
Getting Saturated with Induction

Márton Hajdu1 , Petra Hozzová1 (�), Laura Kovács1 , Giles Reger2 ,
and Andrei Voronkov1,2,3

{marton.hajdu, petra.hozzova}@tuwien.ac.at
1 TU Wien

2 University of Manchester
3 EasyChair

Abstract. Induction in saturation-based first-order theorem proving is
a new exciting direction in the automation of inductive reasoning. In
this paper we survey our work on integrating induction directly into the
saturation-based proof search framework of first-order theorem proving.
We describe our induction inference rules proving properties with induc-
tively defined datatypes and integers. We also present additional reason-
ing heuristics for strengthening inductive reasoning, as well as for using
induction hypotheses and recursive function definitions for guiding in-
duction. We present exhaustive experimental results demonstrating the
practical impact of our approach as implemented within Vampire.

Keywords: Induction · Formal Verification · Theorem Proving

1 Introduction

One commonly used theory in the development of imperative/functional pro-
grams is the theory of inductively defined data types, such as natural numbers
(e.g. see Figure 1(a)). Automating reasoning in formal verification therefore also
needs to automate induction. Previous works on automating induction mainly
focus on inductive theorem proving [3,4,5,22,17]: deciding when induction should
be applied and what induction axiom should be used. Recent advances related
to automating inductive reasoning, such as first-order reasoning with inductively
defined data types [14], inductive strengthening [19] and structural induction in
superposition [13,6,18,9,8], open up new possibilities for automating induction.
In this paper we survey our recent results towards automating inductive reason-
ing for first-order properties with inductively defined data types and beyond.
Relation to the state-of-the-art. Our work automates induction by integrat-
ing it directly in the saturation-based approach of first-order provers [15,21,25].
These provers implement saturation-based proof search using the superposition
calculus [16]. Moreover, they rely on powerful indexing algorithms, notions of
redundancy, selection functions and term orderings for making theorem proving
efficient. First-order theorem provers complement SMT solvers in reasoning with
theories and quantifiers, as evidenced in the annual system competitions of SMT
solvers [2,24] and first-order provers [23].

The final version of this paper is available at:
https://doi.org/10.1007/978-3-031-22337-2_15



2 Hajdu, Hozzová et al.

Our approach towards automating induction is conceptually different from
previous attempts to use induction with superposition [13,6,8], as we are not
restricted to specific clause splitting algorithms and heuristics [6], nor are we
limited to induction over inductively defined data types using a subterm order-
ing [8]. As a result, we stay within the standard saturation framework and do not
have to introduce constraint clauses, additional predicates, nor change the no-
tion of redundancy as in [8]. In addition, our approach can be used to automate
induction over arbitrary, and not just inductively defined, data types, such as
integers (Section 8). Our work is also fundamentally different from rewrite-based
approaches automating induction [3,4,17,5,19,22], as we do not rely on external
algorithms/heuristics to generate subgoals/lemmas of an inductive property. In-
stead, applications of induction become inference rules of the saturation process,
adding instances of appropriate induction schemata. We extend superposition
reasoning with new inference rules capturing inductive steps (Sections 5-7), and
optimize the saturation theorem proving process with induction. In addition, we
instantiate induction axioms with logically stronger versions of the property be-
ing proved and use induction hypotheses as specialized rewrite rules (Section 8).

This combination of saturation with induction is very powerful. Our exper-
imental results show that many problems previously unsolved by any system
can be solved by our work, some resulting in very complex proofs of program
properties and proofs of complex mathematical properties (Section 9).

Contributions. This paper serves as a survey of our recent progress in au-
tomating induction using a first-order theorem prover [18,9,12,11].

– We give a small tutorial of induction in saturation, helping non-experts in
theorem proving to understand and further use our methodology. To this end,
we describe saturation theorem proving and the main concepts of saturation
with induction (Sections 4-5).

– We overview technical considerations for turning saturation with induction
into an efficient approach (Section 5) and discuss variants of induction in-
ference rules (Section 6).

– We present extensions of induction inference rules with multiple premises
(Section 7), generalizations and integer reasoning (Section 8).

– We report on exhaustive experiments comparing and analysing our approach
to state-of-the-art methods (Section 9).

2 Motivating Example

We motivate the challenges of automating induction for formal verification us-
ing the functional program of Figure 1(a). This program defines the inductively
defined data type nat of natural numbers. In first-order logic, this data type
corresponds to a term algebra with constructors 0 (zero) and s (successor); in-
ductively defined data types, such as nat, are special cases of term algebras. The
functional program in Figure 1(a) implements add, even and half operations
over naturals, by using recursive equations (function definitions) preceded by



Getting Saturated with Induction 3

assume even(x)

datatype nat = 0 | s(x)

fun add(0, y) = y

| add(s(z), y) = s(add(z, y));

fun even(0) = �
| even(s(z)) = ¬even(z);

fun half(0) = 0

| half(s(0)) = 0

| half(s(s(z))) = s(half(z));

assert x = add(half(x), half(x))
(a)

Axiomatization of add, even and half:

∀y ∈ nat.(add(0, y) = y)

∀z, y ∈ nat.(add(s(z), y) = s(add(z, y)))

even(0)

∀z ∈ nat.(even(s(z)) ↔ ¬even(z))
half(0) = 0

half(s(0)) = 0

∀z ∈ nat.(half(s(s(z))) = s(half(z)))

Verification task (conjecture):

∀x ∈ nat.(even(x) → x = add(half(x), half(x)))

(b)

Fig. 1. Motivating example over inductively defined data types.

the fun construct. These recursive equations correspond to universally quanti-
fied equalities in first-order logic, as listed in the axioms of Figure 1(b).

The expected behaviour of Figure 1(a) is specified using program assertions
in first-order logic: the pre-condition using the assume construct and the post-
condition using assert. Figure 1(a) satisfies its requirements. Formally proving
correctness of Figure 1(a) essentially requires proving the conjecture of Fig-
ure 1(b), establishing that half(x) of an even natural number x added to
half(x) equals the original number x. That is,

∀x ∈ nat.
�
even(x) → x = add(half(x), half(x))

�
. (1)

Proving (1), and thus establishing correctness of Figure 1(a), is however
challenging as it requires induction over the naturals. As such, finding and using
an appropriate induction schemata is needed. The following sound structural
induction schema for a formula F could, for example, be used, where F contains
(multiple occurrences of) a natural-valued variable x:

�
F [0] ∧ ∀z ∈ nat.(F [z] → F [s(z)])

�
→ ∀x ∈ nat.F [x] (2)

We instantiate schema (2) by considering ∀x ∈ nat.F (x) to be formula (1),
yielding the induction formula:

(IB)
�
even(0) → 0 = add(half(0), half(0))

�
∧

(IS) ∀z ∈ nat.

� �
even(z) → z = add(half(z), half(z))

�
→�

even(s(z)) → s(z) = add(half(s(z)), half(s(z)))
�
�

→ ∀x ∈ nat.even(x) → x = add(half(x), half(x)),

(3)

where the subformulas denoted by (IB) and (IS) correspond to the induction
base case and the induction step case of (3). Since schema (2) is sound, its



4 Hajdu, Hozzová et al.

instance (3) is valid. As such, the task of proving (1) is reduced to proving the
base case and step case of (3).

Using the definitions of half and add from Figure 1(b), the base case (IB)

simplifies to the tautology � → 0 = 0. On the other hand, proving (IS) requires
additional inductive reasoning. Yet, the induction scheme (2) cannot be used as
even(z) and even(s(z)) yield two different base cases. We overcome this limi-
tation by using an additional induction schema with two base cases, as follows:

�
F [0] ∧ F [s(0)] ∧ ∀z.(F [z] → F [s(s(z))])

�
→ ∀x.F [x] (4)

As before, by instantiating (4) with (1) and simplifying based on the axioms of
Figure 1(b), we are left with proving the step case:

(IH) ∀z ∈ nat.
��

even(z) → z = add(half(z), half(z))
�
→

(IC)
�
even(s(s(z))) → s(s(z)) = add(half(s(s(z))), half(s(s(z))))

�� (5)

The antecedent (IH) and conclusion (IC) of (5) are called the induction (step)
hypothesis and induction step conclusion of the step case, respectively. After
rewriting even(s(s(z))) to even(z) in (IC), both (IH) and (IC) have the same
assumption even(z), which can be discarded. By rewriting the remaining con-
clusions in (IH) and (IC) using the definitions of half and add, as well as the
the injectivity of the term algebra constructor s, we obtain:

(IH) ∀z ∈ nat.
�
z = add(half(z), half(z)) →

(IC) s(z) = add(half(z), s(half(z)))
� (6)

Since the more complex right-hand side of (IH) is not equal to any subterm
of (IC) in (6), we have to use (IH) in the left-to-right direction – in order to
preserve validity, our only option is to rewrite z on the left-hand side of (IC):

∀z ∈ nat.
�
s(add(half(z), half(z))) = add(half(z), s(half(z)))

�
(7)

Equation (7) is a special case of the formula ∀x, y ∈ nat.s(add(x, y)) = add(x, s(y))
which can be easily verified using the induction schema (2). This establishes the
correctness of Figure 1(a).

The verification task of Figure 1(a) highlights the main difficulties in au-
tomating inductive reasoning: (i) incorporating induction into saturation (Sec-
tion 5); (ii) finding suitable induction schemata (Section 6); and (iii) using exten-
sions of induction inference rules to further push the boundaries of automating
induction (Sections 7–8). We next present our solutions to these challenges, based
on our results from [18,9,12,11].

3 Preliminaries

We assume familiarity with standard multi-sorted first-order logic with equality.
Functions are denoted with f , g, h, predicates with p, q, r, variables with x, y,
z, w, and Skolem constants with σ, all possibly with indices. A term is ground



Getting Saturated with Induction 5

if it contains no variables. We use the words sort and type interchangeably.
We distinguish special sorts called term algebra sorts, function symbols for term
algebra sorts called constructors and destructors. For a term algebra sort τ , we
denote its constructors with Στ . For each c ∈ Στ , we denote its arity with nc

and the corresponding destructor returning the value of the ith argument of c by
dic. Moreover, we denote with Pc the set of argument positions of c of the sort τ .
We say that c is a recursive constructor if Pc is non-empty, otherwise it is called
a base constructor. We call the ground terms built from the constructor symbols
of a sort its term algebra. We axiomatise term algebras using their injectivity,
distinctness, exhaustiveness and acyclicity axioms [14]. We refer to term algebras
also as algebraic data types or inductively defined data types. Additionally, we
assume a distinguished integer sort, denoted by Z. When we use standard integer
predicates <, ≤, >, ≥, functions +,−, . . . and constants 0, 1, . . . , we assume that
they denote the corresponding interpreted integer predicates and functions with
their standard interpretations. All other symbols are uninterpreted.

We use the standard logical connectives ¬, ∨, ∧, → and ↔, and quantifiers ∀
and ∃. We write quantifiers like ∀x ∈ τ to denote that x has the sort τ where it is
not clear from the context. A literal is an atom or its negation. For a literal L, we
write L to denote its complementary literal. A disjunction of literals is a clause.
We denote clauses by C,D and reserve the symbol � for the empty clause which
is logically equivalent to ⊥. We denote the clausal normal form of a formula F
by cnf(F ). We call every term, literal, clause or formula an expression.

We write E[s] to denote that the expression E contains k distinguished oc-
currence(s) of the term s, with k ≥ 0. For simplicity, E[t] means that these
occurrences of s are replaced by the term t. A substitution θ is a mapping from
variables to terms. A substitution θ is a unifier of two terms s and t if sθ = tθ,
and is a most general unifier (mgu) if for every unifier η of s and t, there exists
substitution µ s.t. η = θµ. We denote the mgu of s and t with mgu(s, t).

4 Saturation-Based Theorem Proving

We briefly introduce saturation-based proof search, which is the leading tech-
nology for automated first-order theorem proving. For details, we refer to [15].

First-order theorem provers work with clauses, rather than with arbitrary
formulas. Given a set S of input clauses, first-order provers saturate S by com-
puting all logical consequences of S with respect to a sound inference system I.
The saturated set of S is called the closure of S and the process of computing
the closure of S is called saturation. If the closure of S contains the empty clause
�, the original set S of clauses is unsatisfiable. A simplified saturation algorithm
for a sound inference system I is given in Algorithm 1, with a clausified goal B
(¬B is also clausified) and clausified assumptions A as input.

Note that a saturation algorithm proves validity of B by establishing un-
satisfiabiliy of ¬B using the assumptions A; we refer to this proving process
as a refutation of ¬B from A. Completeness and efficiency of saturation-based
reasoning rely heavily on properties of selection and addition of clauses from/to



6 Hajdu, Hozzová et al.

Algorithm 1 The Saturation Loop.

1 initial set of clauses S := A ∪ {¬B}
2 repeat

3 Select clause G ∈ S
4 Derive consequences C1, . . . , Cn of G and formulas from S using rules of I
5 S := S ∪ {C1, . . . , Cn}
6 if � ∈ S then return A → B is UNSAT
8 return A → B is SAT

Superposition:

l = r ∨ C L[l�] ∨D

(L[r] ∨ C ∨D)θ

l = r ∨ C s[l�] �= t ∨D

(s[r] �= t ∨ C ∨D)θ

l = r ∨ C s[l�] = t ∨D

(s[r] = t ∨ C ∨D)θ

where θ := mgu(l, l�), rθ �� lθ, (first rule only) L[l�] is not an equality literal, and (second
and third rules only) tθ �� s[l�]θ.

Binary resolution:

L ∨ C ¬L� ∨D
(C ∨D)θ

where θ := mgu(L,L�).

Equality resolution:

s �= t ∨ C

Cθ

where θ := mgu(s, t).

Equality factoring:

s = t ∨ s� = t� ∨ C

(s = t ∨ t �= t� ∨ C)θ

where θ := mgu(s, s�),
tθ �� sθ, and t�θ �� tθ.

Fig. 2. The superposition calculus Sup for first-order logic with equality.

S, using the inference system I (lines 3–5). To organize saturation, first-order
provers use simplification orderings on terms, which are extended to orderings
over literals and clauses; for simplicity, we write � for both the term ordering
and its clause/multiset ordering extensions. Given an ordering �, a clause C is
redundant with respect to a set S of clauses if there exists a subset S� of S such
that S� is smaller than {C}, that is {C} � S� and S� → C.

The superposition calculus, denoted as Sup, is the most common inference
system employed by saturation-based first-order theorem provers for first-order
logic with equality [16]. A summary of superposition inference rules is given in
Figure 2. The superposition calculus Sup is sound and refutationally complete:
for any unsatisfiable formula ¬B, the empty clause can be derived as a logical
consequence of ¬B.

5 Saturation with Induction

We now describe our approach towards automating inductive reasoning within
saturation-based proof search. We illustrate the key ingredients of our method
using our motivating example from Figure 1(a), that is proving (1) in order to
establish correctness of Figure 1(a). As mentioned in Section 4, proving (1) in a



Getting Saturated with Induction 7

saturation-based approach means refuting the clausified negation of (1), that is,
refuting the following two clauses:

even(σ0) (8)

σ0 �= add(half(σ0), half(σ0)) (9)

We establish invalidity of inductive formulas, such as (8)-(9), by integrating
the application of induction as additional inference rules of the saturation pro-
cess. Our induction inference rules are used directly in Algorithm 1, as follows:

(i) we pick up an inductive property G in the search space S (line 3);
(ii) derive new induction axioms C1, . . . , Cn (instances of induction schemata),

aiming at refuting G, or sometimes a more general formula than G (line 4);
(iii) add the induction axioms C1, . . . , Cn to the search space (line 5).

Our work therefore follows a different approach than the one used in inductive
theorem provers, as we do not rely on external algorithms to generate sub-
goals/stronger formulas G� of an inductive property G nor do we replace G by
subgoals/stronger formulas G�. Rather, new induction axioms Ci, and sometimes
new induction axioms C �

i for more general formulas G�, are derived from G and
used in the search space S in addition to G.

Finding the right induction schema and developing efficient induction infer-
ence rules for deriving inductive axioms/formulas (steps (i)-(ii) above) are cru-
cial for saturation with induction. In [18] we introduced the following induction
inference rule, parametrized by a valid induction schema:

L[t] ∨ C

cnf(F → ∀x.L[x]) (Ind),

where t is a ground term, L is a ground literal, C is a clause, and F → ∀x.L[x]
is a valid induction schema. For example, the induction schema (2) for F can
be used in (Ind). We call L[t] the induction literal and t the induction term.
We note that (Ind) can naturally be generalized to handle multiple induction
terms, as in [11]. In this paper, we only use the rule with one induction term.

Based on Algorithm 1 (the saturation-based proof search algorithm), note
that the application of (Ind) adds new clauses to the search space by clausifying
induction formulas (cnf() in (Ind)). These new clauses then become potential
candidates to be selected in the next steps of the algorithm. As such, the selection
of these new clauses are likely to be delayed, and thus their use in proving an
inductive goal becomes highly inefficient. We therefore propose the application
of (Ind) followed by a binary resolution step to “guide” induction over selected
induction literals and terms. In particular, upon the application of (Ind), we
do not add cnf(F → ∀x.L[x]) to the search space. Instead, we binary resolve
the conclusion literal L[x] against L[t], allowing us to only add the formula
cnf(¬F ) ∨ C to the search space, whenever (Ind) is applied.

In order to “guide” and combine the application of (Ind) with a binary reso-
lution rule, we exploit instances of (Ind) for special cases of induction schemata
over term algebras (Section 6) and integers (Section 8). We also consider exten-
sion of (Ind) for more general and efficient inductive reasoning (Section 7–8).



8 Hajdu, Hozzová et al.

6 Induction with Term Algebras

We first consider the theory of term algebras and introduce instances of the
induction rule (Ind), by exploiting properties of the induction literal L[t] and
induction schemata over the induction term t. For now, the induction term t is
a ground element from a term algebra.

Structural Induction. The first instance of (Ind) uses the following constructor-
based structural induction schema, where L[x] is a literal containing (possibly
multiple occurrences of) x of a term algebra sort τ :

� �

c∈Στ

∀y1, ..., ync
.(∧i∈Pc

L[yi] → L[c(y1, ..., ync
)])

�
→ ∀x ∈ τ.L[x] (10)

Note that the structural induction schema (2) over naturals is an instance of (10).

Example 1. By instantiating schema (10) with the sole literal of clause (9) and
induction term σ0, we obtain:



0 = add(half(0), half(0)) ∧
∀z ∈ nat.

�
z = add(half(z), half(z)) →

s(z) = add(half(s(z)), half(s(z)))

�

 → ∀x ∈ nat.

�
x =

add(half(x), half(x))
� (11)

The clausified form of (11) consists of the following two clauses:

0 �= add(half(0), half(0)) ∨ σ1 = add(half(σ1), half(σ1)) ∨ x = add(half(x), half(x))

0 �= add(half(0), half(0)) ∨ s(σ1) �= add(half(s(σ1)), half(s(σ1)))

∨ x = add(half(x), half(x))

After applying (Ind) instantiated with (11) on (9), the above clauses are resolved
with the literal in clause (9), adding to the search space the resulting clauses:

0 �= add(half(0), half(0)) ∨ σ1 = add(half(σ1), half(σ1))

0 �= add(half(0), half(0)) ∨ s(σ1) �= add(half(s(σ1)), half(s(σ1))) ��

Well-Founded Induction. Two other instances of (Ind) exploit well-founded
induction schemata, by using a binary well-founded relation R on a term algebra
τ . For such an R, if there does not exists a smallest value v ∈ τ w.r.t. R such that
L[v] does not hold, then L[x] holds for any x ∈ τ . This principle is formalized
by the following schema:

�
¬∃y ∈ τ.

�
¬L[y] ∧ ∀z ∈ τ.(R(y, z) → L[z])

��
→ ∀x ∈ τ.L[x] (12)

However, to instantiate (12), we need to find an R suitable for the considered τ .
Similarly to [20], we first consider the direct subterm relation expressed using

term algebra constructors and destructors of the term algebra sort τ . We obtain
the following instance of (12) to be applied in (Ind):
�
¬∃y.

�
¬L[y] ∧

�

c∈Στ

(y = c(d1c(y), . . . , d
nc
c (y)) →

�

i∈Pc

L[dic(y)])
��

→ ∀x.L[x] (13)



Getting Saturated with Induction 9

In the case of natural numbers, where p is the destructor for s, we have the
following instance of (13) to be used in (Ind):

�
¬∃y ∈ nat.

�
¬L[y] ∧ (y = s(p(y)) → L[p(y)])

��
→ ∀x ∈ nat.L[x] (14)

Another instance of (12) to be used in (Ind) employs a fresh predicate lessy,
as given next. The axiomatisation of such a predicate enables efficient reasoning
over subterm properties withing saturation, as advocated in [14].

�
¬∃y.

�
¬F [y] ∧ ∀z.(lessy(z) → F [z]) ∧ (y = s(p(y)) → lessy(p(y)))

∧ ∀w.(lessy(s(p(w))) → lessy(p(w)))
��

→ ∀x.F [x]
(15)

Induction with Recursive Function Definitions. In formalizing the induction
schemata instances given e.g. in (2) and (14), we considered the term algebra nat
as an instance of τ . To come up with the “right” term algebra instance of τ , we
can also use terminating recursive function definitions from the input problem
to be proven, such as add, even and half from Figure 1(a). The termination of
such recursive functions naturally depends on a well-founded relation R.

Example 2. We can obtain schema (4) from half in Figure (1)(b) if we consider
the well-founded relation based on its first argument. In particular, the third
branch of half relates its first argument s(s(z)) to z in its recursive call for
all z ∈ nat. This relation gives the step case of schema (4), and the base cases
can be obtained by considering the terms in the first argument positions for the
other two branches of half.

Thus, based on the term half(σ0) in clause (9), we can instantiate (4) induct-
ing on term σ0. However, this induction axiom does not yet lead to a refutation
of (1), because for each clausified induction axiom, new Skolem constants are
introduced. Thus, the literals in clauses resulting from applying (Ind) on (8)
or (9), respectively, do not contain σ0, and hence we cannot use (9) nor (8),
respectively, to refute them. In the next section we therefore generalize (Ind)

towards the use of induction schemata with multiple clauses. ��

7 Multi-Clause Induction

Inducting on a single literal is sometimes not sufficient to get a refutation, as
illustrated in Example 2 for Figure 1(a). In general however, induction can be
applied on literals from multiple clauses, similarly to formula (3) in Section 2.
We generalize the inference rule (Ind) towards multi-clause induction (IndMC):

L1[t] ∨ C1 ... Ln[t] ∨ Cn L[t] ∨ C

cnf(F → ∀x.(�1≤i≤n Li[x] → L[x]))
(IndMC)

where F → ∀x.(�1≤i≤n Li[x] → L[x]) is a valid induction formula, L and Li

are ground literals and C and Ci are clauses. Similarly to (Ind), our new rule
(IndMC) is used within saturation-based proof as an additional inference rule,
followed by an application of binary resolution for guiding inductive reasoning.



10 Hajdu, Hozzová et al.

Example 3. We use schema (4) with formula (1) with induction term σ0 to in-
stantiate (IndMC) for premises (8) and (9). The induction formula is:



�
even(0) → 0 = add(half(0), half(0))

�
∧�

even(s(0)) → s(0) = add(half(s(0)), half(s(0)))
�
∧

∀z∈nat.
� �

even(z) → z = add(half(z), half(z))
�
→�

even(s(s(z))) → s(s(z)) = add(half(s(s(z))), half(s(s(z))))
�
�




→ ∀x ∈ nat.
�
even(x) → x = add(half(x), half(x))

�
(16)

Clausification of formula (16) results in twelve clauses, each containing the liter-
als ¬even(x) and x = add(half(x), half(x)), which we can binary resolve with
clauses (8) and (9). After simplifications are applied to the clauses from formula
(16), we are left with the following two clauses:

σ2 = add(half(σ2), half(σ2)) (17)

s(σ2) �= add(half(σ2), s(half(σ2))) (18)

We now need to rewrite (18) with the induction hypothesis clause (17) in the
left-to-right orientation. However, σ2 ≺ add(half(σ2), half(σ2)), which holds for
any simplification ordering ≺, contradicts the superposition ordering conditions.
Moreover, even if we rewrote against the ordering, we would be left with

s(add(half(σ2), half(σ2))) �= add(half(σ2), s(half(σ2))), (19)

which is hard to refute using induction due to the induction term σ2 occurring
in the second argument of add, which does not change in the recursive definition
of add (see Figure 1(b)). We overcome this limitation by extensions of inductive
reasoning in Section 8. ��

8 Extensions of Inductions in Saturation

Induction with Generalizations. It is common in mathematics that for proving
a formula A, we prove instead a formula B such that B → A. In other words,
we prove a generalization B of A. Inductive theorem provers implement various
heuristics to guess formulas/lemmas B and use B instead of A during proof
search, see e.g. [4,5,3,17]. However, a saturation-based theorem prover would
not/can not do this, since goals/conjectures are not replaced by sub-goals in
saturation-based proof search. We thus propose a different approach for imple-
menting the common generalization recipe of mathematical theorem proving.
Namely, we introduce the inference rule (IndGen) of induction with general-
ization, allowing us to (i) add instances of induction schemata not only for A
but also for versions of B and then (ii) perform saturation over these induction
schemata instances, using superposition reasoning. Our (IndGen) rule inducts
only on some occurrences of the induction term t, as follows:

L[t] ∨ C

cnf(F → ∀x.L�[x])
(IndGen),



Getting Saturated with Induction 11

where t is a ground term, L is a ground literal, C is a clause, F → ∀x.L�[x]
is a valid induction schema and L�[x] is obtained from L[t] by replacing some
occurrences of t with x.

Example 4. We illustrate induction with generalization on the unit clause (19).
One generalization that would help refute (19) by eliminating half(σ2) is:

∀x, y ∈ nat.s(add(x, y)) = add(x, s(y)) (20)

Instantiating schema (2) with (20) and variable x would lead to a refutation
when used with rule (IndGen) on (19). However, since we do not use y from
the generalization in the induction, there is no need to replace the occurrences
of half(σ2) corresponding to it in the generalized literal. Our final generalized
induction formula, also leading to the refutation of (19), is:




s(add(0, half(σ2))) = add(0, s(half(σ2)))∧
∀z ∈ nat.

�
s(add(z, half(σ2))) = add(z, s(half(σ2))) →

s(add(s(z), half(σ2))) = add(s(z), s(half(σ2)))

�



→ ∀x ∈ nat.s(add(x, half(σ2))) = add(x, s(half(σ2)))

(21)

��

Rewriting with Induction Hypotheses. For turning saturation-based proof search
into an efficient process, one key ingredient is to ensure that bigger terms/literals
are rewritten by small ones (big/small w.r.t. the simplification ordering �), and
not vice versa. However, this often prohibits using induction hypotheses to
rewrite their corresponding conclusions which would be the necessary step to
proceed with the proof. To overcome this obstacle, we introduce the following
inference rule which uses an induction hypothesis literal to rewrite its conclusion:

l = r ∨D s[l] �= t ∨ C

cnf(F → ∀x.(s[r] = t)[x])
(IndHRW)

where s[l] �= t is an induction conclusion literal with corresponding induction
hypothesis literal l = r, l �� r, and F → ∀x.(s[r] = t)[x] is a valid induction
formula. Moreover, we resolve the clauses with the intermediate clause s[r] �=
t ∨ C ∨D, obtained from the rewriting of the premises of (IndHRW).

Example 5. Using unit clause (17) in a left-to-right orientation and rewriting the
sides of unit clause (18) one after the other, we get intermediate clauses, which
are then used for generating induction formulas. One such intermediate clause is
(19), from which the induction formula (21) is generated. After clausifying (21),
a subsequent binary resolution is performed with intermediate clause (19). By
more simplifications using the definition of add and the injectivity of s, we finally
obtain a refutation of (1), concluding thus the correctness of Figure 1(a). ��

Integer Induction. The last extension of our induction framework we introduce
is integer induction, motivated by the need of inductive reasoning in program
analysis and verification problems using integers. As the standard order < (or



12 Hajdu, Hozzová et al.

>) over integers Z is not well-founded, we work with subsets of Z with a lower
(and/or an upper) bound. We therefore define the downward, respectively upward,
induction schema with symbolic bound b as any formula of the form:

F [b] ∧ ∀y ∈ Z.(y ≤ b ∧ F [y] → F [y − 1]) → ∀x ∈ Z.(x ≤ b → F [x]); (downward)

F [b] ∧ ∀y ∈ Z.(y ≥ b ∧ F [y] → F [y + 1]) → ∀x ∈ Z.(x ≥ b → F [x]), (upward)

respectively, where F [x] is a formula with one or more occurrences of an integer
variable x and b is an integer term not containing x nor y. Further, we also define
interval downward, respectively upward, induction schema with symbolic bounds
b1, b2 as any formula of the form:

F [b2] ∧ ∀y ∈ Z.(b1 <y≤ b2 ∧ F [y] → F [y − 1]) → ∀x ∈ Z.(b1 ≤ x≤ b2 → F [x]); (down.)

F [b1] ∧ ∀y ∈ Z.(b1 ≤ y < b2 ∧ F [y] → F [y + 1]) → ∀x ∈ Z.(b1 ≤ x≤ b2 → F [x]), (up.)

respectively, where F [x] is a formula with one or more occurrences of an integer
variable x and b1, b2 are integer terms not containing x nor y.4

To automate inductive reasoning over integers, we need to automatically
generate suitable instances of our integer induction schemata. To this end we
introduce induction rules with the integer induction schemata in the conclusion,
giving us the recipe for instantiating the schemata. Since our schemata are sound,
all resulting induction rules are sound as well. When t, b are ground terms and
L[t] is a ground literal, the following is an integer upward induction rule:

L[t] ∨ C t ≥ b

cnf
��

L[b] ∧ ∀y ∈ Z.(y ≥ b ∧ L[y] → L[y + 1])
�
→ ∀x ∈ Z.(x ≥ b → L[x])

� (IntInd≥)

Our further integer induction rules using the other schemata are obtained simi-
larly, as detailed in [12].

9 Implementation and Experiments

9.1 Implementation

Our approach for automating induction in saturation is implemented in theVam-
pire prover. All together, our implementation consists of around 7,800 lines of
C++ code and is available online at https://github.com/vprover/vampire/
tree/int-induction. In the following,Vampire* refers to theVampire version
supporting induction.

Our induction rules allow us to derive many new clauses potentially leading
to refutation of inductive properties. These new clauses might however pollute
the search space without advancing the proof. We therefore introduce options
to control the use of induction rules by inducting only on negative literals, unit
clauses or clauses derived from the goal. Further, for induction over algebraic
types, we only allow induction on terms containing a constant other than a

4 The above schemata can be seen as a special case of the multi-clause schemata used
in the (IndMC) rule from Section 7, tailored specifically for integers.



Getting Saturated with Induction 13

Name & comma-separated values Description

--induction

int, struct, both, none

Enable induction on integers only, or induction
on algebraic types only, or both, or none

--induction on complex terms

on, off

Apply induction also on complex terms

--induction multiclause on, off Enable the (IndMC) form of induction rules

--induction gen on, off Enable the (IndGen) form of induction rules

Table 1. Selected induction options or Vampire. Default values are underlined.

base constructor. For integer induction, by default we disable rules with default
bound, induction on interpreted constants, and induction on some comparison
literals. Our most relevant induction options are summarized in Table 1.5

9.2 Experimental Setup

The main goal of our experiments was to evaluate how much induction improves
Vampire’s performance. We therefore comparedVampire* toVampire without
induction. We also show the numbers of problems solved by the SMT solvers
Cvc4 [20], Z3 [7], where only Cvc4 supports induction. In our experiments, we
do not include other provers, such as Acl2 [3] or Zipperposition [6], as these
solvers do not support the SMT-LIB input format [1]; yet for further comparison
we refer to [9,12,11].

We ran our experiments using (i) benchmarks over inductive data types
(UFDT set of the SMT-LIB benchmark library and dty set of the inductive
benchmarks [10]), (ii) benchmarks using integers (LIA, UFLIA, NIA and UF-
NIA of SMT-LIB and int of [10]), and (iii) benchmarks using both integers and
data types (UFDTLIA of SMT-LIB). From these datasets, we excluded those
problems that are marked satisfiable, as our work is meant for validity checking6

For our experiments, we used Z3 version 4.8.12 in the default con-
figuration, and Cvc4 version 1.8 with parameters --conjecture-gen

--quant-ind. To extensively compare Vampire and Vampire*, we ran
multiple instances of both for each experiment: we used a portfolio of 18
base configurations differing in the parameters not related to induction.
Additionally, we varied the induction parameters of Vampire* for each exper-
iment: for (i) we used --induction struct --structural induction kind

one --induction gen on -induction on complex terms on, for (ii)
--induction int --induction multiclause off, for (iii) --induction

both --structural induction kind one --induction gen on

-induction on complex terms on. In experiments (ii) and (iii), for each

5 Vampire also offers a so-called portfolio mode, in which it sequentially tries different
option configurations for short amounts of time.

6 we have excluded all together 1562 satisfiable problems from LIA, UFLIA, NIA and
UFNIA; and 86 satisfiable problems from UFDT.



14 Hajdu, Hozzová et al.

Problem SMT-LIB ind. set [10]
set UFDT UFDTLIA LIA UFLIA NIA UFNIA dty int sum

Total count 4483 327 404 10118 8 12181 3397 120 31038

Vampire 1848 82 241 6125 3 3704 17 0 12020

Vampire* 1792 186 241 6240 4 3679 464 76 12682

Cvc4 2072 200 357 6911 7 3022 164 30 12763

Z3 1807 76 242 6710 2 4938 17 0 13792

Table 2. Comparison of the number of solved problems. The configuration of Vampire
and Vampire* depends on the benchmark set.

of the 18 base configurations we ran 7 instances of Vampire* with different
integer induction parameters, chosen based on preliminary experimentation on a
smaller set of benchmarks. Each prover configuration was given 10 seconds and
16 GB of memory per each problem. The experiments were ran on computers
with 32 cores (AMD Epyc 7502, 2.5 GHz) and 1 TB RAM.

9.3 Experimental Results

Results overview. Our results are summarized in Table 2. For Vampire and
Vampire* we show the number of problems solved by the most successful con-
figuration. Note that for different benchmark sets the most successful configura-
tions might be different. In the inductive problems, the maximum and average
numbers of induction steps in a proof were 20 and 1.54, respectively, and the
maximum number of nested induction steps was 9. Overall, Table 2 shows that
Vampire* outperforms Vampire without induction. Moreover, Vampire* is
competitive with leading SMT solvers.

Comparison of Vampire and Vampire*. To evaluate the impact of inductive
reasoning in Vampire, we look at two key metrics: the overall number of solved
problems ; and the number of newly solved problems, which we define as the
number of problems solved using induction7 by some Vampire*, but not solved
by any Vampire. The latter metric is especially important, since in practice,
one can run multiple solvers or configurations in parallel, and thereby solve the
union of all problems solved by individual solvers.

Table 3 summarizes our result. Column “Combined” lists the number of
problems solved by any instance of the configuration, and in the parentheses the
number of problems newly solved by the configuration. The other columns (most
solved, most new, default mode) give the numbers of solved problems, and in
parentheses newly solved problems, for the corresponding Vampire/Vampire*
instance. The “Default mode” columns shows results for the best induction con-
figuration with all non-induction parameters set to default.

7 New rules change proof search organization and Vampire* might solve a problem
without using induction, while this problem was not solved by Vampire. We do not
consider such problems to be newly solved.



Getting Saturated with Induction 15

Benchmarks Configurations Combined Most solved Most new Default mode

UFDT
Vampire 2082 1848 - 1827
Vampire* 2047 1792 (12) 1754 (17) 1761

dty
Vampire 17 17 - 17
Vampire* 525 464 (453) 464 (453) 432

LIA, UFLIA,
NIA, UFNIA

Vampire 11260 10073 - 9835
Vampire* 11334 (81) 10051 (0) 9006 (41) 9773 (0)

int
Vampire 0 0 - 0
Vampire* 118 (118) 76 (76) 76 (76) 49 (49)

UFDTLIA
Vampire 91 82 - 65
Vampire* 197 (108) 186 (101) 186 (101) 136 (72)

Table 3. Comparison of Vampire and Vampire* configurations; numbers given (in
parentheses) indicate new problems solved using induction but not without induction.

Induction helped most with the dty, int and UFDTLIA benchmark sets, as
these sets contain a lot of problems focused on induction (induction was used in
91% of proofs for problems in dty, in all proofs in int, and in 71% of proofs in
UFDTLIA), while the other sets contain a wide variety of problems (induction
was only used in 2% of proofs in UFDT and 8.8% of proofs in LIA, UFLIA,
NIA and UFNIA). Interestingly, the configuration which solved most problems
in int solved the least in LIA, UFLIA, NIA, UFNIA combined, what illustrates
the difficulty in choosing the right values for integer induction parameters for
such a mixed benchmark set.

10 Conclusion

Motivated by application of program analysis and verification, we describe recent
advances in automating inductive reasoning about first-order (program) proper-
ties using inductively defined data types and beyond. We integrate induction in
the saturation-based proof engine of first-order theorem provers, without radical
changes in the existing machinery of such provers. Our inductive inference rules
and heuristics open up new research directions to be further studied in automat-
ing induction. Guiding and further extending the application of multi-clause
induction with theory-specific induction schema variants is an interesting line of
research. Combining induction schemas and rules and using lemma generation
and rewriting procedures from inductive theorem provers are another ways to
further improve saturation-based inductive reasoning.

Acknowledgements. We thank Johannes Schoisswohl for joint work related on
experimenting with inductive theorem provers. This work was partially funded
by the ERC CoG ARTIST 101002685, the EPSRC grant EP/P03408X/1, the
FWF grant LogiCS W1255-N23, the Amazon ARA 2020 award FOREST and
the TU Wien SecInt DK.



16 Hajdu, Hozzová et al.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

2. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: Satisfiability modulo Theories
Competition. In: Proceedings of the 17th International Conference on Computer
Aided Verification. p. 20–23. CAV’05, Springer-Verlag, Berlin, Heidelberg (2005).
https://doi.org/10.1007/11513988 4

3. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. Academic Press
(1988). https://doi.org/10.1016/C2013-0-10412-6

4. Bundy, A., Stevens, A., Harmelen, F.V., Ireland, A., Smaill, A.: Rippling:
A heuristic for guiding inductive proofs. Artif. Intell. 62, 185–253 (1993).
https://doi.org/10.1016/0004-3702(93)90079-Q

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating Inductive
Proofs Using Theory Exploration. In: Bonacina, M.P. (ed.) CADE. pp. 392–406.
Springer (06 2013). https://doi.org/10.1007/978-3-642-38574-2 27

6. Cruanes, S.: Superposition with Structural Induction. In: Dixon, C., Finger, M.
(eds.) FroCoS. pp. 172–188. Springer (2017)

7. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Proc. of TACAS. LNCS, vol. 4963, pp. 337–340. Springer (2008).
https://doi.org/10.1007/978-3-540-78800-3 24

8. Echenheim, M., Peltier, N.: Combining Induction and Saturation-Based Theorem
Proving. J. Automated Reasoning 64, 253–294 (2020)

9. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction
with Generalization in Superposition Reasoning. In: Benzmüller, C., Miller,
B. (eds.) Proc. of CICM. LNCS, vol. 12236, pp. 123–137. Springer (2020).
https://doi.org/10.1007/978-3-030-53518-6 8

10. Hajdu, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Inductive bench-
marks for automated reasoning. In: Kamareddine, F., Sacerdoti Coen, C. (eds.)
Proc. of CICM. pp. 124–129. Springer International Publishing, Cham (2021)

11. Hajdu, M., Hozzová, P., Kovacs, L., Voronkov, A.: Induction with recursive defi-
nitions in superposition. EasyChair Preprint no. 6513 (EasyChair, 2021)

12. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. In: Platzer,
A., Sutcliffe, G. (eds.) CADE. pp. 361–377. Springer International Publishing,
Cham (2021)

13. Kersani, A., Peltier, N.: Combining Superposition and Induction: A Practical Re-
alization. In: Proc. of FroCoS. pp. 7–22 (2013)

14. Kovács, L., Robillard, S., Voronkov, A.: Coming to Terms with Quantified
Reasoning. In: Castagna, G., Gordon, A.D. (eds.) POPL. pp. 260–270 (2017).
https://doi.org/10.1145/3093333.3009887

15. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV. pp. 1–35. Springer (2013)

16. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 7,
pp. 371–443. North-Holland (2001)

17. Passmore, G.O., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E., Kan-
ishev, K., Maclean, E., Mometto, N.: The Imandra Automated Reasoning System
(System Description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR. pp.
464–471. Springer (2020). https://doi.org/10.1007/978-3-030-51054-1 30



Getting Saturated with Induction 17

18. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Fontaine,
P. (ed.) CADE. pp. 477–494. Springer (2019)

19. Reynolds, A., Kuncak, V.: Induction for SMT Solvers. In: D’Souza,
D., Lal, A., Larsen, K.G. (eds.) VMCAI. pp. 80–98. Springer (2015).
https://doi.org/10.1007/978-3-662-46081-8 5

20. Reynolds, A., Kuncak, V.: Induction for SMT Solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) Proc. of VMCAI. LNCS, vol. 8931, pp. 80–98. Springer (2015).
https://doi.org/10.1007/978-3-662-46081-8 5

21. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, Higher, Stronger: E 2.3. In:
Fontaine, P. (ed.) CADE. pp. 495–507. Springer (2019)

22. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An automated prover for prop-
erties of recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS. pp.
407–421. Springer (2012). https://doi.org/10.1007/978-3-642-28756-5 28

23. Sutcliffe, G.: The CADE ATP System Competition - CASC. AI Magazine 37(2),
99–101 (2016)

24. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.:
The SMT competition 2015-2018. J. Satisf. Boolean Model. Comput. 11(1),
221–259 (2019). https://doi.org/10.3233/SAT190123, https://doi.org/10.3233/
SAT190123

25. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE. pp. 140–145. Springer (2009).
https://doi.org/10.1007/978-3-642-02959-2 10


