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Kurzfassung

Zur Erstellung von Benchmarks von Mobilfunknetzen wird seit einigen Jahren verstärkt
auf Crowdsourcing zurückgegriffen. Da Crowdsourcing per Definition nicht unter kon-
trollierten Bedingungen durchgeführt wird, ist es jedoch erforderlich den Kontext einer
Messung zu berücksichtigen um faire Network-Benchmarks zu erhalten. Ausgehend von
einer Sammlung an selbst-durchgeführten Messungen an einem Referenz LTE eNodeB,
befasst sich diese Arbeit mit einem der kritischen Aspekte im Bereich der Kontextbe-
stimmung - die Klassifizierung einzelner Messungen in tarif-limitert oder unlimitiert.

Dafür werden zunächst die relevanten Merkmale einzelner Messungen in einem Feature-
Vector mit niedriger Dimension gebündelt. Es stellt sich heraus, dass diese Merkmale
bereits eine annährend fehlerfreie Klassifizierung des Trainingsdatensatzes ermöglichen.
Dieser Feature-Vector fungiert ferner als Grundlage für eine Klassifizierung basierend auf
Label-Spreading. Als Semi-Supervised Algorithmus bietet Label-Spreading die Möglichkeit
auch nicht-gelabelte Daten während des Trainingsprozess zu berücksichtigen. Durch die
somit erhöhte Anzahl an Trainingsdaten kann eine Accuracy von 99% erreicht werden.
Die Anschliessende Klassifizierung der Crowdsourcing-Daten ermöglicht die Entfernung
tarif-limitierted Messungen — die übrigen Tests dienen somit als Grundlage für ein
Netzbetreiber Ranking, das unabhängig von der jeweilgen Tarifstruktur ist.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Verarbeitung von Crowdsourcing-
Messungen mithilfe von Autoencodern. Die Verwendung von Deep-Learning-Techniken zur
Verarbeitung von Network-Benchmarks in einem Unsupervised-Setup adressiert die be-
grenzte Verfügbarkeit von gelabelten Messungen. Die erhaltene Latent-Space Darstellung
ermöglicht die Auswertung von hochdimensionalen Datensätzen und kann als Grundlage
für nachfolgende Inference-Tasks dienen. Die Auswertung eines 2-D-Latent-Space zeigt,
dass der Autoencoder eine Darstellung lernt, die die gesammelten Datensätze in limitierte
und unlimitierte Tests unterteilt. Des Weiterene, hebt der Autoencoder bei Anwendung
auf Crowdsourcing-Daten die Tarifstruktur verschiedener Mobilfunknetzbetreiber hervor.

Durch diesen zweistufigen Ansatz wird das Thema umfassend behandelt. Neben der
Klassifizierung von Tarifflimitierungen in Crowdsourcing Network-Benchmarks dient die
Arbeit somit auch als Fallstudie zur Durchführung von Regressions- oder Klassifizierungs-
Aufgaben in einer Umgebung mit nur wenig gelabelten Datensätzen und einer begrenzter
Verfügbarkeit von Parametern.
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Abstract

In recent years there has been increased adoption of crowdsourced approaches in the realm
of mobile network benchmarking. Compared to controlled drive tests, such approaches
offer increased coverage — both in the spatial and temporal domain. However, obtaining
fair network benchmarks from user measurements requires additional context information,
as crowdsourced measurements are, by definition, not conducted under controlled condi-
tions. Such context information might include tariff-limits, indoor/outdoor detection,
or whether a user was static or moving during the measurement. The inference of such
indicators tends to be challenging due to the limited availability of parameters and the
tedious process of collecting labeled measurements.

Based on a data set I collect in a reference LTE eNodeB, this work tackles one of
the critical aspects in the realm of context inference — the detection of tariff-limited
measurements. This is achieved following a two-step approach: First, I process the
raw measurements into a vector consisting of carefully selected features that allow for
separation of the training data set almost without error. I further deploy a semi-supervised
machine learning algorithm operating on this feature vector. This approach based on label
spreading can also make use of unlabeled tests — thus tackling the limited availability
of labeled measurements. Results show that the classifier achieves an accuracy of 99%
when validated on a self-collected representative outdoor data set. After applying the
classifier to a crowdsourced data set and removing the limited tests, I obtain an operator
benchmark from the network view.

In a second step, I evaluate the application of autoencoders for representation learning
in this field. Using deep learning techniques to process network measurements in an
unsupervised setup, tackles the limited availability of labeled samples in a comprehensive
way. The obtained latent space representation allows for large scale analysis of high-
dimensional data sets and can act as the basis for a subsequent learning task. Evaluation
of the 2D latent space shows that the autoencoder learns a representation that separates
the collected data sets into limited and unlimited tests. When applied to crowdsourced
data, the autoencoder highlights the tariff-structure of different mobile network operators.

By following this two-step approach, this work covers the topic comprehensively. Besides
tackling the particular challenge of tariff-detection in crowdsourced network benchmark,
it also acts as a case study on how to conduct inference in an environment with only a
small number of labeled samples and a limited availability of parameters.
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CHAPTER 1
Introduction & Motivation

Since the introduction of 1G in 1990 mobile communications has come a long way. What
started as a system to handle voice calls and text messages, evolved into a network that
powers a vast number of different applications [DH07]. Especially the rapid adoption
of smartphones — kicked off by the launch of Apple’s iPhone in 2007 — accelerated
the notion of omnipresent connectivity. Nowadays, people see internet access as a basic
necessity — on pair with water & electricity supply. Just a few decades ago, going
online was a deliberate act. Now, in the age of smartphones and high throughput mobile
communications, users simply expect to be connected at all times. This trend also fueled
the rise of mobile broadband — internet access via portable modems — as an extension
to established fixed broadband connections. The high number of mobile broadband
subscribers reflects the user’s wish for an internet connection that suits their mobile
lifestyles — the access should be independent of a given location and provide increasing
flexibility.

2017 2018 2019 2020 2021 2022
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396

E
xa

by
te

s
p

er
M

on
th

Figure 1.1: Global IP traffic growth.

The data in Figure 1.1 underpins this observation — the network supplier Cisco does not
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1. Introduction & Motivation

expect the exponential growth of IP traffic to slow anytime soon [cis18]. A significant
part of this growth will come from mobile devices — smartphones are estimated to be the
second-fastest-growing device category until 2023 [cis20]. In general, mobile subscriptions
are on the rise: The network supplier expects the total number of mobile subscribers
to grow from 5.1 billion in 2018 to 5.7 billion in 2023 — then covering 71% of the
global population. In the Central and Eastern Europe region, the predicted numbers are
significantly higher. Here, Cisco expects the mobile network subscriptions to cover 81%
of the population by 2023, while 78% of the regional population will have internet access.

Those figures show the extent to which our modern lifestyles are dependent on efficient
and reliable communication networks. An increasing percentage of our economy is heavily
reliant on a robust communication system — it is hard to imagine our intertwined world
without the level of connectivity our mobile and fixed broadband networks are providing.
The Covid19 pandemic in 2020 has exposed this ruthlessly — the subsequent global
lockdown forced many organizations and institutions to introduce home office and remote
work. Globally, a large number of people turned to video conferencing tools to replace
social encounters and business trips alike. Reliable figures are not available at the time
of writing. Still, several network providers report data volume increases of up to 50%.
We can also expect the shift of working hours and the user migration due to the Covid19
response to have altered the utilization of network entry points and to have caused a
change in the overall distribution of traffic over a given day.

Drawing generic conclusions from such exceptional circumstances is, of course, dangerous.
Still, such an extreme situation acts as a window into the near future and provides
valuable insights. Especially because the increase in user mobility and the growth of
data volume seems to be a long-term trend anyway. To provide this additional capacity,
continuous enforcement, and optimization of our existing mobile networks are required.
In this context, effective benchmarking of mobile network operators ensures that potential
bottlenecks and areas with insufficient service can be identified quickly and reliably.

Crowdsourcing in Mobile Network Benchmarking

In the past, benchmarking of mobile networks relied mainly on results from controlled
drive- and walk tests. While those provide reliable results, the coverage of such bench-
marking approaches — both in the spatial and the temporal domain — is low. This is
why the use of crowdsourcing in this field has received increasing attention. In general,
crowdsourcing refers to a scheme where a common problem is split into smaller subtasks,
which are then individually solved by a large group of users. In the realm of mobile
network benchmarking this means that individual users conduct measurements, which
are then collected to provide the basis for comprehensive benchmarks. When interpreted
correctly, crowdsourcing results do not only offer high-resolution coverage maps of an area
of interest but can also facilitate the real-time detection of network disruptions [MS16].
In the time of omnipresent connectivity and mobile broadband connection, crowdsourcing
offers another key advantage: Relying on measurements collected by the crowd ensures
that the test locations do closely reflect the user behavior. Controlled drive & walk
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Figure 1.2: Crowdsourced Throughput Map.

tests seem out of touch with the increasing diversity of use cases — a problem which
is has been addressed by industry observers and regulating authorities alike: In 2019
Connect 1, an industry observer in the DACH region started to use crowdsourced data in
its benchmarks. Beforehand, the analysis was solely based on drive and walk tests. In
Austria, the regulating authority RTR has also actively embraced crowdsourcing — see
Chapter 2.3. It maintains RTR-Netztest, a mobile application where users can conduct
their own measurements. All of those throughput-tests are then publicly available. Figure
1.2 shows a map of results from crowdsourced open data 2. Here, each dot represents one
specific LTE throughput measurement. The difference to a controlled walk and drive
test is apparent — the center of Vienna is covered in a large number of tests, distributed
in a way that matches representative user locations.

Can we trust the crowd?

When examining the results in Figure 1.2, we observe certain areas with low reported
throughput — these areas are indicated by the red color. When looking at this depiction,
it might be tempting to draw false conclusions. We might, for instance, assume that
the red areas are caused by network outages, while an indoor environment with bad
reception is most likely to blame. Also, we are not aware of whether the user was
static or moving during the time of measurement, or whether tariff shaping altered the
reported end rate. This shows that it is hard to assess whether those measurements are,
in fact, representative. As opposed to controlled drive tests, we are not aware of the
environmental conditions under which such measurements have been conducted.

In a nutshell, we can say that a crowdsourced test is only complete when additional
context is provided or can be inferred. This observation is illustrated in Figure 1.3 — the
crowdsourced tests have to be processed in order to be used as the basis for real network
benchmarks. Consider, for instance, how unawareness of tariff limits can distort the
results of operator rankings. In that case, operators are not credited for their network

1www.connect.de
2Results taken from www.netztest.at
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1. Introduction & Motivation

Tariff
Limited/Unlimited

User
Static/Moving

Location
Indoor/Outdoor

Network Per-
formance

MNO-A

MNO-B

MNO-C

Crowdsourced Tests Context Awareness Network Benchmarks

Figure 1.3: Awareness of context enables fair benchmarking.

infrastructure, but instead, for the tariff structure, they offer to customers [MS16]. Thus,
tariff shaping detection is a requirement for fair operator benchmarking.

Inferring Context & Machine Learning

This shows that awareness of context is crucial to ensure fair and meaningful benchmarks.
Still, it is often non-trivial to obtain. While GPS data allows for straightforward detection
of movement — other context information usually has to be inferred indirectly. Due
to the lack of meta and sensor data common in crowdsourced network benchmarking
applications, this inference task can be challenging. [MS16] identified this lack of
availability of parameters as one of core issue in this domain. To some extent, it is due to
legitimate privacy concerns. Also, the collection of vast amounts of sensor-data might be
contrary to the objective of crowdsourcing applications to be lightweight and non-intrusive

— consider [LCZ+13] and [RSR18]. Another reason is that mobile applications can often
access only a subset of the available physical layer indicators. Most operating systems
lack the APIs or do not provide them to developers.

All of those observations lead to the following question: To what extent can we infer

the network view from the user view while dealing with the limited availability

of parameters?

Inference tasks with reduced availability of parameters but a vast number of available
samples are a typical application of machine learning. This motivates a second question:

In what way can deep learning aid this process and what are the challenges

when applying it to crowdsourced data sets?
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Outline of this Work

The objective of this work is now to address these questions in the following two ways:

1). First, by providing a robust algorithm for the classification of measurements as limited
and unlimited following a machine learning approach. This scheme relies on the careful
extraction of features from the raw test results to tackle this aspect of missing context.

2). Secondly, by analyzing the opportunities representation learning might bring to
this field. Processing raw measurements into lower-dimensional feature vectors helps to
simplify subsequent learning tasks. This can not only be of great benefit in the realm
of context inference but can also act as a powerful tool for the large scale analysis of
high-dimensional data sets. As such it can provide new insights and helps to reveal
previously hidden connections in the crowdsourced data.
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CHAPTER 2
State of the Art

2.1 Crowdsourced Mobile Network Benchmarks

Crowdsourcing, in general, has been exhaustively discussed in the literature. Several
papers exist which provide a comprehensive overview of the topic and also layout some
possible applications. [CKLZY12] does, for instance, discuss possible use cases and points
out opportunities and challenges this relatively new approach brings with it.

[MS16] especially targets crowdsourcing in the realm of mobile network benchmarking.
While the authors point out the obvious benefits of the power of the crowd: reduced
cost, low organizational overhead, real-time monitoring, and increased coverage, they
also identify possible issues that need to be addressed. Amongst others, they also bring
up the problem of user measurements not necessarily qualifying as network benchmarks.

Effects of Measurement Context

Several papers also identified the three aspects of measurement context exemplary dis-
cussed in Chapter 1. In 2015 [MRB15] analyzed the effect of indoor/outdoor environments
on mobile coverage benchmarks. The authors showed, that not taking the context of
the measurement — indoor/outdoor —into account results in significant deviations of
signal strengths. Such deviations in strengths would consequently also lead to throughput
variations. The effects of movement on user reception have been measured in [JHC+09]
in a 3G context. To some extent, the issue of moving users is also a driving force
behind non-intrusive short duration measurements, which are, for instance, discussed
in [RSKR19]. The main observation here is, that a reduced measurement duration does
simultaneously reduce the impact of movements — effectively reducing the distance
traveled during a test. While [MS16] identified the issue of tariff limits, so far, it has not
been exhaustively discussed in the literature. [RSR18] is one of the few papers covering
the topic. Here the authors empirically show how the removal of tariff-limited tests
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2. State of the Art

changes the throughput ranking of Mobile Network Operators (MNOs). These results
highlight the importance of considering tariff limits for fair operator benchmarking.

Context Inference

Several papers introduced different algorithms to infer context from measurements. Some
of them are directly related to mobile network measurements while others — especially
in the realm of indoor/outdoor detection — target a broader range of use cases.
An example of this is the algorithm in [IIT+18], which infers the environment — in-
door/outdoor — from a GPS location history. While the results seem promising, limited
availability of parameters makes such approaches unsuitable for the case of mobile network
benchmarks. The same is true for the scheme in [RKSM14]. Here, the authors evaluate
the use of different sensors for indoor/outdoor classification. Again, access to those
sensors is unlikely to be granted for network benchmarking applications. Even if this
sensor information can be accessed, we can only benefit from those in future benchmarks.
In the case of RTR-Netztest, there is already a significant number of measurements
available. Therefore I will focus on features included in today’s measurements — to
extract meaningful information from those. The approach in [SMSV19] is interesting in
this context — because it makes heavy use of physical layer indicators for LTE, such
as Timing Advance, RSRP, RSRQ, and CQI. By using those indicators, the authors
successfully separate indoor and outdoor environments.

For tariff limits, [RSR18] proposed a lightweight approach operating on RTR-Netztest
throughput time series. They use a peak to average scheme, to detect the characteristic
peak induced by tariff shaping — compare to Chapter 2.3. While this approach is similar
to the one introduced in Chapter 3, a manual selection of the PAR threshold is required.
We can assume this threshold to be dependent on the RSRP and the respective tariff
limits. This work extends this scheme and makes use of machine learning techniques
to tackle the problem in a comprehensive way. Moreover, the classification will rely
on a set of carefully designed features that captures the time series’s underlying shape.
This exposed the difference between tariff shaping and effects caused by cell load or
interference.

2.2 Machine Learning based Context Inference

It is interesting that most approaches, besides the one in [RSR18], utilize some kind of
machine learning. The term machine learning describes a class of algorithms that learn
directly from examples [Bis06]. Machine learning algorithms can be divided into three
categories: supervised, semi-supervised & unsupervised learning. These subcategories
differ concerning the experience of the learner.
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2.2. Machine Learning based Context Inference

Supervised Learning

In supervised learning, the training data consists of input samples x with respective
targets y. Here, the learning objective is to learn the mapping from x to y. In [KAA+19],
the authors use a supervised approach to infer the reported throughput rate of an RTR-
Netztest measurement. For this prediction, they rely on a small number of samples from
the beginning of the time series. Here, the objective is to reduce the overall measurement
duration by allowing for a small deviation in the reported rate. This idea is directly
related to other short-duration measurement schemes, such as the one in [RSKR19].
While the approach in [KAA+19] is clearly different from the use-case in this work, it
still shows that there is inherent information in the throughput-time series, which can be
extracted. This observation also motivates the learning of representations in Chapter
6. Another example of a supervised approach in this context is the one in [KMA+17].
Here, the authors developed a machine learning approach that can infer the respective
MNO from an RTR-Netztest measurement. While this is a somewhat exotic use case —
it again shows that machine learning algorithms can expose latent information from such
measurements.

Semi-Supervised Learning

It is interesting to see that most of the approaches related to the inference of context rely
on some semi-supervised scheme. Semi-supervised approaches differ from supervised ones
by also including unlabelled data in the training set [Bis06]. This is useful when labeled
examples are hard to come by — while unlabeled are available in huge numbers. Consider
for instance the already discussed indoor/outdoor classifier [RKSM14], which utilizes
techniques called self-training and co-trainig. A semi-supervised approach is also the basis
for the classification in [SMSV19]. The success of semi-supervised approaches in this field
is no surprise. Unlabelled data is, indeed, available in abundance — consider the extensive
set of crowdsourced data that can be accessed at www.netztest.at. Obtaining labeled
examples that cover a wide range of representative use cases is, however, non-trivial.
Because of this, the approach in 3 will also include a semi-supervised algorithm.

Unsupervised & Representation Learning

Semi-supervised techniques can be interpreted as a hybrid of supervised and unsupervised
approaches. The latter requires no labels at all — it processes the unlabeled data
x to obtain new insights into its structure. This can take the form of clustering or
also representation learning [Bis06]. The latter is commonly used for the processing
of large publicly available data sets [QWD+16]. In a nutshell, representation learning
simplifies subsequent learning tasks and helps to expose hidden connections in the data
by reducing the dimensionality. In the literature, there are also multiple applications of
representation learning on time series data. Consider for instance the following papers
where representation learning operates on financial time series [BYR17] or on clinical
temporal data in [YXS+19].
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2. State of the Art

To my knowledge, representation learning has not yet been applied to crowdsourced mobile
network measurements. This is surprising — especially the vast amount of unlabeled data,
combined with the relatively tedious process of collecting labeled examples renders its
application promising in this field. Moreover, the combination of representation learning
combined with a subsequent supervised learning task can be seen as an extension to
semi-supervised approaches. Both process unlabeled samples and use the small number
of labeled ones as the basis for the final classification. The primary difference is, however,
that an expressive representation is beneficial by itself. It offers new insights into the data
at hand. The success of semi-supervised approaches in the realm of crowdsourced mobile
network benchmarks is clear from the literature. Thus, we can expect representation
learning to be an interesting addition. Chapter 6 will exclusively focus on this idea.

2.3 Available Broadband Measurement Platforms

While a vast number of different broadband measurement platforms exists — most of
them do not fulfill the requirements for this work. In particular, I aim for an application
that has surpassed a critical mass of users. Only with a sufficient number of test results
available can we reach a level of temporal and spatial coverage, under which the benefits
of crowdsourcing become apparent. Speedtest by Ookla 1, does for sure, reach this
critical number of users. In its respective category, the mobile broadband measurement
application regularly ranks first in iOS and Android App Store downloads. The results
of those measurements are, however, only available via a commercial API. To ensure
that the methods presented in this work can be benchmarked against other approaches
by an interested reader, I define open data access as another requirement for this work.
Open access also ensures that anyone interested can adopt the results of this work and
potentially build on top of them. RTR-Netztest fulfills both of those requirements.

RTR-Netztest

In Austria, RTR-Netztest is a well-known broadband measurement application. The fact
that it is developed and promoted by the Austrian regulating authority RTR, ensures
that it reaches the critical mass of users in its home market. Results from all conducted
measurements are publically available — they get uploaded to the open data platform
on www.netztest.at.

In a nutshell, it is an Android-, iOS-, Web-Application where users can conduct their
own throughput measurements. The underlying technology is called RTR Multithreaded
Broadband Test (RMBT) [Wim19]. While the throughput measurements are based on
TCP and are thus generic over the underlying link layer protocols, the results include
additional metadata and physical layer-specific information.

The meta-data provided by each measurement varies depending on the underlying
technology. In the following listing, I will, therefore, only provide the features which are

1www.speedtest.net
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2.3. Available Broadband Measurement Platforms

most important in the course of this work. A detailed list of all parameters is available
on the RTRs webpage 2.

• TCP/IP: For each throughput measurements, RMBT spawns a distinct number
of parallel TCP connections — this number is three in the default configuration.
Then, fixed-sized data chunks are transmitted via each of those threads. Note,
that RMBT does not report the throughput time-series directly. Instead, it logs
the time-stamps of arrival for each data chunk in the respective thread. From
those time-stamps, I obtain the throughput time series for the downlink d and u
uplink via a procedure referred to as resampling. Resampling is described in detail
in [Rai17]. The author also identified the tendency of the resampling procedure
to induce significant jitter onto the throughput time-series. Due to a lack of
alternatives, I still rely on resampling in this work 3. In addition to the throughput
measurements, RMBT also conducts Ping measurements. The final results include
a time-series of collected RTT values.

• LTE: While RMBT can be used to measure fixed broadband and mobile connections
alike, this work does only cover mobile networks. Furthermore, I will limit the
discussion to LTE measurements, as it is the underlying technology for the majority
of conducted mobile tests. For the case of LTE, RTR-Netztest offers specific physical
layer indicators — namely, LTE-RSRP and LTE-RSRQ. In LTE, RSRP reports the
received power of the reference signal, while RSRQ can be interpreted as a cell load
indicator under certain conditions [RLSR18]. Recently also timing advance has
been added but is not available for all phone models. Furthermore, information on
the serving LTE cell is provided. This includes the carrier frequency and additional
information, such as the cell-id. Mobile Country- and Mobile Network Code are
also collected — for the sim card and network alike.

• Meta-Data: Additionally, each RTR-Netztest includes meta-data not directly
related to mobile networking. Besides the time and location of the measurement,
the phone model, operating system, and other data are collected. Location data
is provided in the form of a time-series — typically, we receive about 8 location
updates during a single measurement. Those updates include the current speed,
GPS coordinates, and altitude of the device. Netztest also reports the source of
the location information — network vs. GPS — and estimates the accuracy of the
respective updates.

The throughput time-series d plays an essential role throughout this work. In Chapter 3,
it is, for instance, the shape of d, which allows for robust classification in limited and
unlimited tests. To understand how tariff shaping affects d, it is crucial to be aware of
the distinct phases of an RMBT measurement. In total RMBT consists of 7 distinct,

2www.netztest.at/en/OpenDataSpecification.html
3The resampling code used in this work is provided in Appendix A.
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2. State of the Art

nonoverlapping steps: 1) initialization; 2) downlink pretest; 3) latency test; 4) downlink
RMBT; 5) uplink pretest; 6) uplink RMBT; and 7) finalization. Those phases are not
apparent when only looking at the final test results reported by a distinct measurement.
Still, the pretest does affect the primary downlink test — Figure 2.1 exposes this.
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Figure 2.1: PCAP trace of RMBT test.

The throughput time series in 2.1, are reconstructed from PCAP traces of a complete
RMBT measurement. This way, also the pretests are recorded. Usually, only the primary
down-, and uplink-tests — highlighted in 2.1 — are reported, with lower temporal
resolution. One of the throughput time series in Figure 2.1 was collected with an
unlimited sim-card, while for the other one, there was a tariff limit of 20MBit/s in place.
When looking at the unlimited series, we can clearly see the effect of the pretest. Here,
the ramp-up phase of TCP is triggered so that the final throughput is reached as soon
as the primary downlink test starts. During the pretest, limited and unlimited tests
do not differ from each other. It is only after the beginning of the downlink test that
the tariff shaping activates, and the series is throttled to the throughput specified by
the respective tariff. The characteristic shape of a limited test — the induced peak in
throughput — is the basis for the tariff detection in Chapter 3. Note that the pretest
duration has a significant effect on the shape of the final d– a longer pretest would lead
to a time-series without the abrupt decline in throughput. While the peak would still be
present, it would not be recorded by RMBT — as it would occur during the pretest.
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CHAPTER 3
Semi-Supervised Classification of

Tariff Limits

The classification of measurements from RTR-Netztest into limited/unlimited tests has
already been discussed in 2.1. In a broader sense, this chapter tackles one aspect of
the effort of transforming user measurements into network benchmarks by inferring
the context of a particular test result. In contrast to other environmental conditions —
moving/static, indoor/outdoor —, which we can expect to be equally distributed amongst
network operators, tariff shaping is directly determined by the contracts operators offer
to their costumers. This renders tariff detection a key aspect in the realm of fair operator
benchmarking — it ensures that operators are credited for their network layout and not
their tariff structure.

In the following chapter, I will present a semi-supervised scheme for tariff-limit classifica-
tion. Hereby, classification refers to a — generally machine learning — process where
an input feature vector x is mapped to one of K discrete classes Ck [Bis06, Chapter 4].
In this particular case, we have K = 2 where C0 describes the unlimited measurements,
while C1 refers to the limited tests. Overall the procedure follows 5 distinct steps:

Data Collection Feature Engineering Machine Learning Classification

First training and test data sets are collected — hereby, a reference cell in a lab ensures
that measurements can be conducted automatically over a wide range over RSRP. In a
second step the raw measurements are processed into a feature vector x. This reduces the
dimensionality of the problem. In the third step, the machine learning model — namely
label spreading — operating on this feature vector x is trained and validated. In a final
step, I apply this model to a crowdsourced data set to come up with an operator ranking
from the network view.
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3. Semi-Supervised Classification of Tariff Limits

In the overall context of this work, this chapter also acts as a link from classical manual
feature engineering to automated representation learning — see Chapter 6.

3.1 Data Collection

As mentioned in Chapter 2.1 any machine learning technique — besides unsupervised
approaches — relies on labeled training data. As the crowdsourced data does not include
any tariff shaping indicator, separate data collection is required. I did, therefore, conduct
my own measurements with limited and unlimited sim-cards. Thereby, it is crucial
to cover the same spectrum of environmental conditions included in the crowdsourced
measurements. If the training data set does not closely reflect the crowdsourced data,
the algorithm cannot generalize from the training samples. Thus, the final classification
in 3.4 would fail.

To account for the broad spectrum of conditions, the collected data sets come from three
different sources: Training data from a reference cell, one set of outdoor measurements
under high cell load, and one under high interference. Each data set consists of {rn, yn}Nn ,
where N is the cardinality of the set. r are the raw measurement results and y their
respective labels. Here, y is 1 if r comes from a limited test and 0 otherwise.

3.1.1 Reference Cell

As I do have access to a reference LTE eNodeB in a lab environment, the majority of the
training data is collected there. The measurement setup is depicted in Figure 3.1.

Figure 3.1: Measurement setup.

While the cell itself is fully controllable and only serves one active UE, the measurements
still capture fluctuations induced by the core network of a major Austrian MNO, which
the cell is connected to. To collect measurements over a representative range of receive
power, the UEs’ antennas are hard-wired to the eNodeB via a tunable attenuator. The
attenuator itself can be triggered remotely, which allows for automated collection of sam-
ples. The server side RMBT application is hosted at the institute of telecommunications

— it runs Open-RMBT an open-source variant of RMBT.

I denote this data set by Tlab = {rn, yn}Nn=1, here N = 5166. Half of the samples
are limited, with a tariff limit of 10 Mbit/s in place. The other half is only limited by
the receive power — this is due to the lack of any interference or additional load inside
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3.1. Data Collection

the reference cell. Overall Tlab covers a RSRP range from −60 dbm to −130 dbm. The
data set is visualized in Figure 3.2 — the plot shows throughput over RSRP. The limited
and unlimited tests are clearly separated in this depiction. While the limited tests never
exceed the 10Mbit/s limit — even for high RSRP values — the throughput increases for
the unlimited ones before it saturates at 150 Mbit/s.

Figure 3.2: Throughtput over RSRP.

When looking at Figure 3.2, it might be tempting to classify the measurements according
to some throughput over RSRP ratio. Such an approach would, however, not generalize
well as it does not incorporate other factors such as cell load or interference. Thus, a
classifier relying on those two features would only perform well on the training data set
collected in a lab environment.

3.1.2 Operational Outdoor Cell

While the reference cell is ideal for collecting measurements over a wide range of RSRP,
capturing the influence of cell load or interference is non-trivial in a lab setting. Therefore
I collected additional outdoor measurements to validate the final classifier under non-lab
conditions. All measurements were taken in the summer of 2019 in the city of Vienna.

To capture the influence of interference, I collected one set of measurements at the rooftop
of the institute of telecommunications. Here, a significant number of interfering cells are
present. This high-interference validation data set is denoted as

VI10 = {rn, yn}MI10
n=1 and VI20 = {rn, yn}MI20

n=1 .

Here, MI10 and MI20 are both 200. I collected the second set of validation measurements
at Viennas main station during rush hour, in order to capture the effects of high and
varying cell load. This set consists of

VCL10 = {rn, yn}MCL10
n=1 and VCL20 = {rn, yn}MCL20

n=1 .
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3. Semi-Supervised Classification of Tariff Limits

Here again, MCL10 and MCL20 are 200. All four measurement sets consist of 50% limited
and unlimited tests — the tariff limits are either 10 Mbit/s or 20 Mbit/s. A complete
overview of all data sets is given in table 3.1.

Limit Data Set Sample Size Description

Training 10 Mbit/s Tlab 5166 reference cell, RSRP range

Validation 10 Mbit/s VI10 200 high interference, rooftop
VCL10 200 high cell load, train station

20 Mbit/s VI20 200 high interference, rooftop
VCL20 200 high cell load, train station

Table 3.1: Overview of measurement sets.
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3.2. Feature Engineering

3.2 Feature Engineering

In machine learning, it is common practice not to use the raw data r directly, but to
carefully select a subset of r and encode it into a so-called feature vector. This feature
vector x is then used as the input to the algorithm. This process is referred to as feature
selection — an area in the broader field of feature engineering [ZC18]. The objective
of feature selection is generally to reduce the dimensionality of the input data, which
increases the performance of many algorithms. Feature generation can be seen as an
extension of this — here the features in x are not directly a subset of r, but obtained via
an additional processing step. Feature generation can further increase performance by
representing the data in a form that simplifies subsequent learning tasks. The generation
and selection as features also acts as a handle to guide the learner towards a specific
direction — it determines the properties of the data set picked up by the algorithm.

...

RSRQ

RSRP

u

d
Time-Series

Meta-Data

RSRP

r̄end

r̄start

PAR

s

T (d′)

Time-Series

Meta-Data

Test Results r Feature Vector x

Figure 3.3: Feature Extraction.

Figure 3.3 depicts the feature engineering conducted in this specific use case. The raw
test results r are encoded into the feature vector x 1. Hereby, the RSRP is the only
meta-data used in x. The downlink time series d is encoded into 4 distinct features: rate
at the beginning r̄start, end rate r̄end, PAR, skew s and the test statistic T (d′). This
reduces the dimensionality of d from 70 to 5.

Derived Feature 1: Test Statistic

The test statistic T (d′) aims to extract the shape of a given downlink time series d and
to encode it into a single scalar feature.

This intention is depicted in Figure 3.4. Besides the simple reduction of the dimensionality
of d, I also aim for a T (d′), which clearly separates limited and unlimited time series.
To achieve this, I make the assumption that d can be modeled as a multivariate gaussian
with distinct distributions for the limited and unlimited case:

1The feature engineering code is provided in Appendix A
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3. Semi-Supervised Classification of Tariff Limits

Downlink vector d Test Statistic T (d′)

Figure 3.4: Test statistic intuition.

H1 : d = dlimited ∼ N
(

µ
(RSRP)
l , C

(RSRP)
l

)

H0 : d = dunlimited ∼ N
(

µ(RSRP)
u , C(RSRP)

u

)

.
(3.1)

Under this assumption I can define a log-likelihood ratio, which can be used as the basis
for the test static T (d′):

ℓ(d) = log
p (d|H1)

p (d|H0)
(3.2)

Note, that the moments (µl, Cl) and (µu, Cu) in Equation 3.1 are dependent on the
RSRP. Thus, I would have to estimate the moments for each RSRP range and implement
a lookup table for T (d′). Empirical analysis of the data does, however, show that a

simple normalization of the time series
(

d′ = d

max(d)

)

reduces the RSRP dependency

of the moments to such a level — where I can estimate them over the whole range of
receive power. More precisely I estimate (µl, Cl) and (µu, Cu) over all of Tlab. The overall
log-likelihood based test statistic is then given by the following expression:

T
(
d′
)

=
(
d′ − µu

)T
C−1

u

(
d′ − µu

)

− (d′ − µl

)T
C−1

l

(
d′ − µl

)

+ log
(

det
(

CuC−1
l

))
(3.3)

While the estimation of the moments over the complete RSRP range in Tlab is an
approximation, validation results suggest that it is justified. This is depicted in Figure
3.5.

Figure 3.5a shows a normed histogram of the standardized test statistic applied to Tlab.
Besides a small overlap — for low RSRP regions around -130dBm — T (d′) seperates the
data set perfectly. The overlap for low RSRP regions is not surprising — for low receive
power the distinction between limited and unlimited tests is ambigous anyway.

While the test statistic is based on the moments of Tlab, it still generalizes to some
extent. A histogram of T (d′) applied to a validation data set consisting of VI10 & VCL10
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3.2. Feature Engineering
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(a) Training data set.
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2.00 Limited Validation
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(b) Validation data set.

Figure 3.5: Standardized Test Statistic Histograms.

is depicted in Figure 3.5b. Here, the test statistic separates the two classes perfectly.
This is most likely due to the very narrow range of RSRP values that the validation
measurements were collected under. Note, however that the treshold differs from Figure
3.5a — for 3.5b the decision surface would have to be located around 0.5, while it is 0
for 3.5a. An explaination for this might be the influence of fluctuations induced by cell
load and interference which are present in VI10 & VCL10, but absent in the reference cell
measurements from Tlab. This shows, that a classification reliant only on T (d′) is not
sufficient — but additional features have to be considerd.

Derived Feature 2: Rate Start & End

I define r̄start and r̄end as the throughput at the beginning and the end of the downlink
time series dn. They are given by the following equation:

r̄start =
1

10

10∑

k=1

dn[k] r̄end =
1

50

70∑

k=20

dn[k] (3.4)

The use of this feature is motivated by the observation, that the token bucket tariff
shaper does not affect the beginning of the time series — see Figure 2.1. I can therefore
assume, that r̄start is only slightely affected by the tariff limit, while r̄end does exactly
report the tariff limit — given that the RSRP is sufficient and cell load and interference
are low.

Derived Feature 3: Peak to Average Ratio

The use of the PAR for tariff shaping detection is inspired by [RSR18]. It is based on
the observation that tariff shaping via a token bucket algorithm leads to a significant
peak at the beginning of a throughput series — given a sufficiently high theoretically
achievable rate. This effect was already shown in Figure 2.1. Again, the peak is caused
by the activation of tariff shaping after a specific data volume is transmitted, and the
subsequent abrupt decline in throughput. The PAR is calculated as the ratio of maximum
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3. Semi-Supervised Classification of Tariff Limits

and average throughput in d:

PARn =
max d[k]n

d̄n

. (3.5)

Note, however, that the PAR is not designed to capture the shape of a throughput
measurement directly — as opposed to T (d′). Therefore, it is not only sensitive to
throughput declines induced by tariff limits, but also to sudden changes of cell load or
interference. Without the use of additional features, such effects can not be distinguished
by the classifier.

Derived Feature 4: Skew

In statistics, the skew is a well-known measure for the asymmetry of probability distri-
butions. The skew s is 0 for the case of a symmetric probability density function while
|s| > 0 describes an asymmetry. The orientation of the asymmetry is thereby indicated
by the sign of s. Intuitively, a positive skew indicates a distribution where the right tail
of the pdf is longer, and most mass is concentrated on the left, while the opposite is true
for a negative skew. The skew is calculated as the ratio of central moments — of order 2
and 3 — of a scalar random variable.

s =
m3

m
3/2
2

(3.6)

Using the skew as an indicator for throttled throughput series is motivated by the
discussion in [RVS07]. For this, each sample d[k] of a throughput time series d is
interpreted as a sample of an univariate random variable d. Then the skew can be
calculated according to Equation 3.6. Note that, in practice, the calculation is based on
the samples moments of dn, given by:

mj,n =
1

K

K∑

k=1

(

dn[k]− d̄n

)j
(3.7)

Here, the compensation term
√

K(K−1)

K−2 is ignored due to K = 70. Equation 3.6 can
then be used as a throttling indicator. The idea here is that unlimited measurements
randomly fluctuate around their average rate — while throttled ones are asymmetric due
to the artificial hard limit introduced at rates above d̄.

Figure 3.6 provides validation for this assumption — it shows histograms of the skew
obtained for training and validation data sets.
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3.3. Machine Learning
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(a) Training data set.
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(b) Validation data set.

Figure 3.6: Standardized Skew Histograms.

We can see that contrary to T (d′), the skew does not allow for perfect separation of
the data. Again we observe, that additional features need to be considered to set the
thresholds correctly. It is also interesting to see that the histograms of unlimited and
limited measurements in 3.6b differ notably in their shape. Most limited measurements
seem to be concentrated in a smaller region of skew — while the unlimited ones are
uniformly spread across a broader range.

All in all, the conducted feature engineering succeeds in reducing the dimensionality of
the data. It captures the relevant properties of a raw test r and collects them in the
feature vector x. Still, it was shown that no single feature is sufficient to provide perfect
classification. Multiple features — combined with effective generalization — are needed
to correctly classify the test and the validation data sets. This observation lays out the
objective of the subsequent learning task.

3.3 Machine Learning

The main objective of the machine learning approach in this use case is, to provide
classification in limited/unlimited measurements by operating on the feature vector x. It
was shown in the previous Chapter 3.2, that no single feature is sufficient to correctly
classify all of the training and validation data. Thus I aim for a mapping of each xn to a
class label yn — taken each of the features in xn into account.

3.3.1 Semi Supervised Learning

As already discussed in Chapter 2.1, supervised, and unsupervised learning differ with
regards to the labels x provided during training. Semi-supervised learning is a hybrid of
the two. Here, labeled examples are available, but the majority of samples are unlabeled.
In a nutshell, a semi-supervised algorithm does not only operate on labeled examples but
can also learn from unlabeled ones.

This is beneficial in many use-cases. We often encounter situations where labeled examples
are hard to come by or tedious to collect. Commonly, unlabeled samples are — at the
same time — available in huge numbers. This also applies to this use-case: A practically
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3. Semi-Supervised Classification of Tariff Limits

(a) Supervised (b) Semi-Supervised

Figure 3.7: Unlabeled samples can improve accuracy.

endless number of unlabeled examples is available from the open data platform — while
labeled examples have to be collected by hand (see Chapter 3.1).

Figure 3.7 provides some intuition on why unlabeled examples can be beneficial in the
first place. It shows a binary classification problem with two labeled examples for each
class. The supervised classifier in Figure 3.7a can only operate on the four labeled
examples. Let us assume that the data comes from two natural clusters indicated in
Figure 3.7b. If that is the case, a linear classifier not aware of the underlying distribution
would not be able to obtain a correct decision surface. This is shown in Figure 3.7a. Here,
we see that the linear classifier — the decision surface is indicated by the dotted line —
misclassifies a significant number of samples. A semi-supervised learning algorithm, on
the other hand, does also consider the unlabeled examples and can utilize an underlying
density assumption. By doing so, it provides a decision surface, which correctly reflects
the natural clusters.

In the following, I discuss two closely linked semi-supervised learning approaches: Label
propagation and label spreading.

Label Propagation

Label propagation is a graph-based semi-supervised learning algorithm introduced by
[BDLR06]. In a nutshell, each sample — represented by a vertex — does interactively
exchange information with its neighbors. Those updates are weighted by some affinity
metric which has to be defined for each edge. Let us consider two distinct training data
sets, one of them labeled Tl = {xn, yn}Nl

n=1 and the other one unlabeled Tu = {xn}Nu

n=1.
For each of those samples we define soft labeles and collect them in ŷ = (ŷl, ŷu). Here,
ŷl contains all the labeled samples — they are initialized by their original hard labels yn

and are from {−1, 1}. Meanwhile, each of the Nu unlabeled samples is initialized by 0.

Figure 3.8 shows an example of such a graph. It consists of three vertices x0, x1 and x2.
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3.3. Machine Learning

ŷ
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ŷ
(0)
1 = 0

ŷ
(0)
2 = 0

x0
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w0,1

w0,2

w1,2

Figure 3.8: Initialization of Label Propagation.

ŷ
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ŷ
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ŷ
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(a) Labeled update.

ŷ
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ŷ
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ŷ
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2

(b) Unlabeled update.

Figure 3.9: Label Propagation Graph.

Here, x0 is a labeled sample with y0 = 1, while x1 and x2 are unlabeled.

In general, the edges in label propagation are calculated by some similarity measure and
collected in a matrix W — a common choice is the RBF kernel:

Wnm = e
−

‖xn−xm‖2

2σ2 (3.8)

with hyperparameter σ. An alternative is kNN, where Wnm = 1 if xm is one of the k
nearest neighbors of xn, otherwise it is 0. During each iteration of label propagation the
soft labels of the nodes from ŷu are updated according to:

ŷ(t+1)
n ←

∑

m Wnmŷ
(t)
m

∑

m Wnm + ǫ
(3.9)

Here, ǫ is a hyperparameter added for numerical stability and should be assigned a
small positive value. Equation 3.9 describes how nodes pass their updates along to their
neighbors, multiplied by the edge weight. The same mechanism is shown in Figure 3.9a,
where the normalization is omitted for readability.

For labeled examples, there is an additional term consisting of the original hard label of
the sample. An example of this can be seen in Figure 3.9b. Here again, the normalization
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3. Semi-Supervised Classification of Tariff Limits

term is omitted. The complete update step — including the normalization — is given by:

ŷ(t+1)
n ←

∑

m Wnmŷ
(t)
m + 1

µyn
∑

m Wnm + 1
µ + ǫ

(3.10)

In Equation 3.10 the hard label is multiplied by 1
µ — here µ ∈ (0, +∞). It is calculated

from the hyperparameter α ∈ (0, 1) by µ ← α
1−α . α controls, to what extend samples

from ŷl are allowed to change during label propagation. An α close to 0 means that the
hard label yn is kept during each iteration of Equation 3.10. For an α close to 1, the
hard labels are ignored. After convergence, each vertex is labeled by the sign of its soft
label ŷ(∞). The complete algorithm of label propagation can be found in Algorithm 3.1.

Algorithm 3.1: Label Propagation.

1: Compute the affinity matrix W and set Wnn = 0 ;
2: Dnn ←

∑

m Wnm ;
3: Select a parameter α ∈ (0, 1) and a small ǫ > 0
4: µ← α

1−α ∈ (0, +∞)
5: Ann ← 1 + µDnn + µǫ

6: Set ŷ(0) ← (y1, . . . , yNl
, 0, 0, . . . , 0)

7: while not converged to ŷ(∞) do

8: ŷ(t+1) ← A−1
(

µWŷ(t) + ŷ(0)
)

9: end while
10: Label vertices xn by sign of ŷ

(∞)
n

Label Spreading

Label spreading is an alternative graph-based semi-supervised algorithm. Here, again,
samples are represented as vertices, and the edges indicate some affinity measure. In-
herently, it is based on the same idea as label propagation — but it is formulated in a
slightely different way. Namely, it operates directly on the normalized graph laplacian
L ← D−1/2WD−1/2. Still, intuitively, label propagation and label spreading incorporate
the same density assumption about the underlying data and pass updates iteratively to
neighboring nodes.

The complete algorithm of label spreading is provided in Algorithm 3.2. Another relevant
aspect of label spreading is that the loss function has regularization properties, which
renders it more robust to noise on the input data [BDLR06]. This is also why I use it for
the limited/unlimited classification task here. Generally, we can assume that there is
noise on the input samples — induced by different fluctuations affecting the throughput
time series. A comprehensive overview of label spreading is given in [ZBL+04].
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3.3. Machine Learning

Algorithm 3.2: Label Spreading.

1: Compute the affinity matrix W and set Wnn = 0 ;
2: Dnn ←

∑

m Wnm ;
3: Select a parameter α ∈ (0, 1)
4: L ← D−1/2WD−1/2

5: Set ŷ(0) ← (y1, . . . , yNl
, 0, 0, . . . , 0)

6: while not converged to ŷ(∞) do
7: ŷ(t+1) ← αLŷ(t) + (1− α)ŷ(0)

8: end while
9: Label vertices xn by sign of ŷ

(∞)
n

3.3.2 Model Training & Validation

For the final classification, I use label spreading with an RBF kernel, operating on a
standardized feature vector x 2. Standardized meaning, that each of the features xi —
i ∈ [1, 5] — from x is transformed to have unit variance and zero mean. This is done for
each sample xn via the following processing step:

xi,n =
xi,n − µi

σi
(3.11)

Here µi and σi are mean and standard deviation of the distinct scalar feature, estimated
over the training data set Tlab. The results of the label spreading validation can be found
in Table 3.2.

Test Data Set Approach Accuracy F1 Score

VI10 & VCL10 Supervised 98% 97%
Semi-Supervised 100% 100%

VI20 & VCL20 Supervised 96% 96%
Semi-Supervised 99% 99%

Table 3.2: Validation Results Label Spreading.

The results were obtained by the following procedure: For the semi-supervised case, I use
the feature vectors of all of Tlab — including labels. Then I randomly split the respective
validation data sets (VI10 & VCL10) or (VI20 & VCL20) into an unlabeled and a small
labeled share. The unlabeled share is then provided to the algorithm, while the labeled
one is used for benchmarking. I repeat this random selection 100 times — effectively
cross-validation. The final accuracy and F1 scores are then the averages over all trials.

For comparison, the results from a supervised approach based on label spreading are also
shown in Table 3.2. Here, the algorithm received all of Tlab with labels. Then I used all
samples from the respective validation data sets to calculate the performance measures.

2The code used for classification can be found in Appendix A.

25

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


3. Semi-Supervised Classification of Tariff Limits

Table 3.2 shows the accurary and the F1 score for each of the experiments. Here, accuracy
is defined as the percentage of correctly classified samples. In the case of an uneven
distribution of labels in the test data set, this might be misleading. This is why the F1
score is often used as a measure that takes the underlying distribution of labels into
account. In this use-case, however, F1 score and accuracy are effectively the same — as
the test data set is evenly split into limited and unlimited samples.

All in all the results in Table 3.2 show, that the classification delivers promising results.
The semi-supervised approach classifies all samples correctly. This is most likely due to
the test statistic T (d′) — which separates the data almost perfectly. We can also see,
that the approach generalizes well to the 20 Mbit/s data sets — even though only labeled
10 Mbit/s were part of the training set. Furthermore, the semi-supervised approach
outperforms the supervised one in each setting. It further increases accuracy from the
already high baseline performance due to the successful feature extraction.

3.4 Classification Results & Operator Benchmarking

Finally, I apply the trained algorithm from Chapter 3.3.2 to an unlabeled data set from
RTR Open Data. In total, this data set consists of 171.770 measurements — conducted
during 2018. To ensure that all of the measurements are static — the users were not
moving during measurements — all samples which have high fluctuations of RSRP were
discarded here. The data set does, furthermore, only consist of LTE measurements.

User view Limited Tariff limited Network view

MNO-A 57 Mbit/s 48% 39 Mbit/s 75 Mbit/s

MNO-B 54 Mbit/s 41% 38 Mbit/s 68 Mbit/s

MNO-C 51 Mbit/s 50% 40 Mbit/s 63 Mbit/s

Table 3.3: Classification of RTR-OpenData.

The classification results are provided in Table 3.3. Each of the rows shows the results
for one of the three major Austrian mobile network operators. Here, the user view is
given by the reported raw results of each measurement. Out of those, the label spreading
algorithm classifies between 40 and 50% as limited. It is interesting to see that the
tariff shaping rate differs between operators. The average tariff limits — obtained by
calculating the average end rate for all limited tests — are all closely around 40 Mbit/s.
Finally, I obtain the network view by removal of the limited measurements. We can see
that — while the operator benchmarking does not change for this specific use case —
the operators are further apart in the network view. Unsurprisingly the network view
reports higher rates for all three MNOs.
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3.5. Conclusion

3.5 Conclusion

Overall the results in this chapter show that the detection of tariff limits in crowdsourced
network benchmarks is possible. This addresses one of the questions introduced in Chapter
1: ...the inference of the network view from the user view while dealing with

the limited availability of parameters. In fact, the accuracy measures for the
validation data indicate that the classification can be conducted almost without any
error.

To achieve this, I require an extensive set of labeled measurements combined with a
learning algorithm that offers effective generalization. Semi-Supervised approaches can
provide this notion of generalization by also making use of unlabeled samples. Thus,
they are well suited for this task. The algorithm in this chapter operates on publically
RTR-Netztest data, and results can thus be compared to alternative implementations by
any interested reader. Moreover, the approach was validated using a representative set of
labeled outdoor measurements. This step is regularly missing in approaches presented in
literature, due to the tedious process of data-collection. Most authors do also not have
access to a reference eNodeB, which is really the foundation for the robust performance
of the classifier in this work.

In the realm of context detection, the results from this chapter allow for the removal of
tariff limited tests. Doing so transforms the user into the network view — which is an
essential requirement for fair benchmarking. Still, I think that it might be interesting
to examine whether additional information can be extracted from the tariff limited
time-series. Instead of removing them from the analysis, one could, for instance, try to
infer the "unlimited-rate" from a limited measurement. This might be a promising entry
point for further research.

In the overall course of this work, this chapter also acts as a link to representation
learning. Consider the feature engineering conducted in Section 3.2: The histogram for
T (d′) and for the skew show, how the feature vector x drastically reduces the complexity
of separating limited/unlimited tests. In x, they do already form their distinct clusters

— the objective of the subsequent machine learning step is mainly to generalize those
clusters to previously unseen data without labels. This is directly related to representation
learning — which I apply to an RTR-Netztest data set in Chapter 6. To provide the
necessary background, Chapter 4 will focus on the basics of deep learning, while 5 will
introduce the idea of an autoencoder.
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CHAPTER 4
Deep Learning Introduction

The term deep learning refers to a subdomain of machine learning, which is based on
Artificial Neural Networks. In a Neural Network (NN), neurons are organized in layers,
which are concatenated to form a deep network. Each neuron processes the inputs of the
previous layer and applies a distinct activation function. During training the objective is
to reduce a loss between the output of the network y and the labels in the training set
Tdata = {xn, y∗

n}Nn=1. Training ends when a viable network parameter θ configuration
was found. NNs, are discussed in detail in the following section. Here, the focus is mostly
on supervised-learning. In the second part, Chapter 4.2, I will introduce the notion of
representation learning. Representation learning is also the basis for unsupervised NN
architectures — like autoencoders which are discussed in 5.

x0

x1

σ









1∑

i=0

xiwi + b

︸ ︷︷ ︸

activation a









z

Figure 4.1: Single perceptron with 2 inputs.
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4. Deep Learning Introduction

4.1 Neural Networks

NNs — especially deep NNs — are the main driving force behind the machine learning
revival in the last decades. In general, they can be seen as universal function approxima-
tors, approximating some function f∗. Given pairs of inputs x and targets y∗ = f∗(x),
a NN aims to learn a mapping y = f(x; θ), which reduces some loss between y and y∗.
Thereby, the network parameters θ consist of weights and biases [BGC17, Chapter 6].
At the core of feedforward networks lies the idea of the perceptron.

Figure 4.1 shows such a perceptron with inputs x0 and x1. Those perceptrons form the
basic building blocks of NNs. The perceptron in 4.1 perfoms a simple operation on its
input vector x = [x0, x1]⊤ in order to produce a scalar output z. First, the activation a

is calculated as the sum of the scalar bias term b and the inner product of x with the
neuron’s weights w = [w0, w1]⊤. After this linear operation, a function σ(·) is applied to
the activation a to produce the final output z. We refer to σ(·) as the activation function

— it is usually nonlinear. In a nutshell, a single neuron applies an affine transformation to
it’s inputs before the result is passed through a nonlinearity [Bis06, Chapter 5].

x0

x1

w
(0)
0 , b

(0)
0

w
(0)
1 , b

(0)
1

w
(1)
0 , b

(1)
0 y = z

(1)
0

z
(0)
0

z
(0)
1

Input Layer 0 Layer 1 Output

Figure 4.2: Simple Two Layer MLP.

Concatenated layers of perceptrons form densely connected NNs, which are also called
Multi-Layer Perceptrons. Here concatenation means, that the output of every single
neuron in a given layer acts as one of the inputs to the neurons of the succeeding layer
[BGC17, Chapter 6]. Thus, the mapping learned by the network is a composition of
the individual functions f()(k) of each layer k = 0 . . . K − 1. The complete input-output
relation of a network f() with K = 2 is then given by f = f (1)(f (0)(x)).

Figure 4.2 shows an example of such a network with 3 neurons in total. Equations 4.1
and 4.2 completely describes the input-output relation of this network — showcasing the
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4.1. Neural Networks

underlying mechanisms of connecting multiple neurons into a layered network.

x =

[

x0

x1

]

, w
(0)
0 =

[

w
(0)
0,0

w
(0)
1,0

]

, w
(0)
1 =

[

w
(0)
0,1

w
(0)
1,1

]

, w
(1)
0 =

[

w
(1)
0,0

w
(1)
1,0

]

(4.1)

z(0) =




z

(0)
0 = σ(0)

(

x⊤w
(0)
0 + b

(0)
0

)

z
(0)
1 = σ(0)

(

x⊤w
(0)
1 + b

(0)
1

)



 y = z
(1)
0 = σ(1)

(

z(0)⊤
w

(1)
0 + b

(1)
0

)

(4.2)

In general each neuron in some layer k receives the outputs z(k−1) from the previous
layer as inputs — except for k = 0 which receives x directly. Its outputs z(k) are then
again fed into the next layer. In this setup, neurons of the same layer do not interact
with each other — the flow of information is strictly from lower to higher layers. We
refer to such structures as feedforward networks [BGC17, Chapter 6].

Architectures, where this limitation does not apply, are called recurrent networks [BGC17,
Chapter 10] — those are heavily used in Natural Language Processing — in this work,
I will, however, focus on feedforward networks only. Thus, the term NN is used syn-
onymously with feedforward networks. More precisely the scheme in 4.2 is denoted a
dense feedforward network. Dense means that every neuron is connected with each of
the neurons in the succeeding layer.

4.1.1 Training Neural Networks & Losses

Consider a typical supervised learning task, where the provided labeled data consists of
a set Tdata = {xn, y∗

n}Nn=1. Therefore, Tdata is a collection of N distinct pairs of inputs
x and targets y∗. Note that we assume y∗

n = f(xn). Thus, the output of f(·) is itself a
vector — we denote the dimension of y as Iout. Again, the objective of the learning task
is to find a mapping yn = f(xn; θ). More precisely, to learn a parameter vector θ, which
reduces some error criteria L(y∗

n, yn). L(·) is referred to as the loss function — its choice
typically depends on the given task [BGC17, Chapter 5].

A common choice for L(·) in case of a regression task is the Mean Squared Error (MSE).
It is given by:

LMSE(y∗
n, yn) =

1

Iout
‖f(xn)− y∗

n‖2 (4.3)

For multiclass classification tasks where the output y models a probability mass function
with Iout entries, categorical crossentropy is often selected [BGC17, Chapter 3].

LCrossEntropy(y∗
n, yn) = −

Iout∑

i=1

y∗
n[i] ln(f(xn)[i]) (4.4)

While L(·) is evaluated for each pair xn and y∗
n individually, the objective is, in general,

to minimize the accumulated loss over the complete training set Tdata. We denote this
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4. Deep Learning Introduction

loss by J(θ) — it is calculated according to Equation 4.5.

J(θ) =
1

N

N∑

n=1

L (y∗
n, f(xn)) (4.5)

Gradient Descent & Backpropagation

NN optimization is typically based on gradient descent [BGC17, Chaper 5]. This means
that, during each iteration the gradient g = ∇θJ(θ) is calculated — it provides the
direction of steepest descent of J(θ) with respect to θ. The networks parameters θ are
then updated according to Equation 4.6.

θ ← θ + ǫg (4.6)

In Equation 4.6 the stepsize ǫ is a hyperparameter. The inherent structure of a feedforward
neural network allows for a computationally efficient evaluation of the gradient, where
the updates propagate from J(θ) back through the network. This way, each neuron
receives the derivatives of the loss with respect to its own weights and the corresponding
bias. [Bis06, Chapter 5] gives a detailed overview of backpropagation — therefore, in
this work, I will only provide an illustrative example.

Consider again the network given in Figure 4.2. During a forward step of the optimization
the output y and the loss J(θ) can be calculated by Equation 4.1 and 4.2. Figure 4.3
shows how the gradient information traverses the network in the opposite direction during
backpropagation.

w
(0)
0 , b

(0)
0

w
(0)
1 , b

(0)
1

w
(1)
0 , b

(1)
0

J(θ)

∂J

∂z
(0)
0

= ∂J

∂z
(1)
0

· ∂z
(1)
0

∂z
(0)
0

∂J

∂z
(0)
1

= ∂J

∂z
(1)
0

· ∂z
(1)
0

∂z
(0)
1

∂J

∂z
(1)
0

Figure 4.3: Backpropagation.

Without loss of generality, assume linear activation functions σ(a) = a throughout the
network. To simplify the notation, the loss J(θ) is here the squared error of a single

training pair consisting of x and y. Thus, J(θ) = (y − z
(1)
0 )2. Under those assumptions,

the calculation of the derivatives for the weights of neuron j = 0 in layer k = 0 is as
follows:
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4.1. Neural Networks

∂J(θ)

∂w
(0)
0,1

=
∂J

∂z
(1)
0

· ∂z
(1)
0

∂a
(1)
0

· ∂a
(1)
0

∂z
(0)
1

· ∂z
(0)
1

∂a
(0)
1

· ∂a
(0)
1

∂w
(0)
0,1

=
∂J

∂z
(1)
0

· 1 · ∂a
(1)
0

∂z
(0)
1

· 1 · ∂a
(0)
1

∂w
(0)
0,1

= 2(y − z
(1)
0 ) · w(1)

0,1 · x0

∂J(θ)

∂w
(0)
0,0

=
∂J

∂z
(1)
0

· 1 · ∂a
(1)
0

∂z
(0)
1

· 1 · ∂a
(0)
1

∂w
(0)
0,0

= 2(y − z
(1)
0 ) · w(1)

0,1 · x1

This illustrates how backpropagation evaluates the gradient ∇θJ(θ) in a recursive fashion
— each neuron calculates the derivative with respect to its own weights and passes this
information on to the neurons in the preceding layer. Note that this allows for an efficient
implementation — only the remaining factors of the chain rule have to be evaluated. The

derivatives of w
(0)
0,0 and w

(0)
0,1 do for instance only differ in the last factor.

This example covers the underlying idea of backpropagation — it does, however, not
include a neuron with multiple outputs. In this case, the gradient is simply the sum of
the updates received from all outputs.

As already mentioned, the objective is to minimize the loss over the whole training set
J(θ) — not the individual losses per sample. The gradient g = ∇θJ(θ) is, therefore, also
the sample mean over all gradients of the individual losses L(·) in Tdata.

∇θJ(θ) =
1

N

N∑

n=1

∇θ [L (y∗
n, f(xn))] (4.7)

Implementing Equation 4.7 is unfeasible in practice — we are usually dealing with
training sets with a cardinality of over 10.000 samples. Minimizing J(θ) would, therefore,
require to evaluate the gradient for each input-output pair separately. This is why an
approximation of gradient descent — Stochastic Gradient Descent (SGD) — is applied
in practice. During training, the data set Tdata is thereby split into smaller subsets
with cardinality M each. Those subsets are referred to as batches. For each batch, the
gradient g is then calculated according to Equation 4.8.

∇θJ(θ) ≈ 1

M
∇θ

[
M∑

m=1

L (y∗
m, f(xm))

]

(4.8)
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4. Deep Learning Introduction

Note, the difference between equations 4.7 and 4.8. In SGD, the gradient itself is
calculated over the averaged loss — as opposed to Equation 4.7 where the individual
gradients are summed up. This means that the weights are updated only once per batch
and not for each sample pair.

Typically, the training phase consists of multiple epochs. During each epoch the network
is exposed to the complete training set Tdata, split into multiple batches.

4.1.2 Non Linearity

In 1989, [HSW+89] provided a proof that multilayer NNs are universal function ap-
proximators. The details of this argument are beyond the scope of this work — it is
sufficient to state that a single hidden layer with some squashing activation function
can approximate any continuous function on a closed and bounded subset of Rn, with
an arbitrary small non-zero error. Squashing function does thereby refer to a class of
functions for which lim

a→+∞
σ(a) = 1 and lim

a→−∞
σ(a) = 0 — the simplest example of this

being the step function. Note, that [HSW+89] does not make any statements on how to
optimize the parameters θ to find an f(x; θ) which approximates f(·)∗. This means that
we know that NNs can — given a sufficient number of neurons — represent any function,
whether it is possible to learn this approximation is a different question.

In 1993, [LLPS93] extented this argument to all non-polynomial activation functions.
This does also include step-wise linear functions like RELU 1, which are heavily used
today.

The two proofs in [HSW+89] and [LLPS93] indicate that for its role as universal function
approximators, the activation function σ(·) is crucial. Without it, the whole network
f(·) would collapse into a linear model — it would not be able to approximate arbitrary
nonlinear functions. Different classes of functions can be selected as σ(·) — the only hard
constraint is that they must be differentiable, to allow for optimization via SGD. Still,
the choice of σ(·) is not arbitrary but often customized to the specific learning objective.
This is especially true for the last layers activation function σ(·)(K−1). It transforms the
activations a(K−1) into the output y, often enforcing specific constraints on the values of
y. For binary classification problems, for instance, it is common to map a to the interval
[0, 1].

In the following different commonly used classes of activation functions are discussed.
Those include squashing functions such as sigmoid and tanh, stepwise linear functions
such as RELU and the softmax function, which is used for multiclass classification tasks.
Each of those σ(·) have distinct use cases. In a final network configuration, activation
functions are usually selected on a per-layer basis. In general, the choice of an activation
function is often specific to the task, and there is still ongoing discussion regarding the
properties of distinct activations [XWCL15].

1Stepwise linear functions such as RELU will be introduced in 4.1.2
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4.1. Neural Networks

Squashing Functions

Selecting squashing functions as σ(·) is motivated by the idea that single neurons should
have a hard threshold, above which they activate. The simplest possible squashing
function — the step function — is not suitable for neural networks, as its derivative is
zero for all a 6= 0. Thus, the flow of information during backpropagation is interrupted.
sigmoid (Eq. 4.9) and tanh (Eq. 4.10) can be interpreted as continuous and differentiable
versions of the step function. They both provide a region tightly around a = 0, where
the derivatives are relatively large. This means that — in those regions — small changes
of a result in significant deviations of z.

σsig(a) =
1

1 + e−a
(4.9) σtanh(a) =

ea − e−a

ea + e−a
(4.10)

Eq. 4.9 and 4.10 are closely linked — in fact, σtanh(a) = 2σsig(2a))− 1.

While squashing functions are commonly used, they suffer from some inherent issues —
especially when used for hidden layers [LBOM12]. The fact that they saturate for high
and low values of a means that the gradient is effectively zero in such regions. This can
lead to a situation where the flow of gradient information in deep architectures is not
sufficient, the so-called vanishing gradient problem [Hoc98].

The sigmoid function is often used as the last layer σ(·)(K−1) — this way y can be
interpreted as the probability of a Bernoulli distribution.

Stepwise Linear Functions

[LLPS93] showed that the universal function approximation property of NNs holds for
any non-polynomial function. This motivates the use of stepwise linear functions such
as the Rectified Linear Unit (RELU) for hidden layers [GBB11]. In recent years it has
effectively become the default activation function in many applications. RELU is given
by Equation 4.11.

σ(a) =

{

a, if a ≥ 0

0, otherwise
(4.11)

Note, that Eq. 4.11 is non-differentiable at a = 0. In theory RELU would therefore not
be a suitable candiate for an activation function. In practice, however, this singularity is
ignored during implementation, and the derivative for a = 0 is set to 0. This simplification
does not pose a problem to NN optimization. Also, because the probability of a = 0 is
practically 0.

The fact that the gradient for RELU is either 0 or 1 does also mean that only active
neurons do contribute to the learning process. This sparsity can be beneficial in many
applications — still, it can introduce problems for some learning tasks. Here, Leaky-Relu
provides an extension to RELU where and additional parameter α specifies the derivative
of σ(·) for a ≤ 0 .
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4. Deep Learning Introduction

Softmax

Softmax is an activation function which is used in multiclass classification tasks — it
ensures that the output z(K−1) of the final layer σ(a)(K−1) of a network does correctly
model a probability distribution [BGC17]. The equation for Softmax is given by 4.12.

σ(a)j =
eaj

∑J−1
j=0 eaj

(4.12)

Here, J specifies the total number of neurons in the given layer. Softmax applies a
mapping from R

J → R
J , where the individual outputs are in the interval [0, 1], and

∑J−1
j=0 σ(a)j = 1 is ensured. This way, the outputs σ(a)j can be interpreted as the

probability of the input sample x, belonging to one of the J classes. Softmax can also be
seen as an extension of a sigmoid output to higher dimensions.

Networks with softmax outputs often utilize Cross-Entropy (see Eq. 4.4) with respect to
some target distribution as a loss function.

Approximating logical AND with a simple neural network

While this chapter did already introduce the basic building blocks of NNs, consider
the following example to give some intuition on how multi-layer perceptrons can model
arbitrary functions — and especially the role that nonlinearities play in this context.
Consider the task of learning the mapping from x = [x0, x1] to y, where x0, x1, y are
from {0, 1} and y = x0 & x1. Here, & refers to the logical AND operation.

x0

x1

w
(0)
0 , b

(0)
0 w

(1)
0 y = z

(1)
0

Figure 4.4: Logical AND function approximation.

Figure 4.4 shows a simple NN with 2 neurons. In total there are four trainable parameters

w
(0)
0,0, w

(0)
1,0, b

(0)
0 and w

(1)
0,0 — note, that there is no bias b

(1)
0 . Now let us consider two distinct

cases, one where the activation function of the second layer σ(·)(1) is linear and one where
it is chosen to be RELU. Meanwhile, σ(·)(0) is linear (σ(a) = a) in both cases. Thus, the

activation of layer 1 is given by a
(1)
0 = w

(1)
0,0

(

x0w
(0)
0,0 + x1w

(0)
1,0 + b

(0)
0

)

for case one as well
as case two.

We then choose a MSE loss for the target and optimize the networks parameters for

each case2. For the RELU case w
(0)
0,0, w

(0)
1,0 are both 1, b

(0)
0 = −1, while w

(1)
0,0 = 1. The

corresponding activations and outputs are shown in Table 4.1 — here the MSE is effectively

2The code for this example can be found in the Appendix A.
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4.1. Neural Networks

0. This is not true for the linear case. Here, w
(0)
0,0 and w

(0)
1,0 are 0.76, b

(0)
0 = −0.37 and

w
(1)
0,0 = 0.67. It is not surprising that no parameter configuration achieves a MSE of 0 for

the linear case here.

x⊤ a
(0)
0 z

(0)
0 a

(1)
0 y

[0, 0] -1 -1 -1 0
[0, 1] 0 0 0 0
[1, 0] 0 0 0 0
[1, 1] 1 1 1 1

Table 4.1: AND: RELU σ(·)(1)

x⊤ a
(0)
0 z

(0)
0 a

(1)
0 y

[0, 0] -0.37 -0.37 -0.25 -0.25
[0, 1] 0.37 0.37 0.25 0.25
[1, 0] 0.37 0.37 0.25 0.25
[1, 1] 1.13 1.13 1 0.75

Table 4.2: AND: linear σ(·)(1)

Note that this is, obviously, a toy example. It does, however, showcase how we can find a
structure of concatenated perceptrons that models a given function. In practice, the real
power lies in the universal applicability of this approach. Given an extensive training
set, we can optimize a generic network structure — with multiple hidden layers and a
sufficient number of neurons — and backpropagation automates the search over possible
parametrizations f(x; θ).

Influence of depth

As already stated, neural networks with a sufficient number of neurons can, in theory,
approximate any continuous function on a closed and bounded subset of Rn. In this
proof, a network with only one hidden layer was considered. The problem here is that this
layer can grow exponentially in size, which makes training unfeasible [Bar93]. It has been
shown empirically that deeper models can reduce the overall number of neurons required
to represent a given function. Thus, decreasing the number of parameters to optimize
during training. Additionally, depth has also been shown to increase generalization &
prevent overfitting to some extend [BGC17, Chapter 6]. The increasing depth of network
architectures does, however, lead to problems of its own. Internal covariance shift [Iof17]
or exploding gradients [PMB12] for instance. For reasonable network depths, approaches
like batch-normalization and clipping can combat those issues.

Discussing the underlying reasons why depth is beneficial in most learning tasks is beyond
the scope of this work — still, the following references provide some intuition. [BGC17,
Chapter 6] stated that using deep architectures expressed a prior belief that the function
f(·)∗ to be learned is itself a composition of distinct elementary functions — a prior,
which seems to be beneficial in many tasks. Moreover, in [SZT17], the influence of depth
is discussed from an information theoretical viewpoint. Their findings indicate that deep
neural networks optimize the information bottleneck tradeoff between reconstruction and
compression for each layer separately.
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4. Deep Learning Introduction

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
D = 1
D = 3
D = 5
Ttrain

Ttest

(a) Ordinary Least Squares.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
D = 1
D = 3
D = 5
Ttrain

Ttest

(b) Ridge Regression.

Figure 4.5: Overfitting for OLS and Ridge Regression.

4.1.3 Generalization & Regularization

Even though NNs themselves are typically purely deterministic — exceptions are networks
that learn moments of probability distributions, like Deep Gaussian Mixture Models
or Variational Autoencoders [BGC17] — it is helpful to introduce the idea of a data
generating distribution pdata. This way, the training Ttrain and test data set Ttest can be
interpreted as collections of samples from an unknown distribution pdata.

This approach is especially useful when dealing with over and underfitting. While we
train our model with data from Ttrain, we want it to perform well on all of pdata — also
on samples it has not seen before. This concept is referred to as generalization. To ensure
that a given model generalizes, the learning objective has to be extended from simply
reducing J(θ) over Ttrain. The concept of generalization has already been discussed in
the context of semi-supervised approaches in 3.

Generalization seems to be inherently linked to a model’s capacity — capacity meaning,
the complexity of the mapping the model can deploy. Without any adaption to the
optimization process, a model with high capacity tends to overfit on the training data
[Bis06, Chaper 1]. To illustrate this concept, consider a simple least-squares regression
where pdata is such that for each pair x and y are drawn from the following distributions:

x ∼ U(0, 1) y ∼ N (x2 +
1

2
, 0.1)

Figure 4.5a shows an ordinary least squares fit with polynomial basis functions up to
degrees 1, 3 and 53. Here, the training data consists of 5 samples drawn from pdata.
We can see, that for degree 5, the OLS approximates the samples perfectly — but it

3The code for this example can be found in Appendix A.
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4.1. Neural Networks

0 20 40 60 80 100
0

0.2
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0.8

1

1.2
Ttrain

Ttest

(a) No Regularization.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2
Ttrain

Ttest

(b) Regularized Model.

Figure 4.6: Loss over Epoch for different degrees of regularization.

does not capture the unknown underlying distribution pdata. Figure 4.5b, on the other
hand, shows a ridge regression fit of the same example. Ridge regression also optimizes
a sum of squares error, but with an additional error term λ ‖w‖2. Here, w are the
coefficients of the given polynomial terms. This is a typical example of regularization

— the additional term introduces a tradeoff between model complexity and the sum of
squares interpolation error.

The concept of regularization is also heavily utilized in neural networks [BGC17, Chap-
ter 7]. Typically the model’s layout — its number of layers, neurons per layer — is
fixed while some regularization parameter is tweaked to reach the desired degree of
generalization. This means that the models representational capacity is kept the same —
while its effective capacity is adjusted, dependent on the gains in error reduction.

Commonly used techniques are activity regularizers which add a loss component pro-
portional to the activation a = x⊤w + b of a neuron — here the regularization term is
typically calculated jointly over all activations a(k) of a layer k via some norm. This is
also relevant in Chapter 5.2.1 — in the context of sparse autoencoders.

An alternative approach is dropout — which deactivates a certain number of randomly
selected neurons during training. Here, deactivating means that those neurons are neither
considered for the forward nor the backpropagation phase.

In practice, the regularization hyperparameters play a crucial role in overall model
optimization. It is common practice to monitor the loss for Ttest and Ttrain separately
during training. The training progress is often displayed in the form of a learning curve

— here, the loss is plotted over training epochs4. Figure 4.6 two examples of such learning
curves. Learning curves provide a simple way of monitoring the generalization of a given

4The code for this example can be found in Appendix A.
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4. Deep Learning Introduction

x[0] x[1] x[2] x[3] x[4]

z[0]

z[1]

z[2]

Figure 4.7: 1-D convolutional layer with 1 filter of size 3.

model. In Figure 4.6a, we see that while the training loss does steadily decrease, this is
not the case for the test loss. It does increase after epoch 20 — a clear sign of overfitting.
Here, the objective of reducing the loss of the training data does not lead to improved
performance on the test samples. With increasing epochs, the model gets more and more
specialized to features that are distinct to the training set.

The use of learning curves motivates an alternative approach for increasing generalization
— early stopping. By simply halting the optimization process after epoch 20, the test loss
is minimized for the given model. Figure 4.6b minimizes an objective which is far more
representative for all of pdata. Even though the training loss does not reach values as
low as in Figure 4.6a it clearly outperforms it on the test set. In most cases, the use of
specific regularization layers is, however, necessary.

4.1.4 Convolutional Neural Networks & Weight Sharing

In many machine learning applications, there is an inherent structure in the input vector.
However, dense neural networks do not directly incorporate any assumptions about the
relation of neighboring inputs. Inputs might, for instance, represent measurements of a
given quantity over time. In this case, it is reasonable to assume that there exists some
correlation over multiple elements of the input vector. While dense networks can also
discover such relations — the concept is not inherent to the network structure itself.
Whenever it can be assumed that patterns over consecutive vector elements are relevant
for the given task — convolutional layers should be considered [LGTB97]. To make this
assumption obvious, I will denote such input vectors as series x = [x[0], x[1], . . . , x[L−1]]⊤.

Note that convolutional networks are still feedforward networks. In fact, feedforward
networks are often made up of a combination of convolutional and dense layers. Commonly,
the convolution layers process the raw input — before the classification or regression task
is carried out by dense layers. A detailed overview of convolutional networks is given in
[BGC17, Chapter 9]
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4.1. Neural Networks

Figure 4.7 shows the underlying mechanism of a 1-dimensional convolutional layer. The
layer processes a 5-dimensional input series x and produces an output series z with three
elements. The input output relation is given in Equation 4.13.

z(0) =






z[0]
z[1]
z[2]




 =






w0 · x[0] + w1 · x[1] + w2 · x[2]
w0 · x[1] + w1 · x[2] + w2 · x[3]
w0 · x[2] + w1 · x[3] + w2 · x[4]




 =






〈w, x[0..2]〉
〈w, x[1..3]〉
〈w, x[2..4]〉




 (4.13)

Note that in 4.13 the weights w = [w0, w1, w2]⊤ are shared across all three neurons.
We refer to this collection of weights as a filter — this specific one has size 3. Each
convolutional layer learns coefficients of such a filter and slides it across the input domain
to produce some output. Thus, each of the weights in w is applied to more than one
input. Note that this so-called weight sharing does not pose any problem to SGD — the
backpropagation information does simply include the contribution of each associated
input.

Figure 4.7 provides a graphical representation of the mechanism in Equation 4.13. The
single filter slides across the input and produces an output with length 3. In practical
examples, it is, however, common to apply more than one filter. Also, the input might
consist of multiple series. Consider, for instance, measurements from two distinct sensors
collected at the same time stamps. We denote this as the input data having two channels.
When a 1D convolutional layer is applied to a two-channel input, each filter slides across
both channels jointly — with distinct filter coefficients for each of them. The weights are,
however, shared across the time domain as in Eq. 4.13. The number of output channels
of a layer is thus always the number of filters, no matter the number of channels of the
layer input.

Consider the following example where we have x(0) and x(1) — the input data consists of
2 channels. The output of a layer with 3 filters is then given by matrix Z — it consists
of 3 channels.

Z =






z⊤

(0)

z⊤

(1)

z⊤

(2)




 =






[z(0)[0], z(0)[1], z(0)[2]]
[z(1)[0], z(1)[1], z(1)[2]]
[z(2)[0], z(2)[1], z(2)[2]]




 (4.14)

Each of the filters learns a distinct vector of weights for each input channel. Thus, the
output of filter 1 (z(1)) at timestamp 1 is given by:

z(1)[1] =
〈

w(1,0), x(0)[1..3]
〉

+
〈

w(1,1), x(1)[1..3]
〉

The two inner products follow the same logic as in Equation 4.13. The complete equation
is thus:

z(1)[1] =w
(1,0)
0 · x(0)[1] + w

(1,0)
1 · x(0)[2] + w

(1,0)
2 · x(0)[3]

+w
(1,1)
0 · x(1)[1] + w

(1,1)
1 · x(1)[2] + w

(1,1)
2 · x(1)[3]
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4. Deep Learning Introduction

x(0)

x(1)

w(1,0)

w(1,1)

w(0,0)

w(0,1)

w(2,0)

w(2,1)

z(0)

z(1)

z(2)

Figure 4.8: Convolutional layer with 2 channel input and 3 filters.

For the convolution along the time domain the same principles as in Figure 4.7 apply,
the only difference is that there is now a weight vector w(i,j) for each filter i and each
input channel j.

Figure 4.8 gives an overview of the complete layer — note that this is an abstraction over
multiple neurons, to showcase the mechanism behind the processing of distinct channels.
As opposed to Figure 4.7, where the representation is — besides the weight sharing —
equivalent with the one given in Figure 4.2.

In general, convolutional and dense layers are interoperable with each other. Convolutional
layers often extract structural information from time series or image data, while consequent
dense layers operate on their output. For this, multiple channel outputs have to be
collected into a single vector. We denote this operation by flattening — all channels Z
are concatenated in a 1-dimensional vector z. Subsequent dense layers can then operate
on z. Note that the simple reordering of neurons in flattening is fully compatible with
backpropagation.

The discussion of upsampling layers concludes the introduction into neural networks in
this work. In a nutshell, they provide a powerful toolbox that can be utilized in many
different applications. The different choices of activation functions, layers, losses, and
network architectures provide the flexibility needed to adapt to a given problem. Still,
all of those variants are united by the flow of gradient information via backpropagation,
which allows for optimization of the model’s parameters by using SGD. In the following
Chapter 4.2 representation learning is introduced — an idea that heavily relies on neural
networks in its implementations.
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4.2. Representation Learning

4.2 Representation Learning

Representation learning is a field of machine learning that deals with the automated
processing of unlabeled data to extract inherent information from it. More precisely, the
objective is to derive representations, which capture the essential explanatory factors
describing the data. As such, the setting for representation learning is different from
typical supervised tasks. In a nutshell, we aim for a deeper understanding of the data at
hand — not for function approximation. As Confuzius puts it this learning by reflection
of the data is more subtle than imitating a certain known function:

By three methods we may learn wisdom: first, by reflection, which is the noblest; second,
by imitation, which is the easiest; and third, by experience, which is the bitterest.

—Confuzius

Intuitively, representation learning is motivated by the observation that the complexity
of a given problem is often closely linked to the representation of the respective data.
Well known examples of this are the Laplace or Fourier transform, which are heavily
used in engineering. The representation of a signal in the frequency domain, for instance,
can drastically simplify certain operations. Calculation of convolution as the product
of the frequency representations is just one example of this. In addition to reducing
complexity, alternative representations of the same data set can also help to gain a deeper
understanding of the data to be analyzed. Some relations are hard to discover in the raw
data, while they become obvious as soon as the data is presented in a different space.

This idea is also prevalent in machine learning — preprocessing data before exposing
it to a classification or regression algorithm is common practice in the field. Often the
input data is standardized, ensuring zero mean and unit variance within each distinct
feature. Complex tasks often require more advanced preprocessing steps — in natural
language processing, it is, for instance, common to represent sentences in the form of a
word embedding.

Those examples provide intuition on how crucial the inherent structure of the input data
can be and in what way it might affect the outcome of a given learning task. The feature
generation carried out in Chapter 3 can also be seen as an example of this. Here, the
input time series x was mapped into a low dimension features space. Label spreading
then operated in this feature space, instead of directly using the raw vectors x. While
this processing step increased accuracy, a lot of domain knowledge and manual analysis
of the data is required to find the relevant mappings.

In representation learning, we aim to obtain such a mapping to a representation space in
an automated fashion [BGC17, Chapter 15]. At the core of this lies the idea that there
exists a small number of underlying explanatory factors — which completely describe the
variation of x within pdata. Ideally, this new space h has a form that simplifies subsequent
classification or regression tasks and allows for a more intuitive interpretation of the data.

More precisely, we want the encoding to be of such a kind that it offers meaningful
insights. Not only for subsequent machine learners but also for human analysts. As
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a = −1

a = 1
2

a = −1
2

a = 0.1

Input Representation

Figure 4.9: Representations learned from sine inputs.

such, we might aim for a representation where related input samples are close in the
representation space — given that they share certain properties — even if those samples
are far apart in the input space. Also, we might want a representation to naturally form
clusters of related samples — and thus to expose hidden connections between samples.
As such, the mapping can be described by Equation 4.15.

f : Rdx → R
dh , f(x; θ) = h (4.15)

Note, that usually we require dh < dx. While Equation 4.15 might resemble compression,
the objective of learning representation is different. Because, we do want the representa-
tions in h to provide deeper understanding — reducing dh to an absolute minimum by a
mapping, which offers no intuitive interpretation, is not sufficient.

Consider the example given in Figure 4.9. Here, pdata describes different sine functions
x = a · sin(f · t) — all with the same frequency f but different amplitudes a. So, the
raw data is given in the form of vectors x from R

dx . Here, dx is the dimension of x. In
the new space, the data can be represented by a single scalar variable h. A single scalar
variable h is sufficient to encode all of the variation within the elements x of pdata. Thus,
dh = 1. Note, that Rdh does only encode variations of the input data — common features
of all of pdata are ignored. For this specific case setting h = a and dropping the frequency
f would be sufficient.
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4.2. Representation Learning

4.2.1 What makes a representation good?

To some extend — the notion of a good representation is ambiguous. It is not straight-
forward to define what makes a representation good. Note again, that compression is
usually not the primary objective of representation learning — but learning "useful"
representations is. What makes a representation useful often depends on the specific use
case. Thus it is hard to come up with a generic metric. Consider a human analyst trying
to interpret the space h — how shall we quantify to what extend an analyst benefits from
such a representation h? In a nutshell, the challenge is to quantify users’ needs and then
come up with a metric that can guide the learner in this direction. [BCV13] identified
the following points as the two most critical aspects. Namely, a representation should:

1. Disentangle the underlying factors of variations.

2. Simplify consecutive learning tasks.

While those two aspects are crucial, it is not apparent how to guide a learner in this
direction. Moreover, representation learning is typically done in an unsupervised way.
Thus there are no direct clues — in the form of labels — to be used as a learning objective
or for benchmarking. Even if the data set is partially labeled — how should we utilize
those to gain a representation which is not only valuable for one distinct subsequent task?

This is why, in general, the objectives — in the form of losses — are more subtle for
representation learning, and the models make heavy use of regularization schemes. In
fact, learning is mostly driven by prior beliefs about the data and structure of the learner.
Those prior beliefs motivate the design of the model and implicitly guide the learner.

The following section introduces those assumptions — amongst them are: Multiple
explanatory factors, hierarchical organization of explanatory factors, shared factors
across tasks, and sparsity. Note that I do mainly focus on aspects that are relevant for
autoencoders — the complete list can be found in [BGC17, Chapter 15].

Multiple explanatory factors

A common assumption is that there is a distinct number of explanatory factors, which
describe the input data entirely. Once the representation learner reveals those factors,
successive algorithms can easily solve the remaining part of the problem. More specifically,
this means that we assume that there is some h, which completely describes the variation
of different x. Successive learning tasks can directly operate on h. Autoencoders
incorporate this assumption — the latent layer models h directly.

Hierarchical organization of explanatory factors

In addition to the assumption that such explanatory factors exist, we might further
assume those factors to be hierarchically organized. This assumption is implicitly part
of each deep neural network. In fact, a NN can be interpreted as a concatenation of
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4. Deep Learning Introduction

representation learners — the output of each layer is a representation of the predecessor.
Thus, NNs provide a hierarchical set of representations by default. Additionally, those
representations become more abstract with increasing depth [SZT17]. Note that the last
layer in a regression task utilizes linear activation functions — thus, the last layer is a
linear model operating on an abstract representation. As previous layers process the data
before it reaches the final one, a linear model is sufficient to solve the learning task.

Shared factors across tasks

While most representation learning algorithms are unsupervised, some semi-supervised
or supervised approaches exist. Often they have the form of multiple distinct supervised
tasks operating on the same data. More specifically, there might be different label sets
for each task — but all use the same x as the input. How can we now utilize labels of
such form for representation learning?

The idea here is to learn those tasks jointly and, thus, come up with a common repre-
sentation h, which benefits all tasks. The underlying assumption here is, that each of
the consecutive tasks can be solved by a subset of h and, more importantly, that those
subsets are overlapping. Only when the subsets are overlapping, do the tasks benefit from
a joint representation. Then, the joint learning of those tasks can outperform individual
processing. Semi-supervised or supervised autoencoders implicitly incorporate those
ideas [LPW18].

Sparsity

Some representation learners also build on a sparsity assumption of h. The assumption
here is that — of the underlying features collected in h — only a small subset is active for
a given sample xn. Consider, for instance, an abstract feature, which uniquely describes
a subset of pdata. Thus, the corresponding dimension in h should only be active if x
does, in fact, share this feature. We can guide the learner in this direction by imposing
some activity regularization on the latent layer output — this is the core idea of sparse
autoencoders. Additionally, this constraint helps with disentangling features — sparsity
penalizes the learner whenever different features in the representation space fire jointly.

The assumptions presented in this list lay out the basic objectives and requirements for
any representation learner. Still, they are articulated in a generic way. In Chapter 5 I will
introduce autoencoders as a practical example. There, some of the above assumptions
are indirectly present, while others are explicitly enforced to obtain a representation with
the desired properties.

4.2.2 Manifolds

Manifolds offer another way of thinking about representation learning. The idea of a
manifold provides a geometric interpretation of the process of learning representations.
In fact, most representation learning algorithms do implicitly build on top of a manifold

46

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


4.2. Representation Learning

hypothesis [BCV13]. The manifold hypothesis refers to the idea that there is some kind of
manifoldM in the input data. This means that samples from pdata which are vectors with
high dimensionality dx are concentrated around a manifold M with dimension dM. If
dx > dM learning the coordinate system of the manifoldM gives a suitable representation
h. An example of a linear manifold learning algorithm is Principal Component Analysis
(PCA) [Bis06, Chapter 12]. Here, the input is linearly transformed into the direction of
highest variation. Data manifolds for complex real-world domains are, however, expected
to be strongly nonlinear. The power of deep learning is that it can obtain the necessary
nonlinear projections onto the new coordinate systems. Consider again the example
in 4.9. When plotting pdata in the frequency domain, we will observe that the input
space is sparse. The samples will be concentrated along a a straight line representing the
amplitude of the single frequency component present in pdata. The data can thereofore
be described by a 1 dimensional manifold M. In general those manifolds tend to be of

outside of pdata

Figure 4.10: Parabolic manifold.

a more complex shape. Figure 4.10 shows an example of such a manifold. Here, pdata

concentrates around a parabolic shape in R
dx . A manifold learner would, for instance,

obtain a mapping into the 1 dimensional representation space R
dh shown on the right.

Note that points not lying on M are not considered in this mapping. As a consequence
of this, the low-density regions of pdata are not optimized by the learner. Ideally the
input sample from outside the manifold is mapped to a point given by the orthogonal
projection onto the manifold. Figure 4.10 shows an example of such a sample. This
means that the learner is invariant to changes in the input space which are orthogonal to
the manifold.

All in all, learning representations– either via the manifold assumptions or one of the
other aspects introduced above — is especially helpful when dealing with large amounts
of high dimensional unlabeled data. For instance, it can be used to extract the essential
features out of publicly available crowdsourced data sets. These representations can then
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4. Deep Learning Introduction

be used to gain additional insight into the data at hand or act as a preprocessing step for
subsequent learners. The idea of representation learning plays a crucial role in this work:
The following Chapter , introduces the concept of an autoencoder — an implementation
of representation learning based on deep learning. Finally, in Chapter 6 representation
learning is used to analyze crowdsourced network benchmarks.
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CHAPTER 5
Autoencoders

In a nutshell, an autoencoder is a NN which is used for representation learning — see
Section 4.2. This means that an autoencoder maps a given input x into a representation
space. Here, the core objective is to extract the underlying features of variations in the
input data x. This way, autoencoders can not only compress the input data but do also
highlight the key characteristics of x. Besides the use case for representation learning,
autoencoders also fall in the realm of generative approaches — which means that they
can generate new samples from the input distribution pdata.

In this chapter, I will first introduce the basic notion of an autoencoder. In the following,
I discuss different autoencoder variations such as variational autoencoders, conditional
autoencoders, as well as supervised and semi-supervised autoencoders. I subsequently
provide different simulation results for toy data sets to showcase the discussed aspects
in practice. Finally, I briefly mention different related techniques that help analyze the
representation space — those include Kernel-Density-Estimation, Clustering, as well as
approaches for visualization of high dimensional data sets.

5.1 Basics

An autoencoder consists of an encoder e(x) and a decoder d(h), which are trained jointly
[BGC17, Chapter 14]. The encoder does thereby learn a representation into the so called
latent space h = e(x), while the decoder aims to reconstruct the original input from the
representation x̂ = d(h). I denote the dimension of h by dh. Thus, the overall input
output relation is x̂ = f(x; θ) = d(e(x)).

Figure 5.1 shows such a scheme. Note that the encoder and decoder are normal feedforward
networks. Commonly, it is beneficial to deploy specific layers for the decoder (Upsampling,
ConvTranspose) — but dense layers are sufficient in most cases. The use case for such
an NN architecture might not be apparent at first, but in the end, we are not interested
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5. Autoencoders

x0

x1

x2

x3

x̂0

x̂1

x̂2

x̂3

Latent
Layer h

Encoder Decoder

Figure 5.1: Basic autoencoder scheme.

in the composition of the two networks, but in the individual components e(·) and d(·).
Furthermore, the perfect reconstruction of x at the output is not the primary objective
here — there is actually an inherent tradeoff between reconstruction and representation
when dealing with autoencoders. A model with unlimited capacity — both for e(·) and
d(·) — can theoretically learn a mapping which can encode all information about x into
a single latent neuron. It effectively learns the identity function x = f(x; θ) = d(e(x))
[BGC17, Chapter 14].

This might be beneficial for compression tasks, but in representation learning, we aim for
a network that provides a useful representation of x. Simply reducing the reconstruction
loss — for instance LMSE(x̂, x) — is not sufficient. We can only obtain a meaningful
representation when the encoder has to extract the most relevant features of the input —
and does not encode the complete x in an abstract scalar value [BGC17, Chapter 14]. To
ensure this, the models capacity has to be limited artificially — but instead of changing
the model’s structure — number of neurons, number of layers — we usually deploy
different regularization techniques. Some of them are quite generic to neural networks,
while others are specifically designed to enforce structure in the representation space and
to utilize the assumptions discussed in 4.2.

A common form of regularization is incorporated by the denoising autoencoder [VLL+10].
Here the input samples x are not passed to the autoencoder directly, instead a corrupted
version x + n, where n ∼ N (0, σ2I), is used. The training objective is thus to learn
the uncorrupted input from the noisy samples. This forces the encoder to extract the
relevant features of x in h and prohibits it from learning the identity function. Besides
offering a representation learner in the form of the encoder e(·), autoencoders do also
fall in the category of generative models. After training, the decoder d(·) can be used
separately from the encoder. It provides a way to generate new samples from pdata —
also ones that were not part of the training set.

Figure 5.2 gives an example of an autoencoder processing the well known MNIST data set
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5.1. Basics

3 2 1 0 1 2 3 4
h[0]

3

2

1

0

1

2

3

4

5

h[
1]

0

1

2

3

4

5

6

7

8

9

(a) Encoding

-2.0-1.9-1.7-1.6-1.4-1.3-1.2-1.0-0.9-0.8-0.6-0.5-0.3-0.2-0.10.1 0.2 0.3 0.5 0.6 0.8 0.9 1.0 1.2 1.3 1.4 1.6 1.7 1.9 2.0
h[0]

2.0
1.9
1.7
1.6
1.4
1.3
1.2
1.0
0.9
0.8
0.6
0.5
0.3
0.2
0.1
-0.1
-0.2
-0.3
-0.5
-0.6
-0.8
-0.9
-1.0
-1.2
-1.3
-1.4
-1.6
-1.7
-1.9
-2.0

h[
1]

(b) Decoding

Figure 5.2: MNIST processed by variational auto encoder.

of handwritten digits 1. Figure 5.2a does thereby show a two dimensional representation
h learned by the encoder — each of the distinct points in 5.2a represents one image.
The colors refer to the given labels — this shows that each digit class forms clusters
in the latent space. The output of the decoder is given in Figure 5.2b. Here the latent
space h is sampled equidistantly, and the corresponding output images are plotted. It is
interesting to see how the latent space provides a smooth transition from digits that are
related in their structure. The digits 1, 7, and 9, for instance, share similar features in h.
The same is true for 0, 3, 5, and 8.

5.1.1 Network Layers for Decoding

In general, the layers used for autoencoders do not differ from the ones used typical
classification or regression tasks. In some cases, it can, however, be beneficial to utilize
specific layers for d(·), which specifically take the requirements for decoding into account.

When we consider typical classification tasks, NN models usually consist of a high
dimensional input vector x, which is passed through thinner and thinner layers before
the final layer produces a single output. In a sense, each of those layers introduces an
additional level of abstraction, as it processes the outputs of the preceding neurons. This
notion of increased abstraction is even more prominent for concatenated convolutional
layers — compare Section 4.1.4. So, in a way, most network layers are inherently designed
for an encoding use case — and not directly with decoding in mind.

1Results obtained with code from https://github.com/keras-team/keras-io/blob/

master/examples/generative/vae.py
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5. Autoencoders

The task of the decoder d(·) is different from the encoder in a sense, as it upsamples its
input h instead of abstracting over it. This observation motivates the introduction of
several layers, specifically for decoding.

h0

h1

w
(0)
0 , b

(0)
0

z
(0)
0

z
(0)
0

z
(0)
0

Figure 5.3: Upsampling layer.

In the simplest case, this can be done with the so called upsampling layer 2. Figure 5.3
depicts such a layer with an upsampling factor of 3. The layer simply copies the output
three times — it generates a three-dimensional output from its inputs. Of course, the
naive implementation of upsampling does not make sense in every scenario. However, in
some use cases, we might have an output vector where some neighboring elements are
always the same.

x[0] z[1] z[2] z[3] z[4]

h[0]

h[1]

h[2]

Figure 5.4: Transposed Convolutional Layer.

A more advanced approach to upsampling is the transposed convolutional layer [DV16]
— it is depicted in Figure 5.4. This layer has one channel and a filter size of 3. In
contrast to the classical convolutional layer in Figure 4.7 the positions of the inputs h
and the outputs are inverted. Still, ConvTransposed is not the inverse operation of the
convolution in a strict sense. It just applies the ideas of the convolutional operation to
an upsampling procedure. Besides that, the operations are more or less equivalent. z[2]
is for instance given by the following expression:

z[2] = σ (w2 · h[0] + w1 · h[1] + w0 · h[2])

2See https://keras.io/api/layers/reshaping_layers/up_sampling1d/
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5.2. Autoencoder Variants & Architectures

Note that for multiple filters and channels, similar relations as for the normal convolutional
layers are in place. A comprehensive discussion of the topic can be found in [DV16].

5.2 Autoencoder Variants & Architectures

In order to obtain a "useful" representation, autoencoders must be prohibited from
learning the identity function. Over the years, different autoencoder variants emerged,
each tackling this issue in its own way. We denote the typical autoencoder variant shown
in Figure 5.1 as a vanilla autoencoder. Without any regularization, such a model does
only provide a naive framework for dealing with overcapacity. It solely relies on an
encoder and decoder network with limited capacity. Such a model with limited capacity
is referred to as undercomplete. Because of those shortcomings, vanilla autoencoders
without regularization are not often used in practice.

The, already discussed, denoising autoencoder solves this issue by utilizing additive noise
on the input samples. Contractive autoencoders follow a similar approach — a penalty
on large derivates in the encoding h ensures that the autoencoder is less sensitive to small
variations in the input x. A comprehensive overview of different autoencoder variants is
provided in [BGC17, Chapter 14].

Besides the discussed variants of autoencoders — which deploy specific regularization
strategies — there are also different autoencoder architectures. While the typical unsu-
pervised architecture was already shown in Figure 5.1, also supervised extensions exist.
The conditional autoencoder, on the other hand, offers a framework to include meta-data
into the learning process. In general, those architectures can be implemented with any of
the available autoencoder variants.

In the following, I will first introduce two commonly used variants in detail: Namely
Sparse Autoencoders (SAEs) and the Variational Autoencoders (VAEs). Consequently,
I discuss different architectures. Here, I start with the conditional autoencoder and
subsequently introduce the semi-supervised / supervised architecture.

5.2.1 Sparse Vanilla Autoencoders

In a sense, th Sparse Autoencoder is the simplest approach to regularized autoencoders.
In fact, its’s structure does not differ at all from a generic vanilla autoencoder in Figure
5.1. In contrast to the VAE — which will be discussed in the following section — SAEs
are entirely deterministic, and the latent layer is simply a typical network layer with a
linear activation function. While the structure of the network mimics an undercomplete
vanilla autoencoder — the loss function is different [N+11].

Lsae(x, θ) = Lrec + Lreg = L (x, x̂) + λ
∑

i

|hi| (5.1)
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5. Autoencoders

Equation 5.1 defines the loss of a SAE as the sum of a reconstruction term Lrec and an
regularization term Lreg, which is enforced on the latent layer h. Here, λ is a hyperpa-
rameter which controls the extend of the regularization. Effectively, the regularization
term Lreg is equivalent to any other activity regularizer — see Chapter 4.1.3. In 5.1,
the loss Lreg does, however, specifically utilize the l1 norm. This means that Lsae(x, θ)
encourages models with a sparse latent space h. The motivation behind this sparseness
assumption was already discussed in the representation learning Section 4.2.

While the use of l1 norms for sparseness constraints is an common concept, it might not
be apparent at first sight how absolute values induce sparseness. For this, consider the
generic definition of the lp norm in Equation 5.2 [FR17, Appendix A].

lp = ‖x‖p :=

(
n∑

i=1

|xi|p
)1/p

(5.2)

Here, p ≥ 1. The most commonly used norm is probably the l2 norm — mainly due to its
relative simplicity in the subsequent optimization procedure. In general, smaller values
of p lead to a higher penalty on non-sparse values of x. To see why sparsity is related to
the value of p, it is helpful to look at the edge cases. As such, l∞ is the the maximum
norm ‖x‖∞ = maxi=1,...,n |xi|. Setting p = 0 results in ‖x‖0 which counts the number of
nonzero elements of x. Note, that ‖x‖0 is not a norm — still, it is interesting that it
acts as a direct measure of sparseness. Finally, choices of 0 < p < 1 result in so called
quasi-norms — for those the triangle inequality is not fulfilled [FR17, Appendix A].

x̂
x̂

x̂

l1 l2 l 1
2

Figure 5.5: Contours of l1, l2 and the quasi-norm l 1
2
.

Figure 5.5 depicts the contours of the norms l1 and l2 for n = 2 — for reference, the quasi-
norm l 1

2
is shown. This means that the shapes in Figure 5.5 are described by the values of

x, which lead to a constant value of the respective expressions. Additionally, an arbitrary
error surface is indicated by the straight lines. When minimizing this error objective
and the regularization term at the same time, the result is given by the intersections
indicated by x̂. Figure 5.5 clearly shows, that for l 1

2
and l1 those intersections are likely

to lead to sparse values of x [Bis06, Chapter 3].

By enforcing such a sparseness constraint onto the latent layer h, SAEs introduce a
tradeoff between the reconstruction Lrec and the regularization Lreg terms. This means
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5.2. Autoencoder Variants & Architectures

that an additional feature encoded into h needs to reduce Lrec significantly — otherwise,
the overall loss increases. Besides this additional loss SAEs do not differ from generic
vanilla autoencoders. VAEs, discussed in the next section, break with this structure, by
introducing a probabilistic treatment of the latent layer h.

5.2.2 Variational Autoencoders

A Variational Autoencoder is a kind of autoencoder, that is often used for generative
approaches [BGC17, Chapter 14]. This means that it provides a systematic way of
generating samples, which are in pdata, but were not part of the training set. Thus, the
output x̂ consists of variations of the original samples but comes from the same underlying
distribution. In VAEs this is achieved by modeling the latent layer h as probabilistic.
This probabilistic treatment is not only beneficial for generative approaches, but does
also act as a regularization strategy. I discuss the benefits of this probabilistic treatment
in detail in 5.2.2.

Instead of learning a deterministic mapping, the encoder in VAEs predicts moments
of a probability distribution in the latent space for each given input sample x. More
specifically, the output of the encoder describes pθ(h; xn) via its moments collected in hm.
During decoding, one or multiple samples h are drawn from the distribution described
by hm. Those samples do subsequently act as the input for the decoder, which again
predicts x̂. Thereby, the objective of reducing some reconstruction loss between x and x̂
is still in place. Note that besides the latent layer, all components of the VAE are still
completely deterministic. This means that e(·) and d(·) are made up of classical dense
or convolutional feedforward layers.

µh0

σh0

µh1

σh1

(a) Encoder

h0 ∼ N (µh0 , σ2
h0

)

h1 ∼ N (µh1 , σ2
h1

)

(b) Decoder

Figure 5.6: Variational Autoencoder Latent Layer.

Figure 5.6 shows the basic scheme for a two dimensional latent space h. Note that
the encoder has 4 outputs. Here hm = [µh0 , σh0 , µh1 , σh1 ]⊤ collects the moments of the
bivariate normal distribution N (µhi

, σ2
hi

)
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5. Autoencoders

This probabilistical approach is also used during training — for each x the encoder
predicts a moment vector describing the multivariate normal distribution. Consequently
a sample vector h is drawn from the distribution pθ(h; x) and passed on to the decoder.
d(h) predicts x̂ and some reconstruction loss L(x, x̂) is calculated and backpropagated
throughout the network.

As a consequence, also this probabilistic interpretation of the in the latent layer has to be
differentiable. A reformulation of the sampling procedure — the so-called reparametriza-
tion trick can ensure this [BGC17, Chapter 14].

h = µ + σ · ǫ (5.3)

In a nutshell, the reparametrization trick in Equation 5.3 expresses the sampling from a
normal distribution N (µ, σ2) as a the sum of µ and a sample ǫ ∼ N (0, 1) weighted by σ.
This allows for the evaluation of the derivatives with respect to the encoder outputs µ

and σ in the following way:

∂h

∂µ
= 1,

∂h

∂σ
= ǫ (5.4)

Formulated in this way, the sampling procedure does not pose any problems to backprop-
agation as ǫ is — from a backpropagation point of view — equivalent to the noise in
denoising autoencoders. Thus, VAEs can be trained using SGD.

Again, consider the SAE introduced earlier. Here, the overall loss consisted of a re-
construction and a regularization loss. While Lrec was imposed on the output x̂, Lreg

ensured that the model does not learn the identity function. VAEs also incorporate
an additional regularization penalty on the latent layer. Here, the latent layer h is of
a probabilistic nature. Thus the penalty needs to operate on distributions. In most
implementations this regularization term is based on the Kulback Leibler Divergence
(KLD) — thus KLD is explained in detail in the next section, before the complete VAE
loss is derived.

Kulback Leibler Divergence

The KLD is a commonly used measure of similarity between two distinct probability
density functions p(x) and q(x). At its core KLD is based on the difference in information
content of the given distribution pair [Oda19].

∆I(x) = Ip(x)− Iq(x) = − log p(x) + log q(x) = log
(

q(x)

p(x)

)

(5.5)

Interpreting the log of a probability as a measure of information content is common in
information theory — consider shannons definition of entropy. The KLD between p(x)
and q(x) is now the expectation of ∆I(x) over p(x).

DKL(P‖Q) :=
∫ +∞

−∞

p(x) log
(

p(x)

q(x)

)

dx (5.6)
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5.2. Autoencoder Variants & Architectures

Equation 5.6 takes on values in the interval [0,∞). This means that the KLD between
p(x) and q(x) is only zero if the two pdfs are equivalent. Thus DKL(P‖Q) = 0 if and
only if p(x) = q(x)

Also note, that the KLD is not a metric. The reason for this is that DKL(P‖Q) 6=
DKL(Q‖P ) — Equation 5.6 is not symmetric.

Variational Autoencoder Loss

For VAEs the KLD is used, to force the individual latent layer distributions pθ(h; x) to
be close to a standard normal distribution N (0, 1). This means that hm should consist
of means close to 0 and variances close to 1. Without such a constraint, the VAE could
effectively sidestep the probabilistic nature of the latent layer and simply set the variances
to be 0 — thus, would render the overall network purely deterministic again.

This constraint is now incorporated in the overall loss of an VAE in form of the regular-
ization term Lreg:

Lvae(xn; θ) = Lreg + Lrec = dKL (pθ (h; xn) ‖p(h)) +
1

L

L∑

l=1

LMSE (x̂l, xn) (5.7)

The reconstruction term in Equation 5.7 is simply the average MSE over L distinct
decoded samples x̂l = d(hl) drawn from the latent distribution pθ (h; xn). Meanwhile
the regularization term Lreg is given by the KLD between the latent space distribution
pθ (h; xn) and the prior p(h).

When we assume independent multivariate normal distributions and define p(h) to be of
zero mean and unit variance the regularization term can be calculated as:

dKL (pθ (h; xn) ‖p(h)) = −
dh∑

i=1

1

2

[

1 + log
(

σ2
i

)

− σ2
i − µ2

i

]

(5.8)

Here, dh describes the dimension of the latent space. The overall loss function is
subsequently given by:

Lvae(xn; θ) = −
dh∑

i=1

1

2

[

1 + log
(

σ2
i

)

− σ2
i − µ2

i

]

+
1

L

L∑

l=1

LMSE (x̂l, xn) (5.9)

While Equation 5.9 describes the complete loss function of the classical VAE, there is
also the extension of the beta-VAE [HMP+17]. It introduces an additional scaling term
for Lreg.

Lvae = β · Lreg + Lrec (5.10)

Here, β is a hyperparameter and controls the weight of the individual loss components.
For β = 1 beta-VAE and VAE are equivalent.

I did already mention the primary motivation behind this probabilistic treatment of the
latent layer — it acts as a regularization scheme and provides a framework for sampling
unseen variations of the original pdata distribution. In the following, I will try to provide
further intuition on how this is achieved.
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5. Autoencoders

Benefits of the probabilistic treatment?

The benefits of the probabilistic treatment of the latent layer might not be apparent
immediately. A key aspect of the latent layer modeling the distribution pθ (h; x) is that
the induced randomness acts as some kind of a regularization scheme — limiting the
effective capacity of the network. Similar to the already discussed idea of the denoising
autoencoders, the uncertainty introduced by the sampling layer limits the network from
learning the identity function [BGC17, Chapter 14].

Additionally, the latent space of a VAE tends to be smooth [BGC17, Chapter 14]. More
specifically, d(h) ≈ h + ǫ · u — where u is a unit vector. This means that the immediate
neighborhood of a sample in the latent space does again belong to the same class. This
is a consequence of the sampling procedure. In fact, it is possible to generate multiple
variations of a single input vector x by sampling the related distribution. Additionally,
the zero mean constraint encourages the individual pθ (h; x) to overlap. Subsequently,
the transitions between different samples tend to be smooth as well. This can also be
observed in Figure 5.2b.

−3 −2 −1 0 1 2 3

−2

0

2

h0

h
1

Figure 5.7: Distribution of two samples in latent space.

The probabilistic scheme is also beneficial to one of the core objectives in representation
learning — the disentanglement of the distinct underlying explanatory factors [BHP+18].
Keep in mind, that the moments hm learned by the encoder describe a multivariate
normal distribution with independent elements. In Figure 5.7 two distinct pθ (h; x) are
shown schematically — note that h0 and h1 are uncorrelated and thus independent. This
independent assumption does, therefore, explicitly encode the disentanglement objective
into the model’s structure. The learner is encouraged to learn a representation where
each element in h describes an independent feature of x. Because all samples still share
the same latent space and the individual distributions pθ (h; x) are overlapping those
features are learned jointly.

The disentanglement of the underlying factors of variation can, again, be seen in Figure
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5.2. Autoencoder Variants & Architectures

5.2b. It is apparent that h0 and h1 represent to distinct features of pdata. While on
the interval of h0 samples follow a transition from straight to round shapes, h1 seems
to encode a more ambiguous feature that spans from simple connected shapes to more
complex combinations of strokes.

The β-VAE does further provide a way to control the desired degree of disentanglement
— note that there is a tradeoff with the reconstruction objective. As the disentanglement
is caused by the regularization term Lreg, it is no surprise, that an increased β does, in
general, lead to increased disentanglement [BHP+18].

Even though the two discussed variants of autoencoders SAEs and VAEs are different
in their approach — they still follow similar objectives. Both incorporate some kind
of regularization loss on their latent layer, in order to guide the learner towards a
disentangled representation. The primary difference is, however, that the VAE offers a
distinct framework for generative sampling, while the SAE does not. In the end, the
decision on which autoencoder to use is often dependent on the data at hand at the
specific use case.

The treatment of VAEs ends the discussion autoencoder variants in this work. In the
following, I will introduce different architectures for autoencoders; in general, they can be
used with any of the above discussed variants. Those architectures’ primary objective is
to extend the classical unsupervised scheme and to adapt to a broader range of use cases.

5.2.3 Conditional Autoencoders

The conditional autoencoder is an autoencoder architecture that extends the typical
unsupervised scheme. It is motivated by the observation, that for most problems —
while still being unsupervised — some metadata might be available. In the classical
autoencoder scheme from Figure 5.1, there is no particular way of dealing with such
metadata.

The only way is to include it into x directly. However, this is suboptimal in two ways:
First, the encoder now has to encode the metadata into h, which might require a higher
dimensionality of the latent space. Often, we do, however, prefer lower dimensionality,
which simplifies the visual representation of h. The second problematic aspect is that
the output x̂ does now also include the meta-data, and thus it is considered in the
computation of the reconstruction loss. While the decoder can, most likely, deal with
this, it increases complexity and does not serve any apparent benefit.

The core idea of the conditional autoencoders is now to provide a designated way of
handling meta data [SLY15]. Therefore, the input x := {x′, m} is split into a vector of
metadata m and the remaining input x′. The input output relations are then given by:

h = e(x′; m) x̂′ = d(h; m) (5.11)

This means that for a conditional autoencoder, e(·) and d(·) are parametrized on
the metadata — effectively there is a distinct encoder and decoder function for each
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5. Autoencoders

configuration of m. The overall scheme is also depicted in Figure 5.8. The training
procedure for a conditional and an unconditional autoencoder only differs in one aspect

— the values of m also have to be fed into the network.

x′ x̂′

m

Figure 5.8: Conditional Autoencoder.

This idea of conditioning on the meta-data first sprung up in [SLY15] in the framework
of VAEs. The architecture in Figure 5.8 is, however, not limited to VAEs, we are free in
the selection of e(·) and d(·). This means that we can come up with a sparse-conditional
autoencoder, simply by parametrizing the encoder on the meta data m.

There are two aspects of conditional autoencoders which I will cover in detail: the
independence of the latent space and the the implication the parameterization has for
generative modeling.

Independent latent space

The parametrization on m in Equation 5.11 has an interesting effect: It encourages a
representation h independent of m. This is because encoding m into h would, most
likely, lead to increased regularization loss. At the same time, it would not decrease the
reconstruction loss, as m is available to the decoder anyway. Thus h tends to capture
the variations which are not included in m. More precisely, this means that the encoder
e(·) is encouraged to remove the influence of m from x′.

Consider for instance the autoencoder in Figure 5.2 operating on the MNIST data set. It
is clear from from 5.2a, that the latent space h includes information about the distinct
digits shown in the images. While this is beneficial for the classification of digits, we
might also develop a conditional scheme that includes the digit information into the
meta-data vector m. This way, we would obtain a latent space h, which would not show
clusters for different digits, but learn variations of the images over all digits jointly. This
could, for instance, be used as a way of finding clusters of different styles of handwriting.

Conditional generative output

The second interesting aspect of the conditional autoencoder regards the decoding
procedure. For this, consider the sampling over the latent space in Figure 5.2b. While
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5.2. Autoencoder Variants & Architectures

the digits form clusters and the latent space provides smooth transitions between those
respective clusters, it is still nontrivial to obtain a distinct variation of a given digit. We
can generate new samples of an arbitrary digit by sampling from the cluster in the latent
space, but the control over the specific style of handwriting is, for instance, limited.

Again a conditional autoencoder with the digit information encoded into m can be
used. Then, the decoder d(h; m) is paramterized on the desired digit, while different
configurations of h incorporate the respective writing style. For this to work, we generally
assume that the selected combinations of m and h have, in one way or another, been
shown to the model during training. Unseen combinations are theoretically possible, but
they do require effective regularization to provide reliable results.

5.2.4 Supervised Autoencoders

While autoencoders are in general an unsupervised technique, also supervised variants
have been introduced in literature [LPW18]. This is motivated by the observation that
most autoencoder applications are followed by some regression or classification task.
Supervised autoencoders do now incorporate this subsequent learning task into the
autoencoder itself.

x

x̂

ŷ

Figure 5.9: Supervised Autoencoder.

The overall structure of such a scheme is illustrated in Figure 5.9. The autoencoder
structure is the same as before, but there is an additional branch which outputs an
estimate of the label y. Note that this classifier does not operate on x, but instead on
the representation h. Thus, it benefits from the entanglement of features learned by the
encoder. The classification branch is reflected in the overall loss:

Lsuper = Lreg + Lrec + Lclass (5.12)

The additional term Lclass in 5.12 introduces the objective of minimizing some missclas-
sification penalty between y and ŷ. Note, that in Figure 5.9, ŷ is obtained from h via an
additional network layer. This layer processes the low dimensional latent space into the
output ŷ which is often scalar.
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5. Autoencoders

It is essential to be aware of the effects this classification branch has on the overall
representation. In a nutshell, the classification branch leads to a representation that
highlights the features distinguishing the classes. As stated in Equation 5.12 the same
regularization and reconstruction loss components as for the unsupervised autoencoders
are activate.

Still, the classification loss affects the structure of the latent space h during backprop-
agation. The objective of decreasing Lclass encourages a representation that reflects
the classes described by y. This tendency is counteracted by the regularization and
reconstruction term, which balances the two objectives of obtaining a "meaningful"
representation and achieving effective classification.

Note that the complexity of the classification layer also affects the representation space.
A layer with high capacity can learn a mapping from a generic representation, while
a layer with low capacity requires a designated representation. This means that the
capacity of this layer also controls the extent to which the representation highlights the
features important to the classification tasks [LPW18].

In 2016 [GM16] proposed an approach to extend autoencoders to semi-supervised ap-
proaches. It is, inherently based on the same structure as the one shown in Figure 5.9.
The loss is, however, given by:

Lsemi =

{

Lreg + Lrec + Lclass for labeled samples

Lreg + Lrec else
(5.13)

For each labeled example, the loss is consistent with Equation 5.12. The approach only
differs for unlabeled examples, where the Lclass is ignored.

The above discussion covered the key aspects of autoencoders. I discussed two different
variants, the VAE and the SAE, which differ mainly in the way that they tackle regular-
ization. Additionally, I introduced different autoencoder architectures, which help solve
practical problems that might arise when applying autoencoders in a specific use case.
In the following, I will provide some toy examples for autoencoders to showcase how the
discussed schemes behave in practice.

5.3 Simulations

At the beginning of this chapter, I introduced Figure 5.2 as a motivational example for the
use of autoencoders. It depicts a representation of the well known MNIST handwritten
digits data set, as obtained by a variational autoencoder. The subsequent pages provide
additional examples to illustrate the discussed aspects of autoencoders further.

The primary focus is hereby on concepts introduced above: the structure of the latent
space h, reconstruction loss, and effects of regularization strategies. In this context, I
compare the two autoencoder variants SAE and VAE — see 5.2.1 and 5.2.2. Additionally,
I provide results for the conditional autoencoder architecture.
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5.3. Simulations

Whereas the example in Figure 5.2 operates on a realistic data set, the following ex-
periments are toy examples. Here, the key objective is not to showcase the abilities of
autoencoders but to illustrate the mechanisms discussed above. To analyze those aspects
systematically, the first set of experiments operates on simple time-series consisting of
rectangular pulses. In a second step, I extend the discussion to more complex inputs.
For this, I generate a set of QAM inspired signals and compare the latent space h with
the constellation in the IQ-plane.

5.3.1 Rectangular Function

The rectangular time series described in Equation 5.14 form the basis for the first set of
experiments.

m =
K∑

k=1

ak · ⊓(t− kL; L) ⊓ (x) =

{

1 |t| ≤ L
2

0 |t| > L
2

(5.14)

Here ⊓(·) is the rectangular function. Equation 5.14 defines m as a series of concatenated
rectangular pulses. Each of those pulses has a distinct amplitude described by ak.

The primary motivation for a time-series of this kind is that the number of different
rectangular pulses K can be adapted while keeping the overall time-series length fixed.
This way, I can directly control the number of underlying factors. When the values for ak

are selected independently for each rectangular pulse, those K amplitudes do effectively
capture all variation in the time-series. We generally want h to pick up those underlying
factors, so this setup can be used to analyze the effect of different sizes of the latent layer.
Additionally, the symmetry of this time-series ensures unambiguous representations in
the latent space, which simplifies the systematic analysis.

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

t

x

Figure 5.10: Multivariate gaussian with rectangular mean for K = 5.

Figure 5.10 makes this more clear — the 5 amplitudes do completely describe the time-
series. Due to the symmetry of the data set, each amplitude contributes the same amount
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5. Autoencoders

of error to the overall reconstruction loss. This means that each of those factors is of
equal importance in the representation.

Note, that the time-series in Figure 5.10 include additional variation. This is achieved
by using Equation 5.14 as the mean vector for a multivariate Gaussian and by drawing
multiple samples for each different ak configuration. Overall the time series x in Figure
5.10 is given by x = N (m, C). The reasoning behind using multivariate Gaussians is to
enlargen the data set artificially — otherwise, it would only consist of a small number of
different signals. Note, however, that this scheme is not related to denoising autoencoders,
as the autoencoder’s objective is not to extract m from x, but to reconstruct x itself.

In practice, I obtain m by generating combinations of different ak linearly spaced from
the interval of [0.2, 0.8]. The covariance matrix C is of such a form that it induces
correlation over a distance of 5 time-stamps3.

I now use two different kinds of autoencoder, a variational one and a sparse vanilla
autoencoder — see Chapter 5.2.2 and 5.2.1. Plots of the used models can be found in
Appendix A. For each of those, I run experiments with different sizes of latent layers
— I denote the latent layer size by dh. I also show results for conditional autoencoder
architectures, which were introduced in 5.2.3.

Reconstruction

In most use cases, the reconstructed series x̂ itself is only a byproduct of the representation
learning, whereas the real interest lies in the latent space h. Analyzing the output x̂ can
still be interesting, as it exposes the inner workings of the autoencoder — it reveals the
features the encoder picked up.

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

t

x

x (input)
x̂ (dh = 2)
x̂ (dh = 3)
x̂ (dh = 5)
x̂ (dh = 20)

Figure 5.11: Reconstructed x̂ for different dh.

Figure 5.11 shows the reconstructed input of a sparse vanilla autoencoder, for different
sizes of the latent layer. For each latent layer size dh, the autoencoder was trained using

3The code used to generate this data set is provided in A.
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5.3. Simulations

rectangular series. Each with 5 different amplitudes ak — thus K = 5.

The first observation is that the autoencoder extracts the mean function and does not
reproduce the fluctuations introduced by the gaussian nature of the signal. Instead of
merely learning the identity function, the autoencoder finds the underlying factors of
variation.

The quality of the reconstruction in Figure 5.11 depends heavily on the latent layer size
dh. This is not surprising, as the rectangular series is specifically designed to include five
distinct amplitudes ak. To fully reconstruct x at the output, the latent layer h needs to
account for those features. Generally, we can assume that a learner that tries to pick up
those factors of variations needs a latent layer size dh, which is larger or equal to the
number of factors K. The comparison for the different latent sizes dh shows that only
the autoencoder with dh = 5 can correctly reconstruct the input x. Autoencoders with
dh < 5 only pick up a subset of the amplitudes ak correctly, while they fail to approximate
the rest. It is also interesting that the model with dh = 20 does not deliver a better
reconstruction than the one with dh = 5. This aspect will be covered in a moment.

Note that without regularization in place, a model with sufficient capacity could, in
theory, also learn a perfect reconstruction with a smaller dh. The autoencoder would
effectively learn a highly nonlinear mapping that reflects the identity function. This
encoding of x in h can be expected to be highly abstract and would not offer any insights
for human analysts — compare Chapter 4.2.

Activation

While a small dh leads to increase reconstruction loss, a latent layer size, which is higher
than the number of underlying factors K, does not pose any problems to reconstruction.
The respective regularization strategies ensure that the learner does only pick up the
most relevant features.

In the case of a sparse vanilla autoencoder this is enforced via the l1 activity regularization
on the latent layer h.

Figure 5.12 shows the effect of this regularization strategy in practise. The figure depicts
the absolute values of each component of h averaged over the data set with K = 5.
The autoencoder it this experiment — here dh = 30 — does only utilize 5 of those
latent neurons. The regularization penalty guides the model towards a representation
that captures the right number of underlying factors. This also offers an explanation
for the reconstruction of the model with dh = 20 from Figure 5.11. Note, that the
regularization can be controlled via hyperparameters — consider λ for the SAE and β for
the V AE. This means that the number of parameters that the model picks up depends
not only on the data at hand but also on the choice of the respective hyperparameter
λ and β. Indirectly, the regularization parameters can control the effective size of the
representation. This has to be considered, as high dimensional latent spaces are typically
hard to handle in subsequent learning tasks. When the objective of the representation
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5. Autoencoders
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Figure 5.12: Sparse latent space activations.

learning is to analyze the obtained representations visually, this issue is, even more,
pressing — Chapter 5.4 discusses this aspect in more detail.

Latent Space Representation

Naturally, the latent space is the primary interest when autoencoders are used for
representation learning. The main objective in such use cases is to obtain a latent space
h, which reflects the essential properties of the input x. Additionally, we require that the
latent space h disentangles those key factors of variations. This means that each of the
features picked up the autoencoder should be encoded along a distinct axis or direction
in h.

For the case of the rectangular toy series, we have already identified the amplitudes ak

as the key factors of variations. In the following, I will thus analyze the latent space
obtained by a SAE and VAE when trained with a rectangular time series4. Ideally, we
will obtain a h where the different amplitudes ak are directly encoded along one direction.

Figure 5.13 shows the latent space for two autoencoders both trained on rectangular time
series with K = 2. Here, that mean function is given by the following equation:

m = a0 · ⊓(t; 35) + a1 · ⊓(t− 35; 35) (5.15)

The latent layer size dh is 2 for both models. Figure 5.13a shows the results for a
variational autoencoder, while Figure 5.13b depicts the representation of a sparse vanilla
autoencoder. Note that, for variational autoencoders, the plots reflect the predicted
means, while I omit the variances. In both plots, the color reflects the amplitude of the
first rectangular component a1. The choice of a1 is arbitrary, plotting a2 instead of a1

would result in a 90 degree shifted color gradient.

4The code for the autoencoder used in this simulation is given in A.
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5.3. Simulations

(a) Variational autoencoder (b) Sparse autoencoder

Figure 5.13: Latent space representation of x with K = 2 with dh = 2.

We can see that the amplitudes a0 and a1 from Equation 5.15 are directly reflected in
5.13. This means, that both autoencoders picked up the underlying factors of variation.
The colors for 5.13a also indicate, that a1 is directly reflected by one neuron in the latent
layer. It is interesting to see that the sparsity constraint is directly visible in 5.13b — the
shape of the latent space closely represents the surface of the l1 norm shown in figure 5.5.

I showed in Figure 5.11 that the latent layer size dh needs to be adapted to the underlying
factors of variation K. Otherwise, the autoencoder is not able to encode all relevant
properties of the input. Figure 5.14 illustrates the same observation from a latent layer
perspective. Here, the same autoencoders with dh = 2 were trained on a set of rectangular
series with K = 5. The color in the scatter plots does again represent the amplitude of
the first rectangular pulse a1. Both figures 5.14a and 5.14b show, that a1 is not directly
reflected in the latent space — there is no consistent color gradient visible. This means
that the autoencoders are not able to encode the five amplitudes ak into a 2-dimensional
latent space.

In general, the solution for this would be to increase the dimensionality of the latent
space dh. Often we are, however, interested in low dimensional representations in order to
simplify a subsequent visual analysis. In some cases, the input data contains meta-data

— by incorporating this directly into the training scheme and not forcing the autoencoder
to encode it into h the effective dimension of the representation can be reduced.

Latent Layer of Conditional Autoencoder

Chapter 5.2.3 introduced conditional autoencoders as a way to incorporate available meta-
data into the representation learning process. For this, each input sample additionally
includes the meta-data vector m. Figure 5.15 shows sparse autoencoders trained under
the same setup as 5.14 — K=5 and dh = 2. The difference is that here, the learners are
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5. Autoencoders

(a) Variational autoencoder (b) Sparse autoencoder

Figure 5.14: Latent space representation of s with K = 5 with dh = 2.

based on a conditional architecture, and the remaining amplitudes ak are encoded in the
meta-data m5.

(a) m = [a1, a2] (b) m = [a1, a2, a3]

Figure 5.15: Sparse conditional autoencoder for s with K = 5 with dh = 2.

For Figure 5.15a a1 and a2 are included in m — so only a3, a4, a5 remain as degrees of
freedom. In Figure 5.15b m encodes a1, a2, a3, leaving only two factors of variation. For
both figures, the color reflects a5. The results show how conditional autoencoders can
utilize the meta-data m in the learning process.

Figure 5.15a shows the same tendency, but here the encoder is not able to encode all
three remaining amplitudes into the latent space. Still, visual analysis shows that the

5The code for the conditional autoencoder used in this simulation is given in A.
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5.3. Simulations

color gradient does reflect the amplitude a1 more closely than 5.14. The latent space in
5.15b is similar to the ones in 5.13b — the autoencoder does successfully capture the
two remaining degrees of freedom.

In a sense, it represents a series with K = 2 in the latent space. The other three
amplitudes a1, a2, a3 are encoded in m anyway. Effectively, the encoder e(·) removes
the already available meta-data from the input time series s and encodes the remaining
variation. The decoder d(·) combines the information from latent space and m in order
to generate the reconstructed signal ŝ at the output.

Outlier Detection

In Chapter 4.1.3 I introduced the basic aspects of regularization — and with it the
concept of an underlying distribution pdata. In general, machine learning algorithms do
only deliver predictable results when they receive samples from within pdata. The use
of regularization allows for generalization, but only when the deviations from pdata are
within boundaries.

Representation learning is no exception to this rule. Generally, it does only provide useful
results when the samples do not deviate too far from the training data. This aspect is
crucial and has to be considered in practice, as it limits the expressiveness of h for rare
samples.

For this, consider the use case of outlier detection — utilizing autoencoders in this domain
might be motivated by the fact that they provide a low dimensional representation of an
input vector x. Thus, h allows for a simplified separation of samples. Here the concept
of pdata does, however, pose some problems.

To analyze the behavior of an autoencoder, which is exposed to an outlier, consider the
following example6. Here I train a sparse vanilla autoencoder on a rectangular time-series
data set with K = 2. Subsequently, I analyse the output of this autoencoder to a sample
from outside of pdata. In this example the outlier is given by a sinusoid.

Figure 5.16 shows the input x and the reconstructed output x̂ for this experiment. The
results might be surprising: we can see that while the input is sine signal with a constant
offset, the output x̂ consists of a rectangular time-series with two distinct amplitudes.
The discussion about manifolds in Chapter 4.2.2 provides an intuitive explanation for
this. The encoder e(·) maps x onto the manifold described by pdata. In a subsequent
step, the decoder d(·) provides the respective x̂ for the given manifold coordinates.

Note that the exact reason for why the autoencoder outputs precisely the series in Figure
5.16 is ambiguous — we only know that the output has to be from pdata. In a sense, we
might find a constant signal a more appropriate output for sine with a fixed offset. The
mappings obtained by e(·) and d(·) are, however, guided by an optimization process on
the training data set and not unique. During training, we only care about a decrease

6This experiment is based on the SAE code in A.
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5. Autoencoders
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Figure 5.16: Reconstructed outlier.

in the loss function and not about the particular mapping — given that the mapping
provides accurate results for samples from pdata.

This mapping onto pdata does naturally also have an effect on the representation h —
outliers will not be apparent in the latent space. Figure 5.17 highlights this for the
above example. Here, the latent space representation of the sinusoid outlier is plotted

Figure 5.17: Outlier not distinguishable in h.

in combination with a set of samples from pdata. It is clear from Figure 5.17, that the
sinusoid can not be detected in h — its coordinates in the latent space describe the
amplitudes of the reconstructed signal shown in 5.16.

Note, however, that outlier detection is still possible to some extend. Consider for
instance a rectangular time-series with amplitudes ak outside the range in pdata. An
autoencoder that picked up the right features can correctly reassemble such an outlier
at its output. Thus, the latent space does reflect the amplitudes ak and subsequently
exposes the outlier in h. This means that outlier detection using autoencoders is possible,
as long as the input shares the same basic structure as the samples from pdata.
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5.3. Simulations

5.3.2 QAM Representation Learning

While the above results covered the primary mechanism, the mapping from a rectangular
series to the underlying amplitudes is not particularly challenging. Still, this toy input
allowed for a systematic analysis of different autoencoder properties. To show that the
same observations do also apply to more complex scenarios, consider the following QAM
inspired input signal.

Quadratur Amplitude Modulation(QAM) is a widely adapted modulation scheme in
telecommunications. In a nutshell, it provides a way to encode information into a time-
series s(t) to be transmitted [GG10]. Here, a bitstream b[k] is mapped onto a symbol
stream a[k], each symbol encoding a distinct number of consecutive bits. All symbols a[k]
come from a complex symbol alphabet. In the case of 16-QAM the real and imaginary
part of a[k] can take the values of {−3,−1, 1, 3}. Thus the overall alphabet A is given
by the 16 combinations A = {−3− 3j,−3− 1j, ..., 3 + 3j}.
The real and imaginary part of a[k] do then form the Inphase I(t) an Quadratur Q(t)
component:

I(t) =
K∑

k=1

Re{a[k]} · ⊓(t− k · Ts; Ts)

Q(t) =
K∑

k=1

Im{a[k]} · ⊓(t− k · Ts; Ts)

(5.16)

Here Ts is the duration of one symbol a[k]. Subsequently inphase and quadratur com-
ponent are mixed to the carrier frequency ωc and combined to form the final signal
s(t):

s(t) = I(t) · cos(ωc · t)−Q(t) · sin(ωc · t) (5.17)

From this signal s(t) the receiver can reconstruct the respective inphase and quadratur
components and does consequently obtain a[k].

The idea for this experiment is now as follows: I generate toy samples of s(t) with the
length of one symbol duration Ts. Those samples include all possible symbol values a[k]
and act as the input for a sparse vanilla autoencoder. Again I enlargen the data set —
this time by adding zero-mean gaussian noise to the signal samples7. Subsequently, I
analyze the latent space h and check whether the autoencoder picks up the 16 different
symbols incorporated in the signal. Note that capturing all variation in a QAM signal
would require samples of a duration larger than Ts. Still, this data set is a natural, more
complex extension to the rectangular series.

Figure 5.18 shows different samples of s(t) and there respective coordinates in the IQ-
Plane. I use those samples — corrupted by additive white noise — as the input x for a
sparse vanilla autoencoder8. Naturally, the autoencoder is only presented the time-series
samples and not the IQ-representation.

7The code used to generate this data set is provided in A.
8A plot describing the models configuration is provided in A.
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5. Autoencoders

s(t) IQ− Plane

Figure 5.18: 16-QAM Constellation.

Figure 5.19 shows the representation obtained by the autoencoder. The 16 different
symbols are clearly visible. It is interesting how closely the representation learned by the
autoencoder mimics the commonly used IQ-Plane representation.

(a) I-Component (b) Q-Component

Figure 5.19: Learned 16-QAM representation.

The features in h do indeed represent the I and Q component of the signals. In Figure
5.19a the color indicates the real part of a[k], while Figure 5.19b shows the same latent
space but uses the color to highlight the imaginary component. We can see that besides
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5.4. Latent-Space Analysis Techniques

the rotation induced by the sparseness penalty, the latent space closely follows the
IQ-Plane.

All in all, the simulations in this chapter show the basic mechanisms of autoencoders
and how they can capture the underlying factors of variation in a given data set. The
comparison of the rectangular mean series and the QAM inspired signal highlights that
this extraction of features can be applied to different kinds of inputs. Interestingly, the
latent space representation for the two different experiments does not differ much from
one another. The latent layer does not reflect the signal’s complexity but provides an
abstract representation of the variation in the input data. Meanwhile, the encoder e(·)
removes the shared characteristics of pdata.

The results for the rectangular time-series also show how the respective regularization
strategy guides the learning process. It ensures that the autoencoder picks up the most
relevant underlying features and supports the disentanglement objective.

Note that for the above examples, I mostly limited the discussion to low dimensional
latent spaces. However, for some problems, it might not be possible to encode all variation
into a small dh. Moreover, real-world input data is usually of a more complex nature.
This means that also the representation space is, in general, not of such a structure as
the toy examples above. An example of such a problem has already been discussed in
the form of the MNIST representation in Figure 5.2a. Dealing with such complex and
potentially high dimensional latent spaces is not straightforward. Thus, Section 5.4 will
briefly mention some techniques for latent space analysis before Chapter 6 will finally
apply autoencoders to network benchmarks.

5.4 Latent-Space Analysis Techniques

As already mentioned, most representation learning tasks are followed by the application
of some additional learning algorithm. There are, however, use cases, where the visual
exploration of the data set via the obtained representation h is the core objective.
Different techniques for the analysis of the latent space h can be helpful in this context.

In general, we are often interested in finding natural clusters in h — consider for instance
the 16 distinct clusters in Figure 5.19. Also, the structure of the latent space itself can
provide new insights. For that purpose, clustering and kernel density estimation methods
can be helpful — they drastically simplify the handling of complex h.

For a latent size dh > 2, the visualization of the latent space might be challenging. In
this case, dimensionality reduction approaches designed explicitly for visualization can be
used. In the following, I will briefly discuss approaches common in this field. Explaining
them in detail is out of the scope of this work, but I will provide sources for further
reading. This means that the following remarks are not an exhaustive introduction into
the field, but act mainly as a motivation for why such approaches can be beneficial.
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5. Autoencoders

5.4.1 Kernel Density Estimation

Kernel Density Estimation (KDE) provides a way to obtain a probability density function
from a given histogram of measurements. At its core, KDE is a nonparametric scheme
operating on a set of samples {x}Ni=1. The approximated density function is then obtained
via Equation 5.18.

pK(x) =
N∑

i=1

K (x− xi; b) (5.18)

Here b is a hyperparameter referred to as the bandwidth. In a nutshell, Equation 5.18
describes the superposition of individual pulses K with bandwidth b. Here, the number
of pulses N is the same as the number of inputs xi. This means that each xi acts as
the center for one pulse. K is referred to as the kernel — commonly K is based on a
Gaussian.

K(x; b) ∝ exp

(

− x2

2b2

)

(5.19)

I will not cover the details of hyperparameter selection for KDE — most schemes are
based on cross-validation or Silvermans Rule of Thumb. A exhaustive introduction of
KDE can be found in [Sco15]. Typical KDE implementations also utilize a scheme where
neighboring pulses are merged based on some overall distortion measure. This means
that in the end, pK(x) reflects a Gaussian mixture with distinct means and variances.
Such schemes are closely related to clustering.

The use of KDE in the realm of autoencoders does mainly serve a practical purpose.
When dealing with real-world data sets, the latent space structure might be challenging
to handle. KDE can be used to obtain an analytical description of the latent space h.
More specifically, we can obtain a distribution pK(h) describing the arrangement of the
latent space coordinates of all the input x. Note that this is not the same as VAEs, which
provide a statistical description for each individual sample.

Operating on pK(h) instead of directly using the individual samples hi simplifies the
handling of complex latent spaces. This is especially important for representations with
dh > 2. For instance, we can obtain a likelihood measure for a specific h to quantify how
common samples get mapped to this part of the latent space. Additionally, pK(h) can
be used to sample from the latent space systematically. Finally, I will also utilize KDE
when plotting latent spaces in Chapter 6.

5.4.2 Clustering

Often the primary motivation for representation learning is to obtain natural clusters
that are not directly visible in x. Mapping the input x to h ideally exposes those clusters.
An example of this is, for instance, given in the QAM mapping obtained by the SAE in
Figure 5.19.

Clustering is a field of machine learning which deals with finding such underlying clusters
in data. One of the most common clustering algorithms is Gaussian Mixture Clustering
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5.4. Latent-Space Analysis Techniques

(GMC), which can be seen as an extension of the well known k-Means [Bis06, Chapter 9].
In a nutshell, GMC models the input data as a superposition of multivariate gaussians.

p(x) =
K∑

k=1

ak N (x|µk, Ck) (5.20)

Note that while this might look similar to KDE, the two approaches differ in crucial
aspects. Here, the number of clusters K is a hyperparameter and has to be determined
beforehand while it is given by the cardinality of the input set N for KDE. Additionally,
each of the Gaussian components is weighted by ak. Also note, that the components µk

and Ck are part of the optimization process and not predetermined by the samples xi or
set as a hyperparamter. The optimization of GMC itself is out of the scope of this work

— details about the underlying EM-algorithm can be found in [Bis06, Chapter 9].

In the realm of representation learning, clustering techniques can again simplify the
analysis of complex latent spaces. GMC does effectively provide a similar description
of h, which is easier to handle than the raw samples. Note that as opposed to KDE,
this description does reflect the underlying clusters and can be seen as a first step of a
subsequent learning task.

5.4.3 Visualization of High Dimensional Data

In general, the representation h obtained by autoencoders is of lower dimensionality than
the original input x. While autoencoders have been shown to provide a robust framework
to extract the underlying features of variation, the results from Section 5.3 indicate, that
it is not always possible to obtain a meaningful representation with an arbitrary small
dh. Whenever dh > 2, this poses a problem for the visualization of such latent spaces.

In such cases, it can be helpful to resort to dimensionality reduction techniques, specially
designed for visualization. Note that such approaches should not be confused with repre-
sentation learning techniques. While representation learning achieves a dimensionality
reduction as a side-effect of the extraction of underlying features, the objective is different
for such high-dimensional visualization techniques. They generally aim for a mapping
towards a lower-dimensional space, which preserves most of the proximity information.
This means that the main objective is that points close in the high-dimensional space are
also close in the low-dimensional space.

A prominent example of such approaches is t-SNE introduced in [MH08]. At its core,
this scheme is based on a stochastic similarity measure between different points. More
precisely, it assigns each pair of points a similarity score, which is modeled as a conditional
distribution based on a gaussian pdf. In the low dimensional space, also a similarity
matrix is calculated, which is, however, based on a Student-t distribution. These similarity
scores are then collected in two distinct similarity matrices. During the optimization
process, the points in the lower dimensional space get rearranged until the two similarity
matrices are close to each other. Here, the KLD acts as a measure of closeness between
the similarity in the high and low dimensional spaces.
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5. Autoencoders

(a) 2D (b) 1D

Figure 5.20: t-SNE example for 2D Gaussian Mixture input.

Again, I will not cover the details of t-SNE in this work — all of the crucial aspects are
covered in [MH08]. Instead, I provide a basic example given in Figure 5.20 to provide some
intuition for the scheme. Figure 5.20a shows an exemplary 2D toy samples drawn from a
multivariate gaussian with three distinct clusters. In 5.20b the 1D t-SNE visualization of
the same data set is given. Note that the three distinct clusters are still visible after the
dimensionality reduction. This shows that t-SNE can preserve the proximity information
between the individual samples. Still, the results from t-SNE should be taken with a
grain of salt. In more complex scenarios, the results may vary significantly for different
choices of hyperparameters. Because of this, t-SNE is generally considered a tool for data
exploration and visualization and should not be mixed up with dimensionality reduction
techniques such as PCA.
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CHAPTER 6
RTR Netztest Analysis

Chapter 1 identified the limited availability of parameters as well as the tedious process
of collecting labeled samples as the key challenges in the realm of context inference.
Such context information is, however, crucial to obtain fair network benchmarks from
crowdsourced measurements. In Chapter 3, I introduced a semi-supervised approach that
allows for classification of measurements as limited or unlimited. This approach offers a
way to deal with the limited number of labeled samples.

data set Operator Time-Range Throughput LTE-RSRP

DA,B,C MNO-{A,B,C} 16.11.19 - 13.02.20 79 Mbit/s -97 dBm
CA MNO-A 28.12.19 - 30.03.20 84 Mbit/s -96 dBm
CB MNO-B 24.11.19 - 29.03.20 69 Mbit/s -97 dBm
CC MNO-C 30.11.19 - 30.03.20 45 Mbit/s -102 dBm

Table 6.1: Crowdsourced data sets.

The following chapter tackles the issue more comprehensively — by applying autoencoders
to the crowdsourced data, the measurements are processed in a completely unsupervised
way. The obtained representations allow for large scale analysis for the time-series data
and can subsequently act as a basis for further inference tasks. This way, the field can
benefit from the advances in deep learning without having to provide a large number of
labeled data. In a sense, this can also be seen as an automated version of the manual
feature engineering conducted in Chapter 3. We have seen that the mapping to the
feature space allowed for robust classification of limited and unlimited measurements.

Motivated by that, I examine the representations obtained by a SAE in an unconditional
and conditional setup and analyze whether those representations expose the context of
measurements. Table 6.1 shows the crowdsourced data sets used for this analysis. Each
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6. RTR Netztest Analysis

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
h0

−3

−2

−1

0

1
h 1

RTR-Data
Tlab

Figure 6.1: Latent Space for RTR Data.

of the sets consists of approximately 20.000 samples from RTR-Netztest. Thereby the
first set DA,B,C is a collection of measurements that were conducted in the interval of
16.11.19 to 13.02.20. Meanwhile, the other sets CA, CB, CC also contain measurements
conducted in March 2020. Thus, the C data sets’ timeframe coincides with the first two
weeks of the COVID-19 related lockdown in Austria. Motivated by this, I will examine
this period in more detail and look for signs of disruptions caused by the subsequent shift
in user behavior.

For both experiments– unconditional and conditional– DA,B,C acts as the autoencoder
training data set. Subsequently, I analyze the latent space representation for the remaining
data, using the already trained model. Besides the crowdsourced data sets in 6.1, this
also includes the manually collected measurements Tlab, VI and VCL from Chapter 3.
Note that for both experiments, the latent layer size dh is set to 2 to allow for a visual
analysis of the results.

6.1 Unconditional Analysis

For the first set of experiments, I use a SAE in an unconditional setup. A detailed model
description can be found in Appendix A. As already stated, DA,B,C acts as a training
data set, while the remaining data sets are open for analysis.

Figure 6.1 provides a first overview of the obtained representations. Here, all samples
from DA,B,C are plotted in black, whereas the latent space representation of Tlab is shown
in green. Compared with the representation for the toy example in 5.13, the latent space
h is of a more ambiguous structure here. Especially the samples from DA,B,C do not
expose a distinct structure in h. The data from Tlab, collected in a lab environment, does,

78

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


6.1. Unconditional Analysis

however, follow a clear pattern. Figure 6.2 further highlights this structure in the sample
distribution of the Tlab representations.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
h0

−3

−2

−1

0

1

2

h 1

Limited
Unlimited

Figure 6.2: Limited and Unlimited Tlab within DA,B,C .

Here, limited and unlimited samples from Tlab are shown in different colors. As a
reference DA,B,C is shown in the form of a density map obtained via KDE — compare
5.4.1. Interestingly the limited and unlimited samples from Tlab are naturally seperated
in Figure 6.2. The autoencoder obtained a 2-dimensional representation that would
allow for classification of Tlab. This is interesting, as I did not incorporate any specific
scheme — like semi-supervised autoencoders — to guide the learner towards exposing
tariff limitations. Also, the autoencoder’s training data was given by DA,B,C , and did
not include Tlab itself. Moreover, it seems as if tariff limits are one of the major features
the SAE obtained from the crowdsourced data of DA,B,C .

Furthermore, we can notice that the limited and unlimited measurements are clustered
along two distinct axes in 6.2. More precisely, the limited samples are spread across
different values of h0, while h1 is more or less fixed. The opposite is true for the unlimited
samples, which concentrate along the axis of h1 with a fixed value of h0 ≈ 0.

Figure 6.3 allows for interpretation of those results. Here, I sampled the latent space along
h0 and h1, in order to gain a deeper understanding of the encoded features. More precisely,
I select distinct regions from the latent space and obtain the respective time-series for
that particular choice of h0 and h1.

Hereby, Figure 6.3a shows the variation along h0, with h1 fixed at 0. The peak in
throughput, already discussed in Figure 2.1 is clearly visible. Based on those results, we
can interpret h0 as an indicator for tariff limits — where the precise value of h0 encodes
the intensity of the peak. More specifically, this means that a low value of h0 indicates a
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6. RTR Netztest Analysis
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(a) Variation in h0 for h1 = 0.
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Figure 6.3: Variation along h0 and h1.

measurement environment where a high theoretical rate could have been achieved before
the throttling activated.

The sampling along h1 with h0 = 0 in Figure 6.3b results in nearly constant throughput
time-series with different means. This indicates that h1 represents the throughput of
the encoded measurement. Hereby, a smaller value of h1 relates to a higher throughput
time-series. Note that while the feature h1 does mainly encode the series’s mean, the
overall encoding process itself is more complex. Consider, for instance, the ramp-up
phase at the beginning of each series in 6.3b.

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
h0

−1.0

−0.5

0.0

0.5

1.0

1.5

h 1

Tariff Limit = 10 Mbit/s
Tariff Limit = 20 Mbit/s
Unlimited

(a) High Interference data set - VI .

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
h0

−1.0

−0.5

0.0

0.5

1.0

1.5

h 1

Tariff Limit = 10 Mbit/s
Tariff Limit = 20 Mbit/s
Unlimited

(b) High Cell Load data set - VCL.

Figure 6.4: Validation data sets in h.

All in all, we can interpret the space in the following way: The value of h1 is encoding
the amplitude of the token-bucket induced peak, which correlates with the theoretically
achievable rate without tariff shaping. At the same time, h0 represents the overall offset
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6.1. Unconditional Analysis

or, respectively, the time series’s tail. For h = 0, the height of the peak and the tail
coincide, which indicates an unlimited test.

As a consequence of this encoding, tariff limits are visible in the latent space. For that,
consider the results shown in Figure 6.4. Here the representations for the validation data
sets under high cell load and interference introduced in 3 are shown. We can see that
the tests with limits of 10 and 20 Mbit/s form two distinct clusters, while the unlimited
tests get mapped to the center. Again, it is interesting, that the autoencoder separates
those natural clusters almost perfectly, without any guidance towards detecting tariff
limitations.

Operator Comparison

Now that the interpretation of the latent space variables h0 and h1 is clear, the obtained
representations can be used to compare the three different MNOs from Table 6.1.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
h0

−3

−2

−1

0

1

h 1

MNO-A

Figure 6.5: CA latent space representation.

Figure 6.5 shows the obtained representation for the data set CA. Again, I also show a
KDE plot of the representation of DA,B,C for reference. On the left of 6.5, three to four
horizontal clusters stand out. Figure 6.2 did already show, that horizontal clusters can be
associated with tariff-limited tests. Analysis of those clusters — via sampling of the latent
space — supports this interpretation. In fact, the obtained samples expose the respective
tariff-limits for each of the clusters — 300, 150, 100, and 10 Mbit/s. Interestingly the
first three limits are consistent with the tariffs that MNO-A is currently offering on its
website.

The Figures 6.6 show the results for the other two MNOs. In 6.6b the results are similar
to the ones in 6.5 — there is again a clear tariff limitation visible. However, the majority
of limited tests seem to be throttled to a lower rate than for MNO-A. This suggests that

81

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


6. RTR Netztest Analysis
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(a) MNO-B
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(b) MNO-C

Figure 6.6: MNO latent space representation.

MNO-C is selling fewer high rate tariffs than MNO-A. In theory, it could also mean that
MNO-C customers hardly ever reach the throughput needed for the high rate tariff-limits
to activate. This observation does also correspond to the metrics in 6.1 — where MNO-C
lags far behind in throughput.

Interestingly, there are no clear tariff limits visible in Figure 6.6a. While the latent space
suggests that peaks induced by tariff limits are present, they are not organized in distinct
clusters. This is consistent with the results from Table 3.3, which also suggests that
MNO-B has the smallest ratio of limited tests. The reason behind this is not entirely
apparent. An explanation would be that MNO-B utilizes a different tariff limitation
scheme than the other two operators.

Lockdown data set

The process of writing this thesis coincided with the COVID-19 induced lockdown in
Austria. This motivates the analysis of the effects the lockdown had on the cellular
networks. For that, I filter the data sets CA, CB , CC for samples collected after 16.03.2020,
while the training data does still consist of all of DA,B,C .

MNO Throughput Change [%] RSRP Change [dBm]

MNO-A 65 Mbit/s -23% -98 dBm -2 dBm
MNO-B 34 Mbit/s -51% -101 dBm -4 dBm
MNO-C 33 Mbit/s -27% -101 dBm -1 dBm

Table 6.2: Lockdown data sets.

When looking at the metrics in Figure 6.2, we see that there has been an apparent
reduction in throughput. However, this decrease in throughput can not be explained
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6.1. Unconditional Analysis

solely by fluctuations in RSRP– note further that those fluctuations are most likely
caused by the small sample size of two weeks. Analyzing the throughput time-series can
provide further insights into the reasons behind this drop in throughput. Again we have
to resort to the latent space representation of the time-series to pursue such an analysis
on a large scale.
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(a) All of CC .
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(b) Lockdown CC .

Figure 6.7: Lockdown analysis MNO-C.
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(a) All of CB .
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(b) Lockdown CB .

Figure 6.8: Lockdown analysis MNO-B.

Figures 6.7, 6.8, 6.9 show a comparison of the representation from before and during the
lockdown. While the results differ for each MNO, all lockdown data sets tend to have
a reduced width in h0 as compared to the pre-lockdown samples. This effect is quite
prominent in Figure 6.7, where we can see a reduction of samples in the area representing
tariff-limitations. At the same time, we can observe a reduction of high throughput
measurements. Those findings suggest that there could have been increased cell-load
during the lockdown — even though the RSRP is similar to pre-lockdown measurements,
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6. RTR Netztest Analysis
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(a) All of CA.
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(b) Lockdown CB .

Figure 6.9: Lockdown analysis MNO-A.

users do not reach the same throughput levels. This increase in cell-load might also
explain the lack of tariff-limited tests — users are simply not reaching the throughput
necessary for the tariff shaping to activate.

While the latent space analysis offers some clues regarding the performance during
the lockdown — we know that tariff-limits are not to blame — we still can not say,
whether the measurements during lockdown are representative. By that I mean, that the
lockdown caused a significant shift in user behavior. As an effect of this, it is hard to say
whether the data set describes the network performance during a lockdown or is merely
a consequence of a shift in the crowd’s behavior concerning throughput measurements.

6.2 Conditional Analysis

Conditional autoencoders were introduced in Chapter 5.2.3. Remember, that they provide
a way to encode metadata into a separate feature vector m. This feature vector m acts
as an additional input for the encoder e(·) and decoder d(·). As an effect of this the
latent space h of a conditional autoencoder is parametrized on a distinct choice of m.

In addition to the throughput time-series, RTR-Netztest offers several meta parameters.
Those parameters were already discussed in Chapter 2.3. Encoding those features into
m allows for comparison of different MNOs for a distinct choice of m. An example of
this would be the RSRP — Table 6.1 showed that it is varying slightly between different
operators. Conditioning on the RSRP can highlight other performance aspects in cellular
networks — cell load effects might, for instance, be more evident in such a setup.

For that, I discretize the RSRP into ten distinct intervals with uniform width and encode
it directly into m. In the following, I denote this intervals by LevelRSRP = i where i is
from {0, . . . , 9}. Without the discretization step, there would not be a sufficient number
of samples for a given choice of RSRP.
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6.2. Conditional Analysis

Analysis of Tlab
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Figure 6.10: Tlab conditioned on RSRP (LevelRSRP = 0, . . . , 9).

Figure 6.10 shows the latent space for such a conditional autoencoder. Here, I use a SAE
— the precise model can be found in Appendix A. In Figure 6.10 the training data set
DA,B,C is shown in form of a KDE, while the scatter plot shows the limited/unlimited
samples of Tlab. Note also, that in this depiction all 10 LevelRSRP are shown at the same
time. Sampling of the latent space reveals, that h0 does again encode the throughput,
while h1 reflects the peak induced by tariff shaping. Note, that this is similar to the
results from Figure 6.3.

Still, there is a significant difference in the representation of the conditional autoencoder
in 6.10 and its unconditional counterpart in Figure 6.2. Most notably, in 6.10, the
unlimited samples are clustered along a small intervall of h1 — besides samples for low
RSRP. This is not the case for the unconditional autoencoder in 6.2, where the unlimited
tests cover a wide range of h1. The reason for this is that samples in 6.10 are conditioned
on the RSRP. This means that h1 does not directly encode throughput, but deviations
from the expected throughput over RSRP.

Note that here, the training data set DA,B,C acts as the reference. As Tlab was collected
under lab condition, the throughput over RSRP is not affected by cell load and interference

— the data set is thus mapped to a distinct closed region. When only considering
LevelRSRP > 0, the samples are even more densely packed.

Interpretation of the latent space

Figure 6.11 sums up the interpretation of the latent space for the trained conditional
autoencoder. We can think of h to consist of 4 distinct regions, which describe different
classes of tests.
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6. RTR Netztest Analysis

Unlimited
Low Throughput / RSRP

Tariff Limited
Low Throughput / RSRP

Unlimited
High Throughput / RSRP

Tariff Limited
High Throughput / RSRP

Figure 6.11: Interpretation of Latent Space.

The upper left corner of the latent space does, for instance, encode unlimited test with
an above-average throughput over RSRP ratio. Unlimited samples from Tlab are also
mapped to this part of h —the lack of cell load and interference renders those tests above
average in terms of throughput.

Generally, test mapped to the lower half of h tend to have relatively low throughput
for the given LevelRSRP . The distinct value of h0 again splits this area into unlimited
and limited tests. For the limited tests, the tariff limit is naturally the reason for the
below-average throughput over RSRP. Meanwhile, the unlimited measurements in the
lower-left corner include tests from high cell load or high interference scenarios. This
area might also include measurements from limited sim-cards, which do not reach the
throughput necessary for the tariff shaping to activate.

Finally, the right upper represents high throughput tests for a given RSRP region, which
are limited at the same time. Such tests — high tariff limit and low cell load and
interference — tend to be rare. This lack of tests can also be seen in the KDE plot in
Figure 6.10.

All of this means that the conditional autoencoder offers a distinct area where cell-load
and interference effects can be detected. In such a representation we can distinguish a
network operator suffering from high cell load or interference from one which sells low
throughput contracts. While the latter follows a legitimate business strategy, the first
MNOs network might require further investment.

Validation data set analysis

Figures 6.12 further supports this interpretation of the latent space. Here, the represen-
tations for the validation data sets VI (6.12a) and VCL (6.12b) are shown. The plots can
be seen as the conditional counterpart to 6.4. Due to the high RSRP environment in
both data sets, the plot is only showing the region LevelRSRP = 9. As a reference, the
limited & unlimited representations of Tlab for LevelRSRP = 9 are also depicted.
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6.3. Conclusion
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(a) High Interference data set VI .
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(b) High Cell-Load data set VCL.

Figure 6.12: Latent Space Conditioned LevelRSRP = 9.

As expected, tariff-limited tests are mapped to the lower-right region for both plots.
Furthermore, the different tariff-limits of 10 & 20 Mbit/s are separated by different values
of h1. At the same time, the 10 Mbit/s limited tests of validation data and Tlab do
share the same h1 value. On the other hand, the unlimited tests get mapped to the
upper-left part of h. This suggests that the throughput over RSRP is still above-average
for VCL and VI . However, both unlimited clusters are well below the Tlab samples, which
were collected in a lab environment without cell-load or interference effects. It is also
interesting to see that the unlimited test in 6.12b are spread across a larger interval of
h1 than the ones in 6.12a. This effect is most likely caused by variations in cell-load
throughout the measurement process. Note that this behavior was not directly visible in
the unconditional counterpart in Figure 6.4b.

6.3 Conclusion

All in all, the results above show that autoencoders can indeed be used for large scale anal-
ysis of high-dimensional data. Without any guidance towards exposing tariff-limitations,
the learner obtained a representation that naturally separates limited and unlimited tests.
Additionally, it maps each tariff-limit to a distinct cluster, which uncovers the tariff
structure of different MNOs. The results from the extension to conditional autoencoders
suggest that the removal of the RSRP influence leads to a representation that further
highlights cell-load and interference effects.

All of this is achieved under a relatively generic setup that does not require extensive
fine-tuning to adapt to the data at hand. Exposing the QAM-Constellation in 5.3.2
and learning representations from RTR-Netztest is, for instance, achieved with the same
autoencoder configuration1.

1The model configuration is provided in A
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6. RTR Netztest Analysis

While the results for the lab and validation data sets are promising, the representa-
tions obtained for the crowdsourced data are more ambiguous. This shows that the
representation learning process is still highly sensitive to the quality of the input data.
The operator comparison did offer some insights into the distribution of the throughput
time-series and exposed the underlying tariff-structure of the MNOs. Still, I did not
obtain natural clusters for different classes of throughput time-series — in fact, most of
the MNOs had a generic distribution in h. This shows that while RTR-Netztest offers a
vast number of samples, it still lacks a sufficient number of diverse users to really capture
all environmental conditions. Especially when limiting the evaluation of the data to a
smaller region and time-interval, we can see, that a majority of samples is most likely
coming from a small number of devices.

Still, I find the application of representation learning to such network benchmarking results
promising. We have seen that the representations clearly separate limited & unlimited
tests. This could be extended to other use-cases. Higher-dimensional representations of
the measurement results could, for instance, act as the basis for other context inference
tasks. Among those are, for instance, indoor/outdoor detection or the inference of
cell-load effects. Also semi-supervised architectures seem promising in this domain —
provided that a sufficient number of labeled samples is available.
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CHAPTER 7
Conclusion

Throughout this work, I used machine learning to address one of the primary challenges in
the field of crowdsourced network benchmarks — the missing context of user measurements.
The key objective was thereby to extract information inherent to the throughput time-
series in order to expose the environmental conditions under which measurements were
conducted. In particular, I focused on detecting tariff-limitations, which has been
identified as a critical requirement for fair operator benchmarking. For all of this work,
the extensive set of several thousand ground truth measurements I collected proved to
be essential for training and validating the used algorithms.

In summary, I tackled the two primary challenges of context inference — namely the lim-
ited availability of parameters and the tedious process of collecting labeled measurements–
in two ways:

The first step, as discussed in Chapter 3, involved introducing a semi-supervised method
for classifying limited and unlimited measurements. This addresses the question put
forward in Chapter 1 — regarding the extent to which we can infer the network view

from the user view while dealing with the limited availability of parameters.
As such, I conducted manual feature engineering to extract the critical features from
an RTR-Netztest measurement. Transforming the collected raw measurements into the
feature space shows, that the carefully selected features separate limited and unlimited
tests almost without error. Subsequently, I trained a classifier based on Label-Spreading
that operates on the generated feature vector. The semi-supervised nature of Label-
Spreading allows unlabeled data to be included in the process, which is a step to ensure
effective generalization from the training samples. Benchmarking based on an outdoor
validation data set confirmed that the unlabeled data does indeed improve accuracy.
Overall, the classifier achieves an accuracy of 99% when benchmarked on the unseen
20Mbit/s data set. Subsequently, I applied this classifier to a crowdsourced data set from
RTR-Netztest to obtain an operator benchmark from the network view. Although the
ranking itself did not change in this case, the results differed significantly from the user
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7. Conclusion

view. Note that the outdoor ground truth data set proved to be essential to guarantee
dependable validation of the overall approach — a step that is often missing in approaches
in the literature. In general, the manual data collection I conducted is crucial for training
and validating the algorithm — having access to a reference LTE eNodeB proved to be
fundamental to achieve the reliable classification results.

Although the classifier in Chapter 3 offers robust and accurate results, the manual feature
engineering conducted is specific to the use case and requires domain knowledge. As such,
the second part of this work evaluated the application of representation learning in this
field. As a mainly unsupervised approach, it tackles the issue of limited labeled examples
comprehensively. As such, the benchmark analysis can benefit from deep learning
techniques without having to provide a large amount of labeled data. This addresses the
second question in this work — namely, in what way deep learning can aid this

process and what are the challenges when applying it to crowdsourced data

sets?. For that, I applied representation learning with autoencoders to the crowdsourced
data sets. The latent space analysis showed that the obtained 2D representation encoded
the overall throughput of the time-series as well as the peak induced by the tariff-limits.
As an effect of this, limited and unlimited tests were each mapped to distinct clusters.
This is remarkable, as I did not deploy any specific scheme to guide the learner towards
detecting tariff limits. When comparing the latent space representation of measurements
from different MNOs, the distinct tariff limit structures of the respective MNOs were
clearly visible. In a second step, I evaluated measurements from during the Covid-
19 induced lockdown in Austria. The analysis of the meta-parameters revealed that
throughput significantly decreased, but the data did not provide any further insight
into its cause. Thus, I conducted a large-scale analysis of the throughput time series
with the help of the latent space representation of this lockdown data set. The results
offered a more detailed insight into the data set; however, it is still hard to say to what
extent the data represents the performance during the lockdown. The quality of the
crowdsourced data is, in my opinion, a general issue in this field. We have seen that, while
the representations of the self-collected lab and validation data are meaningful, this is not
always the case for the crowdsourced data sets — this further highlights the importance
of reliable ground truth data. Additionally, the latent space interpretation proved to
be challenging in some cases, as unsupervised autoencoders do not offer a direct way of
controlling which features get picked up. I think that supervised and semi-supervised
autoencoders are particularly promising to tackle those issues.

Overall, this work successfully addressed the challenges discussed in Chapter 1. In my
opinion, it can also act as a case study on how to conduct inference in an environment
with only a small number of labeled samples and a limited availability of parameters.
The semi-supervised approach, which generalizes from a self-collected data set by using
unlabeled samples, allowed for robust classification of limited and unlimited measurements.
I think that the generalization from a self-collected data set by using unlabeled samples
could also be beneficial in other problems regarding the inference of context in mobile
network benchmarking. The problem of tariff-limit detection does, for instance, exhibit
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similar challenges than indoor/outdoor classification. Both problems share the limited
availability of parameters and lack sufficient numbers of labeled data. Representation
learning does have an even broader scope of possible applications. We have seen that
it offers techniques to make sense of large data sets with high-dimensional samples. As
such, it is a powerful tool for data exploration.
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APPENDIX A
Used Code & Models

The following Listings provide the key code sections used throughout this work. In
the following, the implementation of the feature generation process from chapter 3 is
provided.

Listing A.1: Feature Generation

import pandas as pd
import numpy as np
from sk l ea rn . covar iance import GraphicalLassoCV
import s c ipy

t_lab = pd . read_pick le ( " t_lab_data . pb " )

t_lab_ser ies_normal ized = t_lab . s e r i e s . d iv (
t_lab . s e r i e s . max( ax i s =1) , ax i s=0

)
un l imited = t_lab_ser ies_normal ized [ t_lab . meta . l a b e l == 0 ] . va lue s
l i m i t e d = t_lab_ser ies_normal ized [ t_lab . meta . l a b e l == 1 ] . va lue s

’ ’ ’
Test S t a t i s t i c
’ ’ ’

de f estimate_moments ( s e r i e s ) :
C = GraphicalLassoCV ( cv =5). f i t ( s e r i e s ) . covariance_
m = s e r i e s . mean ( )
re turn C, m
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A. Used Code & Models

de f t e s t _ s t a t i s t i c (x , m0, m1, C0 , C1 ) :
x_0 = x − m0
x_1 = x − m1

C0_inv = np . l i n a l g . inv (C0)
C1_inv = np . l i n a l g . inv (C1)
dete r = np . l i n a l g . det (C0) ∗ np . l i n a l g . det ( C1_inv )

x_0_term = np . matmul (x_0 , C0_inv ) @ x_0 . t ranspose ( )
x_1_term = np . matmul (x_1 , C1_inv ) @ x_1 . t ranspose ( )

re turn (x_0_term − x_1_term) + np . l og ( de te r )

de f g e t _ s t a t i s t i c _ v e c t o r ( s e r i e s , m0, m1, C0 , C1 ) :
t e s t _ s t a t i s t i c s = [ ]
f o r _, x in s e r i e s . i t e r r o w s ( ) :

t_x = t e s t S t a t i s t i c ( x . va lues , m0, m1, C0 , C1)
t e s t _ s t a t i s t i c s . append ( t_x)

return t e s t _ s t a t i s t i c s

m_unlimited , C_unlimited = estimate_moments ( un l imited )
m_limited , C_limited = estimate_moments ( l i m i t e d )

t_lab [ ’ meta ’ , ’ s t a t i s t i c ’ ] = g e t _ s t a t i s t i c _ v e c t o r (
t_lab_ser ies_normal ized ,
m_unlimited , m_limited ,
C_unlimited , C_limited

)

’ ’ ’
Skew S t a t i s t i c
’ ’ ’

t_lab [ ’ meta ’ , ’ skew ’ ] = sc ipy . s t a t s . skew (
t_lab_ser ies_normal ized , ax i s =1, b i a s=False

)

’ ’ ’
PAR
’ ’ ’

t_lab [ ’ meta ’ , ’ par ’ ] = 1 / np . mean(
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t_lab_ser ies_normal ized , ax i s=1
)

’ ’ ’
Rate Beginning & End
’ ’ ’

t_lab [ ’ meta ’ , ’ r_start ’ ] = t_lab . s e r i e s . i l o c [ : , : 1 0 ] . mean( ax i s =1)
t_lab [ ’ meta ’ , ’ r_end ’ ] = t_lab . s e r i e s . i l o c [ : , 2 0 : ] . mean( ax i s =1)

The below listing provides the code used for LabelSpreading used in 3. Hereby, I ressort to
Sklearn [BLB+13] for a high performance implementation. Additionally, I use Hyperopt
[BKE+15] for hyperparameter optimization.

Listing A.2: Label Spreading

from sk l ea rn . p r ep ro c e s s i ng import StandardSca ler
from sk l ea rn . semi_supervised import LabelSpreading
from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
from sk l ea rn . met r i c s import c l a s s i f i c a t i o n _ r e p o r t , f1_score
import pandas as pd
import numpy as np
from hyperopt import fmin , tpe , hp , STATUS_OK

tra in ing_data = pd . read_pick le ( " t_lab_data . pb " )
va l idat ion_data = pd . read_pick le ( " vcl_vi_combined . pb " )
rtr_data = pd . read_pick le ( " rtr_data . pb " )

’ ’ ’
Standard ize Dataset f o r Label Propagation
’ ’ ’

s c a l e r = StandardSca ler ( )
s c a l e r . f i t ( t ra in ing_data . f e a t u r e s )

input_tra in ing = s c a l e r . trans form ( tra in ing_data . f e a t u r e s )
input_gt = s c a l e r . t rans form ( va l idat ion_data . f e a t u r e s )
input_rtr = s c a l e r . trans form ( rtr_data . f e a t u r e s )

input_tra in ing = pd . DataFrame ( input_tra in ing )
input_gt = pd . DataFrame ( input_gt )
input_rtr = pd . DataFrame ( input_rtr )
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A. Used Code & Models

’ ’ ’
Label Spreading Parameter Optimizat ion
’ ’ ’

de f o b j e c t i v e ( params ) :
de f l o s s_fn ( params ) :

l s = LabelSpreading (
gamma=params [ ’ gamma ’ ] ,
alpha=params [ ’ alpha ’ ]

)
l s . f i t (

input_tra in ing . i l o c [ : , :−1] ,
t ra in ing_data . meta . l a b e l

)
r e turn − l s . s c o r e (

input_gt ,
va l idat ion_data . meta . l a b e l

)
r e turn {

’ l o s s ’ : l o s s_fn ( params ) ,
’ s tatus ’ : STATUS_OK

}

hp_space = { ’gamma ’ : hp . loguni form ( ’gamma’ , 1e−3, 5 ) ,
’ alpha ’ : hp . loguni form ( ’ alpha ’ , 1e−3, 5)}

optimized_hyperparams = fmin (
ob j e c t i v e ,
space=hp_space ,
a lgo=tpe . suggest ,
max_evals=1000

)

gamma = np . l og ( optimized_hyperparams [ ’ gamma ’ ] )
alpha = np . l og ( optimized_hyperparams [ ’ alpha ’ ] )

’ ’ ’
Label Spreading & Cross Va l idat ion
’ ’ ’

NUM_ITERATIONS = 100
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accuracy_semi = [ ]
score_semi = [ ]
accuracy_super = [ ]
score_super = [ ]

f o r _ in range (0 , NUM_ITERATIONS) :
gt_tr , gt_te , _, gt_tar_te = t r a i n _ t e s t _ s p l i t (

input_gt ,
va l idat ion_data . meta . l abe l ,
t e s t _ s i z e =0.2 ,
s h u f f l e=True

)

#Prepare Train ing Data Set
gt_tr [ ’ l abe l ’ ] = −1
input_tra in ing [ ’ l abe l ’ ] = tra in ing_data . meta . l a b e l
combined_semi = pd . concat ( [ input_data , gt_tr ] )

#Super
lab_prop_semi = LabelSpreading (

gamma=gamma, alpha=alpha
)
lab_prop_semi . f i t (

combined_semi . i l o c [ : , :−1] ,
combined_semi [ ’ l abe l ’ ]

)

lab_prop_super = LabelSpreading (
gamma=gamma, alpha=alpha

)
lab_prop_super . f i t (

input_tra in ing . i l o c [ : , :−1] ,
t ra in ing_data . meta . l a b e l

)

accuracy_semi . append (
lab_prop_semi . s c o r e (

gt_te ,
gt_tar_te

)
)
score_semi = f1_score (

lab_prop_semi . s c o r e (
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A. Used Code & Models

gt_te ,
gt_tar_te

)
)

accuracy_super . append (
lab_prop_super . s c o r e (

input_gt ,
va l idat ion_data . meta . l a b e l

)
)
score_super = f1_score (

lab_prop_super . s c o r e (
input_gt ,
va l idat ion_data . meta . l a b e l

)
)

p r i n t ( f " Accuracy Semi−Superv i sed : {np . median ( accuracy_semi ) } " )
p r i n t ( f "F1 Semi−Superv i sed : {np . median ( score_semi ) } " )

p r i n t ( f " Accuracy Superv i sed : {np . median ( accuracy_super ) } " )
p r i n t ( f "F1 Superv i sed : {np . median ( score_super ) } " )

’ ’ ’
MNO−Comparison
’ ’ ’

mno_a = pd . read_pick le ( "mno_a . pb " )
mno_a_features = s c a l e r . t rans form (mno_a . f e a t u r e s )
mno_a_features = pd . DataFrame ( mno_a_features )

mno_b = pd . read_pick le ( "mno_b. pb " )
mno_b_features = s c a l e r . trans form (mno_b. f e a t u r e s )
mno_b_features = pd . DataFrame ( mno_b_features )

mno_c = pd . read_pick le ( "mno_c . pb " )
mno_c_features = s c a l e r . t rans form (mno_c . f e a t u r e s )
mno_c_features = pd . DataFrame ( mno_c_features )

mno_c l a s s i f i e r = LabelSpreading (
gamma=gamma, alpha=alpha

)
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mno_c la s s i f i e r . f i t (
pd . concat ( [ input_data , input_gt ] )
pd . concat (

[ t ra in ing_data . meta . l abe l ,
va l idat ion_data . meta . l a b e l ]

)
)

labe l s_a = mno_c la s s i f i e r . p r e d i c t ( mno_a_features )
labe l s_b = mno_c la s s i f i e r . p r e d i c t ( mno_b_features )
l abe l s_c = mno_c la s s i f i e r . p r e d i c t ( mno_c_features )

The below listing provides the code for the RMBT class, which incorporates the resampling
procedure used throughout the work. The set_raw_data method is hereby used to process
data from RTR-Netztest.

Listing A.3: Resampling

import pandas as pd
import numpy as np

c l a s s RMBT:
de f __init__( s e l f , open_test_uuid ) :

s e l f . _open_test_uuid = open_test_uuid

#Time S e r i e s Parameters
s e l f . _re so lu t i on = 0 .1
s e l f . _total_durat ion = 7

de f set_raw_data ( s e l f , overview , threads , s i g n a l s ) :
#Data From RTR−Netzte s t
s e l f . _s igna l = s i g n a l s
s e l f . _threads = threads
s e l f . _overview = overview

de f __str__( s e l f ) :
#Also add the downlink and upl ink in fo rmat ion
return s t r ( s e l f . _open_test_uuid )

’ ’ ’
Time S e r i e s Proce s s ing
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A. Used Code & Models

’ ’ ’

de f _resample_datarate ( s e l f , input_df ) :
r e s o l u t i o n = s e l f . _re so lu t i on
tota l_durat ion = s e l f . _total_duration

resampled_time = np . arange (
0 ,
tota l_durat ion ,
r e s o l u t i o n

)
accumulated = np . z e r o s ( l en ( resampled_time ) )

f o r thread in input_df . thread . unique ( ) :
per_frame_df = input_df [ input_df . thread == thread ]

t ime_ser i e s = l i s t (
per_frame_df . time_elapsed_ns ∗ 1e−9

)
byte_se r i e s = l i s t ( per_frame_df . bytes_tota l )

t ime_ser i e s . i n s e r t (0 , 0)
byte_se r i e s . i n s e r t (0 , 0)

accumulated += np . i n t e r p (
resampled_time ,
t ime_ser ie s ,
by t e_se r i e s

)

re turn pd . S e r i e s (
l i s t (

np . g rad i en t ( accumulated )
∗ 1e−5 ∗ 8 ∗ 0 .1/ r e s o l u t i o n

) ,
resampled_time

)

’ ’ ’
Publ ic Methods and Prope r t i e s
’ ’ ’

@property
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de f downl ink_ser ie s ( s e l f ) :
#Resample Downlink S e r i e s
re turn s e l f . _resample_datarate (

s e l f . _threads [ s e l f . _threads . type==’dl ’ ]
)

@property
de f up l i nk_se r i e s ( s e l f ) :

#Resample Uplink S e r i e s
re turn s e l f . _resample_datarate (

s e l f . _threads [ s e l f . _threads . type==’ul ’ ]
)

rmbt = RMBT( ’ open_test_uuid_placeholder ’ )
rmbt . downl ink_ser i e s
rmbt . up l i nk_se r i e s

The below code was used to approximate the logical AND in chapter 4. Hereby, I ressort
to [C+15] for an efficient implementation of neural networks.

Listing A.4: Approximating AND

from ten so r f l ow import keras
from ten so r f l ow . keras . l a y e r s import Dense
import numpy as np
import pandas as pd

s i z e = 1000
x0 = np . random . cho i c e ( [ 0 , 1 ] , s i z e =( s i z e , ) , p =[1 ./2 , 1 . / 2 ] )
x1 = np . random . cho i c e ( [ 0 , 1 ] , s i z e =( s i z e , ) , p =[1 ./2 , 1 . / 2 ] )

data = pd . DataFrame ( [ x0 , x1 ] ) . t ranspose ( )
data [ ’ output ’ ] = data [ 0 ] & data [ 1 ]
data [ ’ output ’ ] = data [ ’ output ’ ] . apply ( i n t )

’ ’ ’
L inear Model
’ ’ ’

model = keras . Sequent i a l ( [
Dense (1 ,

a c t i v a t i o n =" l i n e a r " ,
input_shape =(2 ,)

) ,
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A. Used Code & Models

Dense (1 ,
a c t i v a t i o n =" l i n e a r " ,
use_bias=False

)
] )

model . compi le (
opt imize r =’adam ’ ,
l o s s =’mse ’

)

model . f i t (
x=data . i l o c [ : , : − 1 ] ,
y=data [ ’ output ’ ] ,
batch_size =50,
epochs=500

)

model . get_weights ( )
model . p r e d i c t ( data . i l o c [ : , :−1])

’ ’ ’
Model with Non l in ea r i ty
’ ’ ’

model = keras . Sequent i a l ( [
Dense (1 ,

a c t i v a t i o n =" l i n e a r " ,
input_shape =(2 ,)

) ,
Dense (1 ,

a c t i v a t i o n =" r e l u " ,
use_bias=False

)
] )

model . compi le (
opt imize r =’adam ’ ,
l o s s =’mse ’

)

model . f i t (
x=data . i l o c [ : , : − 1 ] ,
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y=data [ ’ output ’ ] ,
batch_size =50,
epochs=200

)

model . get_weights ( )
model . p r e d i c t ( data . i l o c [ : , :−1])

I used the below code to generate the plots for the overfitting example in chapter 4.

Listing A.5: Ridge Regression & OLS

import pandas as pd
import numpy as np

from sk l ea rn . p r ep ro c e s s i ng import PolynomialFeatures
from sk l ea rn . l inear_model import LinearRegress ion , Ridge
from sk l ea rn . p i p e l i n e import P i p e l i n e

x_true = np . l i n s p a c e (0 ,1 , 100 )
x = np . random . uniform ( high =1, s i z e =5)
y = np . array ( [

np . random . normal (
l o c ∗∗2+0.5 , s c a l e =0.1)
f o r l o c in x

] )

data = pd . DataFrame ( [ x , y ] ) . t ranspose ( )

ord inary_ls_dict = {}
r idge_d ic t = {}

pr int_o l s_dic t = {}
pr int_r idge_dict = {}

f o r degree in [ 1 , 3 , 5 ] :
model = P i p e l i n e ( [

( ’ poly ’ , PolynomialFeatures ( degree=degree ) ) ,
( ’ l i n e a r ’ , L inearRegre s s i on ( f i t _ i n t e r c e p t=False ) )

] )

model = model . f i t ( x [ : , np . newaxis ] , y )
y_pred = model . p r e d i c t ( x_true [ : , np . newaxis ] )
ord inary_ls_dict [ degree ] = model . named_steps [ ’ l i n e a r ’ ] . coef_
pr int_o l s_dic t [ degree ] = y_pred
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A. Used Code & Models

model = P i p e l i n e ( [
( ’ poly ’ , PolynomialFeatures ( degree=degree ) ) ,
( ’ r idge ’ , Ridge ( alpha =.1))

] )
model = model . f i t ( x [ : , np . newaxis ] , y )
y_pred = model . p r e d i c t ( x_true [ : , np . newaxis ] )
r idge_d ic t [ degree ] = model . named_steps [ ’ r idge ’ ] . coef_
pr int_r idge_dict [ degree ] = y_pred

The below code was used to generate the plots regarding regularization in neural networks
in chapter 4. Here I used the dataset from .

Listing A.6: Overfitting & Regularization

import pandas as pd
from ten so r f l ow import keras
import matp lo t l i b . pyplot as p l t

t r a i n = pd . read_csv ( " . / t r a i n . csv " )
x_train , y_train = t r a i n . i l o c [ : , 1 : ] , t r a i n . i l o c [ : , 1 ]

t e s t = pd . read_csv ( " . / t e s t . csv " )
x_test , y_test = t e s t . i l o c [ : , 1 : ] , t e s t . i l o c [ : , 1 ]

’ ’ ’
O v e r f i t t i n g Model
’ ’ ’

model = keras . Sequent i a l ( )
model . add ( keras . l a y e r s . Dense (

300 , a c t i v a t i o n =" r e l u " ,
input_dim=300

) )
model . add ( keras . l a y e r s . Dense (128 , a c t i v a t i o n =" r e l u " ) )
model . add ( keras . l a y e r s . Dense (64 , a c t i v a t i o n =" r e l u " ) )
model . add ( keras . l a y e r s . Dense (1 , a c t i v a t i o n ="sigmoid " ) )
model . compi le (

opt imize r =’adam ’ ,
l o s s =’ binary_crossentropy ’ ,
met r i c s =[ ’ accuracy ’ ]

)

h i s t o r y = model . f i t (
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x_train , y_train ,
batch_size =32,
epochs =100 ,
v a l i d a t i o n _ s p l i t =0.2 ,
s h u f f l e=True

)

l o s s = h i s t o r y . h i s t o r y [ ’ accuracy ’ ]
va l_ lo s s = h i s t o r y . h i s t o r y [ ’ val_accuracy ’ ]

p l t . f i g u r e ( )
p l t . t i t l e ( "No Regu l a r i z a t i on " )
p l t . p l o t ( l o s s , l a b e l ="Accuracy " )
p l t . p l o t ( va l_loss , l a b e l =" Va l idat ion Accuracy " )
p l t . l egend ( )
p l t . x l a b e l ( " Epochs " )
p l t . show ( )

’ ’ ’
Regu lar i zed Model
’ ’ ’

model = keras . Sequent i a l ( )
model . add ( keras . l a y e r s . Dense (16 , a c t i v a t i o n =" r e l u " , input_dim=10))
model . add ( keras . l a y e r s . Dropout ( 0 . 5 ) )
model . add ( keras . l a y e r s . Dense (8 , a c t i v a t i o n =" r e l u " ) )
model . add ( keras . l a y e r s . Dropout ( 0 . 5 ) )
model . add ( keras . l a y e r s . Dense (1 , a c t i v a t i o n ="sigmoid " ) )
model . compi le (

opt imize r =’adam ’ ,
l o s s =’ binary_crossentropy ’ ,
met r i c s =[ ’ accuracy ’ ]

)

h i s tory_reg = model . f i t (
x_train_new , y_train ,
batch_size =32,
epochs =100 ,
v a l i d a t i o n _ s p l i t =0.2 ,
s h u f f l e=True

)

l o s s = hi s tory_reg . h i s t o r y [ ’ l o s s ’ ]
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A. Used Code & Models

va l_ lo s s = his tory_reg . h i s t o r y [ ’ va l_loss ’ ]

f i g u r e = p l t . f i g u r e ( )
p l t . p l o t ( l o s s , l a b e l ="Train ing " )
p l t . p l o t ( va l_loss , l a b e l ="Test " )
p l t . l egend ( )
p l t . y l a b e l ( " Loss " )
p l t . yl im (0 , 1 . 25 )
p l t . x l a b e l ( " Epochs " )
p l t . show ( )

The below code provides the basic structure for the implementation of a vanilla autoen-
coder used throughout chapter 5.

Listing A.7: Vanilla Autoencoder Basic Structure

from ten so r f l ow . python . keras . l a y e r s import Dense , Input
from ten so r f l ow . python . keras . models import Model
from ten so r f l ow . python . keras . r e g u l a r i z e r s import l 1

’ ’ ’
Bas ic St ruc ture o f a Van i l l a Autoencoder
’ ’ ’

de f encoding_network ( input , dimension ) :
x = Dense ( . . . ) ( input )
# . . .
x = Dense ( dimension , a c t i v a t i o n =’ re lu ’ ) ( x )
re turn x

de f decoding_network ( latent_input , dimension ) :
x = Dense ( . . . ) ( la tent_input )
# . . .
x = Dense ( dimension , a c t i v a t i o n =’ re lu ’ ) ( x )
re turn x

ORIGINAL_DIMENSION = 70
LATENT_DIMENSION = 2

’ ’ ’
Generate the Model
’ ’ ’

main_input = Input (
shape=(ORIGINAL_DIMENSION, ) ,
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name="Main−Input "
)

latent_input = Input (
shape=(LATENT_DIMENSION, ) ,
name="Latent−Input "

)

latent_output = encoding_network (
main_input ,
LATENT_DIMENSION

)
main_output = decoding_network (

latent_input ,
ORIGINAL_DIMENSION

)

encoder = Model (
main_input ,
latent_output ,
name="Encoder "

)

decoder = Model (
latent_input ,
main_output ,
name="Decoder "

)

autoencoder = Model (
main_input ,
decoder ( encoder ( main_input ) ) ,
name="Autoencoder "

)

autoencoder . compi le ( l o s s = " . . . " , opt imize r = " . . . " )
autoencoder . f i t ( . . . )

’ ’ ’
P r ed i c t i on
’ ’ ’
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A. Used Code & Models

z = encoder . p r e d i c t ( x )
x_prime = decoder . p r e d i c t ( z )
x_prime = autoencoder . p r e d i c t ( x )

Implementing the sparse autoencoder from chapter 5 requires changes to the encod-
ing_network function.

Listing A.8: Sparse Autoencoder

from ten so r f l ow . python . keras . l a y e r s import Dense , Input
from ten so r f l ow . python . keras . models import Model
from ten so r f l ow . python . keras . r e g u l a r i z e r s import l 1

’ ’ ’
Sparse Autoencoder − Act iv i ty r e g u l a r i z a t i o n f o r Latent Layer
’ ’ ’

de f encoding_network ( input , dimension ) :
x = Dense ( . . . ) ( input )
# . . .
x = Dense (

dimension ,
a c t i v a t i o n =" r e l u " ,
a c t i v i t y _ r e g u l a r i z e r=l 1 (SPARSITY_PENALTY) ,

) ( x )
re turn x

de f decoding_network ( latent_input , dimension ) :
x = Dense ( . . . ) ( la tent_input )
# . . .
x = Dense ( dimension , a c t i v a t i o n =’ re lu ’ ) ( x )
re turn x

Below the code for the variational autoencoder from chapter 5 is provided.

Listing A.9: Variational Autoencoder

from ten so r f l ow . python . keras . l a y e r s import Dense , Input
from ten so r f l ow . python . keras . models import Model
from ten so r f l ow . python . keras . l a y e r s . core import Lambda
from ten so r f l ow . python . keras import backend as K
from ten so r f l ow . python . keras . l o s s e s import mse

’ ’ ’
Bas ic St ruc ture o f a V ar i a t i ona l Autoencoder
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’ ’ ’

de f sampling_procedure ( args ) :
z_mean , z_log_var = args
batch = K. shape (z_mean ) [ 0 ]
dim = K. int_shape (z_mean ) [ 1 ]

e p s i l o n = K. random_normal ( shape=(batch , dim ) )
re turn z_mean + K. exp ( 0 . 5 ∗ z_log_var ) ∗ e p s i l o n

de f encoding_network ( input , dimension ) :
x = Dense ( 16 ) ( input )
# . . .
z_mean = Dense (

dimension ,
a c t i v a t i o n =" l i n e a r " ,
name=’z_mean ’

) ( x )
z_log_var = Dense (

dimension ,
a c t i v a t i o n =" l i n e a r " ,
name=’z_log_var ’

) ( x )

#Latent Layer Sampling Output
z = Lambda(

sampling_procedure ,
output_shape=(dimension , ) , name=’z ’

) ( [ z_mean , z_log_var ] )

r e turn (z_mean , z_log_var , z )

de f decoding_network ( latent_input , dimension ) :
x = Dense ( 16 ) ( latent_input )
# . . .
x = Dense ( dimension , a c t i v a t i o n =’ re lu ’ ) ( x )
re turn x

ORIGINAL_DIMENSION = 70
LATENT_DIMENSION = 2
BETA = 1 #For BETA−VAE

’ ’ ’
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A. Used Code & Models

Generate the Model
’ ’ ’

main_input = Input (
shape=(ORIGINAL_DIMENSION, ) ,
name="Main−Input "

)

latent_input = Input (
shape=(LATENT_DIMENSION, ) ,
name="Latent−Input "

)

latent_output = encoding_network (
main_input ,
LATENT_DIMENSION

)

main_output = decoding_network (
latent_input ,
ORIGINAL_DIMENSION

)

encoder = Model (
main_input ,
latent_output ,
name="Encoder "

)

decoder = Model (
latent_input ,
main_output ,
name="Decoder "

)

autoencoder = Model (
main_input ,
#Only use the sampled va lue s as output
decoder ( encoder ( main_input ) [ 2 ] ) ,
name="Autoencoder "

)

de f ge t_los s ( dimension , beta ) :
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#Reconstruct ion Loss
r e c o n s t r u c t i o n _ l o s s = mse ( main_input , main_output )

#Kullback−L e i b l e r Divergence
(z_mean , z_log_var , _) = latent_output
k l_ lo s s = 1 + z_log_var − K. square (z_mean) − K. exp (

z_log_var
)
k l_ lo s s = K. sum( kl_loss , ax i s=−1)
k l_ lo s s ∗= −0.5

re turn beta ∗ k l_ lo s s + r e c o n s t r u c t i o n _ l o s s

autoencoder . add_loss ( ge t_los s (LATENT_DIMENSION, BETA) )
autoencoder . compi le ( opt imize r = ’ . . . ’ )
autoencoder . f i t ( . . . )

’ ’ ’
P r ed i c t i on
’ ’ ’

z_mean , z_log_var , z = encoder . p r e d i c t ( x )
x_prime = decoder . p r e d i c t ( z )
x_prime = autoencoder . p r e d i c t ( x )

Below the code for a conditional autoencoder — see 5 — is provided.

Listing A.10: Conditional Autoencoder Architecture

from ten so r f l ow . python . keras . l a y e r s import Dense , Input
from ten so r f l ow . python . keras . l a y e r s import concatenate , F lat ten
from ten so r f l ow . python . keras . models import Model

de f encoding_network ( or ig ina l_ input , meta_input ) :
meta = Dense (ORIGINAL_DIMENSION) ( meta_input )
# . . .
s e r i e s = Dense ( 16 ) ( o r i g ina l_ input )
# . . .

x = concatenate ( [
meta ,
s e r i e s

] , name="combined_start_encoder " )
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A. Used Code & Models

f l a t t e n _ l a y e r = Flat ten ( )
x = f l a t t e n _ l a y e r ( x )

#Encoding Network
x = Dense ( 16 ) ( x )
# . . .
x = Dense (LATENT_SIZE) ( x )
re turn x

de f decoding_network ( or ig ina l_ input , meta_input ) :
x = Dense ( 16 ) ( latent_input )
# . . .
x = Dense (LATENT_SIZE, a c t i v a t i o n =’ re lu ’ ) ( x )
re turn x

META_INPUT_DIMENSION = 1
ORIGINAL_DIMENSION = 70
LATENT_SIZE = 2

meta_input = Input (
shape=(META_INPUT_DIMENSION, ) ,
name="Meta−Input "

)

latent_input = Input (
shape=(LATENT_SIZE, ) ,
name="Latent−Input "

)

main_input = Input (
shape=(ORIGINAL_DIMENSION, ) ,
name="Main−Input "

)

latent_output = encoding_network (
main_input ,
meta_input

)

main_output = decoding_network (
latent_input ,
meta_input

)
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encoder = Model (
[ main_input , meta_input ] ,
latent_output ,
name="Encoder "

)

decoder = Model (
[ latent_input , meta_input ] ,
main_output ,
name="Decoder "

)

overa l l_output = decoder ( [
encoder ( [

main_input ,
meta_input ,

] ) ,
meta_input

] )

autoencoder = Model (
[ main_input , meta_input ] ,
overa l l_output ,
name="Autoencoder "

)

de f ge t_los s ( ) :
r e c o n s t r u c t i o n _ l o s s = mse ( main_input , overa l l_output )
re turn r e c o n s t r u c t i o n _ l o s s

autoencoder . add_loss ( ge t_los s ( ) )
autoencoder . compi le ( opt imize r = ’ . . . ’ )
autoencoder . f i t ( . . . )

’ ’ ’
Pred i c t
’ ’ ’

z = encoder . p r e d i c t ( [ x , m] )
x_prime = decoder . p r e d i c t ( [ z , m] )
x_prime = autoencoder . p r e d i c t ( [ x , m] )
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A. Used Code & Models

The following caption provides the code for the generation of the rectangular series used
in 5.

Listing A.11: Rect-Series Generator

from numpy . random import mult ivar iate_normal
from sc ipy . spar s e import d iags
import numpy as np
import pandas as pd

c l a s s TwoMeanSymmetric ( ) :
@property
de f _mean_functions ( s e l f ) :

r e s u l t = [ ]
f o r mean1 in np . l i n s p a c e ( 0 . 2 , 0 . 8 , 5 ) :

f o r mean2 in np . l i n s p a c e ( 0 . 2 , 0 . 8 , 5 ) :
s e r i e s = np . concatenate (

(np . repeat (mean1 , 35) , np . repeat (mean2 , 35) )
)
r e s u l t . append (

s e r i e s
)

re turn r e s u l t

c l a s s FiveMeanSymmetric ( ) :
@property
de f _mean_functions ( s e l f ) :

r e s u l t = [ ]
f o r mean1 in np . l i n s p a c e ( 0 . 2 , 0 . 8 , 5 ) :

f o r mean2 in np . l i n s p a c e ( 0 . 2 , 0 . 8 , 5 ) :
f o r mean3 in np . l i n s p a c e ( 0 . 2 , 0 . 8 , 5 ) :

f o r mean4 in np . l i n s p a c e ( 0 . 2 , 0 . 8 , 5 ) :
f o r mean5 in np . l i n s p a c e ( 0 . 2 , 0 . 8 , 5 ) :

s e r i e s = np . concatenate (
(

np . repeat (mean1 , 14) ,
np . repeat (mean2 , 14) ,
np . repeat (mean3 , 14) ,
np . repeat (mean4 , 14) ,
np . repeat (mean5 , 14)

)
)
r e s u l t . append (

s e r i e s
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)
re turn r e s u l t

c l a s s Mult ivar iateGauss ianGenerator ( ) :
de f __init__(

s e l f ,
c ovar i ance_sca l ing =0.2 ,
c o r r e l a t i on_ l e ng t h =30,
batch_size=100

) :
s e l f . _covar iance_sca l ing = covar i ance_sca l i ng
s e l f . _corre la t ion_length = c o r r e l a t i on_ l e ng t h
s e l f . _length = 70

s e l f . _data = s e l f . _generate_data ( batch_size )

’ ’ ’
Publ ic
’ ’ ’

de f get_data ( s e l f ) :
r e turn s e l f . _data

’ ’ ’
Pr ivate
’ ’ ’

de f _generate_data ( s e l f , batch_size ) :
s i z e = s e l f . _cor re la t ion_length
l ength = s e l f . _length

c o r r e l a t i o n = np . concatenate (
(

np . l i n s p a c e (0 , 1 , s i z e ) ,
np . l i n s p a c e (1 , 0 , s i z e ) [ 1 : ]

)
)
i n d i c e s = np . arange(1− s i z e , s i z e )

x_data = [ ]
f o r mean_vector in s e l f . _mean_functions :

cov_matrix = diags (
c o r r e l a t i o n ,
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A. Used Code & Models

i nd i c e s ,
shape=( length , l ength )

) . toar ray ( )

x = np . random . mult ivar iate_normal (
mean_vector ,
cov_matrix ∗ s e l f . _covar iance_scal ing ,
batch_size

)

x_data . append ( x )

df = pd . DataFrame (
np . concatenate ( x_data )

) . sample ( f r a c =1)

re turn df

c l a s s TwoMeanGaussian (
Mult ivar iateGauss ianGenerator ,
TwoMeanSymmetric

) :
pass

c l a s s FiveMeanGaussian (
Mult ivar iateGauss ianGenerator ,
FiveMeanSymmetric

) :
pass

FiveMeanGaussian ( ) . get_data ( )
TwoMeanGaussian ( ) . get_data ( )

In the following, the code used to generate the QAM series from chapter 5 is provided.

Listing A.12: QAM-Series-Generator

import pandas as pd
import numpy as np

SAMPLE_SIZE = 10

CONSTELLATION = {
’0000 ’ : (−3 , −3) ,
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’0001 ’ : (−3 , −1) ,
’0010 ’ : (−3 , 3 ) ,
’0011 ’ : (−3 , 1 ) ,
’0100 ’ : (−1 , −3) ,

’0101 ’ : (−1 , −1) ,
’0110 ’ : (−1 , 3 ) ,
’0111 ’ : (−1 , 1 ) ,
’1000 ’ : (3 , −3) ,
’1001 ’ : (3 , −1) ,

’1010 ’ : (3 , 3 ) ,
’1011 ’ : (3 , 1 ) ,
’1100 ’ : (1 , −3) ,
’1101 ’ : (1 , −1) ,
’1110 ’ : (1 , 3 ) ,
’1111 ’ : (1 , 1)

}

de f modulate ( symbol ) :
f = 5
w = 2 ∗ np . p i ∗ f
T_s = 0 .5

I , Q = CONSTELLATION[ symbol ]
t = np . l i n s p a c e (0 , T_s , 70)
re turn I ∗ np . cos (w∗ t ) − Q ∗ np . s i n (w∗ t )

data = [ ]
f o r key , item in c o n s t e l l a t i o n . i tems ( ) :

I , Q = item
s i g n a l = modulate ( key )
df = pd . DataFrame (

s i g n a l + np . random . normal (
s c a l e =0.5 ,
s i z e =(

SAMPLE_SIZE,
l en ( s i g n a l )

)
)

)
data . append ( df )
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A. Used Code & Models

data = pd . concat ( data , ignore_index=True ) . t ranspose ( )

The below figures describe the network layout used for the experiments in 5 and 6. The
complete code can be obtained by implementing the given networks into the encod-
ing_network and decoding_network functions from above.
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