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Kurzfassung

2D Mechanik von dünnen Strukturelementen in Kombination mit Fourierreihen-basierten Ver-
schiebungsansätzen dient als eine effiziente Art und Weise zur Bestimmung von Deformations-
und Spannungsgrößen. Neben der Recheneffizienz infolge der gewählten kinematischen Annahmen
bezüglich des Strukturelements, werden energetisch konsistente Kontinuummodelle für thermo-
elastische dünne Platten und Membrane für beliebige Randbedingungen hergeleitet. In diesem
Zusammenhang wird das Prinzip der virtuellen Leistungen angewendet, um die strikte Unterschei-
dung zwischen internen und externen Kräften sicherzustellen. Dieses vielseitige Prinzip liefert
weiters ein Lösungsverfahren in Form von algebraischen Gleichungssystemen zur Bestimmung
der Fourierkoeffizienten der obengenannten Reihendarstellung der gesuchten Verschiebungen.

In der vorliegenden Arbeit wird die semianalytische Methode auf Strukturprobleme von dünnen
elastisch gebetteten Betonplatten sowie von freistehenden Graphenmembranen unter großen
Deformationen angewendet. Die Modellierung der Betonplatten erfolgt durch Kirchhoffsche
Platten auf elastischer Winkler Bettung mit spannungsfreien Randbedingungen. Dabei wird von
klassischen linear-thermoelastischen Spannungs-Dehungsbeziehungen zur Beschreibung des isotro-
pen Materialverhalten ausgegangen. Das konstitutive Materialverhalten von Graphen hingegen
ist noch in der Anfangsphase der Entwicklung. Hierbei handelt es sich um das erste tatsächliche
2D Material mit unübertroffenen mechanischen Eigenschaften, bestehend aus Kohlenstoffatomen,
die in einem einschichtigen hexagonalen Gitter angeordnet sind. Als Lösungsansatz für diese
Situation wird eine invariante hyperelastische Formulierung des vollständig nichtlinearen aniso-
tropen Materialverhalten entwickelt. Dieses verfeinerte Model basiert auf quantenmechanischen
Energiesimulationen von Zehntausenden beliebigen biaxialen Verzerrungszuständen, bis zu den
elastischen Stabilitätsgrenzen von Graphen.

Solch dünne Strukturelemente werden mehreren Typen von vertikalen mechanischen Kräften
sowie Temperaturgradienten über die Elementdicke unterworfen. Die temperaturinduzierten
Belastungen werden durch Simulationen von extremen Wetterverhältnissen motiviert, nämlich
Hagelschauer nach starker Sonneneinstrahlung auf Straßen oder Flugplätzen. Die numerischen
Ergebnisse der bereitgestellten Anwendungen werden durch Vergleich mit Daten von experi-
mentellen Messungen und Finite Elemente Analysen validiert. In Bezug auf letztere kann das
reihenbasierte Lösungsverfahren die Rechenzeit um einen Faktor von bis zu vierzig verkürzen.
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Abstract

2D mechanics of thin structural elements in combination with Fourier series-based approximative
displacement fields serves as an efficient way to determine deformation and stress measures.
Along with computational efficiency due to the kinematic assumptions regarding the structural
element, energetically consistent continuum models for thermoelastic thin plates and membranes
with arbitrary boundary conditions are derived. In this context, the Principle of Virtual Power is
applied in order to ensure a rigorous discrimination of internal and external forces. This versatile
principle further yields a solution procedure in form of an algebraic system of equations for the
Fourier coefficients of the aforementioned series representation of the sought displacements.

In the present thesis, the semi-analytical method is applied to structural problems of thin
elastically supported concrete slabs and to suspended graphene membranes undergoing large
deformations. The concrete slabs are modeled as Kirchhoff plates resting on elastic Winkler
foundations with stress-free boundary conditions, where classical linear thermoelastic stress-strain
relations are used for describing the constitutive isotropic material behavior. For graphene,
the first true 2D material with unsurpassed mechanical properties, consisting of carbon atoms
arranged in a monolayer hexagonal lattice, the constitutive material behavior is still in its
infancy. As a remedy to this situation, an invariant hyperelastic formulation of the fully nonlinear
anisotropic material behavior is developed. This refined model is based on quantum mechanics-
rooted energy simulations associated with tens of thousands of arbitrary biaxial strain states up
to graphene’s elastic stability limits.

Such thin structural elements are subjected to several types of vertical mechanical forces and
to temperature gradients along the element’s thickness. The temperature-induced loads are
motivated to simulate extreme weather events, namely hail showers following significant solar
heating, appearing on roads and airfields for example. The numerical results of the provided
applications are validated through comparison with predictions obtained from experimental
measurements and Finite Element analysis. With respect to the latter, the series-based solution
procedure may reduce computer time by a factor of almost forty.
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Chapter 1

Introduction

Two-dimensional (2D) structural mechanics is an eminent modeling-tool for many engineering
applications, including the design of thin plates, shells, walls, and membranes in building and
bridge construction [Deplazes, 2008; Chen and Duan, 2014; Pech et al., 2018], or of thin concrete
slabs resting on elastic foundations for roads, airfields, and floor screeds [Teller and Sutherland,
1943; Bowles, 1997; Delatte, 2008]. The shape of such thin structural elements (surface structures)
is characterized by one dimension (thickness t), measured normal to the midplane, which is
significantly smaller than all other in-plane dimensions of the element (height h, side lengths
a× b, radius R, etc.). The latter is typically at least ten times larger than the dimension of the
thickness, see Fig. 1.1. The midplane represents the symmetry plane of the top- and bottom

t

t
t

membrane:

"ultrathin" plate or shell

h

l a

b

R1

R2

plate shellwall midplane

Fig. 1.1: Thin structural elements characterized by a 2D midplane and by a corresponding
thickness t of the surface structure: walls, plates, shells, and membranes.

surface of a thin structural element, also called “neutral plane” in the case of pure bending. While
plates and walls have a flat midplane in the undeformed reference configuration, a thin structural
element with a curved midplane before deformation processes is called shell. Membranes, namely
structural elements even thinner than plates and shells, can have both a flat or a curved midplane.
When taking advantage of the smallness of the thickness, it is not mandatory to use computation-
intensive three-dimensional (3D) elasticity models for calculating the six independent strain and
stress components acting throughout all points of the continuum [Salençon, 2001], as provided
by the 3D Finite Element method [Bathe and Wilson, 1976; Zienkiewicz and Taylor, 2000] or by
the theory of layered elastic halfspaces [Pan, 1989; Höller, 2017]. Thus, a much more efficient
way to determine stress- and strain distributions in such plane continua is that of 2D structural
mechanics: In this concept, the possibilities of deformations of the body are constraint to its
essential forms of deformation, but remain geometric compatible and being sufficient to satisfy
the equilibrium of internal and external powers. Depending on the applied kinematic constraint,
so-called 2D theories for plates, shells, and membranes [Timoshenko and Woinowsky-Krieger,
1959; Gould, 1988; Ventsel and Krauthammer, 2001; Reddy, 2007] are obtained.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1 Introduction 17

1.1 Kinematics and stress resultants of thin plates – Winkler

foundation model

Focusing on thin plates, the deformations standardly arise from mechanical and thermal loads
causing bending and stretching of the plate. The magnitude of the deformations depends on the
stiffnesses of the plate, namely the stretching rigidity and the flexural rigidity, as well as on the
dimensions and boundary conditions of the plate. The corresponding displacement field vector u

for a thin plate is based on the Kirchhoff-Love hypothesis1, built on the assumption that straight
lines (generators) orthogonal to the undeformed midplane of the plate remain, throughout the
deformation process, straight, constant in length (rigid body motion), and orthogonal to the (then
deformed) midplane of the plate [Love, 1888], see Fig. 1.2. This hypothesis for thin plates forms

(a)

positive rotation

t
1

um,z(X, Y )Z

t
Y

X

around the Y -axis

um,x(X, Y )

∂um,z(X, Y )

∂X

midplane in the undeformed configuration

midplane in the deformed configuration

(b)

positive rotation
around the X-axis

∂um,z(X, Y )

∂Y

t
1

um,y(X, Y )

um,z(X, Y )Z

X
Y t

midplane in the undeformed configuration

midplane in the deformed configuration

Fig. 1.2: Sideviews of the midplane and a corresponding plate generator in the undeformed and
deformed configuration, according to the Kirchhoff-Love hypothesis [Love, 1888] for
the kimematics of thin plates (1.1): (a) X, Z-plane and (b) Y , Z-plane.

the basis for classical plate theories, described by a displacement field of the format2

u(X) =
[
um,x(X,Y ) − ∂um,z(X,Y )

∂X
Z

]
ex +

[
um,y(X,Y ) − ∂um,z(X,Y )

∂Y
Z

]
ey + um,z(X,Y ) ez .

(1.1)
In Eq. (1.1), um,x, um,y, and um,z are the displacement components of um along the directions
of the coordinates X, Y , and Z, respectively, with um being the displacement field of the
midplane of the plate. The corresponding deflection gradients of the midplane, ∂um,z/∂X and
∂um,z/∂Y , represent the rotations of the generators around the Y -axis and X-axis, respectively.
The hypothesis concerning rigid body motions of the generators (i.e. the thickness of the plate

1The theory was developed by the physicist Gustav Robert Kirchhoff (1824-1887) and the mathematician Augustus
Edward Hough Love (1863-1940).

2Any location vector X of material points throughout the undeformed solid plate and its boundaries is described
by a Cartesian coordinate system, with an origin located in the midplane of the plate, and with base vectors
ex, ey, and ez, whereby ez is orthogonal to the midplane of the plate. Accordingly, we measure the location
coordinates, X = X ex + Y ey + Z ez.
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1 Introduction 18

remains constant) implies a zero normal strain in direction of the thickness, and consequently a
vertical displacement uz independent of coordinate Z, i.e. equivalent to the vertical displacement
of the midplane of the plate: uz(X,Y, Z) = um,z(X,Y ). Furthermore, the hypothesis concerning
generators being both straight and perpendicular to the midplane implies zero transverse shear
strains, indicating a so-called shear-rigidity of the plate. Summarizing, the kinematic assumptions
(1.1) for thin plates clarifies, that knowledge regarding the displacement field of the midplane is
sufficient to reconstruct the displacement field for all points of the plate, giving access to the
determination of strains and stresses acting throughout the plane continuum. In other words, a
3D continuum description of thin structural elements can be replaced by a 2D structural theory.

Application of the continuum mechanical description of the characteristic kinematics regarding
a thin plate (1.1) to 2D structural theories requires further information concerning the magnitude
of the displacement field and its corresponding gradients, i.e. we have to distinguish between
“small” and “large” deformations: In general, solid continua undergoing small deformations
are characterized by displacements which are small when compared to the dimensions of the
continuum, resulting in a deformed configuration (described by location vectors x) which differ
insignificantly from the undeformed configuration (described by location vectors X), with X ≈ x.
Thus, equilibrium equations of forces, moments, and powers acting in the deformed continuum
can also be formulated in the known undeformed reference configuration. Furthermore, small
deformations imply that the norm of the displacement gradient tensor is much smaller than
1, namely ‖∂u/∂X‖ ≪ 1, yielding the concept of linear elasticity (linearized theory) using the
linearized strain tensor [Mang and Hofstetter, 2000]. Thin plates undergoing small deformations
can then be described by the so-called Kirchhoff plate theory. In this linear 2D theory, thermal
loads and external mechanical loads, px(x, y), py(x, y), and pz(x, y), are carried by internal in-
plane (membrane) forces per unit length, namely nxx(x, y), nxy(x, y), and nyy(x, y); as well as by
internal bending moments per unit length, mxx(x, y), myy(x, y), and internal twisting moments
per unit length mxy(x, y), acting on the midplane of the plate [Ventsel and Krauthammer,
2001]. It is noted, that the stretching problem and the bending problem of a Kirchhoff plate are
not coupled and can be treated separately, see Fig. 1.3. On the other hand, when considering

(a)

x

x2x1

y1

y2

y

myy(y2)

mxy(x1)

mxy(y1)

m
xx
(x

1
) myy(y1)

m
xx
(x

2
)

zm
xy
(y

2
)

mxy(x2)
pz(x, y)

(b)

x

x2

y1

y2

y

x1

z

n x
y
(x

2
)

nxx(x2)

n y
y
(y

2
)
nyx(y2)

py(x, y)

px(x, y)
n x

y
(x

1
)

nyy(y1)
nyx(y1)

nxx(x1)

Fig. 1.3: Schematical illustration of internal and external stress resultants acting on a section
of a thin Kirchhoff plate, spanning from x1 to x2, and from y1 to y2: decoupled (a)
bending problem and (b) stretching problem.

large deformations, the displacements are not small when compared to the dimensions of the
continuum, resulting in a significant change in position of a material point moving from the
geometric point X in the undeformed configuration to the geometric point x in the deformed
configuration, with X 6= x. Thus, for large deformations, the concept of linear elasticity does
not hold anymore, which in turn requires nonlinear elastic theories. One theory concerning thin
plates was proposed by Theodore von Kármán (1881-1963), allowing the generator of the plate
undergoing moderate rotations (in the range of 10-15 degrees of angle) yielding the so-called von
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1 Introduction 19

Kármán plate theory. In this nonlinear 2D theory the stretching and bending problem become
coupled [von Kármán, 1910; Reddy, 2007], in contrast to the Kirchhoff plate theory. The basic
concepts for the continuum mechanical description of such theories, including the definitions of
strain and stress measures (for small and large deformations) as well as of the corresponding
thermodynamical description together with power principles3, can be found in Chapter 2 of the
present thesis.

As regards thin plates resting on elastic foundations (“swimming” plates), the mechanical
interaction between the plate and the underlying continuous elastic subgrade (underground)
is taken into account: For roads, airfields, and plate foundations, the modeled underground
represents the soil, while the modeled underground of floor screeds typically represents the impact
sound insulation. The by far most popular mechanical model for this interaction problem is
that of the elastic Winkler foundation [Winkler, 1867], in reference to the civil engineer Emil
Winkler (1835-1888). This model represents the subgrade medium as a system of an infinite
set of closely spaced, uncoupled vertical linear elastic springs on which the plate is lying on. In
analogy to Hooke’s law4 of linear elastic single springs [Hooke, 1678], the Winkler springs are
characterized by a spring constant c (force per unit area per unit length) also denoted as Winkler
elastic modulus of subgrade reaction. Corresponding subgrade reaction forces in vertical direction
are defined as external traction forces T c

z (force per unit area) acting on the bottom surface of
the plate, being in direct interaction with usually applied vertical surface loads per unit area pz

acting on the top surface of the plate, see Fig. 1.4. In this context, the same assumption of the

c

t

elastic

Winkler foundation

Y

X

Z

midplane

of thin plate

Winkler subgrade

reaction forces

c

Tz=-c um,z(X,Y)

pz(X,Y)

Fig. 1.4: Thin plate on elastic Winkler foundation (“swimming” plate) with thickness t and
Winkler elastic modulus c, subjected to vertical surface loads pz and Winkler subgrade
reaction forces T c

z .

displacement field (1.1) holds for thin plates on elastic foundations, but also serves as a part of
the external subgrade reaction forces T c

z , namely the product of the Winkler elastic modulus c
and the negative deflection function in vertical direction um,z, reading as

T c
z (X,Y ) = −c um,z(X,Y ) . (1.2)

It is noted, that the kinematic assumptions of the Kirchhoff-Love hypothesis result in a vertical
displacement of the bottom surface of the plate equivalent to the vertical displacement of the
midplane of the plate. For such plates in bending mode, the external forces, namely the subrade

3A common formulation for the equilibrium of internal and external powers is the so-called Principle of Virtual

Power (PVP) [Germain, 1973a,b; Maugin, 2013] giving access to theories of structural elements, as documented
by Paul Germain (1920-2009) and Gérard A. Maugin (1944-2016).

4The Hooke’s law is named after the physicist Robert Hooke (1635-1703) and states that the extension or
compression of an elastic spring is directly proportional to the applied force [Hooke, 1678].
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1 Introduction 20

reaction forces T c
z (1.2), the surface loads pz, and thermal loads, as well as the dimensions and

stiffnesses referring to the plate form an elastic system for the determination of the unknown
displacement field of the midplane of the plate um.

Analytical expressions for the sought deflection function are mostly complex or strictly not
solvable. Only for simple loading cases, namely vertical forces acting on the edge, corner, and
center of a thin Kirchhoff plate, the civil engineer Harold M. Westergaard (1888-1950) derived
analytical formulae for the maximum deflections and maximum tensile stresses in such plates
when resting on elastic Winkler foundations [Westergaard, 1926, 1939, 1948]. As a remedy, one
can resort to the numerical 2D Finite Element method for more complex systems, subdividing
the midplane of the plate into a sufficient finite number of elements (discretisation), whereas
the displacement field between the corner points of the elements is typically approximated by
means of linear or quadratic interpolation functions [Ko et al., 2016; Neto et al., 2015]. A further
popular semi-analytical method for this problem is that put forward by the mathematician and
engineer Claude L. M. H. Navier (1785-1836), representing the displacement field of the midplane
of the plate as a series of double trigonometric ansatz functions [Navier, 1823], reading as (with
respect to the deflection um,z)

um,z(X,Y ) =
Nm∑

m=1

Nn∑

n=1

cm,nwm,n(X,Y ) , (1.3)

with cm,n and wm,n as the amplitudes (Fourier coefficients) and the trigonometric deflection
modes, respectively. The approximative solution for the deflection is the more precise the more
series deflection members (being Nm ×Nn in number) are employed. While Navier’s solution
holds for a rectangular plate with simply supported boundaries, his followers Vasily Z. Vlasov
(1906-1958) and Nikolai N. Leont’ev (1926-2009) provided extended (symmetrical and antimetrical)
trigonometric ansatz functions according to plates on elastic foundations with free boundaries
[Vlasov and Leont’ev, 1966]. Another noteworthy pioneer in developing semi-analytical solutions
for the deflections was Stepan P. Timoshenko (1878-1972), who published a series of ansatz
functions for the displacement fields of plates with various shapes and boundary conditions
(combined simply supported, clamped, and free boundaries) [Timoshenko and Woinowsky-Krieger,
1959]. In the present thesis, a theoretical approach of a structural plate-subgrade-interaction
problem is developed in form of a concrete slab with free boundaries resting on elastic Winkler
foundations [Höller et al., 2019; Wang et al., 2019a]. The freely “swimming” plate is subjected to
vertical surface loads and temperature gradients along the thickness of the plate, where the latter
results in a temperature-induced eigencurvature of the plate. The sought vertical deflections of
the midplane of the slab are approximated by Vlasov-type ansatz functions in form of 2D Fourier
series, see Chapter 3 and Chapter 4 of the present thesis.

1.2 Kinematics and stress resultants of 2D membranes – Graphene

At this point, we introduced theories for thin plates, mechanically described by means of the
displacement field of the midplane together with an assigned constant thickness t of the plate.
However, for an “ultrathin” structural element, characterized by a thickness at least 80 to 100
times smaller than the other in-plane dimensions, the thickness can be regarded as negligible
small, with t → 0. Then such structural elements are called membranes [Gould, 1988], finding
applications for wide-span roof structures and pneumatic (air-supported) structures in building
construction, or for silos, pressure vessels, tanks, etc. in industrial construction. In the case of
an infinitesimal small thickness of the membrane, also the coordinate of the location vector in
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1 Introduction 21

direction of the thickness is negligible small, with Z → 0. Hence, starting from (1.1) and taking
into account the boundary value Z → 0, yields the kinematics of a 2D membrane fully described
in form of the displacement field of the aforementioned midplane, being in good approximation
the displacement field of the membrane itself (see Fig. 1.5), reading as

(a)

positive rotation

1

um,z(X, Y )Z

Y
X

around the Y -axis

∂um,z(X, Y )

∂X

um,x(X, Y )

membrane in the undeformed configuration

membrane in the deformed configuration

(b)

positive rotation
around the X-axis

∂um,z(X, Y )

∂Y

1

um,z(X, Y )Z

X
Y

membrane in the undeformed configuration

membrane in the deformed configuration

um,y(X, Y )

Fig. 1.5: Sideviews of a membrane in the undeformed and deformed configuration, according to
the kimematic assumption (1.4): (a) X, Z-plane and (b) Y , Z-plane.

um(X) = um,x(X,Y ) ex + um,y(X,Y ) ey + um,z(X,Y ) ez . (1.4)

It is easily seen, that the assumption of the displacement field (1.4) only depends on the in-plane
coordinates X and Y (there are no terms related to the deflection gradients). For membranes
in bending mode, the out of plane deflections um,z are in general large when compared to the
(infinitesimal small) thickness of the membrane. Obviously, this results in a significant change in
position of a material point moving from the geometric point X in the undeformed configuration
to the geometric point x in the deformed configuration, indicating the necessity of a large
deformation theory. In this context, it is useful to formulate strain and stress resultants as
functions of the known location vector X in the undeformed configuration – in other words, strains
and stresses are formulated in Lagrangian representation, in reference to the mathematician and
astronomer Joseph-Louis Lagrange (1736-1813). The large deformations (1.4) arise from external
loads causing bending and stretching of the membrane. However, the latter is devoid of flexural
rigidity and shear rigidity due to the vanishing thickness of the membrane, which results in either
zero or negligible small bending and twisting moments. Thus, the dominating stretching rigidity
referring to the membrane indicates that external Lagrangian loads, pL,x(X,Y ), pL,y(X,Y ),
and pL,z(X,Y ), are carried by internal Lagrangian membrane forces per unit length, namely
normal forces nL,xx(X,Y ), nL,yy(X,Y ), and in-plane shear forces nL,xy(X,Y ), see Fig.1.6. This
load transfer can be imagined as a natural extension of one-dimensional theories for rope (wire)
structures, where external loads are carried by an internal normal force [Salençon, 2001]. Moreover,
membranes undergoing large deformations imply no limitations of displacement gradients in
contrast to the moderate gradients within the von Kármán plate theory. Thus, more general
theories for large deformations are required, including informations of nonlinear constitutive
relations. A valuable classical tool is the concept of hyperelasticity (also called Green elasticity),
developed by the mathematical physicist George Green (1793-1841) and followers [Green, 1837;
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Fig. 1.6: Schematical illustration of internal and external Lagrangian stress resultants acting on
a section of a membrane, spanning from X1 to X2, and from Y1 to Y2.

Truesdell and Noll, 1965; Rajagopal, 2011]: Lagrangian stresses acting in a hyperelastic material
are associated to a stored energy in the system, namely the Helmholtz free energy5, which in
turn is a function of applied Lagrangian strains, yielding nonlinear stress-strain relations, see
also Chapter 2 of the present thesis.

When dealing with membrane theories, the question arises if there do exist real 2D membranes?
Initially 2D materials were thought to be thermodynamically unstable [Mermin, 1968]. However,
the physicists Andre Geim and Konstantin Novoselov (and co-workers) indeed discovered the first
stable 2D material in 2004, namely graphene an isolated single-layer from graphite [Novoselov
et al., 2004]. Their outstanding research was acknowledged by the Nobel Prize in Physics in 2010
“for groundbreaking experiments regarding the two-dimensional material graphene.” Graphene is
a perfect one-atom-thick membrane (without defined thickness), consisting of strongly bonded
carbon atoms, arranged in a hexagonal honeycomb lattice, see Fig. 1.7(a). The equilibrium
bond length of two neighboring carbon atoms in the undeformed configuration is called lattice
constant of graphene, with a dimension of about 0.14 nm [Castro Neto et al., 2009]. The strongly
bonded atoms in graphene can be imagined as follows: Within the graphene layer, plane sp2

hybridized carbon atoms result in covalent bonds formed by overlaps of the electronic orbitals
(wavefunctions), see Fig. 1.7(b). The electronic wavefunctions describe the motion of electrons
around their carbon atom on which they belong. As regards geometric properties, graphene is an
anisotropic material due to its two characterizing “zigzag” and “armchair” directions, which are
repeated over periods of π/3. This 2D material is the basic structural element for other allotropes
of carbon, including graphite, carbon nanotubes, and fullerenes. For graphite, the graphene
layers are stacked on top of each other and are bonded by Van der Waals forces6 resulting in an
established interlayer distance of 0.335 nm [Franklin, 1951]. On the other hand, carbon nanotubes
are obtained by rolling up a graphene membrane into a cylinder; while fullerenes are formed by
unfolding graphene into a spherical shape. Graphene, neither a metal nor a semiconductor but a
semimetal, is characterized by a number of intriguing properties [Lau et al., 2012], attracting
considerable attention in the fields of physics, chemistry, and material science: The most famous
ones are high thermal conductivity, weak optical absorptivity, and extremely high electron
mobility [Balandin et al., 2008; Nair et al., 2008; Bolotin et al., 2008]. Furthermore, graphene
has motivated studies in the fields of experimental mechanics and of continuum mechanical
modeling, reporting a modulus of elasticity of about 1000 GPa (for small deformations) and a
tensile strength of over 100 GPa [Liu et al., 2007; Lee et al., 2008]. These examples of mechanical
characteristics of graphene exceed those of any other material and are obtained when assigning

5The physician and physicist Hermann von Helmholtz (1821-1894) introduced the term “free energy” in 1883. It
is the part of the internal energy which can be converted back into effective mechanical work.

6The distance-dependent weak interaction between atoms is named after the theoretical physicist Johannes
Diderik van der Waals (1837-1923).
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"armchair"

"zigzag"
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carbon atom C

covalent

bonds

C C
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sp orbital
2

overlap

0.14 nm

Fig. 1.7: 2D graphene membrane consisting of strongly bonded carbon atoms: (a) hexagonal one-
atom-thick honeycomb lattice of graphene with “zigzag” and “armchair” directions, (b)
illustration of sp2 hybridized carbon atoms with covalenty bonded electronic orbitals.

an effective thickness to graphene, namely the interlayer distance of graphite – a common
practice for comparison to 3D materials. In the context of mechanical properties, we have to
overcome the transition from quantum mechanics, dealing with the motion of atoms and electrons
(electronic densities) on nanoscopic levels, to classical theories of continuum mechanics, dealing
with macroscopic strains, stresses, and stiffnesses of a solid material. This “upscaling” process
can be realized by means of the aforementioned concept of hyperelasticity, which resorts to the
Helmholtz free energy in the system, a physical quantity known in both scales. Thus, this essential
energy can be determined by various quantum mechanics-rooted methods, the most popular
ones are: The Density Functional Theory (DFT) approximately solves the electronic Schrödinger
equation7 by expressing the internal energy as a functional of the electronic density [Hohenberg
and Kohn, 1964; Kohn and Sham, 1965]. A fictitious system of noninteracting electrons is then
used for determining the electronic wavefunctions, electronic densities, and the sought internal
energy in an iterative self-consistent manner [Parr and Yang, 1989]. A computationally more
efficient method, compared to DFT, represents the semi-empirical tight-binding (TB) method
[Slater and Koster, 1954], in which electrons are assumed to be tightly bound to the atom on
which they belong, resulting in an electronic wave function rather similar to the atomic orbital.
Molecular dynamics (MD) simulations can be applied for describing the interactions of neighboring
atoms (chemical binding energy). Frequently used interatomic potentials are the Lennard-Jones
potential [Lennard-Jones, 1924] and the reactive empirical bond-order (REBO) potentials (also
called Brenner potentials) based on the Abell-Tersoff covalent-bonding formalism [Abell, 1985;
Tersoff, 1988]. For graphene, we here use the most accurate one of the aforementioned quantum
mechanical methods for describing the electronic structure, namely the Density Functional Theory.
Knowing the strain-induced free energy for any material direction of graphene, the anisotropic
hyperelastic material modeling gives us access to macroscopic nonlinear stress-strain relations
and stiffnesses, as well as to corresponding mechanical properties of graphene [Höller et al., 2020a],
see Chapter 5 of the present thesis. Based on the mechanical material behavior (stress-strain

7The Schrödinger equation was developed by the physicist Erwin Schrödinger (1887-1961) in 1926. The equation,
initially known as “wave equation”, governs the form of the wavefunction of electrons in a quantum mechanical
system [Schrödinger, 1926] and was awarded by the Nobel Prize in Physics in 1933.
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relations) of graphene, of course structural theories of membranes can be investigated using the
kinematic characteristics according to Eq. (1.4). The corresponding solution for the deflection
function of a membrane with various shapes and boundary conditions can again be approximated
by the numerical 2D Finite Element method and by the semi-analytical series-based solution
procedure. For suspended (freestanding) graphene sheets with simply supported boundaries, it is
advisable to use the efficient series-based Navier’s solution (1.3), which automatically assumes
deflections to be zero at the boundaries. Hence, the latter approach as well as the Principle of
Virtual Power are applied to circular graphene sheets with simply supported boundaries. The
derived membrane theory finally yields a nonlinear system of equations for the sought deflection
function [Höller et al., 2020b], see Chapter 6 of the present thesis.

1.3 Outline of the thesis

The individual chapters of the present thesis contain basic concepts of continuum mechanics and
either already published and submitted papers in peer-reviewed scientific journals. Thus, the
doctoral thesis is structured as follows:

• A collection and derivation of the definitions of continuum mechanical measures as strains
(deformations) and stresses, as well as of the Principle of Virtual Power and thermodynamics
of deformable continua is provided in Chapter 2. All these basic quantities are further used
in the following chapters concerning 2D mechanics.

• Chapter 3 is devoted to structural mechanics of thin elastic Kirchhoff plates with free
boundaries resting on elastic Winkler foundations (swimming plates). In this context, the
deflection function is approximated by Vlasov-type 2D Fourier series, where the Principle
of Virtual Power yields an complete and energetically consistent mechanical description of
the structural problem. The resulting linear algebraic system of equations for the unknown
Fourier coefficients is applied to relevant problems in pavement engineering, appearing as
an efficient alternative to the standardly applied Finite Element method.

Rigorous amendment of Vlasov’s theory for thin elastic plates on elastic Winkler
foundations, based on the Principle of Virtual Power

Authored by: R. Höller, M. Aminbaghai, L. Eberhardsteiner, J. Eberhardsteiner,
R. Blab, B.L.A. Pichler, and C. Hellmich

Published in: European Journal of Mechanics / A Solids 73 (2019) 449-482

• Chapter 4 presents concrete pavements subjected to extreme weather events, namely hail
showers, following solar heating. In this thermoelastic analysis, the thermal expansion coef-
ficient and the modulus of elasticity of microscopic concrete constituents are homogenized
using multiscale material modeling. The series-based structural problem of concrete slabs
resting on elastic Winkler foundations is then used for calculating macroscopic stresses.
Finally, top-down scaling to the microscopic stresses of the concrete constituents show that
these stresses are likely to reach the tensile strength of concrete.

Concrete pavements subjected to hail showers: A semi-analytical thermoelastic
multiscale analysis

Authored by: H. Wang, R. Höller, M. Aminbaghai, C. Hellmich, Y. Yuan, H.A. Mang,
and B.L.A. Pichler

Published in: Engineering Structures 200 (2019) 109677
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• Chapter 5 describes the mechanical material modeling of graphene using the concept of
hyperelasticity. The related free energy density is calculated by DFT for tens of thousands
of biaxial strain states, providing a full set of strain-induced energy landscapes of graphene.
The latter are formulated in an invariant manner including the anisotropic behavior in form
of a structural tensor. Thereafter, the material law of hyperelasticity yields power-conjugate
nonlinear stress-strain relations for general deformations, giving access to the stiffness
tensor and to the elastic stability limits of graphene.

Energy landscapes of graphene under general deformations: DFT-to-hyperelasticity
upscaling

Authored by: R. Höller, V. Smejkal, F. Libisch, and C. Hellmich

Under review: International Journal of Engineering Science

• Chapter 6 provides the structural modeling of circular graphene sheets with simply supported
boundaries. A membrane theory for large deformations is derived including hyperelastic
stress-strain relations as well as Navier-type ansatz functions for the sought deflections. In
this context, the Principle of Virtual Power yields a nonlinear system of equations for the
unknown Fourier coefficients, which is solved iteratively. This efficient solution procedure
is applied to relevant mechanical problems of graphene and is validated by experimental
nanoindentation measurements.

A membrane theory for circular graphene sheets, based on a hyperelastic material
model for large deformations

Authored by: R. Höller, F. Libisch, and C. Hellmich.

Submitted to: Mechanics of Advanced Materials and Structures

The doctoral thesis concludes with a discussion of the results, followed by perspectives on future
research, see Chapter 7. Based on the developments of the present thesis, a potential further study
for graphene is the application of advanced continuum mechanics theories, as the exploration
of corresponding electro-magneto-mechanical couplings. In this context, classical continuum
mechanical definitions (according to Chapter 2) are in strong interaction with applied electric and
magnetic fields. The provided theory for this interaction problem is based on Gérard A. Maugin
(1944-2016) [Maugin, 1988] and can serve as a starting point for research in the growing field of
the mechanics of graphene and other comparable nanomaterials.
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Chapter 2

Basics of continuum mechanics – Definitions of
strain and stress measures

The following provided overview of the continuum mechanical concepts is based on the academic
lectures of Prof. Christian Hellmich [Hellmich, 2012, 2018], where he was inspired by former works
concerning classical continuum mechanics [Salençon, 2001; Fung and Tong, 2001; Mang and
Hofstetter, 2000].

2.1 Deformation – strains

Forces acting on a body typically cause changes in shape (deformations). We consider bodies
composed of mathematical points – where the points physically correspond to material volumes,
which are significantly smaller than the dimensions of the body or the dimensions of the acting
loads. For the description of the deformation of the continuum, we use the concept of neighboring
points: By changes in position of neighboring points, the changes in shape of our deformed body
can be mathematically captured. Since we deal with points and their neighbors, the mathematical
terms of vector fields and their derivatives play a central role. Ultimately, this concept leads to
the introduction of additional tensor quantities, namely strains. This will be explained in detail
in the following sections.

2.1.1 Deformation gradient and strain tensor

Imagine a deformable body as a set of material points. In the undeformed reference configuration,
the location of the material points (particles) is described by the location vector X. In the
deformed momentan configuration, these material particles are located at the positions x (see
Fig. 2.1). The corresponding mapping reads as

x = ϕ(X) . (2.1)

In order to formulate a mathematical description of the deformation of a body, we also consider
neighbor points of X. The neighbor X + dX moves according to (2.1)

x + dx = ϕ(X + dX) . (2.2)

The neighborhood is expressed by the fact that function values at neighboring points ϕ(dX) are
defined by spatial derivatives of ϕ(X) times distance vectors dX

ϕ(X + dX) = ϕ(X) + F · dX , with F =
∂ϕ

∂X
(X). (2.3)
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dx

u(X+ dX)
dX

X+ dX
X

x + dx

x

u(X)

ϕ(X)

X2, x2

X3, x3

X1, x1

ϕ(X+ dX)

O

e3

e2e1

Fig. 2.1: Reference configuration and momentan configuration of a deformable continuum.

In Eq. (2.3), F is the so-called deformation gradient (in general a nonsymmetrical tensor of
second order), which represents the spatial derivative ∂ϕ/∂X. Substitution of (2.1) and (2.2)
into (2.3) results in a relation between deformed and undeformed neighbor vectors:

dx = F · dX . (2.4)

The deformation of the body is characterized by changes in lengths and angles between two
distance vectors, namely dX and dX. Such changes in length and angle can be represented
simply by the difference between inner products, dx · dx − dX · dX: Substitution of (2.4) into
the inner products yields

dx · dx − dX · dX = dX · (FT · F − 1) · dX = dX · 2E · dX , (2.5)

where E is the so-called Green-Lagrange strain tensor defined as:

E =
1
2

(FT · F − 1) , (2.6)

named after George Green (1793-1841) and Joseph-Louis Lagrange (1736-1813). Its is noted,
that the strain tensor E is symmetric, due to the inner product of the unsymmetrical tensor F

with its transpose, see (2.6). It is also useful to introduce the field of displacement vectors u(X),

u(X) = x − X = ϕ(X) − X , (2.7)

which points from its material point X in the reference configuration to its point x in the
momentan configuration (see Fig. 2.1). Derivation of (2.7) with respect to X and considering the
definition of the deformation gradient (2.3) yields the relation between the deformation gradient
F and displacement field u,

F =
∂u

∂X
+ 1 , (2.8)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2 Basics of continuum mechanics 28

with 1 being the second-order identity tensor. Use of (2.8) in expression (2.6) provides an
alternative representation of the Green-Lagrange strain tensor,

E =
1
2

[
∂u

∂X
+
(
∂u

∂X

)T

+
(
∂u

∂X

)T

· ∂u

∂X

]
=

3∑

i=1

3∑

j=1

Eijei ⊗ ej , (2.9)

as function of the displacement field u. The components of the strain tensor E read as

Eij =
1
2

(
∂ui

∂Xj
+
∂uj

∂Xi
+

3∑

k=1

∂uk

∂Xi

∂uk

∂Xj

)
, i, j = 1, 2, 3 , (2.10)

or individually,

E11 =
∂u1

∂X1
+

1
2

[(
∂u1

∂X1

)2

+
(
∂u2

∂X1

)2

+
(
∂u3

∂X1

)2
]
, (2.11)

E12 = E21 =
1
2

[
∂u1

∂X2
+
∂u2

∂X1
+
∂u1

∂X1

∂u1

∂X2
+
∂u2

∂X1

∂u2

∂X2
+
∂u3

∂X1

∂u3

∂X2

]
, (2.12)

E13 = E31 =
1
2

[
∂u1

∂X3
+
∂u3

∂X1
+
∂u1

∂X1

∂u1

∂X3
+
∂u2

∂X1

∂u2

∂X3
+
∂u3

∂X1

∂u3

∂X3

]
, (2.13)

E22 =
∂u2

∂X2
+

1
2

[(
∂u1

∂X2

)2

+
(
∂u2

∂X2

)2

+
(
∂u3

∂X2

)2
]
, (2.14)

E23 = E32 =
1
2

[
∂u2

∂X3
+
∂u3

∂X2
+
∂u1

∂X2

∂u1

∂X3
+
∂u2

∂X2

∂u2

∂X3
+
∂u3

∂X2

∂u3

∂X3

]
, (2.15)

E33 =
∂u3

∂X3
+

1
2

[(
∂u1

∂X3

)2

+
(
∂u2

∂X3

)2

+
(
∂u3

∂X3

)2
]
. (2.16)

2.1.2 Interpretation of strain tensor components – volume change – principal
strains

For interpretation of the normal strain components E11, E22, and E33, we make use of Eq. (2.5),
specified for one neighbor vector (infinitesimal line element dX = dX) which is parallel to one of
the basis vectors, with lengths |dX| =

√
dX · dX = dLi, and |dx| =

√
dx · dx = dli, i = 1, 2, 3,

see Fig. 2.2:
dl2i − dL2

i = 2EiidL
2
i ⇔ dli =

√
2Eii + 1dLi, i = 1, 2, 3 . (2.17)

Obviously, Eii is a function of the change in length of a line element oriented in ei-direction in

E12 =
1
2
sin(γ12)

√
(2E11 + 1)(2E22 + 1)

E11 =
1
2
[( dl1

dL1

)2 − 1]

M
M

O

X2, x2

X1, x1

e2

e1e3

π
2
− γ12

X

dx1,|dx1|=dl1

dx2

dX2

u(X)

dX1, |dX1|=dL1

Fig. 2.2: Interpretation of normal- and shear strain components in the e1-e2-plane.
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2 Basics of continuum mechanics 29

reference configuration. This can be expressed by the engineering strain ǫi and by the stretch λi,
respectively

ǫi =
dli − dLi

dLi
⇔ λi =

dli
dLi

= ǫi + 1 . (2.18)

Hence, substitution of (2.17) into (2.18) delivers

Eii =
1
2

[(ǫi + 1)2 − 1] =
1
2

[
λ2

i − 1
]
, i = 1, 2, 3 . (2.19)

Furthermore, for the interpretation of the shear strain components E12, E13, and E23, again we
make use of Eq. (2.5) specified for two neighbor vectors (infinitesimal line elements) in ei- and
ej-direction, respectively, with dX = dL1e1 and dX = dL2e2. In the deformed configuration,
these line elements are described by the vectors dx = dx1 (with length dl1) and dx = dx2 (with
length dl2), which include an angle (π/2 − γij), i.e. shear deformation provokes a change in the
initial right angle between two initial orthonormal line elements. For this spacial case, Eq. (2.5)
reads as

dx · dx = dlidlj sin(γij) = 2EijdLidLj , i, j = 1, 2, 3, i 6= j . (2.20)

Thus, use of Eqs. (2.20) and (2.17) yields

Eij =
1
2

sin(γij)
√

(2Eii + 1)(2Ejj + 1) i, j = 1, 2, 3, i 6= j . (2.21)

Volume changes, regarding to deformations in a continuous body, can be quantified by
considering three line elements dX = dL1e1, dX = dL2e2, and dX = dL3e3, parallel to the
mutually orthogonal unit vectors e1, e2, and e3 (see Fig. 2.3), yielding the initial volume of a
cuboid

dV0 = dL1 dL2 dL3 . (2.22)

The volume of the deformed cuboid is spanned by the vectors dx, dx, dx, which can be obtained

M

M

dV

dV0
u(X)

X

X2, x2

X1, x1

e3

O
e2

e1

X3, x3

x

dx

dx

dX

dX

dX
dx

Fig. 2.3: Volume changes around material points M , arising from deformation of continuous
bodies.
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2 Basics of continuum mechanics 30

by means of the triple product,

dV = (dx × dx) · dx = det



dx1 dx1 dx1

dx2 dx2 dx2

dx3 dx3 dx3


 . (2.23)

The line elements, bounding the deformed volume element, are expressed by specification of (2.4)
for the edges of the initial cuboid,

dx = F11dL1e1 + F21dL1e2 + F31dL1e3 , (2.24)

dx = F12dL2e1 + F22dL2e2 + F32dL2e3 , (2.25)

dx = F13dL3e1 + F23dL3e2 + F33dL3e3 . (2.26)

Substitution of (2.24)-(2.26) into (2.23) finally delivers relation between the undeformed and the
deformed volume element, reading as

dV = detFdV0 = JdV0 , (2.27)

with J = detF as the so-called Jacobi-determinant, in reference to Carl Gustav Jacob Jacobi
(1804-1851).

Let us us now investigate special directions induced by the strain tensor E. These direction
are defined by the orientation vectors n, used in the context of the eigenvalue-problem

E · ni = Eini, i = I, II, III , (2.28)

with eigenvalues EI, EII, EIII, and eigenvectors nI, nII, nIII. The eigenvalues can be obtained by
solving the following characteristic polynomial

det(E − E1) = 0 = −E3 + IE
1 E

2 − IE
2 E + IE

3 , (2.29)

where the coefficients of the characteristic polynomial

IE
1 = trE = E11 + E22 + E33 , (2.30)

IE
2 =

1
2

[
(trE)2 − tr

(
E2
)]

=

∣∣∣∣∣
E22 E23

E32 E33

∣∣∣∣∣+
∣∣∣∣∣
E11 E13

E31 E33

∣∣∣∣∣+
∣∣∣∣∣
E11 E12

E21 E22

∣∣∣∣∣ , (2.31)

IE
3 = detE =

∣∣∣∣∣∣∣

E11 E12 E13

E21 E22 E23

E31 E32 E33

∣∣∣∣∣∣∣
(2.32)

are the principal invariants of the Green-Lagrange strain tensor. The three real solutions of
Eq. (2.29) are called principal strains Ei, i = I, II, III. Substitution of these eigenvalues into
Eq. (2.28) yields three orthonormal eigenvectors ni, i = I, II, III, which are called principal strain
directions. Use of these eigenvectors as basis vectors of length one eI, eII, eIII, results in the
following notation for the strain tensor E

E = EIeI ⊗ eI + EIIeII ⊗ eII + EIIIeIII ⊗ eIII . (2.33)

Eq. (2.33) shows that deformations in principal strain directions provoke vanishing shear strain
components.
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2 Basics of continuum mechanics 31

2.1.3 Small displacement derivatives – linearized strain tensor

In the next step, we want to achieve simplifications of the strain expression (2.9): Therefore, we
investigate cases, where the norm of the displacement gradient tensor ∂u/∂X is much smaller
than 1:

‖∂u/∂X‖ ≪ 1 ⇔ | ∂ui

∂Xj
| ≪ 1 ∀i, j ∈ {1, 2, 3} . (2.34)

Let us consider the strain tensor components Eqs. (2.11)-(2.16) as functions of nine variables,
namely, the displacement derivative components ∂ui/∂Xj , i, j = 1, 2, 3. Since these quantities
are all very small, we are interested in the functional values of Eij in the neighborhood of
(0, 0, 0, 0, 0, 0, 0, 0, 0). These values can be approximated by component-specific Taylor series,
which are canceled after the linear terms. As a result of this procedure, the linear approximations
of the strain components Eij are

E11

(
∂u1

∂X1
,
∂u2

∂X1
,
∂u3

∂X1

)
≈ ∂u1

∂X1
= ε11 ,

E12

(
∂u1

∂X1
,
∂u1

∂X2
,
∂u2

∂X1
,
∂u2

∂X2
,
∂u3

∂X1
,
∂u3

∂X2

)
≈ 1

2

(
∂u1

∂X2
+
∂u2

∂X1

)
= ε12 ,

E13

(
∂u1

∂X1
,
∂u1

∂X3
,
∂u2

∂X1
,
∂u2

∂X3
,
∂u3

∂X1
,
∂u3

∂X3

)
≈ 1

2

(
∂u1

∂X3
+
∂u3

∂X1

)
= ε13 ,

E22

(
∂u1

∂X2
,
∂u2

∂X2
,
∂u3

∂X2

)
≈ ∂u2

∂X2
= ε22 ,

E23

(
∂u1

∂X2
,
∂u1

∂X3
,
∂u2

∂X2
,
∂u2

∂X3
,
∂u3

∂X2
,
∂u3

∂X3

)
≈ 1

2

(
∂u2

∂X3
+
∂u3

∂X2

)
= ε23 ,

E33

(
∂u1

∂X3
,
∂u2

∂X3
,
∂u3

∂X3

)
≈ ∂u3

∂X3
= ε33 . (2.35)

These linear approximations are components of the so-calledlinearized strain tensor, ε. Thus, in
a compact notation, the linearized strain tensor ε reads as

ε =
1
2

[
∂u

∂X
+
(
∂u

∂X

)T
]

=
3∑

i=1

3∑

j=1

εijei ⊗ ej , (2.36)

with the components

εij =
1
2

(
∂ui

∂Xj
+
∂uj

∂Xi

)
, i, j = 1, 2, 3 . (2.37)

In the case of small (infinitesimal) displacement derivatives, the normal components of the
linearized strain tensor correspond to the physical elongation in the directions of the selected
base vectors

ǫ1 ≈ ε11 , ǫ2 ≈ ε22 , ǫ3 ≈ ε33 . (2.38)

Furthermore, in this specific case, the shear components of the linearized strain tensor can be
interpreted as angle changes from the original right angle γ (by making use of sin γ ≈ γ)

γ12 ≈ 2ε12 , γ23 ≈ 2ε23 , γ13 ≈ 2ε13 . (2.39)
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2.2 Stresses

Deformation and failure of a material is determined by physical quantities of dimension force per
area, also called stress (pressure, for example, represents a special case of stress). It is noted, that
both the force and the area are generally vectorial quantities. In other words, they are defined
by a scalar (magnitude) and a direction. In this context, Augustin Louis Cauchy (1789-1857)
presented a concept in 1829, from which the stress tensor was developed. The physical and
mathematical basis for this stress tensor will be discussed in the following sections.

2.2.1 Equilibrium conditions – Cauchy stress tensor

Our starting point is the description of surface- and volume forces, acting on a continuum in
the deformed configuration. First, we consider elementary surface elements dS on the surface
of the body with orientation n(x). The unit vector n is orthogonal to the surface element dS
and points outwards. On these surface elements, traction vectors T (dimension force per unit
area) are acting. The traction vectors depend only on the orientation of the surface elements n

and on the location x: T = T(x,n). Secondly, we define elementary volume elements dV of the
body. On these volume elements, force density vectors f (dimension force per unit volume) are
acting. The force density vectors depend only on the location x: f = f(x), see Fig. 2.4a. For this
continuous force system, the mechanical equilibrium conditions, namely the force- and moment
equilibrium in the static case read as1

∫

V
f(x) dV +

∫

S
T(x,n) dS = 0 , (2.40)

∫

V
x × f(x) dV +

∫

S
x × T(x,n) dS = 0 . (2.41)

(a)

dS

dV

x

T(x,n)

n

f(x)

S

M

M ′

M

M ′V

O

x3

x1

x2

e3

e1
e2

(b)

x3

n

−e1

−e2

x1

h

T(x,n)

x2

−e3

S2

S

S1

S3

O

Fig. 2.4: (a) Volume forces fdV and surface forces TdS, acting on a 3D continuum in the
deformed configuration, and (b) Cauchy tetrahedron.

Based on the described continuous forces system, we want to obtain definitions of stresses and
stress tensors, respectively. Consequently, we consider a tetrahedron with the following geometry:

1In the dynamic case (where the velocity of motions can not be neglected), Eqs. (2.40) and (2.41) must be
extended to

∫
V

f(x) dV +
∫

S
T(x, n) dS =

∫
V

ρ ∂2
x

∂t2 dV and
∫

V
x×f(x) dV +

∫
S

x×T(x, n) dS =
∫

V
x×ρ ∂2

x

∂t2 dV ,
respectively, with ρ as the mass density in point x. These equilibrium conditions are only applicable, if the
position vectors are measured in a spatially fixed or Galilean coordinate system.
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2 Basics of continuum mechanics 33

Its three side faces Si are orthogonal to the unit vectors ei, and the base area S is orthogonal
to the unit normal vector n = n1e1 + n2e2 + n3e3. In this case, the side surfaces are functions
of the base area, Si = Sni, and the volume of the tetrahedron with height h is V = 1

3Sh, see
Fig. 2.4b. Specification of the force equilibrium (2.40) for the tetrahedron yields

∫

V
f(x) dV +

∫

S
T(x,n) dS +

3∑

i=1

∫

Si

T(x,−ei) dSi = 0 . (2.42)

Subsequently, we use average surface- and volume forces, resulting in

1
3
Sh〈f(x)〉V + S〈T(x,n)〉S +

3∑

i=1

Si〈T(x,−ei)〉S = 0 . (2.43)

Since the relation (2.43) has to be valid for any size of the tetrahedron, it is permissible to
consider the boundary transition h → 0. Then, all means remain finite, x → 0, and one obtains,
using the action-reaction-law T(x,n) = −T(x,−n) and division by S

T(0,n) =
3∑

i=1

niT(0, ei) . (2.44)

In French and American literature, Eq. (2.44) is often called the tetrahedron-lemma. Eq. (2.44)
defines an operation which linearly relates the traction forces acting on three mutually orthogonal
surfaces with the components of the normal vector onto an arbitrarily oriented surface, in order
to quantify the traction vector acting on this surface. This multilinear function induces the
existence of the so-called (symmetric) Cauchy stress tensor σ in the context of the operation

T(n) = σ · n , (2.45)

where the second-order tensor σ links the normal vector n to the traction vector T in a multilinear
manner by means of an inner product. In German literature, Eq. (2.45) is often called Cauchy’s
formula.

As an alternative to the formulation of the equilibrium on the entire body (2.40), we derive
a so-called equilibrium condition at the level of a single material point x. In this context, use
of Cauchy’s formula (2.45) in equilibrium condition (2.40), as well as use of Gauss’s divergence
theorem2 yields ∫

V
[f(x) + divσ(x)] dV = 0 , (2.46)

where the divergence theorem for the second-order tensor σ for an orthonormal basic system e1,
e2, e3, is defined as follows

∫

V
divσ dV =

∫

V

3∑

i=1

3∑

j=1

∂σij

∂xj
ei dV =

∫

S

3∑

i=1

3∑

j=1

σij · nj ei dS =
∫

S
σ · n dS . (2.47)

2The theorem was first documented by Joseph-Louis Lagrange in 1762 and then later independently rediscovered
by the mathematician Carl Friedrich Gauss (1777-1855) in 1813.
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Since Eq. (2.46) is valid for any size of a continuum, the integrand in (2.46) must vanish, and we
obtain the so-called local equilibrium condition3

f(x) + divσ(x) = 0 . (2.48)

In transition to components of an orthonormal basis e1, e2, e3, the equilibrium condition in
notation of components reads as

f1 +
∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ13

∂x3
= 0 , (2.49)

f2 +
∂σ21

∂x1
+
∂σ22

∂x2
+
∂σ23

∂x3
= 0 , (2.50)

f3 +
∂σ31

∂x1
+
∂σ32

∂x2
+
∂σ33

∂x3
= 0 . (2.51)

2.2.2 Symmetry of the stress tensor – interpretation of stress tensor components

Finally, we want to prove the symmetry of the Cauchy stress tensor. In this context, we refer to
the moment equilibrium condition (2.41) in notation of components of an orthogonal basis e1,
e2, e3

[∫

V
(x2f3 − x3f2)dV +

∫

S
(x2T3 − x3T2)dS

]
e1 +

[∫

V
(x3f1 − x1f3)dV +

∫

S
(x3T1 − x1T3)dS

]
e2 +

[∫

V
(x1f2 − x2f1)dV +

∫

S
(x1T2 − x2T1)dS

]
e3 = 0 , (2.52)

which requires, that the three expressions in the brackets are equal to zero. In the following, we
regard to the multiplier of e1: Use of Cauchy’s formula (2.45), and the local force equilibrium
conditions (2.50) and (2.51), as well as use of Gauss’s divergence theorem yields

0 =
∫

V

(
−x2

∂σ31

∂x1
− x2

∂σ32

∂x2
− x2

∂σ33

∂x3
+ x3

∂σ21

∂x1
+ x3

∂σ22

∂x2
+ x3

∂σ23

∂x3

+x2
∂σ31

∂x1
+ σ32 + x2

∂σ32

∂x2
+ x2

∂σ33

∂x3
− x3

∂σ21

∂x1
− x3

∂σ22

∂x2
− σ23 − x3

∂σ23

∂x3

)
dV . (2.53)

Since Eq. (2.53) is valid for any size of a continuum, the integrand must vanish, and we obtain

σ23 = σ32 . (2.54)

Analogous transformations of the multipliers of e2 and e3 in (2.52) delivers

σ13 = σ31 and σ12 = σ21 , (2.55)

which allows us to write in general

σ = σT or σij = σji ∀i 6= j . (2.56)

Hence, in the pure mechanical case, we can state that the Cauchy stress tensor is symmetric.

3In the dynamic case (where the velocity of motions can not be neglected), Eq. (2.48) must be extended to
f(x) + divσ(x) = ρ ∂2

x

∂t2 .
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After the derivation of the continuous force system, including volume forces, traction forces, as
well as the characteristics of the Cauchy stress tensor, we want to provide the interpretation of
the six independent components of the Cauchy stress tensor (symmetric second-order tensor),
namely σ11, σ12 = σ21, σ13 = σ31, σ22, σ23 = σ32 and σ33. This interpretation follows from the
specification of the Cauchy’s formula for the directions of the basis vectors e1, e2 and e3. Thus,
evaluation of (2.45) for n = e1 yields

T(e1) = σ · e1 = σ11e1 + σ21e2 + σ31e3 . (2.57)

In other words, Eq. (2.57) states, that the components of the Cauchy stress tensor with suffix
“1”: σi1 denote the components of the traction vector T acting on the surface element with the
normal direction e1, see Fig. 2.5. In analogy, the components of the Cauchy stress tensor with
suffix “2”: σi2 and suffix “3”: σi3, can be interpreted as the components of the traction vector
acting on the surface element with the normal direction e2, and e3, respectively, see Fig. 2.5

T(e2) = σ · e2 = σ12e1 + σ22e2 + σ32e3 , (2.58)

T(e3) = σ · e3 = σ13e1 + σ23e2 + σ33e3 . (2.59)

dx2

dx3

dx1

e3

σ33

σ13

σ32

σ23

σ12

σ31

σ21

e2

σ22

σ11

e1

T(e2)

T(e3)

T(e1)
e3

e1 e2

Fig. 2.5: Interpretation of the components of the Cauchy stress tensor.

2.3 The Principle of Virtual Power

The Principle of Virtual Power (PVP) is a versatile and safe method for the formulation of
complex structural theories of continua. For the pure mechanical case, we can provide a short
derivation in the following way: Our starting point is the investigation of power characteristics
of forces in equilibrium, acting on a continuous body. Thus, an continuous system of volume
forces f and surface forces T perform virtual power P along geometrically compatible4 virtual
velocities v̂, reading as

P =
∫

V
f(x) · v̂(x) dV +

∫

S
T(x,n) · v̂(x) dS , (2.60)

4Geometrically compatible means that all points of a body can only move in such a way that neighbor points
remain neighbors after deformation of the body.
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representing the power of forces acting in a deformed continuum, see Fig. 2.6. In order to obtain

dS

dV

x

S

M ′

M

T(x,n)

V M

M ′
f(x)

v(x)

n

f · v dV = dPext,V

T · v dS = dPext,S

v(x)

O

x1

e1
e2 x2

x3

e3

Fig. 2.6: Power of volume- and surface forces, acting on a 3D continuum in the deformed
configuration.

the so-called Principle of Virtual Power, we reformulate the power expression (2.60): Use of
Cauchy’s formula (2.45) and Gauss’s divergence theorem yields

P =
∫

V
(f · v̂ + div(v̂ · σ)) dV =

∫

V
(f · v̂ + gradv̂ : σ + v̂ · divσ) dV . (2.61)

Taking into account the local equilibrium condition (2.48), as well as the relation deriving from
the symmetry of the Cauchy stress tensor (gradv̂ : σ = σ : d̂), delivers the remarkable expression

P =
∫

V
σ : d̂ dV , (2.62)

with d̂ as the (virtual) Eulerian strain rate tensor

d̂ = ∇Sv̂ =
1
2

[
∂v̂

∂x
+
(
∂v̂

∂x

)T
]
, (2.63)

named after the mathematician Leonhard Euler (1707-1783). Equating the power expressions
(2.60) and (2.62), which are called virtual power of external forces and virtual power of internal
forces, respectively, results in the sought Principle of Virtual Power in the (deformed) Eulerian
representation. The provided format of this principle was also provided by the modern French en-
gineering mechanics schools, as documented by Paul Germain (1920–2009) and Gérard A. Maugin
(1944-2016). Summarizing, for a standard 3D solid continuum in the mechanical and static case,
the Principle of Virtual Power [Germain, 1972, 1973a,b; Maugin, 2013; Salençon, 2001] reads as

Pext + P int = 0 , (2.64)

with

Pext = +
∫

V

f(x) · v̂(x) dV +
∫

S

T(x,n) · v̂(x) dS , (2.65)

P int = −
∫

V

σ : d̂ dV , (2.66)
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where Pext and P int denote the virtual power of the external forces and the virtual power of the
internal forces, respectively; x denotes the location vectors throughout the deformed continuum
and at its boundaries with outward normals n; f denotes volume forces; T denotes traction
(surface) forces; v̂ denotes the virtual velocity; σ denotes the Cauchy stress tensor; d̂ denotes the
virtual Eulerian strain rate; and the operator “:” denotes the second-order tensor contraction5.

In the case, that displacements are not small in comparison to the measurements of the
continuum, we have to formulate strains, surface forces, volume forces and stresses as a function
of the particle position vector X in the undeformed configuration (Lagrangian representation).
In order to formulate the Principle of Virtual Power in the undeformed configuration, we relate
the Eulerian strain rate with the rate of the Green-Lagrange strain tensor,6

d̂(x, t) = F−T · ˙̂
E(X, t) · F−1 , (2.67)

where F is the deformation gradient, see (2.4). Use of (2.67) in the expression of the virtual
power of internal forces (2.66), and considering the volume change (2.27), yields

−
∫

V
σ : d̂(x, t) dV = −

∫

V0

σ : F−T · ˙̂
E(X, t) · F−1 J dV0 = −

∫

V0

J F−1 · σ · F−T : ˙̂
E dV0 , (2.68)

where J = detF is the Jacobi-determinant. The multiplier of Ė in (2.68) is called second
Piola-Kirchhoff stress tensor

π = J F−1 · σ · F−T , (2.69)

named after the mathematician Gabrio Piola (1794-1850) and physicist Gustav Robert Kirchhoff
(1824–1887). It is noted, that the stress tensor π is symmetric, due to the inner products of the
two unsymmetrical deformation gradients and the symmetric Cauchy stress tensor. Hence, the
virtual power of the internal forces with respect to the undeformed position reads as

P int = −
∫

V0

π : ˙̂
E dV0 . (2.70)

Next, we want to express the virtual power of external forces in the Lagrangian representation:
The virtual power of external volume forces related to the undeformed configuration, using (2.1)
and (2.27), reads as

∫

V
f(x) · v̂ dV =

∫

V0

f [ϕ(X)] · v̂ J dV0 with dV = JdV0 , (2.71)

where f [ϕ(X)] denotes the field of the volume forces, which is transformed from the the deformed
to the undeformed continuum. Based on Cauchy’s formula (2.45) as well as on the geometric
relation n dS = J F−T · N dS0, with N as the unit vector pointing outwards and orthogonal to

5The second-order tensor contraction is indicated by the symbol “:” and assigns two second-order tensors, A

and B to a scalar λ, in the format A : B =
∑3

i=1

∑3

j=1
AijBij = λ for an orthogonal basis e1, e2, e3. The

second-order tensor contraction is also called inner product of two second-order tensors.
6The existence of Eq. (2.67) can be proved by inverse calculation of the rate of the Green-Lagrange strain

tensor, Ė = 1
2

[
∂v

∂X
+
(

∂v

∂X

)T
+
(

∂v

∂X

)T
· ∂u

∂X
+
(

∂u

∂X

)T
· ∂v

∂X

]
. This is done by substitution of the deformation

gradient, F = ∂x

∂X
and of the Eulerian strain rate d = 1

2

[
∂v

∂x
+
(

∂v

∂x

)T
]

into Ė = F
T · d · F resulting in

Ė = 1
2

[
∂v

∂X
·
(

∂x

∂X

)T
+
(

∂v

∂X

)T
· ∂x

∂X

]
, with x = u + X.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2 Basics of continuum mechanics 38

the undeformed surface element dS0, the virtual power of external surface forces related to the
undeformed configuration reads as
∫

S
T·v̂ dS =

∫

S
σ·n·v̂ dS =

∫

S0

J σ·F−T ·N·v̂ dS0 =
∫

S0

F·π·N·v̂ dS0 =
∫

S0

F·T ·v̂ dS0 , (2.72)

taking into account the definition (2.69) of the second Piola-Kirchhoff tensor π, as well as the
definition of the so-called Piola-Lagrange traction T = π · N, in analogy to Cauchy’s formula
(2.45). Thus, in Lagrangian representation, the Principle of Virtual Power of external forces
reads as:

Pext =
∫

V0

f [ϕ(X)] · v̂ J dV0 +
∫

S0

F · T · v̂ dS0 . (2.73)

Finally, we obtain the formulation of the Principle of Virtual Power in Lagrangian representation:

Pext + P int = 0 , (2.74)

with

Pext = +
∫

V0

f [ϕ(X)] · v̂ J dV0 +
∫

S0

F · T · v̂ dS0 , (2.75)

P int = −
∫

V0

π : ˙̂
E dV0 . (2.76)

2.4 Thermodynamics

Very often, the work which is put into a solid body is not entirely stored as elastic energy, i.e. it
can not be recovered completely in the form of mechanical work. The work is only partly stored
as elastic energy, the rest of the work is transformed into another type of energy, namely heat
energy (such heat can also be applied directly to the body).

2.4.1 Law of energy conservation, entropy and dissipation – small deformations

For small deformations (and small rigid body movements), the position, shape and volume
of a body change only insignificantly during the transition from the reference- in the current
configuration. The same applies to all infinitesimal volume elements dV (x) that enclose a
material point located at position x, with dV (x) ≈ dV0(X). Thus, the context ψ = ψ(x) clarifies
that the energy density characterizes a material point in the geometric point x. First, we start
with the thermodynamical description in the deformed configuration (Eulerian representation).
The conservation of all forms of energy in the case of electromagnetic deformable continua is
formulated as follows (first law of thermodynamics): mechanical work, electromagnetic energy,
and heat given to a body per unit time is equal to the increase of its internal energy E7

Ė =
∫

V
ė dV =

∫

V
f · v dV +

∫

S
T · v dS −

∫

S
q · n dS +

∫

V
r dV , (2.77)

where e is the internal energy density; r is the per unit volume and per time Eulerian heat supply;
and q is the heat flux vector (heat per unit area) in the Eulerian representation. Use of the
Principle of Virtual Power (2.64)-(2.66) assuming small displacement derivatives so that d ≈ ε̇,

7For small deformations, we can state that Ė = D
Dt

∫
V

e dV =
∫

V
ė dV because of the insignificant volume change

˙dV = 0. On the other hand, if the deformations are not small, the rate of the internal energy can be determined
by means of internal energies per unit mass.
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as well as the divergence theorem, allows the reformulation of (2.77) for any body (integrands
must vanish)

ė = σ : ε̇ − divq + r , (2.78)

which is called the local form of the law of energy conservation in Eulerian representation.
Thereby, the conversion of heat energy into effective mechanical energy is limited, which is

expressed by the second law of thermodynamics: The rate of the internal entropy S is greater or
equal to the externally supplied entropy (heat per absolute temperature)

∂S

∂t
=
∫

V
ṡ dV ≥

∫

V

r

T
dV −

∫

S

q · n

T
dS , (2.79)

where s is the internal entropy density, and T is the absolute Temperature. Use of the divergence
theorem, allows the reformulation of (2.79) for any body (integrands must vanish) yielding the
local form of the second law of thermodynamics

ṡ+ div
(

q

T

)
− r

T
≥ 0 . (2.80)

Evaluation of the divergence term according to the differentiation rule for quotients and multipli-
cation by the absolute temperature T yields

T ṡ+ divq − q

T
· gradT − r ≥ 0 . (2.81)

Now, we link the local forms of the second law of thermodynamics (2.81) and first law of
thermodynamics (2.78), by expressing the heat supply terms (r−divq) by internal energy changes
and external work

σ : ε̇ + T ṡ− ė− q

T
· gradT ≥ 0 . (2.82)

The internal energy density can be split into a part which can be changed back into effective
mechanical energy, the Helmholtz8 free energy density ψ, and an energy component sT , which is
only in heat form

e = ψ + Ts . (2.83)

Energy differentiation (2.83) allows us to attribute the energy inequality (2.82) as a function of
the free energy density ψ

φ = σ : ε̇ − ψ̇ − sṪ − q

T
· gradT ≥ 0 . (2.84)

This inequality is called Clausius-Duhem inequality (dissipation inequality) in reference to Rudolf
Clausius (1822-1888) and Pierre Duhem (1861-1916). In (2.84), the positive semidefinite quantity
φ is the dissipation, which is the energy per unit of time, which is irreversibly converted from
effective mechanical energy into heat.

2.4.2 Thermoelasticity for small deformations

The material behavior is now described by the form of the free energy density ψ, which is
a function of so-called state variables. In the case of thermoelasticity, there are two such

8The physician and physicist Hermann von Helmholtz (1821-1894) introduced the term “free energy” in 1883.
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state variables, namely the linearized strain tensor ε (as before we assume small displacement
derivatives) and the absolute temperature T .

ψ = ψ(ε, T ) . (2.85)

Use of the dependence (2.85), the dissipation inequality (2.84) can be reformulated as follows

φ = σ : ε̇ − ∂ψ

∂ε
ε̇ − ∂ψ

∂T
Ṫ − sṪ − q

T
· gradT ≥ 0 . (2.86)

This inequality must be valid for any evolutions of the linearized strain tensor ε and of the
absolute temperature T (and temperature gradients). Therefore, the fulfillment of the dissipation
inequality (2.86) implies that,

σ =
∂ψ

∂ε
(ε, T ) , s = −∂ψ

∂T
(ε, T ) . (2.87)

In light of small strains, ‖ε‖ ≪ 1, and small temperature changes around T0, |(T − T0)/T0| ≪ 1,
we perform a Taylor series expansion of σ (2.87)1 about ε = 0 and T = T0, where at most linear
terms are considered

σ ≈ ∂2ψ

∂ε∂ε
: ε +

∂2ψ

∂ε∂T
(T − T0) . (2.88)

For isothermal states, T = T0, we see that the the tensor of fourth order, ∂2ψ/∂ε∂ε, is the
so-called linear elasticity tensor C, i.e. the any stress tensor can be expressed by the corresponding
strain tensor and vice versa. For constrained strains, ε = 0, temperature changes induce so-called
thermal stresses, which are the result of temperature-induced strains

εT = αT (T − T0) , (2.89)

with αT being the a second order tensor with components αT,ij , which are called thermal
expansion coefficients. Hence, the total strain tensor consists of stress-induced and temperature-
induced strains, reading as

ε = C
−1 : σ + αT (T − T0) , (2.90)

where the second energy derivative in (2.88) is identified as, ∂2ψ/∂ε∂T = −C : αT . On the other
hand, the stress tensor is a function of the total strains and of the temperature-induced strains

σ = C : [ε − αT (T − T0)] , (2.91)

which is called linear thermoelastic generalized Hooke’s law. In the case of an isotropic material
behavior, (2.91) reads as (in Kelvin-Mandel matrix-vector notation)




σ11

σ22

σ33√
2σ23√
2σ13√
2σ12




=
E

(1 + ν)




1−ν
1−2ν

ν
1−2ν

ν
1−2ν 0 0 0

ν
1−2ν

1−ν
1−2ν

ν
1−2ν 0 0 0

ν
1−2ν

ν
1−2ν

1−ν
1−2ν 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







ε11 − αT (T − T0)
ε22 − αT (T − T0)
ε33 − αT (T − T0)√

2ε23√
2ε13√
2ε12



. (2.92)

with E and ν being the elastic Young’s modulus and Poisson’s ratio, respectively.
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2.4.3 Material behavior in the case of large deformations – hyperelasticity

In the case of large deformations, the statement of insignificant changes in position, shape and
volume of a body (as mentioned in Section 2.4.1) is no longer valid: A material point (described
by an energy state ψ) moves from the geometric point X in the reference configuration to the
geometric point x in the current configuration; and the enclosing infinitesimal volume element is
also subjected to change, from dV0(X) to dV (x). However, one quantity which remains constant
during large deformations is the mass („conservation of mass“). Hence, for the mass element dm
(corresponding to the material volume element), we can state

dm = ρ0(X) dV0 = ρ(x, t) dV = ρ(x, t) J dV0 , (2.93)

with ρ as the actual volumetric mass density; ρ0 as the initial volumetric mass density; and J as
the Jacobi-determinant regarding to the identity for volume changes (2.27). Eq. (2.93) indicates
the following relations

J =
dV

dV0
=
ρ0

ρ
. (2.94)

Obviously, it makes sense not to assign the elastic energy density to a (variable) volume element
but rather to a constant mass element – in other words, we make a transition from a volumetric
density („energy per volume“) to a gravimetric density („energy per mass“). The (gravimetric)
specific Helmholtz free energy density will be denoted by ψm, being defined as

ψ(x)
ρ(x)

= ψm(x) . (2.95)

In analogy, we also introduce a specific internal energy density em(x), a specific internal entropy
density sm(x), and a specific dissipation φm(x), in the form:

e(x)
ρ(x)

= em(x),
s(x)
ρ(x)

= sm(x),
φ(x)
ρ(x)

= φm(x) . (2.96)

Use of these new quantities and restriction to isothermal, dissipation-free states, the first law
of thermodynamics (2.77) can be reformulated as follows9

Ė =
∫

V0

ρ0 ėm dV0 =
∫

V0

f [ϕ(X)] · v J dV0 +
∫

S0

F · T · v dS0 . (2.97)

Substitution of the Principle of Virtual Power (2.74)-(2.76) into (2.97) yields the local form of
the first law of thermodynamics in Lagrangian representation (integrands must vanish)

ρ0 ėm = π : Ė . (2.98)

Since for isothermal states the entropy density is not taken into account, the free energy density
is equal to the internal energy density ψm = em, resulting in the following Clausius-Duhem
inequality

φ = ρ φm = π : Ė − ρ0 ψ̇m = 0 . (2.99)

9For deformations with significant volume changes ( ˙dV 6= 0), the identitiy Ė =
∫

V0

ρ0 ėm dV0 can be proved as
follows: Use of the identity of the volume change (2.94) in the definition of the rate of the internal energy,
Ė = D

Dt

∫
V

e dV = D
Dt

∫
V

ρ em dV , results in Ė = D
Dt

∫
V0

ρ0 em dV0. Since the rate of the initial volume dV0 and

initial mass density ρ0 is zero, we easily obtain Ė =
∫

V0

ρ0 ėm dV0.
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2 Basics of continuum mechanics 42

The free energy density ψm is a thermodynamic state variable and therefore must not depend on
time or on time rates of other quantities. Thus, the condition (2.99) can be satisfied by the form
ψ = ψ(E),

π : Ė − ρ0
∂ψm(E)
∂E

: Ė = 0 . (2.100)

Validity of (2.100) for all time rates Ė delivers the material law of hyperelasticity reading as:

π = ρ0
∂ψm(E)
∂E

. (2.101)

2.5 Remarks to objectivity of some quantities in continuum

mechanics

Objective vectors, tensors as well as objective time rates are important for the formulation of
constitutive equations. In other words, these fundamental equations have to be independent
of the movement of an observer. A physical quantity is called objective or frame-indifferent,
if two observers, O and O′ (performing measurements relative to the basis systems e1, e2, e3

and e′

1, e′

2, e′

3), obtain numerical results, which can be transformed in the same manner as the
components of the corresponding quantities from basis e1, e2, e3 to basis e′

1, e′

2, e′

3. In the case
of a scalar quantity, we trivially obtain the same results measured by both observers, with a′ = a.
For vectors, the components V1, V2, V3, measured by observer O in basis system e1, e2, e3 have
to be related to the components V ′

1, V ′

2, V ′

3, measured by observer O′ in basis system e′

1, e′

2, e′

3,
according to the component transformation rule for vectors:




V ′

1

V ′

2

V ′

3




e′
1,e′

2,e′
3

= Q ·




V1

V2

V3




e1,e2,e3

⇔ V ′ = Q · V (2.102)

with Q being the 3 × 3 transformation (orthogonal) matrix. The corresponding components Qij

are defined as follows

Qij = cosαij = cos(∠e′

i, ej) =
e′

i · ej

|e′

i||ej | = e′

i · ej . (2.103)

In the case of general second order tensors M, the components M11, M12, M13, M21, M22,
M23, M31, M32, M33, measured by observer O in basis system e1, e2, e3 have to be related to
the components M′

11, M′

12, M′

13,M′

21, M′

22, M′

23,M′

31, M′

32, M′

33, measured by observer O′ in
basis system e′

1, e′

2, e′

3, according to the component transformation rule for second order tensors:



M′

11 M′

12 M′

13

M′

21 M′

22 M′

23

M′

31 M′

32 M′

33




e′
1,e′

2,e′
3

= Q ·




M11 M12 M13

M21 M22 M23

M31 M32 M33




e1,e2,e3

· QT (2.104)

or in compact notation
M′ = Q · M · QT . (2.105)

Let us now investigate the objectivity of some physical quantities used in continuum mechanics.
First, we start with strains and strain rates:
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• The deformation gradient F, which transforms between the undeformed distance vector
dX (reference configuration) and the deformed distance vector dx (current configuration),
reading as

F =
dx

dX
=

dxi

dXL
ei ⊗ eL ⇔ F′ =

dx′

dX
=

dx′

i

dXL
e′

i ⊗ eL , (2.106)

where the index L describes the reference (undeformed) coordinates XL, which are inde-
pendent of the observers’s basis system, i.e frame-indifferent with XL = X ′

L. Substitution
of the transformation rule for vectors (2.102) into (2.106) while taking into account the
frame-indifference of vectors in Lagrangian representation, yields

F′ =
dx′

dX
= Q

dx

dX
= Q F . (2.107)

Even though (2.107) does not satisfy the general tranformation rule for second order tensors
(2.105), the deformation gradient is objective. This is because the deformation gradient is
a so-called two-point second order tensor, which transforms between the reference- and
current configuration. In other words, one index describes the current configuration and
the other index describes the reference configuration. Thus, frame-transformation behavior
of the deformation gradient corresponds to the transformation rule of vectors (2.102).

• In addition, objectivity of the determinant of the deformation gradient (Jacobi determinant)
J is described as follows:

J = detF ⇔ J ′ = detF′ = det(QF) = J . (2.108)

where we considered the property of orthogonal tensor, detQ = 1. Thus, the Jacobi
determinant J is independent of the observer and an objective scalar.

• Next, we discuss the effect of an observer transformation on the Green-Lagrange strain
tensor E.

E′ =
1
2

[
F′T · F′ − 1

]
=

1
2

[
(F)T Q)T ) · (Q F) − 1

]
=

1
2

[
FT · F − 1

]
= E . (2.109)

Hence, the Green-Lagrange strain tensor is objective, since this kinematic quantity is
defined in the reference configuration. Based on the transformation behavior of E (2.109),
it is easily seen that the rate of the Green-Lagrange strain tensor is also objective,

Ė′ = Ė . (2.110)

• The objectivity of the Eulerian strain rate d (representing the symmetric gradient of the
velocity ∇Sv) can be proved using the following relation

d = F−T · Ė · F−1 , ⇔ d′ = F′−T · Ė′ · F′−1
. (2.111)

Substitution of (2.107) and(2.110) into (2.111) yields

d′ = (Q F)−T · Ė · (Q F)−1 = Q(F−T · Ė · F−1)QT = Q d QT , (2.112)

resulting in an frame-indifferent Eulerian strain rate satisfying the tansformation rule for
second order tensors (2.105).
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• Since the Eulerian strain rate represents the symmetric gradient of the velocity, this
motivates us to investigate the velocity gradient ∇v. This strain rate can be expressed as
a function of the deformation gradient, reading as10

∇v = Ḟ F−1 ⇔ ∇v′ = Ḟ′ F′−1 (2.113)

Again, we make use of the transformation for the deformation gradient (2.107), which
results in the equivalent expression

∇v′ = (Q Ḟ + Q̇ F) (Q F)−1 = Q Ḟ F−1QT + Q̇ QT = Q ∇vQT + Ω . (2.114)

One can see, that (2.114) does not coincide with the transformation rule for second order
tensors (2.105) due to the existence of the last term on the right-hand side Ω = Q̇ QT ,
which is also called angular velocity tensor. Hence, in contrast to the Eulerian strain rate,
we can state that the velocity gradient is not objective. This fact is the motivation to make
use of the Eulerian strain rate in the Principle of virtual power or in thermodynamic laws.

Finally, we also want to provide objectivity-studies for common stress measures used in
continuum mechanics:

• The Cauchy stress tensor σ relates the normal vector n (orthogonal to a surface element)
to the corresponding traction vector T. For both observers Cauchy’s formula reads as

T = σ · n ⇔ T′ = σ′ · n′ . (2.115)

Substitution of the transformation rule for vectors (2.102) into (2.115)2 delivers

Q T = σ′ Q n . (2.116)

Comparison of (2.116) with (2.102)1 results in the general transformation rule for second
order tensors

Q σ n = σ′ Q n ⇒ σ′ = Q σ QT . (2.117)

Thus, the Cauchy stress tensor is independent of the observer’s motion and is objective.

• The last quantity we want to describe, is the second Piola-Kirchhoff stress tensor, which is
used for large deformations. Since this quantity is defined in the reference configuration
(in analogy to the Green-Lagrange strain tensor), it should be independent of observer
transformations. This is proved by the following relation:

π = J F−1 · σ · F−T ⇔ π′ = J ′ F′−1 · σ′ · F′−T
. (2.118)

Substitution of the transformations for the deformation gradient (2.107) and Jacobi deter-
minant (2.108) as well as for the Cauchy stress tensor (2.117) yields

π′ = J (QF)−1 · (Q σ QT ) · (QF)−T = J F−1 · σ · F−T = π . (2.119)

Indeed, the second Piola-Kirchhoff stress tensor is frame-indifferent and objective.

Summarizing, all used physical strain and stress quantities in constitutive equations are indepen-
dent of the observer, i.e. we obtained invariant formulations for the thermodynamical description
of a continuum.
10The relation (2.113) can be easily proved, by substitution of the rate of the deformation gradient, Ḟ = ∂v/∂X as

well as of the inverse deformation gradient, F
−1 = ∂X/∂x, resulting in ∇v = ∂v/∂X · ∂X/∂x = ∂v/∂x = ∇v.
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elastic plates on elastic Winkler foundations,
based on the Principle of Virtual Power

Authored by: Raphael Höller, Mehdi Aminbaghai, Lukas Eberhardsteiner, Josef Eberhardsteiner,

Ronald Blab, Bernhard L.A. Pichler, and Christian Hellmich

Published in: European Journal of Mechanics / A Solids 73 (2019) 449-482, https://doi.org/c3mx

Abstract

Deflection modes relevant for plates with rigidly supported edges are commonly used as kind
of “approximation” for the deformation behavior of plates which are freely swimming on an
elastic foundation. However, this approach entails systematic errors at the boundaries. As a
remedy to this problem, we here rigorously derive a theory for elastically supported thin plates for
arbitrary boundary conditions, based on the Principle of Virtual Power. Somewhat surprisingly,
it appears that the well-known Laplace-type differential equation for the deflections needs to be
extended by additional boundary integrals entailing moments and shear forces, so as to actually
“release” the boundaries from “spuriously” acting external moments and shear forces. When
approximating the deflections through 2D Fourier series, the Principle of Virtual Power yields
an algebraic system of equations, the solution of which provides the Fourier coefficients of the
aforementioned series representation. The latter converges, with increasing number of series
members, to the true solution for the plate deflections. The new method is applied to relevant
problems in pavement engineering, and it is validated through comparison of the numerical
results it provides, with predictions obtained from Finite Element analysis. With respect to the
latter, the new series-based method reduces the required computer time by a factor between one
and a half and almost forty.

Contribution of the author: The author of the present thesis developed the new method
for energetically consistent structural problems of thin plates on elastic Winkler foundations,
based on the Principle of Virtual Power. Furthermore, he performed extensive literature research,
prepared the Matlab code for the series-based solution procedure, and documented most of the
manuscript.
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3 Thin elastic plates on elastic Winkler foundations 46

List of symbols

a side length of the plate in x-direction
b side length of the plate in y-direction
c Winkler elastic modulus of subgrade reaction
C spring stiffness
cm,n Fourier coefficient of deflection approximation
˙̌ck,l Fourier coefficient in approximation of virtual deflection rate
ď virtual Eulerian strain rate
ďxx normal component of ď, in x-direction
ďxy shear component of ď, in x-y plane
ďyy normal component of ď, in y-direction
ex, ey, ez base vectors of Cartesian coordinate system
E elastic Young’s modulus
f volume force vector
fx, fy, fz components of f , in x, y, and z-direction
h thickness of plate
k index of summation / of vector component
K flexural rigidity of the plate
kx, ky external moments per unit area
L index of summation / of vector component
l index of summation / of vector component
M index of summation / of vector component
m index of summation / of vector component
M c

klmn “stiffness matrix element” associated to Winkler foundation
MC

klmn “stiffness matrix element” associated to single springs
Mm

klmn “stiffness matrix element” associated to bending and twisting moments
mxx bending moments per unit length, around the y-axis
mxy twisting moments per unit length
myy bending moments per unit length, around the x-axis
n index of summation / of vector component
n outward normal vector onto the boundaries of a plates
NC number of single springs
Nm number of Fourier series members approximating a function

along x-direction, for constant y-direction
Nn number of Fourier series members approximating a function

along y-direction, for constant x-direction
NP number of single forces
Np number of “patched loads”
P single force acting in vertical direction (z)
p vertical plate load per unit area,

acting over specific rectangular area (“patched load”)
p vertical plate load per unit area, acting over entire plate
PVP Principle of Virtual Power
Pext virtual power of external forces
P int virtual power of internal forces
qx shear force per unit length, acting on cross section orthogonal to x
qy shear force per unit length, acting on cross section orthogonal to y
s index of summation / of vector component
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3 Thin elastic plates on elastic Winkler foundations 47

t time
T temperature field
Tref uniform (initial) reference temperature field
T traction vector
Tx, Ty, Tz components of T, in x, y, z-directions
u displacement vector
v̌ = ˙̌u virtual velocity vector

V
κe

T

kl “load vector element” associated to temperature gradient
V p

kl “load vector element” associated to surface load acting on entire plate
V p

kl “load vector element” associated to patched surface load
V P

kl “load vector element” associated to single force
w deflection of the plate’s midplane
wm,n (m,n)-th deflection mode associated to 2D Fourier series
w̌ virtual deflection of the plate’s midplane
˙̌w virtual deflection rate of the plate’s midplane

x location vector throughout the plate and its boundaries
x, y horizontal coordinates of the Cartesian coordinate system
xa, ya horizontal coordinates of the beginning of the plate
xe, ye horizontal coordinates of the end of the plate
xs, ys horizontal coordinates of the vertical single force P ,

and/or single spring force C w
xs, ys horizontal central point coordinates of the surface load p
z vertical coordinate of the Cartesian coordinate system
αT thermal expansion coefficient
δ two-dimensional Dirac delta function
∆ Laplace operator
∆Tκ temperature difference between the bottom and the top of the plate
ε linearized strain tensor
εxx normal strain in the x-direction
εxy shear strain in the x-y plane
εyy normal strain in the y-direction
˙̌ε rate of the virtual linearized strain tensor
˙̌εxx virtual normal strain rate in the x-direction
˙̌εxy virtual shear strain rate in the x-y plane
˙̌εyy virtual normal strain rate in the y-direction
ηs, ξs side lengths of the surface load p
κe

T temperature-induced eigencurvature of the plate
λ scaling factor
∇S symmetric gradient
ν Poisson’s ratio
Π dimensionless stress and deformation quantities
σ Cauchy stress tensor
σxx normal stress in the x-direction
σxy shear stress in the x-y plane
σxz shear stress in the x-z plane
σyz shear stress in the y-z plane
σyy normal stress in the y-direction∑

summation operator
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3 Thin elastic plates on elastic Winkler foundations 48

3.1 Introduction

Plates on elastic foundations play an eminent role in many engineering applications, including the
design of pavements for roads and airfields [Delatte, 2008; Stenzel, 2005; Eisenmann, 1979; Blab
and Harvey, 2002; Westergaard, 1926, 1939, 1948; Teller and Sutherland, 1943; Caliendo and
Parisi, 2010; Hajek, 2011] and of foundations and floating floor screeds in building construction
[Pech et al., 2016; Bowles, 1997; Das, 2010; Kameswara Rao, 2011; Terzaghi, 1943, 1948; Deplazes,
2008] The by far most popular method for the solution of related mathematical problems is
that put forward in the landmark book of Vlasov and Leont’ev [Vlasov and Leont’ev, 1966],
which has been the basis for many scientific contributions up to the present day [Fo-van and
Siao-mei, 1984; Yao and Yih, 1987; Xiang-sheng, 1988; Straughan, 1990; Ke-rang, 1990; Jun-Yu,
1991; Xiang-sheng, 1992; Turhan, 1992; Shi et al., 1994; Kang et al., 1995] For a “swimming”
rectangular plate with side lengths a and b, and boundaries free from being subjected to any
type of mechanical forces, the corresponding governing equation given by Vlasov and Leont’ev
[Vlasov and Leont’ev, 1966], when specified for a Winkler foundation [Winkler, 1867], reads as

Nm∑

m=0

Nn∑

n=0

cm,n

a/2∫

−a/2

b/2∫

−b/2

[
K

(
∂4wm,n

∂x4 + 2
∂4wm,n

∂x2 ∂y2 +
∂4wm,n

∂y4

)
+ cwm,n − p

]
wk,l dx dy = 0 ,

for k = 0, ..., Nm; l = 0, ..., Nn , (3.1)

with cm,n and wm,n as the amplitudes (Fourier coefficients) and the deflection modes, respectively,
which jointly quantify the deflections according to Navier’s proposal [Navier, 1823] as

w(x, y) =
Nm∑

m=0

Nn∑

n=0

cm,nwm,n(x, y) , (3.2)

with (Nm ×Nn) as the number of employed deflection modes, see Section 3.4 for mathematical
details on Fourier series. Furthermore, c is the elastic Winkler modulus of subgrade reaction, p
denotes plate loads per unit area, and K is the flexural rigidity of the plate, being defined as

K =
E h3

12(1 − ν2)
, (3.3)

where E is the elastic Young’s modulus, ν is the Poisson’s ratio, and h is the thickness of the
plate.

Let us now evaluate Eq. (3.1) for Nm = Nn = 4 and for a vertical single force P acting in the
center of the horizontal quadratic plate, i.e. for “surface” loads of the format

p = P δ(0, 0) , (3.4)

with δ being the two-dimensional Dirac distribution. This evaluation, when employing a plate
property set characteristic for concrete pavements, namely for E/(c h) = 1.2 × 103, yields the
deflection mode depicted in Fig. 3.1. Obviously, the actually “free” boundary conditions at the
edges are violated, as the plate undergoes deflection gradients along the edges, implying non-zero
moments and shear forces at the edges of the plate, see Fig. 3.2. The latter quantities were
computed according to Vlasov and Leont’ev’s formulae, reading as

mxx = −K
[
∂2w

∂x2 + ν
∂2w

∂y2

]
,
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Fig. 3.1: Dimensionless deflections [wE h/P ] according to Vlasov and Leont’ev [Vlasov and
Leont’ev, 1966], arising from a vertical single force P acting in the center of a quadratic
plate with side length a, thickness h, elastic Young’s modulus E, and Winkler modulus
c, whereby E/(c h) = 1.2 × 103 and a/h = 22.

myy = −K
[
∂2w

∂y2 + ν
∂2w

∂x2

]
,

mxy = myx = −K (1 − ν)
∂2w

∂x∂y
,

qx = −K ∂

∂x

[
∂2w

∂x2 +
∂2w

∂y2

]
,

qy = −K ∂

∂y

[
∂2w

∂x2 +
∂2w

∂y2

]
. (3.5)

Vlasov and Leont’ev therefore state that their function (3.2) were merely an “approximation”.
This explanation is somewhat unsatisfactory, as the use of a higher number (Nm × Nn) of
series deflection members does not lead to a solution which converges towards the actual “free”
boundary condition.

As a remedy, we here present a more rigorous reason for that expression (3.1) violates the plate’s
boundary conditions. Therefore, we resort to the Principle of Virtual Power (PVP) [Maugin, 2013;
Germain, 1972, 1973a,b; Maugin and Goudjo, 1982; Germain et al., 1983; Salençon, 2001; Zhang
et al., 2017] which we specify for the kinematic characteristics of a thin elastic plate embedded on
an elastic Winkler foundation, in Section 3.2. In Section 3.3, the aforementioned developments
are extended towards thermoelasticity, and towards generalized boundary conditions. The latter
allow for mechanical modeling of plates which are anchored, at their boundaries, to the compliant
ground which they are lying on. In this context, we consider rectangular plates subjected to
several types of vertical forces, namely to single forces or to surface loads acting on rectangular
areas, whereby the action points and the areas form symmetric or antimetric patterns with
respect to the plate directions x and y. Such kinds of patched loads allow for consideration of
heavy vehicle pressures acting on the surfaces of concrete pavements [Blab and Harvey, 2002]. In
Section 3.4, the system of algebraic equations for determining the unknown Fourier coefficients
cm,n, is derived from the PVP as well. Section 3.5 is devoted to numerical investigations in the
form of three representative examples, and of comparison of respective results with Finite Element
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Fig. 3.2: Dimensionless stress resultants according to Vlasov and Leont’ev [Vlasov and Leont’ev,
1966], arising from a vertical single force P acting in the center of a quadratic plate
with side length a, thickness h, elastic Young’s modulus E, and Winkler modulus
c, whereby E/(c h) = 1.2 × 103 and a/h = 22: (a) bending moment around y-axis
[mxx/P ], (b) bending moment around x-axis [myy/P ], (c) twisting moment [mxy/P ],
and (d) shear force [qxh/P ].

solutions. Finally, concluding remarks are provided in Section 3.6. Appendix A contains the
elements of the system of algebraic equations for the three aforementioned numerical examples,
in order to solve the unknown Fourier coefficients.

3.2 Kinematics and stress resultants of a thin elastic plate on an
elastic foundation – reviewed in the context of the Principle of

Virtual Power

3.2.1 Basics

We share the assessment of Maugin [Maugin, 2013] that the Principle of Virtual Power (PVP) “is
an efficient and safe way to construct theories of structural members”, setting our focus point on
thin “Kirchhoff” plates embedded on an elastic foundation. Our starting point is the formulation
of the PVP for the standard 3D continuum, in the format put forward by Germain and followers
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[Germain, 1972, 1973a,b; Germain et al., 1983; Maugin and Goudjo, 1982; Salençon, 2001; Zhang
et al., 2017],

Pext + P int = 0 , (3.6)

with

Pext = +
∫

V

f(x) · v̌(x) dV +
∫

∂V

T(n,x) · v̌(x) dA , (3.7)

P int = −
∫

V

σ : ď dV , (3.8)

where Pext and P int denote the virtual power of the external forces and of the internal forces,
respectively; x denotes the location vectors throughout the continuum and at its boundaries
with outward normals n; f denotes volume forces; T denotes traction (surface) forces; v̌ denotes
the virtual velocity; σ denotes the Cauchy stress; and ď denotes the virtual Eulerian strain rate.
The Principle of Virtual Power implies both kinematic compatibility and equilibrium of the 3D
solid continuum. In our case, we consider thin (thermo-)elastic rectangular plates with constant
thickness h, resting on Winkler foundations, and undergoing small deformations. Any position
within the volume and the surface of such a plate is described by a Cartesian coordinate system,
with an origin located in the midplane of the plate, and with base vectors ex, ey, and ez, whereby
ex and ey are parallel to the edges of the plate, and ez is orthogonal to the midplane of the plate.

3.2.2 Kinematics

A thin plate in so-called bending mode is characterized by the following kinematic features:

1. Each plate generator1 performs a rigid body motion.

2. Generator rotations are small, and the plate thickness is constant, such that all points of a
generator have, in good approximation, the same displacement in z-direction, namely the
deflection of the midplane w(x, y).

3. All plate generators remain, at any time, both straight and orthogonal to the midplane of
the plate (see also Fig. 3.3).

4. The displacements are small when compared with the thickness of the plate.

Under the aforementioned kinematic conditions, the displacement field of the plate reads as

u(x) =
[

− ∂w(x, y)
∂x

z

]
ex +

[
− ∂w(x, y)

∂y
z

]
ey + w(x, y) ez , (3.9)

and the corresponding virtual velocity field follows from a virtual displacement field of the form

ǔ(x; t) =
[

− ∂w̌(x, y; t)
∂x

z

]
ex +

[
− ∂w̌(x, y; t)

∂y
z

]
ey + w̌(x, y; t) ez . (3.10)

1The plate generator is the set of all points which are on a normal to the midplane of the plate in the undeformed
configuration.
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(a)

1

positive rotation
around the x-axis

x

z

y

generator in the undeformed configuration

generator in the deformed configuration

generator rotates

w(x, y) increases with increasing y

positively around the x-axis

∂w(x, y)

∂y
. . . positive,

(b)

1

y
x

z

positive rotation
around the y-axis

generator in the deformed configuration

generator rotates

generator in the undeformed configuration

w(x, y) increases with increasing x

negatively around the y-axis

∂w(x, y)

∂x
. . . positive

Fig. 3.3: Sideviews of a plate generator in the undeformed and in the deformed configuration:
(a) in the y, z-plane, a positive rotation of the generator corresponds to a positive
deflection gradient ∂w(x, y)/∂y; and (b) in the x, z-plane, a negative rotation of the
generator corresponds to a positive deflection gradient ∂w(x, y)/∂x.

Namely, temporal derivation of (6.7) yields the virtual velocity field as

v̌(x) = ˙̌u(x) =
[

− ∂ ˙̌w(x, y)
∂x

z

]
ex +

[
− ∂ ˙̌w(x, y)

∂y
z

]
ey + ˙̌w(x, y) ez , (3.11)

with ˙̌w as the temporal derivative of the time-dependent virtual displacement w̌(x, y; t).
Displacement field (3.9) implies a strain field ε = ∇Su, the non-zero components of which

read as

εxx(x, y, z) = −∂2w(x, y)

∂x2 z ,

εyy(x, y, z) = −∂2w(x, y)

∂y2 z ,

εxy(x, y, z) = −∂2w(x, y)
∂y ∂x

z . (3.12)

Vanishing of the shear strains, εxz and εyz, indicates the so-called shear rigidity of the Kirchhoff
plate. In linearized geometrical settings, the virtual Eulerian strain rate tensor ď is equal to the
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temporal derivative of the virtual linearized strain tensor ˙̌ε, so that the non-zero components of
the former reads for the considered plate as

ďxx(x, y, z) = ˙̌εxx(x, y, z) = −∂2 ˙̌w(x, y)

∂x2 z ,

ďyy(x, y, z) = ˙̌εyy(x, y, z) = −∂2 ˙̌w(x, y)

∂y2 z ,

ďxy(x, y, z) = ˙̌εxy(x, y, z) = −∂2 ˙̌w(x, y)
∂y ∂x

z . (3.13)

3.2.3 Virtual power of the external forces on elastically embedded plates – stress
resultants

Evaluation of Eq. (6.2) for kinematics (3.11) and for forces with components

f(x, y, z) = fx(x, y, z)ex + fy(x, y, z)ey + fz(x, y, z)ez , (3.14)

T(n;x, y, z) = Tx(x, y, z)ex + Ty(x, y, z)ey + Tz(x, y, z)ez , (3.15)

whereby the Winkler foundation implies that

Tz(ez;x, y, z = h
2 ) = −cw(x, y) , (3.16)

yields, when considering a plate according to Fig. 3.4,

xa xe

ya

ye

y

x

∂w(x,y)
∂x

> 0

ky(x, y)

kx(x, y)

∂w(x,y)
∂y

> 0

mxy(xa)

qx(xa)

qy(ya) myy(ya)

qx(xe)

mxy(ya)

m
xx
(x

a
)

m
xx
(x

e
)

qy(ye)

p(x, y)

mxy(xe)

myy(ye)

m
xy
(y

e
)

z

Fig. 3.4: Schematical illustration of stress resultants acting on a thin plate, spanning from
xa = −a/2 to xe = a/2, and from ya = −b/2 to ye = b/2.

Pext = +

b/2∫

−b/2

a/2∫

−a/2




+ h

2∫

−
h

2

fz(x, y, z) dz + Tz(−ez;x, y,− h
2
)


 ˙̌w(x, y) dx dy

+

b/2∫

−b/2

a/2∫

−a/2

−cw(x, y) ˙̌w(x, y) dx dy
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−
b/2∫

−b/2

a/2∫

−a/2




+ h

2∫

−
h

2

fy(x, y, z) z dz − h

2
Ty(ez;x, y, h

2
) +

h

2
Ty(−ez;x, y,− h

2
)



∂ ˙̌w(x, y)
∂x

dx dy

−
b/2∫

−b/2

a/2∫

−a/2




+ h

2∫

−
h

2

fx(x, y, z) z dz +
h

2
Tx(ez;x, y, h

2
) − h

2
Tx(−ez;x, y,− h

2
)



∂ ˙̌w(x, y)
∂y

dx dy

+

b/2∫

−b/2




+ h

2∫

−
h

2

Tz(ex;x, y, z) dz


 ˙̌w(x, y)

∣∣∣∣
a/2

−a/2

dy +

a/2∫

−a/2




+ h

2∫

−
h

2

Tz(ey;x, y, z) dz


 ˙̌w(x, y)

∣∣∣∣
b/2

−b/2

dx

−
b/2∫

−b/2




+ h

2∫

−
h

2

Tx(ex;x, y, z) z dz



∂ ˙̌w(x, y)
∂x

+




+ h

2∫

−
h

2

Ty(ex;x, y, z) z dz



∂ ˙̌w(x, y)
∂y

∣∣∣∣
a/2

−a/2

dy

−
a/2∫

−a/2




+ h

2∫

−
h

2

Tx(ey;x, y, z) z dz



∂ ˙̌w(x, y)
∂x

+




+ h

2∫

−
h

2

Ty(ey;x, y, z) z dz



∂ ˙̌w(x, y)
∂y

∣∣∣∣
b/2

−b/2

dx .

(3.17)

Eq. (3.17) indicates that the plate-specific “degrees of freedom” ˙̌w, ∂ ˙̌w/∂y, and ∂ ˙̌w/∂x induce
force quantities called stress resultants, namely those on which they produce power. These stress
resultants are called plate loads p(x, y), external moments per unit area, kx(x, y) and ky(x, y),
shear forces per unit length, qx(x, y) and qy(x, y), bending moments per unit length, mxx(x, y)
and myy(x, y), and twisting moments per unit length, mxy(x, y); and they refer to the following
mathematical expressions

p(x, y) =

+ h
2∫

−
h
2

fz(x, y, z) dz + Tz(−ez;x, y,−h
2 ) , (3.18)

kx(x, y) =

+ h
2∫

−
h
2

fy(x, y, z) z dz − h

2
Ty(ez;x, y, h

2 ) +
h

2
Ty(−ez;x, y,−h

2 ) , (3.19)

ky(x, y) =

+ h
2∫

−
h
2

fx(x, y, z) z dz +
h

2
Tx(ez;x, y, h

2 ) − h

2
Tx(−ez;x, y,−h

2 ) , (3.20)

qx(x, y) =

+ h
2∫

−
h
2

Tz(n=ex;x, y, z) dz =

+ h
2∫

−
h
2

σxz(x, y, z) dz , (3.21)
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qy(x, y) =

+ h
2∫

−
h
2

Tz(n=ey;x, y, z) dz =

+ h
2∫

−
h
2

σyz(x, y, z) dz , (3.22)

mxx(x, y) =

+ h
2∫

−
h
2

Tx(n=ex;x, y, z) z dz =

+ h
2∫

−
h
2

σxx(x, y, z) z dz , (3.23)

myy(x, y) =

+ h
2∫

−
h
2

Ty(n=ey;x, y, z) z dz =

+ h
2∫

−
h
2

σyy(x, y, z) z dz , (3.24)

mxy(x, y) =

+ h
2∫

−
h
2

Ty(n=ex;x, y, z) z dz =

+ h
2∫

−
h
2

Tx(n=ey;x, y, z) z dz =

=

+ h
2∫

−
h
2

σxy(x, y, z) z dz . (3.25)

Back-insertion of the definitions (3.18)-(3.25) into the power expression (3.17), yields the power
of external forces in the following form

Pext = +

b/2∫

−b/2

a/2∫

−a/2

[p(x, y) − cw(x, y)] ˙̌w(x, y) dx dy

−
b/2∫

−b/2

a/2∫

−a/2

kx(x, y)
∂ ˙̌w(x, y)
∂x

dx dy −
b/2∫

−b/2

a/2∫

−a/2

ky(x, y)
∂ ˙̌w(x, y)
∂y

dx dy

+

b/2∫

−b/2

qx(x, y) ˙̌w(x, y)
∣∣∣∣
a/2

−a/2

dy +

a/2∫

−a/2

qy(x, y) ˙̌w(x, y)
∣∣∣∣
b/2

−b/2

dx

−
b/2∫

−b/2

mxx(x, y)
∂ ˙̌w(x, y)
∂x

+mxy(x, y)
∂ ˙̌w(x, y)
∂y

∣∣∣∣
a/2

−a/2

dy

−
a/2∫

−a/2

mxy(x, y)
∂ ˙̌w(x, y)
∂x

+myy(x, y)
∂ ˙̌w(x, y)
∂y

∣∣∣∣
b/2

−b/2

dx . (3.26)

For an only vertically loaded, “freely swimming” plate with traction-free boundaries, i.e. with
vanishing moments per unit length, mxy(x = −a/2) = mxy(x = a/2) = mxy(y = −b/2) =
mxy(y = b/2) = myy(y = −b/2) = myy(y = b/2) = mxx(x = −a/2) = mxx(x = a/2) = 0, and
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vanishing shear forces per unit length, qx(x = −a/2) = qx(x = a/2) = qy(y = −b/2) = qy(y = b/2) = 0,
Eq. (3.26) reduces to

Pext = +

b/2∫

−b/2

a/2∫

−a/2

[p(x, y) − cw(x, y)] ˙̌w(x, y) dx dy . (3.27)

3.2.4 Virtual power of the internal forces, plate elasticity, and PVP-based
governing equation

As regards specification of the virtual power of internal forces (6.3) for thin plates, the virtual
strain rates (3.13) imply that only stresses σxx, σyy and σxy = σyx perform power along the
virtual strain rates ˙̌εxx, ˙̌εyy and ˙̌εxy = ˙̌εyx. Hence, the virtual power of the internal forces reads
as

P int = −
∫

V

σxx
˙̌εxx + σyy

˙̌εyy + 2σxy
˙̌εxy dV

= −
a/2∫

−a/2

b/2∫

−b/2

+ h
2∫

−
h
2

σxx(x, y, z)

[
−∂2 ˙̌w(x, y)

∂x2 z

]
dx dy dz

−
a/2∫

−a/2

b/2∫

−b/2

+ h
2∫

−
h
2

σyy(x, y, z)

[
−∂2 ˙̌w(x, y)

∂y2 z

]
dx dy dz

−
a/2∫

−a/2

b/2∫

−b/2

+ h
2∫

−
h
2

2σxy(x, y, z)

[
−∂2 ˙̌w(x, y)

∂y ∂x
z

]
dx dy dz . (3.28)

Substitution of Eqs. (3.23)-(3.25) into Eq. (3.28) yields the following expression for the virtual
power of internal forces in terms of bending moments and twisting moments

P int = +

a/2∫

−a/2

b/2∫

−b/2

mxx(x, y)
∂2 ˙̌w(x, y)

∂x2 dy dx+

a/2∫

−a/2

b/2∫

−b/2

myy(x, y)
∂2 ˙̌w(x, y)

∂y2 dy dx

+

a/2∫

−a/2

b/2∫

−b/2

2mxy(x, y)
∂2 ˙̌w(x, y)
∂y ∂x

dy dx . (3.29)
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For a linear elastic isotropic, homogeneous plate with elastic Young’s modulus E and Poisson’s
ratio ν, insertion of Hooke’s law into the definitions of the moments (3.23) to (3.25) yields the
moment-curvature relations

mxx(x, y) = −K
[
∂2w(x, y)

∂x2 + ν
∂2w(x, y)

∂y2

]
,

myy(x, y) = −K
[
∂2w(x, y)

∂y2 + ν
∂2w(x, y)

∂x2

]
,

mxy(x, y) = −K (1 − ν)
∂2w(x, y)
∂x ∂y

. (3.30)

Use of (3.30) in (3.29), and subsequent insertion of the resulting expression for the virtual power
of the internal forces, as well as of the expression (3.27) for the virtual power of the external
forces, into the PVP (6.1), yields, after twofold partial integration

Pext + P int = +

a/2∫

−a/2

b/2∫

−b/2

[
K

(
∂4w

∂x4 + 2
∂4w

∂x2 ∂y2 +
∂4w

∂y4

)
+ cw − p

]
˙̌w dx dy

−
b/2∫

−b/2

[
mxx

∂ ˙̌w
∂x

+mxy
∂ ˙̌w
∂y

]∣∣∣∣
a/2

−a/2

dy −
a/2∫

−a/2

[
mxy

∂ ˙̌w
∂x

+myy
∂ ˙̌w
∂y

]∣∣∣∣
b/2

−b/2

dx

+

b/2∫

−b/2

[
∂mxx

∂x
+
∂mxy

∂y

]
˙̌w
∣∣∣∣
a/2

−a/2

dy +

a/2∫

−a/2

[
∂myy

∂y
+
∂mxy

∂x

]
˙̌w
∣∣∣∣
b/2

−b/2

dx = 0 .

(3.31)

Comparing (3.31) with (3.1) shows that Vlasov and Leont’ev were missing internal force-related
terms associated to the plate’s boundary. It is the consideration of these internal force-related
power terms, which ensures the “force free nature” of the boundary of the “swimming” plate.
After approximation of the deflection mode into a Fourier series with (4 × 4) members, see
Section 3.4 for details, we obtain the deflection mode depicted in Fig. 3.5: the plate boundaries
are obviously free of forces.

On the other hand, Vlasov and Leont’ev actually did not make any considerations concerning
boundary conditions. This is readily seen when specifying Eq. (3.26) just for vanishing surface
moments per unit area, kx = ky = 0, while leaving all the moment and shear force terms
unspecified. Namely, letting the Principle of Virtual Power, Pext + P int be fulfilled by the
aforementioned specification of Eq. (3.26), as well as by Eq. (3.29); and partially integrating twice,
indeed yields Vlasov and Leont’ev’s original proposition, namely Eq. (3.1).

3.3 Extension to thermoelasticity, and to generalized boundary
conditions

The aforementioned developments can be straightforwardly extended to more complex material
behavior and to load types going beyond continuous functions p(x, y) as occurring in Eq. (3.27).
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Fig. 3.5: Dimensionless deflections [wEh/P ] according to the Principle of Virtual Power (3.31),
arising from a vertical single force P acting in the center of a quadratic plate with side
length a, thickness h, elastic Young’s modulus E, and Winkler modulus c, whereby
E/(c h) = 1.2 × 103 and a/h = 22.

As regards material behavior, we here consider thermoelastic behavior, which for the plane
stress state found in thin plates reads as




σxx

σyy√
2σxy


 =

E

1 − ν2




1 ν 0

ν 1 0

0 0 1 − ν







εxx − αT (T − Tref )

εyy − αT (T − Tref )
√

2 εxy


 , (3.32)

with E and ν as the elastic Young’s modulus and Poisson’s ratio, respectively; εxx, εyy, and εxy

as the plate’s dominant strain components according to Eq. (3.12); αT as the thermal expansion
coefficient; Tref as the uniform (initial) reference temperature; and T as the temperature field in
the deformed configuration. The latter is introduced as

T = Tref + ∆Tκ
z

h
, (3.33)

where ∆Tκ = Tlower −Tupper denotes the temperature difference between the lower and the upper
surface of the plate. Specifying the thermoelastic law (3.32) for plate-specific strains (3.12) and
for the temperature field (3.33), and insertion of the corresponding result into Eq. (3.23)-(3.25),
delivers

mxx(x, y) = −K
[
∂2w(x, y)

∂x2 + ν
∂2w(x, y)

∂y2 + κe
T

]
,

myy(x, y) = −K
[
∂2w(x, y)

∂y2 + ν
∂2w(x, y)

∂x2 + κe
T

]
,

mxy(x, y) = −K (1 − ν)
∂2w(x, y)
∂x ∂y

, (3.34)
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where K is the flexural rigidity, see (3.3), and

κe
T =

(1 + ν)αT

h
∆Tκ (3.35)

is the temperature-induced eigencurvature of the plate. The relation between stresses and stress
resultants follows from inserting Eq. (3.12) into Eq. (3.32), and comparing the result with the
Eqs. (3.34) while considering rigidity definition (3.3). This yields

σxx(x, y, z) =
mxx(x, y)
h3/12

z , σyy(x, y, z) =
myy(x, y)
h3/12

z , σxy(x, y, z) =
mxy(x, y)
h3/12

z . (3.36)

As regards more complex loading states, Eq. (3.27) can be straightforwardly extended to plates
loaded by surfaces loads per unit area p(x, y) over the entire plate, distributed forces ps over the
rectangular area of side lengths ξs × ηs with coordinates xs and ys, and vertical single forces Ps

with coordinates xs and ys (see Fig. 3.6); or to plates with elastically supported edges, e.g. in
the form of single springs exerting, on the plate, vertical forces of magnitude Csw(xs, ys) (see
Fig. 3.7). In this context, the virtual power of external forces for a plate on elastic foundation

a) b) c)

b

2

b

2

x

z

y

z

x

ηs

ξs
a

2

a

2 y
y

x

z

Ps

ys

xsxs

ps

ys

κe
T

p

Fig. 3.6: a) Vertical distributed forces p and the temperature-induced eigencurvature κe
T over

the plate, b) Distributed forces ps over the rectangular area of side lengths ξs × ηs and
the central point coordinates xs and ys, c) Vertical single forces Ps with coordinates
xs and ys.

a) b)

a

2

a

2

b

2

b

2

y

z

x

h

Winkler elastic
foundation

free edges

a

2

a

2

y

z

x

h

Winkler elastic
foundation

b

2

ys
xs

Cs

c c

b

2

Fig. 3.7: A rectangular plate on Winkler elastic foundation of side lengths a× b and thickness h,
with a) free edges b) elastic boundary conditions in the form of single springs exerting
forces.
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with arbitrary boundary conditions reads as

Pext = +

b/2∫

−b/2

a/2∫

−a/2

[
p(x, y) − cw(x, y)

]
˙̌w(x, y) dx dy

+
Np∑

s=1

ps

∫ xs+
ξs
2

xs−
ξs
2

∫ ys+
ηs
2

ys−
ηs
2

˙̌w(x, y) dx dy +
NP∑

s=1

Ps
˙̌w(x, y)

∣∣∣∣x=xs
y=ys

−
NC∑

s=1

Csw (x, y) ˙̌w(x, y)
∣∣∣∣x=xs
y=ys

.

(3.37)

Use of thermoelastic law (3.34) in (3.29), and insertion of the resulting expression for the
virtual power of the internal forces, as well as of the expression (3.37) for the virtual power of
the external forces for arbitrary loads, into the Principle of Virtual Power (6.1), yields

Pext + P int = +

b/2∫

−b/2

a/2∫

−a/2

[
p− cw

]
˙̌w dx dy −Kκe

T

b/2∫

−b/2

a/2∫

−a/2

(
∂2 ˙̌w

∂x2 +
∂2 ˙̌w

∂y2

)
dx dy

+
Np∑

s=1

ps

∫ xs+
ξs
2

xs−
ξs
2

∫ ys+
ηs
2

ys−
ηs
2

˙̌w dx dy +
NP∑

s=1

Ps
˙̌w
∣∣∣∣x=xs
y=ys

−
NC∑

s=1

Csw ˙̌w
∣∣∣∣x=xs
y=ys

−K
b/2∫

−b/2

a/2∫

−a/2

[(
∂2w

∂x2 + ν
∂2w

∂y2

)
∂2 ˙̌w

∂x2 +

(
∂2w

∂y2 + ν
∂2w

∂x2

)
∂2 ˙̌w

∂y2

+

(
2 (1 − ν)

∂2w

∂y ∂x

)
∂2 ˙̌w
∂y ∂x

]
dx dy = 0 . (3.38)

The PVP in the format (3.38) is the basis for the determination of the sought deflection function
w(x, y). Therefore, the latter is expanded into a Fourier series, which leads to the so-called
Galerkin method, as described in Section 3.4.

3.4 Mathematical solution procedure

The Principle of Virtual Power in the format (3.38) can also be used for constructing an algebraic
system of equations giving access to the deflection field w(x, y), and then, via (3.34) and (3.36),
to the stresses acting throughout the plate. For this purpose, we resort to Eq. (3.2), representing
the deflection function w(x, y) as a series of double trigonometric functions, i.e. a two dimensional
Fourier series

w (x, y) =
Nm∑

m=0

Nn∑

n=0

IV∑

M=I

cM
m,nw

M
m,n (x, y) , (3.39)

where wM
m,n are trigonometric functions, and cM

m,n denote the corresponding unknown Fourier
coefficients. Subscripts m and n refer to the number of waves related to the trigonometric
functions, whereas superscript M indicates four different types of functions, being symmetrical
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or antimetrical with respect to the x- or y-axis, respectively. Accordingly, the aforementioned
trigonometric functions read as

wI
m,n(x, y) = cos

mπx

a
cos

nπy

b
for m = 0, 1, 3..., n = 0, 1, 3... (3.40)

wII
m,n(x, y) =





2x
a

cos
nπy

b

sin
mπx

a
cos

nπy

b

for
m = 0, n = 0, 1, 3...

m = 2, 4, 6..., n = 0, 1, 3...
(3.41)

wIII
m,n(x, y) =





2y
b

cos
mπx

a

sin
nπy

b
cos

mπx

a

for
m = 0, 1, 3..., n = 0

m = 0, 1, 3..., n = 2, 4, 6...
(3.42)

wIV
m,n(x, y) =





4xy
ab

2y
b

sin
mπx

a
2x
a

sin
nπy

b

sin
nπy

b
sin

mπx

a

for

m = 0, n = 0

m = 2, 4, 6..., n = 0

m = 0, n = 2, 4, 6...

m = 2, 4, 6..., n = 2, 4, 6...

(3.43)

It is easily seen that wI
m,n is symmetric with respect to both the x- and the y-axis; that wII

m,n

is symmetric with respect to the x-axis and antimetric with respect to the y-axis; that wIII
m,n is

antimetric with respect to the x-axis and symmetric with respect to the y-axis, and that wIV
m,n is

antimetric with respect to both axes.
Similar choices are made for the virtual velocities ˙̌w(x, y), through introduction of Ansatz

functions identical to those in Eq. (3.39),

˙̌w (x, y) =
Nk∑

k=0

Nl∑

l=0

IV∑

L=I

˙̌cL
k,lw

L
k,l (x, y) , (3.44)

with the virtual velocity coefficient ˙̌ck,l. Insertion of (3.44) and of (3.39), together with (3.40) to
(3.43), into Eq. (3.38), yields the following Galerkin-type solution scheme

Pext + P int =
Nk∑

k=0

Nl∑

l=0

IV∑

L=I

˙̌cL
k,l





b/2∫

−b/2

a/2∫

−a/2

pwL
k,l dx dy

+
Np∑

s=1

ps

∫ xs+
ξs
2

xs−
ξs
2

∫ ys+
ηs
2

ys−
ηs
2

wL
k,l dx dy +

NP∑

s=1

Psw
L
k,l

∣∣∣∣x=xs
y=ys

−K κe
T

b/2∫

−b/2

a/2∫

−a/2

(
∂2wL

k,l

∂x2 +
∂2wL

k,l

∂y2

)
dx dy

+
Nm∑

m=0

Nn∑

n=0

IV∑

M=I

cM
m,n


−K

b/2∫

−b/2

a/2∫

−a/2

[(
∂2wM

m,n

∂x2 + ν
∂2wM

m,n

∂y2

)
∂2wL

k,l

∂x2
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+

(
∂2wM

m,n

∂y2 + ν
∂2wM

m,n

∂x2

)
∂2wL

k,l

∂y2 +

(
2 (1 − ν)

∂2wM
m,n

∂y ∂x

)
∂2wL

k,l

∂y ∂x

]
dx dy

−
b/2∫

−b/2

a/2∫

−a/2

cwM
m,nw

L
k,l dx dy −

NC∑

s=1

Csw
M
m,nw

L
k,l

∣∣∣∣x=xs
y=ys








= 0 .

(3.45)

Requiring validity of (3.45) for any combination of virtual coefficients ˙̌ck,l, and taking into account
the orthogonality of the double trigonometric functions, i.e. of

b/2∫

−b/2

a/2∫

−a/2

∂2wM
m,n

∂x2

∂2wL
k,l

∂x2 dx dy =

b/2∫

−b/2

a/2∫

−a/2

∂2wM
m,n

∂y2

∂2wL
k,l

∂x2 dx dy

=

b/2∫

−b/2

a/2∫

−a/2

∂2wM
m,n

∂y2

∂2wL
k,l

∂y2 dx dy =

b/2∫

−b/2

a/2∫

−a/2

∂2wM
m,n

∂y ∂x

∂2wL
k,l

∂y ∂x
dx dy

=

b/2∫

−b/2

a/2∫

−a/2

wM
m,nw

L
k,l dx dy = 0 for M 6= L , (3.46)

yields a system of (Nm ×Nn) algebraic equations for the unknowns cL
m,n; reading as

b/2∫

−b/2

a/2∫

−a/2

pwL
k,l dx dy +

Np∑

s=1

ps

∫ xs+
ξs
2

xs−
ξs
2

∫ ys+
ηs
2

ys−
ηs
2

wL
k,l dx dy +

NP∑

s=1

Psw
L
k,l

∣∣∣∣x=xs
y=ys

−K κe
T

b/2∫

−b/2

a/2∫

−a/2

(
∂2wL

k,l

∂x2 +
∂2wL

k,l

∂y2

)
dx dy

+
Nm∑

m=0

Nn∑

n=0

cL
m,n





−K
b/2∫

−b/2

a/2∫

−a/2

[(
∂2wL

m,n

∂x2 + ν
∂2wL

m,n

∂y2

)
∂2wL

k,l

∂x2

+

(
∂2wL

m,n

∂y2 + ν
∂2wL

m,n

∂x2

)
∂2wL

k,l

∂y2 +

(
2 (1 − ν)

∂2wL
m,n

∂y ∂x

)
∂2wL

k,l

∂y ∂x

]
dx dy

−
b/2∫

−b/2

a/2∫

−a/2

cwL
m,nw

L
k,l dx dy −

NC∑

s=1

Csw
L
m,nw

L
k,l

∣∣∣∣x=xs
y=ys





= 0 ,

for k = 0, ..., Nm; l = 0, ..., Nn; L = I, ..., IV . (3.47)
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It is suitable to reformulate Eq. (3.47) in matrix form, yielding



Mm,L
0000 +M c,L

0000 +MC,L
0000 . .

. . .

. Mm,L
klmn +M c,L

klmn +MC,L
klmn .

. . .

. . Mm,L
Nm

+M c,L
Nm

+MC,L
Nm




·




cL
00

.
cL

mn

.
cL

Nm




=

=




−V κe
T

,L
00 − V p,L

00 − V p,L
00 − V P,L

00

.

−V κe
T

,L

kl − V p,L
kl − V p,L

kl − V P,L
kl

.

−V κe
T

,L
Nm

− V p,L
Nm

− V p,L
Nm

− V P,L
Nm



,

(3.48)

with

Mm,L
klmn = −K

b/2∫

−b/2

a/2∫

−a/2

[(
∂2wL

m,n

∂x2 + ν
∂2wL

m,n

∂y2

)
∂2wL

k,l

∂x2

+

(
∂2wL

m,n

∂y2 + ν
∂2wL

m,n

∂x2

)
∂2wL

k,l

∂y2 +

(
2 (1 − ν)

∂2wL
m,n

∂y ∂x

)
∂2wL

k,l

∂y ∂x

]
dx dy ,

(3.49)

as the stiffness matrix elements associated to bending and twisting moments (see the Appendix A,
Eq. (3.A.5)-(3.A.29), and (3.A.39)-(3.A.113) for analytical expressions concerning (3.49));

M c,L
klmn = −

b/2∫

−b/2

a/2∫

−a/2

cwL
m,nw

L
k,l dx dy , (3.50)

as the stiffness matrix elements associated to the Winkler foundation (see the Appendix A,
Eq. (3.A.5)-(3.A.29), and (3.A.39)-(3.A.113) for analytical expressions concerning (3.50));

MC,L
klmn = −

NC∑

s=1

Csw
L
m,nw

L
k,l

∣∣∣∣x=xs
y=ys

, (3.51)

as the stiffness matrix elements associated to single springs (see the Appendix A, Eq. (3.A.30),
and (3.A.39)-(3.A.113) for analytical expressions concerning (3.51));

V
κe

T
,L

kl = −K κe
T

b/2∫

−b/2

a/2∫

−a/2

(
∂2wL

k,l

∂x2 +
∂2wL

k,l

∂y2

)
dx dy , (3.52)
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3 Thin elastic plates on elastic Winkler foundations 64

as the load vector elements associated to temperature gradients (see the Appendix A, Eq. (3.A.31)-
(3.A.34) for analytical expressions concerning (3.52));

V p,L
kl =

b/2∫

−b/2

a/2∫

−a/2

pwL
k,l dx dy , (3.53)

as the load vector elements associated to the surface load acting on the entire plate (see the
Appendix A, Eq. (3.A.1)-(3.A.4) for analytical expressions concerning (3.53));

V p,L
kl =

Np∑

s=1

ps

∫ xs+
ξs
2

xs−
ξs
2

∫ ys+
ηs
2

ys−
ηs
2

wL
k,l dx dy , (3.54)

as the load vector elements associated to patched surface loads (see the Appendix A, Eq. (3.A.35)-
(3.A.38) for analytical expressions concerning (3.54)); and

V P,L
kl =

NP∑

s=1

Psw
L
k,l

∣∣∣∣x=xs
y=ys

, (3.55)

as the load vector elements associated to single forces. The corresponding approximative solution
for w(x, y) is the more precise the more series deflection members (being Nm ×Nn in number)
are employed.

3.5 Application to pavement engineering problems, and validation by
means of the Finite Element Method

The structural problem (3.48)-(3.55) is now applied to the analysis of a quadratic plate of
a = b = 5.5 m side length and of h = 0.25 m height. Considering situations encountered in
pavement engineering, an elastic Young’s modulus of E = 30 × 106 kN/m2, a Poisson’s ratio of
ν = 0.167, and a coefficient of linear thermal expansion of αT = 1 × 10−5 K−1 refer to concrete
[Eisenmann, 1979]. An embedment for concrete pavements is characterized by a modulus of
c = 0.1 GPa/m [Lang, 2010; Ullrich, 2016]. In the following, this plate is subjected to different
mechanical loads and temperature variations; and corresponding results will be presented in a
dimensionless way, which does not only comprise the actual deformations and stress resultants
arising from the aforementioned material, structural, and loading characteristics, but which
reflects infinitely many additional problems which are associated with different plate thicknesses,
different elastic Young’s moduli, different temperature gradients, and different mechanical loads.
In more detail, we consider a dimensional analysis [Barenblatt, 1996] of the deflection function
(3.39) arising from the solution of (3.48), together of (3.49) to (3.55). This yields the following
dimensionless relations (provided all patched loads exhibit the same magnitude p and all bolts
exhibit the same stiffness C)

Π =
(
p

E
+
p

E
+ αT ∆Tκ

)

× [Π]0

(
x

h
,
y

h
,
a

h
,
x1

h
, ...,

xs

h
, ...,

xNC

h
,
y1

h
, ...,

ys

h
, ...,

yNC

h
,

x1

h
,
x2

h
,
y1

h
,
y2

h
,
ξ1

h
,
ξ2

h
,
η1

h
,
η2

h
, ν,

c h

E
,
C

hE

)
,
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for Π =
w

h
, εxx, εxy, εyy,

mxx

E h2
,
mxy

E h2
,
myy

E h2
,
qx

E h
,
qy

E h
. (3.56)

(6.43) elucidates that basic dimensionless functions Π0, which depend on geometrical and
embedment/bolt stiffnesses, can be multiplied with a sum of dimensionless quantities related to
mechanical and thermal loadings, so as to deliver dimensionless quantities related to deflections,
strains, and stress resultants.

These relations, depicted in the format of Π = Π0(x/h, y/h, a/h = x1/h = ... = xs/h =
... = xNC

/h = y1/h = ... = ys/h = ... = yNC
/h = x1/h = x2/h = y1/h = y2/h = ξ1/h =

ξ2/h = η1/h = η2/h = ν = c h/E = C/(hE) = constant) in Figures 3.9, 3.10, 3.12, 3.13,
3.15, and 3.16, are valid for any loading types p, p, and αT ∆Tκ. Furthermore, they hold for
any change h → λh, once x → λx, y → λ y, a → λ a, x1 → λx1, ..., xs → λxs, ..., xNC

→ λxNC
,

y1 → λ y1, ..., ys → λ ys, ..., yNC
→ λ yNC

, x1 → λx1, x2 → λx2, y1 → λ y1, y2 → λ y2, ξ1 → λ ξ1,
ξ2 → λ ξ2, η1 → λ η1, η2 → λ η2, c → c/λ, and C → λC; and they hold for any change E → λE,
once c → λ c and C → λC.

3.5.1 Example 1: Elastically supported plate, with loose anchor bolt connections
at its edges, subjected to uniform surface load

Anchor bolts represented by single springs with stiffness C = 410000 kN/m are distributed along
the plate’s edges, at distances of a/3 = b/3 = 1.833 m. The plate is subjected to a uniform
surface load p(x, y) = constant = p, representing the deadload of a concrete plate for example, see
Fig. 3.8. As this load is obviously symmetric with respect to both the x-axis and the y-axis, the

p

Winkler elastic
foundation

h

b

3

b

3

b

3

a

3

a

3

a

3

zy

x

single springs

Fig. 3.8: Example 1: quadratic plate on elastic foundation with loose anchor bolt connections at
its edges, side length a, thickness h, elastic Young’s modulus E, and Winkler modulus
c, subjected to uniform surface load p.

evaluation of the elements occurring in (3.48) can be restricted to double-symmetric trigonometric
functions, i.e. to wI

m,n, see Appendix 3.A.1 for the load vector elements, and for the stiffness
matrix elements, respectively. The approximative solution for the dimensionless deflection
[w/h)]0 at the plate’s center as well as that for the dimensionless bending moment

[
mxx/(E h2)

]
0

at the same location, can be regarded as converged once Nm ×Nn = 8 × 8 = 64 series members
are employed, see Figures 3.9(e) and 3.10(f). With Matlab version R2012b [Mathworks, 2012]
running on a computer AMD Phenom(tm) II X6 1090T with 8GB RAM, this related to 0.8
seconds computing time, see Fig. 3.9(f). Considering corresponding fields, the deflections close to
the corners of the plate are larger than those in the midpoints of the plate’s sides, see Fig. 3.9(a).
This is an effect of the single springs (bolts) located at the plate’s sides. These bolts also provoke
significant strain and stress resultant concentrations, see Figures 3.9(b-d) and 3.10(a-e).
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Fig. 3.9: Dimensionless deformation quantities in elastically supported plate, with loose anchor
bolt connections at its edges, subjected to uniform surface load p: (a) dimensionless
deflections [w/h]0, (b) normal strain εxx,0, (c) normal strain εyy,0, (d) shear strain
εxy,0, (e) convergence study of the dimensionless deflection [w/h]0 located at x = y = 0
as a function of the number of deflection modes Nm = Nn, and (f) corresponding
computing time for results associated to one point of the plate.
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Fig. 3.10: Dimensionless stress resultants in elastically supported plate, with loose anchor bolt
connections at its edges, subjected to uniform surface load p: (a) bending moment
around y-axis

[
mxx/(E h2)

]
0, (b) bending moment around x-axis

[
myy/(Eph2)

]
0,

(c) twisting moment
[
mxy/(E h2)

]
0, (d) shear force [qx/(E h)]0, (e) shear force

[qy/(E h)]0, and (f) convergence study of the dimensionless moment
[
mxx/(E h2)

]
0

located at x = y = 0 as a function of the number of deflection modes Nm = Nn.
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These results are compared to those stemming from a Finite Element analysis performed with
the commercial software RFEM [Dlubal, 2016], based on 47 961 rectangular Kirchhoff plate
elements (MITC4 elements [Ko et al., 2016] with a dimension of 0.1h). Maximum differences
between FE results and series-based results according to (3.47) are as low as 0.05 % for the
displacements, and 1.56 % for the moments. The ratio of CPU times needed for the FE-based
and the series-based analysis (pointwise calculation performed for Nm = Nn = 8), respectively,
amounted to 39.

3.5.2 Example 2: Elastically supported plate, with dense anchor bolt connections
at its edges, subjected to temperature gradient

Anchor bolts represented by single springs with stiffness C = 410000 kN/m are distributed
along the plate’s edges, at distances of a/20 = b/20 = 0.275 m. The plate is subjected to a
temperature difference ∆Tκ between the lower and the upper surfaces, see Fig. 3.11. As this load is

x

h

Winkler elastic
foundation

elastic boundary
condition

b

2

b

2

∆Tκ

a

2

a

2

z
y

Fig. 3.11: Example 2: quadratic plate on elastic foundation with dense anchor bolt connections
at its edges, side length a, thickness h, elastic Young’s modulus E, and Winkler
modulus c, subjected to the temperature difference ∆Tκ.

obviously symmetric with respect to both the x-axis and the y-axis, the evaluation of the elements
occurring in (3.48) can be restricted to double-symmetric trigonometric functions, i.e. to wI

m,n,
see Appendix 3.A.2, (3.A.31)-(3.A.34), for the load vector elements, and Appendix 3.A.1, (3.A.5)-
(3.A.30), for the stiffness matrix elements. The approximative solution for the dimensionless
deflection [w/h]0 located at x = y = 6.2h as well as that for the dimensionless bending moment[
mxx/(E h2

]
0 at the plate’s center, can be regarded as converged once Nm×Nn = 9×9 = 81 series

members are employed, see Figures 3.12(e) and 3.13(f). With Matlab version R2012b running
on a computer AMD Phenom(tm) II X6 1090T with 8GB RAM, this related to 0.95 seconds
computing time, see Fig. 3.12(f). Considering corresponding fields, the maximum deflections
do not occur at the plate’s center, but half way between the center and the corners of the
plate, see Fig. 3.12(a). Obviously, the temperature-driven curvatures provoke larger reaction
forces from the Winkler embedment at the plate’s center than in regions closer to the plate’s
boundaries. As compared to Example 1, no significant strain and stress concentrations are
observed around the bolts, since the distances between the bolts have been significantly reduced,
compare Figure 3.12(b-d) to Figure 3.9(b-d); and compare Figure 3.13(a-e) to Figure3.10(a-e).

These results are compared to those stemming from a Finite Element analysis performed
with the commercial software RFEM, based on 48 400 rectangular Kirchhoff plate elements
(MITC4 elements with a dimension of 0.1h). Maximum differences between FE results and
series-based results according to (3.47) are as low as 0.32 % for the displacements, and 0.74 % for
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Fig. 3.12: Dimensionless deformation quantities in elastically supported plate, with dense
anchor bolt connections at its edges, subjected to temperature gradient ∆Tκ/h: (a)
dimensionless deflections [w/h]0, (b) normal strain εxx,0, (c) normal strain εyy,0, (d)
shear strain εxy,0, (e) convergence study of the dimensionless deflection [w/h]0 located
at x = y = 6.2h as a function of the number of deflection modes Nm = Nn, and (f)
corresponding computing time for results associated to one point of the plate.
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Fig. 3.13: Dimensionless stress resultants in elastically supported plate, with dense anchor
bolt connections at its edges, subjected to temperature gradient ∆Tκ/h: (a)
bending moment around y-axis

[
mxx/(E h2

]
0, (b) bending moment around x-axis[

myy/(E h2
]
0, (c) twisting moment

[
mxy/(E h2

]
0, (d) shear force [qx/(E h]0, (e) shear

force [qy/(E h]0, and (f) convergence study of the dimensionless moment
[
mxx/(E h2

]
0

located at x = y = 0 as a function of the number of deflection modes Nm = Nn.
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the moments. The ratio of CPU times needed for the FE-based and the series-based analysis
(pointwise calculation performed for Nm = Nn = 9), respectively, amounted to 22.

3.5.3 Example 3: Elastically supported plate, with dense anchor bolt connections
at its edges, subjected to patched loads

Anchor bolts represented by single springs with stiffness C = 410000 kN/m are distributed along
the plate’s edges, at distances of a/20 = b/20 = 0.275 m. The plate is subjected to patched
loads p1 = p2 = p, which are distributed over rectangular areas of side lengths ξ1 = ξ2 = 0.25 m,
η1 = η2 = 0.25 m, with coordinates of the central points of these rectangular areas x1 = −0.5 m,
y1 = 1 m, and x2 = 1.5 m, y2 = 1 m, see Fig. 3.14. These patched loads represent the pressures

hb

2

a

2

a

2 elastic boundary
condition

Winkler elastic
foundation

z

x

b

2

y

ξ 2
ξ 1

x 1

η 1 = η 2

y 1 = y 2

x 2

p 1 p 2

Fig. 3.14: Example 3: quadratic plate on elastic foundation with dense anchor bolt connections
at its edges, side length a, thickness h, elastic Young’s modulus E, and Winkler
modulus c, subjected to patched loads p1 = p2.

of two tires of a car on the road surface made of concrete slabs. As these loads are obviously
antimetric with respect to both the x-axis and the y-axis, the evaluation of the elements
occurring in (3.48) is realized for all four types of trigonometric functions, wI

m,n, wII
m,n, wIII

m,n,
wIV

m,n, see Appendix 3.A.3 for the load vector and stiffness matrix elements, respectively. The
approximative solution for the dimensionless deflection [w/h]0 located at x = −2h, y = 4h as
well as that for the dimensionless bending moment

[
myy/(E h2)

]
0 at at the same location, can

be regarded as converged once Nm ×Nn × 4 = 18 × 18 × 4 = 1296 series members are employed,
see Figures 3.15(e) and 3.16(f). With Matlab version R2012b running on a computer AMD
Phenom(tm) II X6 1090T with 8GB RAM, this related to 18.86 seconds computing time, see
Fig. 3.15(f). Considering corresponding fields, the maximum deflections occur at the acting areas
of the patched loads, see Fig. 3.15(a). These patched loads also provoke significant strain and
stress resultant concentrations, see Figures 3.15(b-d) and 3.16(a-e).

These results are compared to those stemming from a Finite Element analysis performed
with the commercial software RFEM, based on 87 400 rectangular Kirchhoff plate elements
(MITC4 elements with a dimension of 0.08h). Maximum differences between FE results and
series-based results according to (3.47) are as low as 1.44 % for the displacements, and 0.35 % for
the moments. The ratio of CPU times needed for the FE-based and the series-based analysis
(pointwise calculation performed for Nm = Nn = 18), respectively, amounted to 1.5.
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Fig. 3.15: Dimensionless deformation quantities in elastically supported plate, with dense
anchor bolt connections at its edges, subjected to patched loads p: (a) dimensionless
deflections [w/h]0, (b) normal strain εxx,0, (c) normal strain εyy,0, (d) shear strain
εxy,0, (e) convergence study of the dimensionless deflection [w/h)]0 located at x =
−2h, y = 4h as a function of the number of deflection modes Nm = Nn, and (f)
corresponding computing time for results associated to one point of the plate.
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Fig. 3.16: Dimensionless stress resultants in elastically supported plate, with dense anchor bolt
connections at its edges, subjected to patched loads p: (a) bending moment around
y-axis

[
mxx/(E h2)

]
0, (b) bending moment around x-axis

[
myy/(E h2)

]
0, (c) twisting

moment
[
mxy/(E h2)

]
0, (d) shear force [qx/(E h)]0, (e) shear force [qy/(E h)]0, and

(f) convergence study of the dimensionless moment
[
myy/(E h2)

]
0 located at x =

−2h, y = 4h as a function of the number of deflection modes Nm = Nn.
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3.6 Conclusion

The Principle of Virtual Power, with rigorous discrimination of internal versus external forces, was
applied to the problem of a Kirchhoff plate on a flexible foundation. The resulting, Fourier series-
based Galerkin-type solution procedure allowed for overcoming “spurious” external moments and
shear forces, as they are encountered with the widely used plate theories of the Vlasov-type. For
specific problems in pavement engineering, the aforementioned solution procedure also appears
as an efficient alternative to the standardly applied Finite Element method. Namely, it may
reduce computing times by a factor of almost forty. We regard this as an interesting example for
energetically consistent formulations appearing as the basis for particularly relevant and reliable
solutions to everyday engineering problems; comparable to similar cases known from the field of
stability analysis [Ji et al., 2010; Bažant et al., 2012; Bažant and Vorel, 2014], of ferromagnetic
plates [Maugin and Goudjo, 1982], of large strain beam theory [Jelenić and Saje, 1995], of shear
deformable beams [Polizzotto, 2015], of gradient elastic beams and plates [Polizzotto, 2016], and
of virtual fields used for elastic parameter identification [Grédiac et al., 2006].
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3.A Stiffness matrix and load vector elements for provided examples

In order to determine the unknown coefficients cL
mn, we have to solve the system of algebraic

equations (3.48) with the corresponding stiffness matrix- and load vector elements (3.49)-(3.55),
for the chosen number of deflection modes Nm and Nn, respectively. These matrix- and vector
elements are specified for the three provided examples, as discussed in the following Sections.

3.A.1 Stiffness matrix and load vector elements for Example 1

As the loading in Example 1 is symmetric with respect to both the x-axis and the y-axis, only
the trigonometric functions of type wI

m,n are employed to solve the system of equations (3.48).
Hence, substituting the deflection modes wI

m,n and wI
k,l according to (3.40) into (3.49)-(3.55)

yields, after integration, the elements for Example 1. First, we provide the load vector elements
associated to surface load over the entire plate p (3.53), for any combinations of k, and l:

(i) Load vector element associated to surface load p, for k = l = 0:

V p,I
00 = p a b , (3.A.1)

(ii) Load vector element associated to surface load p, for k = 0 and l 6= 0:

V p,I
0l = 2 p a b sin (1/2 lπ) / (lπ) . (3.A.2)

(iii) Load vector element associated to surface load p, for k 6= 0 and l = 0:

V p,I
k0 = 2 p a b sin (1/2 kπ) / (kπ) . (3.A.3)
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(iv) Load vector element associated to surface load p, for k 6= 0 and l 6= 0:

V p,I
kl = 4 p a b sin (1/2 kπ) sin (1/2 lπ) / (π2k l) . (3.A.4)

Next, we provide the stiffness matrix elements for the employed trigonometric functions of
type wI

m,n, see (3.49)-(3.51), for 25 combinations of k, l, m, and n:

1. Stiffness matrix elements for k = l = m = n = 0:

Mm,I
0000 = 0 , M c,I

0000 = −c a b . (3.A.5)

2. Stiffness matrix elements for k = l = m = 0, and n 6= 0:

Mm,I
000n = 0 , M c,I

000n = −2 cab sin (1/2nπ)
nπ

. (3.A.6)

3. Stiffness matrix elements for k = l = n = 0, and m 6= 0:

Mm,I
00m0 = 0 , M c,I

00m0 = −2 cab sin (1/2mπ)
mπ

. (3.A.7)

4. Stiffness matrix elements for k = l = 0, and m 6= 0, n 6= 0:

Mm,I
00mn = 0 , M c,I

00mn = −4 cab sin (1/2mπ) sin (1/2nπ)
mπ2n

. (3.A.8)

5. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l 6= n:

Mm,I
0l0n =

2Kl2π3n2a (−l sin (1/2 lπ) cos (1/2nπ) + n cos (1/2 lπ) sin (1/2nπ))
b3l2 − b3n2

,

M c,I
0l0n =

2 cab (−l sin (1/2 lπ) cos (1/2nπ) + n cos (1/2 lπ) sin (1/2nπ))
π l2 − π n2

. (3.A.9)

6. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l = n:

Mm,I
0n0n = −Kn3π3a (2 cos (1/2nπ) sin (1/2nπ) + nπ)

2 b3
,

M c,I
0n0n = −cab (2 cos (1/2nπ) sin (1/2nπ) + nπ)

2nπ
. (3.A.10)

7. Stiffness matrix elements for n = k = 0, and m 6= 0, l 6= 0:

Mm,I
0lm0 = −4Kvlπ2m sin (1/2mπ) sin (1/2 lπ)

ba
,

M c,I
0lm0 = −4 cab sin (1/2mπ) sin (1/2 lπ)

mπ2l
. (3.A.11)

8. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l 6= n:

Mm,I
0lmn = −4K π2l2 sin (1/2mπ)

(
b2m2v + a2n2

)

b3a (l2 − n2)m
·

· (l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ)) ,

M c,I
0lmn = −4 cab sin (1/2mπ) (l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ))

π2m (l2 − n2)
.

(3.A.12)
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9. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l = n:

Mm,I
mn0n = −K nπ2 sin (1/2mπ)

(
b2m2v + a2n2

)
(2 cos (1/2nπ) sin (1/2nπ) + nπ)

b3am
,

M c,I
mn0n = −cab sin (1/2mπ) (2 cos (1/2nπ) sin (1/2nπ) + nπ)

mπ2n
. (3.A.13)

10. Stiffness matrix elements for m = l = 0, and n 6= 0, k 6= 0:

Mm,I
k00n = −4Kvnπ2k sin (1/2 kπ) sin (1/2nπ)

ba
,

M c,I
k00n = −4 cab sin (1/2 kπ) sin (1/2nπ)

π2kn
. (3.A.14)

11. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k 6= m:

Mm,I
k0m0 =

2Kk2π3m2 (−k sin (1/2 kπ) cos (1/2mπ) +m cos (1/2 kπ) sin (1/2mπ)) b
a3k2 − a3m2

,

M c,I
k0m0 =

2 cab (−k sin (1/2 kπ) cos (1/2mπ) +m cos (1/2 kπ) sin (1/2mπ))
π k2 − πm2

. (3.A.15)

12. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k = m:

Mm,I
m0m0 = −Km3π3b (2 cos (1/2mπ) sin (1/2mπ) +mπ)

2 a3
,

M c,I
m0m0 = −cab (2 cos (1/2mπ) sin (1/2mπ) +mπ)

2mπ
. (3.A.16)

13. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k 6= m:

Mm,I
k0mn = −4K sin (1/2nπ)π2k2

(
a2n2v + b2m2

)

a3b (k2 −m2)n
×

× (k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)) ,

M c,I
k0mn = −4 cab (k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)) sin (1/2nπ)

π2 (k2 −m2)n
.

(3.A.17)

14. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k = m:

Mm,I
mnm0 = −K sin (1/2nπ)mπ2 (2 cos (1/2mπ) sin (1/2mπ) +mπ)

(
a2n2v + b2m2

)

ba3n
,

M c,I
mnm0 = −cab (2 cos (1/2mπ) sin (1/2mπ) +mπ) sin (1/2nπ)

mπ2n
. (3.A.18)

15. Stiffness matrix elements for m = 0, and n 6= 0, k 6= 0, l 6= 0 with l 6= n:

Mm,I
kl0n = −4Kπ2 sin (1/2 kπ)n2

(
b2k2v + a2l2

)

b3a (l2 − n2) k
×

× (l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ)) ,

M c,I
kl0n = −4 cab sin (1/2 kπ) (l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ))

π2k (l2 − n2)
.
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(3.A.19)

16. Stiffness matrix elements for m = 0, and n 6= 0, k 6= 0, l 6= 0 with l = n:

Mm,I
kn0n = −Knπ2

(
b2k2v + a2n2

)
sin (1/2 kπ) (2 cos (1/2nπ) sin (1/2nπ) + nπ)

b3ak
,

M c,I
kn0n = −cab sin (1/2 kπ) (2 cos (1/2nπ) sin (1/2nπ) + nπ)

π2kn
. (3.A.20)

17. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k 6= m:

Mm,I
klm0 = −4Km2π2 sin (1/2 lπ)

(
a2l2v + b2k2

)

a3b (k2 −m2) l
×

× (k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)) ,

M c,I
klm0 = −4 cab (k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)) sin (1/2 lπ)

π2 (k2 −m2) l
.

(3.A.21)

18. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k = m:

Mm,I
mlm0 = −K π2m sin (1/2 lπ)

(
a2l2v + b2m2

)
(mπ + 2 cos (1/2mπ) sin (1/2mπ))
a3bl

,

M c,I
mlm0 = −cab (mπ + 2 cos (1/2mπ) sin (1/2mπ)) sin (1/2 lπ)

mπ2l
. (3.A.22)

19. Stiffness matrix elements for m = n = k = 0, and l 6= 0:

Mm,I
0l00

= 0 , M c,I
0l00

= −2 cab sin (1/2 lπ)
lπ

. (3.A.23)

20. Stiffness matrix elements for m = n = l = 0, and k 6= 0:

Mm,I
k000

= 0 , M c,I
k000

= −2 cab sin (1/2 kπ)
kπ

. (3.A.24)

21. Stiffness matrix elements for m = n = 0, and k 6= 0, l 6= 0:

Mm,I
kl00

= 0 , M c,I
kl00

= −4 cab sin (1/2 kπ) sin (1/2 lπ)
π2kl

. (3.A.25)

22. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l 6= n:

Mm,I
klmn = − 4Kπ2

b3a3 (l − n) (l + n) (k −m) (k +m)

(
m
(
sin (1/2nπ)n

(
−2

(
a2 (v − 1) l2

−1/2 a2n2v − 1/2 b2m2
)
b2k2 + a2l2

(
b2m2v + a2n2

))
cos (1/2 lπ)

−
((
b2m2 − a2n2 (v − 2)

)
b2k2 + a2l2

(
b2m2v + a2n2

))
cos (1/2nπ) ×

× sin (1/2 lπ) l) sin (1/2mπ) cos (1/2 kπ) − k sin (1/2 kπ) cos (1/2mπ) ×
×
(
sin (1/2nπ)n

(
b2
(
a2n2v + b2m2

)
k2 + a2

(
−b2 (v − 2)m2 + a2n2

)
l2
)

×

× cos (1/2 lπ) − cos (1/2nπ) sin (1/2 lπ)
(
b2
(
a2n2v + b2m2

)
k2

+a2
((
b2m2v + a2n2

)
l2 − 2 b2m2n2 (v − 1)

))
l
))

,
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M c,I
klmn = −4 cab [−k sin (1/2 kπ) cos (1/2mπ) +m cos (1/2 kπ) sin (1/2mπ)]

π2 (k2 −m2) (l2 − n2)
×

× [−l sin (1/2 lπ) cos (1/2nπ) + n cos (1/2 lπ) sin (1/2nπ)] . (3.A.26)

23. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l 6= n:

Mm,I
mlmn = − 2K π2

a3b3m (l2 − n2)

(
−n sin (1/2nπ)

((
m4b4 + 3 a2

(
(v − 2/3) l2

+1/3n2v
)
b2m2 + a4l2n2

)
sin (1/2mπ) cos (1/2mπ) + 1/2

(
m4b4

−a2
(
(v − 2) l2 − n2v

)
b2m2 + a4l2n2

)
πm

)
cos (1/2 lπ) + l cos (1/2nπ) ×

×
((
m4b4 +

(
l2v + 3n2 (v − 2/3)

)
a2b2m2 + a4l2n2

)
sin (1/2mπ) cos (1/2mπ)

+1/2
(
m4b4 +

(
l2v − n2 (v − 2)

)
a2b2m2 + a4l2n2

)
πm

)
sin (1/2 lπ)

)
,

M c,I
mlmn =

cab [mπ + 2 cos (1/2mπ) sin (1/2mπ)]
mπ2 (l2 − n2)

×

× [−l sin (1/2 lπ) cos (1/2nπ) + n cos (1/2 lπ) sin (1/2nπ)] . (3.A.27)

24. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l = n:

Mm,I
knmn =

2K π2

b3 (k2 −m2) a3n

[((
a4n4 + 3 a2

(
(v − 2/3) k2 + 1/3m2v

)
b2n2 + b4k2m2

)
×

× sin (1/2nπ) cos (1/2nπ) + 1/2nπ
(
a4n4 − a2b2

(
(v − 2) k2 −m2v

)
n2

+b4k2m2
))

sin (1/2mπ)m cos (1/2 kπ) − k
((
a4n4 + a2b2

(
k2v

+3 (v − 2/3)m2
)
n2 + b4k2m2

)
sin (1/2nπ) cos (1/2nπ) + 1/2

(
a4n4

+
(
k2v −m2 (v − 2)

)
a2b2n2 + b4k2m2

)
nπ
)

cos (1/2mπ) sin (1/2 kπ)
]
,

M c,I
knmn = −cab [k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)]

π2 (k2 −m2)n
×

× [2 cos (1/2nπ) sin (1/2nπ) + nπ] . (3.A.28)

25. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l = n:

Mm,I
mnmn = − K π2

a3b3nm

[(
sin (1/2nπ)

(
a2n2 + b2m2

)2
cos (1/2nπ) + 1/2

(
m4b4

+4 a2 (v − 1/2) b2n2m2 + a4n4
)
π n
)

sin (1/2mπ) cos (1/2mπ)

+1/2mπ
(
sin (1/2nπ)

(
m4b4 + 4 a2 (v − 1/2) b2n2m2 + a4n4

)
×

× cos (1/2nπ) + 1/2nπ
(
a2n2 + b2m2

)2
)]

,

M c,I
mnmn = −cab (mπ + 2 cos (1/2mπ) sin (1/2mπ)) (2 cos (1/2nπ) sin (1/2nπ) + nπ)

4mπ2n
.

(3.A.29)
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where the stiffness matrix element associated to single springs is defined as

MC,I
klmn = −

NC∑

s=1

Cs cos
(mπ xs

a

)
cos
(nπ ys

b

)
cos
(
kπ xs

a

)
cos
(
lπ ys

b

)
. (3.A.30)

3.A.2 Stiffness matrix and load vector elements for Example 2

As the temperature loading in Example 2 is symmetric with respect to both the x-axis and
the y-axis, only the trigonometric functions of type wI

m,n are employed to solve the system of
equations(3.48). Hence, substituting the deflection modes wI

m,n and wI
k,l according to (3.40) into

(3.49)-(3.55) yields, after integration, the elements for Example 2. First, we provide the load
vector elements associated to temperature gradients (3.52), for any combinations of k, and l:

(i) Load vector elements for k = l = 0:

V
κe

T
,I

00 = 0 . (3.A.31)

(ii) Load vector elements for k = 0 and l 6= 0:

V
κe

T
,I

0l = 2Kκe
T lπ a sin (1/2 lπ) / b . (3.A.32)

(iii) Load vector elements for k 6= 0 and l = 0:

V
κe

T
,I

k0 = 2Kκe
T kπ b sin (1/2 kπ) / a . (3.A.33)

(iv) Load vector elements for k 6= 0 and l 6= 0:

V
κe

T
,I

kl =
4Kκe

T sin (1/2 lπ)
(
a2l2 + b2k2

)
sin (1/2 kπ)

abkl
. (3.A.34)

The stiffness matrix elements Mm,I
klmn, M c,I

klmn, and MC,I
klmn for the employed trigonometric

functions of type wI
m,n can be found by analogy to Example 1, see (3.A.5)-(3.A.30).

3.A.3 Stiffness matrix and load vector elements for Example 3

As the patched loads in Example 3 are antimetric with respect to both the x-axis and the y-axis,
the trigonometric functions of type wI

m,n-wIV
m,n according to Eq. (3.40)-(3.43) are employed to

solve the system of equations (3.48). Hence, substituting the deflection modes wI
m,n-wIV

m,n and
wI

k,l-w
IV
k,l , respectively, according to (3.40)-(3.43) into (3.49)-(3.55) yields, after integration, the

elements for Example 3.

3.A.3.1 Load vector elements for the employed trigonometric functions of type wI
m,n-wIV

m,n

First, we provide the load vector elements, see (3.52)-(3.55), for any combinations of k, and l:

(i) Load vector elements for k = l = 0:

V p,I
00 =

Np∑

s=1

ps ξs ηs ,

https://www.tuwien.at/bibliothek
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V p,II
00 =

Np∑

s=1

2 ps xs ξs ηs /a ,

V p,III
00 =

Np∑

s=1

2 ps ys ξs ηs /b ,

V p,IV
00 =

Np∑

s=1

4
ps xs ξs ys η

ab
. (3.A.35)

(ii) Load vector elements for k = 0 and l 6= 0:

V p,I
0l =

Np∑

s=1

ps ξs b

lπ

[
sin
(
lπ (−2 ys + ηs)

2 b

)
+ sin

(
lπ (2 ys + ηs)

2 b

)]
,

V p,II
0l =

Np∑

s=1

2
psxs ξs b

a lπ

[
sin
(
lπ (−2 ys + ηs)

2 b

)
+ sin

(
lπ (2 ys + ηs)

2 b

)]
,

V p,III
0l =

Np∑

s=1

ps ξs b

lπ

[
cos

(
lπ (−2 ys + ηs)

2 b

)
− cos

(
lπ (2 ys + ηs)

2 b

)]
,

V p,IV
0l =

Np∑

s=1

2
ps xs ξs b

alπ

[
cos

(
lπ (−2 ys + ηs)

2 b

)
− cos

(
lπ (2 ys + ηs)

2 b

)]
.

(3.A.36)

(iii) Load vector elements for k 6= 0 and l = 0:

V p,I
k0 =

Np∑

s=1

ps aηs

kπ

[
sin
(
kπ (−2 xs + ξs)

2 a

)
+ sin

(
kπ (2 xs + ξs)

2 a

)]
,

V p,II
k0 =

Np∑

s=1

ps aηs

kπ

[
cos

(
kπ (−2 xs + ξs)

2 a

)
− cos

(
kπ (2 xs + ξs)

2 a

)]
,

V p,III
k0 =

Np∑

s=1

2
ps a ys ηs

kπ b

[
sin
(
kπ (−2 xs + ξs)

2 a

)
+ sin

(
kπ (2 xs + ξs)

2 a

)]
,

V p,IV
k0 =

Np∑

s=1

2
ps a ys ηs

kπ b

[
cos

(
kπ (−2 xs + ξs)

2 a

)
− cos

(
kπ (2 xs + ξs)

2 a

)]
.

(3.A.37)

(iv) Load vector elements for k 6= 0 and l 6= 0:

V p,I
kl =

Np∑

s=1

psab

kπ2l

[
sin
(
kπ (−2 xs + ξs)

2 a

)
+ sin

(
kπ (2 xs + ξs)

2 a

)]
×

×
[
sin
(
lπ (−2 ys + ηs)

2 b

)
+ sin

(
lπ (2 ys + ηs)

2 b

)]
,

V p,II
kl =

Np∑

s=1

psab

kπ2l

[
cos

(
kπ (−2 xs + ξs)

2 a

)
− cos

(
kπ (2 xs + ξs)

2 a

)]
×

×
[
sin
(
lπ (−2 ys + ηs)

2 b

)
+ sin

(
lπ (2 ys + ηs)

2 b

)]
,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3 Thin elastic plates on elastic Winkler foundations 81

V p,III
kl =

Np∑

s=1

ps a b

kπ2l

[
sin
(
kπ (−2 xs + ξs)

2 a

)
+ sin

(
kπ (2 xs + ξs)

2 a

)]
×

×
[
cos

(
lπ (−2 ys + ηs)

2 b

)
− cos

(
lπ (2 ys + ηs)

2 b

)]
,

V p,IV
kl =

Np∑

s=1

psab

kπ2l

[
cos

(
kπ (−2 xs + ξs)

2 a

)
− cos

(
kπ (2 xs + ξs)

2 a

)]
×

×
[
cos

(
lπ (−2 ys + ηs)

2 b

)
− cos

(
lπ (2 ys + ηs)

2 b

)]
. (3.A.38)

3.A.3.2 Stiffness matrix elements for the employed trigonometric functions of type wI
m,n

The stiffness matrix elements Mm,I
klmn, M c,I

klmn, and MC,I
klmn for the employed trigonometric functions

of type wI
m,n can be found by analogy to Example 1, see (3.A.5)-(3.A.30).

3.A.3.3 Stiffness matrix elements for the employed trigonometric functions of type wII
m,n

The stiffness matrix elements Mm,II
klmn, M c,II

klmn, and MC,II
klmn for the employed trigonometric functions

of type wII
m,n, for 25 combinations of k, l, m, and n, read as:

1. Stiffness matrix elements for k = l = m = n = 0:

Mm,II
0000 = 0 , M c,II

0000 = −1
3
c a b , MC,II

0000 = −
NC∑

s=1

4Cs x
2
s /a

2 . (3.A.39)

2. Stiffness matrix elements for k = l = m = 0, and n 6= 0:

Mm,II
000n = 0 , M c,II

000n = − 2 c a b sin (1/2nπ)
3nπ

, MC,II
000n = −

NC∑

s=1

4
Csxs

2

a2
cos
(nπ ys

b

)
.

(3.A.40)

3. Stiffness matrix elements for k = l = n = 0, and m 6= 0:

Mm,II
00m0 = 0 ,

M c,II
00m0 =

2 c a b (mπ cos (1/2mπ) − 2 sin (1/2mπ))
m2π2

,

MC,II
00m0 = −

NC∑

s=1

2
Csxs

a
sin
(
mπ xs

a

)
. (3.A.41)

4. Stiffness matrix elements for k = l = 0, and m 6= 0, n 6= 0:

Mm,II
00mn = 0 ,

M c,II
00mn =

4 c a b (mπ cos (1/2mπ) − 2 sin (1/2mπ)) sin (1/2nπ)
m2π3n

,

MC,II
00mn = −

NC∑

s=1

2
Csxs

a
sin
(
mπ xs

a

)
cos

(
nπ ys

b

)
. (3.A.42)
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5. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l 6= n:

Mm,II
0l0n =

2K n l π

3 ab3l2 − 3 ab3n2

[
sin (1/2nπ)

(
a2n2π2 − 24 b2 (−1 + v)

)
l cos (1/2 lπ)

− cos (1/2nπ)
(
a2l2π2 − 24 b2 (−1 + v)

)
n sin (1/2 lπ)

]
,

M c,II
0l0n = −2 c a b (l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ))

3π (l2 − n2)
,

MC,II
0l0n = −

NC∑

s=1

4
Csxs

2

a2
cos

(
nπ ys

b

)
cos

(
lπ ys

b

)
. (3.A.43)

6. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l = n:

Mm,II
0n0n = −K nπ

6 a b3

[
2
(
a2n2π2 + 24 b2 (−1 + v)

)
sin (1/2nπ) cos (1/2nπ)

+
(
a2n2π2 − 24 b2 (−1 + v)

)
nπ
]
,

M c,II
0n0n = −c a b (2 cos (1/2nπ) sin (1/2nπ) + nπ)

6nπ
,

MC,II
0n0n = −

NC∑

s=1

4
Csxs

2

a2

(
cos

(
nπ ys

b

))2

. (3.A.44)

7. Stiffness matrix elements for n = k = 0, and m 6= 0, l 6= 0:

Mm,II
0lm0 = −4Kvlπ (−mπ cos (1/2mπ) + 2 sin (1/2mπ)) sin (1/2 lπ)

ab
,

M c,II
0lm0 =

4 cab (mπ cos (1/2mπ) − 2 sin (1/2mπ)) sin (1/2 lπ)
m2π3l

,

MC,II
0lm0 = −

NC∑

s=1

2
Csxs

a
sin
(
mπ xs

a

)
cos

(
lπ ys

b

)
. (3.A.45)

8. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l 6= n:

Mm,II
0lmn =

4πK l

b3m2a (l2 − n2)

[(
−2 sin (1/2 lπ)

((
b2m2v + a2n2

)
l2

−2 b2m2n2 (−1 + v)
)

cos (1/2nπ) + 2 cos (1/2 lπ) sin (1/2nπ) ×

×
(
−b2 (v − 2)m2 + a2n2

)
ln
)

sin (1/2mπ) + cos (1/2mπ) lmπ×

×
(
b2m2v + a2n2

)
(l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ))

]
,

M c,II
0lmn = − 8cab

m2π3 (l2 − n2)
[l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ)] ×

× [−1/2mπ cos (1/2mπ) + sin (1/2mπ)] ,

MC,II
0lmn = −

NC∑

s=1

2
Csxs

a
sin
(
mπ xs

a

)
cos

(
nπ ys

b

)
cos

(
lπ ys

b

)
. (3.A.46)
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9. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l = n:

Mm,II
mn0n = −4Kπ n

b3m2a

[(
sin (1/2nπ)

(
3 (v − 2/3) b2m2 + a2n2

)
cos (1/2nπ)

+1/2nπ
(
−b2 (v − 2)m2 + a2n2

))
sin (1/2mπ)

−1/2
(
b2m2v + a2n2

)
(cos (1/2nπ) sin (1/2nπ) + 1/2nπ) cos (1/2mπ)πm

]
,

M c,II
mn0n =

c a b [mπ cos (1/2mπ) − 2 sin (1/2mπ)) (2 cos (1/2nπ) sin (1/2nπ) + nπ]
m2π3n

,

MC,II
mn0n = −

NC∑

s=1

2
Csxs

a
sin
(
mπ xs

a

)(
cos

(
nπ ys

b

))2

. (3.A.47)

10. Stiffness matrix elements for m = l = 0, and n 6= 0, k 6= 0:

Mm,II
k00n =

4Kvnπ (kπ cos (1/2 kπ) − 2 sin (1/2 kπ)) sin (1/2nπ)
ab

,

M c,II
k00n =

4 cab (kπ cos (1/2 kπ) − 2 sin (1/2 kπ)) sin (1/2nπ)
k2π3n

,

MC,II
k00n = −

NC∑

s=1

2
Csxs

a
cos

(
nπ ys

b

)
sin
(
kπ xs

a

)
. (3.A.48)

11. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k 6= m:

Mm,II
k0m0 =

2Kk2π3m2 (k cos (1/2 kπ) sin (1/2mπ) −m sin (1/2 kπ) cos (1/2mπ)) b
a3 (k2 −m2)

,

M c,II
k0m0 =

2 cab (k cos (1/2 kπ) sin (1/2mπ) −m sin (1/2 kπ) cos (1/2mπ))
π (k2 −m2)

,

MC,II
k0m0 = −

NC∑

s=1

Cs sin
(
mπ xs

a

)
sin
(
kπ xs

a

)
. (3.A.49)

12. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k = m:

Mm,II
m0m0 = −Km3π3 (mπ − 2 cos (1/2mπ) sin (1/2mπ)) b

2 a3
,

M c,II
m0m0 = −cab (mπ − 2 cos (1/2mπ) sin (1/2mπ))

2mπ
,

MC,II
m0m0 = −

NC∑

s=1

Cs

(
sin
(
mπ xs

a

))2

. (3.A.50)

13. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k 6= m:

Mm,II
k0mn = −4K sin (1/2nπ)π2k2

(
a2n2v + b2m2

)

a3b (k2 −m2)n
×

× [−k cos (1/2 kπ) sin (1/2mπ) +m sin (1/2 kπ) cos (1/2mπ)] ,

M c,II
k0mn =

4 c a b (k cos (1/2 kπ) sin (1/2mπ) −m sin (1/2 kπ) cos (1/2mπ)) sin (1/2nπ)
π2 (k2 −m2)n

,
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MC,II
k0mn = −

NC∑

s=1

Cs sin
(
mπ xs

a

)
cos

(
nπ ys

b

)
sin
(
kπ xs

a

)
. (3.A.51)

14. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k = m:

Mm,II
mnm0 = −K sin (1/2nπ)mπ2 (−2 cos (1/2mπ) sin (1/2mπ) +mπ)

(
a2n2v + b2m2

)

a3bn
,

M c,II
mnm0 = −cab (mπ − 2 cos (1/2mπ) sin (1/2mπ)) sin (1/2nπ)

mπ2n
,

MC,II
mnm0 = −

NC∑

s=1

Cs

(
sin
(
mπ xs

a

))2

cos
(
nπ ys

b

)
. (3.A.52)

15. Stiffness matrix elements for m = 0, and n 6= 0, k 6= 0, l 6= 0 with l 6= n:

Mm,II
kl0n =

8πKn
b3ak2 (l2 − n2)

[(((
b2k2v + a2l2

)
n2 − 2 b2k2l2 (−1 + v)

)
sin (1/2nπ) cos (1/2 lπ)

− sin (1/2 lπ) l cos (1/2nπ)
(
−b2 (v − 2) k2 + a2l2

)
n
)

sin (1/2 kπ)

−1/2 cos (1/2 kπ)π kn
(
b2k2v + a2l2

)
(−l sin (1/2 lπ) cos (1/2nπ)

+n cos (1/2 lπ) sin (1/2nπ))] ,

M c,II
kl0n = − 8 c a b

k2π3 (l2 − n2)
[l sin (1/2 lπ) cos (1/2nπ) − n cos (1/2 lπ) sin (1/2nπ)] ×

× [−1/2 kπ cos (1/2 kπ) + sin (1/2 kπ)] ,

MC,II
kl0n = −

NC∑

s=1

2
Csxs

a
cos

(
nπ ys

b

)
sin
(
kπ xs

a

)
cos

(
lπ ys

b

)
. (3.A.53)

16. Stiffness matrix elements for m = 0, and n 6= 0, k 6= 0, l 6= 0 with l = n:

Mm,II
kn0n = −4nKπ

b3ak2

[(
sin (1/2nπ)

(
3 (v − 2/3) b2k2 + a2n2

)
cos (1/2nπ)

+1/2nπ
(
−b2 (v − 2) k2 + a2n2

))
sin (1/2 kπ)

−1/2
(
b2k2v + a2n2

)
cos (1/2 kπ) (cos (1/2nπ) sin (1/2nπ) + 1/2nπ)π k

]
,

M c,II
kn0n =

c a b [kπ cos (1/2 kπ) − 2 sin (1/2 kπ)] [2 cos (1/2nπ) sin (1/2nπ) + nπ]
k2π3n

,

MC,II
kn0n = −

NC∑

s=1

2
Csxs

a

(
cos

(
nπ ys

b

))2

sin
(
kπ xs

a

)
. (3.A.54)

17. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k 6= m:

Mm,II
klm0 = −4 sin (1/2 lπ)m2π2K

(
a2l2v + b2k2

)

a3b (k2 −m2) l
×

× [−k cos (1/2 kπ) sin (1/2mπ) +m sin (1/2 kπ) cos (1/2mπ)] ,

M c,II
klm0 =

4 c a b (k cos (1/2 kπ) sin (1/2mπ) −m sin (1/2 kπ) cos (1/2mπ)) sin (1/2 lπ)
π2 (k2 −m2) l

,
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MC,II
klm0 = −

NC∑

s=1

Cs sin
(
mπ xs

a

)
sin
(
kπ xs

a

)
cos

(
lπ ys

b

)
. (3.A.55)

18. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k = m:

Mm,II
mlm0 =

2Kmπ2 sin (1/2 lπ) (cos (1/2mπ) sin (1/2mπ) − 1/2mπ)
(
a2l2v + b2m2

)

a3b l
,

M c,II
mlm0 = −c a b (mπ − 2 cos (1/2mπ) sin (1/2mπ)) sin (1/2 lπ)

mπ2l
,

MC,II
mlm0 = −

NC∑

s=1

Cs

(
sin
(
mπ xs

a

))2

cos
(
lπ ys

b

)
. (3.A.56)

19. Stiffness matrix elements for m = n = k = 0, and l 6= 0:

Mm,II
0l00

= 0 , M c,II
0l00

= −2 cab sin (1/2 lπ)
3 lπ

, MC,II
0l00

= −
NC∑

s=1

4
Csxs

2

a2
cos
(
lπ ys

b

)
. (3.A.57)

20. Stiffness matrix elements for m = n = l = 0, and k 6= 0:

Mm,II
k000 = 0 ,

M c,II
k000 =

2 cab (kπ cos (1/2 kπ) − 2 sin (1/2 kπ))
k2π2

,

MC,II
k000 = −

NC∑

s=1

2
Csxs

a
sin
(
kπ xs

a

)
. (3.A.58)

21. Stiffness matrix elements for m = n = 0, and k 6= 0, l 6= 0:

Mm,II
kl00 = 0 ,

M c,II
kl00 =

4 cab (kπ cos (1/2 kπ) − 2 sin (1/2 kπ)) sin (1/2 lπ)
k2π3l

,

MC,II
kl00 = −

NC∑

s=1

2
Csxs

a
sin
(
kπ xs

a

)
cos

(
lπ ys

b

)
. (3.A.59)

22. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l 6= n:

Mm,II
klmn = − 4K π2

b3a3 (l − n) (l + n) (k −m) (k +m)

[((
b2
(
a2n2v + b2m2

)
k2

+l2a2
(
−b2 (v − 2)m2 + a2n2

))
sin (1/2nπ)n cos (1/2 lπ)

− cos (1/2nπ) sin (1/2 lπ)
(
b2
(
a2n2v + b2m2

)
k2 +

((
b2m2v + a2n2

)
l2

−2 b2m2n2 (−1 + v)
)
a2
)
l
)
k sin (1/2mπ) cos (1/2 kπ)

−
((

2
(
a2 (1 − v) l2 + 1/2 a2n2v + 1/2 b2m2

)
b2k2

+a2l2
(
b2m2v + a2n2

))
sin (1/2nπ)n cos (1/2 lπ)

− cos (1/2nπ) sin (1/2 lπ)
((
b2m2 − a2n2 (v − 2)

)
b2k2

+a2l2
(
b2m2v + a2n2

))
l
)

cos (1/2mπ) sin (1/2 kπ)m
]
,
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M c,II
klmn = −4 c a b [k cos (1/2 kπ) sin (1/2mπ) −m sin (1/2 kπ) cos (1/2mπ)]

π2 (k2 −m2) (l2 − n2)
×

× [−l sin (1/2 lπ) cos (1/2nπ) + n cos (1/2 lπ) sin (1/2nπ)] ,

MC,II
klmn = −

NC∑

s=1

Cs sin
(
mπ xs

a

)
cos

(
nπ ys

b

)
sin
(
kπ xs

a

)
cos

(
lπ ys

b

)
. (3.A.60)

23. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l 6= n:

Mm,II
mlmn =

2K π2

a3b3m (l2 − n2)

[
−
(
sin (1/2mπ)

(
b4m4 + 3

(
(v − 2/3) l2 + 1/3n2v

)
×

×a2b2m2 + a4l2n2
)

cos (1/2mπ) − 1/2mπ
(
b4m4 −

(
(v − 2) l2 − n2v

)
×

×a2b2m2 + a4l2n2
))

sin (1/2nπ)n cos (1/2 lπ) + sin (1/2 lπ) (sin (1/2mπ)
(
b4m4 +

(
l2v + 3 (v − 2/3)n2

)
a2b2m2 + a4l2n2

)
cos (1/2mπ)

−1/2m
(
b4m4 + a2b2

(
l2v − n2 (v − 2)

)
m2 + a4l2n2

)
π
)

cos (1/2nπ) l
]
,

M c,II
mlmn =

c a b (−2 cos (1/2mπ) sin (1/2mπ) +mπ)
mπ2 (l2 − n2)

×

× (−l sin (1/2 lπ) cos (1/2nπ) + n cos (1/2 lπ) sin (1/2nπ)) ,

MC,II
mlmn = −

NC∑

s=1

Cs

(
sin
(
mπ xs

a

))2

cos
(
nπ ys

b

)
cos

(
lπ ys

b

)
. (3.A.61)

24. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l = n:

Mm,II
knmn = − 2K π2

a3b3 (k2 −m2)n

[
− sin (1/2mπ) k

((
a4n4 + a2b2

(
k2v + 3m2 (v − 2/3)

)
n2

+b4k2m2
)

sin (1/2nπ) cos (1/2nπ) + 1/2π
(
a4n4 + a2

(
k2v −m2 (v − 2)

)
b2n2

+b4k2m2
)
n
)

cos (1/2 kπ) +
((
a4n4 + 3

(
(v − 2/3) k2 + 1/3m2v

)
a2b2n2

+b4k2m2
)

sin (1/2nπ) cos (1/2nπ) + 1/2π n
(
a4n4 − a2

(
(v − 2) k2 −m2v

)
b2n2

+b4k2m2
))
m sin (1/2 kπ) cos (1/2mπ)

]
,

M c,II
knmn =

cab [k cos (1/2 kπ) sin (1/2mπ) −m sin (1/2 kπ) cos (1/2mπ)]
π2 (k2 −m2)n

×

× [2 cos (1/2nπ) sin (1/2nπ) + nπ] ,

MC,II
knmn = −

NC∑

s=1

Cs sin
(
mπ xs

a

)(
cos

(
nπ ys

b

))2

sin
(
kπ xs

a

)
. (3.A.62)

25. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l = n:

Mm,II
mnmn =

Kπ2

a3b3mn

[
sin (1/2mπ)

(
sin (1/2nπ)

(
a2n2 + b2m2

)2
cos (1/2nπ)

+1/2n
(
b4m4 + 4n2a2 (v − 1/2) b2m2 + a4n4

)
π
)

cos (1/2mπ)

−1/2
((
b4m4 + 4n2a2 (v − 1/2) b2m2 + a4n4

)
sin (1/2nπ) cos (1/2nπ)
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+1/2nπ
(
a2n2 + b2m2

)2
)
πm

]
,

M c,II
mnmn = −cab [−2 cos (1/2mπ) sin (1/2mπ) +mπ] [2 cos (1/2nπ) sin (1/2nπ) + nπ]

4mπ2n
,

MC,II
mnmn = −

NC∑

s=1

Cs

(
sin
(
mπ xs

a

))2 (
cos

(
nπ ys

b

))2

. (3.A.63)

3.A.3.4 Stiffness matrix elements for the employed trigonometric functions of type wIII
m,n

The stiffness matrix elements Mm,III
klmn , M c,III

klmn, and MC,III
klmn for the employed trigonometric

functions of type wIII
m,n, for 25 combinations of k, l, m, and n, read as:

1. Stiffness matrix elements for k = l = m = n = 0:

Mm,III
0000 = 0 , M c,III

0000 = −1
3
c a b , MC,III

0000 = −
NC∑

s=1

4Cs y
2
s /b

2 . (3.A.64)

2. Stiffness matrix elements for k = l = m = 0, and n 6= 0:

Mm,III
000n = 0 ,

M c,III
000n =

2 c a b (nπ cos (1/2nπ) − 2 sin (1/2nπ))
n2π2

,

MC,III
000n = −

NC∑

s=1

2
Csys

b
sin
(
nπ ys

b

)
. (3.A.65)

3. Stiffness matrix elements for k = l = n = 0, and m 6= 0:

Mm,III
00m0 = 0 , M c,III

00m0 = −2 c a b sin (1/2mπ)
3mπ

, MC,III
00m0 = −

NC∑

s=1

4
Csys

2

b2
cos
(mπ xs

a

)
.

(3.A.66)

4. Stiffness matrix elements for k = l = 0, and m 6= 0, n 6= 0:

Mm,III
00mn = 0 ,

M c,III
00mn =

4 c a b (nπ cos (1/2nπ) − 2 sin (1/2nπ)) sin (1/2mπ)
n2π3m

,

MC,III
00mn = −

NC∑

s=1

2
Csys

b
sin
(
nπ ys

b

)
cos

(
mπ xs

a

)
. (3.A.67)

5. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l 6= n:

Mm,III
0l0n =

2Kl2π3n2a (l cos (1/2 lπ) sin (1/2nπ) − n sin (1/2 lπ) cos (1/2nπ))
b3l2 − b3n2

,

M c,III
0l0n =

2 cab (l cos (1/2 lπ) sin (1/2nπ) − n sin (1/2 lπ) cos (1/2nπ))
π l2 − π n2

,

MC,III
0l0n = −

NC∑

s=1

Cs sin
(
nπ ys

b

)
sin
(
lπ ys

b

)
. (3.A.68)
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6. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l = n:

Mm,III
0n0n = −Kn3π3a (−2 cos (1/2nπ) sin (1/2nπ) + nπ)

2 b3
,

M c,III
0n0n = −cab (−2 cos (1/2nπ) sin (1/2nπ) + nπ)

2nπ
,

MC,III
0n0n = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2

. (3.A.69)

7. Stiffness matrix elements for n = k = 0, and m 6= 0, l 6= 0:

Mm,III
0lm0 =

4Kvπm sin (1/2mπ) (lπ cos (1/2 lπ) − 2 sin (1/2 lπ))
ba

,

M c,III
0lm0 =

4 cab sin (1/2mπ) (lπ cos (1/2 lπ) − 2 sin (1/2 lπ))
π3ml2

,

MC,III
0lm0 = −

NC∑

s=1

2
Csys

b
cos

(
mπ xs

a

)
sin
(
lπ ys

b

)
. (3.A.70)

8. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l 6= n:

Mm,III
0lmn = −4Kπ2 sin (1/2mπ) l2

(
b2m2v + a2n2

)

b3a (l2 − n2)m
×

× (n sin (1/2 lπ) cos (1/2nπ) − l cos (1/2 lπ) sin (1/2nπ)) ,

M c,III
0lmn =

4 cab sin (1/2mπ) (l cos (1/2 lπ) sin (1/2nπ) − n sin (1/2 lπ) cos (1/2nπ))
π2m (l2 − n2)

,

MC,III
0lmn = −

NC∑

s=1

Cs sin
(
nπ ys

b

)
cos

(
mπ xs

a

)
sin
(
lπ ys

b

)
. (3.A.71)

9. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l = n:

Mm,III
mn0n =

2K π2n (cos (1/2nπ) sin (1/2nπ) − 1/2nπ) sin (1/2mπ)
(
b2m2v + a2n2

)

b3am
,

M c,III
mn0n = −cab (−2 cos (1/2nπ) sin (1/2nπ) + nπ)

2nπ
,

MC,III
mn0n = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2

cos
(
mπ xs

a

)
. (3.A.72)

10. Stiffness matrix elements for m = l = 0, and n 6= 0, k 6= 0:

Mm,III
k00n = −8Kπ k v sin (1/2 kπ) (−1/2nπ cos (1/2nπ) + sin (1/2nπ))

ba
,

M c,III
k00n =

4 cab sin (1/2 kπ) (nπ cos (1/2nπ) − 2 sin (1/2nπ))
π3kn2

,

MC,III
k00n = −

NC∑

s=1

2
Csys

b
sin
(
nπ ys

b

)
cos

(
kπ xs

a

)
. (3.A.73)
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11. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k 6= m:

Mm,III
k0m0 =

48mπ kK
3 a3bk2 − 3 a3bm2

[(
1/24 b2m2π2 − a2 (−1 + v)

)
k sin (1/2mπ) cos (1/2 kπ)

+m cos (1/2mπ) sin (1/2 kπ)
(
−1/24 b2k2π2 + a2 (−1 + v)

)]
,

M c,III
k0m0 =

2 cab (−k sin (1/2 kπ) cos (1/2mπ) +m cos (1/2 kπ) sin (1/2mπ))
(3 k2 − 3m2)π

,

MC,III
k0m0 = −

NC∑

s=1

4
Csys

2

b2
cos

(
mπ xs

a

)
cos

(
kπ xs

a

)
. (3.A.74)

12. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k = m:

Mm,III
m0m0 =

4mKπ

a3b

[
−2

(
1/24 b2m2π2 + a2 (−1 + v)

)
sin (1/2mπ) cos (1/2mπ)

+mπ
(
−1/24 b2m2π2 + a2 (−1 + v)

)]
,

M c,III
m0m0 = −cab (2 cos (1/2mπ) sin (1/2mπ) +mπ)

6mπ
,

MC,III
m0m0 = −

NC∑

s=1

4
Csys

2

b2

(
cos

(
mπ xs

a

))2

. (3.A.75)

13. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k 6= m:

Mm,III
k0mn =

4 kπK
ba3 (k2 −m2)n2

[(
−2

((
a2n2v + b2m2

)
k2 − 2 a2m2n2 (−1 + v)

)
×

× sin (1/2 kπ) cos (1/2mπ) − 2m cos (1/2 kπ) k sin (1/2mπ) ×
×
(
−b2m2 + a2n2 (v − 2)

))
sin (1/2nπ) + cos (1/2nπ) knπ

(
a2n2v + b2m2

)
×

× (k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ))] ,

M c,III
k0mn =

4 cab [k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)]
π3 (k2 −m2)n2

×

× [nπ cos (1/2nπ) − 2 sin (1/2nπ)] ,

MC,III
k0mn = −

NC∑

s=1

2
Csys

b
sin
(
nπ ys

b

)
cos

(
mπ xs

a

)
cos

(
kπ xs

a

)
. (3.A.76)

14. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k = m:

Mm,III
mnm0 = −12K πm

ba3n2

[(
sin (1/2mπ)

(
a2 (v − 2/3)n2 + 1/3 b2m2

)
cos (1/2mπ)

−1/6πm
(
−b2m2 + a2n2 (v − 2)

))
sin (1/2nπ)

−1/6n cos (1/2nπ)π (cos (1/2mπ) sin (1/2mπ) + 1/2mπ)
(
a2n2v + b2m2

)]
,

M c,III
mnm0 = −2 cab (−1/2nπ cos (1/2nπ) + sin (1/2nπ)) (2 cos (1/2mπ) sin (1/2mπ) +mπ)

π3mn2
,

MC,III
mnm0 = −

NC∑

s=1

2
Csys

b
sin
(
nπ ys

b

)(
cos

(
mπ xs

a

))2

. (3.A.77)
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15. Stiffness matrix elements for m = 0, and n 6= 0, k 6= 0, l 6= 0 with l 6= n:

Mm,III
kl0n = −4Kπ2 sin (1/2 kπ)n2

(
b2k2v + a2l2

)

b3a (l2 − n2) k
×

× (n sin (1/2 lπ) cos (1/2nπ) − l cos (1/2 lπ) sin (1/2nπ)) ,

M c,III
kl0n =

4 cab sin (1/2 kπ) (l cos (1/2 lπ) sin (1/2nπ) − n sin (1/2 lπ) cos (1/2nπ))
π2k (l2 − n2)

,

MC,III
kl0n = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2

cos
(
kπ xs

a

)
. (3.A.78)

16. Stiffness matrix elements for m = 0, and n 6= 0, k 6= 0, l 6= 0 with l = n:

Mm,III
kn0n = −Kπ2n sin (1/2 kπ)

(
b2k2v + a2n2

)
(−2 cos (1/2nπ) sin (1/2nπ) + nπ)
b3ak

,

M c,III
kn0n =

cab sin (1/2 kπ) (2 cos (1/2nπ) sin (1/2nπ) − nπ)
π2kn

,

MC,III
kn0n = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2

cos
(
kπ xs

a

)
. (3.A.79)

17. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k 6= m:

Mm,III
klm0 =

4πKm

ba3 (k2 −m2) l2

[(
4
((

1/2 a2l2v + 1/2 b2k2
)
m2 − a2k2l2 (−1 + v)

)
×

× sin (1/2mπ) cos (1/2 kπ) + 2
(
−b2k2 + a2l2 (v − 2)

)
k cos (1/2mπ) ×

× sin (1/2 kπ)m) sin (1/2 lπ) + cos (1/2 lπ) lmπ
(
a2l2v + b2k2

)
×

× (k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ))] ,

M c,III
klm0 = −8 cab [−1/2 lπ cos (1/2 lπ) + sin (1/2 lπ)]

π3 (k2 −m2) l2
×

× [k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)] ,

MC,III
klm0 = −

NC∑

s=1

2
Csys

b
cos

(
mπ xs

a

)
sin
(
lπ ys

b

)
cos

(
kπ xs

a

)
. (3.A.80)

18. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k = m:

Mm,III
mlm0 = −12mπK

ba3l2

[((
a2 (v − 2/3) l2 + 1/3 b2m2

)
sin (1/2mπ) cos (1/2mπ)

−1/6m
(
a2l2 (v − 2) − b2m2

)
π
)

sin (1/2 lπ)

−1/6π l cos (1/2 lπ) (cos (1/2mπ) sin (1/2mπ) + 1/2mπ)
(
a2l2v + b2m2

)]
,

M c,III
mlm0 =

cab (2 cos (1/2mπ) sin (1/2mπ) +mπ) (lπ cos (1/2 lπ) − 2 sin (1/2 lπ))
π3ml2

,

MC,III
mlm0 = −

NC∑

s=1

2
Csys

b

(
cos

(
mπ xs

a

))2

sin
(
lπ ys

b

)
. (3.A.81)
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19. Stiffness matrix elements for m = n = k = 0, and l 6= 0:

Mm,III
0l00 = 0 ,

M c,III
0l00 =

2 cab (lπ cos (1/2 lπ) − 2 sin (1/2 lπ))
l2π2

,

MC,III
0l00 = −

NC∑

s=1

2
Csys

b
sin
(
lπ ys

b

)
. (3.A.82)

20. Stiffness matrix elements for m = n = l = 0, and k 6= 0:

Mm,III
k000

= 0 , M c,III
k000

= −2 cab sin (1/2 kπ)
3 kπ

, MC,III
k000

= −
NC∑

s=1

4
Csys

2

b2
cos
(
kπ xs

a

)
.

(3.A.83)

21. Stiffness matrix elements for m = n = 0, and k 6= 0, l 6= 0:

Mm,III
kl00 = 0 ,

M c,III
kl00 =

4 cab sin (1/2 kπ) (lπ cos (1/2 lπ) − 2 sin (1/2 lπ))
π3kl2

,

MC,III
kl00 = −

NC∑

s=1

2
Csys

b
sin
(
lπ ys

b

)
cos

(
kπ xs

a

)
. (3.A.84)

22. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l 6= n:

Mm,III
klmn = − 4π2K

b3a3 (l − n) (l + n) (k −m) (k +m)

[(
l
(
−b2

(
−b2m2 + a2n2 (v − 2)

)
k2

+a2k2
(
b2m2v + a2n2

))
sin (1/2nπ) cos (1/2 lπ) − n sin (1/2 lπ) cos (1/2nπ) ×

×
(
−2 b2

(
a2 (−1 + v) l2 − 1/2 a2n2v − 1/2 b2m2

)
k2 + a2l2

(
b2m2v + a2n2

)))
×

×m sin (1/2mπ) cos (1/2 kπ) − k cos (1/2mπ) sin (1/2 kπ) (l sin (1/2nπ) ×
×
(
b2
(
a2n2v + b2m2

)
k2 +

((
b2m2v + a2n2

)
l2 − 2 b2m2n2 (−1 + v)

)
a2
)

×

× cos (1/2 lπ) − n sin (1/2 lπ) cos (1/2nπ)
(
b2
(
a2n2v + b2m2

)
k2

+l2a2
(
−b2 (v − 2)m2 + a2n2

)))]
,

M c,III
klmn = −4 cab [−k sin (1/2 kπ) cos (1/2mπ) +m cos (1/2 kπ) sin (1/2mπ)]

π2 (k2 −m2) (l2 − n2)
×

× [l cos (1/2 lπ) sin (1/2nπ) − n sin (1/2 lπ) cos (1/2nπ)] ,

MC,III
klmn = −

NC∑

s=1

Cs sin
(
nπ ys

b

)
cos

(
mπ xs

a

)
sin
(
lπ ys

b

)
cos

(
kπ xs

a

)
. (3.A.85)

23. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l 6= n:

Mm,III
mlmn = − 2π2K

a3b3m (l2 − n2)

[
−l
((
b4m4 + b2

(
l2v + 3 (v − 2/3)n2

)
a2m2 + a4l2n2

)
×

× sin (1/2mπ) cos (1/2mπ) + 1/2mπ
(
b4m4 + b2

(
l2v − n2 (v − 2)

)
a2m2

+a4l2n2
))

sin (1/2nπ) cos (1/2 lπ) +
((
b4m4 + 3 b2

(
(v − 2/3) l2 + 1/3n2v

)
×
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×a2m2 + a4l2n2
)

sin (1/2mπ) cos (1/2mπ) + 1/2m
(
b4m4 − b2

(
(v − 2) l2 − n2v

)
×

×a2m2 + a4l2n2
)
π
)

cos (1/2nπ) sin (1/2 lπ)n
]
,

M c,III
mlmn =

cab [2 cos (1/2mπ) sin (1/2mπ) +mπ]
π2m (l2 − n2)

×

× [l cos (1/2 lπ) sin (1/2nπ) − n sin (1/2 lπ) cos (1/2nπ)] ,

MC,III
mlmn = −

NC∑

s=1

Cs sin
(
nπ ys

b

)(
cos

(
mπ xs

a

))2

sin
(
lπ ys

b

)
. (3.A.86)

24. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l = n:

Mm,III
knmn =

2π2K

a3 (k2 −m2)nb3

[
−m sin (1/2mπ)

((
a4n4 + 3 b2

(
(v − 2/3) k2 + 1/3m2v

)
a2n2

+b4k2m2
)

sin (1/2nπ) cos (1/2nπ) − 1/2π
(
a4n4 − b2

(
(v − 2) k2 −m2v

)
a2n2

+b4k2m2
)
n
)

cos (1/2 kπ) + k
((
a4n4 + b2

(
k2v + 3m2 (v − 2/3)

)
a2n2

+b4k2m2
)

sin (1/2nπ) cos (1/2nπ) − 1/2
(
a4n4 + b2a2

(
k2v −m2 (v − 2)

)
n2

+b4k2m2
)
π n
)

sin (1/2 kπ) cos (1/2mπ)
]
,

M c,III
knmn =

2 cab [k sin (1/2 kπ) cos (1/2mπ) −m cos (1/2 kπ) sin (1/2mπ)]
π2 (k2 −m2)n

×

× [cos (1/2nπ) sin (1/2nπ) − 1/2nπ] ,

MC,III
knmn = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2

cos
(
mπ xs

a

)
cos

(
kπ xs

a

)
. (3.A.87)

25. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l = n:

Mm,III
mnmn =

π2K

a3b3nm

[(
sin (1/2nπ)

(
a2n2 + b2m2

)2
cos (1/2nπ) − 1/2nπ

(
b4m4

+4n2b2 (v − 1/2) a2m2 + a4n4
))

sin (1/2mπ) cos (1/2mπ)

+1/2πm
(
sin (1/2nπ)

(
b4m4 + 4n2b2 (v − 1/2) a2m2 + a4n4

)
cos (1/2nπ)

−1/2nπ
(
a2n2 + b2m2

)2
)]

,

M c,III
mnmn =

cab [cos (1/2nπ) sin (1/2nπ) − 1/2nπ] [2 cos (1/2mπ) sin (1/2mπ) +mπ]
2π2mn

,

MC,III
mnmn = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2 (
cos

(
mπ xs

a

))2

. (3.A.88)

3.A.3.5 Stiffness matrix elements for the employed trigonometric functions of type wIV
m,n

The stiffness matrix elements Mm,IV
klmn , M c,IV

klmn, and MC,IV
klmn for the employed trigonometric functions

of type wIV
m,n, for 25 combinations of k, l, m, and n, read as:

1. Stiffness matrix elements for k = l = m = n = 0:

Mm,IV
0000 =

32K (−1 + v)
ab

, M c,IV
0000 = −1

9
c a b , MC,IV

0000 = −
NC∑

s=1

16
Csxs

2ys

2

a2b2
. (3.A.89)
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2. Stiffness matrix elements for k = l = m = 0, and n 6= 0:

Mm,IV
000n =

32K (−1 + v) sin (1/2nπ)
ab

,

M c,IV
000n =

2 cab (nπ cos (1/2nπ) − 2 sin (1/2nπ))
3π2n2

,

MC,IV
000n = −

NC∑

s=1

8
Csxs

2ys

a2b
sin
(
nπ ys

b

)
. (3.A.90)

3. Stiffness matrix elements for k = l = n = 0, and m 6= 0:

Mm,IV
00m0 =

32K (−1 + v) sin (1/2mπ)
ab

,

M c,IV
00m0 =

2 cab (mπ cos (1/2mπ) − 2 sin (1/2mπ))
3π2m2

,

MC,IV
00m0 = −

NC∑

s=1

8
Csys

2xs

b2a
sin
(
mπ xs

a

)
. (3.A.91)

4. Stiffness matrix elements for k = l = 0, and m 6= 0, n 6= 0:

Mm,IV
00mn =

32K (−1 + v) sin (1/2mπ) sin (1/2nπ)
ab

,

M c,IV
00mn =

8 cab (−1/2nπ cos (1/2nπ) + sin (1/2nπ)) (mπ cos (1/2mπ) − 2 sin (1/2mπ))
π4m2n2

,

MC,IV
00mn = −

NC∑

s=1

4
Csxs ys

ab
sin
(
nπ ys

b

)
sin
(
mπ xs

a

)
. (3.A.92)

5. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l 6= n:

Mm,IV
0l0n = − 2Kπ n l

3 ab3l2 − 3 ab3n2

(
− sin (1/2nπ)

(
a2l2π2 − 24 b2 (−1 + v)

)
×

×n cos (1/2 lπ) + sin (1/2 lπ) cos (1/2nπ)
(
a2n2π2 − 24 b2 (−1 + v)

)
l
)
,

M c,IV
0l0n =

2 cab (l cos (1/2 lπ) sin (1/2nπ) − n sin (1/2 lπ) cos (1/2nπ))
(3 l2 − 3n2)π

,

MC,IV
0l0n = −

NC∑

s=1

4
Csxs

2

a2
sin
(
nπ ys

b

)
sin
(
lπ ys

b

)
. (3.A.93)

6. Stiffness matrix elements for m = k = 0, and n 6= 0, l 6= 0 with l = n:

Mm,IV
0n0n = −Kπn

6 ab3

[
−2

(
a2n2π2 + 24 b2 (−1 + v)

)
sin (1/2nπ) cos (1/2nπ)

+π
(
a2n2π2 − 24 b2 (−1 + v)

)
n
]
,

M c,IV
0n0n = −cab (−2 cos (1/2nπ) sin (1/2nπ) + nπ)

6nπ
,

MC,IV
0n0n = −

NC∑

s=1

4
Csxs

2

a2

(
sin
(
nπ ys

b

))2

. (3.A.94)
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7. Stiffness matrix elements for n = k = 0, and m 6= 0, l 6= 0:

Mm,IV
0lm0 =

16K
ab

[((v − 2) sin (1/2mπ) + 1/2mvπ cos (1/2mπ)) sin (1/2 lπ)

+1/2 (−1/2mπ cos (1/2mπ) + sin (1/2mπ)) vπ cos (1/2 lπ) l] ,

M c,IV
0lm0 =

8 cab (−1/2mπ cos (1/2mπ) + sin (1/2mπ)) (lπ cos (1/2 lπ) − 2 sin (1/2 lπ))
π4m2l2

,

MC,IV
0lm0 = −

NC∑

s=1

4
Csys xs

ba
sin
(
mπ xs

a

)
sin
(
lπ ys

b

)
. (3.A.95)

8. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l 6= n:

Mm,IV
0lmn =

4Kπ l
b3am2 (l2 − n2)

[(
2
((
b2m2v + a2n2

)
l2 − 2 b2m2n2 (−1 + v)

)
sin (1/2nπ) ×

× cos (1/2 lπ) − 2n cos (1/2nπ) sin (1/2 lπ)
(
−b2 (v − 2)m2 + a2n2

)
l
)

×

× sin (1/2mπ) + cos (1/2mπ) lmπ
(
b2m2v + a2n2

)
(n sin (1/2 lπ) cos (1/2nπ)

−l cos (1/2 lπ) sin (1/2nπ))] ,

M c,IV
0lmn = −8

cba [n sin (1/2 lπ) cos (1/2nπ) − l cos (1/2 lπ) sin (1/2nπ)]
π3m2 (l2 − n2)

×

× [−1/2mπ cos (1/2mπ) + sin (1/2mπ)] ,

MC,IV
0lmn = −

NC∑

s=1

2
Csxs

a
sin
(
nπ ys

b

)
sin
(
mπ xs

a

)
sin
(
lπ ys

b

)
. (3.A.96)

9. Stiffness matrix elements for k = 0, and m 6= 0, n 6= 0, l 6= 0 with l = n:

Mm,IV
mn0n =

4K nπ

b3am2

[((
3 (v − 2/3) b2m2 + a2n2

)
sin (1/2nπ) cos (1/2nπ)

−1/2π
(
−b2 (v − 2)m2 + a2n2

)
n
)

sin (1/2mπ) − 1/2π×

×
(
b2m2v + a2n2

)
cos (1/2mπ) (cos (1/2nπ) sin (1/2nπ) − 1/2nπ)m

]
,

M c,IV
mn0n = −2 cab (mπ cos (1/2mπ) − 2 sin (1/2mπ)) (cos (1/2nπ) sin (1/2nπ) − 1/2nπ)

π3m2n
,

MC,IV
mn0n = −

NC∑

s=1

2
Csxs

a

(
sin
(
nπ ys

b

))2

sin
(
mπ xs

a

)
. (3.A.97)

10. Stiffness matrix elements for m = l = 0, and n 6= 0, k 6= 0:

Mm,IV
k00n = −16K

ba
[((v − 2) sin (1/2nπ) + 1/2nvπ cos (1/2nπ)) sin (1/2 kπ)

+1/2 vπ cos (1/2 kπ) (−1/2nπ cos (1/2nπ) + sin (1/2nπ)) k] ,

M c,IV
k00n =

8 cab (−1/2nπ cos (1/2nπ) + sin (1/2nπ)) (kπ cos (1/2 kπ) − 2 sin (1/2 kπ))
k2π4n2

,

MC,IV
k00n = −

NC∑

s=1

4
Csxs ys

ba
sin
(
nπ ys

b

)
sin
(
kπ xs

a

)
. (3.A.98)
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11. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k 6= m:

Mm,IV
k0m0 =

48K πmk

3 a3bk2 − 3 a3bm2

[(
1/24 b2k2π2 − a2 (−1 + v)

)
sin (1/2mπ)m cos (1/2 kπ)

+ sin (1/2 kπ) cos (1/2mπ)
(
−1/24 b2m2π2 + a2 (−1 + v)

)
k
]
,

M c,IV
k0m0 =

2 cab (−m sin (1/2 kπ) cos (1/2mπ) + k cos (1/2 kπ) sin (1/2mπ))
(3 k2 − 3m2)π

,

MC,IV
k0m0 = −

NC∑

s=1

4
Csys

2

b2
sin
(
mπ xs

a

)
sin
(
kπ xs

a

)
. (3.A.99)

12. Stiffness matrix elements for n = l = 0, and m 6= 0, k 6= 0 with k = m:

Mm,IV
m0m0 =

4πKm

a3b

[
2
(
1/24 b2m2π2 + a2 (−1 + v)

)
sin (1/2mπ) cos (1/2mπ)

+π
(
−1/24 b2m2π2 + a2 (−1 + v)

)
m
]
,

M c,IV
m0m0 = −cab (−2 cos (1/2mπ) sin (1/2mπ) +mπ)

6mπ
,

MC,IV
m0m0 = −

NC∑

s=1

4
Csys

2

b2

(
sin
(
mπ xs

a

))2

. (3.A.100)

13. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k 6= m:

Mm,IV
k0mn =

4Kπ k
a3b (k2 −m2)n2

[(
2 sin (1/2mπ)

((
a2n2v + b2m2

)
k2 − 2 a2m2n2 (−1 + v)

)
×

× cos (1/2 kπ) + 2 cos (1/2mπ)
(
−b2m2 + a2n2 (v − 2)

)
sin (1/2 kπ)mk

)
×

× sin (1/2nπ) + cos (1/2nπ) knπ
(
a2n2v + b2m2

)
(m sin (1/2 kπ) cos (1/2mπ)

−k cos (1/2 kπ) sin (1/2mπ))] ,

M c,IV
k0mn =

4 cab [m sin (1/2 kπ) cos (1/2mπ) − k cos (1/2 kπ) sin (1/2mπ)]
π3 (k2 −m2)n2

×

× [nπ cos (1/2nπ) − 2 sin (1/2nπ)] ,

MC,IV
k0mn = −

NC∑

s=1

2
Csys

b
sin
(
nπ ys

b

)
sin
(
mπ xs

a

)
sin
(
kπ xs

a

)
. (3.A.101)

14. Stiffness matrix elements for l = 0, and m 6= 0, n 6= 0, k 6= 0 with k = m:

Mm,IV
mnm0 =

12Kπm
a3bn2

[(
sin (1/2mπ)

(
a2 (v − 2/3)n2 + 1/3 b2m2

)
cos (1/2mπ)

+1/6
(
−b2m2 + a2n2 (v − 2)

)
πm

)
sin (1/2nπ) − 1/6

(
a2n2v + b2m2

)
×

× (cos (1/2mπ) sin (1/2mπ) − 1/2mπ)π cos (1/2nπ]n) ,

M c,IV
mnm0 = −2 cab [−1/2nπ cos (1/2nπ) + sin (1/2nπ)]

mπ3n2
×

× [−2 cos (1/2mπ) sin (1/2mπ) +mπ] ,

MC,IV
mnm0 = −

NC∑

s=1

2
Csys

b
sin
(
nπ ys

b

)(
sin
(
mπ xs

a

))2

. (3.A.102)
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15. Stiffness matrix elements for m = 0, and n 6= 0, k 6= 0, l 6= 0 with l 6= n:

Mm,IV
kl0n =

8nKπ
b3k2a (l2 − n2)

[(
−
((
b2k2v + a2l2

)
n2 − 2 b2k2l2 (−1 + v)

)
sin (1/2 lπ)

cos (1/2nπ) + n cos (1/2 lπ)
(
−b2 (v − 2) k2 + a2l2

)
sin (1/2nπ) l

)

sin (1/2 kπ) − 1/2 cos (1/2 kπ)π kn
(
b2k2v + a2l2

)
(l cos (1/2 lπ) sin (1/2nπ)

−n sin (1/2 lπ) cos (1/2nπ))] ,

M c,IV
kl0n = −8 cab [−1/2 kπ cos (1/2 kπ) + sin (1/2 kπ)]

k2π3 (l2 − n2)
×

× [n sin (1/2 lπ) cos (1/2nπ) − l cos (1/2 lπ) sin (1/2nπ)] ,

MC,IV
kl0n = −

NC∑

s=1

2
Csxs

a
sin
(
nπ ys

b

)
sin
(
lπ ys

b

)
sin
(
kπ xs

a

)
. (3.A.103)

16. Stiffness matrix elements for l = 0, and m = 0, and n 6= 0, k 6= 0, l 6= 0 with l = n:

Mm,IV
kn0n =

4Kπ n
ab3k2

[((
3 b2 (v − 2/3) k2 + a2n2

)
sin (1/2nπ) cos (1/2nπ)

−1/2π
(
−b2 (v − 2) k2 + a2n2

)
n
)

sin (1/2 kπ)

−1/2 (cos (1/2nπ) sin (1/2nπ) − 1/2nπ)π
(
b2k2v + a2n2

)
cos (1/2 kπ) k

]
,

M c,IV
kn0n = −2 cab (kπ cos (1/2 kπ) − 2 sin (1/2 kπ)) (cos (1/2nπ) sin (1/2nπ) − 1/2nπ)

k2π3n
,

MC,IV
kn0n = −

NC∑

s=1

2
Csxs

a

(
sin
(
nπ ys

b

))2

sin
(
kπ xs

a

)
. (3.A.104)

17. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k 6= m:

Mm,IV
klm0 =

4mKπ

ba3 (k2 −m2) l2

[(
4
((

−1/2 a2l2v − 1/2 b2k2
)
m2 + a2k2l2 (−1 + v)

)
×

× sin (1/2 kπ) cos (1/2mπ) − 2m
(
−b2k2 + a2l2 (v − 2)

)
cos (1/2 kπ) ×

× sin (1/2mπ) k) sin (1/2 lπ) + cos (1/2 lπ) lmπ
(
a2l2v + b2k2

)
×

× (m sin (1/2 kπ) cos (1/2mπ) − k cos (1/2 kπ) sin (1/2mπ))] ,

M c,IV
klm0 = −8 cab [m sin (1/2 kπ) cos (1/2mπ) − k cos (1/2 kπ) sin (1/2mπ)]

π3l2 (k2 −m2)
×

× [−1/2 lπ cos (1/2 lπ) + sin (1/2 lπ)] ,

MC,IV
klm0 = −

NC∑

s=1

2
Csys

b
sin
(
mπ xs

a

)
sin
(
lπ ys

b

)
sin
(
kπ xs

a

)
. (3.A.105)

18. Stiffness matrix elements for n = 0, and m 6= 0, k 6= 0, l 6= 0 with k = m:

Mm,IV
mlm0 =

12Kπm
ba3l2

[(
sin (1/2mπ)

(
a2 (v − 2/3) l2 + 1/3 b2m2

)
cos (1/2mπ)

+1/6
(
a2l2 (v − 2) − b2m2

)
πm

)
sin (1/2 lπ) − 1/6 (cos (1/2mπ) ×

× sin (1/2mπ) − 1/2mπ)
(
a2l2v + b2m2

)
π cos (1/2 lπ) l

]
,
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M c,IV
mlm0 = −2 cab (lπ cos (1/2 lπ) − 2 sin (1/2 lπ)) (cos (1/2mπ) sin (1/2mπ) − 1/2mπ)

mπ3l2
,

MC,IV
mlm0 = −

NC∑

s=1

2
Csys

b

(
sin
(
mπ xs

a

))2

sin
(
lπ ys

b

)
. (3.A.106)

19. Stiffness matrix elements for m = n = k = 0, and l 6= 0:

Mm,IV
0l00 =

32K (−1 + v) sin (1/2 lπ)
ba

,

M c,IV
0l00 =

2 cab (lπ cos (1/2 lπ) − 2 sin (1/2 lπ))
3 l2π2

,

MC,IV
0l00 = −

NC∑

s=1

8
Csxs

2ys

a2b
sin
(
kπ ys

b

)
. (3.A.107)

20. Stiffness matrix elements for m = n = l = 0, and k 6= 0:

Mm,IV
k000 =

32K (−1 + v) sin (1/2 kπ)
ba

,

M c,IV
k000 =

2 cab (kπ cos (1/2 kπ) − 2 sin (1/2 kπ))
3 k2π2

,

MC,IV
k000 = −

NC∑

s=1

8
Csxs ys

2

ab2
sin
(
kπ xs

a

)
. (3.A.108)

21. Stiffness matrix elements for m = n = 0, and k 6= 0, l 6= 0:

Mm,IV
kl00 =

32K (−1 + v) sin (1/2 kπ) sin (1/2 lπ)
ba

,

M c,IV
kl00 =

8 cab (−1/2 lπ cos (1/2 lπ) + sin (1/2 lπ)) (kπ cos (1/2 kπ) − 2 sin (1/2 kπ))
k2π4l2

,

MC,IV
kl00 = −

NC∑

s=1

4
Csxs ys

ba
sin
(
lπ ys

b

)
sin
(
kπ xs

a

)
. (3.A.109)

22. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l 6= n:

Mm,IV
klmn = − 4Kπ2

b3a3 (l − n) (l + n) (k −m) (k +m)
[sin (1/2mπ) (sin (1/2nπ) l×

×
(
b2
(
a2n2v + b2m2

)
k2 + a2

((
b2m2v + a2n2

)
l2 − 2 b2m2n2 (−1 + v)

))
×

× cos (1/2 lπ) −
(
b2
(
a2n2v + b2m2

)
k2 +

(
−b2 (v − 2)m2 + a2n2

)
a2l2

)
×

× cos (1/2nπ)n sin (1/2 lπ)) k cos (1/2 kπ) −
(
sin (1/2nπ)

(
−b2

(
−b2m2

+a2n2 (v − 2)
)
k2 + a2l2

(
b2m2v + a2n2

))
l cos (1/2 lπ) − cos (1/2nπ)n×

×
(
−2

(
a2 (−1 + v) l2 − 1/2 a2n2v − 1/2 b2m2

)
b2k2 + a2l2

(
b2m2v + a2n2

))
×

× sin (1/2 lπ))m cos (1/2mπ) sin (1/2 kπ)] ,

M c,IV
klmn = −4 cab [m sin (1/2 kπ) cos (1/2mπ) − k cos (1/2 kπ) sin (1/2mπ)]

π2 (k2 −m2) (l2 − n2)
×

× [n sin (1/2 lπ) cos (1/2nπ) − l cos (1/2 lπ) sin (1/2nπ)] ,
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MC,IV
klmn = −

NC∑

s=1

Cs sin
(
nπ ys

b

)
sin
(
mπ xs

a

)
sin
(
lπ ys

b

)
sin
(
kπ xs

a

)
. (3.A.110)

23. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l 6= n:

Mm,IV
mlmn =

2Kπ2

a3b3m (l2 − n2)

[
− sin (1/2nπ)

(
sin (1/2mπ)

(
b4m4 + a2b2

(
l2v

+3 (v − 2/3)n2
)
m2 + a4l2n2

)
cos (1/2mπ) − 1/2π

(
b4m4 + a2

(
l2v

−n2 (v − 2)
)
b2m2 + a4l2n2

)
m
)
l cos (1/2 lπ) +

((
b4m4 + 3 a2

(
(v − 2/3) l2

+1/3n2v
)
b2m2 + a4l2n2

)
sin (1/2mπ) cos (1/2mπ) − 1/2

(
b4m4

−
(
(v − 2) l2 − n2v

)
a2b2m2 + a4l2n2

)
πm

)
n cos (1/2nπ) sin (1/2 lπ)

]
,

M c,IV
mlmn = −cab [−2 cos (1/2mπ) sin (1/2mπ) +mπ]

mπ2 (l2 − n2)
×

× [n sin (1/2 lπ) cos (1/2nπ) − l cos (1/2 lπ) sin (1/2nπ)] ,

MC,IV
mlmn = −

NC∑

s=1

Csl sin
(
nπ ys

b

)(
sin
(
mπ xs

a

))2

sin
(
lπ ys

b

)
. (3.A.111)

24. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k 6= m and l = n:

Mm,IV
knmn =

2Kπ2

a3 (k2 −m2) b3n

[
− sin (1/2mπ)

((
a4n4 + a2

(
k2v + 3m2 (v − 2/3)

)
b2n2

+b4k2m2
)

sin (1/2nπ) cos (1/2nπ) − 1/2nπ
(
a4n4 + a2

(
k2v −m2 (v − 2)

)
b2n2

+b4k2m2
))
k cos (1/2 kπ) + cos (1/2mπ)

((
a4n4 + 3

(
(v − 2/3) k2 + 1/3m2v

)
×

×a2b2n2 + b4k2m2
)

sin (1/2nπ) cos (1/2nπ) − 1/2
(
a4n4 − a2

(
(v − 2) k2 −m2v

)
×

×b2n2 + b4k2m2
)
nπ
)

sin (1/2 kπ)m
]
,

M c,IV
knmn =

2 cab [cos (1/2nπ) sin (1/2nπ) − 1/2nπ]
π2 (k2 −m2)n

×

× [m sin (1/2 kπ) cos (1/2mπ) − k cos (1/2 kπ) sin (1/2mπ)] ,

MC,IV
knmn = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2

sin
(
mπ xs

a

)
sin
(
kπ xs

a

)
. (3.A.112)

25. Stiffness matrix elements for k 6= 0, l 6= 0, m 6= 0 and n 6= 0, with k = m and l = n:

Mm,IV
mnmn = − Kπ2

a3b3nm

[
sin (1/2mπ)

(
sin (1/2nπ)

(
a2n2 + b2m2

)2
cos (1/2nπ)

−1/2π
(
b4m4 + 4 a2 (v − 1/2) b2n2m2 + a4n4

)
n
)

cos (1/2mπ)

−1/2
(
sin (1/2nπ)

(
b4m4 + 4 a2 (v − 1/2) b2n2m2 + a4n4

)
cos (1/2nπ)

−1/2nπ
(
a2n2 + b2m2

)2
)
πm

]
,

M c,IV
mnmn =

cab (−2 cos (1/2mπ) sin (1/2mπ) +mπ) (cos (1/2nπ) sin (1/2nπ) − 1/2nπ)
2mπ2n

,
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MC,IV
mnmn = −

NC∑

s=1

Cs

(
sin
(
nπ ys

b

))2 (
sin
(
mπ xs

a

))2

. (3.A.113)
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Chapter 4

Concrete pavements subjected to hail showers:
A semi-analytical thermoelastic multiscale
analysis

Authored by: Hui Wang, Raphael Höller, Mehdi Aminbaghai, Christian Hellmich, Yong Yuan,

Herbert A. Mang, and Bernhard L.A. Pichler

Published in: Engineering Structures 200 (2019) 109677, https://doi.org/dbz9

Abstract

Climate changes result in an increase of extreme weather events. Concrete pavements e.g. may be
subjected more frequently to hail showers, following significant solar heating of their top surface.
This scenario is studied by means of multiscale thermoelastic analysis. The semi-analytical
solution of the heat conduction problem provides access to the temperature fields inside the
pavement plates. The thermal expansion coefficient, the modulus of elasticity, and Poisson’s ratio
of concrete are homogenized based on the Mori-Tanaka scheme. The thermoelastic analysis of
pavement plates, resting on an elastic Winkler foundation, is based on the Kirchhoff hypothesis
and a Vlasov-type of structural analysis. This delivers macroscopic stress states of the concrete.
Finally, top-down scale transition is used to compute the average stresses, experienced by the
three concrete constituents: cement paste, fine aggregates, and coarse aggregates, and by the
interfacial transition zones (ITZs), covering the aggregates. This mode of analysis is applied
to a realistic pavement plate. It is found that the stresses in concrete pavements subjected
to temperature changes are governed by self-equilibrated thermal stresses resulting from non-
stationary heat conduction. In case of a sudden hail shower, these stresses are likely to reach
the tensile strength of concrete. Cracking starts at the ITZs, representing the weakest link of
the microstructure. From quantitative thermoelastic analysis it is concluded that hail showers
represent a serious threat for the integrity of the top layer of concrete pavements and, thus, for
the long-term durability of such pavements.

Contribution by the author: The author of the present thesis contributed the series-based
solution procedure for the structural analysis of the concrete pavement. Corresponding deforma-
tion and stress measures were solved iteratively, ensuring an elastic Winkler foundation which is
active in compression only. Furthermore, normal stresses induced by the eigendistortions of the
generators of the plate were validated by FE simulations.
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4.1 Introduction

Concrete pavements are exposed to variable ambient conditions, both in terms of temperature
and relative humidity. The stresses/strains in concrete pavements resulting from temperature
variations were studied both experimentally Wei et al. [2017] and analytically [Nishizawa et al.,
2009; Choubane and Tia, 1992; Zhang et al., 2003]. The stresses were found to be of the same
magnitude or even larger than those resulting from the traffic running over the pavements
[Mahboub et al., 2004]. Furthermore, the damage resulting from hail showers was reported to
increase significantly over the last few decades, possibly related to climate changes [Changnon,
2009; Kunz et al., 2009]. This provides the motivation for the present paper. In this work,
semi-analytical formulae for multiscale analysis of concrete pavements, subjected to nonstationary
heat conduction in the thickness direction, are used and exemplarily applied to a concrete
pavement subjected to a hail shower.

As regards engineering design of concrete pavements subjected to thermal loading, West-
ergaard [Westergaard, 1927] developed an analytical solution for thin infinite plates, resting
on an elastic Winkler foundation. Correction factors for rectangular thin plates with finite
dimensions were developed by Bradbury [Bradbury, 1938]. Thick plates, resting on a Pasternak
foundation, were analyzed by Shi et al. [Shi et al., 1993, 1994, 2000]. In the USA, design of
pavements nowadays follows the Mechanistic Empirical Pavement Design Guide (ME-PDG)
[National Cooperative Highway Research Program, 2004]. The described guidelines refer to
“temperature gradients”, meaning that they are based on the assumption of a linear distribution
of temperature along the thickness of the plate.

In reality, however, the temperature is typically distributed in a nonlinear fashion over the
thickness of the pavement plates, see, e.g., [Wei et al., 2017; Teller and Sutherland, 1935]. In order
to account for this nonlinearity, Thomlinson [Thomlinson, 1940] subdivided the temperature
distributions into a constant, a linear, and a nonlinear part. This has led to several follow-up
research activities, e.g. description of temperature distributions using quadratic [Choubane and
Tia, 1992; Zhang et al., 2003; Choubane and Tia, 1995] or cubic polynomials [Zhang et al.,
2003; Mohamed and Hansen, 1996, 1997] and presentation of a Finite-Element solution to the
general problem of multi-layered concrete pavements subjected to arbitrary temperature fields by
Ioannides and Khazanovich [Ioannides and Khazanovich, 1998]. These contributions highlighted
the importance of the nonlinear part of the temperature profiles for the stress states inside the
pavement plates. The nonlinearity of the temperature field will also be explicitly considered in
the present paper.

As for scientific research on concrete pavements subjected to thermal loading, structural
analysis is nowadays frequently carried out by three-dimensional Finite Element simulations
for pavements with free edges [Nishizawa et al., 2009; Pane et al., 1998] or restrained edges
because of dowels connecting neighboring plates across joints [Mahboub et al., 2004; Masad et al.,
1996; William and Shoukry, 2001], also including implications for design [Ioannides and Peng,
2004]. The semi-analytical solution for thin rectangular plates with free boundaries, resting on
an elastic Winkler foundation, developed by Vlasov and Leont’ev [Vlasov and Leont’ev, 1966], is
also frequently used. However, this solution was found to entail systematic errors, because it
assumes that the ansatz functions satisfy the stress-free boundary conditions prevailing along the
edges of pavement plates. Since such ansatz functions do not exist, the free boundary conditions
are violated. This results in bending moments and shear forces at the edges of the plate [Höller
et al., 2019]. A rigorous amendment of the theory by Vlasov and Leont’ev was recently derived,
based on the principle of virtual power [Höller et al., 2019]. This principle will be used in the
present paper.
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The thermal expansion coefficient of concrete is of prime importance for cracking, faulting,
and the reachable service life of pavements subjected to thermal loading [Mallela et al., 2005;
McCarthy et al., 2015]. As for cracking, in situ monitoring and laboratory testing of jointed
concrete pavements [Kohler and Kannekanti, 2008] and continuously reinforced concrete pave-
ments [McCullough et al., 2000] have clarified that the crack spacing decreases with increasing
thermal expansion coefficient of concrete. This provides the motivation for the present paper,
wherein special attention is paid to the thermal expansion of concrete.

The thermal expansion coefficient of concrete depends on the initial composition, the age, and
the internal relative humidity (RH) of the material [Emanuel and Hulsey, 1977; Sakyi-Bekoe,
2008; Alungbe et al., 1992]. Several experimental studies have elucidated the importance of the
type and the volume fraction of the aggregates [Bonnell and Harper, 1950; Mukhopadhyay et al.,
2007; Tasneem et al., 2014; Naik et al., 2011; Chung and Shin, 2010; Won, 2005]. In more detail,
siliceous aggregates result in a larger thermal expansion coefficient of concrete, compared to
carbonate aggregates [Bonnell and Harper, 1950; Mukhopadhyay et al., 2007; Tasneem et al.,
2014; Naik et al., 2011]. A linear relation between the thermal expansion coefficient of concrete
and the volume fraction of coarse aggregates was reported in [Chung and Shin, 2010; Won,
2005]. In addition, the thermal expansion coefficient of concrete depends on the internal relative
humidity [Chung and Shin, 2010; Bonnell and Harper, 1950], because the thermal expansion
coefficient of the cement paste is a nonlinear function of this quantity, see Fig. 4.1. Its maximum
value occurs around RH = 65%. It is almost twice as large as the minimum value, observed
at RH = 100% [Emanuel and Hulsey, 1977; Wang et al., 2018b]. The rather complex thermal
expansion behavior of cement pastes was recently found to be a consequence of spontaneous and
reversible uptake/release of water by nanoscopic hydrates, resulting from a decrease/increase
of the temperature [Wyrzykowski et al., 2017; Wang et al., 2018b]. As for modeling of thermal

0 20 40 60 80 100
0

4

8

12

16

20

24

Emanuel et al.

Meyers

Mitchell

Dettling

Fig. 4.1: Relation between the thermal expansion coefficient of cement paste and the internal
relative humidity: experimental data from Meyers [Meyers, 1951], Mitchell [Mitchell,
1953], and Dettling [Dettling, 1962], measurements on mature cement pastes with initial
water-to-cement mass ratios w/c ∈ [ 0.12 , 0.40 ], and regression curve by Emanuel and
Hulsey [Emanuel and Hulsey, 1977].

expansion coefficients, there are empirical approaches [Emanuel and Hulsey, 1977; Mukhopadhyay
et al., 2007], stochastic multiscale approaches [Liu et al., 2013], and micromechanics models,
see, e.g. [Wang et al., 2018b] for the cement paste and [Zhou et al., 2013, 2014; Wang et al.,
2018a] for concrete. These models were also utilized for quantification of the thermal expansion
coefficients of heterogeneous porous materials [Ghabezloo, 2012] and fiber-reinforced composites
[Kundalwal and Ray, 2013, 2014; Kundalwal, 2018]. They link the microscopic properties of the
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4 Concrete pavements subjected to hail showers 103

constituents to the macroscopic behavior of the composite [Wang et al., 2018a; Kundalwal and
Ray, 2016]. In the present paper, multiscale methods of continuum micromechanics will be used,
see [Wang et al., 2018b,a].

The mismatch of the thermal expansion coefficients of the constituents of concrete [Bažant and
Kaplan, 1996], i.e. of the “cement paste” and of the “aggregates”, is another source of microscopic
stress fluctuations in concrete samples [Sumarac and Krasulja, 1998; Fu et al., 2004a,b,c]. In more
detail, Sumarac and Krasulja concluded that already a moderate temperature change can lead to
substantial microcracking in the interfacial region between the aggregates and the surrounding
cement paste [Sumarac and Krasulja, 1998]. Similar conclusions were drawn by Fu et al., based
on Scanning Electron Microscopy [Fu et al., 2004a] and 2D mesoscopic thermoelastic damage
modeling [Fu et al., 2004b,c]. Employing a three-phase shear lag model, Ray and Kundalwal
[Ray and Kundalwal, 2014] studied the interfacial stresses of heterogeneous composites subjected
to thermomechanical loading. This provides the motivation to derive analytical formulae for the
stresses of the constituents of concrete and in the interfacial transition zones (ITZs) between the
concrete aggregates and the cement paste matrix.

In the present paper, a thermoelastic multiscale model for concrete pavements, subjected
to nonstationary heat conduction, is established. Formulae for semi-analytic quantification
of macroscopic and microscopic stress states in concrete pavements are derived. At first, a
semi-analytical solution of the heat conduction along the thickness of the pavement is presented.
This is followed by analytical formulae for bottom-up homogenization of the thermal expansion
coefficient, the modulus of elasticity, and Poisson’s ratio of concrete. The analysis proceeds with
quantifying macroscopic stresses of concrete, based on explicit consideration of the Kirchhoff
hypothesis of thin plates. In this framework, macroscopic thermal stresses are quantified as a result
of three parts of the thermal eigenstrains: the eigenstretches of the plate, the eigencurvatures
of the plate, and the eigendistortions of the generators of the plate. The latter cannot develop,
because the generators of the plate must remain straight according to the Kirchhoff hypothesis,
and, thus, result in self-equilibrated thermal stresses. The bending-induced stresses, resulting
from the eigencurvatures, are quantified by means of structural analysis, referring to a thin
rectangular plate that rests on an elastic Winkler foundation. In this context, the approach
by Höller et al. [Höller et al., 2019] is extended towards iterative determination of the partial
loss of contact between the plate and its subgrade, resulting from the eigencurvature. Based
on the computed temperature changes and the macroscopic stresses of the concrete, top-down
scale transitions are carried out in order to quantify the average microscopic stresses of the
constituents of concrete: cement paste, fine aggregates, and coarse aggregates. New analytical
formulae are derived within the conceptual framework of strain concentration and eigenstrain
influence tensors [Pichler and Hellmich, 2010]. Finally, stress states in interfacial transition zones
are computed, extending the approach of Königsberger et al. [Königsberger et al., 2014a,b] to
consideration of temperature changes.

The paper is structured as follows: The elements of multiscale thermoelastic analysis of
concrete pavements are described in Section 4.2. Such analysis is then applied exemplarily to a
concrete pavement, subjected to a sudden hail shower after solar heating of the top surface, see
Section 4.3. Concluding remarks are given in Section 4.4.
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4 Concrete pavements subjected to hail showers 104

4.2 Elements of multiscale thermoelastic analysis of concrete

pavements

4.2.1 Semi-analytical analysis of heat conduction in the thickness direction

The temperature distribution inside concrete pavements governs their thermoelastic behavior.
In situ measurements indicate large daily temperature changes at the top surface of concrete
pavements subjected to solar radiation, and little changes at the bottom surface [Belshe et al.,
2010]. As for the further analysis, this situation is idealized as follows: An isothermal initial
configuration, characterized by a reference temperature Tref , is assumed to remain constant at
the bottom surface of the plate. The temperature at the top surface, however, is assumed to
evolve according to a known function of time t. The lateral surfaces are treated as thermally
insulated. This results in one-dimensional heat conduction in the thickness direction of the plate,
i.e. in the z-direction, see Fig. 4.2. The resulting history of the temperature field, T (z, t), is

bottom surface

surfaces with thermal insulation

h

z

y

x

ℓy

ℓx

top surface T (z=−h
2
, t) = Tref +∆T top(t)

T (z=+h
2
, t) = Tref

elastic Winkler foundation

Fig. 4.2: One-dimensional heat conduction over the thickness of the plate.

obtained from the partial differential equation of heat conductivity. For one-dimensional heat
conduction, it is given as

∂T

∂t
− a

∂2T

∂z2
= 0 , (4.1)

where a = k/(cp · ρ) stands for the thermal diffusivity of concrete, depending on its thermal
conductivity k, its specific heat capacity cp, and its mass density ρ. Because of the linearity of
this partial differential equation, the superposition principle applies. Thus, every given history of
the temperature of the top surface can be discretized in a step-wise fashion (Fig. 4.3). This refers
to temperature increments ∆T top

i at time instants ti, with i = 1, 2, . . . , Ni, where Ni stands for
the total number of temperature steps considered. The overall solution of the heat conduction
problem is obtained by superposition of the solutions for the individual temperature steps [Wang
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et al., 2018a; Louhghalam and Ulm, 2016]. Denoting the thickness of the plate as h, the effective
temperature change is given as

∆T (z, t) =
Ni∑

i=1

∆T top
i

(
1
2

− z

h

)

−
∞∑

n=1

∆T top
i (−1)n

nπ
sin
(

2nπ
z

h

)
exp

[
−(2nπ)2a 〈t− ti〉

h2

]

+
∞∑

n=1

2 ∆T top
i (−1)n

(2n− 1)π
cos

[
(2n− 1)π

z

h

]
exp

[
−(2n− 1)2 π2 a 〈t− ti〉

h2

]
,

(4.2)

where 〈 〉 stands for the Macaulay operator, defined as

〈t− ti〉 :=
1
2

(
t− ti + |t− ti|

)
. (4.3)

The temperature changes over the thickness of the plate, see Eq. (4.2), enter the structural
analysis of concrete pavements as input. In addition, also the thermal expansion coefficient of
concrete and the elastic stiffness of the material must be quantified. This can be done by means
of homogenization, as described in the following.

0

    0

Fig. 4.3: Boundary conditions used for the solution of the heat conduction problem: constant
reference temperature, Tref , at the bottom surface of the plate and step-wise evolution
of the temperature at the top surface.

4.2.2 Bottom-up homogenization of thermoelastic properties of concrete

Concrete is a matrix-inclusion composite, with coarse aggregates embedded as inclusions in a
continuous matrix made of mortar, see Fig. 4.4 (a). At the next smaller scale of observation,
also mortar is a matrix-inclusion composite, with fine aggregates embedded as inclusions in a
continuous matrix made of cement paste, see Fig. 4.4 (b).

As for homogenization of matrix-inclusion composites, the Mori-Tanaka scheme [Mori and
Tanaka, 1973; Benveniste, 1987] is well-suited [Zaoui, 2002]. The required input values are
the thermoelastic properties and the volumetric dosages of the two constituents: the matrix
phase and the inclusion phase. This work is restricted to isotropic material phases and spherical
inclusions. Denoting the bulk modulus of the matrix as km, the shear modulus as µm, and the
volume fraction as fm, as well as the corresponding values of the inclusions as ki, µi, and fi, the
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mortar
coarse aggregate

(a) concrete

cement paste
fine aggregate

(b) mortar

Fig. 4.4: Material organogram of concrete: (a) concrete = spherical coarse aggregates embedded
in a mortar matrix, (b) mortar = spherical fine aggregates embedded in a cement paste
matrix; two-dimensional sketches of three-dimensional representative volume elements.

homogenized bulk modulus khom of the composite, and its shear modulus µhom are obtained as
[Wang et al., 2018b]

khom =
fi ki

[
1 + 3(ki−km)

3 km+4 µm

]
−1

+ fm km

fi

[
1 + 3(ki−km)

3 km+4 µm

]
−1

+ fm

, (4.4)

µhom =
fi µi

[
1 + 6 (km+2 µm) (µi−µm)

5 µm(3 km+4 µm)

]
−1

+ fm µm

fi

[
1 + 6 (km+2 µm) (µi−µm)

5 µm(3 km+4 µm)

]
−1

+ fm

. (4.5)

The volume fractions satisfy the condition fm +fi = 1. Denoting the thermal expansion coefficient
of the matrix as αm and the one of the inclusions as αi, the thermal expansion coefficient of the
composite, αhom, reads as [Ghabezloo, 2012; Wang et al., 2018a]

αhom =
3 ki km (αm fm + αi fi) + 4µm (αm fm km + αi fi ki)

3 ki km + 4µm (fm km + fi ki)
. (4.6)

As for homogenization of concrete, a two-step homogenization scheme is used. In the first step,
mortar is homogenized, based on knowledge regarding the cement paste and the fine aggregates.
In the second step, concrete is homogenized, based on knowledge regarding the mortar and the
coarse aggregates. Once the homogenized bulk and shear moduli are known, the corresponding
values of Young’s modulus and Poisson’s ratio can be determined based on the standard relations
for isotropic materials

E =
9 k µ

3 k + µ
, (4.7)

ν =
3 k − 2µ
6 k + 2µ

. (4.8)

4.2.3 Thermoelastic analysis of plates based on the Kirchhoff hypothesis

Temperature changes, see Eq. (4.2), result in thermal eigenstrains. In case of isotropy, the
eigenstrains read as:

εe
xx = εe

yy = εe
zz = α∆T . (4.9)

The question whether they are free to develop, constrained, or prevented from occurring must
be answered at two different scales of observation: the larger scale of the entire pavement plate
and the smaller scale of the generators of the plate. Notably, a generator is a line normal to the
undeformed midplane of the plate.
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Theories of thin plates are based on the Kirchhoff hypothesis. It states that the generators
remain straight in the deformed configuration of a plate and normal to the tangent plane of the
deformed midplane. The corresponding normal strains read as

εxx = εx,0 + κx,0 z , (4.10)

εyy = εy,0 + κy,0 z , (4.11)

where εx,0 = ∂u0
∂x and εy,0 = ∂v0

∂y stand for the stretches of the midplane, κx,0 = −∂2w0
∂x2 and

κy,0 = −∂2w0
∂y2 for the curvatures of the midplane, and u0 = u(x, y, z=0), v0 = v(x, y, z=0), and

w0 = w(x, y, z=0) for the three displacement components of an arbitrary point at the midplane
of the plate.

Eqs. (4.10) – (4.11) state that assuming the generators of the plate to remain straight is related
to normal strains which are linear functions of z. It is interesting to discuss this property from
the viewpoint of stationary and nonstationary heat conduction:

• Stationary heat conduction in the z-direction refers to the mathematical limit t → ∞ in
Eq. (4.2). In this limit, the second line and the third line of Eq. (4.2) are equal to zero. The
remaining first line of Eq. (4.2) describes a temperature change which is a linear function
of z. Thus, the thermal eigenstrains resulting from a steady-state heat conduction problem
are compatible with the assumption that the generators of the plate remain straight.

• Nonstationary heat conduction in z-direction refers to temperature changes that are
nonlinear functions of z. Thus, the thermal eigenstrains resulting from a time-dependent
heat conduction problem are incompatible with the assumption that the generators of the
plate remain straight, because the nonlinear part of the thermal eigenstrains refers to a
distortion of the generators.

The Kirchhoff hypothesis also applies to plates subjected to nonstationary heat conduction.
Because the total strains must remain linear functions of z, the existence of nonlinear thermal
eigenstrains implies the existence of nonlinear mechanical (“stress-related”) strain such that their
superposition results in total strains which are linear functions of z. This provides the motivation
to split up the thermal eigenstrains into eigenstretches of the plate, eigencurvatures of the plate,
and eigendistortions of the generators of the plate. In this context, it is interesting to consider
the resultants of the normal stresses, i.e. the normal force per unit length, nx, and the bending
moments per unit length, mxx:

nx =

+h/2∫

−h/2

σxx dz , (4.12)

mxx =

+h/2∫

−h/2

σxx z dz . (4.13)

Notably, nx and mxx are energetically conjugate to the degrees of freedom u0 and ∂w0/∂x of the
generators, for any type of material behavior [Höller et al., 2019].

In thermoelasticity of thin plates, the stress component σxx reads as

σxx =
E

1 − ν2

(
εσ

xx + ν εσ
yy

)
, (4.14)
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where εσ
xx and εσ

yy represent the mechanical normal strains. They are equal to the difference
between the total normal strains and the thermal eigenstrains

εσ
xx = εxx − εe

xx , (4.15)

εσ
yy = εyy − εe

yy . (4.16)

Inserting Eqs. (4.9), (4.10), and (4.11) into Eqs. (4.15) and (4.16) and substituting the obtained
expressions into Eq. (4.14) allows for reformulating the normal stress component σxx as

σxx =
E

1 − ν2

[
εx,0 + κx,0 z − α∆T + ν

(
εy,0 + κy,0 z − α∆T

)]
. (4.17)

Inserting Eq. (4.17) into Eq. (4.12) results in

nx =
E h

1 − ν2

[
εx,0 − εe

0 + ν

(
εy,0 − εe

0

)]
, (4.18)

with

εe
0 =

α

h

+h/2∫

−h/2

∆T dz , (4.19)

representing the thermal eigenstretches of the plate. Notably, these eigenstretches can be
interpreted as the mean value of the eigenstrain distribution. Inserting ∆T according to Eq. (4.2)
into Eq. (4.19), and solving the integral, delivers the following expression for the time-dependent
evolution of the thermal eigenstretches:

εe
0 =

Ni∑

i=1

α∆T top
i

{
1
2

−
∞∑

n=1

4
(2n− 1)2 π2

exp
[
−(2n− 1)2 π2 a 〈t− ti〉

h2

]}
. (4.20)

The question whether the thermal eigenstretches are free to develop, constrained, or prevented
must be answered at the scale of the plate.

Inserting Eq. (4.17) into Eq. (4.13) results in

mxx =
E h3

12 (1 − ν2)

[
κx,0 − κe

0 + ν

(
κy,0 − κe

0

)]
, (4.21)

with

κe
0 =

12α
h3

+h/2∫

−h/2

∆T z dz , (4.22)

representing the thermal eigencurvatures of plates. Notably, these eigencurvatures can be
interpreted as the first-order moment of the eigenstrain distribution. Inserting the temperature
changes described by Eq. (4.2) into Eq. (4.22) and solving the integral, delivers the following
expression for the time-dependent evolution of the thermal eigencurvatures

κe
0 = −

Ni∑

i=1

α∆T top
i

1
h

{
1 −

∞∑

i=1

6
n2 π2

exp
[
−(2nπ)2 a 〈t− ti〉

h2

]}
. (4.23)

The question whether the thermal eigencurvatures are free to develop, constrained, or prevented
must also be answered at the scale of the plate.
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In order to determine the thermal stresses σT , Eqs. (4.18) and (4.21) are solved for εx,0 + ν εy,0

and κx,0 + ν κy,0, respectively, and the obtained expressions are back substituted into Eq. (4.17).
This yields

σxx =
nx

h
+

mxx

h3/12
z + σT , (4.24)

with

σT = − E

1 − ν

(
α∆T − εe

0 − κe
0 z
)
. (4.25)

In case of stationary heat conduction, the thermal eigenstrain field, α∆T , is a linear function
of the z-coordinate and, therefore, σT vanishes. In case of nonstationary heat conduction,
however, the thermal eigenstrain field is a nonlinear function of the z-coordinate. The resulting
eigendistortions of the generators of the plate, see the expression in brackets of Eq. (4.25), are
prevented at the scale of the generators, because they must remain straight according to the
Kirchhoff hypothesis. In other words, the nonlinear eigendistortions activate nonlinear mechanical
strains, such that the total strain field is linear in the z-direction and, thus, compatible with
the Kirchhoff hypothesis. In addition, the thermal stresses σT do not contribute to the stress
resultants, because their average value and their first-order moment vanish:

+h/2∫

−h/2

σT dz = 0 , (4.26)

+h/2∫

−h/2

σT z dz = 0 . (4.27)

By analogy to Eq. (4.24),

σyy =
ny

h
+

myy

h3/12
z + σT . (4.28)

The normal forces per unit length, nx and ny, and the bending moments per unit length, mxx and
myy, which depend on the mechanical boundary conditions of the pavement plate, are quantified
in the following subsection by a semi-analytical method.

4.2.4 Semi-analytical thermoelastic analysis of plates resting on elastic Winkler
foundations

A thin rectangular pavement plate with thickness h is considered. It rests on an elastic Winkler
foundation, and it undergoes small deflections. The in-plane dimensions in the x and the y-
direction are denoted as ℓx and ℓy. The plate is subjected to dead load p, representing its weight,
and to nonstationary heat conduction in the thickness direction. The top surface and the lateral
surfaces are stress-free boundaries. Thus, the eigenstretches according to Eq. (4.19) are free to
develop, such that the normal forces per unit length vanish:

nx = ny = 0 . (4.29)

The eigencurvatures according to Eq. (4.22), however, are restrained by the elastic Winkler
foundation.

• The absolute values of the reaction forces are equal to the vertical displacement component
multiplied by the modulus of subgrade reaction, k, provided that the deflection of the
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plate is positive (w0 > 0). In this case, compressive contact stresses prevail in the interface
between the plate and the subgrade.

• The reaction forces are equal to zero, provided that the deflection of the plate is negative
(w0 < 0). In this case, the plate separates from the subgrade.

In addition, the bottom surface of the plate is free of shear stresses. The bending moments per
unit length in Eqs. (4.24) and (4.28) are given as

mxx = −K
[
∂2w0

∂x2
+ κe

0 + ν

(
∂2w0

∂y2
+ κe

0

)]
, (4.30)

myy = −K
[
∂2w0

∂y2
+ κe

0 + ν

(
∂2w0

∂x2
+ κe

0

)]
, (4.31)

where K is the bending stiffness of the plate, defined as

K =
E h3

12 (1 − ν2)
. (4.32)

The described problem can be solved semi-analytically, based on the principle of virtual power
[Höller et al., 2019], which is a rigorous amendment of the theory by Vlasov and Leont’ev [Vlasov
and Leont’ev, 1966], entailing systematic errors by violating the free boundary conditions at the
edges of the plate. The sought bending surface, w0, satisfies the following equation:

+ℓy/2∫

−ℓy/2

+ℓx/2∫

−ℓx/2

[
p− k w0

]
˙̌w0 dxdy −K (1 + ν)κe

0

+ℓy/2∫

−ℓy/2

+ℓx/2∫

−ℓx/2

(
∂2 ˙̌w0

∂x2
+
∂2 ˙̌w0

∂y2

)
dxdy

−K

+ℓy/2∫

−ℓy/2

+ℓx/2∫

−ℓx/2

{(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
∂2 ˙̌w0

∂x2
+

(
∂2w0

∂y2
+ ν

∂2w0

∂x2

)
∂2 ˙̌w0

∂y2

+

[
2 (1 − ν)

∂2w0

∂y ∂x

]
∂2 ˙̌w0

∂y ∂x
dxdy

}
= 0 .

(4.33)

Considering the symmetry of the problem with respect to the z-axis, the deflection function
w0(x, y) is represented, in the framework of a Galerkin-type solution scheme [Höller et al., 2019],
as a double series of trigonometric functions

w0 =
Ns∑

s=0

Nt∑

t=0

cs,tws,t(x, y) , (4.34)

where cs,t stands for unknown Fourier coefficients and ws,t(x, y) denotes known ansatz functions

ws,t = cos
s π x

ℓx
cos

t π y

ℓy
,

s = 0, 1, 3, . . . , Ns ,
t = 0, 1, 3, . . . , Nt .

(4.35)

The virtual velocities ˙̌w0(x, y) are temporal derivatives of time-dependent virtual displacements.
They are introduced by analogy to Eq. (4.34) as

˙̌w0 =
Nk∑

k=0

Nl∑

l=0

˙̌ck,l wk,l(x, y) , (4.36)
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with ˙̌ck,l denoting the coefficients of the virtual velocity field. Establishing a Galerkin-type solution
scheme, Eqs. (4.34) and (4.36) are inserted into Eq. (4.33). Because the obtained expression
is valid for arbitrary virtual coefficients ˙̌ck,l, the following system of algebraic equations for
determination of the unknown coefficients cs,t is obtained [Höller et al., 2019]:

+ℓy/2∫

−ℓy/2

+ℓx/2∫

−ℓx/2

pwk,l dxdy −K (1 + ν)κe
0

+ℓy/2∫

−ℓy/2

+ℓx/2∫

−ℓx/2

(
∂2wk,l

∂x2
+
∂2wk,l

∂y2

)
dxdy

+
Ns∑

s=0

Nt∑

t=0

cs,t





−K
+ℓy/2∫

−ℓy/2

+ℓx/2∫

−ℓx/2

[(
∂2ws,t

∂x2
+ ν

∂2ws,t

∂y2

)
∂2wk,l

∂x2

]

+

(
∂2ws,t

∂y2
+ ν

∂2ws,t

∂x2

)
∂2wk,l

∂y2
+

(
2(1 − ν)

∂2ws,t

∂y ∂x

)
∂2wk,l

∂y ∂x
dxdy

−
+ℓy/2∫

−ℓy/2

+ℓx/2∫

−ℓx/2

k ws,twk,l dxdy





= 0 for
k = 0, 1, 3, . . . , Ns ,
l = 0, 1, 3, . . . , Nt .

(4.37)

For details regarding the solution of Eqs. (4.37) see [Höller et al., 2019].
The solution of the problem at hand must be determined iteratively, because the elastic

Winkler foundation is active in compression only. In the first iteration step, the modulus of the
subgrade reaction, k in Eq. (4.37), is assumed as constant along the entire bottom surface of the
plate. Thus, in regions where the deflection is negative, spurious tensile stresses are transmitted
between the subgrade and the plate. In order to improve the situation in the second iteration
step, the modulus of subgrade reaction is introduced, again in Eq. (4.37), as a two-dimensional
step function, which is equal to k in regions where the deflection is positive and equal to zero
in regions where it is negative. This strategy is also used in the subsequent iteration steps.
Denoting the function of the modulus of subgrade reaction in the iteration step i+ 1 as k(i+1)

and the solution for the deflection in the iteration step i as w(i)
0 , the described step-function can

be expressed by means of the Heaviside function H as

k(i+1) = kH(w(i)
0 ) , (4.38)

with H(x) = 1 if x > 0 and H(x) = 0 otherwise. The iteration is terminated if the deflection
function w0 remains practically constant for two successive iteration steps. Specifically, the
iteration is terminated if ∣∣∣w(i+1)

0,max − w
(i)
0,max

∣∣∣ < 10−8 m , (4.39)

where w0,max is the maximum value of the deflection function and m stands for the SI unit meter.

4.2.5 Top-down quantification of average stresses of the constituents of concrete

This subsection deals with quantification of average stresses and strains of the matrix phase and
the inclusion phase, based on knowledge regarding the macroscopic stresses and the temperature
change imposed on a representative volume element of a matrix-inclusion composite. Starting at
the level of homogenized concrete, the macroscopic stress state reads as

Σhom = σxx ~ex ⊗ ~ex + σyy ~ey ⊗ ~ey , (4.40)
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with σxx and σyy taken from Eqs. (4.24) and (4.28). ~ex and ~ey are the unit vectors in the direction
of the x-axis and y-axis, respectively. The transition from small-case sigmas to a capital sigma
follows the tradition of multiscale continuum mechanics, where capital letters are symbolizing
macroscopic stresses and strains, while lower-case letters are used for microscopic stresses and
strains. The macroscopic eigenstrain of homogenized concrete reads as

Ee
hom = α∆T

[
~ex ⊗ ~ex + ~ey ⊗ ~ey + ~ez ⊗ ~ez

]
, (4.41)

where ~ez is the unit vector in the direction of the z-axis, and the homogenized stiffness tensor as

Chom = 3 k Ivol + 2µ Idev , (4.42)

where Ivol and Idev stand for the volumetric and the deviatoric part of the symmetric fourth-order
unit tensor I. The ijkl-th component of I reads as 1

2(δik δjl + δil δjk) with δij denoting the
Kronecker delta defined as δij = 1 for i = j, and δij = 0 otherwise. The ijkl-th component of
Ivol reads as 1

3(δij δkl). Finally, Idev follows as Idev = I − Ivol .
Top-down analysis starts with calculation of the total macroscopic strain:

Ehom = C
−1
hom : Σhom + Ee

hom , (4.43)

with C
−1
hom denoting the inverse of the homogenized elasticity tensor. The scale transition down

to the average total microstrains of the matrix and the inclusions is described by the following
“concentration-influence relation” [Pichler and Hellmich, 2010]

εp = Ap : Ehom +
∑

q=m,i

Dpq : εe
q , p ∈ [m ; i ] , (4.44)

where Ap stands for the strain concentration tensor of the material phase p, Dpq denotes the
eigenstrain influence tensor, expressing the effect of the eigenstrain of phase q on the total
strain of phase p. For analytical solutions of these tensors, see Appendix A. εe

q stands for the
eigenstrains of material phase q, reading as

εe
q = αq ∆T

[
~ex ⊗ ~ex + ~ey ⊗ ~ey + ~ez ⊗ ~ez

]
, q ∈ [m ; i ] . (4.45)

The average microstresses σm and σi finally follow from the elasticity law as

σp = Cp :
(
εp − εe

p

)
, p ∈ [m ; i ] . (4.46)

The top-down analysis described by the Eqs. (4.43) – (4.46) is firstly applied to concrete. This
leads to the average stresses of the mortar matrix, σmor, and of the coarse aggregates, σcagg.
Thereafter, the described top-down analysis is applied to mortar, in order to compute the average
stresses of the cement paste matrix and the fine aggregates. To this end, the Eqs. (4.40), (4.41)
and (4.42) are replaced by

Σhom = σmor , (4.47)

Ee
hom = αmor ∆T

[
~ex ⊗ ~ex + ~ey ⊗ ~ey + ~ez ⊗ ~ez

]
, (4.48)

Chom = 3 kmor Ivol + 2µmor Idev . (4.49)
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4.2.6 Quantification of stress states inside interfacial transition zones

Interfacial transition zones are 15 to 30µm thin layers of cement paste covering the aggregates
[Ollivier et al., 1995; Scrivener et al., 2004]. The so-called “wall-effect”, occurring during mixing
of the raw materials, renders ITZs more porous than the rest of the cement paste [Scrivener
et al., 2004]. Because ITZs only occupy a small volume of concrete [Simeonov and Ahmad, 1995;
Ulrik Nilsen and Monteiro, 1993; Ramesh et al., 1996], they may be idealized as two-dimensional
interfaces when estimating the homogenized stiffness, see Subsection 4.2.2, and performing the
top-down scale transitions described in Subsection 4.2.5. However, microscopic stress states
within ITZs are important for estimating the initiation of microcracking of concrete subjected to
tensile loading [Königsberger et al., 2014a,b] and for quantifying the strength of the material in
case of compressive loading [Königsberger et al., 2018]. In this context, the ITZs are resolved as
three-dimensional shells covering the aggregates [Königsberger et al., 2014a]. In the following,
the scheme for quantification of ITZ stresses by Königsberger et al. [Königsberger et al., 2014a]
is extended to consideration of thermal eigenstrains.

Mori-Tanaka estimates of the stresses inside aggregate inclusions, see Eq. (4.46), are based
on an Eshelby problem, consisting of a spherical inclusion in an infinite matrix subjected to
homogeneous strains at infinity [Zaoui, 2002]. This leads to homogeneous strains inside this
inclusion [Eshelby, 1957], suggesting that homogeneous microstrains and microstresses are good
approximations of the actual microstress and microstrain states inside the aggregates. Hence,
these stress states are also representative for the surfaces of the aggregates.

Assuming that the aggregates are bonded to the surrounding ITZ shell, traction and displace-
ment continuity prevails along their contact surface. In this context, it is beneficial to use a
local spherical coordinate system with the zenith angle θ and the azimuth angle φ, see Fig. 4.5.
The continuity of the traction vectors across the interface implies continuity of the three stress

ez

θ

er

eφ

eθ

ey

φ

ex

Fig. 4.5: Local spherical coordinate system covering the inclusions.

components with the index r [Königsberger et al., 2014a], resulting in

σagg,rr(θ, φ) = σIT Z,rr(θ, φ) ,

σagg,rθ(θ, φ) = σIT Z,rθ(θ, φ) ,

σagg,rφ(θ, φ) = σIT Z,rφ(θ, φ) .

(4.50)
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Continuity of the displacements across the interface requires continuity conditions for the three
strain components without the index r [Königsberger et al., 2014a]:

εagg,θθ(θ, φ) = εIT Z,θθ(θ, φ) ,

εagg,φφ(θ, φ) = εIT Z,φφ(θ, φ) ,

εagg,θφ(θ, φ) = εIT Z,θφ(θ, φ) .

(4.51)

The Eqs. (4.50) and (4.51) require the transformation of the Cartesian components of the
stress and strain tensors into components related to the local spherical coordinate system. This
transformation is performed by means of the following transformation matrix:

Q =




cosφ sin θ sinφ sin θ cos θ
cosφ cos θ sinφ cos θ − sin θ

− sinφ cosφ 0


 . (4.52)

The transformation rule for the stress components reads as


σagg,rr σagg,rθ σagg,rφ

σagg,rθ σagg,θθ σagg,θφ

σagg,rφ σagg,θφ σagg,φφ


 = Q ·



σagg,xx σagg,xy σagg,xz

σagg,xy σagg,yy σagg,yz

σagg,xz σagg,yz σagg,zz


 · QT , (4.53)

where QT stands for the transpose of Q. Replacing σ by ε in Eq. (4.53) delivers the corresponding
transformation rule for the strain components.

Eqs. (4.50) and (4.51) underline that knowledge of the stresses and the strains of the aggregates
allows for determination of three stress and three strain components in the adjacent ITZ. The
remaining unknown stress and strain components can be computed based on the generalized
Hooke’s law for the ITZ, resulting in six equations for the six remaining unknowns. They are
give as




σIT Z,rr

σIT Z,θθ

σIT Z,φφ√
2σIT Z,θφ√
2σIT Z,rφ√
2σIT Z,rθ




=




kIT Z + 4
3µIT Z kIT Z − 2

3µIT Z kIT Z − 2
3µIT Z 0 0 0

kIT Z − 2
3µIT Z kIT Z + 4

3µIT Z kIT Z − 2
3µIT Z 0 0 0

kIT Z − 2
3µIT Z kIT Z − 2

3µIT Z kIT Z + 4
3µIT Z 0 0 0

0 0 0 2µIT Z 0 0
0 0 0 0 2µIT Z 0
0 0 0 0 0 2µIT Z




·




εIT Z,rr

εIT Z,θθ

εIT Z,φφ√
2 εIT Z,θφ√
2 εIT Z,rφ√
2 εIT Z,rθ




− 3 kIT Z




αIT Z ∆T
αIT Z ∆T
αIT Z ∆T

0
0
0



, (4.54)
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4 Concrete pavements subjected to hail showers 115

where kIT Z and µIT Z denote the bulk and the shear modulus of the ITZ, respectively, and αIT Z

stands for the thermal expansion coefficient of the ITZ. The sought three stress components read
as

σIT Z,θθ(θ, φ) =
[
4µIT Z (3 kIT Z + µIT Z) εIT Z,θθ + (3 kIT Z − 2µIT Z) (2µIT Z εIT Z,φφ + σIT Z,rr)

− 18 kIT ZµIT Z αIT Z ∆T
]
/(3 kIT Z + 4µIT Z)

,

σIT Z,φφ(θ, φ) =
[
4µIT Z (3 kIT Z + µIT Z) εIT Z,φφ + (3 kIT Z − 2µIT Z) (2µIT Z εIT Z,θθ + σIT Z,rr)

− 18 kIT ZµIT Z αIT Z ∆T
]
/(3 kIT Z + 4µIT Z)

,

σIT Z,θφ(θ, φ) = 2µIT Z εIT Z,θφ ,

(4.55)

and the sought three strain components as

εIT Z,rr(θ, φ) =
3σIT Z,rr − (3 kIT Z − 2µIT Z) (εIT Z,θθ + εIT Z,φφ) + 9 kIT Z µIT ZαIT Z ∆T

3 kIT Z + 4µIT Z
,

εIT Z,rθ(θ, φ) =
σIT Z,rθ

2µIT Z
,

εIT Z,rφ(θ, φ) =
σIT Z,rφ

2µIT Z
.

(4.56)

4.3 Exemplary analysis of a concrete pavement subjected to a hail
shower

The geometric dimensions of the exemplarily analyzed pavement are given as

ℓx = 5.00 m , ℓy = 3.75 m , h = 0.25 m . (4.57)

The modulus of subgrade reaction, k, is chosen as [Höller et al., 2019]

k = 100 MPa/m . (4.58)

The plate is made of concrete, see Table 4.1 for the composition and thermoelastic properties of
the constituents. In addition, the thermal diffusivity, a, and the mass density, ρ, of concrete are

Tab. 4.1: Properties of the constituents of concrete: volume fraction, bulk modulus, shear
modulus, and thermal expansion coefficient of cement paste, fine aggregates, and
coarse aggregates.

material volume bulk shear thermal expansion
fraction [-] modulus [GPa] modulus [GPa] coefficient [10−6 /◦C]

cement paste 0.30 10.2 7.7 18.0

fine aggregates (quartz) 0.28 33.8 30.8 11.5

coarse aggregates (granite) 0.42 18.5 12.2 8.0

https://www.tuwien.at/bibliothek
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given as [Wang et al., 2018a]

a = 4.73 × 10−7 m2/s , (4.59)

ρ = 2400 kg/m3 . (4.60)

In the initial configuration, right before sunrise, the pavement plate is considered to be in an
isothermal state, at the reference temperature

Tref = 17◦C . (4.61)

The temperature at the bottom surface is assumed to be equal to the reference temperature. The
evolution of the temperature at the top surface, T top(t), is introduced as an S-shaped function,
such that the maximum increase of the temperature at the top surface of the plate, amounting to
45◦C, is reached twelve hours after sunrise, see Fig. 4.6. At that time, a hail shower is assumed
to start. It results in a sudden drop of the temperature at the surface of the pavement to 0◦C.
This temperature remains constant for 30 minutes, considering that a mix of hailstones and
water is covering the plate, see Fig. 4.6. Thus, the mathematical formulation of the evolution of
the temperature at the top surface of the pavement plate reads as

T top(t) =





17◦C + 45◦C · 1
2

[
1 − cos

(
t π

720 min

)]
. . . 0 min ≤ t < 720 min ,

0◦C . . . . . . . . . . . . . . . . . . . 720 min < t ≤ 750 min .
(4.62)

0 2 4 6 8 10 12 14

0

20

40

60

80

Fig. 4.6: Temperature evolution at the top surface of the pavement plate.

4.3.1 Temperature field of the pavement plate subjected to solar heating and a
sudden hail shower

As for the solution of the heat conduction problem, the described evolution of the surface
temperature is discretized by time intervals of one minute each:

ti = i · 1 min , i = 0, 1, 2, . . . , 750 . (4.63)

The corresponding temperature changes follow from Eq. (4.62) as

∆T top
i = T top(ti) − T top(ti−1) i = 1, 2, . . . , 750 . (4.64)
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4 Concrete pavements subjected to hail showers 117

The temperature distributions inside the pavement plate are computed by inserting Eqs. (4.63)
and (4.64) into Eq. (4.2). Thereby, the infinite sums in Eq. (4.2) are approximated very accurately
by means of the first 1000 summands each.

Three characteristic time instants are discussed in more detail: the situation right before the
hail shower, 3 minutes after its start, and 30 minutes after its start, see Fig. 4.7. Already right

0 10 20 30 40 50 60 70
-0.5

-0.3

-0.1

0.1

0.3

0.5

the start of the hail shower

right before

3 min after

30 min after

Fig. 4.7: Evolution of the temperature field along the thickness of the pavement plate right
before the start of the hail shower, 3 minutes after its start, and 30 minutes after its
start, computed based on Eqs. (4.2), (4.63) and (4.64).

before the hail shower, the temperature is nonlinearly distributed across the thickness of the
plate. Whereas the black curve is characterized by a monotonic increase of T with increasing
−z/h, the dotted and the dashed curve have a maximum value of T before decreasing to zero.
These temperature distributions are input for the structural analysis of concrete pavements.
In addition, also the thermal expansion coefficient of concrete and the elastic stiffness of the
material must be quantified. This is done by means of homogenization, as described next.

4.3.2 Bottom-up homogenization of thermoelastic properties of concrete

Homogenization of concrete is carried out in two steps. At first, the matrix-inclusion composite
mortar is homogenized. The matrix is the cement paste. The inclusions are fine aggregates. The
concrete-related volumetric dosages of these two constituents, see Table 4.1, are translated into
mortar-related volume fractions:

fm =
0.30

0.30 + 0.28
= 0.517 , (4.65)

fi =
0.28

0.30 + 0.28
= 0.483 , (4.66)

see also Table 4.2. The homogenized elastic stiffness constants and the thermal expansion
coefficient of mortar follow from inserting the properties of the matrix and the inclusions, see the
second and the third line of Table 4.2, into the Eqs. (4.4), (4.5), and (4.6). The results from
homogenization are listed in the last line of Table 4.2.

In the second step, the matrix-inclusion composite concrete is homogenized. The matrix is the
mortar. The inclusions are the coarse aggregates. Their volume fractions follow from Table 4.1 as

fm = 0.30 + 0.28 = 0.58 , (4.67)

fi = 0.42 , (4.68)
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see also Table 4.3. The homogenized elastic constants and the thermal expansion coefficient of
concrete follow from inserting the properties of the matrix and the inclusions, see the second and
the third line of Table 4.3, into the Eqs. (4.4), (4.5), and (4.6). The results from homogenization
are listed in the last line of Table 4.3. Young’s modulus and Poisson’s ratio of concrete follow
from inserting the homogenized bulk and shear modulus, see the last line of Table 4.3, into
Eqs. (4.7) and (4.8). They are given as

E = 31.8 GPa , (4.69)

ν = 0.20 . (4.70)

4.3.3 Decomposition of thermal eigenstrains into eigenstretches, eigencurvatures,
and eigendistortions

The thermal eigenstrains of concrete follow from multiplying the temperature changes, quantified
as the differences between the temperature illustrate in Fig. 4.7 and the reference temperature
in Eq. (4.61), by the homogenized thermal expansion coefficient of concrete, see the last line of
Table 4.3. The three analyzed distributions, see Fig. 4.8 (a), are subdivided into eigenstrains
related to eigenstretches of the plate, eigencurvatures of the plate, and eigendistortions of the
generators of the plate,

α∆T = εe
0 + κe

0 z + εe
dist , (4.71)

see Figs. 4.8 (b), (c), and (d). The eigenstretches and eigencurvatures of the plate, see Fig. 4.8 (b)
and Fig. 4.8 (c), follow from inserting Eqs. (4.63) and (4.64) into Eq. (4.20) and Eq. (4.23),
respectively; see Table 4.4. Thereby, the infinite sums in Eqs. (4.20) and (4.23) are approximated
very accurately by means of the first 1000 summands each. Figs. 4.8 demonstrate that the
eigendistortions of the generators of the plate are the governing contribution once the hail shower
starts.

4.3.4 Thermoelastic structural analysis of the pavement plate

The structural analysis of the pavement plate is carried out as described in Subsection 4.2.4. The
values of the dead load p = ρ g h, with the gravitational acceleration g amounting to 9.81 m/s2,
and of the bending stiffness K of the plate, according to Eq. (4.32), follow as

p = 5.89 kN/m2 , (4.72)

K = 43.1 MNm . (4.73)

The eigencurvatures associated with the investigated scenarios at three different instants of time
are input for the analysis, see Table 4.4. The solution for the deflection of the plate is computed

Tab. 4.2: Scale transition 1: homogenization of thermoelastic properties of mortar based on
Eqs. (4.4) – (4.6).

material volume bulk shear thermal expansion
fraction [-] modulus [GPa] modulus [GPa] coefficient [10−6 /◦C]

cement paste matrix 0.517 10.2 7.7 18.0

fine aggregate inclusions 0.483 33.8 30.8 11.5

homogenized mortar 17.4 14.0 14.2
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Tab. 4.3: Scale transition 2: homogenization of thermoelastic properties of concrete based on
Eqs. (4.4) – (4.6).

material volume bulk shear thermal expansion
fraction [-] modulus [GPa] modulus [GPa] coefficient [10−6 /◦C]

mortar matrix 0.58 17.4 14.0 14.2

coarse aggregate inclusions 0.42 18.5 12.2 8.0

homogenized concrete 17.8 13.2 11.5
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-0.5

-0.3

-0.1

0.1

0.3

0.5
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Fig. 4.8: Thermal eigenstrains of the pavement plate right before the start of the hail shower,
3 minutes after its start, and 30 minutes after its start: (a) total eigenstrains, (b) eigen-
strains from eigenstretches of the plate, (c) eigenstrains from eigencurvatures of the
plate, and (d) eigenstrains from eigendistortions of the generators of the plate.

based on the ansatz function according to Eq. (4.34), using 17 × 17 = 289 double trigonometric
ansatz functions. The corresponding numerical values of the Fourier coefficients are listed in
4.B. The deflection is positive, i.e. downward, close to the edges of the plate and negative, i.e.
upward, in the vicinity of its center, see Fig. 4.9. This underlines that the temperature increase
due to solar radiation results in partial separation of the plate from the subgrade. Notably, the
numerical values of the deflections were checked against results from Finite Element simulations.
Good agreement was obtained.

The bending moments per unit length of the pavement are computed based on Eqs. (4.30) and
(4.31), while the twisting moments per unit length, mxy = myx, are equal to zero, considering the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.
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Tab. 4.4: Eigenstretches and eigencurvatures of the pavement right before the start of the hail
shower, 3 minutes after its start, and 30 minutes after its start, computed on the basis
of Eqs. (4.19) and (4.22) as well as on the temperature distributions illustrated in
Fig. 4.7.

time instant eigenstretches eigencurvatures

right before the start of the hail shower 2.06 × 10−4 −2.04 × 10−3 m−1

3 min after the start of the hail shower 1.77 × 10−4 −1.37 × 10−3 m−1

30 min after the start of the hail shower 1.19 × 10−4 −0.26 × 10−3 m−1
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Fig. 4.9: Isolines of the deflection (unit: mm) of the plate (a) right before the start of the hail
shower, (b) 3 minutes after its start, and (b) 30 minutes after its start.

symmetry of the problem with respect to z-axis. The maximum bending moments are located
at the center of the midplane, see Table 4.5 for the corresponding numerical values. They were
checked against results from Finite Element simulations. Good agreement was obtained.

Tab. 4.5: Maximum bending moments per unit length, referring to the center of the pavement,
right before the start of the hail shower, 3 minutes after its start, and 30 minutes
after its start.

time instant mxx [kNm/m] myy [kNm/m]

right before the start of the hail shower 15.1 6.23

3 min after the start of the hail shower 14.2 5.97

30 min after the start of the hail shower 8.93 5.08
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The stresses, induced by the eigendistortions of the generators of the plate, are quantified by
Eq. (4.25). They were checked against results from Finite Element simulations. Good agreement
was obtained, see 4.C.

The thermoelastic analysis proceeds with calculating the maximum normal stresses in the
plate based on Eqs. (4.24), (4.25), (4.28), and (4.29). Thereby, the bending moments per unit
length and the thermal eigenstrains are taken from Table 4.5 and from Fig. 4.8, respectively;
see also Table 4.4. Because the plate is not quadratic, the values of mxx and myy are quite
different. Still, the macroscopic normal stress components acting in the x- and y-direction are
similar, compare Figs. 4.10 (a) and (b). In addition, the stress distributions are qualitatively
similar to eigendistortions of the generators of the plate, compare Figs. 4.10 (a) and (b) with
Fig. 4.8 (d). This underlines that the macroscopic stresses are governed by the eigendistortions
of the generators of the plate, which are prevented to occur, because the generators of the plate
must remain straight according to the Kirchhoff hypothesis.

(a)
-15 -10 -5 0 5 10 15 20 25

-0.5

-0.3

-0.1

0.1

0.3

0.5

the start of the hail shower

right before
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30 min after

(b)
-15 -10 -5 0 5 10 15 20 25
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0.3

0.5

the start of the hail shower

right before

3 min after

30 min after

Fig. 4.10: Distribution of macroscopic normal stress components over the thickness of the plate,
at the center of the concrete pavement, right before the start of the hail shower, 3
minutes after its start, and 30 minutes after its start: (a) Σxx, and (b) Σyy.

Already before the start of the hail shower, the normal stress distributions are nonlinear and,
thus, governed by thermal stresses resulting from nonstationary heat conduction. The upper
part of the pavement is subjected to macroscopic compressive stresses. They change quickly
into tensile stresses, once the hail shower starts. As for the time instant three minutes later,
the thermoelastic analysis delivers 21 MPa as the maximum tensile stress. This is by far larger
than the tensile strength of concrete. Thus, tensile cracking of concrete will occur close to the
exposed top surface of the pavement. Furthermore, the thermoelastic simulation suggests that the
uppermost 1.3 cm of concrete experience tensile stresses larger than 3 MPa already three minutes
after the start of the hail shower. This tensile zone increases to 2.5 cm another 27 minutes later.
At that time, tensile stresses exceeding 3 MPa are also obtained close to the bottom surface of
the plate, rendering tensile cracking likely also at the inaccessible bottom of the pavement.

4.3.5 Top-down quantification of average stresses of the constituents of concrete

Average microstresses of the constituents of concrete are quantified following top-down stress
concentration, described in Subsection 4.2.5. The computed values of the temperature changes
(Fig. 4.7) and the stresses of concrete (Fig. 4.10) are used as macroscopic input quantities. The
computed microstresses satisfy the stress average rule

Σhom = fi σi + fm σm , (4.74)
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see Figs. 4.11.
The differences of the microstresses of the matrix and the inclusions originate from two contri-

butions. On the one hand, the stiffer constituent of the statically indeterminate microstructure
of the matrix-inclusion composites attracts a larger share of the macroscopic loading, compared
to the more compliant other constituent. This is the “mechanical” contribution of the micro-
scopic stress fluctuations. It is governed by the stiffness difference between the matrix and the
inclusions, see Tables 4.2 and 4.3. On the other hand, there is also a “thermal” contribution
in thermoelasticity, which is governed by the mismatch of thermal expansion coefficients of the
matrix and the inclusions [Wang et al., 2018a], see Tables 4.2 and 4.3. In case of a temperature
increase, the constituent with the larger/smaller thermal expansion coefficient will be subjected
to compression/tension, and to tension/compression in case of a temperature decrease. Anyway,
the differences between the average stresses of the matrix and the inclusion phases raises the
question concerning the stresses transmitted across the interfaces between them. This provides
the motivation to calculate stress states in the ITZs around coarse and fine aggregates.

4.3.6 Quantification of stress states inside the ITZs

ITZs, representing thin layers of cement paste covering the aggregates, are regarded as the
“weakest links” within the microstructure of concrete, because they are more porous than the
bulk cement paste [Scrivener et al., 2004]. As for the present thermoelastic analysis, the bulk
modulus and the shear modulus of the ITZs are set equal to 85% of the corresponding values of
the bulk cement paste, see Table 4.2:

kIT Z = 8.67 GPa , (4.75)

µIT Z = 6.55 GPa . (4.76)

This is motivated by nanoindentation results, the Young’s modulus of the ITZs is considered to
amount to 85% of that of the bulk cement paste, while Poisson’s ratio of the ITZs is set equal to
that of the bulk cement paste [Königsberger et al., 2014a; Mondal et al., 2009]. The thermal
expansion coefficient of the ITZs is set equal to that of the bulk cement paste, see Table 4.2:

αIT Z = 18 × 10−6/◦C . (4.77)

This is motivated by the fact that the thermal expansion coefficient of mature cement pastes is
practically independent of the initial water-to-cement mass ratio and, thus, independent of the
differences in porosity between the ITZs and the bulk cement paste [Emanuel and Hulsey, 1977;
Wang et al., 2018b].

Calculation of stress states in ITZs, covering coarse and fine aggregates, is focusing on the center
point of the top surface of the pavement plate and follows the developments in Subsection 4.2.6.
Temperature changes, relative to the reference temperature, and the average stress states in the
coarse and fine aggregates are used as input, see Table 4.6.

Cracking of the ITZs is caused by the maximum principal normal stress [Königsberger et al.,
2014a,b]. Thus, a principal stress analysis is carried out for all positions within the investigated
ITZs. Based on the results, the location of the maximum value of the largest principal normal
stress is identified. This location is described by the angles φ and θ, see Fig. 4.5. Because of

σcagg,xx ≈ σcagg,yy , (4.78)

σfagg,xx ≈ σfagg,yy , (4.79)
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Fig. 4.11: Macroscopic and microscopic normal stresses in the x-direction: (a) and (b) refer
to the situation right before the start of the hail shower, (c) and (d) to the one 3
minutes after its start, (e) and (f) to the one 30 minutes after its start; (a), (c), and
(e) illustrate macrostresses of the concrete and microstresses of the mortar matrix and
the coarse aggregate inclusions; (b), (d), and (f) illustrate macrostresses of the mortar
and microstresses of the cement paste matrix and the fine aggregate inclusions.
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Tab. 4.6: Temperature changes and nonzero components of the microstress tensors of the coarse
and the fine aggregates at the center of the top surface of the pavement right before
the start of the hail shower, 3 minutes after its start, and 30 minutes after its start.

time instant ∆T [◦C] σcagg,xx [MPa] σcagg,yy [MPa] σcagg,zz [MPa]

right before the start of the hail shower +45 +0.65 +1.51 +4.29

3 min after the start of the hail shower −17 +18.5 +19.4 −0.86

30 min after the start of the hail shower −17 +10.7 +11.6 −1.17

time instant ∆T [◦C] σfagg,xx [MPa] σfagg,yy [MPa] σfagg,zz [MPa]

right before the start of the hail shower +45 −5.75 −4.61 −0.91

3 min after the start of the hail shower −17 +25.2 +26.3 −0.61

30 min after the start of the hail shower −17 +15.5 +16.7 −0.23

the microstresses of the ITZs only depend weakly on the azimuth angle φ. Thus, it is sufficient to
show the distribution of the largest principal normal stress along the meridian which contains the
maximum principal normal stress, see Fig. 4.12. Because the stress distribution is symmetric with
respect to the equator, it is sufficient to illustrate the stresses within the interval θ ∈ [ 0 , π/2 ].

(a)
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Fig. 4.12: Distribution of the largest principal normal stresses inside ITZs at the center of the
top surface of the pavement right before the start of the hail shower, 3 minutes after
its start, and 30 minutes after its start: (a) ITZs around coarse aggregates, and (b)
ITZs around fine aggregates.

The largest principal normal stresses of the ITZs, right before the start of the hail shower, are
much smaller than those after sudden cooling of the top surface. Notably, the maximum value
of the largest principal normal stress for both types of analyzed ITZs is even larger than the
maximum tensile normal stress of the bulk cement paste, see Fig. 4.12. This underlines that hail
showers likely induce tensile cracking along ITZs, at least in regions close to the exposed top
surface of pavement plates. Thereby, cracks are likely to develop vertically, in the equatorial
regions of the aggregates.
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4.3.7 Discussion

Cracking of ITZs is a serious threat for the long-term durability of concrete pavements. Cracks
in ITZs close to the top surface of a pavement plate during a hail shower in summer will be filled
by water in wet winter periods. If the water is freezing, its volume will increase by some 10%.
Once the crystallization pressure reaches the tensile strength of concrete, crack propagation will
be encountered [Pichler and Dormieux, 2010a,b]. In order to mitigate the threat to the durability
of the pavement, it would be beneficial to (i) cool the top surface of hot pavement plates prior
to the start of a hail shower, e.g. by moistening the top surface with water and exploiting the
effect of evaporative cooling, and (ii) to avoid freezing of wet pavement plates in winter time, by
using anti-freezing agents and/or internal heating of pavement plates. However, these mitigation
actions appear to be impractical. Thus, the only practical action is to remove the hailstones as
fast as possible, in order to avoid growing of the zones of significant tensile stresses, as was the
case in the presented analysis.

The thermal stresses, resulting from the thermal eigenstrains, decrease with decreasing thermal
expansion coefficient of concrete. This coefficient can be quantified by the multiscale model in
an analytical fashion, based on the composition of the material. This provides the ingredients of
a target-oriented mix-design of concrete used for pavements.

• It is recommended to use a rather compliant concrete for pavements. This can be achieved
by means of rather compliant coarse and fine aggregates and of a larger volumetric dosage
of the more compliant (but expensive) component – the cement paste, see also Eqs. (4.4)
and (4.5).

• The thermal expansion coefficient of the cement paste is almost independent of its initial
water-to-cement mass ratio, see Fig. 4.1 and [Wang et al., 2018b]. Thus, the remaining
design variables are different types and different volumetric dosages of the aggregates, see
Eq. (4.6).

• Considering values of relative humidity that are typically encountered in practical applica-
tions, the thermal expansion coefficient of the cement paste is, in most cases, larger than
that of the aggregates. Thus, moistening of the top surface of the pavement during summer
time reduces both the temperature of concrete and the mismatch of the thermal expansion
coefficients of the cement paste and of the aggregates. This results in a reduction of the
microscopic stress fluctuations.

4.4 Conclusions

Both heating and cooling of the top surface of pavement plates, resulting in nonstationary heat
conduction, represent important load cases which deserve careful analysis. From the presented
study, the following conclusions are drawn:

• Nonstationary heat conduction is characterized by nonlinear temperature distributions
and, thus, by nonlinear distributions of the thermal eigenstrains. They can be subdivided
in eigenstretches of the plate, eigencurvatures of the plate, and eigendistortions of the
generators of the plate.

• The eigenstretches are free to develop, because of the joints between neighboring plates.
The eigencurvatures, in turn, are constrained by the support of the plate resting on the
subgrade. Thus, the thermal eigencurvatures of a plate result in bending stresses.
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• If the eigendistortions were free to develop, the generators of the plate would be distorted.
However, the generators remain straight, because pavements are “thin” plates, the thickness
of which is significantly smaller than their in-plane dimensions. Thus, the eigendistortions
are prevented at the level of the generators. This results in mechanical strains and, thus,
in thermal stresses. The latter are self-equilibrated in the sense of producing no stress
resultants in the form of normal forces and bending moments per unit length.

• Stress analysis based on “equivalent” linear temperature distributions appears to be
impossible. This is underlined by the fact that the temperature difference between the
top and the bottom surface of the pavement plate does not change during the hail shower.
Nevertheless, the nonlinear temperature distribution inside the plate changes significantly,
and this results in a considerable evolution of the thermal stresses.

• In case of a hail shower, following an increase of the temperature of the top surface of the
pavement plate, the bending stresses resulting from the restrained thermal eigencurvatures
are negligible compared to the thermal stresses induced by the sudden temperature drop
to 0◦C. Thus, structural analysis of the plate is not necessary. This is beneficial, because
partial separation of the plate from the supporting subgrade renders structural analysis of
pavements subjected to thermal eigencurvatures a nonlinear task, requiring an iterative
solution strategy.

• In order to estimate the maximum macroscopic stresses of the concrete, it is sufficient to
know the temperature at the top surface of the pavement plate, max Tsurf , right before the
hail shower, as well as the thermal expansion coefficient α and Young’s modulus E of the
concrete. Right at the start of the hail shower, the temperature at the top surface of the
plate suddenly drops to 0◦C. Thus, the sudden temperature change is equal to the initial
temperature of the top surface. It would contract, if it was not fixed to the rest of the
pavement plate, which is still in a much warmer state. Thus, thermal eigenstrains at the top
surface of the plate, resulting from the sudden drop of temperature at the beginning of the
hail shower, are practically prevented. This results in a stress-related “mechanical” strain
increment, which is equally large as the thermal eigenstrains, but tensile, see Eqs. (4.15)
and (4.16). Its multiplication by Young’s modulus of concrete delivers the estimate of the
thermal stress as

max σcon ≈ E α (max Tsurf ) . (4.80)

In the analyzed scenario, E = 31.8 GPa, α = 11.5 × 10−6/◦C and max Tsurf = 62◦C, such
that max σcon ≈ 22.7 MPa. This value is only a little larger than 21 MPa, which is the
maximum stress of concrete, computed for the time instant 3 minutes after the start of the
hail shower. In this computation, the heat conduction problem and the complex interaction
of the pavement plate with the subgrade were considered in detail.

Eq. (4.80) underlines that sudden cooling of a pavement plate resulting from a hail shower
represents a serious threat to the integrity of the top layer of concrete, even if the initial
temperature at the top surface of the pavement plate is significantly smaller than that considered
in the presented analysis. Tensile cracking of concrete is likely going to happen in the ITZs covering
the aggregates, because ITZs must transmit tensile stresses which are of similar magnitude as
those experienced by the concrete.
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4.A Analytical solutions for the strain concentration tensors and the
eigenstrain influence tensors

The Mori-Tanaka estimates of the strain concentration tensors are given as [Benveniste, 1987;
Zaoui, 2002]

Ap =
[
I + S : C−1

m : (Cp − Cm)
]

−1
:




∑

j=m,i

fj

[
I + S : C−1

m : (Cj − Cm)
]

−1





−1

, p ∈ [m ; i ] ,

(4.A.1)
where Cm and Ci denote the stiffness tensors of the matrix and of the inclusions, respectively.
These tensors are isotropic. Analogous to Eq. (4.42), they can be expressed as

Cp = 3 kp Ivol + 2µp Idev , p ∈ [m ; i ] . (4.A.2)

In Eq. (4.A.1), S denotes the isotropic Eshelby tensor of a spherical inclusion, embedded in an
infinite matrix with stiffness Cm. It reads as [Eshelby, 1957]

S = Svol Ivol + Sdev Idev , (4.A.3)

with the components

Svol =
3 km

3 km + 4µm
, (4.A.4)

Sdev =
6 (km + 2µm)

5 (3 km + 4µm)
. (4.A.5)

As for mortars and concretes, consisting of an isotropic matrix and of isotropic inclusions with
spherical phase shapes, the strain concentration tensors are also isotropic, reading as

Ap = Ap,vol Ivol +Ap,dev Idev , p ∈ [m ; i ] , (4.A.6)

with the components

Ap,vol =
(

1 + Svol
kp − km

km

)−1

 ∑

j=m,i

fj

(
1 + Svol

kj − km

km

)−1



−1

, (4.A.7)

Ap,dev =
(

1 + Sdev
µp − µm

µm

)
−1

 ∑

j=m,i

fj

(
1 + Sdev

µj − µm

µm

)
−1



−1

. (4.A.8)
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The Mori-Tanaka estimates of the eigenstrain influence tensors are given as [Pichler and Hellmich,
2010]

Dpp = [I − fpAp] :
[
I + S : C−1

m : (Cp − Cm)
]

−1
:
(
S : C−1

m

)
: Cp ,

Dpq = −Ap : fq

[
I + S : C−1

m : (Cq − Cm)
]

−1
:
(
S : C−1

m

)
: Cq .

(4.A.9)

As for mortars and concretes, consisting of an isotropic matrix and isotropic inclusions with
spherical phase shapes, the eigenstrain influence tensors are also isotropic. They read as [Wang
et al., 2019b]

Dpp = Dpp,vol Ivol +Dpp,dev Idev ,

Dpq = Dpq,vol Ivol +Dpq,dev Idev ,
(4.A.10)

with the components

Dmm,vol = (1 − fmAm,vol) Svol , (4.A.11)

Dmm,dev = (1 − fmAm,dev) Sdev , (4.A.12)

Dmi,vol = −fiAm,vol

(
1 + Svol

ki − km

km

)−1

Svol
ki

km
, (4.A.13)

Dmi,dev = −fiAm,dev

(
1 + Sdev

µi − µm

µm

)
−1

Sdev
µi

µm
, (4.A.14)

Dim,vol = −fmAi,vol Svol , (4.A.15)

Dim,dev = −fmAi,dev Sdev , (4.A.16)

Dii,vol = (1 − fiAi,vol)
(

1 + Svol
ki − km

km

)−1

Svol
ki

km
. (4.A.17)

Dii,dev = (1 − fiAi,dev)
(

1 + Sdev
µi − µm

µm

)
−1

Sdev
µi

µm
. (4.A.18)

4.B Numerical values of the Fourier coefficients of the ansatz
functions for the deflection of the plate

Höller et al. [Höller et al., 2019] performed convergence analyses regarding the number of ansatz
functions considered in Eq. (4.34). They found that the converged solution is approached in
a zig-zag fashion. In more detail, if the resolution of the deflection based on 16 × 16 ansatz
functions slightly underestimates the converged solution, then 17×17 ansatz functions will slightly
overestimate the converged solution. The average of the two solutions is a reliable approximation
of the converged solution. This is exploited in the present context. Each one of the three plate
problems at hand is solved twice, using 16 × 16 = 256 ansatz functions (Ns = Nt = 29) as well
as 17 × 17 = 289 (Ns = Nt = 31) ansatz functions. Averaging of the two solutions is based on
averaging of the computed Fourier coefficients. The obtained averaged coefficients are listed in
Table 4.7 for the time instant right before the start of the hail shower, in Table 4.8 for the one
3 minutes after its start, and in Table 4.9 for the one 30 minutes after its start. These averaged
solutions were compared with independent Finite Element simulations. Good agreement was
obtained. Notably, the coefficients do not only provide access to the deflection at any point of
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the plate, see Fig. 4.9 and Eqs. (4.34) and (4.35), but also to the bending moments per unit
length at any point of the plate, see Eqs. (4.30) and (4.31). Thus, the stress analysis, which was
described in the present paper for the center of the plate, can be repeated for any other point.

4.C Model validation: stresses resulting from the eigendistortions of
the generators of the plate

The eigendistortions, see εe
dist in Eq. (4.71), is prevented to occur at the scale of the plate

generators. The resulting thermal stresses can be computed analytically, based on Eq. (4.25).
This is checked against the results of a Finite Element (FE) simulation with RFEM [Dlubal,
2016], referring to the time instant 3 minutes after the start of the hail shower. The pavement
plate is subdivided into 50 layers in the thickness direction. The thickness of each layer is 0.5 cm.
The FE mesh consisted of 375,000 hexahedral finite elements, containing eight nodes with three
translational and rotational degrees of freedom each per node [Sevčík]. The eigendistortions
are applied by introducing a nonlinear temperature change ∆Tnℓ, which generates the same
magnitude of eigenstrains, i.e.

α∆Tnℓ = εe
dist . (4.C.1)

This temperature field is prescribed by setting the temperature of each layer equal to a constant
value, i.e. to the one at its medium z-coordinate. Thus, a piecewise uniform temperature change
is prescribed along the thickness of the plate. The numerically quantified normal stresses agree
very well with the analytical solution of Eq. (4.25), see Fig. 4.13. This underlines the validity of
Eq. (4.25).

-15 -10 -5 0 5 10 15 20 25
-0.5

-0.3

-0.1

0.1

0.3

0.5

analytical

FEM

Fig. 4.13: Normal stresses induced by the eigendistortions at the time instant 3 minutes after
the start of the hail shower, comparison between the results of the analytical solution
following Eq. (4.25) and of the Finite Element simulation.
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Tab. 4.7: Fourier coefficients cs,t of the ansatz functions for the deflection of the plate, defined
in Eq. (4.34), referring to the configuration right before the start of the hail shower;
physical unit of the coefficients [m].

t
s

0 1 3 5 7 9

0 +2.905655E-03 −5.432520E-03 +2.543635E-04 −5.749035E-05 +2.127335E-05 −9.980030E-06
1 −3.352730E-03 −2.439085E-04 −6.234750E-06 +4.394670E-06 −2.090215E-06 +9.800060E-07
3 +1.506720E-04 −1.076830E-05 +3.077915E-06 −1.214170E-06 +5.935225E-07 −3.061815E-07
5 −3.301395E-05 +3.075700E-06 −1.069220E-06 +4.416545E-07 −2.212110E-07 +1.209825E-07
7 +1.173790E-05 −7.788545E-07 +3.486310E-07 −1.641980E-07 +8.924255E-08 −5.285120E-08
9 −5.510320E-06 +3.570245E-07 −1.755010E-07 +9.201650E-08 −5.425885E-08 +3.454720E-08
11 +3.025140E-06 −2.068605E-07 +1.054680E-07 −5.899950E-08 +3.704500E-08 −2.489490E-08
13 −1.826585E-06 +1.185800E-07 −6.432385E-08 +3.760705E-08 −2.460980E-08 +1.716585E-08
15 +1.155300E-06 −3.472075E-08 +2.950335E-08 −1.781165E-08 +1.264805E-08 −8.934205E-09
17 −7.946970E-07 +2.534775E-08 −2.113820E-08 +1.306290E-08 −9.423325E-09 +6.767370E-09
19 +5.901350E-07 −4.474915E-08 +2.389780E-08 −1.482230E-08 +1.033010E-08 −7.544230E-09
21 −4.401225E-07 +3.705130E-08 −1.914055E-08 +1.186555E-08 −8.306605E-09 +6.154215E-09
23 +3.371790E-07 −3.099255E-08 +1.555230E-08 −9.661450E-09 +6.812635E-09 −5.068650E-09
25 −2.634990E-07 +2.534765E-08 −1.256095E-08 +7.831235E-09 −5.553075E-09 +4.154615E-09
27 +2.098680E-07 −2.101600E-08 +1.027605E-08 −6.446380E-09 +4.587490E-09 −3.466510E-09
29 −1.679675E-07 +1.518695E-08 −7.732965E-09 +4.896785E-09 −3.519100E-09 +2.663985E-09
31 +6.521200E-08 −1.709860E-09 +1.695175E-09 −1.126680E-09 +8.379500E-10 −6.399400E-10

t
s

11 13 15 17 19 21

0 +5.420420E-06 −3.245890E-06 +2.100905E-06 −1.434415E-06 +1.031640E-06 −7.625290E-07
1 −4.932630E-07 +2.555765E-07 −1.532150E-07 +9.577625E-08 −7.460065E-08 +5.344105E-08
3 +1.695300E-07 −9.798005E-08 +6.401520E-08 −4.348545E-08 +3.412690E-08 −2.555445E-08
5 −7.218545E-08 +4.511990E-08 −3.175750E-08 +2.278270E-08 −1.871665E-08 +1.446360E-08
7 +3.450905E-08 −2.360200E-08 +1.797970E-08 −1.361825E-08 +1.148660E-08 −9.104910E-09
9 −2.395645E-08 +1.728085E-08 −1.341925E-08 +1.033290E-08 −8.670890E-09 +6.828045E-09
11 +1.793100E-08 −1.331525E-08 +1.042820E-08 −8.077660E-09 +6.696970E-09 −5.268375E-09
13 −1.261160E-08 +9.549860E-09 −7.548895E-09 +5.888955E-09 −4.876545E-09 +3.858010E-09
15 +6.851480E-09 −5.306095E-09 +4.313470E-09 −3.431335E-09 +2.913140E-09 −2.463030E-09
17 −5.260045E-09 +4.069885E-09 −7.006610E-09 −6.164790E-10 −2.248425E-09 +1.892755E-09
19 +5.755700E-09 −4.453825E-09 +3.608820E-09 −2.883720E-09 +2.390840E-09 −1.967440E-09
21 −4.734295E-09 +3.719340E-09 −4.610285E-09 +9.291575E-10 −2.046535E-09 +1.691970E-09
23 +3.922235E-09 −3.098540E-09 +3.633485E-09 −1.017307E-09 +1.739545E-09 −1.454555E-09
25 −3.228405E-09 +2.563355E-09 −2.884435E-09 +9.901610E-10 −1.464205E-09 +1.235345E-09
27 +2.703100E-09 −2.147840E-09 +2.330660E-09 −9.311615E-10 +1.247845E-09 −1.062140E-09
29 −2.087505E-09 +1.666935E-09 −1.376720E-09 +1.141925E-09 −9.874760E-10 +8.462270E-10
31 +5.020200E-10 −4.016655E-10 +4.848650E-10 −1.332930E-10 +2.451245E-10 −2.142840E-10

t
s

23 25 27 29 31

0 +5.857570E-07 −4.557830E-07 +3.631770E-07 −3.336035E-07 +1.016900E-07
1 −4.791865E-08 +3.695565E-08 −3.122975E-08 +8.048400E-08 −4.107625E-08
3 +2.224430E-08 −1.752355E-08 +1.467980E-08 −2.861475E-08 +4.610095E-09
5 −1.273440E-08 +1.010222E-08 −8.552095E-09 +1.293945E-08 −2.295525E-09
7 +8.055500E-09 −6.499140E-09 +5.562915E-09 −8.606315E-09 +1.398455E-09
9 −5.979735E-09 +4.814035E-09 −4.114335E-09 +6.291380E-09 −1.009330E-09
11 +4.564060E-09 −3.684680E-09 +3.130645E-09 −4.765250E-09 +7.774300E-10
13 −3.355905E-09 +2.784255E-09 −2.103515E-09 +3.626840E-09 −5.958350E-10
15 +2.107905E-09 −1.806125E-09 +1.564680E-09 −2.590570E-09 +3.902275E-10
17 −1.653945E-09 +1.425805E-09 −1.251870E-09 +2.042820E-09 −3.126745E-10
19 +1.740375E-09 −1.477815E-09 +1.197525E-09 −1.865690E-09 +3.433640E-10
21 −1.530465E-09 +1.275530E-09 −1.060385E-09 +1.553465E-09 −3.038980E-10
23 +1.323120E-09 −1.111155E-09 +9.398070E-10 −1.316300E-09 +2.705270E-10
25 −1.126625E-09 +9.551050E-10 −8.178290E-10 +1.112085E-09 −2.374615E-10
27 +9.492505E-10 −8.312420E-10 +7.112205E-10 −9.557495E-10 +2.093845E-10
29 −7.582665E-10 +6.622680E-10 −5.753780E-10 +7.796160E-10 −1.677020E-10
31 +2.004405E-10 −1.778535E-10 +1.634635E-10 −2.479635E-10 +8.243800E-11
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Tab. 4.8: Fourier coefficients cs,t of the ansatz functions for the deflection of the plate, defined
in Eq. (4.34), referring to the configuration 3 minutes after the start of the hail shower;
physical unit of the coefficients [m].

t
s

0 1 3 5 7 9

0 +2.069520E-03 −3.410800E-03 +1.754000E-04 −4.005905E-05 +1.475810E-05 −6.847220E-06
1 −2.181055E-03 −2.395970E-04 −4.463470E-06 +3.565315E-06 −1.581500E-06 +6.534630E-07
3 +1.057280E-04 −9.616850E-06 +2.656475E-06 −1.017525E-06 +4.725040E-07 −2.228885E-07
5 −2.268610E-05 +2.077755E-06 −7.603765E-07 +3.188195E-07 −1.582900E-07 +8.319645E-08
7 +7.999035E-06 −4.451200E-07 +2.529140E-07 −1.100520E-07 +5.954740E-08 −3.439545E-08
9 −3.734975E-06 +1.770380E-07 −1.181015E-07 +5.987925E-08 −3.547910E-08 +2.219580E-08
11 +2.043000E-06 −9.467785E-08 +6.677920E-08 −3.824915E-08 +2.447185E-08 −1.633980E-08
13 −1.245175E-06 +6.728435E-08 −4.478185E-08 +2.721595E-08 −1.872470E-08 +1.290215E-08
15 +7.433045E-07 +4.120715E-08 +2.399945E-09 −3.127115E-09 +3.095375E-09 −2.385435E-09
17 −5.059550E-07 −3.413630E-08 +6.309650E-11 +1.060350E-09 −1.419030E-09 +1.144546E-09
19 +4.013295E-07 −2.502265E-08 +1.619165E-08 −1.003766E-08 +7.274425E-09 −5.326095E-09
21 −2.992900E-07 +2.119800E-08 −1.298360E-08 +8.302565E-09 −5.840165E-09 +4.280400E-09
23 +2.288980E-07 −1.756170E-08 +1.042750E-08 −6.699670E-09 +4.742280E-09 −3.496160E-09
25 −1.790970E-07 +1.479255E-08 −8.536985E-09 +5.497825E-09 −3.908650E-09 +2.893960E-09
27 +1.425790E-07 −1.227895E-08 +7.000665E-09 −4.506615E-09 +3.214280E-09 −2.386865E-09
29 −1.098775E-07 +3.326995E-09 −3.490600E-09 +1.589630E-09 −1.320275E-09 +1.083185E-09
31 −2.428970E-07 +3.647830E-07 −1.195965E-07 +7.054550E-08 −4.914170E-08 +3.700430E-08

t
s

11 13 15 17 19 21

0 +3.652220E-06 −2.161345E-06 +1.575220E-06 −8.658395E-07 +7.193815E-07 −5.004635E-07
1 −2.460280E-07 +9.153740E-08 −2.728465E-07 −8.338000E-08 −6.590435E-08 +6.989895E-09
3 +1.030875E-07 −5.192600E-08 +1.006661E-07 +1.095523E-08 +3.171420E-08 −1.026286E-08
5 −4.067930E-08 +2.243975E-08 −9.941120E-08 −3.542490E-08 −1.686200E-08 +6.276545E-09
7 +1.995760E-08 +4.836460E-09 +5.273010E-08 +1.894460E-08 +1.695650E-08 −4.908930E-09
9 −1.389865E-08 +8.348445E-10 −3.081540E-08 −1.017380E-08 −1.063330E-08 +3.429005E-09
11 +1.082610E-08 −2.937435E-09 +1.907415E-08 +5.365195E-09 +7.011870E-09 −2.403210E-09
13 −8.651265E-09 +3.674475E-09 −1.256790E-08 −2.548475E-09 −4.933660E-09 +1.889910E-09
15 +1.518565E-09 +2.005319E-10 +5.844660E-09 +3.082615E-09 +2.037130E-09 −3.776000E-10
17 −6.905035E-10 −1.784417E-10 −3.595775E-09 −2.110655E-09 −1.233485E-09 +1.988681E-10
19 +3.848575E-09 −2.501215E-09 +4.321895E-09 −1.301585E-10 +2.021490E-09 −1.071240E-09
21 −3.173165E-09 +2.187305E-09 −3.292535E-09 +4.073390E-10 −1.638095E-09 +9.435080E-10
23 +2.612060E-09 −1.867665E-09 +2.549860E-09 −5.250655E-10 +1.340165E-09 −8.181620E-10
25 −2.175435E-09 +1.599755E-09 −2.020600E-09 +5.712295E-10 −1.116470E-09 +7.167595E-10
27 +1.795695E-09 −1.387465E-09 +1.615740E-09 −5.627105E-10 +9.113975E-10 −6.265750E-10
29 −8.653075E-10 +7.245650E-10 −9.057490E-10 +2.783985E-10 −5.252820E-10 +3.984335E-10
31 −2.911480E-08 +2.351840E-08 −1.922070E-08 +1.619840E-08 −1.349730E-08 +1.144510E-08

t
s

23 25 27 29 31

0 +3.913470E-07 −3.050740E-07 +2.473245E-07 −2.061845E-07 +6.961650E-08
1 −1.831995E-08 +1.445385E-08 −1.795070E-08 +2.478095E-08 −2.321370E-08
3 +1.151945E-08 −8.262565E-09 +7.437905E-09 −7.096555E-09 +2.273760E-09
5 −7.854210E-09 +5.733915E-09 −4.863740E-09 +4.250040E-09 −9.649400E-10
7 +5.324295E-09 −3.998890E-09 +3.373090E-09 −2.644625E-09 +5.022550E-10
9 −3.764060E-09 +2.930830E-09 −2.521550E-09 +2.025065E-09 −3.420975E-10
11 +2.665665E-09 −2.150715E-09 +1.911540E-09 −1.646105E-09 +2.603425E-10
13 −1.979650E-09 +1.612650E-09 −1.539830E-09 +1.402070E-09 −2.207025E-10
15 +6.796150E-10 −6.125060E-10 +7.308700E-10 −7.347350E-10 +5.028050E-13
17 −4.454130E-10 +4.307715E-10 −5.636415E-10 +5.550105E-10 +3.052485E-11
19 +1.072072E-09 −9.370525E-10 +9.606580E-10 −8.512680E-10 +1.284725E-10
21 −9.472185E-10 +8.252460E-10 −7.733370E-10 +7.427825E-10 −1.160725E-10
23 +8.065055E-10 −7.045135E-10 +6.625330E-10 −6.445355E-10 +1.026995E-10
25 −6.957770E-10 +6.086235E-10 −5.734035E-10 +5.624155E-10 −9.159350E-11
27 +6.000120E-10 −5.256370E-10 +4.960440E-10 −4.831100E-10 +7.998200E-11
29 −4.641800E-10 +5.236535E-10 −6.730805E-10 +3.139510E-10 −2.187940E-11
31 −9.703100E-09 +8.272700E-09 −7.071450E-09 +6.115900E-09 −5.377450E-09
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4 Concrete pavements subjected to hail showers 132

Tab. 4.9: Fourier coefficients cs,t of the ansatz functions for the deflection of the plate, defined
in Eq. (4.34), referring to the configuration 30 minutes after the start of the hail
shower; physical unit of the coefficients [m].

t
s

0 1 3 5 7 9

0 +4.709470E-04 −3.487525E-04 +4.162340E-05 −8.498935E-06 +2.908555E-06 −1.328430E-06
1 −3.321465E-04 −5.338485E-05 −4.984020E-06 +7.199045E-07 −1.047665E-07 +2.369860E-08
3 +2.270860E-05 −1.960515E-06 +6.408965E-07 −1.702305E-07 +7.845155E-08 −4.583555E-08
5 −4.552560E-06 +2.884600E-08 −1.456070E-07 +6.704260E-08 −3.849745E-08 +2.254600E-08
7 +1.579220E-06 +6.714440E-08 +6.024990E-08 −3.301175E-08 +1.808585E-08 −1.005131E-08
9 −7.312340E-07 −3.854260E-08 −3.330530E-08 +1.759315E-08 −9.219360E-09 +5.437410E-09
11 +3.987305E-07 +2.020365E-08 +1.975965E-08 −1.015120E-08 +5.414895E-09 −3.555440E-09
13 −2.414040E-07 −1.087590E-08 −1.291950E-08 +6.473065E-09 −3.633915E-09 +2.527115E-09
15 +1.575730E-07 +5.913155E-09 +8.826020E-09 −4.568440E-09 +2.672905E-09 −1.848440E-09
17 −1.085370E-07 −3.361150E-09 −6.216580E-09 +3.285890E-09 −2.006220E-09 +1.359670E-09
19 +7.818225E-08 +1.738595E-09 +4.739310E-09 −2.520200E-09 +1.581300E-09 −1.074080E-09
21 −5.805300E-08 −1.035915E-09 −3.608155E-09 +1.943220E-09 −1.204250E-09 +8.355160E-10
23 +4.440380E-08 +4.836285E-10 +2.859660E-09 −1.549475E-09 +9.675615E-10 −6.841590E-10
25 −3.474335E-08 −1.458479E-10 −2.318765E-09 +1.258270E-09 −7.912640E-10 +5.671580E-10
27 +2.766675E-08 −8.519650E-12 +1.888475E-09 −1.027925E-09 +6.488025E-10 −4.704490E-10
29 −2.255610E-08 +3.053910E-10 −1.626465E-09 +8.899065E-10 −5.976245E-10 +4.261675E-10
31 +9.083200E-09 −3.863795E-10 +5.287650E-10 −2.847835E-10 +1.945815E-10 −1.503135E-10

t
s

11 13 15 17 19 21

0 +7.128455E-07 −4.280000E-07 +2.398570E-07 −2.161430E-07 +1.362510E-07 −1.011830E-07
1 −4.258255E-09 +1.939290E-09 +4.548555E-08 +3.431695E-08 −1.694335E-09 +1.843975E-09
3 +2.775195E-08 −1.807650E-08 −1.280365E-08 −2.518485E-08 −1.694335E-09 −4.940910E-09
5 −1.299385E-08 +8.081090E-09 +4.616900E-09 +1.126335E-08 −3.000605E-09 +2.396145E-09
7 +5.740665E-09 −3.987615E-09 −8.772385E-10 −5.226730E-09 +1.775395E-09 −1.460445E-09
9 −3.553055E-09 +2.748180E-09 +1.193251E-10 +3.140465E-09 −1.107575E-09 +9.774835E-10
11 +2.537290E-09 −1.820040E-09 +2.340945E-10 −2.005525E-09 +8.270925E-10 −6.760035E-10
13 −1.764175E-09 +1.297380E-09 −2.281840E-10 +1.451210E-09 −6.322000E-10 +5.224315E-10
15 +1.321355E-09 −9.734420E-10 +1.875280E-10 −1.100615E-09 +5.036625E-10 −4.270335E-10
17 −9.814750E-10 +7.662835E-10 −2.286090E-10 +8.315220E-10 −3.943345E-10 +3.293420E-10
19 +7.962030E-10 −6.176645E-10 +2.095225E-10 −6.518825E-10 +3.278870E-10 −2.788065E-10
21 −6.248655E-10 +4.993555E-10 −1.939945E-10 +5.087665E-10 −2.658195E-10 +2.335510E-10
23 +5.160670E-10 −4.139840E-10 +1.850625E-10 −4.058895E-10 +2.240905E-10 −1.965440E-10
25 −4.297180E-10 +3.406135E-10 −1.690315E-10 +3.318995E-10 −1.964855E-10 +1.682800E-10
27 +3.566980E-10 −2.836155E-10 +1.511690E-10 −2.728020E-10 +1.669275E-10 −1.441020E-10
29 −3.164130E-10 +2.531285E-10 −1.445395E-10 +2.363505E-10 −1.497780E-10 +1.300430E-10
31 +1.193865E-10 −9.714700E-11 +5.374150E-11 −9.136800E-11 +5.627650E-11 −4.867995E-11

t
s

23 25 27 29 31

0 +7.736825E-08 −6.024185E-08 +4.756220E-08 −3.858055E-08 +1.573575E-08
1 −1.978730E-09 +1.376900E-09 −4.947110E-10 +4.551260E-10 −1.792920E-09
3 +4.098555E-09 −3.315950E-09 +2.574780E-09 −1.959660E-09 +5.012300E-10
5 −1.885040E-09 +1.584150E-09 −1.218555E-09 +1.167005E-09 −3.005985E-10
7 +1.171660E-09 −8.779525E-10 +7.074520E-10 −6.303935E-10 +2.329990E-10
9 −8.218500E-10 +6.385995E-10 −4.739020E-10 +4.611680E-10 −1.913580E-10
11 +6.030870E-10 −5.064185E-10 +3.739175E-10 −3.420885E-10 +1.546670E-10
13 −4.471625E-10 +3.953140E-10 −3.044360E-10 +2.488290E-10 −1.171680E-10
15 +3.624750E-10 −3.059760E-10 +2.415680E-10 −2.069955E-10 +9.249150E-11
17 −2.873680E-10 +2.416155E-10 −2.039210E-10 +1.866680E-10 −7.170600E-11
19 +2.445260E-10 −1.958755E-10 +1.718945E-10 −1.535585E-10 +6.181550E-11
21 −2.056110E-10 +1.706045E-10 −1.425710E-10 +1.312735E-10 −5.275000E-11
23 +1.730490E-10 −1.472595E-10 +1.235090E-10 −1.140230E-10 +4.679590E-11
25 −1.468690E-10 +1.279970E-10 −1.079050E-10 +9.742695E-11 −4.160105E-11
27 +1.257015E-10 −1.100700E-10 +9.428170E-11 −8.370115E-11 +3.638145E-11
29 −1.065450E-10 +8.503670E-11 −8.604705E-11 +7.624250E-11 −3.349335E-11
31 +4.305055E-11 −4.631140E-11 +5.534700E-11 −6.402250E-11 −1.574720E-10
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Chapter 5

Energy landscapes of graphene under general
deformations: DFT-to-hyperelasticity upscaling

Authored by: Raphael Höller, Valerie Smejkal, Florian Libisch, and Christian Hellmich

Under review (minor revisions requested): International Journal of Engineering Science

Abstract

Profound investigation of the unsurpassed mechanical properties of suspended graphene motivates
the link between classical continuum mechanics (where the notions of “mechanical strength”,
“mechanical stiffness”, and “elastic energy” have actually been coined) and density functional
theory (DFT) rooted in quantum mechanics. Namely, the latter quantifies the energetic ground
states of systems consisting of atomic nuclei and electrons; and these ground states, in turn,
are directly linked to the elastic energy. While the corresponding state-of-the-art typically
concerns graphene mechanics under uniaxial or equally biaxial strain states, we here present a
fully anisotropic free (strain) energy function reflecting DFT-simulations associated with tens
of thousands of arbitrary biaxial strain states. The latter are realized as sets of primitive
unit cell vectors spanning a rhomboid unit cell hosting two carbon atoms. The position of
the latter follows from internal energy minimization through the Vienna ab initio simulation
package (VASP). As corresponding continuum mechanical representation we employ hyperelastic,
structure tensor-based polynomial models up to the fifth order. The corresponding stress-strain
relations are of concave nature, and hence, they provide access to the failure limits of the 2D
material undergoing arbitrary loading situations. This is expected to introduce a new level of
precision in the growing field of the structural mechanics of graphene.

Contribution of the author: The author of the present thesis developed the refined DFT-
based hyperelastic material model for graphene under general deformations. In this context, he
performed extensive literature research, performed all quantum mechanical DFT-simulations,
prepared the Matlab codes for the fitting process as well as for the provided results, and
documented most of the manuscript.
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5 Graphene under general deformations 134

List of symbols

a0 half width of constant strain triangle (“CST” Finite Element)
a0

1,a
0
2,a

0
3 primitive lattice vectors of graphene in initial configuration

a1,a2,a3 primitive lattice vectors of graphene in current configuration
a1,Z , a1,A components of a1 with respect to base vectors eZ and eA

a2,Z , a2,A components of a2 with respect to base vectors eZ and eA

A0 area of parallelogram defined by vectors a1 and a2

(initial area of graphene “unit cell”)
b0 height of constant strain triangle (or CST finite element)
b1,b2,b3 primitive reciprocal lattice vectors of graphene

in initial configuration
B tensor-valued response functional of Noll’s simple materials
c lattice constant of graphene
c1-c14 polynomial fitting coefficients
cjkm Fourier coefficient of Bloch wave
C1, C2 carbon atoms
C 2D tangent elasticity tensor, associated with the graphene plane
C

∗,1, C∗,2 submatrices of C
CE

klmn components of C with respect to base vectors eE
1 and eE

2

Ĉ operator for electron-electron (Coulomb) interaction
eZ , eA, eT orthonormal base frame of Cartesian coordinate system,

with eZ and eA spanning the graphene plane
eE

1 , eE
2 principal directions of E in the graphene plane

eπ
1 , eπ

2 principal directions of π in the graphene plane
eσ

1 , eσ
2 principal directions of σ in the graphene plane

e elementary electron charge
Ē internal energy
Ecut cut-off energy
Eee electron-electron interaction energy
Eext nucleus-electron interaction energy
EH electrostatic electron-electron interaction energy
Exc exchange-correlation energy
EP BE

xc generalized gradient approximation of Exc

by Perdew, Burke, and Ernzerhof (PBE)
E Green-Lagrange strain tensor
EZZ ,EZA,EAA components of E with respect to base vectors eZ and eA;

lying in the graphene plane
EI, EII principal strains of E, in directions eE

1 and eE
2

f periodic function within graphene lattice
fm Fourier expansion coefficient of f
F deformation gradient
FZZ , FZA, FAA components of F with respect to base vectors eZ and eA

Gm reciprocal lattice translation vector
G2D shear modulus associated with 2D elasticity

in the graphene plane
G3D shear modulus associated with pseudo-3D graphene material
h height of the graphene unit cell
~ reduced Planck constant
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5 Graphene under general deformations 135

H Heaviside step function
Ĥ Hamiltonian operator
i imaginary unit
I1, I2 principal invariants, associated with isotropic material behavior
I3 principal invariant, associated with anisotropic material behavior
j, k, l,m, n index of summation / of vector component
J Jacobi-determinant
J1-J9 main invariants, associated with isotropic material behavior
J10, J11 main invariants, associated with anisotropic material behavior
k crystal wave vector
kk chosen crystal wave vectors in first Brillouin zone
K corner point of the first Brillouin zone
L Lagrange function
M second-order tensor involved in the defintion of structural tensor P

M center of the confined edge of the first Brillouin zone
mC mass of one carbon atom
me mass of one electron
muc mass of the graphene unit cell
m1,m2,m3 integers for constructing Gm

N second-order tensor involved in the defintion of structural tensor P

n1, n2, n3 integers for constructing Rn

Ne total number of electrons
Nn total number of nuclei
Nk total number of wave vector sampling points
N matrix of linear shape functions
N1,N2,N3 values of non-zero elements appearing in N

o, p, q, r, s, t index of summation / of vector component
P sixth-order structural tensor of hexagonal lattice (or graphene)
Popqrst components of P with respect to base vectors eZ and eA

q vector collecting nodal displacements
of the constant strain triangles (or CST finite elements)

Q orthogonal transformation tensor
Qkl components of Q with respect to base vectors eZ and eA

Qrot rotation tensor of graphene’s material symmetry group SO
Qref reflection tensor of graphene’s material symmetry group SO
r position vector of electrons
Rk position vector of k-th nucleus
Rn lattice translation vector
S derivative of the principal invariant I3 with respect to E

SZZ , SZA, SAA components of S with respect to base vectors eZ and eA

SE
11, SE

12, SE
22 components of S with respect to base vectors eE

1 and eE
2

S derivative of S with respect to E

SO material symmetry group of graphene
T̂e operator for the kinetic energy of electrons
Te kinetic energy of electrons
Te,0 kinetic energy of non-interacting electrons
t0 effective thickness of graphene
u 2D displacement vector
uj displacement vector of corner point j of unit cell
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uZ , uA components of u with respect to base vectors eZ and eA

V0 initial volume of the graphene unit cell
V̂ext operator for nucleus-electron interaction
Vext potential energy for nucleus-electron interaction
VH electrostatic electron-electron interaction potential
VKS Kohn-Sham potential
V P BE

xc PBE approximation of the exchange-correlation potential
wk weighting factors for chosen wave vector sampling points
X location vector throughout the graphene unit cell
XZ , XA, XT components of X with respect to base frame eZ , eA, eT

(Cartesian coordinates)
Y 2D elastic Young’s modulus associated with

2D elasticity in the graphene plane
Y 3D elastic Young’s modulus associated with

pseudo-3D graphene material
Z set of integers
Zk atomic number of k-th nucleus
αE angle between base vectors eZ and eE

1

απ angle between base vectors eZ and eπ
1

ασ angle between base vectors eZ and eσ
1

β1-β3 scalar functions for constructing π

γ1-γ7 scalar functions for constructing C

Γ center of the first Brillouin zone
δ variation
δmn Kronecker delta
εj j-th one-electron Kohn-Sham eigenenergy / Lagrange multiplier
ǫln logarithmic strain tensor
ǫlnI , ǫ

ln
II principal logarithmic strains, with directions eE

1 and eE
2

λ2D Lamé’s first parameter associated with
2D elasticity in the graphene plane

λ3D Lamé’s first parameter associated with
pseudo-3D graphene material

λI, λII principal stretches, with directions eE
1 and eE

2

ν Poisson’s ratio associated with elastic stiffness
at infinitesimally small strains

ν∗ Poisson’s ratio-type quantity for large deformations
ξ1, ξ2 natural coordinates of the CST-Finite Element
π 2D second Piola-Kirchhoff stress tensor

associated with the graphene plane
πZZ , πZA, πAA components of π with respect to base vectors eZ and eA

πE
11, π

E
12, π

E
22 components of π with respect to base vectors eE

1 and eE
2

πI, πII principal stresses of π, in directions eπ
1 and eπ

2

ρ2D
m,0 initial mass density per area of graphene
ρ3D

m,0 initial mass density per pseudo-volume of graphene
ρe electronic (probability) density
σ 2D Cauchy stress tensor, associated with the graphene plane
σE

11, σ
E
12, σ

E
22 components of σ with respect to base vectors eE

1 and eE
2

σI, σII principal stresses of σ, in directions eσ
1 and eσ

2

φ areal dissipation
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Φ complex electronic wavefunction
Φj j-th one-electron Kohn-Sham wavefunction
ψm specific free energy (or Helmholtz energy per unit mass)
Ψ Helmholtz free energy
ΩBZ volume of the first Brillouin zone
∇ nabla operator
⊗ dyadic product
1 second-order unit tensor
I symmetric fourth-order unit tensor
˙(.) derivative of quantity (.) with respect to time

5.1 Introduction

Graphene, the first true two-dimensional (2D) solid, consists of covalently bonded carbon atoms
arranged in a monolayer honeycomb lattice. Since its isolation in 2004 [Novoselov et al., 2004],
graphene has attracted considerable attention in the fields of chemistry, physics, and material
science. Remarkable thermal, electronic, and mechanical properties of suspended graphene have
been discovered [Lau et al., 2012]; the most famous ones are the high thermal conductivity, the
weak uniform optical absorptivity, the extremely high electron mobility, and the mechanical
strength and stiffness exceeding those of any other material [Balandin et al., 2008; Nair et al.,
2008; Bolotin et al., 2008; Lee et al., 2008]. In addition, graphene exhibits several highly peculiar
features, such as defects which may either reduce or increase the strength of graphene, or its
electronic structure, which can be significantly modified through the application of mechanical
strain [Galiotis et al., 2015; Wei et al., 2012; Bissett et al., 2014].

The outstanding mechanical properties of graphene have motivated remarkable studies linking
the quantum mechanics-rooted Density Functional Theory (DFT), where the Schrödinger equation
of a many electron system is solved by expressing the internal energy as a functional of the
electronic density [Hohenberg and Kohn, 1964; Kohn and Sham, 1965], to classical theories of
continuum mechanics, where the notions of “mechanical strength” and “mechanical stiffness”
have actually been coined. In this context, DFT-simulated uniaxial stretching of four-atom unit
cells revealed a Young’s modulus, i.e. mechanical stiffness under uniaxial tension, of around
1 TPa [Liu et al., 2007]. These results were confirmed, and extended to the equal biaxial case,
on unit cells with 4 and 32 atoms [Xu et al., 2012a]. Corresponding computations were based
on a hyperelastic potential depending on the normal components of the Green-Lagrange strain
tensor with respect to base vectors pointing into the zigzag and armchair directions, and on the
first two invariants of the right Cauchy-Green tensor. Moreover, anisotropy of graphene was
considered through dependence of the uniaxially and equally biaxially informed hyperelastic
potential on the structural tensor [Kumar and Parks, 2015]. Such hyperelastic formulations have
been used for structural mechanics computations concerning carbon nanotubes and nanocones
[Ghaffari and Sauer, 2018].

The present paper concerns further refinement of the DFT-to-hyperelasticity conversion, with
two threads of original contributions: (i) DFT-simulations relating to tens of thousands of
arbitrary biaxial strain states provide a complete picture of deformation-driven energy landscapes
of graphene; and (ii) the latter are represented, with decreasing prediction error, by a sequence
of structure tensor-based polynomial hyperelastic models up to the fifth order. The concave
characteristics of corresponding stress-strain relations give access to the failure limits of the
2D material, in terms of orientation-dependent stability regions [Kumar and Parks, 2015] in
the principal strain space. Accordingly, the paper is structured as follows: In Section 5.2,
we employ DFT for the quantification of the free energy of graphene in the ground state, as
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5 Graphene under general deformations 138

function of arbitrary primitive lattice vectors characterizing different configurations of the systems.
Thereafter, in Section 5.3, we convert the lattice vector configurations into continuum strain
measures; and by deriving the free energy with respect to the former measures, we arrive at stress-
strain relations for arbitrary deformation states, both with respect to the initial configuration as
well as to the current one. Corresponding tangent stiffness tensors are also subjected to a stability
analysis, in the line of an earlier contribution of Kumar and Parks [2015]. After presenting
corresponding results (see Section 5.4), the paper is completed by a Discussion and Conclusion
section (Section 5.5).

5.2 Density Functional Theory of graphene at ground state: free
energies for arbitrary primitive lattice vectors

5.2.1 Basics of Density Functional Theory

Density functional theory (DFT) [Parr and Yang, 1989] is a particularly versatile and efficient tool
for quantifying the ground energy state, i.e. the lowest possible energy level of atomistic systems..
This ground state is associated to zero absolute temperature, and at this temperature the internal
energy Ē is equal to the Helmholtz free energy Ψ. Identification of internal and free energy is
common when using DFT for deciphering the mechanics of graphene [Liu et al., 2007; Xu et al.,
2012a; Kumar and Parks, 2015]. The starting point for DFT is the stationary Schrödinger equation
for N electrons moving between fixed nuclei (Born-Oppenheimer nonrelativistic approximation
[Born and Oppenheimer, 1927])

Ĥ Φ(r1, r2, . . . , rNe) = Ē Φ(r1, r2, . . . , rNe) . (5.1)

In (5.1), Ē is the internal energy of the system, Ĥ is the Hamiltonian, Ne is the total number
of electrons, rj denotes the spatial position of the j-th electron, j = 1, 2, ..., Ne; and Φ is the
normalized complex many-body wavefunction fulfilling

∫∫
. . .

∫
Φ∗(r1, r2, . . . , rNe) Φ(r1, r2, . . . , rNe) dr1dr2 . . . drNe = 1 , (5.2)

whereby Φ∗ is the complex conjugate of Φ. The Hamiltonian operator Ĥ consists of three portions:
the electron kinetic energy operator T̂e, the (Coulomb) electron-electron interaction operator Ĉ,
and the potential energy (or nucleus-electron interaction) operator V̂ext. In mathematical terms,

Ĥ = T̂e + Ĉ + V̂ext . (5.3)

Thereby, the three individual mathematical operators read as

T̂e = −
Ne∑

j

~
2

2me
∇2

j , V̂ext = −
Ne∑

j

Nn∑

k

e2 Zk

|rj − Rk| , Ĉ =
Ne∑

j

∑

l<j

e2

|rj − rl|
, (5.4)

where me is the mass of one electron (particle), e is the electron charge, ~ is the reduced Planck
constant, Nn is the total number of nuclei, Rk and Zk denote the spatial position and atomic
number (positive charge) of the k-th nucleus, respectively; with k = 1, 2, ..., Nn; and ∇j is the
nabla operator acting on particle j, ∇j = ∂/∂rj .
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The complex normalized wavefunction is associated with the probability to find an electron at
position r, expressed through the so-called electronic (probability) density function, reading as
[Parr and Yang, 1989]

ρe(r) = Ne

∫∫
. . .

∫
Φ∗(r, r2, . . . , rNe) Φ(r, r2, . . . , rNe) dr2dr3 . . . drNe . (5.5)

which, thanks to (5.2), fulfills ∫
ρe(r) dr = Ne , (5.6)

i.e. scanning the entire system domain, through many measurements targeting the presence of
electrons, will reveal all the electrons present within this domain. Similarly, the average of many
measurements of other observables leads to the expected values of these observables, such as the
kinetic energy of the electrons

Te[Φ] =
∫∫

. . .

∫
Φ∗ T̂e Φ dr1dr2 . . . drNe = 〈Φ| T̂e |Φ〉 , (5.7)

and from (5.1), the expected value for the internal energy follows as

Ē[Φ] =
∫∫

. . .

∫
Φ∗ĤΦ dr1dr2 . . . drNe = 〈Φ| Ĥ |Φ〉 ≥ Ψ , (5.8)

where Ψ denotes the minimum of Ē, hence Ψ is the ground state energy (which is identical to the
free Helmholtz energy at zero Kelvin). According to the Hohenberg-Kohn theorems [Hohenberg
and Kohn, 1964], the ground state is fully determined by the electronic density ρe(r), as two
different external potentials cannot deliver the same electronic density associated with the ground
state. Hence, making also use of (5.8) in combination with (5.5), the ground state energy Ψ
obeys to the following form

Ψ[ρe] = Eext[ρe] + Te[ρe] + Eee[ρe] , Eext[ρe] = −
Nn∑

k

∫
e2 Zk

|r − Rk| ρ
e(r)dr , (5.9)

with Eee denoting the energy contribution coming from the (Coulomb) electron-electron interac-
tion.

Next, reasonable approximations for Te and Eee are introduced. For this purpose, Kohn
and Sham [1965] introduced a system of non-interacting electrons characterized by individual
normalized single-electron wavefunctions Φ1,Φ2, . . . ,ΦNe fulfilling

∫
Φ∗

j (r) Φj(r)dr = 1 ; for j = 1, 2, ..., Ne , (5.10)

with the corresponding simplified form of the electronic (probability) density reading as

ρe(r) =
Ne∑

j

|Φj(r)|2 =
Ne∑

j

Φ∗

j (r) Φj(r) . (5.11)
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Following Bloch [1928], electron waves in a periodic lattice can be described by a continuous
field of wave vectors k in the Brillouin zone ΩBZ , see also Section 5.2.2. This leads to recasting
(5.10) and (5.11) in the forms

∫

UC
Φ∗

j (r,k) Φj(r,k) dr = 1 ; for j = 1, 2, ..., Ne ∀ k ∈ ΩBZ ; (5.12)

and

ρe(r) =
Ne∑

j

1
ΩBZ

∫

ΩBZ

Φ∗

j (r,k) Φj(r,k) dk , (5.13)

where the spatial integral is evaluated over a periodic unit cell of the lattice, see also Section 5.2.2,
and where Ne is the number of electrons in this unit cell. This approach of summing up wave
contributions of the individual electrons is also adopted for the evaluation of the kinetic operator
T̂e, so that the Kohn-Sham-Bloch approximation of the kinetic energy reads as

Te,0[ρe] =
Ne∑

j

1
ΩBZ

∫

ΩBZ

∫

UC
Φ∗

j (r,k)

(
− ~

2

2me
∇2

)
Φj(r,k) dr dk . (5.14)

The classical electrostatic contribution to the electron-electron interaction energy Eee is called
Hartree energy EH , and reads as [Hohenberg and Kohn, 1964]

EH [ρe]=
e2

2

∫ ∫
ρe(r) ρe(r′)

|r − r′| dr dr′ . (5.15)

The difference to the actual (unknown) value for (Te +Eee) is called exchange-correlation energy
Exc

Exc[ρe] = (Te[ρe] + Eee[ρe]) − (Te,0[ρe] + EH [ρe]) . (5.16)

As an approximation to the exchange-correlaction energy, we adopt the popular generalized
gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [Perdew et al., 1996,
1997], so that Eq. (5.9) can be transformed into the convenient format

Ψ[ρe] = Eext[ρe] + Te,0[ρe] + EH [ρe] + EP BE
xc [ρe] . (5.17)

As Ψ denotes the minimum energy of the ground state, the minimization of the density functional
(5.17) gives access to the actual value of Ψ, and identification of the minimum point is equivalent
to finding the density and orbital state where the variation of Ψ vanishes

minΨ[ρe(Φ∗

1,Φ
∗

2, . . . ,Φ
∗

Ne
)] ⇔ δΨ[ρe(Φ∗

1,Φ
∗

2, . . . ,Φ
∗

Ne
)] = 0 . (5.18)

Evaluation of the variational expression (5.18)2 while considering the normalization condition
(5.12), proposes the use of a Lagrange multiplier-enhanced energy expression L and its variation,
according to

δL = δL[ρe(Φ∗

1,Φ
∗

2, . . . ,Φ
∗

Ne
), ε1(k), ε2(k), . . . , εNe(k)] =

= δ

[
Ψ −

Ne∑

i

∫
εi(k)

(∫
Φ∗

i Φidr − 1
)
dk

]

=
Ne∑

i

∫
dΨ
dρe

[ρe(Φ∗

1,Φ
∗

2, . . . ,Φ
∗

Ne
)] × ∂ρe

∂Φ∗

i

δΦ∗

i − εi(k)ΦiδΦ∗

i dk = 0 . (5.19)
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As (5.19) needs to hold for any variations of the orbital conjugates, δΦ∗

i , it yields Ne eigenvalue
problem functionals in k, which interestingly turn out to be all identical. They are all of the form

(
− ~

2

2me
∇2 + Vext(r) + VH [ρe] + V P BE

xc [ρe]

)
Φj(r,k) = εj(k) Φj(r,k) ,

j = 1, 2, ...,∞ , ∀ k ∈ ΩBZ (5.20)

with the external, Hartree and the exchange correlation potentials reading as

Vext(r) = −
Nn∑

k

e2 Zk

|r − Rk| , VH [ρe] =
dEH [ρe]
dρe(r)

=e2
∫

ρe(r′)
|r − r′|dr′ ,

V P BE
xc [ρe] =

dEP BE
xc [ρe]
dρe(r)

. (5.21)

In (5.20), εj(k) is called the j-th Kohn-Sham eigenenergy associated with wavevector k, and the
multiplicator of Φj in (5.20) is standardly called the Kohn-Sham potential

VKS[ρe] = Vext(r) + VH [ρe] + V P BE
xc [ρe]. (5.22)

In principle, the Kohn-Sham equations (5.20) with (5.22) give access to the orbitals Φj , which in
turn, via (5.11) and (5.17), give access to the electronic density ρe and the ground state energy
Ψ. Practically, this involves a number of computational steps, as described next.

5.2.2 DFT simulation procedure

All computations reported in the present paper are performed on a primitive unit cell of the
crystal system (see Fig. 5.1): In graphene, a perfectly 2D monolayer of graphite, the undeformed
sp2 hybridized carbon atoms are arranged in a hexagonal lattice with lattice constant c. The
latter quantifies the equilibrium bond length of two neighboring carbon atoms in the undeformed
hexagonal graphene lattice. The smallest unit cell which is able to cover the bulk lattice upon
periodic repetition contains two carbon atoms, see Fig. 5.1. In the initial configuration, such
a unit cell is spanned by three primitive lattice vectors a0

1, a0
2, and a0

3: a0
1 and a0

2 are oriented
at angles of -30◦ and 30◦ from the “armchair” direction eA, see Fig. 5.1(a), and vector a0

3 is
perpendicular to the graphene plane, see Fig. 5.1(b). With respect to an orthonormal base frame
{eZ , eA, eT }, the primitive lattice vectors read as

a0
1 =

c

2

(√
3 eZ + 3 eA

)
, a0

2 =
c

2

(
−

√
3 eZ + 3 eA

)
, a0

3 = h eT . (5.23)

Since the employed program package VASP requires periodic boundary conditions in all three
dimensions, the length of a0

3 defines the distance h between periodic images of the graphene
sheet. a0

3 needs to be chosen large enough to avoid artefacts due to layer-layer interactions.
Positions within the unit cell and on its boundaries are described by position vector X =

XZ eZ +XA eA +XT eT , see Fig. 5.1(b) for a Cartesian coordinate system consisting of the base
frame {eZ , eA, eT } and of an origin at the corner of one primitive cell. The initial positions of
the two carbon atoms, C1 and C2, read as

X0
C1

=
1
2

a0
3 =

h

2
eT , and X0

C2
=

1
3

a0
1 +

1
3

a0
2 +

1
2

a0
3 = c eA +

h

2
eT . (5.24)
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c=0.142 nm

a2 a1

"armchair"

"zigzag"
(a) (b)

C1

C2

a1

a2

a3

h
=

1
.5

 n
m

3/
2 

c

c/2 √3
c/2 √3

vacuum

t=0.335 nm

eZ

eA

eZ

eA

eT

0 0

0

0

0

Fig. 5.1: Hexagonal carbon lattice of graphene modeled by periodic unit cells: (a) illustrations
of typical unit cell in the graphene plane (spanned by base vectors eZ and eA), with
lattice constant c = 0.142 nm; and (b) 3D geometry of the used primitive rhomboid
unit cell with height h and effective thickness t; carbon atoms are indicated by C1 and
C2.

The unit cell’s initial area in the eZ-eA plane and the initial volume of the unit cell follow as

A0 = |a0
1 × a0

2| =
3

√
3

2
c2 = 2.5981 c2 , (5.25)

V0 = a0
3 · (a0

1 × a0
2) =

3
√

3
2

h c2 = 2.5981 c2 h . (5.26)

Furthermore, the mass of the unit cell muc is given by the two included carbon atoms, with

muc = 2mC = 2 × 12.0207 u , (5.27)

where [u] is the unified atomic mass unit (quantifying mass on an atomic scale), with 1 u =
1.660539 × 10−27 kg.

Deformed states of the graphene unit cells, differing form the initial configuration, are quantified
through deformation-related lattice vectors, reading in the {eZ , eA, eT } base frame as

a1 = a1,Z eZ + a1,A eA , a2 = a2,Z eZ + a2,A eA, a3 = h eT , (5.28)

whereby a3 = a0
3 (i.e. distances between the periodic images of the graphene sheet remain

invariant). In order to reach a new energy minimum associated to such a deformed unit cell, the
carbon atoms also need to change their position (ionic relaxation), see Fig. 5.2. This new energy
minimum is higher than that associated with the undeformed configuration.

The entire periodic lattice is defined through the lattice point position vectors Rn, reading as

Rn = n1 a1 + n2 a2 + n3 a3 ∀ n1, n2, n3 ∈ Z . (5.29)
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a2

C1

C2

c/2 √3 c/2 √3

3
/2

 c

a1

a1
a2

relaxed atom

deformed

unit cell

undeformed

unit cell

a2,Z

a2,A a1,A

a1,Z

0 0

eZ

eA

Fig. 5.2: Deformed and undeformed graphene unit cell in eZ-eA-plane, spanned by vectors
according to (5.23) and (5.28), respectively, including initial and relaxed carbon atoms.

Any function f on this lattice is periodic, i.e. f(r + Rn) = f(r) ∀ Rn, so that it is useful to write
it as a Fourier series

f(r + Rn) =
∑

m

fm exp[iGm · r] exp[iGm · Rn] . (5.30)

Periodicity implies f(Rn + r) = f(Rk + r) for any n, k ∈ Z, and hence
∑

m

fm exp[iGm · r] exp[iGm · Rn] =
∑

m

fm exp[iGm · r]

⇒ Gm · Rn = 2πN ∀ N ∈ Z . (5.31)

This relation induces a so-called reciprocal lattice in the form

Gm = m1 b1 +m2 b2 +m3 b3 ∀ m1,m2,m3 ∈ Z , (5.32)

where b1, b2, and b3 are the reciprocal lattice vectors (see Fig. 5.3), defined as

b1 = 2π
a2 × a3

a3 · (a1 × a2)
, b2 = 2π

a3 × a1

a3 · (a1 × a2)
, b3 = 2π

a1 × a2

a3 · (a1 × a2)
. (5.33)

The reciprocal lattice vectors satisfy the duality relation

bm · an = 2π δmn , (5.34)

with δmn denoting the Kronecker delta (δmn = 1 if m = n and δmn = 0 if m 6= n). For
graphene, with primitive lattice vectors (5.23), the primitive reciprocal lattice vectors (in the
initial undeformed configuration) read as

b0
1 =

2π
c

(
1√
3

eZ +
1
3

eA

)
, b0

2 =
2π
c

(
− 1√

3
eZ +

1
3

eA

)
, b0

3 =
2π
h

eT , (5.35)
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a2 a1

(a)

real space

b2 b1

(b)

reciprocal spaceperiodic unit cell

Rn

Gm

first Brillouin zone (BZ)

IBZ (k-points sampling)

a2 a1

b2
b1

eZ

eA

eZ

eA

Fig. 5.3: Primitive unit cells in the graphene plane (spanned by base vectors eZ and eA): (a)
direct lattice generated by periodic rhomboid unit cell with primitive lattice vectors
a1 and a2, and (b) reciprocal lattice generated by the first Brillouin zone (BZ) with
primitive reciprocal lattice vectors b1, b2 and corresponding irreducible Brillouin zone
(IBZ) characterized by high symmetry points Γ, M , K.

The electronic wavefunction on a periodic lattice can be conveniently written in terms of a
Fourer series [Bloch, 1928]

Φj(r,k) =
∑

m

cjkm exp[i(k + Gm) r] , (5.36)

where wave vector k is regarded as a point in the reciprocal unit cell. For constructing the
corresponding electronic density, we discretize the reciprocal space and employ the numerical
integration scheme called k-point sampling, yielding

ρe(r) =
Ne∑

j

1
ΩBZ

∫

k∈BZ
Φ∗

j (r,k) Φj(r,k) dk ≈
Ne∑

j

Nk∑

k

wk Φ∗

j,k(r) Φj,k(r) , (5.37)

where wk denotes the weighting factors for the chosen k-points in the Brillouin zone (BZ),
being associated with Nk wave vectors kk, k = 1, 2, ..., Nk; see Section 5.4.1 for further details.
Substitution of (5.36) into (5.20) and considering the aforementioned k-point sampling yields the
following set of generalized Kohn-Sham-Bloch eigenvalue problems for the first Ne eigenvalues

(
− ~

2

2me
∇2 + VKS[ρe]

)
Φj,k(r) = εj,k Φj,k(r) ,

j = 1, 2, ..., Ne , k = 1, 2, ..., Nk , (5.38)

with
Φj,k(r) =

∑

m

cjkm exp[i(kk + Gm) r] . (5.39)

The (Nj ×Nk) eigenvalue problems (5.38)-(5.39), together with (5.37), are solved by means of
(iterative) self-consistent field (SCF) cycles, see Fig. 5.4: From an initial guess for ρe(r) and for a
given kk, (5.38) provides a first estimate for the orbitals Φj,k following from the Fourier expansion
coefficients cjkm (5.39). The number of expansion coefficients is limited by a cut-off energy Ecut:
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only those plane waves |kk + Gm| with a kinetic energy smaller than Ecut are included in the
basis set

~
2

2me
|kk + Gm|2 < Ecut . (5.40)

Based on Φj,k, we obtain a correspondingly updated estimate for ρe(r) according to (5.37). The
latter is used to re-evaluate VKS (5.22), giving, via (5.38) and (5.39), access to further refined
estimates for Φj,k. This iterative process leads to estimates for ρe(r), which converge to a solution
for the electronic (probability) density field. The corresponding solution for the ground state

calculate Kohn-Sham potential

solve Kohn-Sham equationscompute new electronic density

electronic density converged?
yes

no

SCF cycles

start with initial electronic densitymix electronic densities

output quantities
compute

VKS = f [ρe(r)]

ρ
e,s+1
start (r) = f [ρ

e,s
start(r), ρ

e,s
new(r)] ρ

e,s
start(r)

j = 1, 2, ..., Ne k = 1, 2, ..., Nk


− h̄2

2m∇2 + VKS


 Φj,k(r) = εj,k Φj,k(r)ρe,snew(r) =

∑Ne
j

∑Nk
k wk|Φj,k(r)|

2

Fig. 5.4: Self-consistent field (SCF) cycles in DFT: Initial guess of the electronic density ρe
start(r)

for calculating the Kohn-Sham potential VKS and solving the Kohn-Sham equation
for the one-electron wavefunction Φj,k(r). After computing ρe

new(r), this process is
repeated until convergence is reached.

energy can be related to the sum of the Kohn-Sham eigenenergies εj as follows: Multiplication of
the Kohn-Sham equation (5.38) from the left with Φ∗

j,k, integration over space, summation over
the number of electrons Ne, and weighted summation over the Nk kk-points, while considering
(5.13), (5.14), and (5.22), yields

Te,0[ρe] =
Ne∑

j

Nk∑

k

wk εj,k − Eext[ρe] −
∫
V P BE

xc [ρe] ρe(r) dr − e2
∫∫

ρe(r) ρe(r′)
|r − r′| dr dr′ . (5.41)

Substitution of (5.41) into (5.17), finally delivers a more convenient form for calculating the
internal energy at the ground state, reading as [Kohn and Sham, 1965]

Ψ[ρe] =
Ne∑

j

Nk∑

k

wk εj,k − EH [ρe] + EP BE
xc [ρe] −

∫
V P BE

xc [ρe] ρe(r) dr . (5.42)

We use the Vienna Ab initio Simulation Package (VASP, version 5.4.4) [Kresse and Hafner,
1993, 1994; Kresse and Furthmüller, 1996a,b] for all DFT calculations, using the following settings:

1. The convergence threshold for the self-consistency cycle of the Kohn-Sham equations in
DFT (see Fig. 5.4) is set to 10−8 eV1 for the electronic relaxation.

2. A conjugate gradient algorithm [Hestenes and Stiefel, 1952; Press et al., 1986] is used
for ionic relaxation (i.e. the ions change their position for reaching an energy minimum),
whereby the convergence threshold for the free energy change is set to 10−7 eV.

1Electronvolt eV is an empirical unit of energy equal to approximately 1.602 × 10−19 J, and is commonly used
within atomic physics.
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3. The Perdew-Burke-Ernzerhof (PBE) functional [Perdew et al., 1996, 1997] is chosen as
exchange-correlation functional.

4. The projector-augmented wave (PAW) potentials [Blöchl, 1994; Kresse and Joubert, 1999]
for the carbon ionic cores supplied with VASP are chosen.

5. The tetrahedron method with Blöchl corrections [Blöchl et al., 1994] is chosen for proper
treatment of the occupancies around the Fermi energy, with the smearing width being set
to 0.1 eV.

5.3 Continuum mechanical description of graphene

5.3.1 Deformation measure – Green-Lagrange strain tensor

Next, we convert the lattice vectors (5.28) from the DFT simulations into a strain field associated
with the unit cell. As 2D strain measure, we choose the Green-Lagrange strain tensor E [Salençon,
2001; Fung and Tong, 2001]

E =
1
2

[
∂u

∂X
+
(
∂u

∂X

)T

+
(
∂u

∂X

)T

· ∂u

∂X

]
=

2∑

k=1

2∑

l=1

Ekl ek ⊗ el , (5.43)

where ⊗ denotes the dyadic product. This conversion is realized by means of two Finite Elements
of the constant strain triangle (CST) type, see Fig. 5.5 for illustration of elements with height
b0 and width 2 a0. According to the dimensions of the unit cell in the initial configuration [see
(5.23) and Fig. 5.1(b)], the initial measures a0 and b0 are defined as

a0 =

√
3

2
c = a0

1,Z = −a0
2,Z and b0 =

3
2
c = a0

1,A = a0
2,A . (5.44)

The 2D displacement field u(X) of one CST Finite Element is constructed from the displacements
uj of its three corner points j, with corresponding displacement vector components being collected
into the mathematical vector q. The aforementioned corner displacements can be directly related
to the deformed and undeformed lattice vectors, through

u1 = 0 , u2 = a1 − a0
1 , and u3 = a2 − a0

2 , (5.45)

where we considered a fixed origin of the unit cell vectors in corner 1. In order to obtain a
continuous displacement field over the entire CST Finite Element, we introduce a matrix of linear
shape functions N :

N =

[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
. (5.46)

For the CST I element, the components of the linear shape function matrix read as [Bathe and
Wilson, 1976; Zienkiewicz and Taylor, 2000]

N I
1 = 1 − ξ1 − ξ2 , N I

2 = ξ1 , N I
3 = ξ2 , (5.47)

in natural coordinates (ξ1 and ξ2, see Fig. 5.6), and

N I
1 = 1 − XA

b0
,
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ξ2 ξ1

CST II

CST I

1 (ξ1 = 0, ξ2 = 0)

2 (ξ1 = 1, ξ2 = 0)(ξ1 = 0, ξ2 = 1) 3

4

u1
A = 0 u1

Z = 0

u2
Z

u2
Au3

A

u3
Z

a0 a0

b0

b0

XA, uA

XZ , uZ

u4
A = u2

A + u3
A

u4
Z = u2

Z + u3
Z

Fig. 5.5: Nodal corner displacements of the unit cell, consisting of two CST Finite Elements
CST I and CST II .

Fig. 5.6: Linear shape functions Ni in natural coordinates for CST Finite Elements.

N I
2 =

1
2

(
XZ

a0
+
XA

b0

)
,

N I
3 =

1
2

(
XA

b0
− XZ

a0

)
, (5.48)

in Cartesian coordinates, respectively. Therefore, focusing on Cartesian coordinates, while
considering (5.45), the 2D displacement field uI(X) of the CST I element reads as

uI(X) = N I(X) · qI =

[
N I

1 0 N I
2 0 N I

3 0
0 N I

1 0 N I
2 0 N I

3

]
·




0
0

a1,Z − a0

a1,A + a0

a2,Z − b0

a2,A − b0



, (5.49)
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with the resulting component uI
Z in eZ-direction reading as

uI
Z = XZ

(
a1,Z − a2,Z

2 a0
− 1

)
+XA

(
a1,Z + a2,Z

2 b0

)
, (5.50)

and the component uI
A in eA-direction reading as

uI
A = XZ

(
a1,A − a2,A

2 a0

)
+XA

(
a1,A + a2,A

2 b0
− 1

)
. (5.51)

From this continuous displacement field, we determine the 2D Green-Lagrange strain tensor E

according to (5.43), yielding the components

EI
ZZ =

∂uI
Z

∂XZ
+

1
2



(
∂uI

Z

∂XZ

)2

+

(
∂uI

A

∂XZ

)2



=
a1,Z − a2,Z

2 a0
− 1 +

1
2

[(
a1,Z − a2,Z

2 a0
− 1

)2

+
(
a1,A − a2,A

2 a0

)2
]
, (5.52)

EI
ZA = EI

AZ =
1
2

[
∂uI

Z

∂XA
+
∂uI

A

∂XZ
+
∂uI

Z

∂XZ

∂uI
Z

∂XA
+
∂uI

A

∂XZ

∂uI
A

∂XA

]

=
1
2

[(
a1,Z + a2,Z

2 b0

)
+
(
a1,A − a2,A

2 a0

)

+
(
a1,Z − a2,Z

2 a0
− 1

)(
a1,Z + a2,Z

2 b0

)
+
(
a1,A − a2,A

2 a0

)(
a1,2 + a2,A

2 b0
− 1

)]
,

(5.53)

EI
AA =

∂uI
A

∂XA
+

1
2



(
∂uI

Z

∂XA

)2

+

(
∂uI

A

∂XA

)2



=
a1,A + a2,A

2 b0
− 1 +

1
2

[(
a1,Z + a2,Z

2 b0

)2

+
(
a1,A + a2,A

2 b0
− 1

)2
]
. (5.54)

Expectedly, we arrive at constant components of the Green-Lagrange strain tensor of the CST I

element, being independent of the position vector X. Due to the periodicity requirement of the
lattice, the displacements of the four corner points of the unit cell cannot be specified arbitrarily.
In more detail, the opposite edges of the initial rhomboid unit cell must remain parallel during
the cell’s deformation. Hence, we obtain the following constraints for the displacements of the
corner point 4

u4 = u2 + u3 = a0
1 − a1 + a2 − a0

2 . (5.55)

Considering these geometrical constraints on the displacements, the shape functions related to
the CST II element read as

N II
2 (X) =

1
2

(
XZ

a0
− XA

b0
+ 2

)
,

N II
3 (X) =

1
2

(
−XZ

a0
− XA

b0
+ 2

)
,
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N II
4 (X) =

XA

b0
− 1 , (5.56)

with the corresponding displacement field reading as

uII(X) = N II(X) · qII =

[
N II

1 0 N II
2 0 N II

3 0
0 N II

1 0 N II
2 0 N II

3

]
·




a1,Z − a0

a1,A + a0

a2,Z − b0

a2,A − b0

a1,Z + a2,Z

a1,A + a2,A − 2 b0



.

(5.57)
Insertion of (5.56) into (5.57), and subsequent insertion of the corresponding result into (5.43)
yields strain components which are identical to those given in (5.52)-(5.54). Hence, the entire
unit cell is characterized by the homogeneous strain tensor components given in (5.52)-(5.54).

5.3.2 DFT-based hyperelastic potential

For large deformation studies of graphene, we here resort to the concept of hyperelasticity for
anisotropic materials [Salençon, 2001; Truesdell and Noll, 1965; Rajagopal, 2011]: The specific
free energy ψm (i.e. free energy per mass) is considered as a function of the Green-Lagrange
strain tensor E and of the structural tensor P

ψm = Ψ/muc = ψm(E,P) . (5.58)

Thereby, Ψ is obtained from DFT-simulations associated with different strain states E whose
principal directions deviate by different angles αE from the zigzag and armchair directions, see
Fig. 5.7 and Appendix A (5.A.4). The hexagonal lattice structure of graphene is reflected by a

"zigzag"

"armchair"

"zigzag"

"armchair"

eZ

eA

p/6

p/3

Fig. 5.7: Geometrical properties of symmetry and periodicity of the graphene honeycomb lattice:
The full material behavior can be described by material directions between the zigzag
and armchair direction (see shaded region).
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sixth-order structural tensor of the form [Zheng, 1994; Zheng and Boehler, 1994]

P = Re[(eZ + i eA) ⊗ (eZ + i eA) ⊗ (eZ + i eA) ⊗ (eZ + i eA) ⊗ (eZ + i eA) ⊗ (eZ + i eA)]

= M ⊗ M ⊗ M − (M ⊗ N ⊗ N + N ⊗ M ⊗ N + N ⊗ N ⊗ M) , (5.59)

where we employed the following second-order tensors

M = eZ ⊗ eZ − eA ⊗ eA , N = eZ ⊗ eA + eA ⊗ eZ . (5.60)

The structural tensor is invariant under all orthogonal transformations Q forming the symmetry
group SO of a hexagonal lattice [Zheng, 1994]

〈Q〉P = P with (〈Q〉P)ijklmn = QioQjpQkqQlrQmsQntPopqrst . (5.61)

Namely, graphene’s SO group consists of tensors Qrot associated with rotations (nπ/3) measured
from the zigzag direction, and of tensors Qref associated with reflections about the zigzag and
the armchair directions (see also Fig. 5.7)

∀n, l ∈ Z : Q ∈ SO =

=

{
Qrot =

[
cos(nπ/3) sin(nπ/3)

− sin(nπ/3) cos(nπ/3)

]
, Qref =

[
cos(l π/3) sin(l π/3)
sin(l π/3) − cos(l π/3)

]}
. (5.62)

Under all these rotations and reflections of the principal directions of the strain tensor, as well as
of the point group defining the hexagonal lattice of graphene, the specific free energy remains
invariant, according to

ψm(E,P) = ψm(QT E Q, 〈Q〉P) for Q ∈ SO . (5.63)

Invariability requirement (5.63) can be met by making the free energy function dependent on
three invariants

ψm = ψm(I1, I3, I3) , (5.64)

with these invariants reading as

I1 = trE = EZZ + EAA ,

I2 =
1
2

[
(trE)2 − tr

(
E2
)]

= EZZ EAA − E2
ZA ,

I3 = [(P : E) : E] : E = (M : E)3 − 3(M : E)(N : E)2

= E3
ZZ − 3E2

ZZEAA + 3EZZ E
2
AA − E3

AA − 12E2
ZA(EZZ − EAA) , (5.65)

where (:) denotes the second-order tensor contraction. In (5.65), I1 and I2 are isotropic principal
invariants of the strain tensor, and the principal invariant I3 takes into account the influence of
the principal strain direction of E onto the mechanical response of graphene. In order to allow for
higher order dependencies of the specific free energy on the components of the Green-Lagrange
strain tensor E, we construct a number of so-called main invariants, denoted by J1 to J11.
Thereby, the first nine main invariants are associated with isotropic material behavior and hence
with I1 and I2; they read as

I2
1 − 2 I2 = J1 = E2

ZZ + 2E2
ZA + E2

AA ,

I3
1 − 3 I1 I2 = J2 = E3

ZZ + 3E2
ZA(EZZ + EAA) + E3

AA ,
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I1 I2 = J3 = E2
ZZ EAA − E2

ZA(EZZ + EAA) + EZZ E
2
AA ,

I4
1 − 4 I2

1 I2 + 2 I2
2 = J4 = E4

ZZ + 4E2
ZA(E2

ZZ + EZZ EAA + E2
AA) + E4

AA ,

I2
2 = J5 = E2

ZZ E
2
AA − 2E2

ZAEZZ EAA + E4
ZA ,

I2
1 I2 − 2 I2

2 = J6 = E3
ZZ EAA + EZZ E

3
AA

+E2
ZA(2EZZ EAA − E2

ZZ − E2
AA − 2E2

ZA) ,

I5
1 − 5 I3

1 I2 + 5 I1 I
2
2 = J7 = E5

ZZ + 5E4
ZA(EZZ + EAA) + E5

AA

+5E2
ZA(E3

ZZ + E2
ZZEAA + EZZE

2
AA + E3

AA) ,

I3
1 I2 − 3 I1 I

2
2 = J8 = E4

ZZ EAA − 3E4
ZA(EZZ + EAA) + EZZ E

4
AA

−E2
ZA(E3

ZZ − 3E2
ZZEAA − 3EZZ E

2
AA + E3

AA) ,

I1 I
2
2 = J9 = E3

ZZ E
2
AA + E4

ZA(EZZ + EAA) + E2
ZZ E

3
AA

−2E2
ZA(E2

ZZEAA + EZZ E
2
AA) , (5.66)

and the last two main invariants are associated with anisotropic material behavior and hence
they involve I3 as well,

I3 I1 = J10 = E4
ZZ − 2E3

ZZ EAA + 3EZZ E
3
AA − E4

AA

−12E2
ZA(E2

ZZ − E2
AA),

I3

(
I2

1 − 2 I2

)
= J11 = E5

ZZ − 3E4
ZZ EAA + 4E3

ZZ E
2
AA − 4E2

ZZ E
3
AA

+3EZZ E
4
AA − E5

AA − 14E2
ZA(E3

ZZ − E3
AA)

+18E2
ZA(E2

ZZEAA − EZZ E
2
AA)

+24E4
ZA(EZZ − EAA). (5.67)

Finally, the principal and main invariants (5.65)-(5.67) allow for constructing a hyperelastic
function of the specific free energy in the format

ψm(I1, I3, I3) = c1 I1 + c2 I2 + c3 I3

+c4 J1 + c5 J2 + c6 J3 + c7 J4 + +c8 J5

+c9 J6 + c10 J7 + c11 J8 + c12 J9 + c13 J10 + c14 J11 , (5.68)

where c1-c14 are polynomial fitting coefficients (dimension energy per unit mass) determined by
DFT.

5.3.3 Lagrangian stress-strain relations, tangent elasticity tensor, and stability
limits

The specific free energy of graphene readily gives access to the material behavior in terms
of mechanical stresses, via the zero dissipation requirement of elasticity, which in Lagrangian
representation reads as

φ = π : Ė − ρ2D
m,0 ψ̇m = 0 , with ψ̇m =

∂ψm

∂E
: Ė = 0 . (5.69)

In (5.69), we explicitly consider the “real” two-dimensionality of graphene, by introducing the
initial areal mass density as ρ2D

m,0 = muc/A0, the areal dissipation φ (i.e. energy per area per time
which is irreversibly lost for potential mechanical work), and the areal second Piola-Kirchhoff
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tensor π (with dimension “force over length”). Validity of (5.69) for any time rates Ė delivers
the 2D material law of hyperelasticity in the format:

π = ρ2D
m,0

∂ψm

∂E
(I1, I2, I3) = ρ2D

m,0

3∑

k=1

∂ψm

∂Ik
· ∂Ik

∂E
, (5.70)

Hence, considering the derivatives of the principal invariants with respect to the Green-Lagrange
strain tensor,

∂I1

∂E
= 1 ,

∂I2

∂E
= I1 1 − E ,

∂I3

∂E
= S with S = 3 [(M : E)2 − (N : E)2] M − 6 [(M : E)(N : E)] N , (5.71)

results in the expression for the 2D second Piola-Kirchhoff stress tensor

π = ρ2D
m,0 [β1 1 + β2 E + β3 S] , (5.72)

with

β1 = c1 + c2 I1 − 3 c5 I2 + c6

(
I2

1 + I2

)
− 4 c7 I1 I2 + 2 c8 I1 I2 + c9

(
I3

1 − 2 I1 I2

)

+5 c10

(
I2

2 − I2
1 I2

)
+ c11

(
I4

1 − 3 I2
2 − 3 I2

1 I2

)
+ c12

(
I2

2 + 2 I2
1 I2

)
+ c13I3 ,

β2 = −c2 + 2 c4 + 3 c5 I1 − c6 I1 + 4 c7

(
I2

1 − I2

)
− 2 c8 I2 + c9

(
4 I2 − I2

1

)

+5 c10

(
I3

1 − 2 I1 I2

)
+ c11

(
6 I1 I2 − I3

1

)
− 2 c12 I1 I2 + 2 c14 I3 ,

β3 = c3 + c13 I1 + c14

(
I2

1 − 2 I2

)
, (5.73)

where 1 is the second-order unit tensor and c1-c14 are DFT-based polynomial fitting coefficients
also appearing in (5.68). As unstrained graphene relates to zero stresses, we readily see that c1 = 0.
The components of (5.72) with respect to base frame eZ-eA, π =

∑
i=Z,A

∑
j=Z,A πij ei ⊗ ej , read

as

πZZ = ρ2D
m,0 [β1 + β2EZZ + β3 SZZ ] ,

πZA = πAZ = ρ2D
m,0 [β1 + β2EZA + β3 SZA] ,

πAA = ρ2D
m,0 [β1 + β2EAA + β3 SAA] , (5.74)

with

SZZ = 3 (EZZ − EAA)2 − 12E2
ZA ,

SZA = 12EZA (EAA − EZZ) ,

SAA = −3 (EZZ − EAA)2 + 12E2
ZA . (5.75)

In general, the principal directions of the strain tensor E and of the stress tensor π do not
coincide. This can be seen from writing Eq.(5.72) in terms of components with respect to
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base frame eE
1 -eE

2 , π =
∑2

i=1

∑2
j=1 π

E
ij eE

i ⊗ eE
j , see (5.A.3), (5.A.7), and (5.A.8) in Appendix A,

yielding

πE
11 = ρ2D

m,0

[
β1 + β2EI + 3β3 (EI − EII)

2 cos(6αE)
]
,

πE
12 = πE

21 = −3 ρ2D
m,0 β3 (EI − EII)

2 sin(6αE) ,

πE
22 = ρ2D

m,0

[
β1 + β2EII − 3β3 (EI − EII)

2 cos(6αE)
]
. (5.76)

According to (5.76)2, the shear components πE
12 only vanish if the principal strain directions

coincide with the zigzag direction eZ or the armchair direction eA; i.e. for αE = nπ/6 ∀n ∈ Z .
Only then, the principal directions of strain and stress coincide. In general, the angle between
base vectors eZ and eπ

1 follows from

απ = αE +
1
2

[
tan−1

(
−6β3 (EI − EII)2 sin(6αE)

β2 (EI − EII) + 6β3(EI − EII)2 cos(6αE)

)]
. (5.77)

whereby αE is the angle between eZ and eE
1 .

Stress increments follow from derivation of (5.72),

dπ = C : dE , (5.78)

with the tangent elasticity tensor being defined as

C =
∂π

∂E
(I1, I2, I3) = ρ2D

m,0

∂2ψm

∂E ∂E
(I1, I2, I3) . (5.79)

Use of the derivatives of the principal invariants (5.71) as well as

∂E

∂E
= I ,

∂2I3

∂E ∂E
=
∂S

∂E
= S with S = 6 [(M : E) M ⊗ M − (N : E) M ⊗ N

−(N : E) N ⊗ M − (M : E) N ⊗ N] , (5.80)

yields the expression for the tangent elasticity tensor in the format

C = ρ2D
m,0 [γ1 I + γ2 (1 ⊗ 1) + γ3 (1 ⊗ E + E ⊗ 1) + γ4 (E ⊗ E)

+γ5 (1 ⊗ S + S ⊗ 1) + γ6 (E ⊗ S + S ⊗ E) + γ7 S] , (5.81)

with

γ1 = −c2 + 2 c4 + 3 c5 I1 − c6 I1 + 4 c7

(
I2

1 − I2

)
− 2 c8 I2 + c9

(
4 I2 − I2

1

)

+5 c10

(
I3

1 − 2 I1 I2

)
+ c11

(
6 I1 I2 − I3

1

)
− 2 c12 I1 I2 + 2 c14 I3 = β2 ,

γ2 = c2 − 3 c5 I1 + 3 c6 I1 − 4 c7

(
I2

1 + I2

)
+ 2 c8

(
I2

1 + I2

)
+ c9

(
I2

1 − 2 I2

)

−5 c10 I
3
1 + c11

(
I3

1 − 12 I1 I2

)
+ c12

(
6 I1 I2 + 2 I3

1

)
,

γ3 = 3 c5 − c6 + 4 c7 I1 − 2 c8 I1 + 2 c9 I1 +

+5 c10

(
I2

1 − 2 I2

)
+ 3 c11

(
I2

1 + 2 I2

)
− 2 c12

(
I2

1 + I2

)
,
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γ4 = 4 c7 + 2 c8 − 4 c9 + 10 c10 I1 − 6 c11 I1 + 2 c12 I1 ,

γ5 = c13 ,

γ6 = 2 c14 ,

γ7 = c3 + c13 I1 + c14

(
I2

1 − 2 I2

)
= β3 , (5.82)

where I = 1/2 [δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el is the symmetric fourth-order unit tensor, with
δmn denoting the Kronecker delta (δmn = 1 if m = n and δmn = 0 if m 6= n). It is noted, that the
components of the elasticity tensor are not constant, but depend on the current strain state, i.e.
on the components of the Green-Lagrange strain tensor. Since we consider large deformations,
stress-strain relations are highly non-linear, in turn resulting in non-linear components of the
elasticity tensor as function of the Green-Lagrange strain tensor. The components of (5.81) with
respect to base frame eE

1 -eE
2 , C =

∑2
i=1

∑2
j=1

∑2
k=1

∑2
l=1C

E
ijkl eE

i ⊗ eE
j ⊗ eE

k ⊗ eE
l , see (5.A.3),

(5.A.7)-(5.A.10) in Appendix A, read as

CE
1111 = ρ2D

m,0

[
γ1 + γ2 + 2 γ3EI + γ4E

2
I + 6 (γ5 + γ6EI)(EI − EII)

2 cos(6αE)

+6 γ7 (EI − EII) cos(6αE)] ,

CE
2222 = ρ2D

m,0

[
γ1 + γ2 + 2 γ3EII + γ4E

2
II − 6 (γ5 + γ6EII)(EI − EII)

2 cos(6αE)

+6 γ7 (EI − EII) cos(6αE)] ,

CE
1122 = ρ2D

m,0

[
γ2 + γ3 (EI + EII) + γ4EIEII − 3 γ6 (EI − EII)

3 cos(6αE)

−6 γ7 (EI − EII) cos(6αE)] = CE
2211 ,

CE
1112 = ρ2D

m,0

[
−3 (γ5 + γ6EI)(EI − EII)

2 sin(6αE)

−6 γ7 (EI − EII) sin(6αE)] = CE
1121 = CE

1211 = CE
2111 ,

CE
2212 = ρ2D

m,0

[
−3 (γ5 + γ6EII)(EI − EII)

2 sin(6αE)

+6 γ7 (EI − EII) sin(6αE)] = CE
1222 = CE

2122 = CE
2221 ,

CE
1212 = ρ2D

m,0 [1/2 γ1 − 6 γ7 (EI − EII) cos(6αE)] = CE
2112 = CE

2121 = CE
1221 . (5.83)

The elastic behavior is stable, as long as C is positive definite, implying that the determinant
of C, as well as all sub-determinants are positive. Once the determinant or any of the sub-
determinants of C become zero, the stability limit is reached [Born, 1940; Hill and Milstein, 1977;
Mouhat and Coudert, 2014]. Mathematically, these determinants read as

detC = +2CE
1111C

E
2222C

E
1212 + 2CE

1122C
E
2212C

E
1211 + 2CE

1112C
E
2211C

E
1222

−2CE
1112C

E
2222C

E
1211 − 2CE

1122C
E
2211C

E
1212 − 2CE

1111C
E
2212C

E
1222

= 0 , (5.84)

and

detC∗,1 = CE
1111C

E
2222 − CE

1122C
E
2211 = 0 , detC∗,2 = CE

1111 = 0 , (5.85)

where C
∗,j are principal minors (determinants of the submatrices of C

∗,j starting from the
upper-left matrix corner). For principal strain directions in zigzag direction eZ or armchair
direction eZ , Eq. (5.84) reduces to (5.85)1. Substitution of (5.83) into (5.84) and (5.85) yields
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the following elastic stability limits of graphene, as function of the principal strains and the angle
αE between eZ and eE

1 ,
[
γ1 + γ2 + 2 γ3 EI + γ4 E

2
I + 6 (γ5 + γ6 EI)(EI − EII)2 cos(6αE) + 6 γ7 (EI − EII) cos(6αE)

]
×

×
[
γ1 + γ2 + 2 γ3 EII + γ4 E

2
II − 6 (γ5 + γ6 EII)(EI − EII)2 cos(6αE) + 6 γ7 (EI − EII) cos(6αE)

]
×

× [1/2 γ1 − 6 γ7 (EI − EII) cos(6αE)]

+
[
γ2 + γ3 (EI + EII) + γ4 EI EII − 3 γ6 (EI − EII)3 cos(6αE) − 6 γ7 (EI − EII) cos(6αE)

]
×

×
[
−3 (γ5 + γ6 EII)(EI − EII)2 sin(6αE) + 6 γ7 (EI − EII) sin(6αE)

]
×

×
[
−3 (γ5 + γ6 EI)(EI − EII)2 sin(6αE) − 6 γ7 (EI − EII) sin(6αE)

]

+
[
−3 (γ5 + γ6 EI)(EI − EII)2 sin(6αE) − 6 γ7 (EI − EII) sin(6αE)

]
×

×
[
γ2 + γ3 (EI + EII) + γ4 EI EII − 3 γ6 (EI − EII)3 cos(6αE) − 6 γ7 (EI − EII) cos(6αE)

]
×

×
[
−3 (γ5 + γ6 EII)(EI − EII)2 sin(6αE) + 6 γ7 (EI − EII) sin(6αE)

]

−
[
−3 (γ5 + γ6 EI)(EI − EII)2 sin(6αE) − 6 γ7 (EI − EII) sin(6αE)

]2 ×
×
[
γ1 + γ2 + 2 γ3 EII + γ4 E

2
II − 6 (γ5 + γ6 EII)(EI − EII)2 cos(6αE) + 6 γ7 (EI − EII) cos(6αE)

]

−
[
γ2 + γ3 (EI + EII) + γ4 EI EII − 3 γ6 (EI − EII)3 cos(6αE) − 6 γ7 (EI − EII) cos(6αE)

]2 ×
× [1/2 γ1 − 6 γ7 (EI − EII) cos(6αE)]

−
[
γ1 + γ2 + 2 γ3 EI + γ4 E

2
I + 6 (γ5 + γ6 EI)(EI − EII)2 cos(6αE) + 6 γ7 (EI − EII) cos(6αE)

]
×

×
[
−3 (γ5 + γ6 EII)(EI − EII)2 sin(6αE) + 6 γ7 (EI − EII) sin(6αE)

]2

= 0 , (5.86)

[
γ1 + γ2 + 2 γ3 EI + γ4 E

2
I + 6 (γ5 + γ6 EI)(EI − EII)2 cos(6αE) + 6 γ7 (EI − EII) cos(6αE)

]
×

×
[
γ1 + γ2 + 2 γ3 EII + γ4 E

2
II − 6 (γ5 + γ6 EII)(EI − EII)2 cos(6αE) + 6 γ7 (EI − EII) cos(6αE)

]

−
[
γ2 + γ3 (EI + EII) + γ4 EI EII − 3 γ6 (EI − EII)3 cos(6αE) − 6 γ7 (EI − EII) cos(6αE)

]2

= 0 , (5.87)

[
γ1 + γ2 + 2 γ3 EI + γ4 E

2
I + 6 (γ5 + γ6 EI)(EI − EII)2 cos(6αE) + 6 γ7 (EI − EII) cos(6αE)

]

= 0 . (5.88)

Alternatively, the elasticity of graphene can be quantified in terms of Eulerian quantities, i.e
in measures associated with the current (deformed) configurations, such as the Cauchy stress
tensor and the logarithmic strain tensor, see Appendix B.

5.3.4 Poisson effects

The Poisson effect is traditionally defined in linear isotropic elasticity, where uniaxial stress leads
to a multi-dimensional, shear strain-free deformation state characterized by Poisson’s ratio ν
[Greaves et al., 2011], according to

πII = ρ2D
m,0

∂ψm

∂EII
= 0 ⇒ ν = −EII

EI
. (5.89)

In this isotropic case, the principal directions of stress and strain coincide; and this coincidence
is encountered with graphene only in very special circumstances, namely for infinitesimally small
strains, or for finite strains with the principal directions coinciding with the zigzag- and the
armchair directions, see (5.76).

Hence, we need to extend the notion of the Poisson effect beyond this application regime,
and we do so by regarding (5.89)1 as an energy minimization problem, looking for a minimum
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of ψm as a function of EII, with EI being fixed. Corresponding specification of the invariants
(5.65)-(5.67) for base frame eE

1 -eE
2 (see (5.A.5)-(5.A.6) in Appendix A) and variation of the

specific free energy (5.68) with respect to the transverse strain EII,min, delivers the following
formula for the sought transverse strains:

∂ψm

∂EII
= c1 + c2EI + c6E

2
I + c9E

3
I + c11E

4
I − (3 c3E

2
I + 2 c13E

3
I + 3 c14E

4
I ) cos(6αE)

+EII,min

[
2 c4 + 2 c6EI + 2 c8E

2
I + 2 c12E

3
I (6 c3EI + 8 c14E

3
I ) cos(6αE)

]

+E2
II,min

[
3 c5 + 3 c9EI + 3 c12E

2
I − (3 c3 − 6 c13EI + 12 c14E

2
I ) cos(6αE)

]

+E3
II,min [4 c7 + 4 c11EI − (4 c13 − 12 c14EI) cos(6αE)]

+E4
II,min [5 c10 − 5 c14 cos(6αE)] = 0 . (5.90)

The calculated Poisson’s ratio type quantity for large deformations is denoted as ν∗

ν∗ = −EII,min

EI
. (5.91)

5.4 Results

5.4.1 Convergence studies of DFT-simulations

When using VASP along with the described computational DFT-settings in Sec. 5.2.2, the free
energy of an undeformed graphene unit cell can be regarded as converged once a cut-off energy
Ecut of 400 eV (5.40), and a 25 × 25 × 1 Monkhorst-Pack grid [Monkhorst and Pack, 1976]
according to (5.37) are chosen, see Fig. 5.8. The converged free energy is set to zero, in accordance
with (5.68). Corresponding energy minimization for determination of the lattice constant of

(a)

150 200 250 300 350 400 450 500 550
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0
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(b)

5 10 15 20 25 30 35 40 45

-0.03

-0.02

-0.01

0

0.01
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0.03

0

5
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Fig. 5.8: Convergence study and related computing time (running on the Vienna Scientific
Cluster [VSC3, 2014] with 2×INTEL Xeon E5-2650v2 CPUs (2.6 GHz, 8 cores) and
128 GB RAM) of the free energy Ψ(E = 0) for an undeformed graphene unit cell,
as function of (a) the cut-off energy Ecut, and of (b) the Monkhorst-Pack k-points
sampling.

graphene yields, c = 0.1425 nm = 1.425 Å2, see Fig. 5.9.
For a strained graphene unit cell, we obtain the same convergence thresholds. However, due

to the need for ionic relaxation and the lack of symmetries, the computational effort increases
compared to the unstrained case, see Fig. 5.10.

2Angstrom Å is a unit of length, with 1 Å = 1 × 10−10 m often used for expressing sizes at the atomic scale.
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Fig. 5.9: Lattice constant for an undeformed hexagonal graphene lattice according to (5.23),
obtained by DFT-energy minimization.
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Fig. 5.10: Convergence study and related computing time (running on the Vienna Scientific
Cluster [VSC3, 2014] with 2×INTEL Xeon E5-2650v2 CPUs (2.6 GHz, 8 cores) and
128 GB RAM) of the free energy Ψ for a strained graphene unit cell (EI = 0.22,
EII = −0.095, αE = π/9), as function of (a) the cut-off energy Ecut, and of (b) the
Monkhorst k-points sampling.

5.4.2 Energy landscapes of graphene under general deformations – DFT fitting
coefficients

18207 VASP-based simulations according to Section 5.2.2, for principal strains EI and EII ranging
from -0.14 to 0.28 and for loading angles αE ranging from 0 to π/6, provide the energy landscapes
depicted in Fig. 5.11. It can be observed that the energy levels obviously depend on the principal
strain directions with respect to the material directions eZ (“zigzag”) and eA (“armchair”), in
particular so for “shear-type” loading where EI ≈ −EII (compare energy values associated with
left upper and right lower corners of Figs. 5.11(b)-(h)). This shear-driven anisotropy effect is also
reflected in the energy-strain diagrams of Fig. 5.12; showing 4.6% material direction-dependent
energy difference under uniaxial strain states versus 12.5% under shear strain states.

Fitting the aforementioned landscapes by a polynomial of fifth order as given in (5.68) yields
the coefficients given in Tab. 5.1. Thereby, the maximum difference between VASP-derived and
fitted energy levels is always less than 1%. When prescribing the same maximum error level, a
fourth-order polynomial with the fitted coefficients given Tab. 5.2 allows for representation of the
energy landscape for principal strains ranging from -0.03 to 0.28. In the same sense, a third-order
polynomial (see Tab. 5.3 for correspondingly fitted coefficients) allows for representation of the
energy landscape for principal strains ranging from -0.02 to 0.07; and a second-order polynomial
with c2 = 0.8556 eV/u and c4 = 2.4175 eV/u, which actually represents isotropic linear elastic
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Fig. 5.11: DFT-results of the specific free energy ψm for suspended graphene as function of
biaxial principle Green-Lagrange strains EI and EII with corresponding directions
αE = {0, π

36 ,
π
18 ,

π
12 ,

π
9 ,

5 π
36 ,

π
6 }.
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(a)
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Fig. 5.12: Fitted specific free energy ψm for various principal strain directions αE = {0, π
12 ,

π
6 },

arising from (a) uniaxial (EII = 0) and equi-biaxial (EI = EII) strain states, and (b)
shear strain states (EI = −EII).

Tab. 5.1: Fitting coefficients c1-c14 of the specific free energy in form of a polynomial of fifth
order, valid for a Green-Lagrange strain-range between -0.14 and +0.28; physical unit
of the coefficients [eV/u].

c1 c2 c3 c4 c5 c6 c7

0 0.8556 -0.1546 2.4175 -6.9294 -3.7008 12.1361

c8 c9 c10 c11 c12 c13 c14

11.6114 9.05715 -14.8505 -10.9763 -9.6888 1.3425 -1.7422

Tab. 5.2: Fitting coefficients c1-c14 of the specific free energy in form of a polynomial of fourth
order, valid for a Green-Lagrange strain-range between -0.03 and +0.28; physical unit
of the coefficients [eV/u].

c1 c2 c3 c4 c5 c6 c7

0 0.8556 -0.2188 2.4175 -6.2698 -2.7062 5.7182

c8 c9 c10 c11 c12 c13 c14

8.01272 1.7379 0 0 0 1.1773 0

material behavior, is sufficient, in the sense of the aforementioned 1% error, for principal strains
ranging from -0.007 to 0.007. In turn, the aforementioned polynomials of lower order are only
valid for the corresponding strain-range – otherwise the differences compared to the DFT-based
results amount to 131 % for a polynomial of second order, 109 % for a polynomial of third order,
and 13 % for a polynomial of fourth order, when applied for large strain regions.

Also Poisson’s ratio ν∗ according to (5.90) and (5.91) depends on the loading angle αE (between
zigzag direction and the direction of principlal strain EI), as can be seen in Fig. 5.13. Only for
infinitesimally small strains, the values of the Poisson function ν∗ reach the classical Poisson’s
ratio of graphene, ν∗(E → 0) = ν = 0.176954.
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Tab. 5.3: Fitting coefficients c1-c14 of the specific free energy in form of a polynomial of third
order, valid for a Green-Lagrange strain-range between -0.02 and +0.07; physical unit
of the coefficients [eV/u].

c1 c2 c3 c4 c5 c6 c7

0 0.8556 -0.1507 2.4175 -6.0597 -2.7913 0

c8 c9 c10 c11 c12 c13 c14

0 0 0 0 0 0 0

-0.14 -0.07 0 0.07 0.14 0.21 0.28

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 5.13: Ratio ν∗ of the negative energy-minimizing transverse strain EII to the longitudinal
engineering strain EI according to (5.90) and (5.91), evaluated for various principal
strain directions αE = {0, π

36 ,
π
18 ,

π
12 ,

π
9 ,

5 π
36 ,

π
6 }.

5.4.3 Stress-strain relations and corresponding elasticity tensor

Knowing the stress components of π as function of the strain tensor E, we can provide general
nonlinear stress-strain relations of these energetic-conjugate quantities. This is shown for the
normal stress components πE

11 and πE
22 (with respect to base vectors eE

1 and eE
2 ) for various

principal strain directions αE = {0, π
18 ,

π
9 ,

π
6 }, see Figs. 5.14 and 5.15. Maximum differences

between results in zigzag and armchair direction amount to 35 % for πE
11 and 25 % for πE

22. The
discussed deviation of the principal strain direction of E and the principal stress direction of π

(see Sec. 5.3.3) can be illustrated by the shear components πE
12 (with respect to base vectors eE

1 and
eE

2 ), see Fig. 5.16. Obviously, only principal strains in graphene’s zigzag and armchair direction
result in vanishing shear stresses, indicating the same principal strain and stress directions.

Furthermore, the relations of the energetic-conjugate pair of Cauchy stresses and logarithmic
strains of Appendix B, (5.B.11)-(5.B.12), are exemplarily shown for general principal strain states
in graphene’s zigzag direction, with respect to base vectors eE

1 and eE
2 , see Fig. 5.17. It is clearly

seen that the stress-strain landscapes of the energetic-conjugate measures π and E (see Figs. 5.14
and 5.15) and the energetic-conjugate measures σ and ǫln (see Fig. 5.17) are different in shape
and magnitude, while both do show the anisotropic behavior of graphene.

The corresponding tangent modulus of Lagrangian stress-strain relations (5.72), namely the
derived elasticity tensor (5.81) is evaluated for various principal strain directions αE , once
more demonstrating the strong anisotropic behavior of graphene in large strain regions. The
components of the elasticity tensor CE

1111, CE
2222, and CE

1122 (with respect to base vectors eE
1
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Fig. 5.14: Second Piola-Kirchhoff stresses πE
11 (with respect to base vectors eE

1 and eE
2 ) of

suspended graphene for various principal strain directions αE = {0, π
18 ,

π
9 ,

π
6 }: (a)-

(d) general principle strain states, (e) uniaxial strain states (EII = 0), and (f) shear
strain states (EI = −EII).

and eE
2 ) are again exemplarily shown for principal strain directions αE = {0, π

18 ,
π
9 ,

π
6 }, see

Figs. 5.18-5.20. Maximum differences between results in zigzag and armchair direction amount
to 36 % for CE

1111, 56 % for CE
2222, and 175 % for CE

1122.
The components of the elasticity tensor (as exemplarily shown in Figs. 5.18-5.20) are further

used for predicting elastic stability limits of graphene. The limits given by Eqs. (5.86), (5.87),
and (5.88), are indicated by red, blue and green curves in Fig. 5.21; while grey area relates to
values of EI and EII where all three determinants given in (5.86)-(5.88) are positive, i.e. to
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Fig. 5.15: Second Piola-Kirchhoff stress πE
22 (with respect to base vectors eE

1 and eE
2 )) of

suspended graphene for various principal strain directions αE = {0, π
18 ,

π
9 ,

π
6 }: (a)-

(d) general principle strain states, (e) uniaxial strain states (EII = 0), and (f) shear
strain states (EI = −EII).

strains under which the material is stable. We observe that the “larger” determinants (red,
green) provide quasi-identical stability limits, while the “smaller” determinant (blue) cuts off a
physically meaningless mirror image provided by the “larger” determinants.

As discussed for the Poisson effect, graphene is only isotropic in the case of infinitesimal small
strains, E → 0, resulting in components of the elasticity tensor, C1111,0 = C2222,0 = 2 ρ2D

m,0 c4

and C1122,0 = C2211,0 = ρ2D
m,0 c2, which can be used for obtaining 2D isotropic elastic constants

of graphene: Taking into account the definitions of the polynomial fitting coefficients c2 and c4
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Fig. 5.16: Second Piola-Kirchhoff stresses πE
12 (with respect to base vectors eE

1 and eE
2 ) of

suspended graphene for various principal strain directions αE = {0, π
18 ,

π
9 ,

π
6 }: (a)-

(d) general principle strain states, indicating that principal strain and stress directions
only coincide for material directions αE = {0, π

6 }.

(Tab. 5.1) and the initial area mass density ρA,0 = muc/A0 = 4.555 u/Å
2
, yields the following

elastic constants, namely the elastic Young’s modulus (dimension force per unit length)

Y 2D = C1111,0 − C2
1122,0

C1111,0
= ρ2D

m,0

(
2 c4 − c2

2

2 c4

)
= 21.336 eV/Å

2
= 341.84 N/m , (5.92)

and the in-plane Poisson’s ratio

ν =
C1122,0

C1111,0
=

c2

2 c4
= 0.176954 , (5.93)

where the latter is in full agreement with the observed investigations of the energy-minimizing
Poisson-effect, see Fig. 5.13. These constants can then be used to obtain related elastic constants,
namely the 2D shear modulus (Lamé’s second parameter)

G2D =
E

2(1 + ν)
= 9.064 eV/Å

2
= 145.22 N/m , (5.94)
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Fig. 5.17: Cauchy stresses (with respect to base vectors eE
1 and eE

2 ) of suspended graphene for
various principal strain directions: (a)-(b) stress components σE

11 and σE
22 for general

principle strain states with αE = 0, (c) uniaxial strain states (ǫlnII = 0), and (d) shear
strain states (ǫlnI = −ǫlnII).

and the 2D Lamé’s first parameter

λ2D =
E ν

(1 + ν)(1 − 2 ν)
= 4.965 eV/Å

2
= 79.55 N/m . (5.95)

Although graphene is a 2D material, it is common to assign an effective thickness to graphene.
This is a useful practice for obtaining stress and stiffness quantities with dimension force per unit
area, which can be compared to other 3D materials. Therefore, this effective thickness is assumed
to be equal to the interlayer distance of graphite, t0 = 3.35Å [Franklin, 1951; Brandt et al., 1988].
Use of this initial graphene thickness t0 and incorporation of the resulting initial mass density per
pseudo-volume, ρ3D

m,0 = muc/(A0 t0) = 1.3598 u/Å
3
, into the provided hyperelastic model, yields

the following corresponding pseudo-3D elastic constants (dimension force per unit area)

Y 3D = ρ3D
m,0

(
2 c4 − c2

2

2 c4

)
= 6.369 eV/Å

3
= 1020.43 GPa = Y 2D/ t0 ,

G3D =
E

2(1 + ν)
= 2.706 eV/Å

3
= 433.50 GPa = G2D/ t0 ,

λ3D =
E ν

(1 + ν)(1 − 2 ν)
= 1.482 eV/Å

3
= 237.46 GPa = λ2D/ t0 , (5.96)
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Fig. 5.18: Component CE
1111 of the elasticity tensor C (with respect to base vectors eE

1 and
eE

2 ) of suspended graphene for various principal strain directions αE = {0, π
18 ,

π
9 ,

π
6 }:

(a)-(d) general principle strain states, (e) uniaxial strain states (EII = 0), and (f) shear
strain states (EI = −EII).

while the dimensionless in-plane Poisson’s ratio is unaffected by the effective thickness and
remains constant, see (5.93).

5.5 Discussion and conclusion

An invariant-based hyperelastic material model of suspended graphene for general strain states
was derived, based on energy calculations by Density Functional Theory. These DFT-calculations
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Fig. 5.19: Component CE
2222 of the elasticity tensor C (with respect to base vectors eE

1 and
eE

2 ) of suspended graphene for various principle strain directions αE = {0, π
18 ,

π
9 ,

π
6 }:

(a)-(d) general principle strain states, (e) uniaxial strain states (EII = 0), and (f) shear
strain states (EI = −EII).

were performed for tens of thousands of strain states giving access to polynomial fitting coefficients
of the hyperelastic formulation of the specific free energy. In this context, the provided specific
free energy function contains an invariant information regarding the applied strain tensor, as
well as the geometric characteristics of graphene in form of a structural tensor accounting for
the anisotropic structural behavior of graphene. Maximum energy differences between DFT and
the hyperelastic model are as low as 1%. The consequently derived hyperelastic constitutive
equations, namely the expressions for the stress tensors and elasticity tensor, are valid for both
infinitesimal small deformations and large general deformations up to 1.25 for tensile stretches
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Fig. 5.20: Component CE
1122 of the elasticity tensor C (with respect to base vectors eE

1 and
eE

2 ) of suspended graphene for various principal strain directions αE = {0, π
18 ,

π
9 ,

π
6 }:

(a)-(d) general principle strain states, (e) uniaxial strain states (EII = 0), and (f) shear
strain states (EI = −EII).

and 0.85 for compressive stretches, respectively. For the first time, we have shown that in general,
there is a deviation of the principal directions of the Green-Lagrange strain tensor imposed onto
the unit cell, and the corresponding principal directions of both the second Piola-Kirchhoff and
the Cauchy stress tensor. Only in zigzag and armchair directions, the aforementioned strain and
stress directions coincide. All this is relevant for the finite strain domain, while it is well known
that graphene is isotropic in the context of infinitesimal strains. Furthermore, we have provided
an extensive overview on the anisotropy features of graphene, starting with the specific free
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Fig. 5.21: Elastic stability limits according to (5.86)-(5.88) of suspended graphene for various
principal strain directions αE = {0, π

18 ,
π
9 ,

π
6 }: (a)-(d) elastic stability regions (see

shaded regions) for general principle strain states, where the red line, green line, and
blue line indicate stability criteria (5.86), (5.87) and (5.88), respectively.

energy, via the Poisson ratio-type quantity for large deformations, to the stress-strain relations
and stiffnesses. Namely, differences between the zigzag and armchair direction amount to 16.5 %
for the specific free energy, 45 % for the Poisson effect, 35 % for normal components of the second
Piola-Kirchhoff stress tensor, and 175 % for shear components of the elasticity tensor. Analyzing
the elastic stability limits of graphene, we provided stable strain regions according to a positive
definite elasticity tensor. In this context, we straightforwardly extended the predictions of Kumar
and Parks [2015] (unique strain states in zigzag and armchair direction) to general strain states
for various material directions.

As regards material symmetry, the structure of graphene is unaltered in observation under
certain orthogonal transformations Q ∈ SO, see (5.62). These orthogonal tensors are in agreement
with the work of Pitteri and Zanzotto [2003], as far as the symmetries of crystal lattices and
their classification are concerned. For a hexagonal lattice, the symmetry group SO consists of
orthogonal reflection tensors characterizing the six-fold symmetry axis, as well as of orthogonal
rotation tensors associated with rotations of π/3, 2π/3, π, 4π/3, and 5π/3 [Pitteri and Zanzotto,
2003]. In addition, the orthogonal transformations (5.62), together with invariability requirement
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(5.63), are fully consistent with the landmark approaches for simple materials pioneered by Noll,
which were later extended to implicit constitutive relations by Rajagopal [2015]. According to
the theory of simple materials, the deformation gradient F is mapped onto the Cauchy stress
tensor σ through the constitutive expression [Noll, 1958, 1972; Truesdell and Noll, 1965]

σ = B [F(X, t)] . (5.97)

In (5.97), B is a general response functional which assigns the deformation gradient tensor to
the symmetric Cauchy stress tensor σ. For simple materials, the aforementioned orthogonal
transformations Q belong to the material symmetry group SO if the following condition holds

Q B [F(X, t)] QT = B
[
Q F(X, t) QT

]
. (5.98)

Thus, symmetry condition (5.98) states that the stress tensor is unaffected by orthogonal
transformations Q ∈ SO. (5.98) obviously holds for the right-hand side of Eq. (5.72), in
combination with the expressions (5.71), so that the Piola-Kirchhoff stress tensor “inherits”
the hexagonal symmetries, and then hands them over to the Cauchy stress tensor through the
classical relation (5.B.1): In terms of components with respect to base frame eE

1 -eE
2 (5.76), we

obtain identical stress components for rotations of nπ/3 , ∀n ∈ Z. Still, Eq. (5.72), which is
based on the tensors M and N through (5.71)3, fully defines the hexagonal symmetry; hence
Eq. (5.72) together with Eq. (5.71) effectively specify Noll’s general formalism given through
(5.97) and (5.98), for the investigated case of graphene.

As regards elastic stiffness properties of graphene, the obtained elastic constants of the provided
hyperelastic model for infinitesimal small strains are compared to the following reported values
from experimental measurements: Lee et al. [2008] measured elastic properties of free-standing
graphene membranes by nanoindentation in an atomic force microscope (AFM). These properties
were evaluated in the framework of isotropic hyperelastic Finite Element analyses. Clark et al.
[2013] used PeakForce QNM (quantitative nanomechanical mapping) atomic force microscopy
imaging to map the nanomechanical properties of suspended graphene membranes. These
properties where again fitted by Lee’s isotropic material model [Lee et al., 2008]. Sen et al.
[2010] used high-resolution optical and scanning electron microscopy (SEM) imaging and tearing
angles were measured through digital-image processing. Corresponding elastic properties of
graphene were evaluated by combining these experimental studies and first-principles ReaxFF
molecular dynamics. Furthermore, Politano and Chiarello [2015] analyzed the average elastic
properties, based on the investigation of acoustic phonon dispersion in graphite and in graphene
using high-resolution energy loss spectroscopy (HREELS). The measured elastic constants of the
aforementioned experiments can be found in Tab.5.4. Comparison of the literature according to
computational quantum-mechanics shows, that molecular dynamics simulations using Tersoff- and
REBO-potentials [Lu and Huang, 2009; Lu et al., 2011; Saavedra Flores et al., 2015; Singh and
Patel, 2015] underestimates the elastic Young’s modulus and overestimates the Poisson’s ratio,
when compared to DFT-based and experimental values, see Tab.5.5. However, our derived elastic
constants are in good agreement with reported values from the aforementioned experimental
measurements [Lee et al., 2008; Clark et al., 2013; Sen et al., 2010; Politano and Chiarello, 2015];
as well as with DFT-based computational methods [Liu et al., 2007; Xu et al., 2012a; Kumar
and Parks, 2015]. Besides the validation of elastic constants for infinitesimal small strains, large
deformation can be validated by incorporating the provided hyperelastic model in the constitutive
equations of a 2D membrane theory. This is the topic of ongoing research.
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Tab. 5.4: Elastic Young’s modulus, represented in 2D and 3D (assuming a graphene thickness
of 3.35 Å), and Poisson’s ratio of graphene stemming from experimental data in
literature.

literature experimental method
Young’s
modulus
Y 3D [GPa]

Young’s
modulus
Y 2D [N/m]

Poisson’s
ratio ν [-]

Lee et al. [2008]
AFM experiments on mem-
branes, evaluated by FE
analyses

1015 ± 150 340 ± 50 –

Clark et al. [2013]
QNM-AFM experiments on
membranes, evaluated by
FE analyses

1045 ± 150 350 ± 50 –

Sen et al. [2010]

High-resolution optical- and
SEM images on membranes,
evaluated by molecular sim-
ulations

1010.0 338.4 –

Politano and
Chiarello [2015]

Acoustic phonon dispersion
("ultrasonics")

1020.9 342.0 0.190

Tab. 5.5: Elastic Young’s modulus, represented in 2D and 3D (assuming a graphene thickness
of 3.35 Å), and Poisson’s ratio of graphene stemming from the present hyperelastic
model compared to computational data in literature.

literature
computational
method

Young’s
modulus
Y 3D [GPa]

Young’s
modulus
Y 2D [N/m]

Poisson’s
ratio ν [-]

Present model DFT-PBE 1020.4 341.8 0.177
Liu et al. [2007] DFT-LDA 1046.9 350.7 0.186
Xu et al. [2012a] DFT-PBE 1045.4 350.2 0.220
Kumar and Parks [2015] DFT-GGA 1041.8 349.2 0.203
Majidi [2017] DFT-PBE 1104.5 370.0 0.150
Cadelano et al. [2009] TB 931.3 312.0 0.310
Lu and Huang [2009] MD-REBO 725.4 243.0 0.398
Saavedra Flores et al.
[2015]

MD-Tersoff 836.0 284.2 0.410

Singh and Patel [2015] MD-REBO 726.6 243.4 0.397
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5.A Invariants of the specific free energy for principal strain states

The components of the Green-Lagrange strain tensor with respect to base vectors eZ and eA

(5.52)-(5.54) can be transformed to a base frame in principal strain directions eE
1 and eE

2 . Thus,
the characteristic polynomial of the eigenvalue problem,

det(E − Ej1) = E2
j − (EZZ + EAA)Ej + (EZZ EAA − E2

ZA) = 0 , (5.A.1)

has to be solved for the eigenvalues Ej . This delivers the principal strains,

EI =
EZZ + EAA

2
+

√(
EZZ − EAA

2

)2

+ (EZA)2 ,

EII =
EZZ + EAA

2
−
√(

EZZ − EAA

2

)2

+ (EZA)2 , (5.A.2)

which are components of a Green-Lagrange strain tensor with vanishing shear strain components,

E = EI eE
1 ⊗ eE

1 + EII eE
2 ⊗ eE

2 . (5.A.3)

The corresponding base frame of components (5.A.2) is rotated by an angle αE , relative to the
initial base frame eZ-eA, reading as

αE =
1
2

[
tan−1

(
2EZA

EZZ − EAA

)
+ π ·H (EAA − EZZ)

]
, (5.A.4)

with H being the Heaviside step function (H(x) = 1 if x > 0 and H(x) = 0 otherwise).
The 2D principal invariants of the Green-Lagrange strain tensor (5.A.3) and of the structural

tensor (5.59) are provided as function of principal strain measures in form of

I1 = trE = EI + EII ,

I2 =
1
2

[
(trE)2 − tr

(
E2
)]

= EIEII ,

I3 = [(P : E) : E] : E = (M : E)3 − 3(M : E)(N : E)2 =

= (EI − EII)
3 cos(6αE) . (5.A.5)

The corresponding main invariants J1-J11 read as

I2
1 − 2 I2 = J1 = E2

I + E2
II ,

I3
1 − 3 I1 I2 = J2 = E3

I + E3
II ,

I1 I2 = J3 = E2
I EII + EIE

2
II ,

I4
1 − 4 I2

1 I2 + 2 I2
2 = J4 = E4

I + E4
II ,

I2
2 = J5 = E2

I E
2
II ,

I2
1 I2 − 2 I2

2 = J6 = E3
I EII + EIE

3
II ,

I5
1 − 5 I3

1 I2 + 5 I1 I
2
2 = J7 = E5

I + E5
II ,

I3
1 I2 − 3 I1 I

2
2 = J8 = E4

I EII + EIE
4
II ,

I1 I
2
2 = J9 = E3

I E
2
II + E2

I E
3
II ,

I3 I1 = J10 = (EI − EII)
3(EI + EII) cos(6αE) ,

I3

(
I2

1 − 2 I2

)
= J11 = (EI − EII)

3(E2
I + E2

II) cos(6αE) . (5.A.6)
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Furthermore, the components of the second-order tensor S (5.71), namely the derivative of the
principal invariant I3 with respect to the Green-Lagrange strain tensor E, read as

S = SE
11 eE

1 ⊗ eE
1 + SE

12 (eE
1 ⊗ eE

2 + eE
2 ⊗ eE

1 ) + SE
22 eE

2 ⊗ eE
2 , (5.A.7)

with

SE
11 = 3 (EI − EII)

2 cos(6αE) ,

SE
12 = −3 (EI − EII)

2 sin(6αE) ,

SE
22 = −3 (EI − EII)

2 cos(6αE) . (5.A.8)

The corresponding components of the fourth-order tensor S (5.80), namely the derivative of the
principal invariant S with respect to the Green-Lagrange strain tensor E, read as

S = +SE
1111 eE

1 ⊗ eE
1 ⊗ eE

1 ⊗ eE
1 + SE

2222 eE
2 ⊗ eE

2 ⊗ eE
2 ⊗ eE

2

+SE
1122

(
eE

1 ⊗ eE
1 ⊗ eE

2 ⊗ eE
2 + eE

2 ⊗ eE
2 ⊗ eE

1 ⊗ eE
1

)

+SE
1212

(
eE

1 ⊗ eE
2 ⊗ eE

1 ⊗ eE
2 + eE

2 ⊗ eE
1 ⊗ eE

1 ⊗ eE
2

+eE
2 ⊗ eE

1 ⊗ eE
2 ⊗ eE

1 + eE
1 ⊗ eE

2 ⊗ eE
2 ⊗ eE

1

)

+SE
1112

(
eE

1 ⊗ eE
1 ⊗ eE

1 ⊗ eE
2 + eE

1 ⊗ eE
1 ⊗ eE

2 ⊗ eE
1

+eE
1 ⊗ eE

2 ⊗ eE
1 ⊗ eE

1 + eE
2 ⊗ eE

1 ⊗ eE
1 ⊗ eE

1

)

+SE
1222

(
eE

1 ⊗ eE
2 ⊗ eE

2 ⊗ eE
2 + eE

2 ⊗ eE
1 ⊗ eE

2 ⊗ eE
2

+eE
2 ⊗ eE

2 ⊗ eE
1 ⊗ eE

2 + eE
2 ⊗ eE

2 ⊗ eE
2 ⊗ eE

1

)
, (5.A.9)

with

SE
1111 = SE

2222 = +6 (EI − EII) cos(6αE) ,

SE
1122 = SE

1212 = −6 (EI − EII) cos(6αE) ,

SE
1112 = −6 (EI − EII) sin(6αE) ,

SE
1222 = +6 (EI − EII) sin(6αE) . (5.A.10)

5.B Eulerian stress-strain relations

Stress states actually occur in the deformed configuration. Hence, we are also interested in the
stress measures related to the deformed configuration, i.e. in the Cauchy stresses, reading as

σ =
1
J

F · π · FT , with J = detF. (5.B.1)

The Cauchy stresses are energetically conjugated to the logarithmic strains [Hencky, 1928; Xiao
et al., 1997]

ǫln = ln
√

F FT , (5.B.2)
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with the deformation gradient

F =
∂uI

∂X
+ 1 . (5.B.3)

The components of the deformation gradient in the eZ-eA base frame read as

FZZ =
∂uI

Z

∂XZ
+ 1 =

a1,Z − a2,Z

2 a0
, (5.B.4)

FZA =
∂uI

Z

∂XA
=
a1,Z + a2,Z

2 b0
, (5.B.5)

FAZ =
∂uI

A

∂XZ
=
a1,A − a2,A

2 a0
, (5.B.6)

FZZ =
∂uI

A

∂XA
+ 1 =

a1,A + a2,A

2 b0
, (5.B.7)

noting that in general the deformation gradient is not symmetric. Regarding principal strain
states with direction eE

1 , and eE
2 according to (5.A.3)-(5.A.4), the deformation gradient is a

function of principal stretches, λI and λII (eigenvalues), reading as

F = λI eE
1 ⊗ eE

1 + λII eE
2 ⊗ eE

2 . (5.B.8)

Accordingly, the logarithmic strain tensor with respect to base frame eE
1 -eE

2 reads as

ǫln = lnλI eE
1 ⊗ eE

1 + lnλII eE
2 ⊗ eE

2 . (5.B.9)

Thus, use of the logarithmic strain (5.B.2) in (5.B.1), while considering (5.72) and

E =
1
2

(
FT F − 1

)
, F FT = exp[2 ǫln] , J = exp[(ǫlnI + ǫlnII)] , (5.B.10)

yields the energetic-conjugate stress-strain relation

σ =
ρ2D

m,0 exp[2 ǫln]

exp[ǫlnI + ǫlnII ]

[
β1 1 +

β2

2

(
exp[2 ǫln] − 1

)]

+
ρ2D

m,0

exp[ǫlnI + ǫlnII ]

[
β3 F S FT

]
, (5.B.11)

with ǫlnI and ǫlnII as the principal logarithmic strains, see (5.B.9). The components of (5.B.11)
with respect to base frame eE

1 -eE
2 , σ =

∑2
i=1

∑2
j=1 σij eE

i ⊗ eE
j , read as

σE
11 = ρ2D

m,0

[
β1 +

β2

2

(
exp[2 ǫlnI ] − 1

)

+
3β3

4

(
exp[2 ǫlnI ] − exp[2 ǫlnII ]

)2
cos(6αE)

]
exp[ǫlnI − ǫlnII ] ,

σE
12 = σE

21 = −ρ2D
m,0

3β3

4

(
exp[2 ǫlnI ] − exp[2 ǫlnII ]

)2
sin(6αE) ,

σE
22 = ρ2D

m,0

[
β1 +

β2

2

(
exp[2 ǫlnII ] − 1

)

−3β3

4

(
exp[2 ǫlnI ] − exp[2 ǫlnII ]

)2
cos(6αE)

]
exp[ǫlnII − ǫlnI ] ,

(5.B.12)
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where we used the identities, EI = 1
2

(
exp[2 ǫlnI ] − 1

)
and EII = 1

2

(
exp[2 ǫlnII ] − 1

)
, for the com-

ponents of S (5.A.8) and for the principal invariants apperaing in the scalar functions βj . In
analogy to the second Piola-Kirchhoff stress tensor, the direction of the principal component σI

of the Cauchy stress tensor reads as

ασ = αE +
1
2

[
tan−1

(
2σE

12

σE
11 − σE

22

)]
, (5.B.13)

describing the angle between base vectors eZ and eσ
1 .

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 6

A membrane theory for circular graphene
sheets, based on a hyperelastic material model
for large deformations

Authored by: Raphael Höller, Florian Libisch, and Christian Hellmich

Submitted to: Mechanics of Advanced Materials and Structures

Abstract

Large deflections relevant for suspended circular graphene sheets with simply supported bound-
aries are computed by a theory for 2D membranes subjected to several types of vertical axisym-
metric forces, based on the Principle of Virtual Power. Corresponding constitutive stress-strain
relations are provided in an invariant fashion in form of a nonlinear anisotropic hyperelastic
material model for graphene, which is basically fitted by the quantum mechanics-rooted density
functional theory. When approximating the deflections through Navier-type Fourier series, the
Principle of Virtual Power yields a nonlinear algebraic system of equations. In this context, the
iterative Newton-Raphson solution procedure provides the Fourier coefficients of the aforemen-
tioned series representation. The latter converges, with increasing number of series members,
to the true solution for the membrane deflections. The new computational efficient method is
applied to relevant problems in mechanical engineering of graphene, and it is validated through
comparison of the numerical results it provides, with predictions obtained from experimental
nanoindentaion measurements.

Contribution of the author: The author of the present thesis developed the PVP-based
membrane theory for circular graphene sheets undergoing large deformations, characterized
by nonlinear hyperelastic stress-strain relations. Furthermore, he performed extensive litera-
ture research, prepared the Matlab code for the iterative series-based solution procedure, and
documented most of the manuscript.
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List of symbols

ai vector containing amplitudes am,i for each iteration step i
associated to Newton-Raphson method

am Fourier coefficient of deflection approximation
˙̂at Fourier coefficient in approximation of virtual velocity
ci DFT-based fitting coefficients for hyperelastic material model
d̂ virtual Eulerian strain rate
er, eϕ, ez base vectors of cylindrical coordinate system
E Green-Lagrange strain tensor
Err normal component of E in the r-direction
˙̂
E virtual Green-Lagrange strain rate
˙̂
Err normal component of ˙̂

E in the r-direction
f volume force vector
fNR vector containing functions fNR

t

associated to Newton-Raphson method
fNR

t multivariate function of the nonlinear system of equations
F deformation gradient
Frr normal component of F in teh r-direction
Fϕϕ normal component of F in the ϕ-direction
Fzz normal component of F in the z-direction
Fzr shear component of F in the r-z-plane
h effective thickness of graphene
i index of summation / of vector component
I1, I3 principal invariants of the strain and structural tensor
J Jacobian matrix associated to Newton-Raphson method
Jtj,i elements of J for each iteration step i
j index of summation / of vector component
k index of summation / of vector component
l index of summation / of vector component
m index of summation / of vector component
M I

jklt “stiffness matrix element” associated to
deformation amplitudes of third power

M II
jklmnt “stiffness matrix element” associated to

deformation amplitudes of fifth power
M III

jklmnt “stiffness matrix element” associated to
deformation amplitudes of seventh power

n index of summation / of vector component
n outward normal vector onto the boundaries of deformed continuum
N outward normal vector onto the boundaries of undeformed membrane
nL,rr internal normal force per unit length in the r-direction
Nm number of Fourier series members approximating the deflection
Nt number of Fourier series members approximating the virtual velocity
PL,z single force acting in vertical direction (z)
pL,z vertical surface load per unit area, acting over specific circular area
pL,z vertical surface load per unit area, acting over entire membrane
PVP Principle of Virtual Power
Pext virtual power of external forces
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P int virtual power of internal forces
q index of summation / of vector component
r radial coordinate of the cylindrical coordinate system
R radius of the membrane
RT radius of the surface load pL,z

S derivative of the principal invariant I3 with respect to E

Srr component of S in the r-direction,
characterizing graphene’s anisotropic material behavior

s index of summation / of vector component
t index of summation / of vector component
T traction vector
u displacement vector
û virtual displacement vector
uz deflection of the membrane
ûz virtual deflection of the membrane
v̂ = ˙̂u virtual velocity vector
vz component of v̂ in the z-direction
V p

t “load vector element” associated to surface load
acting on entire membrane

V p
t “load vector element” associated to surface load

acting on circular area
V P

t “load vector element” associated to single force
wm m-th deflection mode associated to 2D Fourier series
x location vector throughout the deformed membrane
X location vector throughout the undeformed membrane
z vertical coordinate of the cylindrical coordinate system
β1, β2, β3 scalar functions of the hyperelastic material model for graphene
λ scaling factor
π second Piola-Kirchhoff stress tensor
πrr normal component of π in the r-direction
πrz shear component of π in the r-z-plane
πzz normal component of π in the z-direction
π2D

rr normal component of 2D second Piola-Kirchhoff stress tensor
ρ2D

m,0 initial mass density per area of graphene
σ Cauchy stress tensor∑

summation operator
ϕ azimuth of the cylindrical coordinate system

6.1 Introduction

Two-dimensional (2D) graphene membranes, consisting of carbon atoms arranged in a hexagonal
lattice, attract considerable attention in the fields of chemistry, physics, and material science
[Balandin et al., 2008; Bolotin et al., 2008; Lee et al., 2008; Castro Neto et al., 2009; Lau et al.,
2012]. As regards membrane theories for computing the deflections of suspended graphene
sheets, several methods have been used up to the present day: Atomistic models of graphene
membranes have been developed by molecular dynamics simulations using interatomic Lennard-
Jones potentials and Tersoff-Brenner potentials [Neek-Amal and Peeters, 2010; Fang et al., 2011;
Shakouri et al., 2011; Samadikhah et al., 2012], as well as by truss-type models consisting of
beam elements for simulating covalently bonded carbon atoms in a hexagonal graphene lattice
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6 A Membrane theory for circular graphene sheets 178

[Sakhaee-Pour et al., 2008; Sakhaee-Pour, 2009; Rouhi and Ansari, 2012]. The by far most
popular method for the solution of mechanical deformations is that of the Finite Element method,
which has been the basis for many scientific contributions up to the present day [Gil et al., 2010;
Scarpa et al., 2010; Larsson and Samadikhah, 2011; Xu et al., 2012a,b; Wei and Kysar, 2012;
Jiang et al., 2014; Seifoori and Hajabdollahi, 2015; Ghaffari et al., 2018]. Besides mechanical
deformations, vibrational analysis of graphene sheets were performed indicating its fundamental
frequencies and mode shapes [Sadeghi and Naghdabadi, 2010; Mianroodi et al., 2011; Wang et al.,
2013; Jiang et al., 2014].

However, for a circular graphene membrane, simply supported at its boundary, a more
computationally efficient Fourier-series based theory can be provided: Therefore, we resort to the
Principle of Virtual Power (PVP) [Germain, 1972, 1973a,b; Germain et al., 1983; Maugin, 1980,
2013; Touratier, 1991; Salençon, 2001; Höller et al., 2019], which we specify for the kinematic
characteristics of a 2D graphene membrane in bending mode, see Section 6.2. In this context, we
consider large deformations using Lagrangian quantities, namely the Green-Lagrange strain and
the energetically conjugated second Piola-Kichhoff stress. Corresponding stress-strain relations
are linked by a nonlinear, anisotropic hyperelastic material model of graphene [Höller et al.,
2020a], based on the Density Functional Theory (DFT) [Hohenberg and Kohn, 1964; Kohn and
Sham, 1965]. Furthermore, the investigated circular membranes are subjected to several types
of axisymmetric vertical forces, namely to single forces or to distributed surface loads acting
on circular areas, whereby the action points and the areas form axisymmetric patterns. Such
kinds of concentrated loads allow for consideration of nanoindentation of free-standing graphene
membranes [Lee et al., 2008]. In Section 6.3, the PVP-based governing equation is used for
constructing a nonlinear algebraic system of equations for determining the sought deflection
function. The latter is expanded into Fourier series according to Navier’s proposal [Navier,
1823] and the unknown Fourier coefficients of the nonlinear multivariate system of equation
are solved iteratively by means of the Newton-Raphson method [Ortega and Rheinboldt, 2000].
Section 6.4 is devoted to numerical investigations in the form of three representative examples,
and of comparison of respective results with experimental measurements. Finally, concluding
remarks are provided in Section 6.5. Appendix A contains the elements of the algebraic system
of equations for the three aforementioned numerical examples, in order to solve the unknown
Fourier coefficients.

6.2 Kinematics and stress resultants of suspended graphene

membranes for large deformations – reviewed in the context of
the Principle of Virtual Power

6.2.1 Basics

The Principle of Virtual Power (PVP) is an efficient and safe method for constructing energetically
consistent theories of structural members, as documented by Germain [1972, 1973a,b] and Maugin
[1980, 2013]. Setting our focus point on 2D graphene membranes, we start with the formulation
of the PVP for a standard 3D continuum, in the format put forward by Germain and followers
[Maugin, 2013; Touratier, 1991; Salençon, 2001; Höller et al., 2019; Borino and Polizzotto, 2014],

Pext + P int = 0 , (6.1)
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with

Pext = +
∫

V

f(x) · v̂(x) dV +
∫

S

T(n,x) · v̂(x) dS , (6.2)

P int = −
∫

V

σ : d̂ dV , (6.3)

where Pext and P int denote the virtual power of the external forces and of the internal forces,
respectively; x denotes the actual location vectors throughout the continuum and at its boundaries
with outward normals n; f denotes volume forces; T denotes traction (surface) forces; v̂ denotes
the virtual velocity; σ denotes the Cauchy stress; and d̂ denotes the virtual Eulerian strain rate.
The Principle of Virtual Power implies both kinematic compatibility and equilibrium of the solid
continuum.

In the case of circular membranes, undergoing large deformations, we formulate strains and
stresses as a function of the location vector X in the undeformed configuration (Lagrangian
representation). Any position within the surface of such a membrane is described by a cylindrical
coordinate system, with an origin located in center of the membrane, and with base vectors
er, eϕ, and ez. The latter is orthogonal to the undeformed membrane and the azimuth of ϕ = 0
corresponds to a base vector er pointing in the so-called “zigzag” direction of graphene. Thus,
for describing large deformations, the following virtual power of external and internal forces are
provided in Lagrangian representation

Pext =

R∫

0

2 π∫

0

v̂(X) · F · π(X) · N(X) r dϕ dr , (6.4)

P int = −
R∫

0

2 π∫

0

+ h
2∫

−
h
2

π : ˙̂
E r dz dϕ dr , (6.5)

where X denotes the initial location vectors throughout the membrane with outward normals N

and radius R; F denotes the deformation gradient; π denotes the second Piola-Kirchhoff stress

tensor; and ˙̂
E denotes the virtual Green-Lagrange strain rate. It is noted, that we neglected

volume force vectors due to the infinitesimal small thickness of graphene (single layer of carbon
atoms), see Section 6.2.2.

6.2.2 Kinematics

2D graphene membranes in so-called bending mode are characterized by the following kinematic
features:

1. The thickness of graphene is negligible small [Castro Neto et al., 2009; Lau et al., 2012],
such that all straight lines (generators) orthogonal to the undeformed membrane remain,
throughout the deformation process, straight, constant in length, and orthogonal to the
undeformed membrane plane.

2. All points of a generator have, in good approximation, the same displacement in the
z-direction, namely the deflection uz, see Fig. 6.1.
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3. The deflections are large when compared to the thickness of the membrane.

4. Axisymmetric loads result in axisymmetric patterns of the displacements.

5. Stretching stiffness is dominant over negligible shear and bending stiffnesses.

1

r

z
uz(r)

membrane in the undeformed configuration

membrane in the deformed configuration
∂uz(r)

∂r
. . . positive

uz(r) increases with increasing r

Fig. 6.1: Sideview in the r-z-plane of a graphene membrane in the undeformed and in the
deformed configuration.

Under the aforementioned kinematic conditions, the displacement field of the membrane reads as

u(X) = uz(r) ez , (6.6)

and the corresponding virtual velocity field follows from a virtual displacement field of the form

û(X) = ûz(r) ez . (6.7)

Namely, temporal derivation of (6.7) yields the virtual velocity field as

v̂(X) = ˙̂u(X) = v̂z(r) ez , (6.8)

with v̂z as the temporal derivative of the time-dependent virtual displacement ûz.
Displacement field (6.6) implies a Green-Lagrange strain tensor E [Salençon, 2001]

E =
1
2

[
∂u

∂X
+
(
∂u

∂X

)T

+
(
∂u

∂X

)T

· ∂u

∂X

]
=

∑

i=r,ϕ,z

∑

j=r,ϕ,z

Eij ei ⊗ ej , (6.9)

with non-zero components reading as

Err(r) =
1
2

(
∂uz(r)
∂r

)2

, (6.10)

where the transverse shear strains are neglected due to the infinitesimal small thickness of the
2D membrane. Derivation of (6.10) with respect to the time, and substitution of the occuring
time derivatives of displacements by virtual velocities, yields

˙̂
E = ˙̂

Err er ⊗ er , (6.11)

with

˙̂
Err(r) =

∂uz(r)
∂r

∂v̂z(r)
∂r

. (6.12)

Thus, the virtual Green-Lagrange strain rate (appearing in the virtual power of internal forces)
depends on both the virtual velocity v̂z and the actual deflection uz indicating a non-linearity in
the structural problem.
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Furthermore, displacement field (6.6) implies a deformation gradient, F = 1 + ∂u/∂X (ap-
pearing in the virtual power of external forces), reading as

F = Frr er ⊗ er + Fϕϕ eϕ ⊗ eϕ + Fzr ez ⊗ er + Fzz ez ⊗ ez , (6.13)

with

Frr = 1 , Fϕϕ = 1 , Fzr =
∂uz(r)
∂r

, and Fzz = 1 . (6.14)

6.2.3 Virtual Power of internal forces and corresponding hyperelastic material
model of graphene

As regards specification of the virtual power of internal forces (6.5) for the kinematic characteristics
of graphene membranes undergoing large deformations, the virtual Green-Lagrange strain rates
(6.12) imply that only stresses πrr perform power along the virtual strain rates ˙̂

Err. Hence, the
virtual power of the internal forces reads as

P int = −
R∫

0

2 π∫

0

+ h
2∫

−
h
2

πrr(r) ˙̂
Err(r) r dz dϕ dr

= −
R∫

0

2 π∫

0

+ h
2∫

−
h
2

πrr(r)
[
∂uz(r)
∂r

∂v̂z(r)
∂r

]
r dz dϕ dr . (6.15)

Eq. (6.15) indicates that the membrane-specific “degrees of freedom” ∂uz(r)
∂r

∂v̂z(r)
∂r induce

internal stress resultants on which they produce power, namely internal forces per unit length

nL,rr(r) =

+ h
2∫

−
h
2

πrr(r) dz ≡ π2D
rr (r) . (6.16)

Stress resultant (6.16) can be interpreted as the normal component of the 2D second Piola-
Kirchhoff stress tensor in er direction acting on a 2D solid. For a hexagonal graphene lattice, the
nonlinear, anisotropic material behavior is described by the following hyperelastic stress-strain
relation [Höller et al., 2020a]

nL,rr = ρ2D
m,0 [β1 + β2Err + β3 Srr] . (6.17)

In Eq. (6.17), ρ2D
m,0 is the initial mass density per area of graphene; β1, β2, andβ3 are scalars

depending on graphene’s DFT-based material fitting coefficients ci and principal invariants Ii of
the strain and structural tensor [Höller et al., 2020a]1

β1 = c2 I1 + c6 I
2
1 + c9 I

3
1 + c13 I3

β2 = −c2 + 2 c4 + (3 c5 − c6)I1 + (4 c7 − c9)I2
1 ,

β3 = c3 + c13 I1 , (6.18)

1The fitting coefficients within the used hyperelastic material model of graphene are valid for Green-Lagrange
strains between -0.03 and +0.28 [Höller et al., 2020a, Table 2].
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with
I1 = Err , I3 = E3

rr cos(6ϕ) . (6.19)

Srr refers to the anisotropic behavior and is the component of the second-order tensor, S =
∂I3/∂E, reading as,

Srr = 3E2
rr cos(6ϕ) , (6.20)

characterizing the influence of the strain of Err onto the mechanical response of graphene.
Back-insertion of (6.16) together with (6.17)-(6.19) into the power expression (6.15), yields the

virtual power of internal forces in the following form

P int = −ρ2D
m,0

R∫

0

2 π∫

0

[
2 c4Err + 3 (c5 + c3 cos(6ϕ))E2

rr

+ 4 (c7 + c13 cos(6ϕ))E3
rr

]
×
[
∂uz(r)
∂r

∂v̂z(r)
∂r

]
r dϕ dr . (6.21)

Substitution of the Green-Lagrange strain (6.10) results in

P int = −ρ2D
m,0

R∫

0

2 π∫

0

[
c4

(
∂uz(r)
∂r

)2

+
3
4

(c5 + c3 cos(6ϕ))
(
∂uz(r)
∂r

)4

+
1
2

(c7 + c13 cos(6ϕ))
(
∂uz(r)
∂r

)6
]

×
[
∂uz(r)
∂r

∂v̂z(r)
∂r

]
r dϕ dr .

(6.22)

6.2.4 Virtual Power of external forces and PVP-based governing equation

Evaluation of (6.4) for the virtual velocity (6.8) and for the deformation gradient (6.13)-(6.14),
yields when considering a membrane with outward normals N = ez

Pext = +

R∫

0

2 π∫

0

v̂(X) · F · π(X) · ez r dϕ dr

= +

R∫

0

2 π∫

0

v̂z(r) ·
(
πzz(r) +

∂uz(r)
∂r

πrz(r)
)
r dϕ dr . (6.23)

Eq. (6.23) indicates that the membrane-specific degree of freedom v̂z(r) induces external La-
grangian stress resultants on which power is produced, namely vertical Lagrangian surface loads
(dimension force per unit area), reading as

pL,z(r) = πzz(r) +
∂uz(r)
∂r

πrz(r) . (6.24)

Substitution of (6.24) into the power expression (6.23) yields the virtual power of external forces
in the following form

Pext = +

R∫

0

2 π∫

0

pL,z(r) v̂z(r) r dϕ dr . (6.25)
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As regards more complex loading cases, Eq. (6.25) can be straightforwardly extended to
membranes loaded by surface loads per unit area pL,z(r) over the entire membrane, distributed
forces pL,z over the centered circular area of radius RT , and vertical single forces PL,z acting in
the center of the membrane, see Fig. 6.2. In this context, the virtual power of external forces for

(b) (c)(a)

r

R

z

pL,z(r)

r

R

z

RT

pL,z

r

R

z

PL,z

Fig. 6.2: (a) Vertical surface load pL,z(r) non-uniformly distributed over the entire membrane;
(b) vertical surface load pL,z uniformly distributed over a centered circular area of
radius RT ; and (c) vertical single force PL,z acting in the center of the membrane.

a circular membrane subjected to axisymmetric loads reads as

Pext = +

R∫

0

2 π∫

0

pL,z(r) v̂z(r) r dϕ dr + pL,z

RT∫

0

2 π∫

0

v̂z(r) r dϕ dr + PL,z v̂z(r)
∣∣∣∣
r=0

. (6.26)

Insertion of the expression for the virtual power of internal forces (6.22) as well as of the
expression for the virtual power of external forces (6.26), into the PVP (6.1), yields

Pext + P int =

+

R∫

0

2 π∫

0

pL,z(r) v̂z(r) r dϕ dr + pL,z

RT∫

0

2 π∫

0

v̂z(r) r dϕ dr + PL,z v̂z(r)
∣∣∣∣
r=0

−ρ2D
m,0

R∫

0

2 π∫

0

[
c4

(
∂uz(r)
∂r

)2

+
3
4

(c5 + c3 cos(6ϕ))
(
∂uz(r)
∂r

)4

+
1
2

(c7 + c13 cos(6ϕ))
(
∂uz(r)
∂r

)6
]

×
[
∂uz(r)
∂r

∂v̂z(r)
∂r

]
r dϕ dr = 0 . (6.27)

The PVP in the format (6.27) is the basis for the determination of the sought deflection function
uz(r). Therefore, the latter is expanded into a Fourier series, which leads to the so-called Galerkin
method, as described in Section 6.3.

6.3 Mathematical solution procedure

The Principle of Virtual Power in the format (6.27) can also be used for constructing a nonlinear
algebraic system of equations giving access to the deflection function uz(r). For this purpose,
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we resort to Navier [1823], representing the axisymmetric deflection function as a series of
trigonometric functions, i.e. a Fourier series

uz(r) =
Nm∑

m=1

amwm(r) , (6.28)

where am are unknown Fourier coefficients (amplitudes), and wm denote corresponding trigono-
metric functions reading as

wm(r) = cos
(
mr π

2R

)
for m = 1, 3, 5... . (6.29)

Subscripts m refer to the number of waves related to the trigonometric functions, with Nm as the
total number of employed deflection modes. (6.29) automatically ensures a circular membrane
with simply supported boundaries, i.e. deflection modes are zero for r = R: wm(R) = 0.

Similar choices are made for the virtual velocities v̂z(r), through introduction of Ansatz
functions identical to those in Eq. (6.28),

v̂z(r) =
Nt∑

t=1

˙̂atwt(r) , (6.30)

with the virtual velocity coefficient ˙̂at. Insertion of (6.28) and of (6.30) into Eq. (6.27), yields the
following Galerkin-type solution scheme

Pext + P int =

Nt∑

t=1

˙̂at





R∫

0

2 π∫

0

pL,z wt r dϕ dr + pL,z

RT∫

0

2 π∫

0

wt r dϕ dr + PL,z wt

∣∣∣∣
r=0

−ρ2D
m,0

R∫

0

2 π∫

0


c4

(
Nm∑

m=1

am
∂wm

∂r

)2

+
3
4

(c5 + c3 cos(6ϕ))

(
Nm∑

m=1

am
∂wm

∂r

)4

+
1
2

(c7 + c13 cos(6ϕ))

(
Nm∑

m=1

am
∂wm

∂r

)6

×

(
Nm∑

m=1

am
∂wm

∂r

)
∂wt

∂r
r dϕ dr





= 0 . (6.31)

After simplification, we further obtain a more suitable solution scheme

Pext + P int =

Nt∑

t=1

˙̂at





R∫

0

2 π∫

0

pL,z wt r dϕ dr + pL,z

RT∫

0

2 π∫

0

wt r dϕ dr + PL,z wt

∣∣∣∣
r=0

−2π ρ2D
m,0 c4

Nm∑

j,k,l=1

aj ak al

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wt

∂r
r dr

−3
2
π ρ2D

m,0 c5

Nm∑

j,k,l,m,n=1

aj ak al am an

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wm

∂r

∂wn

∂r

∂wt

∂r
r dr
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−π ρ2D
m,0 c7

Nm∑

j,k,l,m,n,q,s=1

aj ak al am an aq as

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wm

∂r

∂wn

∂r

∂wq

∂r

∂ws

∂r

∂wt

∂r
r dr





= 0 . (6.32)

Requiring validity of (6.32) for any combinations of the virtual coefficients ˙̂at, yields a nonlinear
system of Nt algebraic equations for the unknowns am, reading as

ft = V p
t + V p

t + V P
t −

Nm∑

j,k,l=1

aj ak al M
I
jklt −

Nm∑

j,k,l,m,n=1

aj ak al am anM
II
jklmnt

−
Nm∑

j,k,l,m,n,q,s=1

aj ak al am an aq asM
III
jklmnqst = 0 , for t = 1, 3, ..., Nt , (6.33)

with

M I
jklt = 2π ρ2D

m,0 c4

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wt

∂r
r dr , (6.34)

as the stiffness matrix elements associated to deformation amplitudes of third power (see
Appendix A, Eq. (6.A.4), for analytical expressions concerning (6.34));

M II
jklmnt =

3
2
π ρ2D

m,0 c5

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wm

∂r

∂wn

∂r

∂wt

∂r
r dr , (6.35)

as the stiffness matrix elements associated to deformation amplitudes of fifth power (see Ap-
pendix A, Eq. (6.A.5), for analytical expressions concerning (6.35));

M III
jklmnqst = π ρ2D

m,0 c7

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wm

∂r

∂wn

∂r

∂wq

∂r

∂ws

∂r

∂wt

∂r
r dr , (6.36)

as the stiffness matrix elements associated to deformation amplitudes of seventh power (see
Appendix A, Eq. (6.A.6), for analytical expressions concerning (6.36));

V p
t =

R∫

0

2 π∫

0

pL,z wt r dϕ dr , (6.37)

as the load vector elements associated to general surface loads acting on the entire membrane,
respectively (see Appendix A, Eq. (6.A.1), for analytical expressions concerning (6.37), specified
for constant and cosine-type loads);

V p
t = pL,z

RT∫

0

2 π∫

0

wt r dϕ dr , (6.38)

as the load vector elements associated to the distributed load acting over the centered circular
area of radius RT (see Appendix A, Eq. (6.A.2), for analytical expressions concerning (6.38));

V P
t = PL,z wt

∣∣∣∣
r=0

, (6.39)
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as the load vector elements associated to single forces acting in the center of the membrane
(see Appendix A, Eq. (6.A.3), for analytical expressions concerning (6.39)). The corresponding
approximative solution for uz(r) is the more precise the more series deflection members (being
Nm in number) are employed.

As regards solving the derived nonlinear multivariate system of equations (6.33), we resort to
the iterative Newton-Raphson method [Ortega and Rheinboldt, 2000] being defined as

ai+1 = ai − J−1(ai) · f(ai) , (6.40)

where vector ai = [a1,i, a3,i, ..., aNm,i]T contains the unknown amplitudes am,i for each iteration
step i; vector f = [f1,i, f3,i, ..., fNt,i]T contains each line t of the nonlinear system of equation
according to (6.33); and J is the so-called Jacobian matrix as the partial derivative of f with
respect to the amplitudes a. Thus, the elements of the Nt ×Nj Jacobian matrix for iteration
step i, when specified for (6.33), read as

Jtj,i =
∂ft,i

∂aj,i
= −3

Nm∑

k,l=1

ak al M
I
jklt − 5

Nm∑

k,l,m,n=1

ak al am anM
II
jklmnt

−7
Nm∑

k,l,m,n,q,s=1

al al am an aq asM
III
jklmnqst . (6.41)

According to the first iteration step, i = 0, an initial estimate for the amplitudes a0 can be
directly calculated using a reduced system of equation, including deflection amplitudes up to the
third power, namely

V p
t + V p

t + V P
t −

Nm∑

j,k,l=1

aj,0 ak,0 al,0M
I
jklt = 0 , for t = 1, 3, ..., Nt . (6.42)

Based on the initial estimate a0, the Newton-Raphson iteration process (6.40) is repeated until
convergence is reached.

6.4 Application to circular graphene membranes and validation by
means of AFM experiments

The structural problem (6.33)-(6.39) is now applied to the analysis of a free-standing circular
graphene membrane of R = 500 nm radius, simply supported at its boundary. In the following,
this membrane is subjected to different axisymmetric mechanical loads as constant and cosine-
type loads pL,z(r) over the entire membrane, respectively, as well as distributes loads pL,z over
a circular area of radius RT (see Fig. 6.3), each of them resulting in a force of F = 500 nN.
Corresponding results will be presented in a dimensionless way, which does not only comprise
the actual deformations arising from the aforementioned material, structural, and loading
characteristics, but which reflects infinitely many additional problems which are associated
with different membrane radii and different mechanical loads. In more detail, we consider a
dimensional analysis [Barenblatt, 1996] of the deflection function (6.28) arising from the solution
of (6.33), together with (6.34) to (6.39). This yields the following dimensionless relations

uz

R
=
uz

R

(
r

R
,
RT

R
,
c3

c4
,
c5

c4
,
c7

c4
,
c13

c4
,
pL,z R

ρ2D
m,0 c4

,
pL,z R

ρ2D
m,0 c4

)
. (6.43)
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(c)(a) (b)

r

z

pL,z(r)

r

z

pL,z

r

z

RT
R R R

pL,z

Fig. 6.3: Circular graphene membrane with simply supported boundaries and radiusR, subjected
to (a) vertical load pL,z distributed over a centered circular area of radius RT , (b)
uniform vertical surface load pL,z, and (c) non-uniform vertical cosine-type load pL,z(r).

(6.43) elucidates that the basic dimensionless functions [uz/R] depend on geometrical character-
istics, in-plane stiffness constants of graphene [Höller et al., 2020a], and dimensionless quantities
related to mechanical loadings, so as to deliver dimensionless quantities related to deflections.
These relations, depicted in the format of [uz/R](r/R = RT /R = c3/c4 = c5/c4 = c7/c4 =
c13/c4 = pL,z R/(ρ2D

m,0 c4) = pL,z R/(ρ
2D
m,0 c4) = constant) in Figures 6.4, 6.6, and 6.7, are valid

for any change R → λR, once r → λ r, RT → λRT , pL,z → pL,z/λ, and pL,z → pL,z/λ.

6.4.1 Example 1/Validation: Circular graphene membrane subjected to a
concentrated load

The membrane is subjected to a vertical load pL,z, which is distributed over the centered circular
area of radius RT = 16.5 nm, see Fig. 6.3(a). This concentrated load represents the tip of a
nanoindentation of free-standing graphene membranes as experimentally measured by Lee et al.
[2008]. It is noted that the relation between the Eulerian loading area dS and the Lagrangian
loading area dS0,

dS0Nz =
dS

detF
nz , (6.44)

results in equivalent loading areas of the indenter, dS0 = dS, when considering detF = 1 according
to (6.13) and (6.14), as well as a horizontal tangent of the aforementioned tip with outward
normals Nz = nz = −1.

The approximative solution for the dimensionless maximum deflection [uz/R] located at r = 0
can be regarded as converged once Nm = 16 series members are employed, see Fig. 6.4(c).
With Matlab version R2012b [Mathworks, 2012] running on a computer AMD Phenom(tm)
II X6 1090T with 8GB RAM, this related to 24.4 seconds computing time, see Fig. 6.4(d).
Considering corresponding fields, the maximum deflections occur at the center of the membrane,
see Fig. 6.4(a-b).

For validation of the provided structural problem according to (6.33)-(6.39), the results of
force-displacement curves are compared to those stemming from experimental measurements by
Lee et al. [2008] performed with an atomic force microscope (AFM). In this context, a circular
graphene membrane of radius R = 500 nm is subjected to the indenter tip, representing a resulting
force F up to 1000 nN acting on a circular area of radius RT of 16.5 nm and 27.5 nm, respectively,
see Fig. 6.5. Maximum differences between experimental measurements and series-based results
of the deflections uz,max are as low as 0.27 % for F = 500 nN, and 1.44 % for F = 1000 nN.
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(a)
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Fig. 6.4: Dimensionless deflections [uz/R] in circular graphene membrane, with simply supported
boundary, subjected to a concentrated surface load pL,z R/(ρ

2D
m,0 c6) = 1.657: (a)

deflections in entire membrane, (b) deflections in r-z-plane, (c) convergence study of
the dimensionless deflection located at r = 0 as a function of the number of deflection
modes Nm, and (d) corresponding computing time for results associated to one point
of the plate.

0 30 60 90 120

0

250

500

750

1000

Fig. 6.5: Validation of series-based solution procedure (6.33) according to example 1 by experi-
mental measurements, as provided by Lee et al. [2008] using AFM nanoindentation.

6.4.2 Example 2: Circular graphene membrane subjected to an uniform surface
load

The membrane is subjected to an uniform surface load pL,z(r) = constant = pL,z, representing
the deadload of a graphene membrane for example, see Fig. 6.3(b). The approximative solution
for the dimensionless maximum deflection [uz/R] at the membrane’s center can be regarded
as converged once Nm = 7 series members are employed, see Fig. 6.6(c). With Matlab version
R2012b running on a computer AMD Phenom(tm) II X6 1090T with 8GB RAM, this related to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6 A Membrane theory for circular graphene sheets 189
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Fig. 6.6: Dimensionless deflections [uz/R] in circular graphene membrane, with simply sup-
ported boundary, subjected to constant surface load pL,z R/(ρ2D

m,0 c6) = 0.0018: (a)
deflections in entire membrane, (b) deflections in r-z-plane, (c) convergence study of
the dimensionless deflection located at r = 0 as a function of the number of deflection
modes Nm, and (d) corresponding computing time for results associated to one point
of the plate.

0.2 seconds computing time, see Fig. 6.6(d). Considering corresponding fields, the maximum
deflections occur at the center of the membrane, see Figs. 6.6(a-b).

6.4.3 Example 3: Circular graphene membrane subjected to a cosine-type surface
load

The membrane is subjected to a cosine-type surface load pL,z(r) =
pL,z cos(r π/(2R)), representing an external pressure for example, see Fig. 6.3(c). The approxi-
mative solution for the dimensionless deflection [uz/R] at the membrane’s center can be regarded
as converged once Nm = 8 series members are employed, see Fig. 6.7(c). With Matlab version
R2012b running on a computer AMD Phenom(tm) II X6 1090T with 8GB RAM, this related to
0.3 seconds computing time, see Fig. 6.7(d). Considering corresponding fields, the maximum
deflections occur at the center of the membrane, see Figs. 6.7(a-b).

6.5 Conclusion

The Principle of Virtual Power, with rigorous discrimination of internal versus external forces,
was applied to the problem of a circular suspended graphene membrane, simply supported at
its boundary, and subjected to different axisymmetric mechanical loads. As regards material
behavior of graphene, the DFT-based hyperelastic material model [Höller et al., 2020a] was used,
and the resulting Fourier series-based nonlinear algebraic system of equations was solved by
the iterative Newton-Raphson method. The aforementioned solution procedure also appears

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6 A Membrane theory for circular graphene sheets 190
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Fig. 6.7: Dimensionless deflections [uz/R] in circular graphene membrane, with simply supported
boundary, subjected to a cosine-type surface load pL,z R/(ρ2D

m,0 c6) = 0.0039: (a)
deflections in entire membrane, (b) deflections in r-z-plane, (c) convergence study of
the dimensionless deflection located at r = 0 as a function of the number of deflection
modes Nm, and (d) corresponding computing time for results associated to one point
of the plate.

as an efficient and computational fast method for modeling specific mechanical problems of
graphene membranes. The numerical results are validated by experimental measurements as
presented by Lee et al. [2008] using AFM nanoindentation, being in good agreement up to large
deformations. We regard this as an interesting example for energetically consistent formulations
appearing as the basis for particularly relevant and reliable solutions to the growing field of the
structural mechanics of graphene. Such a energetically consistent theory is comparable to other
nonlinear problems regarding large deformations as the analyses of laminated composite beams
using the principle of virtual work and a finite element approximation in a total Lagrangian
manner [Pagani and Carrera, 2017]; of inflated circular hyperelastic membranes based on the
variational method including a Mooney-Rivlin strain energy [Patil and DasGupta, 2013]; and of
the nonlinear vibration response of a neo-Hookean membrane obtained by means of the Galerkin
method [Gonçalves et al., 2009].
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6.A Stiffness matrix and load vector elements

In order to determine the unknown coefficients am, we have to solve the system of algebraic
equations (6.33) together with the corresponding stiffness matrix and load vector elements
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(6.34)-(6.39), for the employed trigonometric functions of type wm(r), see (6.29). First, we
provide the load vector elements for any combinations of t = 1, 3, ..., Nt:

(i) Load vector element associated to the constant and cosine-type surface load pL,z(r) acting
on the entire membrane:

V p
t =

R∫

0

2 π∫

0

pL,z wt r dϕ dr (6.A.1)

=





pL,z
4R2

[
π t sin

(
π t
2

)− 2
]

π t2

pL,z
R2(π2 − 4)

2π

pL,z
8R2

[
2 t sin

(
π t
2

)− t2 − 1
]

π (t2 − 1)2

for

pL,z(r) = pL,z,

pL,z(r) = pL,z cos
(

r π
2 R

)
, t = 1

pL,z(r) = pL,z cos
(

r π
2 R

)
, t 6= 1 ,

(ii) Load vector element associated to the distributed load pL,z acting over the centered circular
area of radius RT :

V p
t = pL,z

RT∫

0

2 π∫

0

wt r dϕ dr = pL,z

4R
[
π tRT sin

(
π t RT

2 R

)
− 4R sin2

(
π t RT

4 R

)]

π t2
, (6.A.2)

(iii) Load vector element associated to single forces PL,z acting in the center of the membrane:

V P
t = PL,z wt

∣∣∣∣
r=0

= PL,z . (6.A.3)

Next, we provide the stiffness matrix elements M I
jklt, M

II
jklmnt, and M III

jklmnrst, for any combina-
tions of j, k, l, m, n, q, s, and t up to the chosen number of 16 deflection modes (with Nm = 31)
being sufficient for various mechanical loading cases, see Sec.6.4:

1. Stiffness matrix elements associated to deformation amplitudes of third power:

M I
jklt = 2π ρ2D

m,0 c4

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wt

∂r
r dr

= ρ2D
m,0 c4

j k l t π5

8R4

R∫

0

sin
(
j r π

2R

)
sin
(
k r π

2R

)
×

× sin
(
l r π

2R

)
sin
(
t r π

2R

)
r dr

=
ρ2D

m,0 c4

R2
AI

jklt , for j, k, l, t = 1, 3, ..., 31 . (6.A.4)

2. Stiffness matrix elements associated to deformation amplitudes of fifth power:

M II
jklmnt =

3
2
π ρ2D

m,0 c5

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wm

∂r

∂wn

∂r

∂wt

∂r
r dr
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=
3
2
ρ2D

m,0 c5
j k lmn t π7

64R6
×

R∫

0

sin
(
j r π

2R

)
sin
(
k r π

2R

)
sin
(
l r π

2R

)
×

× sin
(
mr π

2R

)
sin
(
n r π

2R

)
sin
(
t r π

2R

)
r dr

=
ρ2D

m,0 c5

R4
AII

jklmnt ,

for j, k, l,m, n, t = 1, 3, ..., 31 . (6.A.5)

3. Stiffness matrix elements associated to deformation amplitudes of seventh power:

M III
jklmnqst = ρ2D

m,0 π c7

R∫

0

∂wj

∂r

∂wk

∂r

∂wl

∂r

∂wm

∂r

∂wn

∂r

∂wq

∂r

∂ws

∂r

∂wt

∂r
r dr

= ρ2D
m,0 c7

j k lmn q s t π9

256R8
×

R∫

0

sin
(
j r π

2R

)
sin
(
k r π

2R

)
sin
(
l r π

2R

)
sin
(
mr π

2R

)
×

× sin
(
n r π

2R

)
sin
(
q r π

2R

)
sin
(
s r π

2R

)
sin
(
t r π

2R

)
r dr

=
ρ2D

m,0 c7

R6
AIII

jklmnqst ,

for j, k, l,m, n, q, s, t = 1, 3, ..., 31 . (6.A.6)

The dimensionless stiffness matrix elements AI
jklt, A

II
jklmnt, and AIII

jklmnqst are provided in form
of an electronic data set for up 16 deflection modes, see Appendix B. Since the trigonometric
functions of form sin (j r π/(2R)), appearing in (6.A.4)-(6.A.6), are of similar shape, the ordering
of the matrix indices can be chosen arbitrarily. Thus, it is sufficient to calculate matrix elements
for indices in descending order, j ≥ k ≥ l ≥ m ≥ n ≥ q ≥ s ≥ t, which then can be used for
other chosen ordering of the indices2.

6.B Supplementary material

The supplementary data associated with this article can be found, in the online version, at
https://owncloud.tuwien.ac.at/index.php/s/7FvfmXCsqdfOPKt.

2For example, one obtains identical results for dimensionless stiffness matrix elements AI
jklt with indices of form

AI
3111 = AI

1311 = AI
1131 = AI

1113. The same holds for the matrix elements AII
jklmnt and AIII

jklmnqst.
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Chapter 7

Conclusions and perspectives

7.1 Summary and conclusions of the present thesis

In the present thesis, 2D continuum mechanical theories for thin plates and membranes undergoing
both small and large deformations were developed. On the one hand, we focused on computational
efficiency taking advantage of the smallness of the thickness as well as of the assumptions regarding
the displacement field of such structural elements; on the other hand, a new level of precision for
constitutive material models and for energetically consistent principles, including external loads
and internal strains and stresses of the continuum, is provided:

As regards structural problems of thin plates, we applied the Principle of Virtual Power to
a thermoelastic Kirchhoff plate with free boundaries resting on elastic Winkler foundations.
The rectangular plates were subjected to vertical single forces, surface loads acting on specific
rectangular areas, and to temperature-induced eigencurvatures of the plate. The resulting PVP-
based governing equation for a “freely swimming” plate allowed for overcoming spurious external
moments and shear forces acting on the plates boundaries, as they are encountered with the
widely used plate theories of the Vlasov-type. The sought deflections were approximated through
2D Fourier series, which were used in the Principle of Virtual Power for constructing a linear
algebraic system of equations, giving access to the deflection field. The derived energetically
consistent Fourier series-based solution procedure appears as an efficient alternative to the
standardly applied Finite Element method. Namely, it may reduce computing times by a factor
of almost forty for symmetrical loading cases. This thermoelastic continuum model of thin plates
serves as the basis for particularly relevant and reliable solutions in pavement engineering, namely
concrete slabs for roads and airfields, as well as for floor screeds in building construction. In this
context, the new solution method was used for thin concrete pavements subjected to temperature
gradients along the plate’s thickness direction. This was motivated by simulations of extreme
weather events, i.e. hail showers, following significant solar heating at the top surface of the
plate. The temperature gradients were transferred to temperature-induced eigencurvatures of the
Kirchhoff plate resulting in bending stresses. Since solar heating of the top surface induce partial
separation (negative deflections) of the plate from the subgrade, the corresponding subgrade
reaction forces are equal to zero, and hence the Winkler foundation is active in compression
only. The solution for this problem was determined iteratively, i.e. starting from a constant
Winkler modulus of subgrade reaction along the entire bottom surface of the plate, the resulting
areas of negative deflections were assumed to have a zero Winkler modulus. Based on the
inhomogeneous Winkler foundation, this iterative process was repeated until convergence was
reached. Top-down scaling (using multiscale material modeling) of the macroscopic stresses to
the microscopic stresses of the concrete constituents show that these stresses are likely to reach
the tensile strength of concrete.

As regards membranes undergoing large deformations, we focused on the first true 2D material
graphene, an one-atom thick hexagonal lattice of carbon atoms, with a mechanical strength
and stiffness exceeding those of any other material. While graphene mechanics are commonly
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derived under uniaxial and equi-biaxial strain states, we here presented a fully anisotropic free
energy function reflecting DFT-simulations associated with tens of thousands of arbitrary biaxial
strain states on the nanoscopic level. Corresponding fitting coefficients for invariant structure
tensor-based polynomial models up to the fifth order are provided, where maximum energy
differences between DFT and the hyperelastic model are as low as 1%. The consequently derived
hyperelastic constitutive equations overcome the transition between the quantum mechanics-
rooted DFT-simulations and classical continuum mechanics, resulting in expressions for stress
and elasticity tensors. Thereby, we have shown a deviation of the principal directions of the
Green-Lagrange strain tensor and the corresponding principal directions of both the second
Piola-Kirchhoff and the Cauchy stress tensor. Only in zigzag and armchair directions, the
aforementioned strain and stress directions coincide. Analyzing the elastic stability limits of
graphene, we determined stable strain regions according to a positive definite elasticity tensor.
Furthermore, we provided an extensive overview on the anisotropy features of graphene, starting
with the free energy density, via the Poisson ratio-type quantity for large deformations, to the
stress-strain relations and stiffnesses, with differences amounting to 175%. All this is relevant
for the finite strain domain, while it is well known that graphene is isotropic in the context of
infinitesimal strains – we here specified a Poisson’s ratio of 0.177 and an elastic Young’s modulus
of 342 N/m, being in good agreement with reported values from experimental measurements.
Besides the validation of elastic constants for infinitesimal small strains, large deformation can
be validated by incorporating the provided stress-strain relations of the hyperelastic model
into a 2D membrane theory. This was done for circular graphene membranes with simply
supported boundaries, subjected to several vertical axisymmetric mechanical loads. The Principle
of Virtual Power was applied to this membrane problem, resulting in a Fourier series-based
nonlinear algebraic system of equations, which was solved iteratively for the unknown deflections
of the graphene membrane. The numerical results of the solution procedure are validated by
experimental measurements using AFM nanoindentation, being in good agreement up to large
deformations.

We regard the developed 2D mechanics of the present thesis, in form of both quantum mechanics
dealing with atoms and electrons and classical continuum mechanics on the macroscopic level of
concrete, as refined and accurate energetically consistent continuum models. The computationally
efficient solution procedures appear as the basis for material science and structural mechanics of
thin concrete slabs and graphene membranes.

7.2 Future research studies – continuum mechanics with
electromagnetic interactions

Future research on the mechanics of graphene involve theories for advanced continuum mechanics,
as the description of the interaction between mechanical deformations and electromagnetic fields.
As regards standard 3D continua, we provide an introduction of such a theory, based on the
accomplishments of Prof. Gérard A. Maugin [Maugin and Eringen, 1977, 1990; Maugin, 1988,
2009]: In this theory, electromagnetic fields are in strong interaction with mechanical deformation,
resulting in nonlinear electromagnetic constitutive equations. For the description of advanced
continuum mechanics involving electromagnetic interactions, we have to start with definitions of
electromagnetic fields, as well as electromagnetic forces in deformed continua. Subsequently, we
are able to obtain stresses and equilibrium conditions, which differ significantly from the purely
mechanical case. Furthermore, based on the electromagnetic forces and stresses, we are able to
specify the Principle of Virtual Power for electromagnetic deformable continua, which in turn
are used for the thermodynamical description of the continuum.
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7.2.1 Electromagnetic fields – Maxwell’s equations in deformable continua

The electromagnetic field is the combination of an electric field and of a magnetic field, whereby
the electric field is produced by stationary charges, and the magnetic field by currents (moving
charges). The interaction between the electromagnetic field, charges, and currents can be
described by Maxwell’s equations, as proposed by the physicist and mathematician James Clerk
Maxwell (1831-1879). The macroscopic formulations of Maxwell’s equations1 in a fixed Galilean
frame, at time t, consist of

(i) Gauss’s law
∇ · D = ρq,f , (7.1)

describing the relationship between the electric displacement and the density of free electric
charges.

(ii) Gauss’s law for magnetism
∇ · B = 0 , (7.2)

stating that there exist no magnetic monopoles.

(iii) Faraday’s law of induction

∇ × E = −∂B

∂t
, (7.3)

describing how a time varying magnetic field induces an electric field.

(iv) and Ampere-Maxwell’s law

∇ × H =
∂D

∂t
+ Jf , (7.4)

stating that an electric current can be generated by magnetic fields and by time varying
electric displacements.

In Eq. (7.1)-(7.4), E is the electric field vector2 (dimension force per electric charge), D is the
electric displacement vector (dimension electric charge per area), B is the magnetic field- or
magnetic flux vector (dimension force per electric charge per velocity), H is the induced magnetic
field strength vector (dimension electric charge per time per length), Jf is the free electric current
density vector (dimension electric charge per time per area), ρq,f is the density of free electric
charges (dimension electric charge per volume), × is the cross product, and ∇ = (∂/∂x1, ..., ∂/∂xn)
is the nabla operator. In order to complete the set of Maxwell’s equations, the electric field and
electric displacement, as well as the magnetic field and magnetic field strength are related as
follows

D = ǫ0 E + P , H =
1
µ0

B − M , (7.5)

with P being the electric polarization density vector (dimension electric charge per area), M being
the magnetization density vector (dimension electric charge per time per length), ǫ0 = 8.854 ×
10−12 [C2 N−1 m−2] being the electric permittivity of vacuum, and µ0 = 4π × 10−7 [N s2 C−2]
being the magnetic permeability of vacuum. The relations in (7.5) can be further specialized,
when taking into account the identities

P = ǫ0 χeE and M = χmH , (7.6)

1The macroscopic Maxwell’s equations are also called Maxwell’s equations in matter and are represented in Si
units.

2In Appendix A, E is the electric field vector, not the Green-Lagrange strain tensor, which will be denoted as E

subsequently.
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with χe and χm as the electric susceptibility and the magnetic susceptibility, respectively. The
latter are dimensionless second-order tensors indicating the degree of polarization of a material
in response to an applied electric field, and the degree of magnetization of a material in response
to an applied magnetic field, respectively. Substitution of (7.6) into (7.5), while taking into
account the relative electric permittivity tensor (also called dielectric tensor), ǫr = 1 + χe, and
the relative permeability tensor µr = 1 + χm, yields

D = ǫ0 ǫrE , H =
1
µ0

µ−1
r B . (7.7)

In this fixed Galilean frame (also called laboratory frame), the electromagnetic fields are not
invariant, i.e. they involve partial time derivatives and are observer’s dependent. Hence, in
order to obtain Maxwell’s equations in deformable continua, which are form invariant under the
Galilean transformations, the following transformations of electromagnetic fields are required
[Maugin, 1988]:

ρ̃q,f = ρq,f ,

J̃f = Jf − ρq,f v ,

Ẽ = E + v × B ,

D̃ = D + ǫ0 v × B ,

P̃ = P ,

B̃ = B − ǫ0 µ0 v × E .

M̃ = M + v × P ,

H̃ = H − v × D , (7.8)

with
D̃ = ǫ0 Ẽ + P̃ and H̃ =

1
µ0

B̃ − M̃ , (7.9)

where v is the velocity field.
Knowing the electromagnetic fields (7.8)-(7.9), we can transform Maxwell’s equations (7.1)-(7.4)

to a moving frame for a deformed continuum. Exemplarily, this is done for the Ampere-Maxwell’s
law: Substitution of (7.8)2 and (7.8)8 into (7.4) and taking into account the Gauss’s law (7.1)
yields

∇ × H̃ =
[
∂D

∂t
+ ∇ × (D × v) + v(∇ · D)

]
+ J̃f ⇔ ∇ × H̃ =

∗

D + J̃f , (7.10)

where the expression inside the square bracket is an objective upper-convected (Oldroyd) type

time derivative of D, denoted by
∗

D. This objective time derivative can be used for any vector
arbitrary V in form of 3

∗

V =
∂V

∂t
+ ∇ × (V × v) + v(∇ · V) =

DV

Dt
− (V · ∇)v + V(∇ · v) , (7.11)

which proves to be valuable for the description of electromagnetic deformable continua. On the
right hand side of (7.11), DV/Dt is the material derivative of an arbitrary vector V, which

3The relation between the derived time derivative
∗

V (7.11) and the Oldroyd time derivative, denoted by
▽

V , reads

as follows:
∗

V =
▽

V + V(∇ · v) .
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will be denoted by V̇ subsequently. The same transformation procedure is used to obtain the
Faraday’s law of induction in a moving frame for a deformed continuum. Substitution of (7.8)3

into (7.3) and taking into account the Gauss’s law for magnetism (7.2) yields

∇ × Ẽ = −
[
∂B

∂t
+ ∇ × (B × v) + v(∇ · B)

]
⇔ ∇ × Ẽ = −

∗

B . (7.12)

Hence, by means of the upper-convective type time derivative (7.11), we re-formulate the
Maxwell’s equations for deformed continua, reading as

∇ · D = ρq,f , ∇ · B = 0 ,

∇ × Ẽ = −
∗

B , ∇ × H̃ =
∗

D + J̃f . (7.13)

7.2.2 Macroscopic electromagnetic force, couple, and power

Starting from the microscopic expressions of the electromagnetic force, couple, and power –
based on the electron theory of Lorentz4 – we derive the sought macroscopic electromagnetic
contributions of deformed continua, using a spatial averaging procedure.

Macroscopic electromagnetic forces are forces which act on a volume element dV of a continuum,
caused by electromagnetic fields. These electromagnetic force vectors per unit volume f em(x) are
defined in the deformed configuration (Eulerian representation) at the position x, in analogy to
the mechanical force vector per unit volume f(x) in pure continuum mechanics, see Sec. 2.2. Let
us start with the aforementioned microscopic electromagnetic forces ∂fα acting on the electric
particle charge ∂qα, located at

rα = r + ξα with α = 1, 2, ... ∈ VRV E , (7.14)

where r being the position vector of the mass center M of the representative volume element
VRV E , and ξα being the distance vector between the mass center M and particle charge ∂qα in
the VRV E , see Fig. 7.1(a). The velocity vector vα = Drα/Dt at particle α can be reformulated as

(a)

M

∂qα

ξα

r
α

r

O

VRV E

(b)

∂fα

∂qαe

e b
∂qα

O r
α v

α

∂qα(vα × b)

Fig. 7.1: (a) Microscopic electric particle charge ∂qα and its coordinates of an representative
volume element VRV E , and (b) scheme of the microscopic Lorentz force ∂fα acting on
a particle charge ∂qα.

vα = v + ξ̇α + v̂α with α = 1, 2, ... ∈ VRV E , (7.15)

4The theory is named after the physicist Hendrik Antoon Lorentz (1853-1928).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Conclusions and perspectives 198

where v is the mean velocity field of the representative volume element VRV E , and v̂ is the
fluctuation velocity. The electron theory of Lorentz states, that the microscopic Lorentz force
∂fα is the combination of the electric and magnetic force on a particle charge ∂qα due to the
microscopic electric field vector e and microscopic magnetic field vector b, see Fig. 7.1(b). Hence,
the microscopic electromagnetic force acting on a point charge reads as

∂fα = ∂qα [e(rα) + vα × b(rα)] . (7.16)

Substitution of the definitions of the position vector rα (7.14) and the velocity vα (7.15) of the
particle charge ∂qα into (7.16), as well as making use of the averaging procedure, yields the
macroscopic electromagnetic force

f em =
1

VRV E

∑

α∈VRV E

∂qα
[
e(r + ξα) + (v + ξ̇α + v̂α) × b(r + ξα)

]
. (7.17)

Considering the following macroscopic electromagnetic fields [Maugin, 1988]

ρq,f (r, t) =
1

VRV E

∑

α∈VRV E

∂qα ,

J̃f (r, t) =
1

VRV E

∑

α∈VRV E

∂qαv̂α(r, t) ,

P(r, t) =
1

VRV E

∑

α∈VRV E

∂qαξα(r, t) ,

M̃(r, t) =
1

VRV E

∑

α∈VRV E

1
2c
∂qαξα(r, t) × ξ̇α(r, t) , (7.18)

and performing a Taylor series expansion about r, where at most quadratic terms are considered,
lead to the following equivalent expressions for the macroscopic electromagnetic force per unit
volume [Maugin, 1988]:

f em = ρq,f Ẽ +
(

J̃f +
∗

P

)
× B + (P · ∇)Ẽ + (∇B) · M̃ , (7.19)

f em = ρq,f E + Jf × B + (∇E) · P + (∇B) · M +
D(P × B)

Dt
. (7.20)

Eq. (7.20) can be interpreted as follows: The first two terms represent the Lorentz force density
acting on a charged particle; the third term is the Kelvin force density acting on the electric
dipole moment; the fourth term is the force density acting on the magnetic dipole moment; and
the last term is an electrodynamic effect accounting for the deformation of the continuum.

Macroscopic electromagnetic couples are moments, which act on a volume element dV of a
continuum, caused by electromagnetic fields. Again, we start with the microscopic description,
i.e. based on the position vector (7.14) and velocity vector (7.15) of the particle charge ∂qα, we
define the microscopic electromagnetic couple as the moment about the origin of coordinates O,
with distance rα between the origin and the corresponding microscopic electromagnetic forces
∂fα of the representative volume element (see Fig. 7.1),

∂cα = rα × ∂qα [e(rα) + vα × b(rα)] . (7.21)
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Substitution of the definitions of the position vector rα (7.14) and the velocity vα (7.15) of
the RVE into (7.21), as well as making use of the averaging procedure, yields the macroscopic
electromagnetic couple

cem =
1

VRV E

∑

α∈VRV E

(r + ξα) × ∂qα
[
e(r + ξα) + (v + ξ̇α + v̂α) × b(r + ξα)

]
. (7.22)

Subsequently, for the derivation of useful expressions for the electromagnetic couple, we use the
same procedure as presented for the derivation of macroscopic electromagnetic forces. Thus, the
expression for the electromagnetic couple per unit volume read as [Maugin, 1988]

cem = x × f em + c̃em , with c̃em = P × Ẽ + M̃ × B , (7.23)

noting that c̃em is called ponderomotive couple.
In order to formulate thermodynamical descriptions of our electromagnetic deformable contin-

uum, we need to derive macroscopic expressions for the electromagnetic power per unit volume
pem. As before, we start with the microscopic expression of the electromagnetic power reading as

∂pα = ∂qα vα · e(rα) . (7.24)

Substitution of the definitions of the position vector rα (7.14) and the velocity vα (7.15) of
the RVE into (7.24), as well as making use of the averaging procedure, yields the macroscopic
electromagnetic power

pem =
1

VRV E

∑

α∈VRV E

∂qα (v + ξ̇α + v̂α) · e(r + ξα) . (7.25)

Once again, use the homogenization procedure (7.18) as presented for the derivation of electro-
magnetic forces, yields the following expressions for the electromagnetic power per unit volume
[Maugin, 1988]

pem = f em · v + J̃f · Ẽ + ρ Ẽ · ṗ − M̃ · Ḃ , (7.26)

using the identity

ρ ṗ =
∗

P + (∇ · P)v , (7.27)

where p = P/ρ is the electric polarization per unit mass. The identity (7.27) can be proved by
the following considerations:

Ṗ = ρ ṗ + ρ̇p , with5 ρ̇ = −ρ (∇ · v) (7.28)

resulting in

ρ ṗ = Ṗ + P (∇ · v) ⇔ ρ ṗ =
∗

P + (∇ · P)v . (7.29)

7.2.3 Stresses of electromagnetic deformable continua

Electromagnetic fields not only cause electromagnetic forces, couples and powers, but of course also
electromagnetic stress tensors. In other words, the Cauchy stress tensor in Eulerian representation,

5The material derivative of the mass density ρ̇ can be obtained by means of the the conservation of mass and of
the Reynolds transport theorem: D

Dt

∫
V

ρ dV =
∫

V

[
∂ρ

∂t
+ ∇ · (ρ v)

]
dV = 0. Since this equation is valid for any

size of a continuum, the differential form of the so-called continuity equation reads as ∂ρ

∂t
+ ∇ · (ρ v) = 0 or

ρ̇ = −ρ (∇ · v).
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or the second Piola-Kirchhoff stress tensor in Lagrangian representation are strongly linked with
electromagnetic interactions. In the electromagnetic case, these interactions motivates us to call
them electromagnetic Cauchy stress tensor and electromagnetic second Piola-Kirchhoff stress
tensor, respectively.

In analogy to the pure mechanical case in Sec. 2.2, we can describe surface and volume forces
acting on electromagnetic deformable continua. Thus, as an extension to the traction vectors
T(x,n) and mechanical force density vectors f(x), we introduce the derived electromagnetic
force density vectors f em(x) (dimension force per volume) and electromagnetic couples cem(x)
(dimension moment per volume), see Sec. 7.2.2. For this continuous force system, we can

dS

x

dV

S

M ′

T(x,n)

V M

M ′

n

f(x)
M f

em(x)

c̃
em(x)

O

x1

e1
e2 x2

x3

e3

Fig. 7.2: Mechanical volume forces fdV , electromagnetic volume forces f emdV , ponderomotive
couples c̃emdV , and surface forces TdS, acting on an electromagnetic continuum in
the deformed configuration.

reformulate the well-known equilibrium conditions (2.40) and (2.41) as follows: The volume
integral of force equilibrium condition is extended by the electromagnetic force density f em,
reading as6 ∫

V
[f(x) + f em(x)] dV +

∫

S
T(x,n) dS = 0 , (7.30)

and the volume integral of the moment equilibrium is extended by the electromagnetic couple
cem, reading as

∫

V
(x × [f(x) + f em(x)] + c̃em(x)) dV +

∫

S
x × T(x,n) dS = 0 , (7.31)

considering the definition of the electromagnetic couple, cem = x × f em + c̃em. For the definition
of the stress tensor in the deformed configuration, again we consider a tetrahedron of arbitrary
size (h → 0), see Fig. 2.4b. Therefore, the “tetrahedron-lemma” (2.44), induces the existence of
the electromagnetic Cauchy stress tensor σem

T(n) = σem · n . (7.32)

6In the dynamic case (where the velocity of motions can not be neglected), Eqs. (7.30) and (7.31) must be
extended to

∫
V

[f(x) + f
em(x)] dV +

∫
S

T(x, n) dS =
∫

V
ρ ∂2

x

∂t2 dV and
∫

V
(x × [f(x) + f

em(x)] + c̃
em(x)) dV +∫

S
x × T(x, n) dS =

∫
V

x × ρ ∂2
x

∂t2 dV , respectively, with ρ as the mass density in point x. These equilibrium
conditions are only applicable, if the position vectors are measured in a spatially fixed or Galilean coordinate
system.
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Use of (7.32) in equilibrium condition (7.30), as well as use of Gauss’s divergence theorem for an
arbitrary body (integrand must vanish) yields the local force equilibrium condition7

f(x) + f em(x) + divσem(x) = 0 . (7.33)

Hence, equilibrium condition (7.33) in notation of components of an orthnormal basis e1, e2, e3

reads as

f1 + fem
1 +

∂σem
11

∂x1
+
∂σem

12

∂x2
+
∂σem

13

∂x3
= 0 , (7.34)

f2 + fem
2 +

∂σem
21

∂x1
+
∂σem

22

∂x2
+
∂σem

23

∂x3
= 0 , (7.35)

f3 + fem
3 +

∂σem
31

∂x1
+
∂σem

32

∂x2
+
∂σem

33

∂x3
= 0 . (7.36)

In order to prove the symmetry properties of the electromagnetic Cauchy stress tensor, we
refer to the moment equilibrium condition (7.31) in notation of components of an orthogonal
basis e1, e2, e3

[∫

V
(x2(f3 + fem

3 ) − x3(f2 + fem
2 ) + c̃em

1 ) dV +
∫

S
(x2T3 − x3T2) dS

]
e1 +

[∫

V
(x3(f1 + fem

1 ) − x1(f3 + fem
3 ) + c̃em

2 ) dV +
∫

S
(x3T1 − x1T3) dS

]
e2 +

[∫

V
(x1(f2 + fem

2 ) − x2(f1 + fem
1 ) + c̃em

3 ) dV +
∫

S
(x1T2 − x2T1) dS

]
e3 = 0 , (7.37)

which requires that the three expressions in the brackets are equal to zero. In the following, we
regard to the multiplier of e1: Use of Cauchy’s formula (7.32), and the local force equilibrium
conditions (7.35) and (7.36), as well as use of Gauss’s divergence theorem yields

0 =
∫

V

(
−x2

∂σem
31

∂x1
− x2

∂σem
32

∂x2
− x2

∂σem
33

∂x3
+ x3

∂σem
21

∂x1
+ x3

∂σem
22

∂x2
+ x3

∂σem
23

∂x3
+ c̃em

1

+x2
∂σem

31

∂x1
+ σem

32 + x2
∂σem

32

∂x2
+ x2

∂σem
33

∂x3
− x3

∂σem
21

∂x1
− x3

∂σem
22

∂x2
− σem

23 − x3
∂σem

23

∂x3

)
dV = 0 .

(7.38)

Since Eq. (7.38) is valid for any body, the integrand must vanish, and we obtain

σem
23 = σem

32 + c̃em
1 . (7.39)

Analogous transformations of the multipliers of e2 and e3 in (7.37) delivers

σem
13 = σem

31 − c̃em
2 and σem

12 = σem
21 + c̃em

3 , (7.40)

which allows us to write in general (considering the definition of the ponderomotive couple c̃em

(7.23))
σem

ij = σem
ji + PiẼj − PjẼi + M̃iBj − M̃jBi ∀i 6= j . (7.41)

7In the dynamic case (where the velocity of motions can not be neglected), Eq. (7.33) must be extended to
f(x) + f

em(x) + divσem(x) = ρ ∂2
x

∂t2 .
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Hence, in the case of electromagnetic deformable continua, we can state that the electromagnetic
Cauchy stress tensor σem in general is not symmetric,

σem 6= (σem)T , (7.42)

due to the influence of the ponderomotive couple c̃em, which in turn is caused by the interaction
between the electromagnetic fields (Ẽ and B) and the polarization and magnetization fields
(P and M̃), respectively. The components of the ponderomotive couple c̃em

i can be interpreted
as follows: These electromagnetic contributions represent internal “spins” (moments per unit
volume) of an infinitesimal volume element. In this context, the component c̃em

1 is defined as
the positive moment per unit volume around the e1 axis, c̃em

2 is defined as the negative moment
per unit volume around the e2 axis, and c̃em

3 is defined as the positive moment per unit volume
around the e3 axis, see see Fig. 7.3.

dx2

dx3

dx1

e3

T(e2)

T(e3)

T(e1)

e3

e2

e1

c̃em1

e2

c̃em2

e1

c̃em3

σem33

σem13 σem23

σem32σem31

σem21
σem11

σem12 σem22

Fig. 7.3: Interpretation of the components of the electromagnetic Cauchy stress tensor σem and
of the ponderomotive couple c̃em.

The proved existence of the (nonsysmmetric) electromagnetic Cauchy stress tensor σem

(7.32) motivates us to introduce alternative (symmetric) stress tensors, which useful for the
thermodynamic description of the continuum. Use of the derived symmetry-properties (7.39)-
(7.41), gives us access to construct components of a symmetric second order tensor:

σem
ij + PjẼi + M̃jBi = σem

ji + PiẼj + M̃iBj ∀i 6= j . (7.43)

In this context, the expressions on the left-hand side are denoted as σem
ij and the expressions on

the right-hand side are denoted as σem
ji , reading as

σem
ij = σem

ji , (7.44)

with
σem

ij = σem
ij + ẼiPj +BiM̃j and σem

ji = σem
ji + ẼjPi +BjM̃i . (7.45)

These tensor components are part of the so-called generalized electromagnetic Cauchy stress
tensor σem. In tensor notation, the generalized (symmetric) electromagnetic Cauchy stress tensor
is defined as

σem = σem + Ẽ ⊗ P + B ⊗ M̃ = (σem)T . (7.46)
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In the case of large deformations, we have to formulate the stress tensor as a function of the
particle position vector X in the undeformed reference configuration (Lagrangian representation),
in accordance with Sec. 2.3. Thus, by means of the deformation gradient F and the corresponding
Jacobi-determinant J = detF, we can re-formulate the definition of the second Piola-Kirchhoff
stress tensor for electromagnetic deformable continua

πem = J F−1 · σem · F−T . (7.47)

In analogy, the (symmetric) generalized electromagnetic second Piola-Kirchhoff stress tensor
reads as

πem = J F−1 · σem · F−T . (7.48)

7.2.4 The Principle of Virtual Power of electromagnetic deformable continua

Since the Principle of Virtual Power is a versatile method for the formulation of complex theories,
this method is used for the theory of electromagnetic deformable continua. In analogy, our
starting point of all considerations is the investigation of power characteristics of forces in
equilibrium, acting on a continuous body. Thus, an continuous force system of mechanical volume
force densities f , electromagnetic force densities f em, and traction force densities T perform
virtual power densities dP along geometrically compatible virtual velocities v̂ (see Fig. 7.4).
Integration of the volume- and traction terms over the volume and surface, respectively, delivers
the following virtual power expression

P =
∫

V
[f(x) + f em(x)] · v̂(x) dV +

∫

S
T(x,n) · v̂(x) dS , (7.49)

representing the power of forces acting on an electromagnetic deformable continuum. Use of

dS

x

dV

S

M ′

T(x,n)

V M

M ′

n

v(x)

T · v dS = dPext,S

v(x)

f(x)
M f

em(x)
(f + f

em) · v dV = dPext,V

O

x1

e1
e2 x2

x3

e3

Fig. 7.4: Power of volume and traction forces acting on an electromagnetic deformable contin-
uum.

Cauchy’s formula (7.32) and Gauss’s divergence theorem yields

P =
∫

V
([f + f em] · v̂ + div(v̂ · σem)) dV =

∫

V
([f + f em] · v̂ + gradv̂ : σem + v̂ · divσem) dV .

(7.50)
Taking into account the local equilibrium condition (7.33), delivers the expression

P =
∫

V
σem : gradv̂ dV . (7.51)
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It is noted, that we are not allowed to introduce the virtual Eulerian strain rate (2.63) since the
electromagnetic Cauchy stress in not symmetric. The power expressions (7.49) and (7.51), result
in the sought Principle of Virtual Power of electromagnetic deformable continua in Eulerian
representation, reading as

Pext + P int = 0 , (7.52)

with

Pext = +
∫

V

[f(x) + f em(x)] · v̂(x) dV +
∫

S

T(x,n) · v̂(x) dS , (7.53)

P int = −
∫

V

σem : ∇v̂ dV , (7.54)

In order to represent the Principle of Virtual Power as a function of objective strain rates,
the commonly used (virtual) Eulerian strain rate d̂ requires a symmetric stress tensor in (7.54).
Thus, we incorporate the introduced symmetric generalized Cauchy stress tensor σem as defined
in (7.46). In this context, the Principle of Virtual Power (7.52)-(7.54) is extended by vanishing
virtual electromagnetic power expressions reading as [Maugin, 1988]

Pext = +
∫

V

[f + f em] · v̂ dV +
∫

S

T · v̂ dS +
∫

V

(ρ Ẽ · ˙̂p + ρB · ˙̂µ) dV , (7.55)

P int = −
∫

V

σem : ∇v̂ dV −
∫

V

(ρ Ẽ · ˙̂p + ρB · ˙̂µ) dV , (7.56)

where p̂ = P̂/ρ is the virtual electric polarization per unit mass, and µ̂ = ˆ̃
M/ρ is the virtual

magnetization per unit mass. In the following, we the expression of the virtual power of internal
forces (7.56) is transformed as follows: Use of the expressions for the electric polarization and
magnetization per unit mass

ρ ˙̂p =
∗

P̂ + (P · ∇)v̂ and ρ ˙̂µ =
∗

ˆ̃
M + (M̃ · ∇)v̂ , (7.57)

and taking into account the identities8

Ẽ (P · ∇) v̂ = (Ẽ ⊗ P) : ∇v̂ , B (M̃ · ∇)v̂ = (B ⊗ M̃) : ∇v̂ , (7.58)

results in

P int = −
∫

V



[
σem + Ẽ ⊗ P + B ⊗ M̃

]
: ∇v̂ + Ẽ ·

∗

P̂ + B ·
∗

ˆ̃
M


 dV , (7.59)

where the expression in the square bracket equals to the definition of the generalized electro-
magnetic Cauchy stress tensor σem (7.46). Considering the relation deriving from the symmetry

8The transformations for the identities are examplarily shown for (7.58)1 starting with Ẽ (P · ∇) v̂ = Ẽ (∇ v̂) P.
Since the gradient can be seen as a dyadic product in form of ∇ v̂ = v̂ ⊗ ∇, we can make the following
transformation: Ẽ (v̂ ⊗ ∇) P = (Ẽ ⊗ P) : (v̂ ⊗ ∇) = (Ẽ ⊗ P) : ∇v̂ with : as the second-order tensor contraction.
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of the generalized stress tensor (σem : ∇v̂ = σem : d̂), yields an equivalent formulation of the
Principle of Virtual Power in the format

Pext + P int = 0 , (7.60)

with

Pext = +
∫

V

[f + f em] · v̂ dV +
∫

S

T · v̂ dS +
∫

V

(ρ Ẽ · ˙̂p + ρB · ˙̂µ) dV , (7.61)

P int = −
∫

V

(σem : d̂ + Ẽ ·
∗

P̂ + B ·
∗

ˆ̃
M) dV . (7.62)

Obviously, the virtual power of internal forces (7.62) only contains objective time rates, such
as the Eulerian strain rate d, and the upper-convected type time derivatives of the electric
polaritzation and of the magnetization, respectively.

In the case of large deformations, we make use of the definition of the symmetric generalized
second Piola-Kirchhoff stress tensor πem (7.48), the relation between the Eulerian strain rate
d and the Green-Lagrange strain tensor E (2.67), as well as of the following definitions of
electromagnetic field vectors in Lagrangian representation (described by the subscript π) [Maugin,
1988]

Eπ = Ẽ · F , Bπ = B · F , Mπ = J F−1 M̃ , Pπ = J F−1 P , Jπ,f = J F−1 J̃f .
(7.63)

Furthermore, the (objective) material derivatives of the Lagrangian electric polarization and
magnetization are defined as9

Ṗπ = J F−1
∗

P and Ṁπ = J F−1
∗

M̃ . (7.64)

Use of these definitions as well as of the identity of volume changes, dV = J dV0, in the expressions
for the virtual power of external forces (7.61) and for the virtual power of internal forces (7.62)
results in the sought formulation of the Principle of Virtual Power in Lagrangian representation
reading as

Pext + P int = 0 , (7.65)

with

Pext = +
∫

V0

J (f [ϕ(X)] + f em[ϕ(X)]) · v̂ dV0 +
∫

S0

F · πem · N · v̂ dS0 +
∫

V0

ρ0 (Ẽ · ˙̂p + B · ˙̂µ) dV0 ,

(7.66)

P int = −
∫

V0

(πem : ˙̂
E + Eπ · ˙̂

Pπ + Bπ · ˙̂
Mπ) dV0 . (7.67)

9The material derivatives of the Lagrangian electric polarization and magnetization can be proved using the
chain rule: Ṗπ = J̇ F

−1
P − J F

−2
Ḟ P + J F

−1
Ṗ, with J̇ = J (∇ · v) and Ḟ = (∇v) F. Substitution of J̇

and Ḟ results in Ṗπ = J F
−1
[
Ṗ + (∇ · v) P − (∇ · P) v

]
, where the expression in the square bracket is the

convective time derivative of P as defined in (7.11). The same procedure is done for the material derivative of
the Lagrangian magnetization Ṁπ.
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7.2.5 Thermodynamics and constitutive laws of electromagnetic deformable
continua

The developments of thermodynamics for deformable continua (see Section 2.4) can be straightfor-
wardly extended to more complex material behavior. In addition to conventional thermoelasticity,
we here present an extension to electromagnetism by means of the derived electromagnetic power
as well as of the Principle of Virtual Power for electromagnetic deformable continua.

First, we start with the thermodynamical description in the deformed configuration (Eulerian
representation). The conservation of all forms of energy in the case of electromagnetic deformable
continua is formulated as follows (first law of thermodynamics): mechanical work, electromagnetic
energy, and heat given to a body per unit time is equal to the increase of its internal energy E10

Ė =
∫

V
ρ ėm dV =

∫

V
f · v dV +

∫

S
T · v dS −

∫

S
q · n dS +

∫

V
r dV +

∫

V
pem dV , (7.68)

where em is the gravimetric internal energy density (energy per unit mass); r is the per unit
volume and per time Eulerian heat supply; q is the heat flux vector (heat per unit area) in
Eulerian representation; and pem is the electromagnetic power per unit volume. Substituting the
expression for the electromagnetic power (7.26) into (7.68) yields
∫

V
ρ ėm dV =

∫

V
[f + f em]·v dV +

∫

S
T·v dS−

∫

S
q·n dS+

∫

V
r dV +

∫

V
(J̃f ·Ẽ+ρ Ẽ·ṗ−M̃·Ḃ) dV .

(7.69)
In order to obtain thermodynamic laws, including objective time rates, we introduce the gravi-
metric generalized internal energy density em as well as the gravimetric generalized free energy
density ψm reading as [Maugin, 1988]

em = em + µ · B , ψm = em − Tsm = ψm + µ · B , (7.70)

where µ is the magnetization per unit mass. Thus, considering the generalized energy densities
in (7.69) yields a more natural form, since the electric polarization and magnetization are used
as independent variables for electromagnetic effects
∫

V
ρ ėm dV =

∫

V
[f + f em]·v dV +

∫

S
T·v dS−

∫

S
q·n dS+

∫

V
r dV +

∫

V
(J̃f ·Ẽ+ρ Ẽ·ṗ+ρB·µ̇) dV .

(7.71)
Use of the Principle of Virtual Power (7.60)-(7.62), as well as the divergence theorem, allows the
reformulation of the law of energy conservation (7.71) in local form (integrands must vanish)

ρ ėm = σem : d − divq + r + J̃f · Ẽ + Ẽ ·
∗

P + B ·
∗

M̃ . (7.72)

Thereby, the conversion of heat energy into effective mechanical energy is limited, which is
expressed by the second law of thermodynamics:

Ṡ =
∫

V
ρ ṡm dV ≥

∫

V

r

T
dV −

∫

S

q · n

T
dS , (7.73)

10In Eq. (7.68), the identitiy Ė =
∫

V
ρ ėm dV can be proved as follows: Use of the Reynolds transport the-

orem in the definition of the rate of the internal energy, Ė = D
Dt

∫
V

e dV = D
Dt

∫
V

ρ em dV , results in∫
V

[
∂(ρ em)

∂t
+ ∇ · (ρ em v)

]
dV =

∫
V

[
em

(
∂ρ

∂t
+ ∇ · (ρv)

)
+ ρ
(

∂em

∂t
+ v · ∇em

)]
dV . Taking into account the

conservation of mass in form of the continuity equation, ∂ρ

∂t
+ ∇ · (ρv) = 0, (see also (7.28)) and the definition

of the material derivative yields Ė =
∫

V
ρ
(

∂em

∂t
+ v · ∇em

)
dV =

∫
V

ρ ėm dV .
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where sm is the gravimetric internal entropy density (entropy per unit mass), and T is the
absolute Temperature. Use of the divergence theorem, allows the reformulation of (7.73) for any
body (integrands must vanish) and yields the local form of the second law of thermodynamics

ρ T ṡm + divq − q

T
· gradT − r ≥ 0 . (7.74)

Combining the generalized local form of the law of energy conservation (7.72) and the local
form of the second law if thermodynamics (7.74), as well as considering the definition of the
generalized free energy density (7.70), allows us to represent an generalized formulation of the
Clausius-Duhem inequality,

φ = σem : d − ρ ψ̇m − ρ smṪ − q

T
· gradT + J̃f · Ẽ + Ẽ ·

∗

P + B ·
∗

M̃ ≥ 0 , (7.75)

including objective time rates and the symmetric mechanical stress tensor.
In the case of large deformations, we refer to the considerations of hyperelastic materials

representing the free energy density as a function of the Green-Lagrange strain tensor: Based on
the introduced first law of thermodynamics in form of generalized energy densities (7.71), we can
present an equivalent expression in Lagrangian representation, using the gravimetric generalized
intenal energy density em = e/ρ as well as the identity for volume changes

Ė =
∫

V0

ρ0 ėm dV0 = +
∫

V0

J (f [ϕ(X)] + f em[ϕ(X)]) · v dV0 +
∫

S0

F · πem · N · v dS0

−
∫

S0

Q · N dS0 +
∫

V0

RdV0 +
∫

V0

(J J̃f · Ẽ + ρ0 Ẽ · ṗ + ρ0 B · µ̇) dV0 ,

(7.76)

where ρ0 is the initial volumetric mass density; R = r J is the per unit volume and per time
Lagrangian heat supply; and Q = J q F−T is the heat flux vector (heat per unit area) in
Lagrangian representation. Use of the Principle of Virtual Power (7.65)-(7.67) as well as the
divergence theorem, allows the reformulation of (7.76) for any body (integrands must vanish)

ρ0 ėm = πem : Ė − divXQ +R+ Jπ,f · Eπ + Eπ · Ṗπ + Bπ · Ṁπ , (7.77)

taking into account the nabla-operator as a function of the particle position vector X in the
undeformed configuration ∇X =

(
∂

∂X1
, ..., ∂

∂Xn

)
. Eq. (7.77) is the local form of the law of energy

conservation (in the case of electromagnetic deformable continua) in Lagrangian representation.
The second law of thermodynamics, see (2.79) and (7.73), respectively, can be tranformed

into the Lagrangian representation by using the gravimetric intenal entropy density sm = s/ρ
(entropy per unit mass) as well as the identity for volume changes (2.94):

∂S

∂t
=
∫

V0

ρ0 ṡm dV0 ≥
∫

V0

R

T
dV0 −

∫

S0

Q · N

T
dS0 , (7.78)

Use of the divergence theorem, allows the reformulation of (7.78) for any body (integrands
must vanish) and yields the local form of the second law of thermodynamics in Lagrangian
representation

ρ0 T ṡm + divXQ − Q

T
· gradXT −R ≥ 0 . (7.79)
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Again, we link the local forms of the second law of thermodynamics (7.79) and first law of
thermodynamics (7.77), yielding

φ = πem : Ė − ρ0 ψ̇m − ρ0 smṪ − Q

T
· gradXT + Jπ,f · Eπ + Eπ · Ṗπ + Bπ · Ṁπ ≥ 0 . (7.80)

where we considered the energy differentiation, em = ψm + Tsm. This inequality is called
generalized Lagrangian Clausius-Duhem inequality for electromagnetic deformable continua.

As described in Sec. 2.4, the gravimetric generalized free energy density ψm is a function
of so-called state variables: In the case of thermoelasticity, there are two such state variables,
namely the Green-Lagrange strain tensor E and the absolute temperature T . Additionally, there
can be other quantities of energetic changes, e.g. electromagnetism or plasticity of the continuum.
In the case of electromagnetic deformable continua, the state variables can be straightforwardly
extended to the Lagrangian electric polarization Pπ and to the Lagrangian magnetization Mπ.
Hence, we assume the following dependence of the gravimetric generalized free energy density of
type

ψm = ψm(E , T,Pπ,Mπ) . (7.81)

Use of the dependence (7.81), the dissipation inequality (7.80) can be reformulated as follows

φ = πem : Ė − ρ0

(
∂ψm

∂E
: Ė +

∂ψm

∂T
: Ṫ +

∂ψm

∂Pπ
: Ṗπ +

∂ψm

∂Mπ
: Ṁπ

)

−ρ0 smṪ − Q

T
· gradXT + Jπ,f · Eπ + Eπ · Ṗπ + Bπ · Ṁπ ≥ 0 . (7.82)

This inequality must be valid for any evolutions of the Green-Lagrange strain tensor E, the
absolute temperature T (and temperature gradients), as well as for the electromagnetic fields
Eπ, Bπ, Jπ,f , Pπ, and Mπ. Therefore, the fulfillment of the dissipation inequality (7.82) implies
constitutive laws of electromagnetic deformable continua in the reference configuration

πem = ρ0
∂ψm

∂E
(E , T,Pπ,Mπ) ,

sm = −∂ψm

∂T
(E , T,Pπ,Mπ) ,

Eπ = ρ0
∂ψm

∂Pπ
(E , T,Pπ,Mπ) ,

Bπ = ρ0
∂ψm

∂Mπ
(E , T,Pπ,Mπ) . (7.83)

Knowing the derived stress tensor, and electromagnetic fields in Lagrangian representation, we
finally can provide a set of constitutive laws in Eulerian representation, using the reciprocal of
(7.48) and (7.63)

σem = ρF · ∂ψm

∂E
(E , T,Pπ,Mπ) · FT ,

s = −ρ ∂ψm

∂T
(E , T,Pπ,Mπ) ,

Ẽ = ρ0
∂ψm

∂Pπ
(E , T,Pπ,Mπ) · F−1 ,
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B̃ = ρ0
∂ψm

∂Mπ
(E , T,Pπ,Mπ) · F−1 . (7.84)

Finally, based on the definition of the generalized electromagnetic Cauchy stress tensor (7.46),
we are able to calculate the (nonsymmetric) electromagnetic Cauchy stress tensor reading as

σem = σem − Ẽ ⊗ P − B ⊗ M̃ . (7.85)
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