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Kurzfassung

In den letzen Jahren gab es enorme Fortschritte im Bereich automatisierter Softwa-
reverifikation und Programanalyse. Dennoch wurden einige Herausforderungen noch
nicht vollständig bezwungen, sowie das automatisierte Verifizieren von unbeschrenk-
ten Datenstrukturen, insbesondere Arrays, und Programme, die diese manipulieren. In
dieser Arbeiter konzentrieren wir uns auf die Programmanalyse und -verifizierung in
vollständiger Logik erster Ordnung.

Diese Arbeit soll theoretische Grundlagen für die Automatisierung von Beweisen zu
partieller Korrektheit für Eigenschaften über ganzzahlige Arrays in dem Superposition
Calculus liefern. Besonders interessieren uns hierbei Eigenschaften mit verschiedenen
Quantifizierungen: ∃, ∀ und ∀∃. Jede der ausgewählten Eigenschaften beschreibt bestimm-
te Programmverhaltensweisen, welche häufig in der Praxis anzutreffen sind und es ist
daher wichtig diese zu beweisen.

Als Grundlage für diese Arbeit verwenden wir die erst kürzlich vorgestellte Trace-Logik,
eine Instanz der Logik erster Ordnung, und das Framework Rapid, welches die logische
Codierung der Programme liefert. Durch Verwendung einer generischen Eigenschaft P,
die eine Eigenschaft über Arrays darstellt, wurden die notwendigen Lemma und die
Axiomatisierung der Trace-Logik verallgemeinert und es konnten allgemeinere Beweise
erstellt werden. Diese können nun verwendet werden, um Beweis für eine konkretisierte
Eigenschaft zu instanziieren. Mit den durch die Beweise gewonnenen Erkenntnissen
sind wir nun in der Lage automatisierte Beweise der Eigenschaften in allgemeiner oder
konkretisierter Form, mit Hilfe des Superposition-basiertem Theorembeweiser Vampire,
durchzuführen.
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Abstract

Automated reasoning for program verification has made a lot of advancements in the
past years. Nevertheless, one of the remaining challenges is automated reasoning over
unbound data structures, in particular arrays, and programs manipulating them. In this
thesis we will focus on program analysis and verification in full first-order logic.

This work aims to provide theoretical basis to automate partial correctness proofs for
software properties over integer arrays in the superposition calculus. Particularly, we
are interested in properties of different quantifier settings: ∃, ∀ and ∀∃. Each of the
chosen properties describe specific program behaviors that occur often in practice and
are therefore important to prove.

As foundation for this work we use the recently introduced trace logic, an instance of
first-order logic and the framework Rapid, which provides the logical encoding of the
programs. By using a generic property P, representing some property over arrays, we were
able to generalize necessary lemmas and axiomatization of trace logic to produce more
general proofs. These can be used to quickly instantiate a proof for a concrete property.
With the insights gained throughout this work, we are now able to automate the proofs
of the specific properties in general and concrete form, using the superposition-based
theorem prover Vampire.
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CHAPTER 1
Introduction

1.1 Introduction

The digitalization of our surrounding is inevitable. With the introduction of new
technologies in our lives, e.g. self driving cars, we also face new problems. One of
these problems is the handling of critical software. Numerous applications affecting our
everyday life are often extensively tested on functionality but rarely proven to really meet
the specific requirements or safety specifications. This can lead to data loss, invasion of
privacy or, in extreme cases, to life-threatening situations. One might think that because
of our progress in computer science, software bugs hardly occur anymore, but that is
wishful thinking. The following fairly recent events of software failures should underline
the importance of better handling of software verification:

• On the 11th of April 2019 an Israel spacecraft crashed into the moon, due to a
software bug within its engine system.

• On the 7th of August 2019 over hundred flights of British Airways were cancelled
due to a stated software problem in their system.

• On the 18th of March 2018 a self-driving Uber car on the roads of Arizona hit and
killed a pedestrian.

Now the question arises, why simple software testing is not enough? The main problem
with software testing, as Dijkstra famously stated [BR70], is that it shows only the
presence of logical errors but not their absence.

A solution to this problem is viewing a program as a mathematical object and mathe-
matically prove the desired program properties [Dij72, Hoa69]. Commonly, verification
frameworks tackle this by encoding the source code in some sort of logical representation

1
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1. Introduction

and perform proofs by using a sophisticated solver. Mathematically proving correctness of
program properties is the key factor for improving quality of all kinds of digital products.
Considering that proving correctness of program properties by hand is time consuming
and needs expert knowledge, it becomes more and more infeasible in practice, due to
the increasing demand for software products and growing code bases. Subsequently,
it is necessary to keep researching and developing novel and better formal verification
techniques and tools.

To better understand the ulterior motive of the present thesis, let us look at the following
example. Figure 1.1 shows a simple program that assigns every element in an array the
value 1. For the sake of this example let us assume that this is part of a highly critical
software and that all elements in the array must never have the value 0 at the end of the
program execution.

1 func main ( ) {
2 Int a l ength ;
3 Int [ ] a ;
4 Int i = 0 ;
5

6 whi le ( i < a length ) {
7 a [ i ] = 1 ;
8 i ++;
9 }

10 }
11

Figure 1.1: Example Program

The property we are interested in would therefore be that assuming alength has the
value of the length of the array a, all elements of a are not equal 0. Of course one can
easily verify this for the program in figure 1.1, but once programs become bigger and
once they consist of additional control structures, verifying these properties automatically
becomes very hard.

This thesis uses first-order theorem proving to validate software properties expressed
in first-order logic with theorems. The main focus will lay on the framework Rapid
[BEG+19]. Rapid takes as input the program source code and encodes it into first-order
logic for superposition-based solvers such as Vampire [KV13]. We call the axioms con-
stituting the program trace axioms and some of its inherent properties trace lemmas to
form trace logic L, our instance of first-order logic with time-point reasoning. A detailed
formal description concerning Rapid and trace logic is provided in Chapter 2. In contrast
to SMT-based approaches [Lei10, KGC16, BFMP11], handling full first-order logic with
theories allows for arbitrarily quantified properties over integer and time-points. In
particular, the focus of this thesis will lay on three specific program properties with a

2
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1.2. Structure of the Thesis

different quantifier prefix and the needed trace lemmas to successfully prove them.

Contribution The main contributions are summarized below:

1. We explain and define trace lemmas needed for the desired proofs of the generalized
array properties. Specifically, we provided a full explanation of the proofs with the
main focus laying on applying the trace lemmas and showing why they are needed
and how they are used for a successful inductive reasoning (Section 3.1).

2. We substituted the generic properties with concrete ones to demonstrate the
reusability of the proof and the introduced lemmas for a whole class of related
programs and properties (Section 3.2).

3. The knowledge gained by the proofs concerning the lemmas can now be used to
prove various subclasses of these array properties and provides thereby a good
foundation to improve existing tools based upon our discoveries. In the case of
Rapid, the result can be used to get a better inside on the needed trace lemmas
and on the generated proof structure to enable automated proofs for the whole
subclass of related array properties. Especially exciting is the fact that with the
described method we were able to automatically prove a safety property with
quantifier alternation (Chapter 3).

1.2 Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we give a short review
of first-order logic and state the additional theories we will be using for our proofs in
Chapter 3. Furthermore, we will report on some preliminaries concerning the syntax and
semantic of our programming language and the resulting encoding, which will accompany
us throughout this thesis. Finally, we will conclude Chapter 2 by an introduction to the
superposition calculus and the SatViz [GKS19] tool that was used to visualize, conduct
and verify all proofs within this thesis. In Chapter 3, we introduce and discuss trace
lemmas in detail. Furthermore, we show their usefulness by using them to prove safety
properties from two generalized while-programs. In the course of it, we take a closer
look on the generated clauses provided by the Rapid [BEG+19] framework and discuss
the semantic meaning of the proof parts. At the end of Chapter 3, we illustrate the
reusability of the generalized proofs on a concrete example program and discuss the
observed results. In Chapter 4, we present an overview of historical and state-of-the-art
research of proof automation related to this thesis. Finally we conclude and summarize
the thesis in Chapter 5.

3
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CHAPTER 2
Preliminaries

2.1 Many-sorted First-order Logic with Theories

As we will discuss later, our universe is not a homogeneous collection of objects, but
consists of objects with different sorts. To reflect this, we consider many-sorted first-order
logic. Furthermore, we consider our first-order logic to have built in equality. In our
proofs all our formulae are well-formed and well-sorted.

2.1.1 Syntax

We define the signature ΣΓ = {Ω,Π,Γ, v} for our many sorted first-order logic as follows:

• Ω,Π are the sets for our functions and predicates;

• Γ is a non empty set of sort symbols, e.g. N. (Note that we do not add the boolean
sort defined with B, used by our logical operations);

• v is a function assigning sorts to our function, predicate and variable symbols.

We inductively define the set of well-sorted terms TS
ΣΓ

of a sort S ∈ Γ over ΣΓ as follows:

• a variable x ∈ TS
ΣΓ

if v(x) = S;

• if t1, . . . , tn are well-sorted terms in TS1

ΣΓ
, . . . , TSn

ΣΓ
, f is a function with arity n and

v(f) = S1, . . . , Sn, S, then f(t1, . . . , tn) is a well-sorted term.

Note that a constant is a function of arity 0. Further,
⋃

s∈Γ T
S
ΣΓ

forms the set of well-
formed terms over ΣΓ.

5
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2. Preliminaries

We inductively define the set of well-sorted / well-formed formulae FΣΓ
over ΣΓ as follows:

• ⊤, ⊥ are formulae. (Note that v(⊤) = v(⊥) = B);

• if t1, . . . , tn are well-sorted terms in TS1

ΣΓ
, . . . , TSn

ΣΓ
, P is a predicate with arity n and

v(P ) = S1, . . . , Sn,B, then P (t1, . . . , tn) is a well-formed formula;

• if α, β ∈ FΣΓ
then also α ◦ β is a well-formed formula, where ◦ ∈ {∧,∨ →,←,↔}.

(Note that v(◦) = B,B,B);

• if α ∈ FΣΓ
then also ¬α is a well-formed formula. (Note that v(¬) = B,B);

• if α ∈ FΣΓ
and α contains an unbound variable x of sort S, then also QxS .α is a

well-formed formula, where Q ∈ {∃,∀}. Note that in this formula we quantify only
over the universe corresponding to the sort S.

Our built-in equality is denoted by ≃ and we define ¬(t ≃ s) to be t 6≃ s for arbitrary
terms s, t.

2.1.2 Semantic

We only consider "strict" models, which means our sort universes are disjoint. We define
a model A = {UA,FA,PA,XA} for a signature ΣΓ as follows:

• UA = {MS1
, . . . ,MSn

}, for sort universe MSi
6= ∅ and it corresponds to a specific

sort Si ∈ Γ;

• FA is a set consisting of interpretations for all functions in ΣΓ. That is
{fA

i : MS1
× · · · ×MSn

→MS |fi ∈ Ω ∧ v(fi) = S1, . . . , Sn, S ∧ arity(fi) = n};

• PA is a set of relations for each predicate in ΣΓ.
That is {PA

i ⊆MS1
×· · ·×MSn

|Pi ∈ Π ∧ v(Pi) = S1, . . . , Sn,B ∧ arity(Pi) = n};

• The interpretations of variables XA can be treated like functions with arity 0, that
is XA = {xA

S : MS |xS ∈ X}, where X is the set of variables.

In our proofs we will use refutations to show that no such model A exists for a specific
formula F .

2.1.3 Theories

A first-order theory TS consists of:

1. a signature ΣS from which we can derive well-formed formulae;

2. axioms, which are a set of well-formed formulae over that signature ΣS .

6
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2.2. Trace Logic

For our proofs, we make use of the theory of linear integer arithmetic TI. Specifically,
the theory is used to reason about integer variables or integer-valued arrays. The integer
sort is denoted as I and we consider the signature of

ΣI = {{. . . ,−1\0, 0\0, 1\0, . . . , +\2, ∗\2}, {< \2}, {I}, v},

where v is defined as expected.

Furthermore, we make use of the theory of term algebras TA over the natural numbers
N. We define the signature of the natural numbers as follows,

ΣN = {{zero\0, succ\1, pred\1}, {< \2}, {N}, v},

where v is defined as expected. Note that we extend the theory of term algebra TA with
an incompletely axiomatized "<" to describe an ordering on the natural numbers N.
Natural numbers will come to use in describing loop iterations discussed in Section 2.2.

The axioms for ΣI and ΣN are generated by the Rapid [BEG+19] framework or by the
Vampire [KV13] theorem prover, respectively.

Finally, we introduce an uninterpreted sort L, which will describe our timepoints defined
in Section 2.2.

2.2 Trace Logic

The concept of trace logic [BEG+19] is the core notion of this thesis. Trace logic is an
instance of many-sorted first-order logic with equality. We will use it to express the
semantics and properties for while-programs. In contrast to [BEG+19], we are only
interested in program properties and not relational properties.

For now we focus on expressing locations, timepoints and program variables in trace
logic. The axiomatization of while-programs and the trace lemma needed for inductive
reasoning will be discussed as we go through the proofs and are therefore left out for now.

2.2.1 Locations and Timepoints

Throughout this thesis, we consider a program as a set of locations. A program location
corresponds to a point in the program on which an interpreter could stop. We consider
the set of the individual visits of the locations as timepoints of sort L. Furthermore, we
introduce uninterpreted constant and function symbols for each program statement s.
For this, we distinguish between following cases:

i) s is only visited once, i.e. it is not enclosed by a loop;

ii) s is enclosed by exactly one loop;

iii) s is enclosed by multiple loops.
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2. Preliminaries

For every s falling into the case i), we introduce an uninterpreted constant symbol ls of
the sort L.

For each s falling under ii), we add an uninterpreted function symbol ls, with signature
ls : N → L. The function ls is defined over the natural numbers, which are used to
describe the current iteration. Additionally to ls, we introduce an uninterpreted constant
symbol ns of sort N, which represents the first iteration start of our enclosing loop, where
our loop condition does not hold.

To cover all statements of case iii), we extend the idea of ii). This time, we introduce
two uninterpreted function symbols ls and ns, with ls : Nm → L and ns : Nm−1 → N,
where m represents the number of enclosing loops of s and each argument represents
the current iteration of the related enclosing loop. Moreover, an extra uninterpreted
constant symbol lend of sort L is introduced to represent the last timepoint of a program
execution.

Throughout this work we define the following macros for the most commonly used
timepoints. We define its to be a function, which returns for each while-statement s a
unique variable of sort N. In the following definitions we consider an arbitrary statement
s, its enclosing loops w1, . . . wk and it an arbitrary term of sort N.

tps := ls(itw1 , . . . , itwk) if s is not a while-statement
tps(it) := ls(itw1 , . . . , itwk , it) if s is a while-statement
lastIts := ns(itw1 , . . . , itwk) if s is a while-statement

We denote the first timepoint for an arbitrary statement s as starts:

starts =

{

tps(0) if s is a while statement

tps otherwise

We define ends as follows:

ends =



























starts′ if s′ occurs after s in a context

ends′ , if s is last statement in if-branch of s′

ends′ , if s is last statement in else-branch of s′

tpw(succ(itw)), if s is last statement in body of w

We refer to ends as the first timepoint after the execution of s.

2.2.2 Program Variables

To reason over program behavior we express properties over program variables v. In the
definition of [BEG+19], the authors do so by capturing the value of program variables
v at timepoints (from L) in arbitary program execution traces. In our setting we are
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2.3. Input Language W

not interested in non-relational properties, such as safety properties, about programs
and will omit the trace argument for simplicity. Hence we model program variables v as
function v : L→ I, where v(tp) gives the value of v at timepoint tp. If the variable v is
an array, we add an additional argument of sort I, which corresponds to the position
at which the array is accessed. For non-mutable variables we can simply omit the the
timepoint argument.

2.3 Input Language W

We denote our programming language by W, and consider the input language of the
Rapid framework from [BEG+19]. It is a simple while-like programming language,
supporting the standard control flow statements while, if-then-else and skip. The entry
point of our programming language is a top level main function. W allows the declaration
of mutable and immutable, that is constant, integer and array, variables. It includes
standard side-effect free expressions over booleans and integers, such as multiplication,
addition or logical connectives. Finally, control flow statements and expressions may also
be arbitrary nested.

Figure 1.1 shows an example of a program written in the programming language W.

2.4 Superposition Calculus

Vampire [KV13] uses the superposition inference system to derive proofs. It uses inference
rules together with a simplification ordering (≻) on terms and a selection function. Since
we want to select the literals by hand without restrictions we assume a selection function
which allows the selection of any literal.

Assuming such a fixed simplification ordering and selection function, the inference system
consists of following rules. We will underline the selected literals and denote the used
rules on the derivations.

Resolution

A ∨ C1 ¬A′ ∨ C2 Res
(C1 ∨ C2)σ

where σ is the most general unifier (mgu) of A and A′

Equality Resolution

s 6≃ s′ ∨ C
Res

Cσ

where σ is the mgu of s and s′

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. Preliminaries

Superposition

l ≃ r ∨ C1 L[l′] ∨ C2
Sup

(L[r] ∨ C1 ∨ C2)σ

where σ is the mgu of l and l′, l′ is not a variable, rσ 6� lσ and L[l′] is not an equality
literal.

l ≃ r ∨ C1 t[l′] ≃ t′ ∨ C2
Sup

(t[r] ≃ t′ ∨ C1 ∨ C2)σ

where σ is the mgu of l and l′, l′ is not a variable, rσ 6� lσ and t′σ 6� t[l′]σ

l ≃ r ∨ C1 t[l′] 6≃ t′ ∨ C2
Sup

(t[r] 6≃ t′ ∨ C1 ∨ C2)σ

where σ is the mgu of l and l′, l′ is not a variable, rσ 6� lσ and t′σ 6� t[l′]σ

Factoring

A ∨A′ ∨ C
Fact

(A ∨ C)σ

where σ is the mgu of A and A′

Equality Factoring

s ≃ t ∨ s′ ≃ t′ ∨ C
Fact

(s ≃ t ∨ t 6≃ t′ ∨ C)σ

where σ is the mgu of s and s′, t′σ 6� sσ and t′σ 6� tσ

A special inference rule is demodulation. Demodulation is a simplification and a special
form of the superposition rules. It does not have to be applied to selected literals and it
deletes one of its parents.

l ≃ r
✘

✘
✘

✘✘L[l′] ∨ C
Dem

L[rσ] ∨ C

where lσ ≃ l′, lσ ≻ rσ and (L[l′] ∨ C)σ ≻ (lσ ≻ rσ)
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2.5. Experiments and Tooling

2.5 Experiments and Tooling

To generate program semantics we rely on the Rapid framework [BEG+19]. The proofs
of the problems in this work rely on the first-order theorem prover Vampire [KV13]. It
is a refutational full first-order prover with built-in equality reasoning and theory support.
To better present and engage with the proofs we use SatViz [GKS19]. SatViz is a tool
for interactively visualizing proofs and proof attempts of the first-order theorem prover
Vampire. It also provides an interactive graphical interface to Vampire, which we use
to make and verify the proofs for the program properties. We will provide some of the
proofs and proof parts as screenshot from the SatViz output. Figure 2.1 shows how such
an output will look like. One can see a sub-tree of a proof with some of its used clauses
visualized as nodes. Arrows indicate the derivation direction and mark the child and
parent clauses. The clause is displayed inside of the node. Note that the clauses displayed
do not have to be in conjunctive normal form. For our setting the blue colored nodes
represent the theorem axioms provided by Vampire, the dark green node represents the
negated conjecture and the light green ones the extra added lemmas. The light and dark
grey nodes are derived clauses and the empty clause is annotated by $false.
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2. Preliminaries
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CHAPTER 3
Safety Properties in Trace Logic

In this chapter we will look at proofs of generic safety properties over a predicate P ,
representing some property over arrays. Specifically, we look into three proofs showcasing
properties of different quantifier settings: ∃, ∀ and ∀∃. We will walk through the
proofs in detail and explain the introduced lemmas needed for the proofs. Replacing
P with different properties over array elements produces similar properties, which can
be summarized in a program class related to the original program. Furthermore, using
a generic property P instead of a concrete property gives the ability to produce more
general proofs. The resulting proofs are more general in the sense, that they can be used
to quickly instantiate proofs with ∃, ∀ and even ∀∃ quantified program safety properties
of the related program classes. Examples of these instantiations are provided in Section
3.2 of this chapter.

The logical encoding of the programs is provided by Rapid [BEG+19]. Going into detail
of the preprocessing would exceed this thesis so it is left to the reader. All proofs in this
thesis are carried out using the interactive SatViz [GKS19] tool and the superposition
based theorem prover Vampire [KV13].

3.1 Safety Properties

3.1.1 ∃ Quantifier Setting

For our first safety property we look at the program in figure 3.1. It shows a program
that iterates over the indices of a constant array a. Variables that are declared constant
(const) are immutable and can not change throughout the whole program execution.
Figure 3.1 initializes an integer variable r with the value 0 and assigns the value 1 to it if
the predicate P is satisfied for the current iteration element a[i]. Accordingly, we want
to prove (assuming termination) that if r is 1 at the end of the execution, there exists
an array index k such that the element a[k] satisfies the predicate P. The program
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3. Safety Properties in Trace Logic

variable length denotes the length of our array a and should therefore not be negative.
We formalize our desired safety property as follows:

0 ≤ length ∧ r(end) ≃ 1→ ∃kI.P (a(k))

As discussed in the Chapter 2, we introduce for the program variable r and the iterator
variable i uninterpreted functions r : L → I and i : L → I over timepoints (L) of sort
integer and for the constant length an uninterpreted symbol of sort integer. Note that
although we recognize variables for example as loop iterator or array lengths, we make
no semantic difference between them and other program variables. Since our array a is a
constant array we introduce an uninterpreted function over integers and leave out the
timepoints. This leaves us with the uninterpreted constant function a : I → I of sort
integer. For the last timepoint in our program the constant end : L of the sort timepoint
is used.

1 func main ( ) {
2 const Int [ ] a ;
3 const Int l ength ;
4

5 Int r = 0 ;
6 Int i = 0 ;
7

8 whi le ( i < length ) {
9 i f (P( a [ i ] ) ) {

10 r = 1 ;
11 } e l s e {
12 sk ip ;
13 }
14 i = i + 1 ;
15 }
16 }
17

Figure 3.1: Example program with generic functional behavior involving ∃.

General Proof Idea

Using the refutation prover we are interested in deriving an empty clause at some point
in our proof search. So instead of proving the formula

0 ≤ length ∧ r(end) ≃ 1→ ∃kI.P (a(k))
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3.1. Safety Properties

we show that the negation is unsatisfiable. Applying the negation to the property we
arrive at the negated conjecture represented as following set of clauses:

{ 0 ≤ length, r(end) ≃ 1, ∀kI.¬P (a(k))) }

Specifically, using backwards reasoning we start our proof with the negated conjecture
and use the program axiomatization and the theories of integer and natural numbers to
derive the empty clause. The program axiomatization consists of trace logic axioms for
program semantics and trace lemmas for inductive reasoning over loops.

The variable r is initialized with 0 at location 5, which is encoded as r(tpl5) ≃ 0. Using
∀k.¬P (a(k)) from the negated conjecture and the semantics we will show that r never
changes throughout the program execution, contradicting the clause from the conjecture
r(end) ≃ 1. To show that r never changes inside the loop execution we use the value
evolution lemma, given below.

Value Evolution Lemma

To represent the fact of a mutable program variable not being changed between certain
bounds of a loop execution we use a trace lemma called value evolution. Let w be an
arbitrary while-statement, let v a mutable program variable (r in our example) and let
E be a reflexive and transitive predicate (e.g <, >, ≃). Then the value evolution lemma
is formalized as

∀itNL∀it
N

R .(

∀itN.(itL ≤ it < itR ∧ v(tpw(itL)) E v(tpw(it))→ v(tpw(it)) E v(tpw(succ(it))))

→

itL ≤ itR → v(tpw(itL)) E v(tpw(itR))

)

In this thesis we will use this lemma only for the equality ≃ predicate. To get a clear
understanding of how it is used in the Rapid setting, let us take a look at the instantiation
for the predicate ≃ and the mutable program variable r in our setting. We use the
uninterpreted function l8 to denote the timepoint of the loop starting at the line number
8 in Figure 3.1. The uninterpreted function l8 is parameterized by a natural number
denoting the iterations.
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3. Safety Properties in Trace Logic

∀itNL∀it
N

R .(

∀itN.(itL ≤ it < itR ∧ r(l8(itL)) E r(l8(it))→ r(l8(it)) E r(l8(succ(it))))

→

itL ≤ itR → r(l8(itL)) E r(l8(itR))

)

For readability we split the lemma into two parts, namely the premise and the conclusion.
For this we introduce a new predicate PEr,l8 : N,N→ B, representing the premise, over
two natural numbers, representing the bounds.

Premise:

∀itNL∀it
N

R .(
PEr,l8(itL, itR)

↔

∀itN.(itL ≤ it < itR ∧ r(l8(itL)) ≃ r(l8(it))→ r(l8(it)) ≃ r(l8(succ(it))))

)

Conclusion:

∀itNL∀it
N

R .( PEr,l8(itL, itR)→ (itL ≤ itR → r(l8(itL)) ≃ r(l8(itR))) )

We now show how to derive this lemma for our current example. To do so, we will need
to show that the premise holds in order to use the conclusion. First of all, to use this
lemma effectively we have to think about the bounds itL and itR. Most of the time these
bounds become clear when we have a certain goal in mind. Considering our current
interest in showing that r never changes its value throughout the execution of the loop, a
good bound for itL would be the first and for itR the last execution of the loop. To show
that the premise holds we have to show that the induction step holds for an arbitrary
iteration within these bounds, that is for some iteration it we show that r(l8(it)) is
equal to r(l8(s(it))). If this is successful, we can use the derived premise to derive our
conclusion and gain a loop invariant related to r. Considering our instantiated lemma,
this would mean that r after the loop execution has the same value as r before the loop
execution.

Proof

For our first example we make a partial proof to derive the value evolution lemma. In our
assisting proof tool SatViz, we use the superposition calculus with a selection function
that let us select any clause and literal in no particular order, since we select our clauses
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3.1. Safety Properties

manually and do not need to restrict our search space. Besides from some clauses of
the program semantics, for our first proof we mainly use the conjecture and the value
evolution lemma. From now on we denote sKi as skolem constants or functions and Xi

as implicit universal quantified variables. Also we shorten succ to simply s and endli to
nli. Recall the clause set of the negated conjecture:

Conjecture:
{ 0 ≤ length, r(end) ≃ 1, ¬P (a(X0))) }

Moreover, our proof assisting tool SatViz transforms the two parts of the value evolution
lemma (premise and conclusion) for equality and the variable r into conjunctive normal
form. Note that sK0 : N,N→ N is a skolem function representing the inner universal
quantified iteration (it), parameterized by the outer universal quantified bounds (itL,
itR).

Value evolution premise:

{ r(l8(X1)) 6≃ r(l8(s(sK0(X1, X2))))) ∨ PEr,l8(X1, X2),

X0 ≤ sK0(X1, X2) ∨ PEr,l8(X1, X2),

sK0(X1, X2) < X2 ∨ PEr,l8(X1, X2),

r(l8(X1)) ≃ r(l8(sK0(X1, X2))) ∨ PEr,l8(X1, X2) }

Value evolution conclusion:

{ ¬PEr,l8(X3, X4) ∨X3 ≥ s(X4) ∨ r(l8(X3)) ≃ r(l8(X4)) }

Furthermore we will take a look at some of the needed clauses produced by Rapid to
model the desired program semantics. We use nl8 of sort N to denote the first iteration
where the loop condition does not hold.

To express the else part of our if statement in Figure 3.1 we use following clause:

¬P (a(i(l8(X5)))) ∨X5 ≥ nl8 ∨ r(l8(X5)) ≃ r(l15(X5))

This clause represents parts of the semantics of the else branch inside the loop. It
asserts that for any iteration it of the loop, where P (a(i(l8(it)))) and it < nl8, the
program variable r has the same value at the end (l15(it)) as at the start (l8(it)) of the
loop.

Next we define parts of the semantics of the while statement. Given an arbitrary
iteration it, where the loop condition is true, the variable r at the start of the next
iteration (l8(s(it))) is defined as r at the end of the current iteration (l15(it)). This is
formalized as follows:

r(l15(X5)) ≃ r(l8(s(X5))) ∨X5 ≥ nl8
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3. Safety Properties in Trace Logic

Finally formalize the initialization of r as

0 ≃ r(l8(zero))

and the final result of r as
r(l8(nl8)) ≃ r(end)

First we want to show that r is not changed during the loop execution. To achieve this,
we derive the premise (PEr,l8) for our value evolution lemma for the bounds zero and
nl8, representing the first and the last visit of the loop head. To achieve this we show
for an arbitrary iteration inside those bounds (sK0(X1, nl8)) that we can execute one
loop iteration without r being changed. We start by combining the arbitrary iteration
from our lemma with the loop semantics that states that the variable r at the start of
an arbitrary iteration, which of course is not the first iteration, has the same value as at
the end of the previous loop iteration. That is,

X5 ≥ nl8 ∨ r(l15(X5)) ≃ r(l8(s(X5))) sK0(X1, X2) < X2 ∨ PEr,l8(X1, X2)
Res

r(l15(sK0(X1, nl8))) ≃ r(l8(s(sK0(X1, nl8)))) ∨ PEr,l8(X1, nl8)

with mgu = { X2 → nl8, X5 → sK0(X1, nl8) }.

Now we have already fixed one of our bounds. In the next step we use the inductive
step from our lemma to narrow our proof down to show that if r is unchanged for an
arbitrary iteration, respecting the bounds of the premise, we proved the premise. Hence,

PEr,l8(X1, nl8) ∨
r(l15(sK0(X1, nl8))) ≃ r(l8(s(sK0(X1, nl8))))

PEr,l8(X1, X2) ∨
r(l8(X1)) 6≃ r(l8(s(sK0(X1, X2))))

Sup
PEr,l8(X1, nl8) ∨ PEr,l8(X1, nl8) ∨ r(l8(X1)) 6≃ r(l15(sK0(X1, nl8)))

Fact
PEr,l8(X1, nl8) ∨ r(l8(X1)) 6≃ r(l15(sK0(X1, nl8)))

with mgu = {X2 → nl8},

To show that the variable r is not altered during a loop iteration, we used parts of the
conjecture and the semantics of the enclosed if and skip statement:

P (a(X0)) ¬P (a(i(l8(X5)))) ∨X5 ≥ nl8 ∨ r(l8(X5)) ≃ r(l15(X5))
Res

X5 ≥ nl8 ∨ r(l8(X5)) ≃ r(l15(X5))

with mgu = {X0 → i(l8(X5)))}
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3.1. Safety Properties

The result of this resolution step states that for an arbitrary iteration smaller than nl8,
the value of r is the same at the start as it is at the end of the iteration. This is exactly
what we need except not with any arbitrary iteration, but with the arbitrary iteration
used for the inductive step from our lemma:

X5 ≥ nl8 ∨ r(l8(X5)) ≃ r(l15(X5)) sK0(X1, X2) < X2 ∨ PEr,l8(X1, X2)
Res

r(l8(sK0(X1, nl8))) ≃ r(l15(sK0(X1, nl8))) ∨ PEr,l8(X1, nl8)

with mgu = {X2 → nl8, X5 → sK0(X1, nl8)}

Now we can combine our derived clauses together with parts of the premise from the value
evolution lemma and complete the inductive reasoning to derive the premise predicate
for our desired bounds:

PEr,l8(X1, nl8) ∨
r(l8(sK0(X1, nl8))) ≃ r(l15(sK0(X1, nl8)))

PEr,l8(X1, nl8) ∨
r(l8(X1)) 6≃ r(l15(sK0(X1, nl8)))

Sup
PEr,l8(X1, nl8) ∨ PEr,l8(X1, nl8) ∨ r(l8(X1)) 6≃ r(l8(sK0(X1, nl8)))

Fact
r(l8(X1)) 6≃ r(l8(sK0(X1, nl8))) ∨ PEr,l8(X1, nl8)

with mgu = {X2 → nl8}

Thus,

PEr,l8(X1, X2) ∨
r(l8(X1)) ≃ r(l8(sK0(X1, X2)))

PEr,l8(X1, nl8) ∨
r(l8(X1)) 6≃ r(l8(sK0(X1, nl8)))

Res
PEr,l8(X1, nl8) ∨ PEr,l8(X1, nl8)

Fact
PEr,l8(X1, nl8)

with mgu = {X2 → nl8}.

Given the premise predicate from the value evolution lemma, we are now able to derive
the conclusion of the value evolution lemma. Additionally, we conclude with the help of
the semantics and parts of the conjecture that r has the value 1 after the loop execution:

PEr,l8(X1, nl8) ¬PEr,l8(X3, X4) ∨X3 ≥ s(X4) ∨ r(l8(X3)) ≃ r(l8(X4))
Res

r(l8(nl8)) ≃ r(l8(X1)) ∨X1 ≥ s(nl8)

with mgu = {X3 → X1, X4 → nl8}
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3. Safety Properties in Trace Logic

r(l8(nl8)) ≃ r(end) 1 ≃ r(end)
Sup

1 ≃ r(l8(nl8))

r(l8(nl8)) ≃ r(l8(X1)) ∨X1 ≥ s(nl8) 1 ≃ r(l8(nl8))
Sup

X1 ≥ s(nl8) ∨ 1 ≃ r(l8(X1))

Finally, we can derive the empty clause by showing that r has different values at the
start and at the end of the program execution. Note that although we no longer have
the premise predicate P (X1, nl8), the implicit universal variable X1, which represented
our start bound, is now fixed to zero. This gives us following proof subtree to conclude
the proof. Note that X1 ≥ s(l8) can also be written as X1 > l8 which we will use for the
next resolution step:

zero ≤ X6 X1 > l8 ∨ 1 ≃ r(l8(X1))
Res

1 ≃ r(l8(zero)) 0 ≃ r(l8(zero))
Sup

1 ≃ 0 Eval
�

with mgu = {X1 → zero, X6 → l8}

In Figure 3.2 one can see our SatViz proof output concerning the before discussed
∃-quantified property. Note that the numbers of the line annotation and the implicit
universal variable annotation may differ from the presented proof parts. The visual
output is the same as discussed in the preliminaries.
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3.1. Safety Properties

Figure 3.2: SatViz proof for the general ∃ property setting
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3. Safety Properties in Trace Logic

3.1.2 ∀ Quantifier Setting

For our second safety property we look at the program in Figure 3.3. It shows a program
that iterates over the indices of a constant array b. If the element of the current iteration
b[i] satisfies some predicate P, we add it to the last position of an integer array a

indicated by alength and increase alength. We want to prove that at the end of the
program execution all copied elements in a satisfy P. This can be formalized as follows.

∀kI.(0 ≤ blength ∧ 0 ≤ k ∧ k < alength(end)→ P (a(end, k)))

Similar to our first setting we introduce a constant blength : I of sort integer, an
uninterpreted function alength : L → I over timepoints of sort integer represent the
indices and uninterpreted functions for the arrays a,b as a : L, I→ I and b : I→ I over
timepoints and integers of sort integer. The variable end : L has the same meaning as
before and is again a constant timepoint.

1 func main ( ) {
2 const Int [ ] b ;
3 const Int blength ;
4

5 Int [ ] a ;
6 Int i = 0 ;
7 Int a l ength = 0 ;
8

9 whi le ( i < blength ) {
10 i f (P(b [ i ] ) ) {
11 a [ a l ength ] = b [ i ] ;
12 a length = alength + 1 ;
13 } e l s e {
14 sk ip ;
15 }
16 i = i + 1 ;
17 }
18 }
19

Figure 3.3: Example program with generic functional behavior involving ∀ and ∀∃.

General Proof Idea

To prove the ∀-quantified property we use the same approach as for the ∃-quantified
property in Section 3.1.1. This gives us additionally to our lemmas and theories the
following negated conjecture to refute:

∃kI.(0 ≤ blength ∧ 0 ≤ k ∧ k < alength(end) ∧ ¬P (a(end, k)))
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3.1. Safety Properties

First, let us separate the proof in the following steps:

1. Show that alength is dense.

2. Show that after assigning a value to a specific index i in a ,a[i] is unchanged
until the end of the execution.

3. Show that only values satisfying P are copied to a.

These steps are enough to conclude our proof and derive an empty clause. For our first
step we will use the semantics of alength to show that it satisfies the property of being
dense so we can use this fact in step two. In the second part of the proof we will fix
the iteration it corresponding to the value of i in a[i] for the loop split. For this
we introduce the intermediate value lemma. Furthermore, we introduce the iteration
injectivity lemma to show that during the loop execution we never go back to the iteration
it. Finally, we will use the already introduced value evolution lemma to show that a[i]
remains unchanged between our fixed iteration it and the last loop iteration lastIt and
thereby conclude step two. The last step is to combine this reasoning with the fact that
all values copied from b to a satisfy the predicate P.

Density Property

The density property helps to deal with iterator variables inside of loops. In this property
and in the next two lemmas we assume an integer variable v and a while loop w. In the
following formula we say that our integer variable v is dense in the execution of the while
loop w:

Densew,v

↔

∀itN.(it < lastItw → (v(tpw(succ(it))) ≃ v(tpw(it))+1) ∨ (v(tpw(succ(it))) ≃ v(tpw(it))))

For an integer variable to be dense in our setting, it means that every iteration the
variable is either increased by exactly 1 or it stays equal to its value from the previous
iteration. This property is most of the time used to determine iterator-like variables to
be further used for the intermediate value lemma and the iteration injectivity lemma.

Intermediate Value Lemma

The intermediate value lemma gives us a possibility to reason with loop iterator variables.
It is formalized as follows:
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3. Safety Properties in Trace Logic

∀xI.(
(Densew,v ∧ v(tpw(0)) ≤ x ∧ x < v(tpw(lastItw)))

→

∃itN2 .(it2 < lastItw ∧ v(tpw(it2)) ≃ x ∧ v(tpw(succ(it2))) ≃ v(tpw(it2))) + 1

)

stating that if a iterator variable v is dense inside a certain while loop w and its starting
value (tpw(0)) is different from its end value (tpw(lastItw)), then, for each value inbetween
the first and the last value of v, there exist an iteration it2 during the loop execution,
where v has exactly that value.

To verify this property, we use this lemma for alength at location l9. Again we can
split the lemma into two parts for readability. For this we introduce a premise predicate
PIntalength,l9 : I→ B annotated by the variable of interest and the location of the loop
beginning over integers. The first part, representing the premise, is formalized as:

Premise:

∀xI.(
PIntalength,l9(x)

↔

(Densel9,alength ∧ alength(l9(0)) ≤ x ∧ x < alength(l9(nl9)))

)

and the second part, representing the conclusion, is formalized as:

Conclusion:

∀xI.(
PIntalength,l9(x)

→

∃itN2 .(it2 < nl9 ∧ alength(l9(it2)) ≃ x ∧ alength(l9(succ(it2))) ≃ alength(l9(it2))) + 1

)

We use this lemma to get the specific iteration where the iterator variable alength has
the value k from our property. Given that alength is dense, together with the program
semantics, we can prove the premise predicate. This gives us the iteration where we
would like to split the loop and which we will use as initial bound for the value evolution
lemma. This will be discussed in more detail later.
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3.1. Safety Properties

Iteration Injectivity Lemma

We define the iteration injectivity lemma as follows:

∀itN1 it
N
2 .(

Densew,v ∧ it1 < it2 ≤ lastItw ∧ v(tpw(succ(it1))) ≃ v(tpw(it1) + 1)

→

v(tpw(it1)) 6≃ v(tpw(it2))

)

expressing that given a dense variable v, an arbitrary timepoint tpw and loop iteration
it1 where v is increased by 1, then for any following iteration it2 of the loop execution
the value of v is distinct from the current iteration it1. This lemma is especially useful
when iterating over arrays. In this context it is used to express that an iterator variable
alength used as index can only visit each array element at most once.

Proof

Showing a full formal proof in the superposition calculus of the ∀−property would exceed
the space of this thesis. Instead we will provide a high level proof and formal proof parts.
To save space and for better readability, duplicate literal elimination is done implicitly.

We use the same notation for skolemization and implicit quantified variables as in Section
3.1.1. For our program in Figure 3.3 we get following negated conjecture in conjunctive
normal form:

{¬P (a(end, sK0)), blength ≥ 0, sK0 ≥ 0, sK0 < alength(end)}

Our first goal is to derive Densealength,l9 from our density property for alength at line
9. We start with the clausification and skolemization of the property instantiated for
Densealength,l9 :

{

alength(l9(sK2)) 6≃ alength(l9(s(sK2))) ∨Densealength,l9 ,

alength(l9(sK2)) + 1 6≃ alength(l9(s(sK2))) ∨Densealength,l9

sK2 < nl9 ∨Densealength,l9 ,

}

Furthermore, we need the program semantics for the if and while statement concerning
alength. The following clauses express the if part, where alength is increased and
the if-condition (P (b(i(l9(X1))))) was satisfied:

X1 ≥ nl9 ∨ ¬P (b(i(l9(X1)))) ∨ alength(l9(X1)) + 1 = alength(l16(X1))
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3. Safety Properties in Trace Logic

and the else part, where alength is left unchanged and the if-condition was unsatisfied:

X1 ≥ nl9 ∨ P (b(i(l9(X1)))) ∨ alength(l9(X1)) = alength(l16(X1))

At the start of a new loop iteration (l9(s(X1))), alength has the same value as alength
at the end of the previous loop iteration (l16(X1)) expressed as the clause:

X1 ≥ nl9 ∨ alength(l16(X1)) = alength(l9(s(X1)))

Since we established all needed clauses we can start by proving the density of alength
for both execution paths of the if. Since both paths satisfy the property of alength
being dense, we will combine them and get rid of the if-condition with a resolution on P.
First, we combine both paths with the density condition of alength staying the same
or increase.

X1 ≥ nl9 ∨ ¬P (b(i(l9(X1)))) ∨
alength(l9(X1)) + 1 = alength(l16(X1))

Densealength,l9 ∨

alength(l9(sK2)) + 1

6≃ alength(l9(s(sK2)))
Sup

alength(l9(s(sK2))) 6≃ alength(l16(sK2))∨
sK2 ≥ nl9 ∨Densealength,l9 ∨ ¬P (b(i(l9(sK2))))

with mgu = {X1 → sK2}

Then,

X1 ≥ nl9 ∨ P (b(i(l9(X1)))) ∨
alength(l9(X1)) = alength(l16(X1))

Densealength,l9 ∨

alength(l9(sK2)) 6≃ alength(l9(s(sK2)))
Sup

alength(l9(s(sK2))) 6≃ alength(l16(sK2))∨
sK2 ≥ nl9 ∨Densealength,l9 ∨ P (b(i(l9(sK2))))

with mgu = {X1 → sK2}.

Then we combine the two paths to get rid of the if-condition:

alength(l9(s(sK2))) 6≃ alength(l16(sK2)) ∨
Densealength,l9 ∨ sK2 ≥ nl9 ∨

P (b(i(l9(sK2))))

alength(l9(s(sK2)))
6≃ alength(l16(sK2)) ∨

Densealength,l9 ∨ sK2 ≥ nl9 ∨

¬P (b(i(l9(sK2))))
Res

alength(l9(s(sK2))) 6≃ alength(l16(sK2)) ∨ sK2 ≥ nl9 ∨Densealength,l9

The following proof parts verify that sK2 is bounded:
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3.1. Safety Properties

alength(l9(s(sK2))) 6≃ alength(l16(sK2))∨
sK2 ≥ nl9 ∨Densealength,l9 sK2 < nl9 ∨Densealength,l9

Res
alength(l9(s(sK2))) 6≃ alength(l16(sK2)) ∨Densealength,l9

Now we complete proving that sK2 ia a loop iteration:

X1 ≥ nl9 ∨ alength(l16(X1)) = alength(l9(s(X1))) sK2 < nl9 ∨Densealength,l9
Res

alength(l9(s(sK2))) = alength(l16(sK2)) ∨Densealength,l9

with mgu = {X1 → sK2}.

Densealength,l9∨

alength(l9(s(sK2))) = alength(l16(sK2))

Densealength,l9∨

alength(l9(s(sK2)))

6≃ alength(l16(sK2))
Res

Densealength,l9

We derived Densealength,l9 and thereby showed that alength is indeed dense inside the
loop starting at location l9.

Secondly we are interested in the timepoint sK1 : I→ N where alength has the value
of sK0, since this will be used to split the loop and mark the start for the value evolution
lemma. For this we prove the premise of the instantiated intermediate value lemma for
alength at line 9 with sK0 (PIntalength,l9(sK0)). This is a quite simple task since we
already have Densealength,l9 . We start with the clausification and skolemization of the
instantiated intermediate value lemma premise and conclusion:

Premise:

X0 < alength(l9(zero)) ∨ ¬Densealength,l9 ∨ PIntalength,l9(X0) ∨X0 ≥ alength(l9(nl9))

Conclusion:

{
¬PIntalength,l9(X0) ∨ sK1(X0) < nl9,

¬PIntalength,l9(X0) ∨ alength(l9(sK1(X0))) = X0,

¬PIntalength,l9(X0) ∨ alength(l9(s(sK1(X0)))) = alength(l9(sK1(X0))) + 1

}

To prove PIntalength,l9(sK0), we need to define following two clauses of the program
semantics. The following clause models the initialization, that is the value at the start
(l9(zero)) of the loop execution, of alength with 0:

0 = alength(l9(zero))

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. Safety Properties in Trace Logic

and the last value of alength, that is the value at the end of the loop execution (l9(nl9)):

alength(l9(nl9)) = alength(end)

First we make use of our density property:

PIntalength,l9(X0) ∨X0 ≥ alength(l9(nl9))∨
¬Densealength,l9 ∨X0 < alength(l9(zero)) Densealength,l9

Res
PIntalength,l9(X0) ∨X0 ≥ alength(l9(nl9)) ∨X0 < alength(l9(zero))

Now we show that alength was smaller than sK0 at the start (l9(zero)) and bigger
than sK0 at the end (l9(nl9)) of the loop execution. We start by using the semantics of
the initialization of alength:

PIntalength,l9(X0) ∨X0 ≥ alength(l9(nl9))∨
X0 < alength(l9(zero)) 0 = alength(l9(zero))

Dem
X0 < 0 ∨ PIntalength,l9(X0) ∨X0 ≥ alength(l9(nl9))

and use sK0 ≥ 0 from the negated conjecture to show that it actually is smaller:

X0 < 0 ∨ PIntalength,l9(X0) ∨X0 ≥ alength(l9(nl9)) sK0 ≥ 0
Res

PIntalength,l9(sK0) ∨ sK0 ≥ alength(l9(nl9))

with mgu = {X0 → sK0}.

For showing that sK0 is smaller than alength at the end of the loop execution we
use the semantics of alength asserting that alength is not changing after the loop
execution (alength(l9(nl9)) = alength(end)):

alength(l9(nl9)) = alength(end) sK0 ≥ alength(l9(nl9)) ∨ PIntalength,l9(sK0)
Dem

sK0 ≥ alength(end) ∨ PIntalength,l9(sK0)

and use K0 < alength(end) from the negated conjecture to derive the premise predicate
PIntalength,l9(sK0):

sK0 ≥ alength(end) ∨ PIntalength,l9(sK0) sK0 < alength(end)
Res

PIntalength,l9(sK0)

The premise predicate enables us now, using resolution, to derive the following facts from
the conclusion part of the intermediate value lemma:
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3.1. Safety Properties

• sK1(sK0) < nl9, a constraint on the iteration sK1(sK0) of not being the last one;

• sK0 = alength(l9(sK1(sK0))), an equation with the information about the iteration
sK1(sK0), when alength has the value sK0;

• alength(l9(s(sK1(sK0)))) = alength(l9(sK1(sK0)))) + 1, an equation stating, that
alength is increased by one in the next iteration (s(sK1(sK0))) after the iteration
sK1(sK0).

To finish step two, we want to show that after the iteration sK1(sK0) the array element at
position sK0 of the array a is not going to change until the end of the program execution.
To achieve this, we will derive the premise of the value evolution lemma with the help of
the iteration injectivity lemma. Since we already showed a detailed proof using the value
evolution lemma for the last property, we continue with a high level proof.

We instantiate the iteration injectivity lemma for alength at line 9, which we already
have proven to be dense. We fix the first iteration to be our sK1(sK0), which we retrieved
from the conclusion of the previous derived intermediate value lemma and from which
we know that alength is increased in the current iteration. Recall that the iteration
injectivity lemma expresses that given an iteration (sk1(sK0)) in which a dense variable
(alength) is increased by one, the variable will never have the same value until the end
of the loop execution (nl9). This can be expressed as the following formula:

∀itN.sK1(sK0) < it ≤ nl9 → alength(l9(sK1(sK0))) 6≃ alength(l9(it)))

Now we can use the equation from the conclusion of the intermediate value lemma
sK0 = alength(l9(sK1(sK0))) to derive the formula:

∀itN.sK1(sK0) < it ≤ nl9 → sK0 6≃ alength(l9(it)))

This formula expresses that in every loop iteration it, following the iteration sK1(sK0),
alength will never be equal sK0. Since alength is used as index for the array a, this
means implicitly for our program, that the value of a at index position sK0 can not
change after the loop iteration sK1(sK0). Now to complete step two, we need to derive
the premise predicate for the value evolution lemma instantiated for the array element at
position sK0, starting from the iteration after the assignment (s(sK1(sK0))):

PEa[sK0],l9(s(sK1(sK0)), nl9)

Recall that for proving the premise predicate of the value evolution lemma we have
to make an inductive step. Given an arbitrary iteration it, which respects the bounds
s(sK1(sK0)) ≤ it < nl9, we have to show that the value of the array element stays the
same until the next iteration s(it). This inductive reasoning is handled by the program
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3. Safety Properties in Trace Logic

semantics and the iteration injectivity lemma conclusion. To prove it, we proceed with a
case split for the iteration it:

Case 1) The predicate P is satisfied and the if branch is executed;

Case 2) The predicate P is unsatisfied and the else branch is executed.

Considering the first case, we know from our iteration injectivity lemma that the array
element at position sK0 of the array a is not visited again inside of the loop after the
iteration sK1(sK0). Hence the array element at position sK0 at iteration it is still the
same in the iteration s(it).

For the second case, we use the semantics of the skip statement. This is quite trivial
since skip has no impact on program variables, so again the array element at position
sK0 at iteration it is the same as in the iteration s(it).

Since both cases satisfy the condition to use the conclusion of the value evolution lemma
we can derive the formula:

a(l9(s(sK1(sK0))), sK0) ≃ a(nl9, sK0)

which expresses that the array element of the array a at index sK0 has the same value
at the end of the loop execution (nl9) as it had at iteration s(sK1(sK0)).

Finally since a is not altered outside of the loop we use our program semantics together
with the previous derived conclusion of the value evolution lemma to show:

a(nl9, sK0) ≃ a(end, sK0)

Since alength is increased by one in iteration sK1(sK0) and this can only happen in
the if branch, we can backwards reason to prove P to be satisfied for the element at
position i(sK1(sK0)) in the constant array b. We can link the element sK0 from a to the
element i(sK1(sK0)) from b. Using the program semantics with equality we can show:

P (a(l9(sK1(sK0)), sK0))

Combining the last two formulae, we can conclude that the element at position sK0 of
the array a not only satisfies P at the timepoint l9(sK1(sK0)) but also at the end of the
program execution end giving us:

P (a(end, sK0))

This statement contradicts a part of the conjecture (¬P (a(end, sK0))) and we can derive
the empty clause by resolution, which concludes our proof.
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3.1. Safety Properties

3.1.3 ∀∃ Quantifier Setting

Another interesting property for the program in Figure 3.3 is the relation between the
copied elements in the integer array a and its original counterparts in the integer array
b. As property we are expressing that every element in a has an equivalent element in b

at the end of the execution. We formalize this as following formula:

∀iI∃jI.(0 ≤ i < alength(end) ∧ 0 ≤ blength)→ a(i, end) ≃ b(j)

The meaning and definition of alength, blength, a, b and end are unchanged to the
previous section.

General Proof Idea

The proof for the ∀∃-property is actually quite similar to the proof for the ∀-property
from Section 3.1.2. The negated conjecture we get in addition to the lemmas and program
axiomatization is as follows:

∃iI∀jI.(0 ≤ i < alength(end) ∧ 0 ≤ blength) ∧ a(i, end) 6≃ b(j)

To disprove this formula we show that for a fixed index i, respecting the given bounds,
we can always find an index j, such that a(i, end) ≃ b(j). As before, let us separate the
proof in the following steps:

1. Show that alength is dense;

2. Show that after assigning a value to a specific index i in a, then a[i] is unchanged
until the end of the execution;

3. Show that the value assigned to a[i] is equal to an element of the constant array
b.

Since this proof is almost identical to the proof from the previous property of Section
3.1.2, we use the same methodology to produce our proof.

Proof

Due to the similarity of the proofs, we will reuse almost all parts of the previous proof
sketch from Section 3.1.2. Since we only provided a high level overview of the iteration
injectivity lemma we will provide a proof tree for this part now. First, we construct our
skolemized form of the negated conjecture and compare it to the previous conjecture.

Clause set of the conjecture of the ∀∃ setting:

{0 ≤ sK0, sK0 < alength(end), 0 ≤ blength, a(end, sK0) 6≃ b(X0)}
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3. Safety Properties in Trace Logic

Clause set of the conjecture of the ∀ setting:

{0 ≤ sK0, sK0 < alength(end), , 0 ≤ blength, ¬P (a(end, sK0))}

The rest of the program axiomatization stays the same. Comparing the conjectures the
only different is the last clause, which in both cases is only effecting the last step of the
proof.

We can thus reuse the proof of the previous property and assume Densealength,l9 and
the premise predicate PIntalength,l9(sK0) to be already proven. For providing a detailed
proof tree for the iteration injectivity lemma we start with the skolemization clause
representing the lemma in conjunctive normal form:

¬Densealength,l9 ∨X2 ≥ X3 ∨X3 > ln9∨

alength(l9(s(X2))) ≃ alength(l9(X2)) + 1 ∨ alength(l9(X2)) 6≃ alength(l9(X3))

Recall that the iteration injectivity lemma expresses that given a dense variable alength
and a arbitrary loop iteration X2, where alength is increased by 1, for all iteration X3,
between the bounds X2 < X3 ≤ ln9, alength is never equal to its value at the start of
the iteration X2 again.

First we combine the lemma with the fact that alength is dense:

alength(l9(X2)) 6≃ alength(l9(X3)) ∨
alength(l9(s(X2))) ≃ alength(l9(X2)) + 1 ∨
¬Densealength,l9 ∨X2 ≥ X3 ∨X3 > ln9 Densealength,l9

Res
alength(l9(X2)) 6≃ alength(l9(X3)) ∨

alength(l9(s(X2))) ≃ alength(l9(X2)) + 1 ∨
X2 ≥ X3 ∨X3 > ln9

Recall that we are interested in the iteration where alength has the value sK0. We use
the second clause of the derived conclusion of the intermediate value lemma to introduce
sK0 and the iteration sK1(sK0) into our proof:

alength(l9(X2)) 6≃ alength(l9(X3)) ∨
X2 ≥ X3 ∨X3 > ln9 ∨

alength(l9(s(X2))) ≃ alength(l9(X2)) + 1 sK0 ≃ alength(l9(sK1(sK0)))
Sup

alength(l9(s(sK1(sK0))) ≃ sK0 + 1 ∨
alength(l9(sK1(sK0))) 6≃ alength(l9(X3)) ∨

sK1(sK0) ≥ X3 ∨X3 > ln9
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3.1. Safety Properties

with mgu = {X2 → sK1(sK0)}.

We also use the third clause of the conclusion of the intermediate value lemma clause to
show that alength is increasing in the iteration sK1(sK0):

alength(l9(sK1(sK0))) 6≃ alength(l9(X3))∨
sK1(sK0) ≥ X3 ∨X3 > ln9∨

alength(l9(s(sK1(sK0))) ≃ sK0 + 1 sK0 + 1 ≃ alength(l9(s(sK1(sK0))))
Res

alength(l9(sK1(sK0))) 6≃ alength(l9(X3))∨
sK1(sK0) ≥ X3 ∨X3 > ln9

We derived a clause that expresses that for any iteration X3 in the bounds sK1(sK0) <
X3 ≥ nl9, alength will never be equal to alength at the start of the iteration
sK1(sK0). The last step now is to show that alenght is never equal to sK0 after the
iteration sK1(sK0) to use it for the value evolution lemma:

sK1(sK0) ≥ X3 ∨X3 > ln9∨

alength(l9(sK1(sK0))) 6≃ alength(l9(X3)) sK0 ≃ alength(l9(sK1(sK0)))
Sup

sK0 6≃ alength(l9(X3))∨
sK1(sK0) ≥ X3 ∨X3 > ln9

Transforming the clause to use a implication and showing it with explicit quantifier, one
can see much better what we derived:

∀itNsK1(sK0) < it ≤ nl9 → sK0 6≃ alength(l9(it))

The formula now enables us to say that for any iteration it after the iteration sK1(sK0)
until the end of the loop execution alength will never have the value sK0. This is
exactly what we discussed before and we can now use it in the same manner as before to
derive the value evolution premise PEa[sK0],l9(s(sK1(sK0)), nl9)

Finally, we have to make a connection between the element of a[sK0] to its original
element of b. We needed the connection between a(sk1(sK0), sK0) and b(i(sK1(sK0)))
in the previous proof as intermediate step to show that P (a(s(sk1(sK0)), sK0)) and
P (a(end, sK0)). All that is left to prove the current property, is to disprove the statement

a(end, sK0) 6≃ b(X0)

which states that no element in b is equal to the element in a at position sK0 at the
end of the execution. We can simply use the previous made intermediate step and the
semantics to fix the arbitrary iteration X0 from the conjecture to be i(sk1(sK0)) and
derive:

a(end, sK0) ≃ b(i(sk1(sK0)))

which contradicts the conjecture and we derive the empty clause.
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3. Safety Properties in Trace Logic

3.2 Concrete Safety Properties

Establishing the property proofs for the programs in Figure 3.1 and Figure 3.3 enables us
to not only reason about those programs but a variety of programs related to the program
classes. We can replace the generic property P with arbitrary properties. Examples are
provided in Figure 3.4 and Figure 3.5.

1 func main ( ) {
2 const Int [ ] a ;
3 const Int [ ] b ;
4 const Int l ength ;
5

6 Int r = 0 ;
7 Int i = 0 ;
8

9 whi le ( i < length ) {
10 i f ( a [ i ] != b [ i ] ) {
11 r = 1 ;
12 } e l s e {
13 sk ip ;
14 }
15 i = i + 1 ;
16 }
17 }
18

Figure 3.4: Example program as an instance of Figure 3.1

3.2.1 Concrete ∃ quantifier setting

Figure 3.4 shows now a program that iterates over the indices of constant arrays a and
b. We instantiate P with the equality of elements from a and b at the position of i
at the current iteration. The program initializes an integer variable r with the value
0 and assigns the value 1 to it if the elements at position i of a and b are not equal.
Accordingly, we want to prove (assuming termination) that if r has not the value 0 at
the end of the execution, there exists an array index k such that the elements at the
position k of a and b are equal. The program variable length represents the length of
our arrays a and b and should therefore not be negative. We formalize our desired safety
property as follows:

0 ≤ length ∧ r(end) ≃ 1→ ∃kI.a(k) 6≃ b(k)
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3.2. Concrete Safety Properties

1 func main ( ) {
2 const Int [ ] b ;
3 const Int blength ;
4

5 Int [ ] a ;
6 Int i = 0 ;
7 Int a l ength = 0 ;
8

9 whi le ( i < blength ) {
10 i f (b [ i ] != 0) {
11 a [ a l ength ] = b [ i ] ;
12 a length = alength + 1 ;
13 } e l s e {
14 sk ip ;
15 }
16 i = i + 1 ;
17 }
18 }
19

Figure 3.5: Example program as an instance of Figure 3.3

Proof

Since the proof is very similar to Section 3.1, it is a good opportunity to show the full
proof output using our assisting proof tool SatViz. In Figure 3.6 one can see almost
the same proof as in the previous ∃ setting. Since we used almost the same notation as
the tool it should be no problem to follow the proof. The grayed formulae are derived
clauses and the green ones are the produced axiomatization, the negated conjecture and
the used value evolution lemma.

As one can see, the proof for the generic property can be very quickly extended to the
proof for a concrete property with almost no additional complexity. The same holds for
the other safety properties.

3.2.2 Experimental Results

Finally, we can use the knowledge of our previous results concerning the used lemmas
to construct the axiomatization of our concrete examples, add the needed lemmas. We
add only the needed theory axioms and let the safety property be verified automatically
using Vampire [KV13]. For the experiments we use a special branch of Vampire, which
prefers to pick our lemma clauses over other clauses. The SMT-files are created using the
axiomatization of the program done by the Rapid [BEG+19] framework and are then
manually modified to only contain the needed lemmas and theory axioms. Also we turn
off all built in axioms of Vampire so we have full control over the clauses needed for
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3. Safety Properties in Trace Logic

Figure 3.6: Proof for the concrete ∃ quantifier setting in the SatViz tool

the proof. For the experiments Vampire version 4.4.0 with the following additional flags
were used. That is, -tha off, to get rid of all unnecessary theory axioms and -lls

on, to enable the mentioned preference towards selecting our lemmas.

The insights gained on the lemmas enables now to produce an automated proof for the
mentioned properties. An interesting insight is that the quantifier alternation does not
affect the overall proof performance compared to the ∀ quantified setting. Furthermore
we observed that Vampire can handle the concrete ∀ and ∀∃ quantified properties way
better than the general ones, due to the ability to process the inequality in the proof
better than the uninterpreted predicate. These results underlines the usefulness of the
proofs and the resulted knowledge for the generic cases as base for proofs of the related
program classes.
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CHAPTER 4
State of the Art

In this chapter we overview the related approaches to our work in software verification.
This chapter is separated in two parts: the first one focuses on different methods for
formal verification apart from theorem proving in general (Section 4.1). The second
part gives detailed examples of novel and state-of-the-art methods for the verification of
programs dealing with arrays (Section 4.2).

4.1 Software Verification

4.1.1 Deductive Software Verification and Proof Assistants

Deductive verification consists of generating a mathematical representation of the system
and a mathematical description of its specifications. Proving the correctness of these
implies conformance of the system with the given specification.

One of the most established and extended techniques doing so is Hoare Logic [Hoa69].
Hoare logic is a formal system with a set of logical rules, which can be used to reason
about the correctness of programs. The idea is to reduce the program verification to
proving so called Hoare Triples. A Hoare Triple is of the form {A}P{B}, where A and
B are first-order formulae respectively expressing pre- and postcondition and P is a
program. A Hoare Triple of this form is valid if and only if, if A is true before the
execution of P , B is true after the execution of P .

Automating program verification is hard and resorting to proving the correctness of
complex programs by hand is thereby sometimes inevitable. A lot of research has been
carried out in this area to make this task easier and one answer to this are proof-assisting
tools [dt04, Pau94, ORS92]. Isabelle [Pau94] is a generic proof assistant, which allows
the expression of mathematical formulas in a formal language and provides tools for
proving those formulas in a logical calculus. Isabelle has an extension for higher-order
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4. State of the Art

logic, Isabelle/HOL [NPW02], which for example can be used to model program
semantics in Hoare logic and proving assertions with it [Nip02]. Furthermore, there exists
the formal proof management system Coq [dt04]. It consists of a small kernel, based
on a language with few primitives and on top of this a rich extendable environment for
designing theories and proofs. Many verification tools show the versatility of the Coq
proof assistant as a platform for verification. Two examples of this are CertiCrypt
[BGZB09], an environment of formal proofs for computational cryptograph and Ynot
[CMM+09], a library to turn Coq into an environment for writing and verifying higher-
order imperative programs. Another interactive tool used for software verification is
PSV [ORS92], which stands for a prototype verification software. It uses higher-order
logic as its specification language to specify libraries of theories. The theorem prover of
PSV has a collection of basic inference rules, which are combined with higher level proof
strategies and applied interactively within a sequent calculus framework. Proofs in PSV
yield a proof script which can be manipulated and even replayed.

One of the biggest advantages of using proof assistants over automated tools is their
ability to not only deal with more expressiveness like higher-order logic but also their very
easily extensible environments in terms of theories, axiomatization or proof strategies
used. The biggest downside compared to automated approaches is the time and expert
knowledge needed to specify the needed theories and program semantics to successfully
use them. Nevertheless, interactive systems can be very useful for prototyping automated
solutions, as seen in this thesis with SatViz [GKS19] in combination with the interactive
mode of Vampire [KV13].

4.1.2 SMT-Solving and Intermediate Verification Languages

Since software verification is a complex topic and no optimal approach has been found
yet due to its undecidability, many solutions combine different techniques and tools into
one framework. These frameworks are often designed to be very modular and extendable
to experiment with different settings and tools. Most of the time a framework would take
a programming language and transforms it into an intermediate verification language.
This is done to separate the verification process from the programming language and
makes verification of multiple languages with the same tool possible. Due to the great
advances in the area of SMT-solvers, most verification frameworks utilize SMT-solvers in
their proving process to verify these generated intermediate verification languages.

A successful approach to verify safety properties and an example of utilizing multiple
tools ([KGC16, BNSV14]) is the SeaHorn [GKN15] framework. SeaHorn compiles a
given C program with manually inserted assertions to optimized LLVM [LA04] byte code.
The resulting byte code is transformed to Horn clauses, which serves as intermediate
representation. Additionally to the Horn clauses, SeaHorn uses different abstract
domains to generate program invariants. The Horn clauses and the generated invariants
can then be solved by any off the shelf Horn constraints solver. The authors of [GKN15]
claim that the flexibility, of being able to parameterize SeaHorn with different encodings
and solvers, is one of the biggest strengths of SeaHorn. Although SeaHorn is a very
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4.1. Software Verification

sophisticated framework for the C programming language, it is hard to encode quantified
properties. SeaHorn only uses C-like assertions inside the code and has no native
support for ∀ and ∃ quantifiers, which limits its expressiveness compared to using full
first-order logic.

A framework which offers a better opportunity for comparison is the programming
language and verifier Dafny [Lei10]. Dafny has rich programming language features,
translated to the intermediate verification language Boogie [Lei08]. The Dafny eco-
system automatically infers some invariants of the provided program and generates
verification conditions which can be passed to a SMT-solver. The eco-system provides
an interface to various SMT-solvers and is thereby bound by the used solver, by default
the SMT-solver Z3 [DMB08] is used. Dafny supports a variety of language features
like classes, functions, sequences, sets, algebraic datatypes, ect. But it also comes with
many other verification features, which are built into the language. Dafny is far more
superior concerning its language compared to the other mentioned frameworks. Dafny
does not only support in code assertions like SeaHorn, but takes this even further by
allowing quantification inside of them, which is similar to our defined safety properties.
Furthermore, it has native language support for quantified pre- and postconditions for
functions and supports annotations for loop invariants and annotations to help verify
termination of a program. Dafny provides the possibility of defining predicates inside
the language and use them anywhere like a function which returns a boolean. This
expressiveness within the language increases usability and readability. On the other hand,
the automated invariant generation is not powerful enough to successfully reason about
our example programs. This means that our example programs can not be automatically
solved without additional expert knowledge, that is program specific invariants.

Another tool that makes use of an intermediate verification language is Why3 [BFMP11].
It comes with the programming and specification language WhyML and logic language
Why3. Why3 is a first-order logic with polymorphic types and several extensions,
for example recursive definitions or algebraic datatypes. Why3 has been successfully
used as intermediate verification language for Java programs [MPMU04], C programs
[MM18, BBCD16] and more. Similar to Boogie, the program can be annotated with
pre-, postconditions and invariants, for which the the Why3 logic is used. The resulting
representation is put through a chain of proof task transformations to produce a suitable
input for a variety of solvers, e.g. Z3, Vampire or Coq. In contrast to the previous
frameworks, Why3s plugin-like architecture makes it useable as a meta solver allowing
for more flexibility in use, like switching between manually guided or fully automated
solvers or writing custom transformations. Why3s ability to provide extra lemmas and
using a refutation solver could be used to achieve a similar setup as we have with Rapid
and Vampire but would require a lot of additional work and engineering.

4.1.3 First-Order Logic Approaches

In the past years not only advancements in SMT-solvers but also in theorem provers like
Vampire [KV13] were made. Full first-order logic with its expressive power provides a
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4. State of the Art

good foundation for specifying program and especially array properties.

One state-of-the-art approach to encode and verify first-order properties is the Rapid
framework [BEG+19]. This work and the formal characterization of trace logic is the
foundation of my thesis. Trace logic is an instance of many-sorted first-order logic with
equality. That allows to express properties over program locations and loop iterations.
Rapid extends the idea of Hoare Logic by encoding a program P , with explicit timepoint
reasoning and a relational property F into a set of first-order logic formulae. The validity
of this set of formulae ensures that the program P satisfies such a property F . The
program semantics are encoded as a set of program locations such that every program
variable is encoded as an uninterpreted function over program locations. As opposed
to standard Hoare-Logic-like semantics, program locations are extended with a notion
of iterations allowing to refer to (arbitrarily nested) loop iterations. This expressivity
allows for explicit timepoint reasoning. That is, we can formalize quantified inductive
properties over loops in the language. Such invariants are referred to as trace lemmas.

Using first-order logic to reason about programs with loops has also been studied before
by [GKR18]. This work describes a method to automatically reason about programs
consisting of a simple loop. In contrast to the Rapid approach, the authors do not
only consider partial correctness properties, but also temporal properties, in particular
program termination. In [GKR18] the first-order language of extended expressions is
used to describe desired properties and thereby gaining more expressiveness than by
just using simple assertions as in programming languages like C, common in tools like
SeaHorn [GKN15]. While C-like assertions can only express program properties for
concrete values and array-bounds, thanks to the expressiveness of full first-order logic
the extended expressions calculus allows reasoning over unbound arrays and arbitrary
integer values. The method of [GKR18], implemented in Quit, is restricted to programs
with simple loops, while Rapid can already handle programs with arbitrary nested while
statements.

4.1.4 Abstract Interpretation

Static program analysis is the analysis of programs, which is performed without the
actual execution of the programs. A well studied and extended technique to tackle static
program analysis, is the concept of Abstract Interpretation [CC77, CC92]. The main idea
is to create a sound approximation of the program semantics and partially executing
it. The information gained for the abstract program behavior can then be linked to the
behavior of the actual program. It gives the possibility to perform type, control-flow or
data-flow analysis without the full knowledge of runtime values or the need to perform
all calculations.

An abstract interpretation consists of a concrete and abstract domain, which are usually
lattices, a concretization and abstraction function that form a Galois connection between
the two domains and a sound abstract semantic function. The main challenge in abstract
interpretation is to find the right abstraction domain without loosing too much precision
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4.1. Software Verification

but also keeping the computation cost low. These domains can be categorized into non-
relational domains, for example interval domain [CC77] and congruence domain [Gra89],
and relational-domains, for example polyhedral domain [CH78] and weakly relational
domains [Min02]. Non-relational domains have the benefit of being very fast while losing
a lot of precision, where in relational-domains we face the opposite problem. An example
of extending this idea of abstract domains to the setting of arrays is FunArray [CCL10].
It uses a non-relational domain to categorize arrays in segments determined by their
access. The work leaves space to extend the approach to deal with relations based upon
these segments to gain even more information.

Summarizing abstract interpretation, choosing a too conservative approximating can
lead to false negatives, that is the rejection of correct programs based on the violation
of some constraints. Hence, balancing cost and precision for problem-specific domains
is a widespread and still ongoing research and many problems require problem specific
abstract domains to be efficiently solved. Compared to the approach presented in this
thesis, we face similar problems by fighting with undecidability instead of false positives,
due to over-approximation. The effort of finding and instantiating program specific trace
lemmas can be compared to experimenting with specific abstract domains.

4.1.5 Model Checking

Furthermore, there exists the technique of Model Checking [CJGK+18] for automated
software verification. In general, model checking is the process of determining wether
a given formula f is true in a given model M . The main idea to use it in software
verification is to view programs as finite state transition systems and specify the desired
requirements in temporal logic. To verify certain safety or liveness properties all reachable
states of our system are traversed. While the former declares what should not happen
or what should always happen, the latter declares what should eventually happen. If a
property is false, a counter example is generated. In case of a safety property we get a
trace of states that led to the falsification. In case of liveness properties we get a path to
an infinite loop which never reaches a specific desired state.

In the past, model checking was using Binary Decision Diagrams (BDDs) as decision
procedure, which led to a huge state explosion [BCM+92]. Due to this problem, Bounded
Model Checking [BCCZ99] emerged. Instead of using the exponentially growing BDDs
as decision procedure, bounded model checking relies on propositional satisfiability
(SAT). Looking at the iteration over arrays, we see a huge difference in the approach
presented in this thesis and bounded model checking. Firstly, most of the tools, e.g.
NuSMV2[CCG+02], are unable to deal with infinite arrays or missing information
on bounds. Secondly, bounded model checking deals with loops by unrolling them
to find counterexamples, which limits the approach to bounded loops. Looking at
recent trends of (bounded) model checking, we can see a move towards SMT-solvers
[AMP06, GG06, CFMS12] and away from SAT-solvers. One of the main advantages of
using a SMT-based approach instead of a propositional one is the preserved structure
and the ability to combined various decision procedures for the theories of uninterpreted

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4. State of the Art

functions, arrays, linear arithmetic or very specific operations on data structures like
bit-vectors. The ability of bounded model checking to quickly explore a large portion of
the state space and successfully revealing program bugs on short paths makes it a base
component in many verification tools. Current state of the art tools implementing bounded
model checking are CBMC[CKL04], ESBMC [CMNF12] or NuSMV2[CCG+02].

Through the years bounded model checking was improved by extending it to induction
[SSS00] (more precisely k-induction, e.g. PKind[KT11]) and various forms of abstrac-
tions [CGJ+03, McM03, HJMS02, KGCC13]. Bounded model checking transforms the
constraints of its transition system into conjunctive normal form. The SAT-solver either
finds an assignment (i.e. a counterexample of at most k length) or a refutation proof
that the clause set is unsatisfiable. In [McM03] the author used the refutation proof of
the SAT-solver and Craig-Interpolation to create an over-approximation of reachable
states and gained thereby an Unbounded Model Checking procedure that guarantees
to find a proof (i.e. a counterexample) if one exists. Another successful extension of
bounded model checking using over-approximation is counterexample guided abstraction
refinement [CGJ+03]. Model checking is applied on an abstraction of the program, which
gets refined throughout the search for a valid counterexample. State of the art tools that
utilize model checking together with abstraction technique is SLAM [BR01, BBKL10]
and Spacer [KGCC13]. SLAM is used to verify safety properties of C programs. It
abstracts C programs to boolean programs using C2BP [BMMR01] and uses the model
checker Bebop [BR00] to find counterexamples. Since Bebop preserves the control-flow
graph of the program, it is left to check if the path is feasible in the C program. If this is
the case an actual error path is found, if not the boolean program is refined and another
iteration of the process is started. An especially interesting abstraction technique is the
one of Spacer. Spacer uses not only an over-approximation based on counterexample
guided abstraction refinement, but also an under-approximation based on assumptions.

In general model checking has a lot of advantages. Nearly no human interaction and
expert knowledge is required and a variety of great automatic tools are available. In
case of a failure, model checking produce a counter example by design, which is not the
case considering our approach of using a first-order theorem prover. In practice model
checking offers good opportunities for program debugging and is very fast (especially
on small counterexample paths). A big drawback considering model checking is the
state explosion which affects even modern SMT-approaches due to unrolling. Another
disadvantage is the fact that most model checking tools are limited to finite domains and
finite systems. Comparing to our approach model checking is great for debugging finite
systems but not suitable for dealing with proofs of quantified functional correctness.
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4.2. Verification of Array Manipulating Programs

4.2 Verification of Array Manipulating Programs

The problems and approaches of array verification do usually not differ from general
software verification discussed before. Most of the tools mentioned are capable of dealing
with arrays and verifying safety properties of programs using arrays. The challenges most
of the tools face are handling interesting array properties, which are usually ∀-quantified
properties, and dealing with unbound arrays, unbound loops and loop invariants.

An interesting method of dealing with array manipulating programs is by using induction.
By induction over array related ranks [ISIRS20] or over the entire program [CGU20]
dealing with loop invariants and unboundness is no longer an issue.
A novel approach of using induction to deal with unbound arrays is inductive rank
reduction [ISIRS20]. The technique verifies the safety properties based on induction on
a user-defined rank of the program states. A rank is the size of a program state, for
example represented as the length of an array. The aim is to quickly establish a base
case on a bound version of the program using bounded model checking or symbolic
execution. Then a so called squeezing function, a function representing the induction
step, has to be provided or generated. A squeezing function maps one program state to
another program state with a smaller or equal rank, decreases the size of the state and
thereby lifting the proof from a bounded case to an unbounded case. For the process to
be sound a squeezing function has to satisfy some conditions (initial anchor, simulation
inducing and fault preservation), which are verified using a SMT-solver. Since these
functions are relatively simple for a simple program class, candidates can be created
by using grammatically-correct functions and testing them against arbitrary generated
examples. The technique was applied to a bidirectional summation program, which
is very hard to proof using our approach, since we would need some understanding of
the sum function. In contrast to our approach, the inductive reasoning in [ISIRS20] is
not done over timepoints or iterations but on the size of the input state. Furthermore,
squeezing functions are much simpler and more natural to come up with than invariants
or inductive lemmas. On the downside, this approach is prone to small changes in the
starting rank, which can lead to false positives.
The second method mentioned is the framework Vajra [CGU20]. It uses the parametric
array size N to perform induction over the whole program, which is represented as
parameterize Hoare triple {φN}PN{ψN}. Similar to the first approach a very simplistic
base case is established by unrolling the loops for a fixed number of times and proven
the correctness by using a bounded model checker. The induction step was handled
by a novel algorithm utilizing an SMT-solver and is based on deriving the Hoare triple
{φN}PN{ψN} from the hypothesis {φN − 1}PN−1{ψN − 1}.
On one hand, using induction on specific program classes or combining them with other
tools could lead to great results. On the other hand, these approaches scale and perform
poorly with increasing complexity of the control flow, like nested loops, which yields no
problem to the approach presented in this work.

One state of the art and highly refined framework for verifying programs manipulating
unbound arrays is Booster [AGS14a]. It encapsulates a lot of techniques and combines

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4. State of the Art

them to a powerful tool, which makes it a good candidate to represent the previous
discussed techniques on model checking and abstraction. Booster takes as input a
program with assertions which is parsed into a control flow graph and then transformed
to a cutpoint graph. A vertex of a cutpoint graph represents the entry/exit block of
the program or a loop-head. The edges are labeled with sequences of assumptions or
assignments. The verification process of Booster can now be split into two parts.
First, the framework starts two rather lightweight analysis with the cutpoint graph as
input. One is a rough analysis done by a bounded model checker with a low number of
unwindings, which purpose is to quickly find safety violations of the given input. The
second analysis tries to accelerate all the loops with the help of Flat Array Properties
[AGS14b]. Flat Array Properties combines restrictions on quantifier prefixes and lim-
itations on dereferencing to become a decidable fragment of the quantified theory of
arrays. The authors introduced a class of programs called simple0

A-programs, which can
be accelerate. These programs must have a flat control-flow structure, which means each
location belongs to at most one loop, and comprise only loops that can be accelerated as
a Flat Array Properties. This can be checked by a template-based pattern matching task
given the patterns in [AGS14b]. If the input is indeed a simple0

A-program, all loops are
substituted with their accelerated counterparts and the SMT-solver Z3 [DMB08] is used
to solve the resulting queries. This concludes the first part of the verification.
The second part is started under the condition that neither the SMT-solver nor the
bounded model checker were successful and it translates the cutpoint graph into a
transition system. This transition system is then fed to an extended version of the
MCMT[GR10] model checker, which contains an implementation of Lazy Abstraction
with Interpolants for arrays [ABG+12] and Acceleration Procedures for array relations
[AGS13]. Acceleration for array relations means in this context being able to express
some classes of relation, involving arrays and counters, in first order language and thereby
avoid reachability analysis divergence. Together with the abstraction and, in contrast to
the precise process before, an over-approximation is created and refined to deal with the
unbounded arrays.
One of the biggest strength of this framework compared to our approach is its complexity
in the architecture. This helps the framework to take advantage of diverse syntactic
particularities in a quick manner using acceleration. Especially the first verification
part is a huge advantage when it comes to verifying the safety of simple0

A-programs
or disproving safety properties with a counterexample, which is in generally hard for a
theorem prover. On the other hand, our approach should perform equally good when it
comes to certain programs with nested loops or a complex control-flow, since we do not
rely on certain syntactic patterns.

Another approach focused on verification of programs with arrays is [DAFPP15]. The
authors use constraint logic programs [JL87] as a metalanguage for representing imperative
programs, their executions and the properties of interest. They presented a technique to
generate a transition system as constraint logic program, which interprets the execution
of the program. Additionally, they introduce a predicate incorrect, which represents all
bad program states. If incorrect is now a consequence of an encoded program and its
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4.2. Verification of Array Manipulating Programs

initial configuration, then the property of interest does not hold for the program. The
novel approach of this paper is the use of constraint logic programming transformations
[EG96], especially constraint replacement for the array read write constraints, and their
novel generalization strategy for array constraints for the introduction of new predicate
definitions required for the verification of the properties of interest. The constraint
replacement applies the laws of arrays and simplifies the constraints with array access to
integer constraints. The new introduced predicate definitions corresponds to invariants
and hold throughout the program execution. The generalization is achieved by using the
widening and convex hull operators. The work is successfully implemented in the tool
VeriMAP [DAFPP14].
Encoding the program into a logic representation and then using a solver to prove desired
properties is closely related to the first-order logic and SMT-based approaches. The
aspect of using widening and convex hull operators to gain some form of abstraction can
be compared to abstract interpretation approaches. This is also the big difference to
the approach we took in this thesis. We enable inductive reasoning by introducing trace
lemmas, in contrast to the here applied method of generating invariants using abstraction.

Concluding on array verification one can say that, many different techniques are explored
and experimented with, but no solution has been found that performs well on all problems.
The picked state of the art approaches in this and the previous section cover a wide variety
of methods with their strengths and weaknesses when it comes to (array) verification.
The big difference to all of them compared to our method using Rapid are the trace logic
lemmas and the way we handle the program semantics with timepoints. This gives us a
good foundation for inductive reasoning and makes it very easy to coupe with complex
control flow structures like nested loops and if statements.
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CHAPTER 5
Conclusion

5.1 Conclusion

This thesis provides the theoretical basis to automate partial correctness proofs for a
handful of properties over integer arrays on the basis of the Rapid framework [BEG+19]
using trace logic in combination with the superposition-based solver Vampire [KV13].

By using a generic property P, representing some property over arrays, we were able to
generalize necessary lemmas and axiomatization needed to prove three safety properties
of different quantifier settings: ∃, ∀ and ∀∃. These proofs gave the theoretical basis to
instantiate proofs for a whole class of programs by replacing P with an arbitrary property
over arrays. All the proofs were conducted using SatVis [GKS19] and the superposition
based theorem proofer Vampire. With the gained insides, we were able to achieve fully
automated proofs of the generalize and concretized properties by small adaptations on
the Rapid encodings and passing it to vampire.

This work and the resulting proofs illustrate how the inductive loop properties, expressed
by the instantiate trace lemmas, are a perfect fit when it comes to reasoning about
array manipulating programs in the superposition calculus. Trace logic and especially
its timepoints, makes it possible to conveniently express the safety properties and the
program semantics in first-order logic without any restrictions on quantifiers and loop
nesting.

5.2 Challenges and Future Work

One of the main challenges of this work was the selection of the right trace lemmas for
specific proof parts. Especially in the more complex ∀-quantified setting and quantifier
alternation settings, a lot of the generated clauses related to the trace lemmas were not
used in the proof. An improvement on this part could be some sort of pre-analysis of

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Conclusion

the program structure together with the safety property of interest to exclude some of
the generated clauses from the clause set. Hereby the biggest challenge would be to not
exclude needed clauses and making a proof impossible, but excluding enough to improve
efficiency of an automated prover.

Additionally, one could always extend and experiment with the generated trace lemmas.
One direction worth exploring could be identifying recurring patterns in (array) programs
and generating more syntax specific lemmas to improve inductive reasoning on certain
program classes.

Another line of work concerning Rapid is the extension of the input language W to more
complicated constructs like function calls, pointers, or dynamic structures. This would
require additional program semantics, trace lemmas and maybe even new theories. At
the moment, Rapid can only handle one function with arbitrary loop nesting, which is
in most real world applications not enough.
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