defining Domain-specific Modeling Lan-
guages to Automate Product Derivation: Collected Experiences. In Proceedings
of the 9th International Conference on Software Product Lines (SPLC), Rennes,
France, pages 198–209, 2005.

[206] Juha-Pekka Tolvanen, Risto Pohjonen, and Steven Kelly. Advanced tooling for
domain-specific modeling: MetaEdit+. In The 7th Oopsla Workshop on Domain-
specific Modeling, Finland, 2007.

[207] Javier Troya, Hugo Brunelière, Martin Fleck, Manuel Wimmer, Leire Orue-
Echevarria, and Jesús Gorroñogoitia. ARTIST: Model-based Stairway to the
Cloud. In STAF Projects Showcase, volume 1400 of CEUR Workshop Proceedings,
pages 1–8. CEUR-WS.org, 2015.

[208] M. G. J. van den Brand. Prettyprinting without losing comments. 1993.

[209] Tijs van der Storm, William R. Cook, and Alex Loh. Object Grammars. In Revised
Selected Papers of 5th International Conference on Software Language Engineering
(SLE), Dresden, Germany, pages 4–23, 2012.

[210] Arie van Deursen and Paul Klint. Little Languages: Little Maintenance? Journal
of Software Maintenance, 10(2):75–92, 1998.

[211] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. Sirius: A rapid devel-
opment of DSM graphical editor. In 18th International Conference on Intelligent
Engineering Systems (INES), pages 233–238, 2014.

[212] Markus Voelter. Language and IDE Modularization and Composition with MPS.
In Revised Selected Papers of International Summer School on Generative and
Transformational Techniques in Software Engineering (GTTSE), Braga, Portugal,
pages 383–430, 2011.

[213] Markus Voelter and Konstantin Solomatov. Language modularization and com-
position with projectional language workbenches illustrated with MPS. Software
Language Engineering (SLE), 16(3), 2010.

[214] Tim A. Wagner. Practical Algorithms for Incremental Software Development
Environments. PhD thesis, EECS Department, University of California, Berkeley,
Mar 1998.

[215] William M. Waite and Gerhard Goos. Compiler Construction. Texts and Mono-
graphs in Computer Science. Springer, 1984.

231

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[216] Richard S. Wallace. The Anatomy of Alice. Springer, 2009.

[217] Edward D. Willink. Re-engineering Eclipse MDT/OCL for Xtext. Electronic
Communication of the European Association of Software Science and Technology
(ECEASST), 36, 2010.

[218] Manuel Wimmer and Gerhard Kramler. Doctoral Symposium at International
Conference on Model Driven Engineering Languages and Systems (MODELS),
Montego Bay, Jamaica, Revised Selected Papers. pages 159–168, 2005.

[219] Niklaus Wirth. Extended Backus-Naur form (EBNF). ISO/IEC, 14977:2996, 1996.

[220] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Regnell.
Experimentation in Software Engineering. Springer, 2012.

[221] Andreas Zeller. Why Programs Fail - A Guide to Systematic Debugging, 2nd
Edition. Academic Press, 2009.

[222] Zarko Zivanov, Predrag S. Rakic, and Miroslav Hajdukovic. Using Code Generation
Approach in Developing Kiosk Applications. Computer Science and Information
Systems, 5(1):41–59, 2008.

[223] Steffen Zschaler, Dimitrios S. Kolovos, Nikolaos Drivalos, Richard F. Paige, and
Awais Rashid. Domain-specific Metamodeling Languages for Software Language
Engineering. In Revised Selected Papers of the Second International Conference
on Software Language Engineering (SLE), Denver, Colorado, USA, pages 334–353,
2009.

232

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Appendices

233

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Space transportation service language XML Schema

definition

235

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

L
is

ti
ng

1:
Sp

ac
e

tr
an

sp
or

ta
ti

on
se

rv
ic

e
la

ng
ua

ge
X

M
L

Sc
he

m
a

de
fin

it
io

n
(s

pa
ce

tr
an

sp
or

ta
ti

on
se

rv
ic

e.
xs

d)
.

1
<
?
x
m
l
v
e
r
s
i
o
n
=
"
1
.
0
"
e
n
c
o
d
i
n
g
=
"
U
T
F
8
"
s
t
a
n
d
a
l
o
n
e
=
"
n
o
"
?
>

2
<
x
s
d
:
s
c
h
e
m
a

x
m
l
n
s
:
s
t
s
=
"
h
t
t
p
:
/
/
c
s
.
y
o
r
k
.
a
c
.
u
k
/
e
c
s
s
/
e
x
a
m
p
l
e
s
/
s
p
a
c
e
t
r
a
n
s
p
o
r
t
a
t
i
o
n
s
e
r
v
i
c
e
X
s
d
S
o
u
r
c
e
"

x
m
l
n
s
:
x
s
d
=
"
h
t
t
p

:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
"

t
a
r
g
e
t
N
a
m
e
s
p
a
c
e
=
"
h
t
t
p
:
/
/
c
s
.
y
o
r
k
.
a
c
.
u
k
/
e
c
s
s
/
e
x
a
m
p
l
e
s
/

s
p
a
c
e
t
r
a
n
s
p
o
r
t
a
t
i
o
n
s
e
r
v
i
c
e
X
s
d
S
o
u
r
c
e
"
>

3 4
<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
S
p
a
c
e
c
r
a
f
t
"
t
y
p
e
=
"
s
t
s
:
S
p
a
c
e
c
r
a
f
t
"
/
>

5
<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
L
a
u
n
c
h
S
i
t
e
"
t
y
p
e
=
"
s
t
s
:
L
a
u
n
c
h
S
i
t
e
"
/
>

6
<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
S
t
a
g
e
"
t
y
p
e
=
"
s
t
s
:
S
t
a
g
e
"
/
>

7
<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"
t
y
p
e
=
"
s
t
s
:
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"
/
>

8
<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
N
a
m
e
d
E
l
e
m
e
n
t
"
t
y
p
e
=
"
s
t
s
:
N
a
m
e
d
E
l
e
m
e
n
t
"
/
>

9
<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
E
n
g
i
n
e
T
y
p
e
"
t
y
p
e
=
"
s
t
s
:
E
n
g
i
n
e
T
y
p
e
"
/
>

1
0

<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
S
p
a
c
e
T
r
a
n
s
p
o
r
t
a
t
i
o
n
S
e
r
v
i
c
e
"
t
y
p
e
=
"
s
t
s
:
S
p
a
c
e
T
r
a
n
s
p
o
r
t
a
t
i
o
n
S
e
r
v
i
c
e
"
/
>

1
1

1
2

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
n
a
m
e
=
"
S
p
a
c
e
c
r
a
f
t
"
>

1
3

<
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

1
4

<
x
s
d
:
e
x
t
e
n
s
i
o
n
b
a
s
e
=
"
s
t
s
:
N
a
m
e
d
E
l
e
m
e
n
t
"
>

1
5

<
x
s
d
:
s
e
q
u
e
n
c
e
>

1
6

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"
n
a
m
e
=
"
s
t
a
g
e
s
"
t
y
p
e
=
"
s
t
s
:
S
t
a
g
e
"
/
>

1
7

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"
n
a
m
e
=
"
f
u
n
c
t
i
o
n
s
"

t
y
p
e
=
"
s
t
s
:
F
u
n
c
t
i
o
n
"
/
>

1
8

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"
n
a
m
e
=
"
p
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"

t
y
p
e
=
"
s
t
s
:
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"
/
>

1
9

<
/
x
s
d
:
s
e
q
u
e
n
c
e
>

2
0

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
s
p
a
c
e
c
r
a
f
t
I
d
"
t
y
p
e
=
"
x
s
d
:
I
D
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

2
1

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
l
a
u
n
c
h
S
i
t
e
"
t
y
p
e
=
"
x
s
d
:
I
D
R
E
F
S
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

2
2

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
m
a
n
u
f
a
c
t
u
r
e
r
"
t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"
/
>

2
3

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
c
o
u
n
t
r
y
O
f
O
r
i
g
i
n
"
t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"
/
>

2
4

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
r
e
l
a
u
n
c
h
C
o
s
t
I
n
M
i
o
U
S
D
"
t
y
p
e
=
"
x
s
d
:
i
n
t
e
g
e
r
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

2
5

<
/
x
s
d
:
e
x
t
e
n
s
i
o
n
>

2
6

<
/
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

2
7

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

2
8

2
9

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
n
a
m
e
=
"
L
a
u
n
c
h
S
i
t
e
"
>

3
0

<
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

3
1

<
x
s
d
:
e
x
t
e
n
s
i
o
n
b
a
s
e
=
"
s
t
s
:
N
a
m
e
d
E
l
e
m
e
n
t
"
>

3
2

<
x
s
d
:
s
e
q
u
e
n
c
e
>

3
3

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"
n
a
m
e
=
"
p
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"

t
y
p
e
=
"
s
t
s
:
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"
/
>

3
4

<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
o
p
e
r
a
t
o
r
"
>

236

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3
5

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e

m
i
x
e
d
=
"
t
r
u
e
"
>

3
6

<
x
s
d
:
s
e
q
u
e
n
c
e
>

3
7

<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
o
p
e
r
a
t
o
r
N
a
m
e
"
t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"
/
>

3
8

<
x
s
d
:
e
l
e
m
e
n
t
n
a
m
e
=
"
o
p
e
r
a
t
o
r
S
e
r
v
i
c
e
"
t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"
/
>

3
9

<
/
x
s
d
:
s
e
q
u
e
n
c
e
>

4
0

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

4
1

<
/
x
s
d
:
e
l
e
m
e
n
t
>

4
2

<
/
x
s
d
:
s
e
q
u
e
n
c
e
>

4
3

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
l
a
u
n
c
h
S
i
t
e
I
d
"
t
y
p
e
=
"
x
s
d
:
I
D
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

4
4

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
l
o
c
a
t
i
o
n
L
a
t
i
t
u
d
e
"
t
y
p
e
=
"
x
s
d
:
d
e
c
i
m
a
l
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

4
5

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
l
o
c
a
t
i
o
n
L
o
n
g
i
t
u
d
e
"
t
y
p
e
=
"
x
s
d
:
d
e
c
i
m
a
l
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

4
6

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
n
u
m
b
e
r
O
f
L
a
u
n
c
h
p
a
d
s
"
t
y
p
e
=
"
x
s
d
:
i
n
t
e
g
e
r
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

4
7

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
o
p
e
r
a
t
i
o
n
a
l
"
t
y
p
e
=
"
x
s
d
:
b
o
o
l
e
a
n
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

4
8

<
/
x
s
d
:
e
x
t
e
n
s
i
o
n
>

4
9

<
/
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

5
0

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

5
1

5
2

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
n
a
m
e
=
"
L
a
u
n
c
h
S
c
h
e
d
u
l
e
"
>

5
3

<
x
s
d
:
s
e
q
u
e
n
c
e
>

5
4

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"

n
a
m
e
=
"
l
a
u
n
c
h
E
v
e
n
t
"
>

5
5

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

5
6

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
m
i
s
s
i
o
n
T
i
t
l
e
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
>

5
7

<
x
s
d
:
s
i
m
p
l
e
T
y
p
e
>

5
8

<
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
b
a
s
e
=
"
x
s
d
:
s
t
r
i
n
g
"
>

5
9

<
x
s
d
:
m
a
x
L
e
n
g
t
h
v
a
l
u
e
=
"
4
2
"
/
>

6
0

<
/
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
>

6
1

<
/
x
s
d
:
s
i
m
p
l
e
T
y
p
e
>

6
2

<
/
x
s
d
:
a
t
t
r
i
b
u
t
e
>

6
3

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
l
a
u
n
c
h
S
i
t
e
I
d
"
t
y
p
e
=
"
x
s
d
:
I
D
R
E
F
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

6
4

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
s
p
a
c
e
c
r
a
f
t
I
d
"
t
y
p
e
=
"
x
s
d
:
I
D
R
E
F
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

6
5

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
s
t
a
r
t
D
a
t
e
T
i
m
e
"
>

6
6

<
x
s
d
:
s
i
m
p
l
e
T
y
p
e
>

6
7

<
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
b
a
s
e
=
"
x
s
d
:
d
a
t
e
T
i
m
e
"
>

6
8

<
x
s
d
:
p
a
t
t
e
r
n
v
a
l
u
e
=
"
\
d
{
4
}
−
\
d
\
d
−
\
d
\
d
T
\
d
\
d
:
\
d
\
d
:
\
d
\
d
Z
"
/
>

6
9

<
!

r
e
q
u
i
r
e
s

U
T
C

a
s

t
i
m
e

z
o
n
e
(
i
.
e
.

i
n
d
i
c
a
t
e
d

b
y

Z
)
,

7
0

e
.
g
.
:
2
0
0
4
0
4
1
2
T
1
3
:
2
0
:
0
0
Z
>

7
1

<
/
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
>

7
2

<
/
x
s
d
:
s
i
m
p
l
e
T
y
p
e
>

237

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7
3

<
/
x
s
d
:
a
t
t
r
i
b
u
t
e
>

7
4

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

7
5

<
/
x
s
d
:
e
l
e
m
e
n
t
>

7
6

<
/
x
s
d
:
s
e
q
u
e
n
c
e
>

7
7

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

7
8

7
9

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
n
a
m
e
=
"
S
t
a
g
e
"
>

8
0

<
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

8
1

<
x
s
d
:
e
x
t
e
n
s
i
o
n
b
a
s
e
=
"
s
t
s
:
N
a
m
e
d
E
l
e
m
e
n
t
"
>

8
2

<
x
s
d
:
s
e
q
u
e
n
c
e
>

8
3

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"
n
a
m
e
=
"
p
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"

t
y
p
e
=
"
s
t
s
:
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"
/
>

8
4

<
/
x
s
d
:
s
e
q
u
e
n
c
e
>

8
5

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
e
n
g
i
n
e
T
y
p
e
I
d
"
t
y
p
e
=
"
x
s
d
:
I
D
R
E
F
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

8
6

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
e
n
g
i
n
e
A
m
o
u
n
t
"
t
y
p
e
=
"
x
s
d
:
i
n
t
e
g
e
r
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

8
7

<
/
x
s
d
:
e
x
t
e
n
s
i
o
n
>

8
8

<
/
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

8
9

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

9
0

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
n
a
m
e
=
"
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
"
>

9
1

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
t
y
p
e
"
t
y
p
e
=
"
s
t
s
:
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
T
y
p
e
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

9
2

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
u
n
i
t
"
t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"
/
>

9
3

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
v
a
l
u
e
"
t
y
p
e
=
"
x
s
d
:
d
e
c
i
m
a
l
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

9
4

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

9
5

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
a
b
s
t
r
a
c
t
=
"
t
r
u
e
"
n
a
m
e
=
"
N
a
m
e
d
E
l
e
m
e
n
t
"
>

9
6

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
n
a
m
e
"
t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

9
7

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

9
8

9
9

<
x
s
d
:
s
i
m
p
l
e
T
y
p
e
n
a
m
e
=
"
F
u
n
c
t
i
o
n
"
>

1
0
0

<
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
b
a
s
e
=
"
x
s
d
:
s
t
r
i
n
g
"
>

1
0
1

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
M
A
R
S
_
C
O
L
O
N
I
Z
A
T
I
O
N
"
/
>

1
0
2

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
E
A
R
T
H
_
L
U
N
A
R
_
T
R
A
N
S
P
O
R
T
"
/
>

1
0
3

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
M
U
L
T
I
P
L
A
N
E
T
A
R
Y
_
T
R
A
N
S
P
O
R
T
"
/
>

1
0
4

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
I
N
T
E
R
C
O
N
T
I
N
E
N
T
A
L
_
T
R
A
N
S
P
O
R
T
"
/
>

1
0
5

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
O
R
B
I
T
A
L
_
L
A
U
N
C
H
E
R
"
/
>

1
0
6

<
/
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
>

1
0
7

<
/
x
s
d
:
s
i
m
p
l
e
T
y
p
e
>

1
0
8

1
0
9

<
x
s
d
:
s
i
m
p
l
e
T
y
p
e
n
a
m
e
=
"
P
h
y
s
i
c
a
l
P
r
o
p
e
r
t
y
T
y
p
e
"
>

1
1
0

<
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
b
a
s
e
=
"
x
s
d
:
s
t
r
i
n
g
"
>

238

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1
1
1

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
L
E
N
G
T
H
"
/
>

1
1
2

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
W
I
D
T
H
"
/
>

1
1
3

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
D
I
A
M
E
T
E
R
"
/
>

1
1
4

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
P
E
R
I
M
E
T
E
R
"
/
>

1
1
5

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
A
R
E
A
"
/
>

1
1
6

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
V
O
L
U
M
E
"
/
>

1
1
7

<
x
s
d
:
e
n
u
m
e
r
a
t
i
o
n
v
a
l
u
e
=
"
M
A
S
S
"
/
>

1
1
8

<
/
x
s
d
:
r
e
s
t
r
i
c
t
i
o
n
>

1
1
9

<
/
x
s
d
:
s
i
m
p
l
e
T
y
p
e
>

1
2
0

1
2
1

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
n
a
m
e
=
"
E
n
g
i
n
e
T
y
p
e
"
>

1
2
2

<
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

1
2
3

<
x
s
d
:
e
x
t
e
n
s
i
o
n
b
a
s
e
=
"
s
t
s
:
N
a
m
e
d
E
l
e
m
e
n
t
"
>

1
2
4

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
e
n
g
i
n
e
T
y
p
e
I
d
"
t
y
p
e
=
"
x
s
d
:
I
D
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

1
2
5

<
x
s
d
:
a
t
t
r
i
b
u
t
e
n
a
m
e
=
"
f
u
e
l
K
i
n
d
"
t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"
u
s
e
=
"
r
e
q
u
i
r
e
d
"
/
>

1
2
6

<
/
x
s
d
:
e
x
t
e
n
s
i
o
n
>

1
2
7

<
/
x
s
d
:
c
o
m
p
l
e
x
C
o
n
t
e
n
t
>

1
2
8

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

1
2
9

1
3
0

<
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
n
a
m
e
=
"
S
p
a
c
e
T
r
a
n
s
p
o
r
t
a
t
i
o
n
S
e
r
v
i
c
e
"
>

1
3
1

<
x
s
d
:
s
e
q
u
e
n
c
e
>

1
3
2

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"

n
a
m
e
=
"
l
a
u
n
c
h
S
i
t
e
"
t
y
p
e
=
"
s
t
s
:
L
a
u
n
c
h
S
i
t
e
"
/
>

1
3
3

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"

n
a
m
e
=
"
e
n
g
i
n
e
T
y
p
e
"
t
y
p
e
=
"
s
t
s
:
E
n
g
i
n
e
T
y
p
e
"
/
>

1
3
4

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"

n
a
m
e
=
"
s
p
a
c
e
c
r
a
f
t
"
t
y
p
e
=
"
s
t
s
:
S
p
a
c
e
c
r
a
f
t
"
/
>

1
3
5

<
x
s
d
:
e
l
e
m
e
n
t
m
a
x
O
c
c
u
r
s
=
"
u
n
b
o
u
n
d
e
d
"
m
i
n
O
c
c
u
r
s
=
"
0
"

n
a
m
e
=
"
l
a
u
n
c
h
S
c
h
e
d
u
l
e
"
t
y
p
e
=
"
s
t
s
:
L
a
u
n
c
h
S
c
h
e
d
u
l
e
"
/
>

1
3
6

<
/
x
s
d
:
s
e
q
u
e
n
c
e
>

1
3
7

<
/
x
s
d
:
c
o
m
p
l
e
x
T
y
p
e
>

1
3
8

1
3
9
<
/
x
s
d
:
s
c
h
e
m
a
>

239

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Space transportation service language Ecore metamodel

D
o

c
u

m
e

n
tR

o
o

t

m
ix

e
d

 :
 E

F
e

a
tu

re
M

a
p

E
n

tr
y

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

E
n

g
in

e
T

y
p

e

e
n

g
in

e
T

y
p

e
Id

 :
 I

D

fu
e

lK
in

d
 :

 S
tr

in
g

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

F
u

n
c

ti
o

n

M
A

R
S

C
O

L
O

N
IZ

A
T

IO
N

E
A

R
T

H
L
U

N
A

R
T

R
A

N
S

P
O

R
T

M
U

L
T

IP
L

A
N

E
T

A
R

Y
T

R
A

N
S

P
O

R
T

IN
T

E
R

C
O

N
T

IN
E

N
T

A
L
T

R
A

N
S

P
O

R
T

O
R

B
IT

A
L
L
A

U
N

C
H

E
R

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

F
u

n
c

ti
o

n
O

b
je

c
t

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

L
a

u
n

c
h

E
v

e
n

tT
y

p
e

m
is

s
io

n
T

it
le

 :
 M

is
s

io
n

T
it

le
T

y
p

e

la
u

n
c

h
S

it
e

Id
 :

 I
D

R
E

F

s
p

a
c

e
c

ra
ft

Id
 :

 I
D

R
E

F

s
ta

rt
D

a
te

T
im

e
 :

 S
ta

rt
D

a
te

T
im

e
T

y
p

e

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
t

L
a

u
n

c
h

S
c

h
e

d
u

le

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

L
a

u
n

c
h

S
it

e

la
u

n
c

h
S

it
e

Id
 :

 I
D

lo
c

a
ti

o
n

L
a

ti
tu

d
e

 :
 D

e
c

im
a

l

lo
c

a
ti

o
n

L
o

n
g

it
u

d
e

 :
 D

e
c

im
a

l

n
u

m
b

e
rO

fL
a

u
n

c
h

p
a

d
s

 :
 I

n
te

g
e

r

o
p

e
ra

ti
o

n
a

l
:

B
o

o
le

a
n

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
t

M
is

s
io

n
T

it
le

T
y

p
e

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
t a

N
a

m
e

d
E

le
m

e
n

t

n
a

m
e

 :
 S

tr
in

g

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

O
p

e
ra

to
rT

y
p

e

m
ix

e
d

 :
 E

F
e

a
tu

re
M

a
p

E
n

tr
y

o
p

e
ra

to
rN

a
m

e
 :

 S
tr

in
g

o
p

e
ra

to
rS

e
rv

ic
e

 :
 S

tr
in

g

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

P
h

y
s

ic
a

lP
ro

p
e

rt
y

ty
p

e
 :

 P
h

y
s

ic
a

lP
ro

p
e

rt
y

T
y

p
e

u
n

it
 :

 S
tr

in
g

v
a

lu
e

 :
 D

e
c

im
a

l

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

P
h

y
s

ic
a

lP
ro

p
e

rt
y

T
y

p
e

L
E

N
G

T
H

W
ID

T
H

D
IA

M
E

T
E

R

P
E

R
IM

E
T

E
R

A
R

E
A

V
O

L
U

M
E

M
A

S
S

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

P
h

y
s

ic
a

lP
ro

p
e

rt
y

T
y

p
e

O
b

je
c

t

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

S
p

a
c

e
c

ra
ft

fu
n

c
ti

o
n

s
 :

 F
u

n
c

ti
o

n

s
p

a
c

e
c

ra
ft

Id
 :

 I
D

la
u

n
c

h
S

it
e

 :
 I

D
R

E
F

S

m
a

n
u

fa
c

tu
re

r
:

S
tr

in
g

c
o

u
n

tr
y

O
fO

ri
g

in
 :

 S
tr

in
g

re
la

u
n

c
h

C
o

s
tI

n
M

io
U

S
D

 :
 I

n
te

g
e

r

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

S
p

a
c

e
T

ra
n

s
p

o
rt

a
ti

o
n

S
e

rv
ic

e

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
t

S
ta

g
e

e
n

g
in

e
T

y
p

e
Id

 :
 I

D
R

E
F

e
n

g
in

e
A

m
o

u
n

t
:

In
te

g
e

r

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

S
ta

rt
D

a
te

T
im

e
T

y
p

e

h
tt

p
:/

//
o

rg
/e

c
li

p
s

e
/e

m
f/

e
c

o
re

/u
ti

l/
E

x
te

n
d

e
d

M
e

ta
D

a
ta

e
n

g
in

e
T

y
p

e

0
..

*

la
u

n
c

h
S

it
e

0
..

*

n
a

m
e

d
E

le
m

e
n

t

0
..

*

p
h

y
s

ic
a

lP
ro

p
e

rt
y

0
..

*

s
p

a
c

e
c

ra
ft

0
..

*

s
p

a
c

e
T

ra
n

s
p

o
rt

a
ti

o
n

S
e

rv
ic

e

0
..

*

s
ta

g
e

0
..

*

e
n

g
in

e
T

y
p

e

0
..

*

la
u

n
c

h
E

v
e

n
t

0
..

*

la
u

n
c

h
S

c
h

e
d

u
le

0
..

*

p
h

y
s

ic
a

lP
ro

p
e

rt
y

0
..

*

o
p

e
ra

to
r

1
..

1

la
u

n
c

h
S

it
e

0
..

*

p
h

y
s

ic
a

lP
ro

p
e

rt
y

0
..

*

p
h

y
s

ic
a

lP
ro

p
e

rt
y

0
..

*

s
ta

g
e

s

0
..

*

s
p

a
c

e
c

ra
ft

0
..

*

Figure 1: Space transportation service language Ecore metamodel (spacetransportation-
service.ecore).

240

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Space transportation service language OCL constraints in

Ecore metamodel

Listing 2: Space transportation service language OCL constraints in Ecore metamodel
(spacetransportationservice.ecore).

1 import ecore : ’http://www.eclipse.org/emf/2002/Ecore’ ;

2

3 package spacetransportationservice : sts = ’http://cs.york.ac.uk/ecss/examples/

spacetransportationservice’

4 {

5 class Spacecraft extends NamedElement

6 {

7 property stages : Stage[*|1] { ordered composes };

8 property launchSites : LaunchSite[*|1] { ordered };

9 attribute functions : Function[*|1] { ordered };

10 attribute manufacturer : String[?];

11 attribute countryOfOrigin : String[?];

12 attribute relaunchCostInMioUSD : ecore::EInt[1];

13 property physicalProperties : PhysicalProperty[*|1] { ordered composes };

14 invariant twoUpperCaseChars:

15 countryOfOrigin.size() = 2 and

16 countryOfOrigin.toUpperCase() = countryOfOrigin;

17 }

18 class LaunchSite extends NamedElement

19 {

20 attribute locationLatitude : ecore::EDouble[1];

21 attribute locationLongitude : ecore::EDouble[1];

22 attribute operator : OperatorType;

23 attribute numberOfLaunchpads : ecore::EInt[1];

24 property physicalProperties : PhysicalProperty[*|1] { ordered composes };

25 attribute operational : Boolean[1];

26 invariant angleDecimal: locationLatitude >= 180 and locationLatitude <= 180;

27 }

28 class LaunchSchedule

29 {

30 property launchEvent : LaunchEvent[*|1] { ordered composes };

31 }

32 class LaunchEvent

33 {

34 attribute missionTitle : String[?];

35 attribute startDateTime : String[1];

36 property spacecraft : Spacecraft[1] { ordered };

37 property launchSite : LaunchSite[1] { ordered };

38 invariant startDateTimeType:

39 startDateTime.toString().matches(’∧\d{4}−\d{2}−\d{2}T\d{2}:\d{2}:\d{2}Z$’
);

40 }

41 class Stage extends NamedElement

42 {

43 property engineType : EngineType[1];

44 attribute engineAmount : ecore::EInt[1];

45 property physicalProperties : PhysicalProperty[*|1] { ordered composes };

241

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

46 }

47 class PhysicalProperty

48 {

49 attribute type : PhysicalPropertyType[1];

50 attribute unit : String[?];

51 attribute value : ecore::EDouble[1];

52 }

53 abstract class NamedElement

54 {

55 attribute name : String[1];

56 }

57 enum Function { serializable }

58 {

59 literal MARS_COLONIZATION;

60 literal EARTH_LUNAR_TRANSPORT = 1;

61 literal MULTIPLANETARY_TRANSPORT = 2;

62 literal INTERCONTINENTAL_TRANSPORT = 3;

63 literal ORBITAL_LAUNCHER = 4;

64 }

65 enum PhysicalPropertyType { serializable }

66 {

67 literal LENGTH;

68 literal WIDTH = 1;

69 literal DIAMETER = 2;

70 literal PERIMETER = 3;

71 literal AREA = 4;

72 literal VOLUME = 5;

73 literal MASS = 6;

74 }

75 class EngineType extends NamedElement

76 {

77 attribute fuelKind : String[1];

78 invariant lessOrEqualThanMaxChars: fuelKind.size() <= 128;

79 }

80 class OperatorType

81 {

82 attribute operatorName : String[1];

83 attribute operatorService : String[1];

84 }

85 class SpaceTransportationService extends NamedElement

86 {

87 property launchSites : LaunchSite[*|1] { ordered composes };

88 property launchSchedule : LaunchSchedule[1] { ordered composes };

89 property engineTypes : EngineType[*|1] { ordered composes };

90 property spacecrafts : Spacecraft[*|1] { ordered composes };

91 }

92 }

242

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Space transportation service default grammar

Listing 3: Space transportation service default grammar.
1 // automatically generated by Xtext

2 grammar org.xtext.example.mydsl.MyDsl with org.eclipse.xtext.common.Terminals

3

4 import "http://cs.york.ac.uk/ecss/examples/spacetransportationservice"

5 import "http://www.eclipse.org/emf/2003/XMLType" as type

6 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

7

8 SpaceTransportationService returns SpaceTransportationService:

9 {SpaceTransportationService}

10 ’SpaceTransportationService’

11 ’{’

12 (’launchSite’ ’{’ launchSite+=LaunchSite ("," launchSite+=LaunchSite)* ’}’

)?

13 (’engineType’ ’{’ engineType+=EngineType ("," engineType+=EngineType)* ’}’

)?

14 (’spacecraft’ ’{’ spacecraft+=Spacecraft ("," spacecraft+=Spacecraft)* ’}’

)?

15 (’launchSchedule’ ’{’ launchSchedule+=LaunchSchedule ("," launchSchedule+=

LaunchSchedule)* ’}’)?

16 ’}’;

17

18

19

20

21

22

23

24

25

26 LaunchSite returns LaunchSite:

27 ’LaunchSite’

28 launchSiteId=ID0

29 ’{’

30 ’name’ name=String0

31 ’locationLatitude’ locationLatitude=Decimal

32 ’locationLongitude’ locationLongitude=Decimal

33 ’numberOfLaunchpads’ numberOfLaunchpads=Integer

34 ’operational’ operational=Boolean

35 (’physicalProperty’ ’{’ physicalProperty+=PhysicalProperty (","

physicalProperty+=PhysicalProperty)* ’}’)?

36 ’operator’ operator=OperatorType

37 ’}’;

38

39 EngineType returns EngineType:

40 ’EngineType’

41 engineTypeId=ID0

42 ’{’

43 ’name’ name=String0

44 ’fuelKind’ fuelKind=String0

45 ’}’;

243

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

46

47 Spacecraft returns Spacecraft:

48 ’Spacecraft’

49 spacecraftId=ID0

50 ’{’

51 ’name’ name=String0

52 (’functions’ ’{’ functions+=Function ("," functions+=Function)* ’}’)?

53 ’launchSite’ launchSite=IDREFS

54 (’manufacturer’ manufacturer=String0)?

55 (’countryOfOrigin’ countryOfOrigin=String0)?

56 ’relaunchCostInMioUSD’ relaunchCostInMioUSD=Integer

57 (’stages’ ’{’ stages+=Stage ("," stages+=Stage)* ’}’)?

58 (’physicalProperty’ ’{’ physicalProperty+=PhysicalProperty (","

physicalProperty+=PhysicalProperty)* ’}’)?

59 ’}’;

60

61 LaunchSchedule returns LaunchSchedule:

62 {LaunchSchedule}

63 ’LaunchSchedule’

64 ’{’

65 (’launchEvent’ ’{’ launchEvent+=LaunchEventType ("," launchEvent+=

LaunchEventType)* ’}’)?

66 ’}’;

67

68 String0 returns type::String:

69 ’String’ /* TODO: implement this rule and an appropriate IValueConverter

*/;

70

71 PhysicalProperty returns PhysicalProperty:

72 ’PhysicalProperty’

73 ’{’

74 ’type’ type=PhysicalPropertyType

75 (’unit’ unit=String0)?

76 ’value’ value=Decimal

77 ’}’;

78

79 OperatorType returns OperatorType:

80 {OperatorType}

81 ’OperatorType’

82 ;

83

84 ID0 returns type::ID:

85 ’ID’ /* TODO: implement this rule and an appropriate IValueConverter */;

86

87 Decimal returns type::Decimal:

88 ’Decimal’ /* TODO: implement this rule and an appropriate IValueConverter

*/;

89

90 Integer returns type::Integer:

91 ’Integer’ /* TODO: implement this rule and an appropriate IValueConverter

*/;

92

93 Boolean returns type::Boolean:

244

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

94 ’Boolean’ /* TODO: implement this rule and an appropriate IValueConverter

*/;

95

96 enum PhysicalPropertyType returns PhysicalPropertyType:

97 LENGTH = ’LENGTH’ | WIDTH = ’WIDTH’ | DIAMETER = ’DIAMETER’ |

PERIMETER = ’PERIMETER’ | AREA = ’AREA’ | VOLUME = ’VOLUME’ |

MASS = ’MASS’;

98

99 Stage returns Stage:

100 ’Stage’

101 ’{’

102 ’name’ name=String0

103 ’engineTypeId’ engineTypeId=IDREF

104 ’engineAmount’ engineAmount=Integer

105 (’physicalProperty’ ’{’ physicalProperty+=PhysicalProperty (","

physicalProperty+=PhysicalProperty)* ’}’)?

106 ’}’;

107

108 enum Function returns Function:

109 MARS_COLONIZATION = ’MARS_COLONIZATION’ | EARTH_LUNAR_TRANSPORT = ’

EARTH_LUNAR_TRANSPORT’ | MULTIPLANETARY_TRANSPORT = ’

MULTIPLANETARY_TRANSPORT’ | INTERCONTINENTAL_TRANSPORT = ’

INTERCONTINENTAL_TRANSPORT’ | ORBITAL_LAUNCHER = ’ORBITAL_

LAUNCHER’;

110

111 IDREFS returns type::IDREFS:

112 ’IDREFS’ /* TODO: implement this rule and an appropriate IValueConverter

*/;

113

114 IDREF returns type::IDREF:

115 ’IDREF’ /* TODO: implement this rule and an appropriate IValueConverter */

;

116

117 LaunchEventType returns LaunchEventType:

118 ’LaunchEventType’

119 ’{’

120 ’missionTitle’ missionTitle=MissionTitleType

121 ’launchSiteId’ launchSiteId=IDREF

122 ’spacecraftId’ spacecraftId=IDREF

123 (’startDateTime’ startDateTime=StartDateTimeType)?

124 ’}’;

125

126 MissionTitleType returns MissionTitleType:

127 ’MissionTitleType’ /* TODO: implement this rule and an appropriate

IValueConverter */;

128

129 StartDateTimeType returns StartDateTimeType:

130 ’StartDateTimeType’ /* TODO: implement this rule and an appropriate

IValueConverter */;

245

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Space transportation service ECSS-generated grammar

Listing 4: Space transportation service ECSS-generated grammar.
1 grammar uk.ac.york.cs.ecss.examples.spacetransportationservice.StsLanguage hidden(WS

, ML_COMMENT, SL_COMMENT)

2

3 import "http://cs.york.ac.uk/ecss/examples/spacetransportationservice"

4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

5

6 SpaceTransportationService returns SpaceTransportationService:

7 {SpaceTransportationService}

8 ’SpaceTransportationService’ ’:’

9 BEGIN

10 (

11 (’launchSites’ ’:’ BEGIN launchSites+=LaunchSite (launchSites+=

LaunchSite)* END)+ &

12 (’launchSchedule’ ’:’ BEGIN launchSchedule+=LaunchSchedule END)? &

13 (’engineTypes’ ’:’ BEGIN engineTypes+=EngineType (engineTypes+=

EngineType)* END)? &

14 (’spacecrafts’ ’:’ BEGIN spacecrafts+=Spacecraft (spacecrafts+=

Spacecraft)* END)?

15)

16 END

17 ;

18

19 LaunchSite returns LaunchSite:

20 name=ID ’:’

21 BEGIN

22 (

23 (’operational’ ’:’ operational=EBoolean) &

24 (’locationLatitude’ ’:’ locationLatitude=EDouble)? &

25 (’locationLongitude’ ’:’ locationLongitude=EDouble)? &

26 (’operator’ ’:’ operator=OperatorType)? &

27 (’numberOfLaunchpads’ ’:’ numberOfLaunchpads=EInt)? &

28 (’physicalProperties’ ’:’ BEGIN physicalProperties+=PhysicalProperty (

physicalProperties+=PhysicalProperty)* END)?

29)

30 END

31 ;

32

33 LaunchSchedule returns LaunchSchedule:

34 name=ID ’:’

35 BEGIN

36 (

37 (’launchEvents’ ’:’ BEGIN launchEvents+=LaunchEvent (launchEvents+=

LaunchEvent)* END)?

38)

39 END

40 ;

41

42 LaunchEvent returns LaunchEvent:

43 ’LaunchEvent’ ’:’

44 BEGIN

246

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

45 (

46 (’missionTitle’ ’:’ missionTitle=EString)? &

47 (’startDateTime’ ’:’ startDateTime=StartDateTimeType) &

48 (’spacecraft’ ’:’ spacecraft=[Spacecraft|EString]) &

49 (’launchSite’ ’:’ launchSite=[LaunchSite|EString])

50)

51 END

52 ;

53

54 EngineType returns EngineType:

55 name=ID ’:’

56 BEGIN

57 ’fuelKind’ ’:’ fuelKind=EString

58 END

59 ;

60

61 Spacecraft returns Spacecraft:

62 name=ID ’:’

63 BEGIN

64 (

65 (’relaunchCostInMioUSD’ ’:’ relaunchCostInMioUSD=EInt) &

66 (’stages’ ’:’ BEGIN stages+=Stage (stages+=Stage)* END)? &

67 (’launchSites’ ’:’ BEGIN launchSites+=[LaunchSite|EString] (launchSites

+=[LaunchSite|EString])* END)? &

68 (’functions’ ’:’ BEGIN functions+=Function (functions+=Function)* END)

? &

69 (’manufacturer’ ’:’ manufacturer=EString)? &

70 (’countryOfOrigin’ ’:’ countryOfOrigin=EString)? &

71 (’physicalProperties’ ’:’ BEGIN physicalProperties+=PhysicalProperty (

physicalProperties+=PhysicalProperty)* END)?

72)

73 END

74 ;

75

76 EString returns ecore::EString:

77 STRING | ID;

78

79 EDouble returns ecore::EDouble:

80 INT? ’.’ INT ((’E’|’e’) INT)?;

81

82 EInt returns ecore::EInt:

83 INT;

84

85 PhysicalProperty returns PhysicalProperty:

86 type=PhysicalPropertyType ’:’

87 BEGIN

88 (

89 (’value’ ’:’ value=EDouble) &

90 (’unit’ ’:’ unit=EString)?

91)

92 END

93 ;

94

247

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

95 Stage returns Stage:

96 name=ID ’:’

97 BEGIN

98 (

99 (’engineAmount’ ’:’ engineAmount=EInt) &

100 (’engineType’ ’:’ engineType=[EngineType|EString]) &

101 (’physicalProperties’ ’:’ BEGIN physicalProperties+=PhysicalProperty (

physicalProperties+=PhysicalProperty)* END)?

102)

103 END

104 ;

105

106 enum Function returns Function:

107 MARS_COLONIZATION = ’MARS_COLONIZATION’ | EARTH_LUNAR_TRANSPORT = ’

EARTH_LUNAR_TRANSPORT’ | MULTIPLANETARY_TRANSPORT = ’

MULTIPLANETARY_TRANSPORT’ | INTERCONTINENTAL_TRANSPORT = ’

INTERCONTINENTAL_TRANSPORT’ | ORBITAL_LAUNCHER = ’ORBITAL_

LAUNCHER’;

108

109 EBoolean returns ecore::EBoolean:

110 ’true’ | ’false’;

111

112 enum PhysicalPropertyType returns PhysicalPropertyType:

113 LENGTH = ’LENGTH’ | WIDTH = ’WIDTH’ | DIAMETER = ’DIAMETER’ |

PERIMETER = ’PERIMETER’ | AREA = ’AREA’ | VOLUME = ’VOLUME’ |

MASS = ’MASS’;

114

115 OperatorType returns OperatorType:

116 BEGIN

117 (

118 (’operatorName’ ’:’ operatorname=ID) &

119 (’operatorService’ ’:’ operatorService=EString) &

120 (any+=AnyGenericElement (any+=AnyGenericElement)*)?

121)

122 END

123 ;

124

125 StartDateTimeType returns StartDateTimeType:

126 STRING

127 ;

128

129 AnyGenericConstruct returns AnyGenericConstruct:

130 AnyGenericElement | AnyGenericText;

131

132 AnyGenericElement returns AnyGenericElement:

133 {AnyGenericElement}

134 BEGIN

135 (elemName=STRING)?

136 (’:’ elemValue=STRING)?

137 (anyGenericAttr+=AnyGenericAttribute (

138 anyGenericAttr+=AnyGenericAttribute)*)?

139 (anyGenericElement+=AnyGenericElement (

140 anyGenericElement+=AnyGenericElement)*)?

248

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

141 END

142 ;

143

144 AnyGenericAttribute returns AnyGenericAttribute:

145 attrName=STRING ’:’

146 attrValue=STRING

147 ;

148

149 AnyGenericText returns AnyGenericText:

150 {AnyGenericText}

151 (textValue=STRING)?

152 ;

153

154 // start: Terminals.xtext

155 terminal ID:

156 ’∧’? (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

157

158 terminal INT returns ecore::EInt: (’0’..’9’)+;

159

160 terminal STRING:

161 ’"’ (’\\’ . /* (’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’) */ | !(’\\’|’

"’))* ’"’? |

162 "’" (’\\’ . /* (’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’) */ | !(’\\’|"

’"))* "’"?;

163

164 terminal ML_COMMENT: ’/*’ > ’*/’;

165

166 terminal SL_COMMENT: ’//’ !(’\n’|’\r’)* (’\r’? ’\n’)?;

167

168 terminal WS: (’ ’|’\t’|’\r’|’\n’)+;

169

170 terminal ANY_OTHER: .;

171 // end: Terminals.xtext

172

173 // The following synthetic tokens are used for the indentationaware blocks

174 terminal BEGIN: ’synthetic:BEGIN’; // increase indentation

175 terminal END: ’synthetic:END’; // decrease indentation

249

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Default notation-template model

Listing 5: Default notation-template model (default.ecss).
1 template attributeTemplate : uk.ac.york.cs.ecss.newproc.AttributeXtendRule;

2 template singleAttributeTemplate : uk.ac.york.cs.ecss.newproc.

SingleAttributeXtendRule;

3 template classTemplate : uk.ac.york.cs.ecss.newproc.AbstractClassBasedXtendRule;

4 templateGen attributeGenTemplate extends attributeTemplate;

5 templateGen singleAttributeGenTemplate extends singleAttributeTemplate;

6 templateGen classGenTemplate extends classTemplate;

7

8 rule defaultClassRule: classGenTemplate :: classRules:

9 [%= class.name %]" returns " [%= class.name %] ":"

10 [% if (loc_subClasses.isEmpty()) { %]

11 "{" [%= class.name %] "}" "’" [%= class.name %]"’" [%= booleanDistRules(

optional[0 .. 99]) %] [%= nameDistRules(name[0 .. 1]) %] "’{’"

12 [%= attributeDistRules(other[0 .. 99]) %]

13 "’}’"

14 [% } else { %]

15 for subCl: loc_subClasses join " | " {

16 ::classRules(subCl)

17 }

18 [% } %] ’;’

19 ;

20

21 rule defaultAttributeDistr: attributeGenTemplate :: attributeDistRules:

22 for esf: features {

23 [%= attributeRule(esf) %]

24 }

25 ;

26

27 rule arbitraryAttributeDistr: attributeGenTemplate :: attributeDistRules:

28 "("

29 for esf: features join ") | (" {

30 [%= attributeRule(esf) %]

31 [% List<EStructuralFeature> smallerFeatures = new ArrayList(features); %]

32 [% smallerFeatures.remove(esf);\nboolean first = true; %]

33 "(("

34 for EStructuralFeature sub: smallerFeatures join ") & (" {

35 "’,’" [%= attributeRule(sub) %]

36 } "))"

37 } ")"

38 ;

39

40 rule booleanAttributeDistr: attributeGenTemplate :: booleanDistRules:

41 for esf: features {

42 "(" [%= esf.getName() %] "?= \"" [%= esf.getName() %] "\")?"

43 }

44 ;

45

46 rule nameAttributeDistr: attributeGenTemplate :: nameDistRules:

47 for esf: features {

48 "(" [%= esf.getName() %] " = ID)?"

250

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

49 }

50 ;

51

52 rule defaultAttribute: singleAttributeGenTemplate :: attributeRule:

53 [% if (feature.getLowerBound() == 0) {" "(" [% } %]

54 " " [%= feature.name %] " " [%= xtextOperator %] " " [%=

sensibleTerminal(feature) %] " "

55 [% if (feature.isMany()) { %]

56 "(’,’ " [%= feature.name %] " " [%= xtextOperator %] " " [%=

sensibleTerminal(feature) %] ")*"

57 [% } %]

58 [% if (feature.getLowerBound() == 0) {" ")?" [% } %]

59 ;

60

61 rule defaultTerminal: singleAttributeGenTemplate :: sensibleTerminal:

62 [% if (feature instanceof EReference) { %]

63 [% if (((EReference)feature).isContainment()) { %]

64 //Just the class name

65 ::classRules("feature.getEType()")

66 [% } else { %]

67 //A reference to the class name

68 "[" ::classRules("feature.getEType()") "]"

69 [% } %]

70 [% } else { if (feature.getEType() instanceof EEnum) { %]

71 //Some terminal just take the etype

72 ::enumRules("feature.getEType()")

73 [% } else { %]

74 ::terminalRules("feature.getEType()")

75 [% }} %]

76 ;

77

78 * {

79 slot(name, name): 2.0;

80 slot(*,other): 0.5;

81 slot(*["(not many) and (eType.name = ’Boolean’ or eType.name = ’boolean’)

"],optional): 2.0;

82 template(arbitraryAttributeDistr): 1.5;

83 template(defaultAttributeDistr): 1.5;

84 template(attributeRule): 0.5;

85 //template(attributeRule): 1.5;

86 a: "out";

87 featname: "eigensch";

88 classname: ocl "rule.class.name";

89 }

251

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Example space transportation service model

Listing 6: Example space transportation service model.
1 SpaceTransportationService:

2 launchSites:

3 KennedySpaceCenter:

4 operator:

5 operatorName: "NASA"

6 operatorService: "public−sector service"

7 operational: true

8 numberOfLaunchpads: 3

9 locationLatitude: 28.524058

10 locationLongitude: 80.65085

11

12 engineTypes:

13 Merlin1D:

14 fuelKind: "Subcooled LOX / Chilled RP1"

15 Merlin1DVacuum:

16 fuelKind: "LOX / RP1"

17

18 spacecrafts:

19 FalconHeavy:

20 functions:

21 ORBITAL_LAUNCHER

22 manufacturer: "SpaceY"

23 countryOfOrigin: "USA"

24 relaunchCostInMioUSD 90

25 launchSites: KennedySpaceCenter

26

27 stages:

28 FirstStage:

29 engineAmount 9

30 engineType: Merlin1D

31 SecondStage:

32 engineAmount 1

33 engineType: Merlin1DVacuum

34

35 physicalProperties:

36 LENGTH:

37 unit m

38 value 70.0

39 DIAMETER:

40 unit m

41 value 3.66

42 WIDTH:

43 unit m

44 value 12.2

45 MASS:

46 unit kg

47 value 1420788.0

48

49 launchSchedule:

50 LaunchEvent:

252

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

51 missionTitle: "GPS III03 navigation satellite deployment"

52 startDateTime: "20200131T12:00:00Z"

53 spacecraft: FalconHeavy

54 launchSite: KennedySpaceCenter

55 LaunchEvent:

56 missionTitle: "AFSPC44 payload deployment (classified)"

57 startDateTime: "20200930T12:00:00Z"

58 spacecraft: FalconHeavy

59 launchSite: KennedySpaceCenter

253

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

IntellEdit integration with XMLText

X
M

L
 S

ch
e

m
a

R
estrictio

n
s

<
B
o
o
k

n
a
m
e
=
”
T
h
e
A
l
c
h
e
m
i
s
t
”
>

<
t
i
t
l
e
>
T
h
e

A
l
c
h
e
m
i
s
t
<
/
t
i
t
l
e
>

<
a
u
t
h
o
r
>
P
a
u
l
o

C
o
e
l
h
o
<
/
a
u
t
h
o
r
>

<
p
a
g
e
s
>
0
0
6
-
2
-
3
1
-
5
0
0
-
5
<
/
p
a
g
e
s
>

<
d
i
m
e
n
s
i
o
n
>
5
.
3

x

0
.
5

x

8

i
n
<
/

d
i
m
e
n
s
i
o
n
>

<
i
s
b
n
>
0
0
6
-
2
-
3
1
-
5
0
0
-
5
<
/
i
s
b
n
>

<
/
b
o
o
k
>

<
<

in
sta

n
ce

 o
f>

>

B
o
o
k

T
h
e
A
l
e
c
h
e
m
i
s
t

{

t
i
t
l
e

"
T
h
e

A
l
c
h
e
m
i
s
t
"

a
u
t
h
o
r

"
P
a
u
l
o

C
o
e
l
h
o
"

p
a
g
e
s

2
0
8

d
i
m
e
n
s
i
o
n

"
5
.
3

x

0
.
5

x

8

i
n
"

i
s
b
n

0
0
6
-
2
-
3
1
-
5
0
0
-
5

}

<
<

in
sta

n
ce

 o
f>

>

<
x
s
:
s
i
m
p
l
e
T
y
p
e

n
a
m
e
=
"
n
a
m
e
T
y
p
e
"
>

<
x
s
:
r
e
s
t
r
i
c
t
i
o
n

b
a
s
e
=
"
x
s
:
s
t
r
i
n
g
"
>

<
x
s
:
m
a
x
L
e
n
g
t
h

v
a
l
u
e
=
"
3
2
"
/
>

<
/
x
s
:
r
e
s
t
r
i
c
t
i
o
n
>

<
/
x
s
:
s
i
m
p
l
e
T
y
p
e
>

B
asic W

o
rkb

e
n

ch

A
d

v
an

ce
d

 E
d

ito
r

<
<

cre
a

te
/m

an
ip

u
la

te
>

>

C
o

n
te

n
t A

ssist P
ro

v
id

e
r

Q
u

ick
 F

ix P
ro

v
id

e
r

In
te

llE
d

it O
C

L

In
te

rp
re

te
r

In
te

llE
d

it S
co

p
in

g a
n

d

Q
u

ick
 F

ix B
u

ild
e

r

Lo
ca

l Se
a

rch
 E

n
g

in
e

G
lo

b
a

l S
e

arch
 E

n
gin

e

<
<

a
u

to
co

m
p

le
tio

n

re
q

u
e

sts>
>

<
<

in
sta

n
ce

>
>

V
a

lid
a

tio
n

 P
ro

vid
e

r

<
<

q
u

ick
 fix

so
lu

tio
n

s>
>

<
<

va
lid

 a
u

to
co

m
p

le
tio

n
s>

>

L
i
n
e

2
:

R
e
m
o
v
e

‘
-
’

@
C
u
r
s
o
r
:

I
n
s
e
r
t

‘
0
’

#
I
n
v
I
s
b
n
:

L
i
n
e

2
:
’
-
’

<
<

e
rro

r lo
catio

n
s>

>

X
M

L
T

e
x

t
In

te
llE

d
it

F
o

rm
al

C
o

n
stra

in
ts

M
e

ta
m

o
d

e
l

m
a
x
L
e
n
g
t
h
A
u
t
h
o
r
:

.
<
=

3
2

1
b

1
a

34

2

C
o

n
te

n
t A

s
s
is

t fo
r d

i
m
e
n
s
i
o
n

Figure 2: IntellEdit integration with XMLText

254

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Library language XML Schema definition

Listing 7: Library language XML Schema definition (library.xsd).
1 <?xml version="1.0" encoding="UTF8" standalone="no"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <! definition of simple types >

4 <xs:simpleType name="nameType">

5 <xs:restriction base="xs:string">

6 <xs:maxLength value="32"/>

7 </xs:restriction>

8 </xs:simpleType>

9 <xs:simpleType name="sinceType">

10 <xs:restriction base="xs:date"/>

11 </xs:simpleType>

12 <xs:simpleType name="isbnType">

13 <xs:restriction base="xs:string">

14 <xs:pattern value="[09]{3}[09]{2}[09]{4}[09]{3}[09]"/>

15 </xs:restriction>

16 </xs:simpleType>

17 <xs:simpleType name="dimensionType">

18 <xs:restriction base="xs:string">

19 <xs:pattern value="([09]|([19][09]+))([.][09]+)? x ([09]|([19][09]+))

([.][09]+)? x ([09]|([19][09]+))([.][09]+)? (centimeters|cm|in|inches

)"/>

20 </xs:restriction>

21 </xs:simpleType>

22 <! definition of complex types >

23 <xs:complexType name="libraryType">

24 <xs:sequence>

25 <xs:element maxOccurs="unbounded" minOccurs="0" name="book" type="

bookType"/>

26 <xs:element maxOccurs="unbounded" minOccurs="0" name="customer" type="

customerType"/>

27 </xs:sequence>

28 </xs:complexType>

29 <xs:complexType name="bookType">

30 <xs:sequence>

31 <xs:element name="name" type="xs:ID"/>

32 <xs:element name="title" type="xs:string"/>

33 <xs:element name="author" type="nameType"/>

34 <xs:element name="pages" type="xs:int"/>

35 <xs:element name="dimension" type="dimensionType"/>

36 <xs:element minOccurs="0" name="bookInfo" type="bookInfoType"/>

37 </xs:sequence>

38 <xs:attribute name="isbn" type="isbnType" use="required"/>

39 </xs:complexType>

40 <xs:complexType name="noType">

41 <xs:sequence>

42 <xs:element name="name" type="xs:ID"/>

43 </xs:sequence>

44 <xs:attribute name="isbn" type="isbnType" use="required"/>

45 </xs:complexType>

46 <xs:complexType name="customerType">

255

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

47 <xs:sequence>

48 <xs:element name="firstName" type="xs:string"/>

49 <xs:element name="lastName" type="xs:string"/>

50 <xs:element name="borrowedBookId" type="xs:IDREF" minOccurs="0"/>

51 <xs:element name="borrowedBookSince" type="sinceType" minOccurs="0"/>

52 </xs:sequence>

53 </xs:complexType>

54 <xs:complexType name="bookInfoType">

55 <xs:sequence>

56 <xs:any maxOccurs="unbounded" namespace="##any" processContents="lax"/>

57 </xs:sequence>

58 </xs:complexType>

59 <! root element >

60 <xs:element name="library" type="libraryType"/>

61 </xs:schema>

256

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Patrick Neubauer
Department of Computer Science, University of York
Deramore Lane, York, YO10 5GH, UK

 +44 (0) 7754 – 386646
patrick.neubauer@york.ac.uk

https://www.patrickneubauer.com

 Objective

Engineer innovative, creative, and lasting solutions from problems by addressing them as challenges with
promising opportunities.

 Qualifications

» Fluent in English and German (native), familiar with Italian
» Experienced with SQL and DBMSs (PostgreSQL, MySQL,

MongoDB, Hibernate) and VCSs (Git and SVN)
» Experienced with virtual machine and containerization

environments (VirtualBox, VMWare, Docker, and Kubernetes)
» Fluent in XML, model-driven engineering (Eclipse Modeling

Framework), and DSL workbenches (Xtext and Sirius)
» Experienced with IDEs (IntelliJ, Eclipse, PyCharm)
» Experienced with build tools (Maven, ANT, and Gradle)
» Experienced with W3C XHTML, CSS, and JavaScript
» Experienced with agile software development (Scrum,

Kanban)

» Fluent in OO design and development
and in particular with Java (since 2002)

» Experienced with REST, distributed
computing, and stream-processing (Hadoop, Kafka, Flink,
ActiveMQ), and cloud deployment (Google, DigitalOcean)

» Experienced with DevOp/CI tools (Jenkins and Travis)
» Experienced with macOS, Linux, and Windows
» Familiar with web application development (Spring,

Bootstrap)
» Familiar with Python, Bash/Sh, and C#
» Familiar with machine learning and artificial intelligence

concepts and tools (scikit-learn, deeplearning4j)

Education

2015 – 2020 PhD in Computer Science, Technical University of Vienna, Austria
» Contributed a model-driven framework facilitating the modernization of XML Schema-based languages into

domain-specific modeling languages with consistency-achieving editors and reusable notations.
» Achieved final doctoral thesis graduation mark: excellent.

2010 – 2014 Master’s in Business Informatics, Technical University of Vienna, Austria
» Accumulated expertise and training in Corporate Planning and Control, E-Commerce, Econometrics, Human

Resources and Leadership, Model-based Decision Support, Applied Innovation, Business Intelligence,
Investment and Financing, and Organizations.

» Contributed Master’s thesis on the integration of external libraries into the Foundational subset of UML.
» Achieved final master thesis graduation mark: excellent.

2007 – 2010 Bachelor’s in Applied Computer Science, Free University of Bolzano, Italy
» Acquired fundamental Computer Science training in Math, Physics, Computer Systems Architecture, Software

Engineering, Operating Systems, Data Structures and Algorithms, Formal Languages, Logic, Compiler,
Distributed Systems, Database Management Systems, Internet Technologies.

» Obtained training in Discovery Informatics, Decision Science, Management Information Systems, Public
Speaking, Philosophy, Computing and Society, Artificial Intelligence, and Web Development in a bilateral
exchange with the College of Charleston, USA.

» Achieved final graduation mark: 105/110.

Work experience

2018 – 2020 Research Associate, University of York, United Kingdom
» Responsible for architecture and development of Crossflow–a distributed and collaborative execution

framework–and Typhon Analytics–a big data analytics framework for polyglot and hybrid persistence
architectures; Maven, Bootstrap, mxGraph, Apache Flink, Kafka, Hadoop, ActiveMQ, REST, Docker,
Kubernetes, and Travis.

» Guided the application of developed frameworks by use case providers in industrial domains such as
automotive (Volkswagen and ATB) and earth observation (GMV Aerospace and Defence).

» Continuation of doctoral research under Marietta Blau Grant awarded by the Austrian Federal Ministry of
Education, Science, and Research for a research proposal targeting highly qualified PhD candidates.

2015 Visual Patient Software Architect and Developer, Unitectra, Zürich, Switzerland
» Developed architecture and software prototype of a novel method and system (Visual Patient technology) to

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

mailto:patrick.neubauer@york.ac.uk
https://www.patrickneubauer.com/
https://www.tuwien.at/bibliothek

increase awareness and reliability in monitoring a patient’s medical condition; Git, SVG, Apache Batik and
POI.

» Responsible for recruitment of research project funding and assembly of patent applications in collaboration
with medical professionals and patent attorneys.

2014 – 2017 Project Assistant, Technical University of Vienna, Austria
» Contributed to the advancement of software-based service provisioning and migration of legacy software.
» Operated, corresponded, and publicized the application and evaluation of novel migration approaches at EU

project general assembly meetings and international conferences; Git, EMF, Xtext, and SOAP.

2012 – 2014 Software Developer and Consultant, Ebcont Enterprise Technologies, Vienna, Austria
» Developed Xesar, a professional-use electronic access solution (client: EVVA Sicherheitstechnologie GmbH).
» Architecture and implementation of a Java API for encrypted communication (Bouncy Castle) for card-readers

and smart cards (NXP DesFire RFID) and a web-based UI (Spring) for user access management.
» Agile development (Scrum) collaboration with two software-teams and a hardware-team; Maven, ANT,

Jenkins, Spring, unit and integration testing, static code analysis (FindBugs), and VCS (SVN and Git).

2011 Software Architect and Developer Intern, Regional Association of South Tyrol's Tourism Organizations
» Realized architecture and implementation of an event search interface (REST) and customizable web-based

widget (C# and .NET) deployed by various tourism portals in South Tyrol, Italy.

2010 Software Architect and Developer Intern, SMiLE UG i. Gr. (now: aflow UG)
» Developed backend algorithm querying the Netflix dataset and Freebase (now: Google graphd) for intuitive

and efficient browsing of multimedia content in a semantic media browser; Java, Grails, REST, CSS, and
HTML.

Teaching and mentoring

2018 – 2020 Research Associate, University of York, United Kingdom
» Taught textual modeling languages class as part of the Model Driven Engineering module.
» Executed Enterprise Systems research group seminar.

2016 – 2017 Project Assistant, Technical University of Vienna, Austria
» Taught modeling languages as part of the Advanced Model Engineering class.
» Established team projects and mentored individuals in the topic of DSL engineering (Xtext).

2015 – 2016 Senior Lecturer, Technical University of Vienna, Austria
» Operated Object-oriented Modelling (UML state machines and activity diagrams) laboratory and exams.

2014 – 2017 Project Assistant, Technical University of Vienna, Austria
» Contributed to Model Engineering and Web Engineering exams and laboratories (Spring MVC and

Hibernate).

Research

2017 – 2020 Research Associate, University of York, United Kingdom
» Contributed framework for reusable textual notations for domain-specific languages (Marietta Blau grant).
» Contributed to creation, publication, and industrial application of frameworks for polyglot and hybrid

persistence architectures for big data analytics as well as distributed and resilient mining of software
repositories (Crossminer and Typhon EU H2020 projects).

2014 – 2017 Project Assistant, Technical University of Vienna, Austria
» Executed the assembly of a research project proposal in collaboration with Siemens AG, Austria, and the

University of Klagenfurt, Austria, in the area of model-based adaptation and automation systems
engineering.

» Created, published, and disseminated model-driven software migration research for the transformation of
legacy applications into cloud-conforming applications aiming to reduce risk, time, and cost in migration
scenarios (EU H2020 ARTIST project).

Publications

2020 » Barmpis, K., Neubauer, P., Co, J., Kolovos, S. D., Matragkas, N., Paige, R. F. Polyglot and Distributed

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Software Repository Mining with Crossflow. Proc. of the 17th Int. Conf. on Mining Software Repositories,
Seoul, South Korea, 2020 (to appear).

 » Neubauer, P. A Framework for Modernizing Domain-Specific Languages: From XML Schema to
Consistency-Achieving Editors with Reusable Notations. PhD dissertation, Technische Universität Wien,
Vienna, Austria, 2020 (to appear).

2019 » Kolovos, S. D., Neubauer, P., Barmpis, K., Matragkas, N., Paige, R. F. Crossflow: a framework for distributed
mining of software repositories. Proc. of the 16th Int. Conf. on Mining Software Repositories, Montreal,
Canada, 2019, p. 155-159.

2018 » Sanches, B. A., Barmpis, K., Neubauer, P., Paige, R. F. Restmule: enabling resilient clients for remote APIs.
Proc. of the 15th Int. Conf. on Mining Software Repositories, Gothenburg, Sweden, 2018, p. 537-541.

 » Segura, A. M., De Lara, J., Neubauer, P., Wimmer, M. Automated modelling assistance by integrating
heterogeneous information sources. Computer Languages, Systems & Structures, volume 53, p. 90-120,
2018.

 » Tscholl, D. W, Neubauer, P., Weiss, M., Burkhardt, S., Spahn, D. R., Noethiger, C. B. Using an animated
patient avatar to improve perception of vital sign information by anaesthesia professionals. British journal of
anaesthesia, volume 121, p. 662-671, 2018.

2017 » Bill, R., Neubauer, P., and Wimmer, M. Virtual textual model composition for supporting versioning and
aspect-orientation. Proc. of the 10th ACM SIGPLAN Int. Conf. on Software Language Engineering,
Vancouver, BC, Canada, 2017, p. 67-78.

 » Neubauer, P., Bill, R., Mayerhofer. T., and Wimmer, M. Automated generation of consistency-achieving
model editors. IEEE 24th Int. Conf. on Software Analysis, Evolution and Reengineering, Klagenfurt, Austria,
2017, p. 127-137.

 » Neubauer, P., Bill, R., and Wimmer, M. Modernizing domain-specific languages with XMLText and IntellEdit.
IEEE 24th Int. Conf. on Software Analysis, Evolution and Reengineering, Klagenfurt, Austria, 2017, p.
565-566.

2016 » Tscholl, D., Nöthiger, C., Neubauer, P. Method and System for Monitoring a Patient’s Medical Condition.
International Patent Application No. WO2016EP60931. European Patent Application No. EP3096254A1,
2016.

 » Neubauer, P. Towards Model-Driven Software Language Modernization. Joint Proc. of the Doctoral
Symposium and Projects Showcase Held as Part of STAF 2016 co-located with Software Technologies:
Applications and Foundations (STAF 2016), Vienna, Austria, 2016, p. 11-20.

2015 » Neubauer, P., Bergmayr, A., Mayerhofer. T., Troya, J., and Wimmer, M. XMLText: From XML schema to
Xtext. Proc. of the 2015 ACM SIGPLAN Int. Conf. on Software Language Engineering (SLE 2015), Pittsburgh,
PA, USA, 2015, p. 71-76.

2014 » Neubauer, P., Mayerhofer. T., and Kappel, G. Towards Integrating Modeling and Programming Languages:
The Case of UML and Java. Proc. of the 2nd International Workshop on The Globalization of Modeling
Languages co-located with ACM/IEEE 17th Int. Conf. on Model Driven Engineering Languages and Systems
(GEMOC@Models 2014), Valencia, Spain, 2014, p. 23-32.

 » Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M. and Kappel, G. UML-based Cloud Application Modeling
with Libraries, Profiles, and Templates. Proc. of the 2nd International Workshop on Model-Driven
Engineering on and for the Cloud co-located with the 17th Int. Conf. on Model Driven Engineering
Languages and Systems (CloudMDE@MoDELS 2014), Valencia, Spain, 2014, p. 56-65.

I’m also a …

Runner, devoted alpinist, and enthusiast of technology, space and music.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

	main
	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and problem
	Objective and methodology
	Structure of work

	Preliminaries and running example
	Technical spaces
	XMLware
	Grammarware
	Modelware
	Summary and comparison of technical spaces

	Related work
	Bridges between technical spaces
	Language workbenches
	Design of textual notations
	Model composition and management
	Summary

	XML Schema modeling integration and assistance
	Introduction
	Background
	Challenges
	Requirements
	Approach
	Evaluation based on cloud topology and orchestration modeling
	Evaluation based on industrial conveyor-belt system modeling
	Analysis
	Summary

	Consistency-achieving integrated development environment
	Introduction
	Background
	Challenges
	Requirements
	Approach
	Evaluation
	Analysis
	Summary

	Reusable notation-template language and design framework
	Introduction
	Background
	Challenges
	Requirements
	Approach
	Evaluation
	Analysis
	Summary

	Conclusion and future work
	Summary
	Future Work

	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Appendices
	Space transportation service language XML Schema definition
	Space transportation service language Ecore metamodel
	Space transportation service language OCL constraints in Ecore metamodel
	Space transportation service default grammar
	Space transportation service ECSS-generated grammar
	Default notation-template model
	Example space transportation service model
	IntellEdit integration with XMLText
	Library language XML Schema definition

	curriculum-vitae-neubauer

