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ABSTRACT
We are reaching the limits of the von Neumann computing archi-

tectures (also called Moore’s law era) as there is no free ride of

the performance growth from simply shrinking the transistor fea-

tures. As one of the consequences, we experience the rise of highly

specialized architectures ranging from neuromorphic to quantum

computing, exploiting completely different physical phenomena

and demanding the development of entirely new architectures –

that, however, can perform the computations within a fraction of

the energy needed by the von Neumann architecture. Thus, we

experience the paradigm shift from generalized architectures of

the Von Neumann era to highly specialized architectures in the

Post-Moore era where we expect the coexistence of multiple types

of architectures specialized for different types of computation. In

this paper, we discuss the implications of the post-Moore era for

distributed systems.

CCS CONCEPTS
• Hardware → Neural systems; Quantum technologies; • Ap-
plied computing → Computers in other domains; • Computer
systems organization → Distributed architectures.

KEYWORDS
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1 INTRODUCTION
The distributed systems research community currently faces chal-

lenges given by the explosion of data generated from different

sources, ranging from IoT sensors, mobile phones, and wearable de-

vices. This vast amount of data is characterized by heterogeneity in

format and size (e.g., time-series data, video frames, audio files) and

has to be analyzed at different layers of distributed systems within
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the order of milliseconds to address the requirements of modern ap-

plications. To address strict latency requirements, Edge computing

has been proposed reducing the latency of data processing by em-

ploying so-called Edge nodes, i.e., lower scale data centers, which

augment the capabilities of classic Cloud computing by moving pro-

cessing closer to the source of data [11]. In some cases, Edge can be

further augmented with the use of specific hardware accelerators,

such as GPUs, FPGAs, ASICs, and TPUs.

However, due to the unsustainability of Moore’s law [13] and

the failure of Dennard’s scaling [5], while on one side amount of

data generated is growing together with the demand for computa-

tional resources to process them; on the other side, conventional

computing architectures are reaching their physical limits. This

huge discrepancy between the growth of data generation and the

increase of computational processing power demands a robust re-

search effort in novel approaches and alternatives to conventional

data processing.

In this work, we discuss the potential of Post-Moore architectures

to address the challenges of the so-called Post-Moore era. First, we

define the two of the architectures that attracted the most interest

in the research community and where we witness not only theo-

retical developments but also first implementations and practical

use cases. Afterward, we discuss the first ideas but also challenges

in the integration of identified architectures in existing distributed

systems. Finally, we present initial use case scenarios for quantum

and neuromorphic computing, which have shown promising re-

sults in the area of scientific computing and artificial intelligence.

In this context, we present the idea of Quantum Edge and Neu-

romorphic Edge, describing possible ways to integrate them into

classic distributed architectures.

This work is organized as follows: first, we describe the limita-

tions of Von Neumann architecture in Section 2. Then, we describe

Post-Moore architectures addressing Von Neumann architecture

limitation in Section 3 and their implications for modern distributed

systems in Section 4. In Section 5 we discuss concrete use cases.

Finally, we conclude our paper in Section 6.

2 THEORETICAL LIMITATIONS OF VON
NEUMANN ARCHITECTURE

Almost all modern computers are based on the von Neumann ar-

chitecture as illustrated on the left side of the Figure 1. In this

architecture, there exists a central processing unit (CPU) and a

separate memory that stores data temporarily during processing.

The data is transferred back and forth between the CPU and mem-

ory unit through a data path. Until now, this architecture allowed

continuous growth of the processing speed as predicted by Moore’s

law. However, the current processing unit and memory speeds have

reached a point that the data path becomes a performance bottle-

neck, which will inevitably, within this decade, stop the already
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Figure 1: Von Neumann vs Neuromorphic Architecture

lagging growth [16]. Indeed, there exists a practical limitation to

processor frequency of around 4 GHz since 2006.

Since a single computer cannot be any faster, researchers are

developing systems composed of thousands of CPUs to exploit par-

allelism. However, this results in extremely high energy consump-

tion, and therefore, such systems are not feasible for widespread

use. As an example, the fastest supercomputer currently, Fugaku
1
,

can perform 537 quadrillions (10
15
) floating-point operations per

second using 158,976 processing units with an energy budget of 30

to 40 MW, which is comparable to 100,000 average EU households.

The main reason for energy consumption is that power density

and heat dissipation increases as transistors get smaller and smaller

because these do not scale with size anymore (the end of Dennard’s

scaling [5]). In addition to the loss of energy in the form of heat,

cooling systems also consume the majority of energy in large data

centers so that the processors can continue functioning properly.

3 THE RISE OF NEW ARCHITECTURES
Since the rise of microprocessors in the early 1970s, we experienced

a paradigm shift from highly specialized hardware (i.e., time-shared

mainframes used mostly for scientific and engineering calculations)

to general-purpose calculators known as personal computers, as

envisioned by [1]. However, the constant data increase and the con-

sequent improvement in computational power demand encouraged

the scientific community to employ specialized accelerators (e.g.,

GPUs, FPGAs, ASICs, TPUs) to improve the performance of com-

putation and data-intensive tasks such as scientific workflows [22],

deep learning computations [24] and bitcoin mining [20]. The in-

coming limit of Von Neumann’s architecture [25] poses a solid

motivation to come back to highly specialized hardware to satisfy

the increasing computational power demands. Among a plethora of

new computer architecture proposals, we selected the most promis-

ing, namely, neuromorphic computing and quantum computing.

3.1 Neuromorphic Computing
The first definition of neuromorphic computing appears in [12].

The main idea behind neuromorphic computing is to mimic the

behavior of the human brain, meaning that computation is repre-

sented in the forms of neurons and synapses (See the right side of
the Figure 1). The main differences between neuromorphic architec-

tures are summarized in Figure 1. The most important is that, while

Von Neumann’s architecture imposes a strict separation between

1
https://www.fujitsu.com/global/about/innovation/fugaku/

memory and processing, in neuromorphic computing, both pro-

cessing and memory are encoded by neurons and synapses. Also,

while Von Neumann computers encode information as numerical

binary values, the input of neuromorphic computers are spikes. The

time, magnitude, and shape at which a spike occurs can be used

to encode numerical information; therefore, we can convert spikes

into binary values and viceversa [17]. Other differences are:

• Highly parallel operations, since each neuron and synapses

could be operated simultaneously;

• No memory bottlenecks, since contrarily to Von Neumann’s

architecture, there is no need to transfer data to/from the

CPU, being memory and processing encoded together;

• High scalability, since adding a new neuromorphic chip

causes the increase in the number of neurons and synapses,

with positive effects on computation [4].

The main application area for neuromorphic computing is Arti-

ficial Intelligence [19] and Scientific Computing [17].

3.2 Quantum Computing
The basic unit of quantum computation are the qubits. In contrast

to classic bits, which can be either 0 or 1, a qubit can be in a super-
position of both. A set of 𝑛 qubits taken together forms a quantum
register. Quantum computation is performed bymanipulating qubits

in a quantum register. The state of a 𝑛-qubits register |𝜓 ⟩ is a linear
combination of 𝑛 column vectors (orthonormal basis)

|0⟩ ↦→ [1, 0, . . . , 0]𝑇

|1⟩ ↦→ [0, 1, . . . , 0]𝑇

.

.

.

|𝑛 − 1⟩ ↦→ [0, 0, . . . , 1]𝑇 .

|𝜓 ⟩ = ∑𝑛−1
𝑖=0 𝑐𝑖 |𝑖⟩ with complex coefficients (complex amplitudes).

In contrast to classic registers, a quantum register is in a superpo-
sition of each state, i.e., can be in each one of 𝑥0, . . . 𝑥𝑛 at the same

time. At the moment of observation, the probability that we will

find it in the state 𝑥𝑖 , 𝑃 (𝑥𝑖 ) is given by 𝑐𝑖 . As a consequence of the

superposition principle, quantum computers can process 2
𝑛
values

at the same time (the so-called "quantum parallelism"), which is the

primary source of the quantum speedup [15] in comparison with

classic Von Neumann architectures.

Quantum computing has the potential to offer a significant com-

putational advantage over Von-Neumann’s architectures, which

allows for solving different intractable problems in various applica-

tion domains, ranging from finance, molecular dynamics, compu-

tational chemistry [8] and its native modeling of many scientific

phenomena [3]. Among different classes of quantum algorithms,

Variational Quantum Algorithms [2] are the most promising for

achieving the so-called quantum advantage.

However, due to the limited number of resources available and

the high noise in their results, quantum processing units (QPUs)

are combined with classic architectures, defining hybrid quantum

systems and algorithms [18]. In this work, we focus on their inte-

gration into modern distributed systems.
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Figure 2: The Quantum Edge.

4 IMPLICATIONS TO DISTRIBUTED SYSTEMS
4.1 Hyper Heterogeneity and Edge AI
State of the art in heterogeneous distributed systems is well repre-

sented by Edge AI [6], which includes different components (sen-

sors, edge nodes, cloud nodes) with specialized tasks. Examples

can be found in traffic safety [11], environmental monitoring [10]

and smart agriculture [7]. The advent of Post-Moore computing is

going to bring a disruptive change to distributed systems, where

Edge AI is going to play a central role in the integration, acting as

a control layer between classic and different non-Von Neumann’s

architectures. Typical actions could be

• Collection and processing of execution data;

• ML-based data analytics;

• Tuning of execution on both sides,

depending on the target architectures. We describe possible scenar-

ios for quantum and neuromorphic computing in the next sections.

4.1.1 The Quantum Edge. We expect that in the future Quantum

computing will be used to execute highly specialized scientific

computing tasks. Quantum machines need very specialized data

centers to be maintained, thus Quantum Edge represents the layer
connecting user devices with specialized Quantum data centers.

Quantum-Edge is summarized in Figure 2. As already discussed,

only very specific parts of the code of an application are suitable

for the execution on the Quantum machine. Currently, two types of

algorithms, namely Variational Quantum Linear Solver (VQLS), and

Variational Quantum Eigenvalue (VQE) algorithms are used to solve

large integer programming problems and Eigenvalue calculations.

Themain idea of VQAs is to minimize a cost function𝐶 representing

a specific property of the physical system (e.g., the ground state of

a Hamiltonian, 𝐻𝐺 ). The state of the physical system is modeled by

a Parametrized Quantum Circuit (PQC), which is a quantum circuit

whose state is determined by a set of input parameters Θ. VQAs
goal is then finding Θ∗

minimizing the value of 𝐶 (Θ).
Assuming a large scale application like in the area of scientific

computing, in the first step the transpiler generates (i) the quan-
tum part, namely, the parametrized quantum circuit representing

the state of the physical system, and (ii) the classic part, which

includes the codes to prepare the quantum state and optimize input

Θ parameters [2]. In order to control and improve execution both

on classic and quantum architecture, we use an intermediate Edge

layer which is responsible to collect data about the execution of

both architectures and in particular to map the code written for
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Figure 3: The Neuromorphic Edge.

traditional von Neumann architecture onto Quantum architectures,

which is a highly complex, iterative, and interactive process. Data

are then processed at the edge layer to reduce execution latency

and optimize the quality of the execution on both architectures.

Data collected are used as input for different algorithms for (i) op-
timization of quantum execution hyperparameters, (ii) tuning of

classic execution, and (iii) design of compiler optimization tech-

niques to improve quantum compilation tasks, i.e., mapping of a

logical circuit to the quantum machine topology.

4.1.2 The Neuromorphic Edge. Opposite to Quantum computing,

Neuromorphic computing can be used to process huge amounts of

raw data with much higher efficiency than traditional architectures.

Thus, we define the role of the neuromorphic Edge as a data pro-

cessing unit between the user devices and large-scale data centers.

Figure 3 summarizes the Neuromorphic Edge. In order to im-

prove the fan-in (the maximum number of input signals) and data

throughput, we propose integrating neuromorphic hardware to the

edge servers, denoted NM Edge [9]. High parallelism enabled by

the neuromorphic hardware removes the computational power im-

balance between the cloud and edge resources and allows a higher

number of data inputs to be processed concurrently at the edge

servers. Since neuromorphic hardware is able to handle analog data

inputs, a further analog-digital conversion step is eliminated.

Moreover, event-driven neuromorphic hardware only consumes

energy when input spikes are present. This translates to huge en-

ergy savings in use cases such as anomaly detection, since events

of interest are relatively rare in comparison to expected behavior.

Finally, the neuromorphic edge architecture reduces the pressure

on the wide-area network (in terms of bandwidth and throughput)

since most of the computation based on raw IoT data is handled at

the NM Edge servers. Data transmission to the Cloud is only needed

to update the AI models and has a relatively smaller volume.

5 USE CASES
In the previous section, we discussed the potential of Neuromorphic

and Quantum Edge. In this section, we discuss the first concrete

use cases where both Neuromorphic and Quantum Edge can bring

significant benefits to geographically distributed applications.
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Figure 4: MD Simulation on the Quantum Edge

5.1 Quantum Edge: Molecular Dynamics
Simulations

Molecular dynamics (MD) simulation is used to compute the atomic

states of an evolving molecular system over time by observing

microscopic interactions between atoms. Typical computations

involved in this model are to extract positions of 𝛼-Carbon (C𝛼)

backbone atoms, which provides an indication of modifications

of the molecular system. This is done by calculating Euclidean

distance between two amino-acid segments, 𝐼 and 𝐽 , between 𝐶𝛼
atoms 𝑖 and 𝑗 , 𝑑𝑖 𝑗 . Results of computation of Euclidean distance

forms a symmetric bipartite matrix, whose maximum eigenvalue

allows to discover changes in the molecular systems.

Typical computations that could be improved by quantum com-

puting are (i) computation of the Euclidean distance, for which C-

SWAP test [23] could be used, and (ii) calculation ofmaximum eigen-

value, for which the Variational Quantum Eigenvalue (VQE) [2] can

be used. The advantage of the C-SWAP test is that it has a𝑂 (log𝑛)
complexity in comparison with the 𝑂 (𝑛) complexity of Euclidean

distance, while the use of VQE allows exploiting potentialities of

hybrid quantum systems.

Edge computing could play a fundamental role in the integration

of quantum computing hardware within classic HPC infrastructure,

as described in Figure 4. The use of Edge in this context could im-

prove quantum execution by improving circuit transpilation using

ML/data-driven techniques, which will use as input the data about

quantum execution which are processed at the Edge. Concerning

VQE execution, employing Edge in the continuous loop between

classic and quantum hardware could reduce communication latency

between the two architectures.

5.2 Neuromorphic Edge: Environmental
Monitoring

Monitoring and real-time decision-making is an essential aspect

of future environmental protection, and sustainability goals [21].

Pollution monitoring (air and water quality, etc.) and disaster warn-

ing systems (seismic or volcanic activity, avalanches, etc.) are the

two major areas in which IoT- and AI-based systems are being

developed. Such systems are typically deployed in rural areas and

characterized by intermittent network connectivity and limited or

no access to conventional electricity utilities. The neuromorphic
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Figure 5: Planned monitoring stations on the Ergene water-
shed. (The image is a courtesy of TUBITAK project 115Y064.)

edge provides powerful computational resources in close proximity

to environmental sensors and therefore eliminates the need for

streaming big data transmission to remote data centers under unre-

liable connections. Moreover, reduced energy consumption allows

use of limited energy sources, including energy harvesting systems.

One of the environmental monitoring applications is the SWAIN

project
2
, which aims to detect and locate micropollutant sources

along European rivers in real-time. One of the use cases of the

project is the Ergenewatershed in northwestern Turkey as shown in

Figure 5. Real-time decision-making is vital in this use case because

the industrial zones highlighted in red in the upstream are potential

micropollutant sources, whereas agricultural areas highlighted in

light brown in the downstream use river water for irrigation. An

effective early-warning system can prevent the exposure of crops

to micropollutants. The river and pollutant transmission models in

the SWAIN project are designed as Graph Neural Networks, which

can run natively on the neuromorphic hardware at the edge nodes.

6 CONCLUSION AND OUTLOOK
In this work, we give a glance into the future of distributed sys-

tems. First, we identify the limit of Moore’s law as an obstacle to

further development of distributed systems and discuss possibilities

to augment current distributed systems with non-Von Neumann’s

architecture to pave the way to hyper-heterogeneity in the so-called

post-Moore era. We identify Neuromorphic and Quantum Architec-

tures as the most promising approaches to accelerate computation

in future distributed systems, and describe two possible use cases

where neuromorphic and quantum computing could be employed

to improve performance currently provided by distributed systems

by utilizing the eoncept of Edge computing.

However, the implications of the hyper heterogeneity with Quan-

tum and Neuromorphic Edge will cause significant challenges for

the general software development process and the education of

computer scientists as discussed next.

2
http://swain-project.eu/
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6.1 Software Development Processes
The development of quantum programs requires a strong paradigm

switch from the design of programs (loops, conditions, sequences)

to the design of quantum circuits (qubits, gates, entanglement).

Also, it is of capital importance to train computer scientists in

the non-determinism of quantum programming: indeed, while in

classical programming we perform a single execution, which will

give as output the solution of our problem, quantum circuits can

provide different results at each execution, since each measurement

changes the state of the system. The consequences of this change of

mindset are twofold: first of all, while in classic programming our

goal is to design algorithms that for each input provide always the

same output, in quantum results our goal is to tune the probability

distribution of the output in a way that guarantees that the solution

to our problem will be the most frequent over a given amount

of measurements; second, the necessity of continuous executions

implies that also the way we measure the performance of quantum

execution changes, having to take into account the intrinsic non-

determinism of quantum mechanics.

Concerning neuromorphic computing, creating a spiking neu-

ral network (SNN) is usually needed to program a neuromorphic

computer [17], which differs significantly from the widely used pro-

cedural, object-oriented, and functional programming languages.

Although it is expected that high-level languages that are com-

piled into SNNs would be developed, initial programming efforts

will probably entail manual graph creation. Therefore, graph-based

programming languages (e.g., [14]) might gain more importance.

6.2 Education
Integration of non-Von Neumann architectures might require the

inclusion of new disciplines in computer science curricula. For

quantum computing, knowledge about quantum mechanics and

the principles regulating quantum physics could be beneficial in

the design of quantum circuits. Also, given the non-deterministic

nature of quantum computation, improving students’ backgrounds

in statistics and probability would definitely reduce entry barriers

in quantum computing for classical computer scientists.

Similarly, programming neuromorphic hardware requires a graph

theoretical and ML background which could gain more importance

in computer science curricula. SNNs differ from traditional artifi-

cial neural networks as they run asynchronously and are based on

analog signals. Currently, asynchronous and analog systems do not

get much attention in computer science education.
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