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Abstract 
Background: Energy communities and local electricity markets (e.g., 
as peer-to-peer trading) are on the rise due to increasingly 
decentralized electricity generation and favorable adjustment of the 
legal framework in many European countries.  
Methods: This work applies a bi-level optimization model for dynamic 
participation in peer-to-peer electricity trading to determine the 
optimal parameters of new participants who want to join an energy 
community, based on the preferences of the members of the original 
community (e.g., environmental, economic, or mixed preference). The 
upper-level problem chooses optimal parameters by minimizing an 
objective function that includes the prosumers' cost-saving and 
emission-saving preferences, while the lower level problem maximizes 
community welfare by optimally allocating locally generated 
photovoltaic (PV) electricity between members according to their 
willingness-to-pay. The bi-level problem is solved by transforming the 
lower level problem by its corresponding Karush-Kuhn-Tucker (KKT) 
conditions. 
Results: The results demonstrate that environment-oriented 
prosumers opt for a new prosumer with high PV capacities installed 
and low electricity demand, whereas profit-oriented prosumers prefer 
a new member with high demand but no PV system capacity, 
presenting a new source of income. Sensitivity analyses indicate that 
new prosumers' willingness-to-pay has an important influence when 
the community must decide between two new members. 
Conclusions: The added value of this work is that the proposed 
method can be seen as a basis for a selection process between a large 
number of potential new community members. Most important future 
work will include optimization of energy communities over the horizon 
several years.
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Nomenclature
Sets

t ∈ T = {1, . . . , T} Time steps

i ∈ I = {1, . . . , N + n} Index of all prosumers

i ∈ Iold = {1, . . . , N} Index of old prosumers

i ∈ Inew = {N + 1, . . . , N + n} Index of new prosumers

Parameters

,
load
i tq Demand of prosumer i (kWh)

,
PV
i tq PV generation of prosumer i (kWh)

max
iload Maximum annual demand of prosumer i ∈ Inew (kWh)
min
iload Minimum annual demand of prosumer i ∈ Inew (kWh)

max
iPV Maximum peak PV generation of prosumer i ∈ Inew (kW)
min

iPV Minimum peak PV generation of prosumer i ∈ Inew (kW)
max
iSoC Capacity of prosumer i’s battery (kWh)

Bmax
iq Maximum (dis)charging power of prosumer i’s battery (kW)

ηB Efficiency of the batteries
wj Prosumer j’s weighting factor for marginal emissions (EUR/tCO2)
dij Distance factor between prosumer i and j (∈ [0, 1])

wtpi,j,t Willingness-to-pay of prosumer j (EUR/kWh)

αi Upper-level preference factor of prosumer i within range (∈ [0, 1])
Gintp Average spot market electricity price (EUR/kWh)
Gout
tp Retailer’s electricity price (EUR/kWh)

et Marginal emissions from the grid (tCO2/kWh)

Decision variables

load
i Annual demand of prosumer i ∈ Inew (kWh)

PV
i Installed PV capacity of prosumer i ∈ Inew (kW)

b
i Binary decision variable of prosumer i ∈ Inew

,
Gin
i tq Purchase of prosumer i from the grid (kWh)

,
Gout
i tq Sales from prosumer i to the grid (kWh)

, ,
share
i j tq Purchase of prosumer j from prosumer i (kWh)

,
Bin
i tq Charging of prosumer i’s battery (kWh)

,
Bout
i tq Discharging of prosumer i’s battery (kWh)

SoCi,t State of charge of prosumer i’s battery (kWh)

1 Introduction
1.1 Motivation
The increasing number of photovoltaic (PV) systems in our energy system leads to a high share of decen-
tralized production. Households or small businesses that were previously considered consumers only now 
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have the opportunity to become prosumers. To go beyond individual self-consumption of single prosumers,  
collective forms of self-consumption take advantage of load aggregation to further optimize the use of resources  
(Frieden et al.1). By sharing or trading self-generated electricity within a certain framework, for example in 
energy communities, prosumers become active participants in the energy system. There are also opportunities to  
form local, decentralized electricity markets. In peer-to-peer trading, participants trade electricity directly with 
other participants, the “peers” (Bjarghov et al.2, Sousa et al.3, and Tushar et al.4). Peer-to-peer trading allows par-
ticipants to increase their consumption of locally generated clean energy and to increase flexibility. Prosum-
ers usually seek to maximize their economic or environmental benefits; hence, a fair pricing mechanism and  
trust in the community are crucial in this aspect. Furthermore, peer-to-peer trading and energy commu-
nities are opportunities to create new sustainable business models (F.G. Reis et al.5). When transition-
ing toward a world with a high share of renewables, it can be assumed that local electricity markets, such as  
peer-to-peer trading or pool markets, are more established and sufficient regulatory framework exists.

1.2 Core objective and research question
The core objective of this research is to investigate and optimize energy communities, wherein prosumers trade 
self-generated PV electricity with one another (peer-to-peer trading), including members’ entry and exit over 
time. The research question is the following: How would an existing energy community collectively choose 
an optimal new member/prosumer to engage in peer-to-peer trading? With the model developed in this work,  
it is possible to (i) choose between different prosumers, and (ii) choose the desired parameters of a new prosumer.

1.3 Method applied
The method applied is based on a linear optimization model for local energy communities that was previously 
developed by the authors in Perger et al.6. The objective of this model is to optimally allocate electricity trades 
between community members considering each prosumer’s individual willingness-to-pay for locally generated  
PV electricity. To answer the research question, the model is extended to a bi-level optimization problem.

The model developed is an operating model rather than an investment model, assuming that in the future  
(i) many people will already have PV modules and (ii) PV systems will be “mainstream products” and there-
fore installing a PV system is a low barrier for those interested in joining a local energy market. In particular, a  
community’s new member selection and decision-making process is the subject of interest.

1.4 Structure of the paper
The next Section 2 presents a comprehensive literature review of local energy markets, peer-to-peer trad-
ing mechanisms, and the regulatory framework. Section 2 concludes with the paper’s contributions beyond 
state-of-the-art. Section 3 explains the methodology and modeling approach, and presents the data and assump-
tions of the case study. Section 4 presents the results of the case study, followed by a sensitivity analysis in  
Section 5. A conclusion and the outlook for future research needs in Section 6 complete the paper.

2 State-of-the-art and progress beyond
This Section provides a review and discussion of recent, relevant scientific literature regarding energy communi-
ties and peer-to-peer trading. Section 2.1 reviews state-of-the-art peer-to-peer trading modeling approaches. 
Section 2.2 gives an overview of related research on policy and legislation, with focus on Europe, and on the  
social aspects of energy communities. Section 2.3 presents this paper’s contribution beyond state-of-the-art.

2.1 Peer-to-peer trading models in literature
A comprehensive review of existing literature and modeling approaches in the field of peer-to-peer trading is  
presented in Soto et al.7. Most peer-to-peer trading models consider consumers, prosumers, an energy shar-
ing coordinator, and an electricity supplier/retailer. There are different approaches to implementing the energy 
exchange and negotiation processes. In Soto et al.7, they are categorized into trading platforms, blockchain,  
game theory, simulation, optimization, and algorithms. Different non-cooperative game theory approaches 
for peer-to-peer trading of prosumers in microgrids with PV systems and battery storage are developed in  
Paudel et al.8 and Zhang et al.9. A canonical coalition game for peer-to-peer trading is presented in Tushar  
et al.10, while Fleischhacker et al.11 compares a Stackelberg game with a welfare maximization model for PV shar-
ing in multi-apartment buildings. Continuous double auctioning models for peer-to-peer trading are developed  
in Li and Ma12, Chen et al.13, and Lin et al.14.

To decrease aggregated peak load, Bjarghov et al.15 developed a peer-to-peer trading capacity market formu-
lated as a mixed complementarity problem (MCP). Sharing energy in a community-based market structure  
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including fairness indicators is proposed in Moret and Pinson16. Jiang et al.17 presents a two-stage optimiza-
tion approach, including social utility maximization in the first stage and payment bargaining in the second stage. 
Comparing three different models, Henriquez-Auba et al.18 found that a sharing economy model in which PV 
generation is traded among firms in a local spot market is a plausible pathway to maintaining and accelerating  
investments in PV systems, considering that feed-in programs are likely to be phased-out in the near future. 
Peer-to-peer markets with product differentiation are introduced in Sorin et al.19. In Hashemipour et al.20, vir-
tual local energy markets with dynamic allocation of clusters that change on a daily basis are developed. Electric  
vehicles are pooled into the market to further increase flexibility.

Potential congestion and voltage problems in the distribution network considering the increasing penetra-
tion of Distributed Energy Resources are addressed in recent papers on peer-to-peer trading. For example, Dynge  
et al.21 analyze the impact of the low voltage grid on local markets. As the physical distribution network is used 
for trades in local electricity markets, a market clearing approach considering network fees and power losses 
is introduced in Paudel et al.22. The Euclidean distance of the distribution network between peers is included  
as grid-related costs using a product differentiation method in Orlandini et al.23. Another product differentia-
tion approach is presented in Khorasany et al.24 in which network constraints are considered using a power trans-
fer distribution factor to represent the contribution of transactions in the line flows. Considering electrical  
distances between prosumers, Guerrero et al.25 include a shortest path algorithm in their peer-to-peer mar-
ket design and compare stable-matching and continuous double auction allocation mechanisms. An optimi-
zation problem solving matching between peers, including least-cost energy path algorithms, is proposed by  
Jogunola et al.26.

A selection of real-life implementations of peer-to-peer trading examples includes Piclo (Piclo27) in the UK, 
The Brooklyn Microgrid (Microgrid28 and Mengelkamp et al.29) in the US, Vandebron (Vandebron30) in the 
Netherlands, and the sonnenCommunity (sonnenGroup31) in Austria, Germany, Italy, and Switzerland. A  
detailed review of existing peer-to-peer trading projects including those mentioned is found in Zhang et al.32.

2.2 Participation in local energy markets or communities from a policy and social perspective
A number of legal instruments are included in the European Union’s Clean Energy Package Directorate- 
General for Energy (European Commission)33 introducing the legal framework to establish the sharing/trading of  
self-generated electricity and to initiate economic incentives for its practice. EU member states are obliged to 
enable the entrance of these active participants into markets. Furthermore, the Clean Energy Package intro-
duced a definition of peer-to-peer trading. Nevertheless, many regulatory aspects of peer-to-peer trading remain 
unclear. A review of current European policies, legislation, and possible legal issues related to peer-to-peer trading 
and energy communities in electricity markets is presented in de Almeida et al.34. The European guidelines of the  
Clean Energy Package as transposed into Austrian law is analyzed in Fina and Fechner35.

Azarova et al.36 analyze how to design a Renewable Energy Community (REC) to increase social acceptance, 
finding that acceptance for solar farms and power-to-gas infrastructure is high, mixed for wind farms, and low 
for gas power plants and power lines. To gain more knowledge regarding individuals’ willingness to participate 
in energy communities, using regression analysis, Koirala et al.37 conducted a survey in the Netherlands to deter-
mine the importance of factors such as environmental concerns, renewable acceptance, community trust, and 
resistance (among others). According to the survey, perceived barriers for participation include lack of time,  
financial reasons, satisfaction with the status quo of the energy system, and no trust in the neighborhood.

According to the analysis in Hackbarth and Löbbe38 focusing on intentions of private households to participate 
in peer-to-peer trading mechanisms in Germany, highly interested potential participants exhibit environmental  
rather than economic preferences, and are drawn to innovative pricing schemes. Soeiro and Ferreira Dias39  
found that trust is a key component and that citizens recognize the added non-monetary values of renewable  
energy communities.

In contrast to Germany and the Netherlands, there is a delay in the development and integration of RECs in 
Southern European countries. Using a survey in Spain and Portugal, Soeiro and Dias40 aims to understand the  
motivations of members in energy communities.

The inclusion of vulnerable consumers in the energy transition, who are generally underrepresented in REC 
projects, is discussed in Hanke and Lowitzsch41. The enabling framework to support inclusion remains rather 
unclear and should not languish as an idea on paper; therefore, lawmakers and policymakers should develop  
incentives targeting both RECs and individual vulnerable consumers.
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Regarding peer-to-peer trading concepts in particular, Reis et al.42 developed a multi-agent framework to model 
peer-to-peer electricity within energy communities with an emphasis on vulnerable consumers and members’  
economic outcomes, considering fairness in the distribution of energy resources. Fair revenue sharing and exit  
clauses are examined in Fioriti et al.43, to identify the optimal sizing of energy communities.

2.3 Contribution beyond state-of-the-art
To date, there has been minimal analysis of dynamic participation (entry and exit) in energy communi-
ties over time. This is where the present paper picks up. The contribution of the following analyses beyond  
state-of-the-art is summarized as follows:

·	� A method is developed based on the peer-to-peer allocation mechanism presented in 6 to optimize  
energy communities with peer-to-peer trading over the years, including members’ entry and exit.

·	� A novel peer-to-peer model is proposed that simultaneously provides (i) an allocation mechanism for 
electricity trades between members and (ii) a new member’s selection process. Both (i) and (ii) take the  
prosumers’ individual preferences into account.

·	� The selection process, which is of particular interest, operates from the perspective of the commu-
nity members, wherein community members are searching for "optimal fitting participants" as opposed  
to optimal technologies.

·	� The insights gained from the results and sensitivity analyses expand the understanding of the impor-
tance of participants’ individual preferences. These insights offer practical considerations to help  
establish stable and prosperous local energy communities.

3 Methods
In this Section, the methodology and modeling approach are described. The framework of the study explained in 
Section 3.1 is followed by a detailed description of the optimization problem in Section 3.2. Data and assump-
tions are presented in Section 3.3, and Section 3.4 introduces the verification of the proposed modeling  
approach. 

3.1 Dynamic participation in energy communities
3.1.1 Modeling framework. The framework of the modeling approach is a peer-to-peer electricity trading  
concept in a local energy community. Prosumers (or consumers or producers) join on a voluntary basis and 
exchange PV electricity generated by community members with one another. Figure 1 presents the basic idea of the  

Figure 1. Sketch of the framework of the modeling approach.
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peer-to-peer trading concept in this paper. All members are connected to the public distribution grid to be able 
to cover the community’s residual load, to feed in the surplus PV electricity, and to trade with the other commu-
nity members (green arrows). Participants in the community are either households or small-to-medium-sized  
enterprises. The technology portfolio includes PV systems and battery energy storage systems (BESSs). In addi-
tion, each prosumer has an individual willingness-to-pay for PV electricity generated by community members,  
which determines the allocation of the peer-to-peer trading.

The aim of this work is to optimize the dynamic participation of prosumers in an energy community; hence, 
changes in the set-up of members over time (i.e., exit/entry). In Figure 1, the orange parts represent a new member  
joining the community.

In this context, new prosumers are characterized by (i) electricity load/demand, (ii) electricity generation (PV  
system and BESS size), and (iii) consumer-type (household or small business). Other characteristics include elec-
trical distance from the other community members, the minimum and maximum number of new prosumers,  
and the length of binding contracts with the community. The latter is out of scope for this paper.

3.1.2 Flow chart. The minimum length of a contract for prosumer participation in energy communities is 
assumed to be one year. There is a deadline each year; until then, members can decide to leave the community in 
the next contract period, or decide to stay and extend the contract for another year. In the meantime, prospective 
new members can declare interest in joining the community until the annual deadline. The flow chart in Figure 2 
shows the process that is suggested to optimize dynamic participation in energy communities over a horizon of  
several years.

·	� The starting point is the "old" community, where some members leave at the end of their contract period.

·	� The status quo of the remaining members is then captured. Previous analyses of peer-to-peer elec-
tricity trading under the consideration of prosumers’ willingness-to-pay demonstrate two important  
characteristics for a community and its members: Overall community welfare1, and the annual emis-
sions and costs of each member. These indicators are obtained by solving a linear program (see the model 
presented in Perger et al.6) to maximize community welfare of the original community configuration.  
The annual costs and emissions are then used as “benchmarks” for the optimization process.

·	� After decisions about leaving, staying, or joining the community are made by all existing and poten-
tial new members, a bi-level optimization problem is solved to determine the optimal configuration of 
new prosumers. The lower level problem is linear community welfare maximization that was applied 
to the original community in the previous step to obtain benchmarks. The upper-level problem deter-
mines which potential members are selected by the community, and subsequently, the new prosumers’  
parameters (annual electricity demand and peak capacity of the installed PV systems).2

·	 Finally, the new community is defined and the process repeats in the next year.

In this work, the implementation of the proposed method is shown for one period (year) in order to focus on  
the selection process of the community that is conducted using the bi-level optimization approach.

3.2 Mathematical formulation of the optimization problem
3.2.1 Willingness-to-pay of prosumers. Prosumers’ individual willingness-to-pay determines how PV gener-
ated electricity is distributed among community members. The baseline of the willingness-to-pay is the retail 

electricity price, Gintp , and an individual CO
2
-price, w

j
, is added on top that relates to the prosumer’s prefer-

ence for reducing emissions from electricity consumption. In addition, there is also a preference, d
i,j
 ∈ [0, 1], to 

buy more locally (i.e., buying from a prosumer with the shortest electrical distance). The willingness-to-pay  
of prosumer j at time t to buy from prosumer i, wtp

i,j,t
 , is as follows:

                                                                 , , ,(1 ) .inG
tti j t j i jwt p p w d e= + − ⋅                                                                  (1)

1Community welfare comprises two parts: (i) producer welfare, which considers the community as a whole to maximize producer 
profits, and (ii) consumer welfare, which considers the individual demand functions (here, willingness-to-pay). Details are explained  
in Section 3.2.2.
2The proposed model calculates optimal BESS sizes as well; however, the focus of this work remains on annual demand and PV  
system size. 
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The emissions from the grid, e
t
, are represented as a time series using the greenhouse gases emitted into the 

wider electricity system by the marginal power plant; hence, they are also known as marginal emissions. The  
local energy community is assumed to be a price taker in the wider electricity system.

3.2.2 Community welfare. In this work, the aim of peer-to-peer electricity trade is to maximize community wel-
fare, which is defined in two parts. Part I of community welfare measures the optimal resource allocation at the 
community level, maximizing the community’s self-consumption as a whole. Part II optimally assigns PV gener-
ated electricity to each member in consideration of their individual willingness-to-pay; thus, part II represents  

peer-to-peer trading from one prosumer to another, , ,
share
i j tq . Community welfare (CW) is defined as following:

                                        , , , ,
, , , , , ,

I II

.out out in in

t i t i t i j

G GG G share
t i t t i t i j t i j tCW p q p q wtp q

∈ ∈ ∈ ∈ ∈ ∈
= − +∑ ∑ ∑
��������������� ���������T I T I T I                                         (2)

3.2.3 Prosumers’ cost-emission function. To evaluate the impact of new prosumers on original prosumers,  
the following functions are defined:

                                                                     , ,i i i oldcosts costs costs∆ = −                                                                      (3)

                                                         , .i i i oldemissions emissions emissions∆ = −                                                          (4)� 

Figure 2. Flow chart of the proposed methodology.
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Equation (3) is the deviation of prosumer i’s annual costs within the new community set-up compared to the pre-
vious status quo. Similar to Eq. (3), Eq. (4) represents prosumer i’s annual emission increase or decrease. The  
cost-emission function CE is defined next.

                                                         
(1 )i i ii

i old

CE costs emissionsαα + −
∈

= ∆ ∆∑
I                                                         (5)

Similar to Pareto-optimization, a weighting factor α
i
 ∈ [0, 1] is introduced for each prosumer to choose individ-

ually. Therefore, α
i
 determines whether more emphasis is placed on minimizing costs or emissions. By choosing 

an individual α
i
, prosumers can express either a cost-saving or an emission-saving preference. Due to the abso-

lute values of costs and emissions in Eq. (3) and (4), each prosumer’s changes count equally. The cost-emission  
function CE is the objective to be minimized in the optimization problem.

The costs of each member i of the community over a certain period are calculated as following:

                                                   
, ,

, , , , , , , ,
, ,

,

t

in in out outG G G G
i t i t t i t

t
share share

j i t j i t i j t i j t
t j t j

costs p q p q

wtp q wtp q
∈ ∈

∈ ∈ ∈ ∈

= −

+ −

∑ ∑
∑ ∑

T T

T TI I

                                                  (6)

where T is the respective time period. The emissions over a certain time are:

                                                                         ,
Gin

ti i t
t

emissions e q
∈

= ∑
T

                                                                        (7)

Only purchases from the grid are considered in the emissions calculations, because the production of PV  
electricity does not generate marginal emissions.

3.2.4 Bi-level optimization problem. This model solves two main problems: (i) selecting the optimal electric-
ity demand and PV capacity of new prosumers to fulfill certain requirements set by original community mem-
bers, and (ii) maximizing community welfare, given the new prosumers’ parameters selected in (i). Subsequently, 
this problem can be formulated as a bi-level problem, wherein the leader anticipates the follower’s reaction.  
In the upper-level problem, the leader, of the bi-level problem represents (i) and its lower level, the follower, (ii).

The leader minimizes the cost-emission function CE with the continuous decision variables load
i
 and PV

i
, 

and the binary decision variables b
i
, for all i ∈ I

new
 (see Eq. (8a)). The decision variables have lower and upper  

bounds to ensure a reasonable solution of the model (see Eqs. (8b) and (8c)). The set of variables

{ }, , , , , , , ,, , , , ,
G BG Bin out in outshare

i t i t i t j i t i t i t i tQ q q q q q SoC=

are the lower level primal decision variables. The dual variables of the lower level problem are { }, , ,, ,load PV SoC
i t i t i tλ λ λ  

for equality constraints, { }, , ,, ,
max maxmax
in outB BSoC

i t i t i tµ µ µ  for inequalities, and { }, , , , , , ,, , , , ,in out in outG G B Bshare SoC
i t i t i j t i t i t i tβ β β β β β  for  

non-negativities. The objective function of the follower in Eq. (8e) maximizes community welfare. The equality  
constraints (8f)–(8i) ensure that prosumer i’s electricity demand and PV generation are covered at all times. 
The upper-level decision variables are included in Eq. (8h) and (8i) for new prosumers. The state of charge of  
prosumer i’s BESS is defined in Eqs. (8j) and (8k), and other battery constraints in (8l)–(8n). Non-negativity  
conditions are included in (8o).

                   
{ , , , },

(1 )min i i i i
load PV b Q ii i i i t old

costs emissionsα α
∈

∆ + − ∆∑
I

                                                                          (8a)

                   subject to:

                   min max
newi i i i ib load load b load i⋅ ≤ ≤ ⋅ ∀ ∈I                                                                                           (8b)

                   min max
newi i i i ib PV PV b PV i⋅ ≤ ≤ ⋅ ∀ ∈I                                                                                                 (8c)

                   i
i new

b n
∈

=∑
I

                                                                                                                                              (8d)

                   
,

, , , , ,,
, , , ,

max out out in in

i t

G GG G share
t i t t i j t i j ti tQ t i t i t i j

p q p q wtp q
∈ ∈ ∈ ∈ ∈ ∈

− +∑ ∑ ∑
T I T I T I

                                                          (8e)
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                    subject to:

                    , , , , , , ,0 ( )in outG B share load load
oldi t i t j i t i t i t

j
tq q q q iλ

∈
+ + − = ∀ ∈∑

I

I                                                                    (8f)

                    , , , , , , ,0 ( )out inG B share PV PV
oldi t i t i j t i t i t

j
tq q q q iλ

∈
+ + − = ∀ ∈∑

I

I                                                                        (8g)

                    , , , , , , ,0 ( )in out load load
newi

G B share
i t i t j i t i t i t

j
tq q q load q iλ

∈
+ + − = ∀ ∈∑

I

I                                                              (8h)

                    , , , , , , ,0 ( )out in PV PV
new

G B share
i t i t i j t i i t i t

j
tq q q PV q iλ

∈
+ + − = ∀ ∈∑

I

I                                                                   (8i)

                    , , , ,, 1 0/ 0 ( ) ,in outB BB B SoC
i t i t i t i ti tSoC q q SoC i t tη η λ− + ⋅ − − = ∀ >                                                            (8j)

                    000 0 0, , , , ,/ 0 ( ) ,in out
end

B BB B SoC
i t t i t i t i t i tSoC q q SoC i t tη η λ= + ⋅ − − = ∀ =                                                     (8k)

                    , ,0 ( ) ,
maxmax SoC

i t i i tSoC SoC i tµ− ≤ ∀                                                                                                (8l)

                    , ,0 ( ) ,
maxmax

in inB BB
i t i i tq q i tµ− ≤ ∀                                                                                                            (8m)

                    , ,0 ( ) ,
maxmax

out outB BB
i t i i tq q i tµ− ≤ ∀                                                                                                              (8n)

                    
, , , ,

, , , , , , , , , ,

, , ,

, , 0 ( , , , , , ) ,

in out

in out in out in out

G G share
i t i t i j t

B B G G B Bshare SoC
i t i t i t i t i t i j t i t i t i t

q q q

q q SoC i tβ β β β β β

− − −

− − − ≤ ∀
                                                    (8o)

with i, j ∈ I and t ∈ T.

A very common approach to solving a bi-level optimization problem is the transformation to a mathemati-
cal program with equilibrium constraints (MPEC); see Ruiz et al.44. The lower level problem (Eqs. (8e)–(8o)) 
is reformulated by its corresponding Karush-Kuhn-Tucker (KKT) conditions, and can be classified as a mixed  
complementarity problem (MCP) or equilibrium problem, which is parameterized by the leader’s decision 
variables (Dempe and Kue45). The resulting optimization problem is single-level, and it is linear except for 
binary variables and complementarity constraints. The derivation of the KKT conditions is presented in detail  
in A. The resulting complementarity conditions are then transformed into a mixed integer linear program (MILP) 
using the Fortuny-Amat method (see A.3), also known as the “Big-M approach” (Fortuny-Amat and McCarl46,  
Fischetti et al.47, and Pineda et al.48).

3.3 Data and assumptions
3.3.1 Model implementation. The model is implemented using Python (version 3.7.2; see Van Rossum and 
Drake49) using the Pyomo package (version 5.7.3; see Hart et al.50 and 51), and Gurobi (version 9.0.0; see 
Gurobi Optimization, LLC52) as a solver. Gurobi is a commercial solver. Alternatively, the problem can be solved 
with the open-source solver GNU Linear Programming Kit (GLPK). The model is available open source on  
GitHub (see Software availability).

3.3.2 Input data. To generate the results of a case study, a small community needs to be defined. The electric-
ity demand of each member is obtained from the open-source tool LoadProfileGenerator (version 10.4.0; see 
Pflugradt and Muntwyler53), which generates artificial data. Different household types categorized by living  
situation and demographics (single working person, elderly couple, family, etc.) are included in this study.

The PV generation data are obtained from a different open-source tool Renewables.ninja (version v1.3; see  
Pfenninger and Staffell54, and Staffell and Pfenninger55). PV systems’ irradiation data and electricity output are  
location-specific to Vienna, Austria.
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While the existing community is characterized by specific input parameters, standardized profiles for the new  
prosumers are used as input data:

·	�  ,
load
i tq  is a standardized load profile (H0 for household, G0 for standard business3)), which is  

normalized to 1000kWh/year. For example, a result of load
i
 = 5 means that the optimal prosumer has  

an annual demand of 5000kWh/year. The possible range is between 2000 – 8000kWh/year.

·	�  ,
PV
i tq  is the generation profile of a 1kW

peak
 PV system facing South; hence, the decision variable  

PV
i
 is a factor that upscales the PV system size. The possible range is between 0 – 5 kW

peak
.

A summary of the prosumers’ input data can be found in Figure 3 and in more detail in Table 1. The willing-
ness-to-pay w

i
 is arbitrarily assigned between the prosumers to cover a range between 0–100 EUR/tCO

2
. The  

electrical distance factors d
ij
 ∈ [0, 1] can be represented by a symmetric matrix with diagonal elements all set to 0  

(see Figure 4). The values assumed here are dummy values to represent electrical distances within a distribution  

3The synthetic load profiles of 2019 for household (H0 “Haushalt”) and business (G0 “Gewerbe allgemein”) are used. (See further: 
https://www.apcs.at/de/clearing/technisches-clearing/lastprofile

Figure 3. Annual electricity demand and photovoltaic (PV) generation of the prosumers (left axis); 
willingness-to-pay wj of each prosumer (right axis).

Table 1. Parameters of the prosumers of the community (“-” indicates that a technology type is not 
included). The willingness-to-pay wi of the new prosumers (H0 and G0) is not optimized, but varied in a sensitivity 
analysis.

Annual demand 
(kWh) PV orientation PV peak output 

(kW)
Storage capacity 

(kWh)
CO2 -price wi 
(EUR/tCO2)

Prosumer 1 3448 - - - 100

Prosumer 2 8548 South 5 - 0

Prosumer 3 2403 West 3 - 90

Prosumer 4 3320 South 3 3 30

Prosumer 5 2521 - - - 50

Prosumer 6 2167 South 3 - 60

Prosumer H0 2000 – 8000 South 0 – 5 - 0/50/100

Prosumer G0 2000 – 8000 South 0 – 5 - 0/50/100
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network because the case study is artificial. The higher the value of d
ij
, the further the electrical distance  

between prosumer i and j.

Input data from the grid includes the following values: Gintp  = 0.2EUR/kWh (the average value of the 2019  
Austrian retail electricity price; see 56) and Gout

tp  = 0.04EUR/kWh (average Austrian spot market price of 
2019; see 57). Marginal emissions e

t
 are hourly values obtained from 58 (Austrian-German spot market), and  

average hourly values are found in Figure 22 in the Appendix.

3.3.3 Clustering in the time domain. Because MPECs are computationally expensive, an alternative approach 
is used to represent peer-to-peer trading within a community over a whole year. The input data that is avail-
able in hourly resolution for a whole year is transformed to three representative days using a k-means algo-
rithm (Teichgraeber and Brandt59) of the Python tslearn package (Tavenard et al.60). The optimization model  
then determines the optimum using the three representative days considering the weight (each day represents 
a number of days of the year, which is then used to weight each representative day in the process of upscal-
ing back to annual values; all three days represent the whole year) of each day in both the upper and lower level  
objective functions.

3.4 Validation of the bi-level modeling approach
In the bi-level optimization approach shown above, the lower level problem maximizes the welfare of the com-
munity and optimally distributes the PV generated electricity within the community. This linear problem is 
replaced by its corresponding KKT conditions to solve the bi-level problem. The lower level KKT formulation is  
validated by setting the upper-level objective function to a constant (e.g., F(x) = 1) and I = I

old
. With this con-

figuration, the results of the bi-level problem are compared to the solution of the lower level problem with-
out upper-level function, variables, and constraints (which equals the solution of the linear optimization problem  
based on the model presented in Perger et al.6).

The difference of all participants’ annual results (amount of electricity bought and sold, emissions, and costs) 
is calculated comparing the two solution methods. The box plot in Figure 5 presents the distribution of each cat-
egory of results. The differences between the two solution methods are negligibly small in the scale of 10–13 and 
the KKT formulation of the lower level problem sufficiently substitutes the ordinary LP, which means that the  
Big-M method is appropriately applied (see Kleinert et al.61).

Figure 4. Distance factors dij between the members (H0 and G0 represent the new prosumers).
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4 Results
This section covers the results of the case study described in Section 3.3 under various scenarios, includ-
ing the original community without extension in Section 4.1, extending the community by adding a new  
household in Section 4.2.1 and Section 4.2.2, and the comparison of household and business prosumer types in  
Section 4.3. The different scenarios are compared using fairness indicators in Section 4.4.

4.1 Status quo of the original community
It is first necessary to take a deeper look into the original community’s peer-to-peer trading. The original com-
munity consists of six households with consumers and prosumers. The annual results (kilowatt-hours of  
electricity bought and sold, marginal emissions, and costs) of all members are presented in Table 2. Figure 6 
presents the peer-to-peer traded electricity (in kWh/year) in detail as a heat map; rows represent the amount a  
prosumer sells to each peer, and columns are the respective purchases.

Compared to all other participants, prosumer 1 buys the most from the community, with the highest share com-
ing from prosumer 2, who is prosumer 1’s closest peer and has a 5kW

peak
 PV system installed. Prosumer 1 

does not own a PV system and has the highest willingness-to-pay. Prosumer 3 has the second-highest will-
ingness-to-pay; however, they also have their own PV system installed, and mostly consume their own gen-
eration. Prosumer 2 prefers to sell to prosumer 1, with a higher willingness-to-pay than prosumer 3. Prosumer 2 
clearly has the highest electricity demand within the community; therefore, the highest annual (marginal) CO

2
  

emissions of the community, despite having large PV system capacities installed.

Prosumer 5, who is a consumer only, prefers to buy from their closest peers, prosumers 4 and 6. Prosumer 6 
has very low annual electricity costs due to high-self-consumption and being able to sell electricity to other 
members of the community. Prosumer 4 is the only participant with a BESS and is able to further minimize  
their electricity costs, achieving negative annual costs.

4.2 Results of bi-level optimization of a case study with households
One new prosumer with a household electricity demand profile (prosumer H0) is added to the original com-
munity of six households described above. The potential new member is characterized by a willingness-to-pay 
of 50 EUR/tCO

2
 (mid-range compared to the other prosumers) and by electrical distances as defined in Figure 4.  

Minimizing the objective function of the upper-level problem will determine the ideal parameters of the new pro-
sumer. Annual electricity demand might vary between 2000kWh/year to 8000kWh/year, and PV capacity between 

Figure 5. Validation of the Karush-Kuhn-Tucker (KKT) conditions.
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0kW
peak

 to 5kW
peak

. The variable n (number of new prosumers) is set to one; hence, with one potential new  
prosumer the binary variable b

i
 automatically equals one (see Eq. (8d)).

4.2.1 Cost- vs. emission-saving preference of prosumers. The first set of results shows two distinct cases;  
(i) where all members have an emission-saving preference (α

i
 = 0), and (ii) where all members have a cost-saving  

preference (α
i
 = 1). A third case (iii) with mixed preferences will be presented in Section 4.2.2.

(i) Minimizing emissions In the first case, it is assumed that all community members care about minimiz-
ing their annual emissions, but have no preference regarding cost savings; α

i
 = 0 is set for all prosumers  

i ∈ I
old

. The result of the new prosumer’s PV system size is not surprising. The PV capacity is set to its  
maximum PV

new
 = max

newPV  = 5kW
peak

. At the same time, the optimal electricity demand of the new prosumer 

is at its minimum load
new

 = min
newload  = 2000kWh/year. The new annual peer-to-peer trading values are shown in  

Table 2. Summary of the results of peer-to-peer trading (original community 
set-up).

Prosumer 1 2 3 4 5 6

Buying grid (kWh) 1140.3 4871.6 1379.3 1080.4 1436.3 854.6

Selling grid (kWh) 0 818.3 1680.0 573.5 0 2286.9

Battery charging (kWh) 0 0 0 870.0 0 0

Battery discharging (kWh) 0 0 0 721.5 0 0

Self-consumption (kWh) 0 3341.5 1016.7 1400.7 0 1282.9

Buying community (kWh) 2308.1 334.6 6.5 117.4 1084.5 29.6

Selling community (kWh) 0 2300.8 274.3 1015.5 0 290.0

Emissions (tCO2) 0.6 2.6 0.7 0.6 0.8 0.5

Costs (EUR) 790.0 449.3 154.5 -8.2 527.7 24.0

Figure 6. Heatmap of the peer-to-peer electricity trading between the prosumers.
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Figure 7. The annual results (kilowatt-hours of electricity bought and sold, marginal emissions, and costs) of  
all members are presented in Appendix Table 7.

Cost-wise, the newly added PV capacity can be seen as a competition with other members’ PV systems. 
Part of the revenue from selling electricity to consumers transfers to the new prosumer instead of old mem-
bers, whose earnings now decrease. Notably, the annual emissions of all prosumers involved are reduced. Due 
to the newly added PV capacity, prosumers are able to buy more electricity from the community. The electricity  
demand of the new prosumer is low, such that there is little competition in consuming PV electricity.

The Sankey diagram in Figure 8 demonstrates that members of the original community (I
old

) cover their elec-
tricity demand through self-consumption, buying from other community members or buying from the grid. The 
left side represents the old community without the new prosumer, and the right side shows the new community. 

Figure 7. Heatmap of the peer-to-peer electricity trading between the prosumers – all αi = 0.

Figure 8. Sankey diagram of the electricity consumption of prosumers.
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The new prosumer’s PV generation primarily substitutes purchases from the grid, which is desirable if the com-
mon goal is to reduce emissions. Prior to adding the new prosumer, community members purchase 10 700kWh 
from the grid. Adding a new prosumer with a 5kW

peak
 PV system installed, this amount can be reduced by  

around 8%. Prosumer 4, who has battery storage installed, can also increase their self-consumption.

The next Figure 9 presents the annual cost and emission increase (or decrease) of each prosumer of the origi-
nal community, comparing Eqs. (3) and (4). Annual costs (left axis in red) increase slightly by a few EUR  
for most prosumers, whereas emissions significantly decrease, as desired.

(ii) Minimizing costs The other distinct case is setting all α
i
 = 1, indicating that prosumers seek to minimize 

annual electricity costs. The optimal result of the bi-level problem is a prosumer with the maximum possible  

annual electricity demand load
new

 = max
newload  = 8000kWh/year. At the same time, the new prosumer’s opti-

mal PV capacity is at its minimum PV
new

 = min
newPV  = 0kW

peak
; hence, the new member is a consumer, who 

buys PV electricity from the community, which generates additional revenue for the other members. The new 
annual peer-to-peer trading values are shown in Figure 10. The annual results (kilowatt-hours of electricity  
bought and sold, marginal emissions, and costs) of all members are presented in Appendix Table 8.

The Sankey diagram in Figure 11 demonstrates that members can increase their income by selling a significant 
amount of their generation to the new prosumer, which was previously sold to the grid because the new prosumer’s  

willingness-to-pay is higher than the remuneration for selling PV generation into the grid wtp
i,new,t

 > outG
tp .

In total, about 40% of the community’s surplus PV production is sold to the new prosumer in this scenario, 
resulting in cost savings for prosumers with PV systems (see Figure 12). This is especially evident for pro-
sumer 6, who is the closest neighbor of the new prosumer. The consumers of the community, prosumers 1 
and 5 do not experience major changes. Emission balances offer another interesting result; the lower the  
willingness-to-pay (e.g., prosumer 2 with w

2
 = 0EUR/tCO

2
), the higher the annual CO

2
 emissions. Prior to add-

ing the new member with a high electricity demand, higher amounts of PV generated electricity remained 
available for prosumers with low willingness-to-pay, which are now sold to the new member. Prosumer 6,  
the closest neighbor of the new prosumer, achieves the highest cost decrease.

4.2.2 Prosumers with mixed emission and cost-saving preferences. While the prosumers’ choices of α
i
 are uniform 

in both cases (i) and (ii) in Section 4.2.1, this Section introduces non-uniform values of α
i
. There is an extremely 

large number of possible combinations, many of which lead to the same results as either case (i) or (ii). Other  
combinations lead to different results; for example, [α

1
, α

2
, α

3
, α

4
, α

5
, α

6
] = [1, 1, 0, 1, 1, 0], which is presented 

Figure 9. Cost- and emission balances of the prosumer of Iold – all αi = 0.
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here as case (iii). The optimal parameters of the new prosumer are set by the model to maximum PV capacity 
and maximum annual electricity demand, PV

new
 = 5kW

peak
 and load

new
 = 8000kWh/year, respectively. The detailed  

peer-to-peer trading in Figure 13 shows that the new prosumer trades electricity with the other members, but 
predominantly self-consumes their PV generated electricity due to their own high annual electricity demand. 
This differs from case (i) in the previous Section, wherein the new prosumer has a low electricity demand  
and sells larger volumes of electricity to the other members, comparing Figure 14 with Figure 8.

Due to the high share of self-consumption in case (iii), the new prosumer buys only small volumes of electric-
ity from the community (see Figure 15). In general, there are less interactions/trades with the community, which 
is reflected in the annual cost-emission balances as well. Figure 16 shows very small deviations from the pre-
vious status quo. Annual emissions decrease for prosumers 3 and 6, which is congruent with their preferences on  
saving emissions (α

3,6
 = 0). Annual cost differences are negligible (less than 2 EUR per year). The annual results 

(kilowatt-hours of electricity bought and sold, marginal emissions, and costs) of all members are presented  
in Appendix Table 9.

Figure 10. Heatmap of the peer-to-peer electricity trading between the prosumers-all αi = 1.

Figure 11. Sankey diagram of the electricity generation of prosumers.
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4.3 Results of bi-level optimization of a case study with households and businesses
Next, another potential new prosumer with the electricity demand profile of a standard business (prosumer G0) 
is compared to prosumer H0. The results are unchanged when the case study from Section 4.2 is conducted with 
prosumer G0 instead of H0; therefore, the binary decision variables are actively used in this step and the model 
is run with two potential new prosumers I

new
 = {prosumer H0, prosumer G0} to determine which prosumer  

type is preferred by the community. There is only one possible choice:

                                                                                
1 .i

i new

b
∈

=∑
I

                                                                                 (9)

We start the analyses by minimizing the individual emissions again, as in case (i). The community prefers the 
household profile with the same parameters as seen in Section 4.2: PV

new
 = 5kW

peak
 and load

new
 = 2000kWh/year.  

Figure 12. Cost and emission balances of the prosumer of Iold – all αi = 1.

Figure 13. Heatmap of the peer-to-peer electricity trading between the prosumers – mixed αi.
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The annual peer-to-peer trading is shown in Figure 17 (left), wherein the business (prosumer G0) is not part 
of the community. The other cases, (ii) and (iii), minimizing the prosumers’ costs and mixed preferences elicit a  
different result. The business is a better match with PV generation profiles than the household (see Figure 22 and 
Figure 23 in the Appendix) and is, therefore, a better opportunity to sell surplus PV generation to. In case (ii) the 
business is a consumer only, with an annual electricity demand of 8000kWh (see Figure 17, right). The results  
are summarized in Table 3.

4.4 Fairness measures
Fairness measures are no introduced to assess the community’s results from a different perspective. Various  
fairness indicators are used in network technology, which are adapted for peer-to-peer trading, similar to pre-
vious work from Moret and Pinson16. The first indicator is Quality of Service (QoS) to measure allocation  
fairness, referencing Jain’s index (Jain et al.62):

                                                                          
( )2

2
QoS =

j j

j j

q

n q
∈

∈

∑

⋅ ∑

I

I

                                                                           (10)

Figure 14. Sankey diagram of the electricity consumption of prosumers.

Figure 15. Sankey diagram of the electricity generation of prosumers.
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with 

                                                                 , , , ,
,

( )j
share share
i j t j i t

t i j
q q q+

∈ ≠ ∈
= ∑

T I
                                                                  (11)

The QoS indicator considers the amount of electricity traded in the community. A QoS of one (100%) indicates  
perfect fairness, i.e., the trades (buying plus selling) of each member within the community are equally high.

Figure 16. Cost- and emission balances of the prosumer of Iold – mixed αi.

Figure 17. Choosing between prosumer types; αi = 0 (left) vs. αi = 1 (right).

Table 3. Choosing between 
different prosumer types H0 
and G0.

prosumer type H0 G0

(i) individual emissions ✓ -

(ii) individual costs - ✓

(iii) mixed αi - ✓
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The second indicator is Quality of Experience (QoE):

                                                                             QoE = 1 – ,
σ

σmax
                                                                            (12)

where σ is the standard deviation of the perceived electricity costs of the community members (individual elec-
tricity costs per unit calculated by dividing the total annual costs by the demand). σ

max
 is the maximum devia-

tion of perceived electricity costs within the community. A QoE close to one means that there is little deviation in  
perceived electricity costs (note that the indicator is already slightly distorted by the willingness-to-pay).

The third indicator is minimum-maximum fairness (MinMax), to compare the annual electricity imports of com-
munity members from the grid. The MinMax indicator obtains the ratio between the prosumer with small-
est amount of electricity imports from the grid and the prosumer with largest imports. A MinMax of one  
indicates a community of prosumers with similar needs for electricity imports from the grid.

                                                                         
min

MinMax = ,
max

Gin

Gin

ii

ii

Q

Q
∈

∈

I

I

                                                                        (13)

with the sum of electricity imports from the grid

                                                                             , .
G Gin in
i i t

t
Q q

∈
= ∑

T
                                                                             (14)

These fairness indicators are compared for different sets of results, including the original community  
(Section 4.1), case (i) with a preference for minimizing emission and case (ii) with a preference for minimizing  
costs (Section 4.2.1), and case (iii) with mixed preferences (Section 4.2.2). The values are shown in Figure 18.

The QoS indicator is highest in case (ii) with QoS = 0.81. In other cases, including the original community, peer-
to-peer trading is 65% fair. The new prosumer with a high electricity demand (case (ii)) increases the volumes 
traded in the community, which are rather fairly distributed within the community, given QoS fairness of more  
than 80%.

The QoE indicator improves by adding a new prosumer compared to the original community. Interestingly, the 
indicator is best in case (i). Adding additional PV capacity to the community helps to distribute perceived elec-
tricity costs more equally among members. However, the deviation of QoE between the cases is generally rather  
small.

Figure 18. Comparison of different fairness indicators. QoS, Quality of Service; QoE, Quality of Experience; 
MinMax, minimum-maximum fairness.
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Adding a new prosumer with high electricity demand slightly decreases MinMax fairness. In general, the Min-
Max indicator is rather small because prosumers with high demand for electricity naturally have higher volumes 
of purchases from the grid, especially without BESSs involved. In a community set-up including members with  
low demand and/or flexibilities, the import needs are rather divergent. Therefore, MinMax fairness is small. 

5 Sensitivity analysis
This section presents sensitivity analyses to complete the results of this study. In Section 5.1, differing levels of 
the new prosumer’s willingness-to-pay are applied to the case study to determine possible changes in the results.  
In Section 5.2, the distances of the new prosumer to the other members are altered.

5.1 Influence of willingness-to-pay
The first set of sensitivity analyses observes the effect of the new prosumer’s willingness-to-pay on the com-
munity decision. First, we compare the outputs of the bi-level model for different cases of prosumer prefer-
ences α

i
, as seen in Section 4.2.1 and Section 4.2.2, varying the new prosumer’s willingness-to-pay. Table 4  

presents the results of cases (i)-(iii), where w
new

 is altered from one side of the spectrum of willingness-to-pay,  
w

new
 = 0EUR/tCO

2
, to the other, w

new
 = 100EUR/tCO

2
. There is no noticeable influence of w

new
 in cases (i) and 

(ii) (see Table 4). With either all α
i
 = 0 or α

i
 = 1, the parameters of the new prosumer, 2000kWh/5kW

peak
 and  

8000kWh/0kW
peak

, respectively, are clearly specified by the upper-level cost-emission objective function (CE),  
regardless the new prosumer’s willingness-to-pay. 

In contrast, w
new

 can be a decisive factor when α
i
 are mixed. With w

new
 = 100EUR/tCO

2
, the new prosumer’s  

optimal annual electricity demand decreases to 2000kWh, whereas lower willingness-to-pay leads to 8000kWh. 
Prosumer 6 has a preference to lower emission (α

6
 = 0) in case (iii). When w

new
 > w

6
 = 60EUR/tCO

2
, the  

peer-to-peer allocation assigns higher volumes of PV generated electricity to the new prosumer instead of  
prosumer 6, negatively impacting the cost-emission function CE and lowering the optimum electricity demand of  
the new prosumer.

Next, the community decides between two potential new members (similar to Section 4.3) with opposite lev-
els of willingness-to-pay to analyze the influence of the willingness-to-pay on the community’s choice. The 
first example is two household (H0) prosumers, who are identical except for the willingness-to-pay, w

H0,0
 = 0 vs. 

w
H0,100

 = 100. The community’s choices can be seen in Table 5, columns two and three (highlighted). In cases 
(i) and (iii), a prosumer with a low willingness-to-pay is preferred, whereas, in case (ii), the community opts 
for the prosumer with high willingness-to-pay. The two subsequent columns on the right, which compares  
household (H0) and business (G0) prosumers, repeat this pattern.

Table 4. Influence of the willingness-to-pay on the results (new prosumer is a 
household). wnew is the individual CO2-price of the new prosumer, loadnew and PVnew the resulting 
optimal annual electricity demand and PV capacity of the new prosumer, respectively.

wnew = 0 wnew = 50 wnew = 100

loadnew PVnew loadnew PVnew loadnew PVnew

(kWh) (kWpeak) (kWh) (kWpeak) (kWh) (kWpeak)

(i) individual emissions 2000 5 2000 5 2000 5

(ii) individual costs 8000 0 8000 0 8000 0

(iii) mixed preferences 8000 5 8000 5 2000 5 

Table 5. Influence of the willingness-to-pay on the choice 
of the community. wnew is the individual CO2-price of the new 
prosumers.

prosumer type H0 H0 H0 G0 G0 H0

wi in EUR/tCO2 0 100 0 100 0 100

(i) individual emissions ✓ - ✓ - ✓ -

(ii) individual costs - ✓ - ✓ - ✓

(iii) mixed preferences ✓ - ✓ - ✓ -
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An assertion can be drawn from the first set of sensitivity analyses that while willingness-to-pay is not a deci-
sive factor in terms of choosing a new prosumer’s optimal parameters, it is crucial when deciding between 
two otherwise identical or similar prosumers. This leads to the assumption that willingness-to-pay is a more  
significant parameter than prosumer type.

5.2 Influence of distance criteria
The second type of sensitivity analysis alters the geographical location of the new prosumer with respect to 
the old community members. The altered distance factors, d�, of the new prosumer are mirrored compared to  
the original configuration, d:

                                                                         , ,( 1) ,Nnew j new jd d + −=�                                                                         (15)

where j are the indices of prosumers in I
old

; hence, the new prosumer is (geographically) on the other side 
of the community. The closest community member is prosumer 1, the furthest is prosumer 6. Note that the  
distances within the original community remain equal. The new distance factors can be found in Figure 19.

Cases (i)–(iii) are once again analyzed and the new prosumer is a household prosumer type with a  
willingness-to-pay w

new
 = 50EUR/tCO

2
. Deviation from the previous distance set-up is noticeable in case (iii), 

where the PV capacity changes to zero, whereas the other two cases remain the same, see Table 6. In cases (i) and  

Figure 19. Distance factors dij between the members (H0 and G0 represent the new prosumers).

Table 6. Influence of the willingness-to-pay on the community’s 
choice. dnew and �dnew are the unmodified and modified distance 
factors, respectively; loadnew and PVnew are the the resulting optimal 
annual electricity demand and PV capacity of the new prosumer, 
respectively.

old distances dnew new distances �dnew

loadnew PVnew loadnew PVnew

(kWh) (kWpeak) (kWh) (kWpeak)

(i) ind. emissions 2000 5 2000 5

(ii) ind. costs 8000 0 8000 0

(iii) mixed preferences 8000 5 8000 0
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(ii), the location of the new prosumer does not influence the community’s decision. To analyze the com-
munity’s decision in the mixed-preference (case (iii)), Figure 20 compares the prosumer’s volumes of 
traded electricity in two different scenarios: (a) the optimal output of case (iii) (load

new
 = 8000kWh/year and  

PV
new

 = 0kW
peak

) and (b) the non-optimal parameters of the new prosumer (load
new

 = 8000kWh/year and 
PV

new
 = 5kW

peak
) in Section 4.2.2, both with new distance factors d�

new,j
. The optimal parameters in scenario  

(a) lead to an increase in purchases from the community and a decrease in sales for the new prosumer (H0)  
compared to (b). Therefore, the prosumers of I

old
 considerably increase sales volumes, particularly prosumer  

2 with a cost-saving preference (α
2
 = 1), which compensates for the small decrease in purchases of prosumer 3  

and prosumer 6, who have an emission-saving preference (α
3
, α

6
 = 0) in case (iii).

6 Conclusions
This work proposes a bi-level optimization model for dynamic participation in energy communities with  
peer-to-peer trading. The functionality of the model is demonstrated in a small case study and sensitivity analyses.

The model is able to choose the optimal parameters of a new member. This is the first step for gaining useful  
information on the kind of prosumer (e.g., consumer only or prosumer, high or low PV capacity, level of annual 
electricity demand, including or excluding BESS (the latter aspect was not shown in this research)) that is  
preferred by the community. Simultaneously, the model can determine whether the participation of a new  
member in the community is accepted or rejected; hence, a choice between potential members can be made. 
In this model, the case study was limited to one new addition to the community; however, it is possible to  
introduce a portfolio of new members without limiting the number of new members. The model determines the  
prosumers who are selected and the optimal number of new members at the same time. This is possible because 
binary variables are bound to each new member that determine acceptance or rejection. The optimal number  
differs based on the portfolio of members and the needs of the old community.

The community’s choice reflects well the different needs of prosumers. Environment- and profit-oriented pref-
erences are balanced, and there is no bias toward one aspect or the other. Geographical distance and the 
new prosumer’s willingness-to-pay also influence the decision. If the community members have divergent  
needs, it is recommended to aim for a diverse set-up of members. There is, of course, also the possibility  
for the community to define a common goal, such as saving the community’s total emissions. In that case, the  
community must ensure that new prospective members commit to the same target.

Ultimately, the energy community must be able to attract suitable potential new members to guarantee its  
performance over the years. If members leave the community and cannot be replaced by new members who 
restore or improve the status quo, the satisfaction of existing members with the community decreases. In 

Figure 20. Deviation of buying/selling.
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fact, this is a limitation of this work. The selection process is made solely from the perspective of the original  
community, assuming the availability of potential new prosumers who fit well into the community. Another 
limitation is that length of the binding contract between participants and community is always one year (and 
can be extended for another year after expiration); therefore, variations in contract lengths are not included  
in the decision process.

Future research should include analyses of communities with more diverse participants, such as different set-
tlement patterns (cities or rural areas), community sizes, and other relevant parameters. Another possible 
future research topic is to study an energy community over a longer period of time (e.g., many years) includ-
ing members with different contract lengths. Finally, analysis of dynamic participation from the perspective of  
Distribution System Operators (DSO) and/or community managers should follow.

A Formulation of the KKT conditions of the lower level problem
A.1 Lagrangian function
To derive the KKT conditions, the Lagrangian function L must be formulated:
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A.2 Formulation of KKT conditions
Stationarity of the Lagrangian function:

                                              
, , ,/ 0

G G Gin in inload
ti t i t i tq p∂ ∂ λ β= + − =L                                  (17a)

                                               
, , ,/ 0G GPVout outGout

ti t i t i tq p∂ ∂ λ β= − + − =L                                  (17b)

                                               , , , , , , , ,/ 0PVshare load share
i j t i j t i t j t i j tq wtp∂ ∂ λ λ β= − + + − =L                                  (17c)

                                              
, , , , ,/ 0

maxB B BPV SoCin in in
Bi t i t i t i t i tq∂ ∂ λ λ η µ β= + ⋅ + − =L                                  (17d)

                                              
, , , , ,/ / 0

maxBB BSoCout out out
B

load
i t i t i t i t i tq∂ ∂ λ λ η µ β= − + − =L                                  (17e)

                                              , , , ,, 1/ 0
maxSoC SoC SoC SoC

endi t t i t i t i ti tSoC∂ ∂ λ λ µ β< += − + + − =L                                  (17f)

                                              
0

, , , , ,/ 0
maxSoC SoC SoC SoC

end endi t i t i t i t i tSoC∂ ∂ λ λ µ β= − + + − =L                                  (17g)

Page 25 of 34

Open Research Europe 2022, 2:5 Last updated: 18 OCT 2022



Substituting , , , , , , ,, , , , ,in out in outG G B Bshare SoC
i t i t i j t i t i t i tβ β β β β β  the stationarity of the Lagrangian function (17a)–(17g) can be  

formulated with complementarity conditions as well (see Eq.s (18a)–(18g)). Eq.s (18h)–(18n) are the complementarity 
conditions of the lower level problem’s constraints.

                                                                                           , ,
0 0

G Ginin load
t i t i t

p qλ+ ≥ ⊥ ≥                                             (18a)

                                                                                          , ,
0 0

GG PV outout i tt i t
qp λ− + ≥ ⊥ ≥                                            (18b)

                                                                          , ,, , , ,
0 0PV load share

i t j ti j t i j twtp qλ λ++ ≥− ⊥ ≥                                          (18c)

                                                                         
, , ,, 0 0

maxB BPV S C inino
i t i t i ti t B qλ λ η µ+ ⋅ + ≥ ⊥ ≥                                             (18d)
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Bi t i t i t i tµλ λ η +− ≥ ⊥ ≥                                            (18e)
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i t i t ti t i t SoCλ λ µ <+− + + ≥ ⊥ ≥                                  (18f)
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i t i t i t i tSoCλ λ µ− + + ≥ ⊥ ≥                                      (18g)
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                                                                                    , ,0 0S Cmaxmax o
i ti i tSoC SoC µ≤ − ⊥ ≥                                       (18l)

                                                                                            ,,
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                                                                                           ,,
0 0
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A.3 Transformation of complementarity conditions applying the Fortuny-Amat method
The complementarity constraints are reformulated as a mixed-integer program applying the Fortuny-Amat method. 
The following set of equations shows the transformation of Eq. (18a), the other complementarity constraints,  
Eq.s (18b)–(18n), are transformed in the same way.

                                                                                 , 0
Gin load
t i tp λ+ ≥                                                                        (19a)

                                                                                              ,
0

Gin
i t

q ≥                                                                        (19b)

                                                             
1, ,(1 )

G GGin ininload
t i t i tp u Mλ+ ≤ −                                                                       (19c)

                                                                                  2,,

G G Gin in in
i ti t

q u M≤                                                                       (19d)

                                                                                         { }, 0,1
Gin
i tu ∈                                                                        (19e)

The value of M are M
1
 = 5000 and M

2
 = 2000, which were determined empirically, ensure the feasibility of the  

model and effectively no numerical problems.
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B Input parameter of the community and the grid
The hourly input data of the case study is presented in the form of hourly average values. The original commu-
nity prosumers’ electricity demand is shown in Figure 21. The average electricity output values of a 5kW

peak
 

PV system is shown in Figure 22 (left axis), together with the marginal emissions from the grid (right axis).  
Figure 23 shows the standardized load profiles of household H0 and business G0, which are used in the case  
study to represent the potential new members.

C Annual results of cases (i)-(iii) in detail
Table 7–Table 9 present the annual results of purchases/sales from/to the grid and the community, self- 
consumption, battery operation, emissions, and costs for all prosumers 1–6 and prosumer H0. The tables are  
split into cases (i)–(iii) from Section 4.2.1 and Section 4.2.2.

Figure 22. Average hourly electricity PV generation (left) and marginal emissions (right).

Figure 21. Average hourly electricity demand of prosumers.
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Figure 23. Average hourly electricity demand of new prosumers (normalized to an annual electricity demand 
of 1000 kWh).

Table 8. Summary of the results of peer-to-peer trading – case (ii).

Prosumer 1 2 3 4 5 6 H0

Buying grid (kWh) 1140.3 5587.5 1379.3 1432.6 1459.1 854.6 4792.1

Selling grid (kWh) 0 818.3 1568.3 516.1 0 341.2 0

Battery charging (kWh) 0 0 0 870 0 0 0

Battery discharging (kWh) 0 0 0 723.6 0 0 0

Self-consumption (kWh) 0 2911.6 1016.7 1098.2 0 1282.9 0

Buying community (kWh) 2308.1 48.6 6.5 65.6 1061.7 29.6 3207.9

Selling community (kWh) 0 2730.8 386 1375.4 0 2235.8 0

Emissions (tCO2) 0.6 3.0 0.7 0.8 0.8 0.5 2.6

Costs (EUR) 790 443.2 131.6 -25.8 527.6 -331 1663.1

Table 7. Summary of the results of peer-to-peer trading – case (i).

Prosumer 1 2 3 4 5 6 H0

Buying grid (kWh) 1140.3 4354.7 1278.2 917.5 1401 812.6 1027

Selling grid (kWh) 0 818.3 1680 584.6 0 2291.6 4611

Battery charging (kWh) 0 0 0 882.6 0 0 0

Battery discharging (kWh) 0 0 0 731.4 0 0 0

Self-consumption (kWh) 0 3365.6 1016.7 1573.4 0 1282.9 972

Buying community (kWh) 2308.1 827.4 107.6 97.8 1119.8 71.6 0.9

Selling community (kWh) 0 2276.8 274.3 819.2 0 285.4 877.7

Emissions (tCO2) 0.6 2.3 0.7 0.5 0.8 0.4 0.6

Costs (EUR) 790 449.5 158.1 -1.4 528.2 25.8 -165
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Table 9. Summary of the results of peer-to-peer trading – case (iii).

Prosumer 1 2 3 4 5 6 H0

Buying grid (kWh) 1140.3 4983.7 1278.2 1185.8 1432.9 812.6 4351

Selling grid (kWh) 0 818.3 1680 573.5 0 2291.6 2876.6

Battery charging (kWh) 0 0 0 870 0 0 0

Battery discharging (kWh) 0 0 0 720.1 0 0 0

Self-consumption (kWh) 0 3315.6 1016.7 1347.5 0 1282.9 3365

Buying community (kWh) 2308.1 248.4 107.6 66.6 1088 71.6 284

Selling community (kWh) 0 2326.7 274.3 1068.8 0 285.4 219.1

Emissions (tCO2) 1 2.7 0.7 0.6 0.8 0.4 2.3

Costs (EUR) 790 448.8 156.3 -9.3 528 24.7 767.4

Data availability
Zenodo: FRESH:COM Dynamic Participation in Local Energy Communities with Peer-to-Peer Trading. https://doi. 
org/10.5281/zenodo.5791940 Theresia Perger63.

This project contains the following underlying data:

·	 Input_data_alpha.csv Alpha values (α
i
) of all prosumers.

·	 Input_data_distances.csv Distances (d
i, j

) between the prosumers.

·	 Input_data_grid_IAMC.csv Input data of the grid: electricity prices, marginal emissions (hourly values).

·	� Prosumer 1.csv Input data of Prosumer 1: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

·	� Prosumer 2.csv Input data of Prosumer 2: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

·	� Prosumer 3.csv Input data of Prosumer 3: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

·	� Prosumer 4.csv Input data of Prosumer 4: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

·	� Prosumer 5.csv Input data of Prosumer 5: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

·	� Prosumer 6.csv Input data of Prosumer 6: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

·	� Prosumer H0.csv Input data of Prosumer H0: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

·	� Prosumer G0.csv Input data of Prosumer G0: PV capacity, BESS parameters, willingness-to-pay, electricity 
demand (hourly values), PV generation (hourly values).

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/tperger/FRESH-COM

Archived source code at time of publication: https://doi.org/10.5281/zenodo.5796210 Theresia Perger64 

License: Apache-2.0
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Energy Communities are an important part of the energy transition, but still, a lot of questions on 
this topic need to be answered before its widespread application is possible. Peer-to-peer trading 
and dynamic participation are two important aspects of energy communities, which are addressed 
in this article. The article is well-written and easy to follow. The methodology proposed is novel 
and constitutes an original contribution to science. 
We have a couple of minor comments/suggestions for the authors to consider in in order to 
improve the publication:

Ad 1.3 Method applied 2nd paragraph: “assuming that in the future (i) many people will 
already have PV modules and (ii) PV systems will be “mainstream products” and therefore 
installing a PV system is a low barrier for those interested in joining a local energy market. 
In particular, a community’s new member selection and decision-making process is the 
subject of interest.” That is a fair assumption to make but it also indicates that pure 
consumers can’t join as a new member while there are already ones in the old community. 
Later in the paper on the other hand it is possible since the possible PV peak output of the 
new prosumer is between 0 and 5 kW. This possibility could be clearly stated since energy 
communities are an important tool to fight the increasing problem of energy poverty, see 
JRC Report “Energy communities: an overview of energy and social innovation”(Caramizaru, 
2019). 
 

○

Ad 2.3 Contribution beyond state-of-the-art: “optimize energy communities with peer-to-
peer trading over the years” This is also described in the methodology but the case study is 
just one year. This makes sense since it is stated in 3.1.2 that it is just one year because of 
the focus on the selection process, but contradicts the contribution statement. We suggest 
clarifying this in the state of the art.  

○
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A related comment touches upon the title: even though the proposed methodology could 
be used in a dynamic way, the results only analyze static “1-year” cases. We suggest either 
changing the title to something like “deciding participation in local …” (and leaving out the 
dynamic part), or including a section where the participation process is evolving dynamically 
over a couple of years. 
 
Ad 3.1.1 Modeling framework: “Participants in the community are either households or 
small-to-medium-sized enterprises.” Here it would be interesting to add why? If the reason 
for this assumption is the Austrian legislature and/or that the load profiles are different of 
households and businesses, then this should be added. 
 

○

Ad 3.2: Even though it has been stated previously, it would improve the paper to point out 
again what is the upper level (objective and variables) and what is the lower level. Currently, 
section 3.2 starts with the definition of several objective functions and it was not until the 
definition of (8) that the order was clear to me. 
 

○

Objective function (8a) and (5). This constitutes a weighted average over costs and 
emissions. In the “pure” cases, where all members consider costs (or emissions), this 
function is sound. However, in the hybrid cases (with alpha between 0&1), costs and 
emissions are hard to compare, especially because they have very different units that might 
also have different orders of magnitude. It would improve the paper to either discuss how 
these functions have been normalized or to include a justification of how the hybrid cases 
might make sense. 
 

○

Ad 3.2.2 Community welfare: Part I community’s self-consumption – Maximizing CW would 
mean maximizing part I, therefore, maximizing sales to the grid (qtGout) and minimizing 
buying from the grid (qtGin). This leads to minimizing the cost and not maximizing the self-
consumption. For the maximization of the community’s self-consumption, an incentive in 
the objective function is needed to consume as much of the produced energy in the 
community itself. Here the opposite is the case since the sales to the grid are maximized. 
Therefore, calling part I “self-consumption” is a bit misleading. 
 

○

Ad 3.3.2 Input data: Why do you use average retail electricity and spot market prices? This 
data is publicly available in hourly resolution. Model results will be more interesting when 
prices vary over the day. 
 

○

Ad Figure 4. It would improve the readability of the paper if the distance factors (how they 
are calculated in real-life) were to be explained briefly. 
 

○

Ad 4.4 Fairness measures: It would improve the paper if the authors could explain why this 
is a good definition of fairness in this case. 
 

○

Ad 4&5 Results & Sensitivity analyses: The result section is on the descriptive side. More 
conclusions and interpretations from a regulatory point of view would be interesting. You 
have a lot of results, which are described very thoroughly but what do you conclude from 
them? Especially in connection with your input.  
 

○

With respect to the willingness to pay. How could one attempt to estimate such a parameter ○
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in real life?
 
General comments:

The energy community members decide which new members to accept. Is it possible that 
some kind of market power issues (within the community) can arise in a way that large 
members can “over-rule” smaller members? 
 

○

It would be interesting to compare the results from model (8) to another model that is a 
single-level optimization model, that is essentially (8) except (8e). Meaning that you don’t 
have to take KKT conditions of the lower level. You just consider lower level constraints. So 
the community would be choosing new members maximizing (8a) without having a lower 
level objective function. How would results differ from what you currently have? 
 

○

Typos:
Ad 4.4 Fairness measures: “Fairness measures are no introduced” now instead of no. 
 

○

Ad Nomenclature: Parameter descriptions ptGin and ptGout are switched○
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