
DIPLOMARBEIT

Low power wireless
communication system

Development of an expandable wireless communication system based on
ATMEGA8L and nRF24L01+ for the deployment in laboratories

zur Erlangung des akademischen Grades

Diplom-Ingenieur
im Rahmen des Studiums

Physikalische Energie- und Messtechnik

eingereicht von

Markus Kollarik, BSc
Matrikelnummer 01528951

ausgeführt am Institut für Angewandte Physik
der Fakultät für Physik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gröschl Martin

Schleinbach, 05.02.2023
(Unterschrift Verfasser) (Unterschrift Betreuer)

2

Abstract
The aim of this diploma thesis is to develop a programmable wireless transmission module
for the application in laboratories. The module must satisfy certain selection criteria
such as low price, availability, extensibility, interference resistance, transmission reliability,
reliability and energy efficiency. In the first part of this thesis a literature study is carried
out comparing different transmission standards and modules. The study led to the decision
to develop the transmission module based on the ATmega8L microcontroller and the
nRF24L01+ transceiver module.

The receive unit consists of a nRF24L01+ receiver module, an Arduino single-board
microcontroller and a Raspberry Pi single-board computer. It is used to store incoming
sensor data into a database. Furthermore, a webserver on the Raspberry Pi provides a
web interface granting every user connected to the network access to the database data.
The database data is displayed by the web interface in tabular and diagram format. In
addition, it possible to alert a specific user through email if a certain sensor value is out
of a defined range.

The second part of this thesis describes the setup and implementation of this sys-
tem. Finally, two sensor examples are carried out in order to demonstrate the technical
functionality of the system.

Zusammenfassung
Zielsetzung dieser Diplomarbeit ist die Entwicklung eines programmierbaren draht-
losen Übertragungsmoduls für den Einsatz in Laboren. Das Modul muss bestimmten
Auswahlkriterien gerecht werden. Die Auswahlkriterien sind geringe Kosten, Verfüg-
barkeit, Erweiterbarkeit, Störfestigkeit, Übertragungssicherheit, Zuverlässigkeit und En-
ergieeffizienz. Der erste Teil der Arbeit umfasst eine Literaturstudie, welche unter-
schiedliche Übertragungsstandards und Übertragungsmodule miteinander vergleicht. Die
Studie führte zu dem Ergebnis ein Übertragungsmodul auf Basis des ATmega8L Micro-
controllers und des nRF24L01+ Transceiver Moduls aufzubauen.

Die Empfangseinheit umfasst ein nRF24L01+ Empfangsmodul sowie ein Arduino Ein-
platinencomputer und ein Raspberry Pi Einplatinencomputer. Sie wird dazu eingesetzt
eintreffende Daten in einer Datenbank abzuspeichern. Des Weiteren wird von einem Web-
server welcher auf dem Raspberry Pi läuft, ein Webinterface zur Verfügung gestellt,
welches jedem Benutzer im gleichen Netzwerk Zugang zu den Daten in der Datenbank
gewährt. Die Daten werden in Tabellen sowie in Diagrammen dargestellt. Ebenfalls ist es
möglich einen definierten Benutzer mittels E-Mail zu benachrichtigen, falls ein bestimmter
Sensorwert außerhalb eines definierten Bereichs liegt.

Im Zweiten Teil der Arbeit wird der Aufbau sowie die Umsetzung des Systems
beschrieben. Abschließend werden zwei Sensor Beispiele durchgeführt um die technische
Funktionstüchtigkeit des Systems zu zeigen.

Contents 3

Contents

1 Introduction 8
1.1 Background . 8
1.2 Problem Statement . 8
1.3 Purpose . 8
1.4 Method . 9

2 Automation Systems 10
2.1 Types of Control Systems . 10

2.1.1 Centralized system . 10
2.1.2 Decentralized system . 11
2.1.3 Hybrid system . 11

2.2 Topology . 12
2.2.1 Star topology . 12
2.2.2 Mesh topology . 12

2.3 Connection . 14
2.3.1 Wired Systems for Automation . 14

2.3.1.1 KNX . 14
2.3.1.2 LCN . 14
2.3.1.3 Loxone . 15
2.3.1.4 digitalSTROM . 15
2.3.1.5 Discussion . 15

2.3.2 Wireless Systems . 16
2.3.2.1 Zigbee . 16
2.3.2.2 EnOcean . 16
2.3.2.3 Bluetooth . 16
2.3.2.4 WLAN . 17
2.3.2.5 Thread . 17
2.3.2.6 nRF24L01+ . 18
2.3.2.7 Discussion . 18

2.3.3 Wired Systems for on-board communication 21
2.3.3.1 1-Wire . 21
2.3.3.2 UART . 21
2.3.3.3 CAN . 22
2.3.3.4 SPI . 22
2.3.3.5 TWI/I2C . 24

2.4 Tasks . 25
2.4.1 Temperature Measurement . 25
2.4.2 Air Pressure Measurement . 26
2.4.3 ADC - Analog Digital Converter . 26
2.4.4 Other Tasks . 27

2.5 Conclusion . 28
2.5.1 Wireless Transceiver - RS Components 28
2.5.2 Wireless Transceiver - Mouser Electronics 28
2.5.3 Wireless Transceiver - Amazon . 29
2.5.4 Discussion . 29

Contents 4

3 System Setup 30
3.1 System Structure . 30
3.2 Module Description . 32

3.2.1 Raspberry Pi . 32
3.2.1.1 System Setup . 33

3.2.2 Admin PC . 35
3.2.2.1 System Setup . 35

3.2.3 Arduino . 37
3.2.4 Transceiver - nRF24L01+ . 38

3.2.4.1 Radio Control . 39
3.2.4.2 Receiver path: . 40
3.2.4.3 Transmitter path: . 41

3.2.5 µC ATmega8L . 42
3.2.6 Programmer - Arceli TL866II Plus 45

4 System Implementation 48
4.1 Basic Operation Setup . 48

4.1.1 Microcontroller - ATmega8L . 50
4.1.1.1 Configure ATmega8(L) for power-save mode 51
4.1.1.2 Configure nRF24L01+ . 53

4.1.2 Prototype Board . 55
4.1.2.1 Power supply . 56
4.1.2.2 Asynchronous clock . 56
4.1.2.3 Buffer capacitors . 57
4.1.2.4 ADC . 57
4.1.2.5 ATmega8L, nRF24L01+, Debug LED, BMP180 57
4.1.2.6 Calculate power consumption 58

4.1.3 Arduino . 61
4.1.4 Raspberry Pi . 63

4.1.4.1 Installations and settings 65
4.1.4.2 Database . 69
4.1.4.3 Website . 72

4.2 Step by step instruction for different sensors 78
4.2.1 Example: Temperature/Pressure Measurement 78

4.2.1.1 Temperature/Pressure Sensor 78
4.2.1.2 Microcontroller - ATmega8L 79
4.2.1.3 Arduino . 81
4.2.1.4 Raspberry Pi . 82

4.2.2 Example: ADC Measurement . 84
4.2.2.1 ADC . 84
4.2.2.2 Microcontroller - ATMEGA8L 85
4.2.2.3 Arduino . 86
4.2.2.4 Raspberry Pi . 86

5 Results 87
5.1 Sensor 1/2 example - nRF24L01BmpAdc.c 87

5.1.1 Settings . 87
5.1.2 Results . 87

5.1.2.1 ARD & ARC variation . 88

6 Summary and Outlook 90

Contents 5

References 91

7 Appendix 94
7.1 Schematic . 94
7.2 Code . 95

7.2.1 ATmega8L . 95
7.2.1.1 MAIN . 95
7.2.1.2 AES . 95
7.2.1.3 BMP085/180 . 95
7.2.1.4 I2C/TWI . 95
7.2.1.5 nRF24L01 . 95
7.2.1.6 SPI . 95

7.2.2 Arduino . 96
7.2.2.1 MAIN . 96
7.2.2.2 Library - RF24 . 96

7.2.3 RPi . 96
7.2.3.1 Python . 96
7.2.3.2 Webserver . 96

7.3 Measurement Table . 97

List of Tables 6

List of Figures
1 Star topology [6] . 12
2 Mesh topology [6] . 13
3 1-Wire lock [29] . 21
4 SPI bus example [32] . 23
5 TWI/I2C bus example [34] . 24
6 MEMS temperature sensor [35] . 25
7 MEMS piezoresistive pressure sensor [41] 26
8 Block diagram of the system structure . 30
9 Picture of Raspberry Pi 4 Model B [43] . 32
10 PuTTY configuration window . 36
11 WinSCP login window . 36
12 Arduino MEGA Breadboard Pins [44] . 37
13 Arduino IDE Settings . 37
14 Picture of Transceiver nRF24L01+ . 38
15 nRF24L01+ state diagram [27] . 40
16 Atmega8L pins [46] . 43
17 Arceli TL866II Plus [47] . 45
18 Xgpro v9.00 main window . 45
19 Xgpro v9.00 FUSE. Bits tab . 46
20 ATmega8L CKSEL settings - frequency [45] 47
21 Basic system structure and used programming languages 48
22 ATmega8L code flowchart . 50
23 Prototype board . 55
24 Prototype board - schematic . 56
25 Measurement current consumption prototype board 58
26 Measurement current consumption prototype board - zoomed in 59
27 Circuit design of the Arduino receiving unit 61
28 Wiring diagram of the Arduino unit . 62
29 Arduino code flowchart . 62
30 RPi system structure and used programming languages 63
31 Website requires username and password 67
32 saveTest.py flowchart . 69
33 checkdaily.py flowchart . 70
34 Startpage after logging in . 72
35 Sidebar menu Clients . 74
36 Error massage Arduino . 75
37 ADC Sensor Data - Python script started 75
38 Sidebar menu Logs - Table . 76
39 Sidebar menu Logs - Graph . 77
40 System structure of the Temperature/Pressure Measurement Example . . . 78
41 Temperature measurement data . 88
42 Pressure measurement data . 88

List of Tables
1 Overview over the most common used wired automation systems 16
2 Overview over the most common used wireless automation systems 20
3 Four different SPI modes . 23

List of Tables 7

4 Wireless Transceiver - RS Components . 28
5 Wireless Transceiver - Mouser Electronics 28
6 Wireless Transceiver - Amazon . 29
7 Comparison available transceivers regarding requirements 29
8 Different ARC and ARD values . 89
9 Measurement data table part 1 . 97
10 Measurement data table part 2 . 98

1 Introduction 8

1 Introduction

1.1 Background
Laboratory automation has its origins in the 1970s in the chemical industry. Its goal is
to improve the reproducibility of certain processes and to reduce costs. Another benefit
of automation processes is to reduce employees workload and therefore counter the lack
of skilled labor as well as improved reliability [1]. Devices which are used include sensors
(e.g., temperature, pressure, flow rate, ...) to keep stable environmental conditions during
experimental measurements (Standard Temperature and Pressure - STP) and actuators
(e.g., pumps, valves, thermostat, stirrer, ...). The devices are connected to a computer
(by wire or wireless) where the data is processed. Typical examples include storing sensor
readings in a database and display the data in graphical form or send data back to an
actuator to e.g., open a valve at a certain pressure level.

1.2 Problem Statement
For small laboratories and simpler tasks existing standards for data gathering and trans-
mission are way too complex and costly. The objective of this thesis is to develop a cheap,
wireless transceiver module which meets certain selection criteria as discussed in section
1.3.

1.3 Purpose
Although a wide variety of different automation technology standards had been developed
over the course of the last decades, it is hard to keep up what the different standards offer
and whether they will be still available in 30 years from now.

Goal of this master thesis is to conduct a literature review about the most common
automation technology standards and select one of these standards to develop a pro-
grammable wireless transmission module which offers the user complete freedom of choice
for security, extensibility and the type of sensor.

The chosen wireless standard must meet following selection criteria: price, availability,
extensibility, interference resistance, transmission reliability, reliability and energy effi-
ciency. The developed module offers connectivity to commonly used sensors and transmits
their current status to a gateway to cause a reaction (e.g., send email to user if tempera-
ture in laboratory rises above 20 ◦C). The collected data can be displayed through a web
interface in tabular and graphical view.

1 Introduction 9

1.4 Method
The thesis is divided into three main parts. In the first part a literature review is con-
ducted for the purpose of choosing the best suited automation technology standard for
the project. The second part contains a technical description of the developed hard- and
software. In the third part one can find a manual to replicate the project and a rough
description of what has to be changed in hard- and software in order to work with different
sensors/actuators.

It is not an all-encompassing manual, which would easily exceed the limits of this thesis
by far. If the reader is looking for a deeper level of knowledge, they must read up on that
subject, in particular the microcontroller manual and the manual of their chosen sensor.

2 Automation Systems 10

2 Automation Systems
An automation system is the integration of sensors, controls and actuators to perform a
certain task with reduced human intervention [2]. Early automation systems reach back
to the Greeks and Arabs about 300 BC (float regulated water clock) but the real break-
through was during the industrial revolution [3]. With the beginning of electrification
more and more task got automated which led to the development of the first general
home automation network technology X10 in 1975 [4].

The main purpose of an automation system is to reduce energy costs and work force.
Other benefits include improved reliability, comfort and safety. Reliability and comfort are
provided for example by devices controlling the ambient parameters like temperature in
a laboratory and therefore guarantee same conditions with no human interaction. Energy
savings can be achieved by smart energy management. Warning systems (e.g., rising CO2
concentrations) address the safety aspect.

In a laboratory many tasks can be automated which include controlling lights, valves,
thermostat, smoke detectors and cameras. These tasks require a power source on site and
are not the main goal of this master thesis.

For a cheap, low power wireless automation system typical tasks are monitoring am-
bient temperature, pressure, humidity as well as motion detection. Therefore, the focus
will be in finding the perfect fit for depicted tasks.

2.1 Types of Control Systems
When building an automation system, one has to choose between a centralized, a decen-
tralized or a hybrid system. In the following section the three different control systems
will be discussed.

2.1.1 Centralized system

In a centralized system one smart element controls all other elements. If it fails everything
fails and no data will be transferred. It is essential for the systems because it handles
incoming data from the sensors and controls the actuators [5].

An advantage of this systems is that only the smart element of the systems has to be
intelligent and has to actively listen to all the incoming data traffic. This requires a much
simpler internal structure for every sensor, which means that every sensor is cheaper and
easier to maintain, it can be easily expanded. Another benefit is that low power energy
systems can be realized with a centralized system.

The central component managing all the incoming data is called master. It can be
differentiated between two different polling modes. First one is that the master requests in
regular time intervals (programmable) data from the sensors (slaves). The second polling
method is that every slave becomes a master and sends its data only when a value changes
or in regular intervals to the central component which now is a slave. This system is called

2 Automation Systems 11

a multi-master system and its advantage is that the sensors consume much less energy.
The processing units of the sensors can sleep most of the time and have to be active only
a fraction of the time. This expands battery life drastically.

2.1.2 Decentralized system

In a decentralized system every element is smart. If one element fails the remaining el-
ements keep working. The actuators listen to the commands on the bus and react to
specific commands [5].

While the initial building cost of a decentralized system maybe lower in comparison to
a centralized system every expansion adds to the cost. It is therefore only recommended
for relatively small systems or applications where its function has to be guaranteed even
if one system fails. Another con is the complex installation, it is often necessary to call a
professional installer [5].

2.1.3 Hybrid system

A hybrid system combines the centralized and decentralized system. If the central con-
troller disconnects all essential elements remain functional. if one element disconnects the
remaining elements keep working. It has therefore the highest reliability but it is also the
most expensive one.

2 Automation Systems 12

2.2 Topology
One of the first things you have to consider in building an automation system is to
define how various components communicate in a network. A network topology defines the
arrangement of various components in a network. Two of the most common architecture
types for networking will be discussed in the following section.

2.2.1 Star topology

In a star topology all sensor nodes have a direct connection to a central point/hub/gateway
(See figure 1 [6]).

Figure 1: Star topology [6]

All traffic has to pass through the central point where typically the data is processed.
It is an easy topology to design and implement and the simplicity of adding new nodes is
one of its advantages. A major disadvantage is that the hub represents a bottleneck for
incoming data and therefore has to provide high bandwidth, another con is that if the
hub fails the system fails.

2.2.2 Mesh topology

In full mesh networks all nodes are interconnected (see figure 2 [6]). Messages hop from
one node to another until they reach their destination (e.g., gateway). Every sensor node
acts as a repeater that relays data from other nodes as well as transmitting its own data.

A partial mesh network is similar to a full mesh, but instead of every sensor node only
some have a built-in relaying function. Mesh networks are commonly used for extending
the coverage of short-range wireless technologies (e.g., Zigbee, Z-Wave) but on the other
hand many nodes have to be installed to cover large buildings which makes mesh networks
very expensive to install. An advantage of mesh networks is that if one node fails the data
simply takes another path through the network. This improves reliability of the system. A

2 Automation Systems 13

Figure 2: Mesh topology [6]

major disadvantage of mesh networks is the complicated network setup, management and
maintenance. Another downside of mesh networks is its high power consumption. Each
node has to be constantly “awake” and listen for incoming data to relay. High traffic will
drastically decrease its battery life.

2 Automation Systems 14

2.3 Connection
If two or more components in a (automation-)system need to communicate a connection
needs to be established. The connection serves the purpose of transferring data and com-
mands between different components. A distinction is made between wired and wireless
systems. Each system has its benefits and drawbacks. In the following section a selection
of the most common standards will be described.

2.3.1 Wired Systems for Automation

This section covers wired systems for automation purposes, not to be confused with wired
systems commonly used for on-board communication (ref. section 2.3.3) which are suited
for short distances and low bandwidth.

2.3.1.1 KNX
KONNEX (lat. connexio; engl. connection) is an open standard for commercial and

domestic building automation. KNX is the successor of three earlier standards the EIB
(European Installation Bus), BatiBus and EHS (European Home Systems) [7]. Its goal
was to ensure compatibility between different devices and systems from different manu-
factures.

Each device in a KNX network is connected to the power line and a control network.
The wires can be laid separately or parallel. The control network uses twisted pairs (two
wires) with differential signals and a voltage difference of 30 V. The bit rate is up to 9600
bit/s and the network is able to communicate up to a size of 10000 devices.

Many different devices can be integrated into a KNX network for example alarm sys-
tem, heating, ventilation, lighting and sun protection. KNX devices can be programmed
which adds flexibility to the system.

A disadvantage of KNX systems are high initial costs which are barely justified. Costs
are partially very high, for example power supplies cost up to 370 € which is dispropor-
tionate for a transformer and few electronic components [8]. Another downside is that
camera feeds and intercoms cannot be transmitted because of the slow bit rate. If you
want to use such devices KNX has to be combined with other systems. When using KNX
sensors and actuators one must calculate with a current consumption of 5 to 8 mA per
device - for power saving KNX is not the recommended system.

2.3.1.2 LCN
Local Control Network is a proprietary building automation system released in 1993 by
Issendorff KG. LCN is a decentralized organized system [9].

Each LCN module is identical and can be programmed to function as an actuator or
a sensor. The modules are connected to the live “hot” wire, neutral, protection earth and
a fourth wire for data transfer. The bit rate is equal to KNX networks (9600 bit/s) and
up to 30000 modules can be controlled.

2 Automation Systems 15

LCN is mainly used in commercial buildings but a home installation is possible. For
the programming of the modules a qualified electrician should be contacted. The biggest
downside of LCN is the proprietary hard- and software, for that reason alone it can be said
that LCN should not be used for automation purposes. No one knows whether Issendorff
will still exist in the next few years.

2.3.1.3 Loxone
Loxone is an Austrian technology company specialized in building automation. Founded
in 2009 Loxone’s goal is to offer a cheap and easy to use alternative to existing automation
standards [10][11][12].

Loxone devices are connected to a 24 V power supply and a communication wire.
Interfaces to automation systems from other companies like KNX, 1-Wire, EnOcean,
RS485, RS232 and more are available. Advantages of Loxone devices are the easy to setup
bus system, integration of different systems, security (usable without internet connection)
and in comparison to KNX, its lower price. On the other hand, Loxone is a proprietary
building automation system and therefore shares the downside of such a system with
LCN.

2.3.1.4 digitalSTROM
DigitalSTROM differs from the above-mentioned systems that it uses the main power
supply for data communication. It is not required to lay new wires which lowers the
initial cost of digitalSTROM equipped automation systems [13].

DigitalSTROM uses like many other automation systems proprietary devices which are
quite expensive but its high DIY-potential is its advantage in comparison to KNX, LCN
and Loxone. A disadvantage refers to the security aspect. DigitalSTROM devices are not
encrypted and therefore the system opens a gateway for hackers if it is connected to the
internet.

2.3.1.5 Discussion
Each of the wired building automation systems which had been discussed have in common,
that they are wired. This means that for the interconnection of every sensor and actuator
in the system to the gateway a cable has to be laid. If it is desired that the cables fit into
the wall an electrician is often required, especially in existing buildings. Electricians can
be very expensive so it is worth considering a power-line type communication standard
like digitalSTROM which uses the existing power line for communication. It should not
be forgotten, that wired systems lack flexibility, consume more energy (ref. KNX section
2.3.1.1) and need proper cable management. In summary it can be concluded, that wired
automation systems are hard to setup and extend but easy to sustain.

Benefits in comparison to wireless systems are improved reliability (works even in
magnetic shielded environment), high security (no wireless hacking/sniffing, exception:
digitalSTROM) and faster service (up to 1Gbps if Ethernet is used) [14]. Table 1 compares
significant features of the presented wired automation systems.

2 Automation Systems 16

Standard KNX LCN Loxone digitalSTROM
Open / proprietary system open and int. standard proprietary proprietary proprietary
Interfaces to other systems vice versa yes, e.g. EnOcean, BACnet yes, e.g. KNX, EnOcean yes, e.g., EnOcean
Programming effort high high high medium
Privacy & security high high high missing

Table 1: Overview over the most common used wired automation systems

2.3.2 Wireless Systems

In this section the most common wireless automation systems will be introduced. Section
2.3.2.6 presents the NRF24l01+, an alternative to the established systems which offers
similar features for DIY-automation projects.

2.3.2.1 Zigbee
Zigbee is a wireless ad hoc network which was standardized in 2003. The name “Zigbee”
refers to the zig-zag dance (waggle dance) of the honey bees.

Zigbee is based on the IEEE 802.15.4 standard for small, low-bandwidth, low-power
and low-distance digital radios used for automation purposes. The specification operates
in in the ISM (Industrial, Scientific, Medical) radio band at 868 MHz and 2.4 GHz, a
band which is internationally reserved for such purposes [15]. Data rates of 250 Kbps
are provided as well as an AES-128 (Advanced Encryption Standard) encryption. Zigbee
devices offer an 10-100 m light-of-sight transmission range (depends on environmental
characteristics) but its mesh topology allows for networks to span over long distances. A
huge security issue of the Zigbee standard is that Zigbee uses fallback keys for encryption
negotiation which are known and cannot be changed. This makes the encryption highly
vulnerable [16].

2.3.2.2 EnOcean
Standardized in 2012 EnOcean’s main goal is to offer ultra-low power wireless technologies
for consumers. EnOcean achieves this goal by utilizing energy harvesting methods like
slightest mechanical motion, indoor light or temperature differences [17]. Electromagnetic,
solar cells and thermoelectric energy converters transform these energy fluctuations into
usable electrical energy which can be further used for data transmission.

EnOcean operates in in the ISM band at 868 MHz at a data rate of 125 Kbps. Its
topology is mainly point to point or star and that offers a transmission range of up to 300
m in the open and 30 m in buildings. To reduce packet collisions and improve reliability
EnOcean transmits three data packets in a pseudo random interval. AES-128 encryption
is optional but included in every module shipped after April 2015.

EnOcean applications include occupancy sensors, light sensors, temperature sensors,
humidity sensors, CO2 sensors and metering sensors.

2.3.2.3 Bluetooth
Bluetooth is a wireless technology standard released by Intel, Ericsson and Nokia in 1998.
Its name derives from the 10th-century Danish king Harald “Bluetooth” Gormsson [18].

2 Automation Systems 17

Bluetooth is implemented in every smartphone, wireless headphones, smartwatches
and personal computers. The specification operates in the 2.4 GHz ISM band offering a
data rate of up to 2 Mbps. In 2010 Bluetooth 4.0 was released with new power saving
features. This so-called Bluetooth LE (Low Energy) opened the automation sector for
the standard with a product range similar to Zigbee’s. With Bluetooth 4.0 mesh topology
found their way into the network standard [19].

Bluetooth uses E0 (stream cipher) to encrypt its data which is usually safe but as every
wireless technology it can be attacked if enough effort is put into [20].

2.3.2.4 WLAN
WLAN stands for Wireless Local Area Network a wireless network that links devices
to form a LAN within a limited area. WLANs based on the IEEE-802.11 standards are
called Wi-Fis.

The IEEE-802.11 standard was first introduced in 1997 and uses the 2.4 GHz ISM band.
With Wi-Fi 5, which is the current standard (2022), the frequency range got extended to
5 GHz offering a data rate of up to 1.3 Gbps [21].

In comparison to the above introduced wireless network standards, Wi-Fi offers a much
higher data rate (3-4 magnitudes higher) and the fact that it is used almost everywhere
in the IT sector illustrate the high security standard. On the other hand, Wi-Fi devices
have a very high power consumption (they have to be always on to receive incoming
data) and therefore it is not possible to utilize WLAN for energy saving purposes. WLAN
smart devices use 2.4 GHz and a lower transmission rate for a higher transmission range.
However wireless Wi-Fi devices (barely available motion detectors) need frequent battery
change and it is therefore not recommended to use it for low maintenance systems. Its
high data rate on the other hand opens a possibility for audio or video streaming.

2.3.2.5 Thread
Thread is an open-source low-power mesh networking standard designed for Internet of
things products. Members include Amazon, Apple, ARM, Bosch, Google, IKEA, LG, NXP
Semiconducotrs, OSRAM, Samsung, Schneider Electric and Qualcomm [22][23][24].

This fairly new standard is based on the IEEE 802.15.4 standard operating at 2.4 GHz
with a data rate of 250 Kbps (ref. Zigbee). An open-source implementation of Thread
called OpenThread managed by Google is available. Thread is very similar to Zigbee such
as it uses AES encryption. First Thread products were released in late 2020, first one was
the HomePod mini [25].

Thread has got a huge advantage above all other presented wireless communication
standards. The fact that many big tech companies are on board will probably lead to
market domination in the next few years. The present situation (August 2022) is different
because it’s a fairly new standard and therefore not many devices are available.

2 Automation Systems 18

For future DIY wireless projects, the nRF5340 designed by Nordic Semi Conductors is
an interesting chip offering already a development kit released in the beginning of 2021
[26].

2.3.2.6 nRF24L01+
Unlike the previously featured wireless systems the nRF24L01+ is not a wireless standard
that is used in smart devices. The nRF24L01+ is a single chip transceiver developed by
Nordic Semi Conductors and offers wireless communication for little money. For 1.5 €
per piece the chip offers an extremely cheap alternative to transceiver modules which are
based on the Bluetooth, Zigbee and Thread standard. In the following key features of the
nRF24L01+ are listed from the datasheet [27].

• Worldwide 2.4 GHz ISM band operation

• 250 Kbps, 1 Mbps and 2 Mbps on air data rates (annot. bps...bit per second)

• 11.3 mA TX at 0dBm output power (annot. TX...Transmitter; 0 dBm =̂ 1 mW)

• 13.5 mA RX at 2 Mbps air data rate (annot. RX...Receiver)

• 900 nA in power down

• 26 µA in standby-I

• 1.9 to 3.6 V supply range

• Enhanced ShockBurstTM (annot. special protocol for high power transmission)

• 6 data pipe MultiCeiverTM (annot. single module can listen up to 6 other modules
at the same time)

Typical applications include ultra-low power sensor networks, home and commercial au-
tomation, asset tracking systems and advanced media center remote controls.

In combination with a power efficient microcontroller many wireless DIY projects can
be implemented.

2.3.2.7 Discussion
Wireless systems are a suitable alternative to wired systems when upgrading existing
buildings with “smart” features. Cheaper initial cost, less time spend in the setup process
(No wires) and easy upgrades are few of its advantages.

On the other hand, wireless systems still need (although less) electrical power which is
provided via wires, batteries or for many applications sufficient, energy harvesting (EnO-
cean). Another downside is that metal shielding (insulation, underfloor heating, plaster-
board) blocks electromagnetic waves and extra care needs to be taken to the placement
of wireless systems. Electric motors can cause interference and disturb communication.
Furthermore, many applications are not wireless (e.g., security cameras, alarm systems,

2 Automation Systems 19

entertainment systems) they need a constant power supply. In that case wired automation
systems are more suitable.

Table 2 shows key features of the presented wireless automation systems.

2 Automation Systems 20

St
an

da
rd

N
R

F2
4

Zi
gb

ee
En

O
ce

an
B

lu
et

oo
th

5.
0

(B
LE

)
W

ifi
T

hr
ea

d
N

et
w

or
k

to
po

lo
gy

st
ar

,t
re

e
m

es
h

st
ar

,p
oi

nt
to

po
in

t
st

ar
,p

oi
nt

to
po

in
t,

m
es

h
st

ar
m

es
h

R
an

ge
di

re
ct

lo
ng

(>
30

m
)

m
ed

iu
m

(1
0-

15
m

)
m

ed
iu

m
(3

0m
)

lo
ng

(<
10

0m
)

lo
ng

(5
0m

)
m

ed
iu

m
(1

0-
15

m
)

M
ax

.t
ra

ns
m

iss
io

n
sp

ee
d

2
M

bp
s

25
0

K
bp

s
12

5
K

bp
s

2
M

bp
s

>
1G

bp
s

25
0

K
bp

s

Fr
eq

ue
nc

y
2.

4
G

H
z

86
8

M
H

z
2.

4
G

H
z

86
8

M
H

z
2.

4
G

H
z

2.
4

G
H

z
5

G
H

z
2.

4
G

H
z

Se
cu

rit
y

de
pe

nd
s

on
µ

C
A

ES
-1

28
A

ES
-1

28
po

ss
ib

le
E0

(s
tr

ea
m

ci
ph

er
)

W
PA

2/
W

PA
3

A
ES

-1
28

Po
w

er
us

ag
e

ve
ry

lo
w

lo
w

ve
ry

lo
w

hi
gh

hi
gh

lo
w

Av
ai

la
bi

lit
y

in
fin

ite
m

ed
iu

m
lo

w
lo

w
hi

gh
lo

w
bu

t
↑

R
el

ia
bi

lit
y

hi
gh

m
ed

iu
m

hi
gh

hi
gh

lo
w

hi
gh

Ta
bl

e
2:

O
ve

rv
ie

w
ov

er
th

e
m

os
t

co
m

m
on

us
ed

w
ire

le
ss

au
to

m
at

io
n

sy
st

em
s

2 Automation Systems 21

2.3.3 Wired Systems for on-board communication

Following section presents commonly used serial data busses.

2.3.3.1 1-Wire
1-Wire is a simple to use bus system developed by Dallas Semiconductor Corp. (today
Analog Devices) [28]. It uses one data line (DQ) which acts as power supply, transmit and
receive line. In practice 1-Wire needs a second line Ground (GND) for communication.
The asynchronous data transmission (no clock signal) offers a data rate of 16.3 Kbps
and therefore, a long transmission range of up to 100 m can be achieved. Each device
(slave) which is connected to the master (µC, PC) has a unique 64-bit identifier and an
internal capacitor (800 pF) to store charge and power the device during the communication
procedure.

1-Wire is used for small inexpensive devices like digital thermometers and weather
instruments with extremely small power usage (<5 µW). Another application includes
door locks and the use of Dallas key or iButtons (see figure 3 [29]).

Figure 3: 1-Wire lock [29]

2.3.3.2 UART
Universal Asynchronous Receiver-Transmitter is a hardware device for establishing an

asynchronous serial communication. UART is commonly used for the communication be-
tween computers and external devices. RS-232 (introduced in 1960), RS-485 and USB
(Universal Serial Bus) are the most popular serial standards.

2 Automation Systems 22

For a UART transmission to work there are several settings which need to be defined
on both the transmitting and receiving side. The following enumeration shows the typical
settings for a UART communication.

1. Baud Rate: 9600 bps

2. Data bit size: 8 bits

3. Parity: None

4. Stop bits: 1 bit

5. Flow Control: none

2.3.3.3 CAN
The Controller Area Network is a vehicle bus system developed by Bosch in 1983 [30]. Its
purpose was to reduce cable in cars to save copper and weight. Nowadays CAN has many
applications beyond the initial one including building automation, 3D printers, elevators
and medical instruments and equipment. The CAN bus system requires two logic signals
in order to operate:

1. CAN-H: positive CAN signal (dominant high)

2. CAN-L: negative CAN signal (dominant low)

A third signal CAN-GND (Ground) is optional but often combined with a 5 V power
supply.

CAN is a multi-master serial bus system using twisted pairs to reduce influence of
external electromagnetic radiation and crosstalk. It offers protection against data collision
(CSMA/CR) and data rates from 10 Kbps up to 1 Mbps. With 10 Kbps a transmission
ranges up to 5 Km can be achieved, increasing the data rate to 1 Mbps reduces it to 20
m. CANs theoretical node limit is 128 units per bus, in practice 110.

2.3.3.4 SPI
Serial Peripheral Interface is a serial synchronous communication bus system developed in
1987 used for short distance communication. It is primarily used for the communication
between different ICs (Integrated Circuits) and microcontrollers. The SPI bus system
requires four logic signals in order to operate [31]:

1. SCLK/SCK: Serial Clock

2. MOSI: Master Out Slave In

3. MISO: Master In Slave Out

4. CS/SS: Chip/Slave Select

2 Automation Systems 23

SPI
Master

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

Figure 4: SPI bus example [32]

Mode CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1

Table 3: Four different SPI modes

A simple SPI bus example is shown in figure 4 [32].
Every chip needs a separate CS/SS signal for communication hence the number of

slaves is limited to the number of output pins of a microcontroller. To solve this problem
an inverse multiplexer (IMUX) or an GPIO expander chip can be used.

SPI devices communicate in full duplex mode this means that on every clock cycle
master and slave transmit their respective data. If a master requests data from the slave
two transmissions need to take place. The first transmission contains the commando and
in the second one a dummy byte is sent to give the slave an opportunity to send requested
data to the master.

There are four different modes to set up polarity and phase of the clock. Table 3
illustrates the different settings.

CPOL (Clock Polarity
0: clock idles low (0); leading edge is rising edge
1: clock idles high (1); leading edge is falling edge

CPHA (Clock Phase)
0: half cycle clock idle, followed by half cycle clock asserted
1: half cycle clock asserted, followed by half cycle clock idle

SPI is used for many low power applications e.g., the in section 2.3.2.6 presented
transceiver (nRF24L01+) uses SPI to communicate with a microcontroller.

2 Automation Systems 24

2.3.3.5 TWI/I2C
Two Wire Interface or Inter Integrated Circuit is a synchronous serial communication

bus developed by Philips Semiconductors (known today as NXP) in 1982 [33]. It is com-
monly used for the communication between different ICs. The I2C bus requires two logic
signals in order to operate:

1. SDA: Serial Data Line

2. SCL: Serial Clock Line

A common GND (Ground) connection is not required but recommended.
A simple TWI/I2C bus example is shown in figure 5 [34].

ADC
Target

Rp

DAC
Target

µC
Target

Vdd

SDA
SCL

µC
Controller

Figure 5: TWI/I2C bus example [34]

I2C uses open-collector or open-drain lines which need to be pulled up with external
resistors (typical 4.7/10 KΩ; Rp) to the supply voltage. One of I2Cs features is its sim-
plicity and low manufacturing cost but low data rate and higher power consumption in
comparison to SPI. The number of nodes is limited by the address space (7 bits =̂ 128)
and its total bus capacitance of 400 pF which in practical equals to a few meters bus
length. Due to the bus high impedance and therefore low noise immunity extra care needs
to be taken in placing and connecting I2C components.

In an I2C bus system following procedure takes place during a transmission. The master
pulls the SDA line to ground and thereby initiate the start of a data exchange (START).
The master then lays a read or write bit followed by the slave address on the data line.
After 8 bits the slave acknowledges the data with a low on the data line (ACK) otherwise
the transmission stops. The transmission is followed by one or more data bytes which
again, need to be acknowledged after each byte. A STOP signal (pulling SDA to high
when SCL is high) terminates the transmission.

2 Automation Systems 25

2.4 Tasks
There are many tasks in laboratories which can be automated. Some automation problems
are more complex than others and need a power supply on site, some can be solved through
a low energy wireless transmission system. In the following section a selection of purposes
for low power wireless transmission systems will be discussed and how physics make these
sensors possible. In section 2.4.4 more low-power tasks but also applications suited more
for wired systems are listed - a detailed look on these would go beyond the scope of this
theses.

2.4.1 Temperature Measurement

One of the most important measurements in laboratories is to measure the temperature.
Many physical effects show strong temperature dependence so it is recommended to keep
track of the temperature, measure its influence and keep stable conditions.

MEMS stands for MicroElectroMechanical Systems and describes microscopic devices.
These devices combine micromechanical structures and logic elements to form microscopic
structures measuring various physical values. Due to its size MEMS require tiny amounts
of current and are very interesting for low power applications. MEMS are produced by
applying thin films of substrate (1 to 100 µm) onto a surface, using lithography to alter
the substrates properties and etching excess substrate from the surface [35][36][37].

MEMS temperature sensors consist of a meander shaped structure as shown in figure
6 [35]. The resistance of the metal is calculated as

Figure 6: MEMS temperature sensor [35]

R = ρL/A .

If the relationship between measured resistance and temperature is linear, equation

Rt = R0[1 + α(t − t0)]

2 Automation Systems 26

describes the correlation.

Where,

Rt is the resistance at t ◦C

R0 is the resistance at 0 ◦C

α is the temperature coefficient of resistance

t is the temperature to be measured

t0 is the initial temperature

By using resistance measurements, the temperature can be calculated.

2.4.2 Air Pressure Measurement

In many laboratories a pressure difference between the external environment and the in-
ternal work place needs to be kept. The aim is for example to reduce dust from getting into
a clean room (positive pressure) or prevent germs from leaving the work place (negative
pressure).

Cheap low energy pressure sensors like the BMP180 from Bosch use the piezoresistive
effect as its physical principle. The piezoresistive effect describes the change of resistivity
of a material (conducting, semi-conducting) when exposed to a tension. It can be described
as the inter-atomic spacing (due to strain) affects the bandgaps and alters the difficulty
for electrons to be raised into the conduction band, which changes the material resistance
[38][39][40].

MEMS piezoresistive pressure sensors consist of four meander shaped structures placed
on silicon. For measurement purposes they are arranged to form a Wheatstone bridge as
seen in figure 7.b) [41].

Figure 7: MEMS piezoresistive pressure sensor (a) Schematic cross section; (b) Wheatstone bridge [41]

2.4.3 ADC - Analog Digital Converter

An ADC is a system that converts an analog signal into a digital signal. Nowadays al-
most every microcontroller has a built-in ADC which converts an analog input voltage

2 Automation Systems 27

to a digital number representing the magnitude of the voltage. This system is useful for
measuring the output voltage of many analog sensors and trigger an event if a certain
threshold is exceeded. Examples for typical ADC applications include analog temperature
sensors, light sensors, pressure sensors, sound sensors and accelerometers.

A disadvantage of built-in ADCs in microcontrollers are the low resolution they offer.
Most ADCs only have 8 or 10-bit resolution, which means that they are able to identify
2ˆ8=256 or 2ˆ10=1024 individual analog signals. In order to resolve this problem, there
are many different ADCs on the market using a SPI or I2C interface with resolutions up
to 24-bit (=̂ 16 777 216 different levels).

The minimum voltage difference an ADC can discriminate (voltage resolution) can
be calculated by dividing the voltage measurement range by the number of intervals
(M..Resolution)

Q = ∆V

2M
.

For 8-bit resolution and 3.3V voltage measurement range, the equation returns a voltage
resolution of 12.9 mV.

2.4.4 Other Tasks

There are countless different sensors on the market measuring physical (temperature,
humidity, pressure, heat, sound pressure, brightness, acceleration) and chemical (pH, ionic
strength, electrochemical potential) properties [42]. Some examples are thermocouple,
manometer, acceleration sensor, rain sensor, strain gauge, humidity sensor, force sensor,
position sensor, CCD-sensor, filling level sensor, flow meter, hall sensor, gas sensor, particle
sensor, motion sensor and smoke detectors all of which can be in automated to a certain
degree.

There are two possibilities how sensors can provide data for further computation -
analog or digital. In the field of automation systems digital sensors steadily displace analog
sensors. Most sensors have an integrated ADC to digitize analog measurement data. If not
included, the built-in ADC of a microcontroller or ADC-ICs with integrated data busses
can be used. For digital sensors an I2C or SPI interface is sufficient to derive measurement
data. If a sensor uses a bus protocol the microcontroller does not provide (for example
CAN), compatible bus controller ICs can be used (e.g., MCP2515 by Microchip).

Apart from that many actuators (electric motors, servos, step motors, hydraulic cylin-
der, valves) can be automated too. A disadvantage of actuators in terms of wireless systems
is the typically high power consumption. Wired automation systems would be a better
alternative, especially considering parasitic radiation emanating from electro motors.

Finally, one of the most important features an automation system should fulfill is
its capability to fetch and store measurement data. A data logger which can be easily
accessed within a private network and its ability to alert the user if preset values are
exceeded should be the root of every automation system.

2 Automation Systems 28

2.5 Conclusion
After discussing the pro and cons of the different automation systems, it is time to check
the transceiver modules that are available on the market. Important note: Individual
transceiver chips are not taken into account, only fully operational boards that can be
easily connected to a microcontroller. Designing and manufacturing individual boards
would go beyond the scope of this thesis and would also make possible replicas very
work-intensive. Therefore, the product range of three different suppliers were checked -
RS Components, Mouser Electronics and Amazon (05.12.2021).

2.5.1 Wireless Transceiver - RS Components

Table 4 shows the transceiver that were listed on RS Components on given date. There

Product Standard Availability (Qty) Price
MRF24J40MA-I/RM Zigbee no, (exp. 2023) 14,02 €

XBee 802.15.4 RF-Module Zigbee yes (12) 52,58 €
QFM-TRX1-24G Wlan yes (1) 7,02 €

nRF52833 DK Bluetooth, Thread, Zigbee yes (28) 67,20 €
nRF51-DK Bluetooth yes (4) 57,49 €

Table 4: Wireless Transceiver - RS Components

are four different sensors available, three of them cost over 50 € which is well above the
limit for a cheap wireless transceiver. Nevertheless, the nRF52833 DK and to a certain
extent the nRF51-DK are very interesting products offering a development board with
debugging features for developing prototypes using the Bluetooth, Thread and Zigbee
standard.

However, for this project only the transceiver QFM-TRX1-24G remains a possibility
with the drawback that the transceiver uses the WLAN standard which does not offer the
energy efficiency as similar products. Another downside is that only one piece is in stock
and it is unknown when it will be increased (2021 - corona pandemic - supply shortage).

2.5.2 Wireless Transceiver - Mouser Electronics

Table 5 shows the transceiver that were listed on Mouser Electronics on given date.
Mouser Electronics has a very sparse product range offering only one product. The

Product Standard Availability (Qty) Price/piece
MRF24J40MAT-I/RM Zigbee yes (1) 14,35 €

Table 5: Wireless Transceiver - Mouser Electronics

MRF24J40MAT-I/RM which is not available at RS Components is in stock, but only
one piece making the transceiver not a suitable candidate for this project.

2 Automation Systems 29

2.5.3 Wireless Transceiver - Amazon

Table 6 shows the transceiver that were listed on Amazon on given date. In comparison to

Product Standard Availability Price/piece
ESP8266 WLAN yes 3,28 €
HC-05 Bluetooth yes 5,79 €

RFM69HW 433Mhz
RFM12B HopeRF no, 433/868/915 MHz yes 4,52 €

nRF24L01+ no, 2,4 GHz yes 1,51 €

Table 6: Wireless Transceiver - Amazon

the two above discussed companies Amazon offers a wide variety of different transceivers.
Most of them are sold in sets of 3 to 10 for a very low price.

2.5.4 Discussion

To select the best fitted transceiver to be used in this thesis, the remaining transceivers
will be compared in table 7 whether they meet desired criteria listed in section 1.3.

Product ESP8266 HC-05 RFM69HW nRF24L01+
Price 3,28 € 5,79 € 4,52 € 1,51 €

Standard WLAN Bluetooth no, 433/868/915 MHz no, 2,4 GHz
Availability ✓ ✓ ✓ ✓

Extensibility ✓ ✓ ✓ ✓
Security ✓ ✓ ✓ ✓

Interference resistance ✓ ✓ ✓ ✓
Transmission reliability ✓ ✓ ✓ ✓

Reliability ✓ ✓ ✓ ✓
Energy efficiency ∼ + + +

Table 7: Comparison available transceivers regarding requirements

The comparison shows that although the four presented transceivers are based on
different communication standards, each of them fulfills the requirements for this project
and can be used without hesitation. Due to its very low price and good documentation
the decision was made to use the nRF24L01+ in the course of the project.

3 System Setup 30

3 System Setup

3.1 System Structure
The basic system structure for this project is shown in figure 8. A transceiver module

Sensor μC

Transceiver Transceiver

Arduino RaspPi

WebserverDB

User PC

Sensor

Transceiver

μC

Modul 1

Modul 2-6

User PC

Admin PC

Figure 8: Block diagram of the system structure

consists of three different components (red dashed line). The transceiver, a µC (micro-
controller) and a sensor. Up to six different modules (illustrated by the green dashed line
block - Module 2-6) are able to transmit their data to the receiving transceiver which
forwards the data to an Arduino which further forwards the data to a RaspberryPi where
the data is stored in a database (blue dashed line).

Let’s start by discussing the elements inside the red dashed line rectangle. The micro-
controller which is used in this project is the ATmega8L which will be discussed in more
detail in section 3.2.5. Every given time interval the microcontroller wakes up from its
sleep state, reads data from the sensor, forwards it to the transceiver where it is transmit-
ted to the receiving unit and then the microcontroller gets right back to the sleep state.
This is being repeated every few seconds up to days customizable by the user. The sleep
state is being used for energy saving purposes, to increase battery life. A calculation on
the power consumption will be made in section 4.1.2.6.

For the sensor block almost every sensor using common bus protocols can be used. In
section 4.2.1 and 4.2.2 two different types of sensors will be discussed. The first one is the

3 System Setup 31

BMP180 a temperature and pressure sensor using the I2C/TWI bus for communication,
for the second example the built-in ADC of the ATmega8L is being used to convert the
analog output of a possible analog sensor, simulated by a potentiometer.

For the transceiver block the nRF24L01+ (refer section 2.3.2.6 and 3.2.4) will be used.
The nRF24L01+ will be in power down mode most of the time, only when it receives a
wake-up signal from the microcontroller, data will be sent and after that the nRF24L01+
will go back into the power down mode.

Inside the blue dashed line rectangle are three different elements. For the transceiver
block the nRF24L01+ will be used again but in contrast to the transmitter the receiver will
be constantly awake expecting incoming data. The Arduino controls the transceiver and
forwards incoming data via UART to the RaspberryPi (RPi). UART (refer section 2.3.3.2)
is a common interface on PCs and microcontrollers and is implemented by a USB interface
connecting the Arduino to the RPi. The intermediate step to use an Arduino for data
communication with the transceiver is not necessary but convenient. The nRF24L01+
could be directly connected to the RPi but to do this the casing of the RPi (which is
optional but almost always used) has to be opened. The decision was therefore made to
use and describe the Arduino as a GPIO (General Purpose Input/Output) expander for
the RPi.

The RPi serves two purposes. First one is to store incoming data into a database,
second one is to grant every user in the same network access to the data. Therefore a
webserver runs on the RPi serving requested data and diagrams of sensor data history to
users (marked as the User PC block in figure 8).

3 System Setup 32

3.2 Module Description
After introduction of the basic system structure and the purpose of the different blocks,
this section describes the individual modules in more detail and the basic setup processes
for programming. Every block shown in figure 8 will be discussed except the Sensor block.
For that section 4.2.1 and 4.2.2 provide an introduction.

3.2.1 Raspberry Pi

Raspberry Pi is a small single board computer developed by the Raspberry Pi Founda-
tion in 2012. It is widely used for many different purposes including Internet of Things
based applications, robotics, image/video processing, weather station, web server, NAS
(Network-attached storage) and game emulator. Due to its low price tag starting at 35 €
and low power consumption (under 5 W) RPi gained popularity very fast. The internet is
filled with countless different tutorials making the Raspberry Pi a perfect choice for this
thesis.

Over the years many different series/generations have been released. The most recent
one (09.08.2022) is the Raspberry Pi 4 Model B (2019) offering a 1.5 GHz 64-bit quad
core ARM Cortex-A72 processor, onboard Wi-Fi, Bluetooth 5, gigabit Ethernet, two USB
2.0 ports, two USB 3.0 ports, 1–8 GB of RAM, and dual-monitor support via a pair of
micro-HDMI (HDMI Type D) ports for up to 4K resolution (see figure 9 [43]). However,

Figure 9: Picture of Raspberry Pi 4 Model B [43]

it is insignificant what type of RPi is being used for this project due to its good downward
compatibility and the limited features that are used (Webserver, Database, UART). A
RPi of the first generation (1 Model B) was used in the course of this project which was
absolutely sufficient, only loading times or update procedures took longer due to its single
core 700 MHz processor and 512 MB RAM.

3 System Setup 33

3.2.1.1 System Setup
In the following the initial steps for commissioning the RPi are illustrated. Notice: Not

every step is described in detail but in general sufficiently detailed.

Step 1 - Setup and start Raspberry Pi
The main storage of a RPi is a SD card - newer versions use microSD. On it the
operating system is among other things installed. The RPi Imager is an easy way to
install an OS (Operating System) on a SD card. The software can be downloaded
from https://www.raspberrypi.com/software/. For the installation process a SD
card reader is required connected to a PC. By following the instructions, the OS is
written on the SD card, after that the SD card can be inserted into the matching
slot on the RPi. After connecting mouse, keyboard and a monitor the RPi can be
started by connecting a power supply.

Step 2 - First boot
After the first boot and first settings, which can take a while, are completed it is
recommended to update and upgrade the OS. For this, following commands have to
be entered in the terminal.

$ sudo apt−get update
$ sudo apt−get upgrade

Furthermore, the SSH access has to be activated. SSH stands for Secure SHell and al-
lows system administrators to securely access a computer over an unsecured network.
By default, SSH is deactivated for obvious security reasons (default user, default pass-
word allows for unauthorized access). To activate SSH access following command has
to be entered in the terminal.

$ sudo raspi−config

Following the menu to “Interfacing Options / SSH" and confirm the options activates
SSH. Every authorized PC can now establish a SSH connection to the RPi (important
for Admin PC).

Step 3 - Install web server and database
Next step is to install a web server, for this tutorial an Apache web server will be
installed.

$ sudo apt i n s t a l l apache2

To check if the web server is running enter the IP address of the RPi into a web
browser. If the Apache2 Debian Default Page pops up everything works fine.

Next up (if not already installed) PHP, SQLite3 and a PHP-extension for SQLite3 has
to be installed.

$ sudo apt−get i n s t a l l php
$ sudo apt−get i n s t a l l sq l i t e3

https://www.raspberrypi.com/software/

3 System Setup 34

$ sudo apt−get i n s t a l l php−sq l i t e3

PHP is a recursive acronym and stands for PHP: Hypertext Preprocessor. It is used to
create dynamic websites or web applications. SQLite (Structured Query Language
Lite) is the most popular database engine of the world. It is used for managing data
held in a relational database management system. PHP is in combination with SQLite
an essential part for displaying stored data in a database on a website.

3 System Setup 35

3.2.2 Admin PC

The Admin PC is a very important part in the system. It is a crucial tool for coding
and setting up the RPi. The operating system is not that important but many problems
(ATmega8L programming) are easier to solve on Windows machines. The instructions
which are presented in the following sections assume that a Windows machine is used but
technically experienced users can easily adapt to different operating systems. An internet
connection is recommended for downloading required software. For normal operation e.g.,
to retrieve data from the data logger (RPi) a closed home network is sufficient. This is
also valid for User PCs and every internet-capable device accessing the web interface.

3.2.2.1 System Setup
There is various software that needs to be installed on the Admin PC. For communication
with the RPi it is recommended to install PuTTY and WinSCP.

PuTTY
PuTTY is an open source SSH and telnet client written and maintained by Simon
Tatham. It can be downloaded from https://www.putty.org/. Putty is used to
establish a SSH connection to the RPi by connecting to its IP address. Figure 10
shows the PuTTY configuration window to connect to a RPi with an IP address
of 10.0.0.2. By connecting to the RPi via SSH it is possible to control the RPi
via terminal commands. This is useful for many things like debugging, updating,
change permissions, installing additional libraries and creating new databases. It is
recommended to acquire basic knowledge in Linux commands.

WinSCP
WinSCP (Windows Secure Copy) is an open source SSH File Transfer Protocol
(SFTP) and FTP client for Microsoft Windows. It can be downloaded from https:
//winscp.net/eng/index.php. WinSCP is used for quick and easy file copying be-
tween a local and a remote computer. In this case the example code provided in this
thesis can be modified and transferred to the RPi via WinSCP. Figure 11 shows the
WinSCP login window to connect to a RPi with an IP address of “10.0.0.2” and the
username “pi”.

For programming the Arduino and the microcontroller (ATmega8L) Arduino IDE, Mi-
crochip studio and TL866II Plus Programmer Application Software needs to be installed.

Arduino IDE
The Arduino IDE Integrated Development Environment is an open-source software
that is used to write and upload code to Arduino (section 3.2.3) boards. It can
be downloaded from https://www.arduino.cc/en/software where you can find a
“Getting Started” page too. The Arduino is programmed in C/C++. A code example
will be provided in section 4.1.3. For uploading code to the Arduino, the Arduino
has to be connected to the PC and in the Arduino IDE under the menu item Tools
the correct Board, Processor and Port has to be selected.

https://www.putty.org/
https://winscp.net/eng/index.php
https://winscp.net/eng/index.php
https://www.arduino.cc/en/software

3 System Setup 36

Figure 10: PuTTY configuration window Figure 11: WinSCP login window

Microchip Studio
Microchip Studio is an IDE for developing and debugging AVR microcon-
troller applications. It was formerly known as AVR Studio or Atmel Studio. It
can be downloaded from https://www.microchip.com/en-us/tools-resources/
develop/microchip-studio#Downloads. Microchip Studio is used to develop, de-
bug and compile C/C++ or Assembly code written for AVRs. AVR is a family of
Atmel/Microchip microcontrollers including the ATmega series and therefore also
the ATmega8L (section 3.2.5).

After starting Microchip Studio, a New Project can be created by selecting a suitable
programming language (C/C++), select GCC C Executable Project, naming and
choosing a save location, “click” OK and choose the correct device (ATmega8).

TL866II Plus Programmer Application Software
The TL866II Plus Programmer Application Software is a software for the Arceli
TL866II Plus (section 3.2.6). It can be downloaded from http://www.xgecu.com/
en/download.html. The software is used to upload the compiled code to the micro-
controller. The uploading procedure and necessary software settings will be discussed
in section 3.2.6.

https://www.microchip.com/en-us/tools-resources/develop/microchip-studio#Downloads
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio#Downloads
http://www.xgecu.com/en/download.html
http://www.xgecu.com/en/download.html

3 System Setup 37

3.2.3 Arduino

Arduino is an open-source hardware and software company which offers microcontroller
kits for building digital devices. Arduino boards use a variety of microprocessors (AT-
mega328P, ATmega2560, ARM Cortex) and can be easily programmed via the Universal
Serial Bus (USB) interface. An Arduino board can be connected to a breadboard with
the help of jumper cables. The simplicity of Arduino boards lowers the initial hurdle for
inexperienced users to undertake their own micro controller projects and contributes to
its popularity.

Typical model names are UNO, DUE, MEGA and can be bought from the official
Arduino website. Due to its open-source platform electrical wiring diagram and layouts
are freely available and can easily be used and modified. Therefore, countless replicas are
on the market offering the same product for only a fraction.

In this project an Arduino MEGA 2560 was used but it can be easily replaced with an
Arduino UNO. Figure 12 shows the Arduino MEGA Breadboard with all its accessible
pins [44]. The UNO model offers similar features in comparison to the MEGA only the pin

L

RE
SE

T

RX
TX

0123456789
10111213

A0 A1 A2 A3 A4 A5 6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

22
24
26
28
30 31
32 33
34 35
36 37
38 39

4140
4342
45
47
49
MOSI

44
46

MISO

48

SSSCK

ANALOG IN

COMMUNICATION

AR
EF GN

D

TX
0

RX
0

RE
SE

T

3V
3

5V VI
N

GN
D

GN
D

SD
A

20
SC

L
21

1

TX
2

16
RX

2
17

RX
3

15
TX

3
14

RX
1

19
TX

1
18

PWM

5V

GND

DI
GI

TA
L

IOREF

ON

for AndroidArduino

TM

MEGA ADK

Figure 12: Arduino MEGA Breadboard Pins [44] Figure 13: Arduino IDE Settings

count is reduced. Tutorials on how to connect the nRF24L01+ to the UNO are available
on the internet, basically only the pins used for communication vary.

Figure 13 shows the Arduino IDE board, processor, port and programmer settings
for an Arduino MEGA 2560. The port number may differ but can be easily checked by
opening the Windows Device Manager and looking for Arduino in Ports (COM & LPT).

3 System Setup 38

3.2.4 Transceiver - nRF24L01+

An introduction of the nRF24L01+ and its key features had been already given in section
2.3.2.6. In this section the features will be described in more detail.

The small board dimensions of 33.1089 mm x 15.0622 mm allow the construction of
small integrated devices. The nRF24L01+ application board is shown in figure 14.

Figure 14: Picture of Transceiver nRF24L01+

To configure and operate the nRF24L01+ the Serial Peripheral Interface (SPI) is used.
The register map contains all configuration registers in the nRF24L01+ and can be ac-
cessed via SPI. The data and control interface of the nRF24L01+ consists of the following
six 5 V tolerant digital signals according to the datasheet [27]:

1. IRQ: this signal is active low and controlled by three maskable interrupt sources

2. CE: this signal is active high and used to activate the chip in RX or TX mode

3. CSN: Chip S Not - SPI signal

4. SCK: Serial Clock - SPI signal

5. MOSI: Master Output, Slave Input - SPI signal

6. MISO: Master Input, Slave Output - SPI signal

Including the two supply pins VDD (1.9 to 3.6 V - typical 3.0 V) and VSS (0 V) there
are in total 8 pins.

For data transmission between two nRF24L01+ there are a few important settings
which have to be configured beforehand. These settings are listed in the following lines.

1. Auto Retransmit Count: 0-15 (after x retries data transmission fails)

2. Pipe Address: Standard Transmit Address equal to Receive Address Data Pipe 0:
0xE7E7E7E7E7

3. RF (Radio Frequency) Channel Frequency: 2.400 GHz to 2.525 GHz in steps of 1
MHz → 125 Channels in total

3 System Setup 39

Austria: allowed frequencies: 2.400 GHz to 2.4835 GHz (Frequenznutzungsverord-
nung §9 Absatz 1 Anlage 2)

4. Payload Size: 1 to 32 bytes

5. RF Data Rate:

250 Kbps

1 Mbps

2 Mbps

6. CRC Length: 1 to 2 bytes

7. RF Output Power:

-18 dBm =̂ 15.8 µW

-12 dBm =̂ 63.1 µW)

-6 dBm =̂ 251 µW

0 dBm =̂ 1 mW

For standard operation a data rate setting of 250 Kbps is recommended, offering the
highest transmission range.

CRC stands for Cyclic Redundancy Check and describes an error-detecting code which
is used to detect accidental changes to digital data (e.g., noise). It works as follows: a short
(1 to 2 bytes) check value is attached to the payload (calculated via a polynomial) and on
the receiver side the same polynomial is applied to the data. The calculation yields zero
if there are no detectable errors. It is possible that two or more errors lead to the same
result but it is very unlikely. CRCs can be easily realized in hardware and therefore are
preferably used for many different applications.

The RF Output Power (transmission power) is measured in dBm. dBm (decibel-
milliwatts) is used to indicate a power level in decibels with reference to one milliwatt.
The mathematical relationship between x in dBm and the corresponding power P in mW
is given as follows:

x = 10log10
P

1mW
.

Vice versa:
P = 1mW ∗ 10 x

10 .

3.2.4.1 Radio Control
Figure 15 shows the state diagram of the nRF24L01+ [27]. The state diagram shows

the operating modes and how they function. When connecting a voltage above 1.9 V
(And lower than 3.6 V) to the VDD pin the nRF24L01+ enters the Power on reset state,
where it stays for 100 ms to stabilize signals and afterwards enters the Power Down state.
In Power Down state the nRF24L01+ draws a current of 900 nA which is perfect for

3 System Setup 40

 Figure 3. Radio control state diagram

6.1.2 Power Down Mode

In power down mode nRF24L01+ is disabled using minimal current consumption. All register values avail-
able are maintained and the SPI is kept active, enabling change of configuration and the uploading/down-
loading of data registers. For start up times see Table 16. on page 23

VDD >= 1.9V

Undefined

Power on
reset

100ms

Power Down

Standby-I

RX Mode

TX Mode

Standby-IIRX Settling
130 µs

Start up
1.5ms

PWR_UP = 1

PWR_UP = 0

TX Settling
130 µs

TX FIFO not empty
PRIM_RX = 0
CE = 1 for more than 10µs

PRIM_RX = 1
CE = 1

CE = 0

TX FIFO empty
CE = 1

TX FIFO not empty
CE = 1

PRIM_RX = 0
TX FIFO empty
CE = 1

PWR_UP = 0

PWR_UP = 0

PWR_UP=0

CE = 0

PWR_UP=0

PWR_UP=0

TX finished with one packet
CE = 0

CE = 1
TX FIFO not empty

Possible operating mode

Recommended path between operating modes

Possible path between operating modes

Recommended operating mode

Transition state

CE = 1 Pin signal condition
PWR_DN = 1 Bit state condition

Undefined

TX FIFO empty System information

Undefined

Legend:

Figure 15: nRF24L01+ state diagram [27]

battery powered devices. By setting the PWR_UP bit in the CONFIG register to logic 1, the
nRF24L01+ enters after 1.5 ms the Standby-I state, drawing a current of 26 µA.

Proceeding from the Standby-I state two different paths can be taken. Differentiated
in using the nRF24L01+ as a transmitter or a receiver.

3.2.4.2 Receiver path: By setting the PRIM_RX bit in the CONFIG register to logic 1
and draw the CE input pin to logic 1 the nRF24L01+ enters after stabilizing signals for
130 µs (RX Settling state) the RX Mode state. In RX mode the nRF24L01+ demodulates
signals from the RF channel, checks for errors (CRC) and presents the payload of the
packet in a vacant slot in the RX FIFOs. The RX FIFO (First In – First Out) is a
temporary storage which holds the received bits until they are read by the microcontroller.

3 System Setup 41

The nRF24L01+ can leave the RX Mode state by drawing the CE pin to logic 0. It is also
possible to remain in the RX Mode state and simply forward all incoming data to the RX
FIFO. In our case the nRF24L01+ connected to the Arduino stays in the RX Mode state
and forwards its data to the Arduino and finally to the RPi. More on that in section 4.1.3.

3.2.4.3 Transmitter path: By loading data into the TX FIFO (TX FIFO not
empty), setting the PRIM_RX bit in the CONFIG register to logic 0 and drawing the CE
input pin to logic 1 for more than 10 µs the nRF24L01+ enters after stabilizing signals
for 130 µs (TX Settling state) the TX Mode state. The nRF24L01+ stays in TX Mode
until it finishes transmitting a packet. If the TX FIFO is not empty the nRF24L01+
remains in TX mode and transmits the next packet. If the TX FIFO is empty and CE=0
the nRF24L01+ enters the Standby-I state from where it can change to the power saving
state Power Down by setting the PWR_UP bit in the CONFIG register to logic 0 or it is
possible to initiate the next data transmission.

Detailed flow charts and code snippets will be given in section 4.1.3 for the receiver and
section 4.1.1 for the transmitter.

3 System Setup 42

3.2.5 µC ATmega8L

The ATmega8L is a low-power 8-bit microcontroller belonging to the AVR microcontroller
family developed in 1996 by Atmel, acquired by Microchip Technology in 2016. It is
based on the RISC (Reduced Instruction Set Computer) architecture which offers simpler
instructions and higher clock frequency in comparison to the CISC (Complex Instruction
Set Computer) architecture. Due to AVRs simple architecture, easy programmability and
free development software, AVRs are widely used in hobbyist and educational embedded
systems (refer to section 3.2.3 - ATmega328P, ATmega2560).

In the following key features of the ATmega8L are listed from the datasheet [45].

• High-performance, Low-power Atmel®AVR® 8-bit Microcontroller

– 130 Powerful Instructions – Most Single-clock Cycle Execution

– 32 × 8 General Purpose Working Registers

– Up to 16 MIPS Throughput at 16 MHz

• Advanced RISC Architecture

– 8 Kbytes of In-System Self-programmable Flash program memory

– 512 Bytes EEPROM

– 1 Kbyte Internal SRAM

• Peripheral Features

– Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode

– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Cap-
ture Mode

– Real Time Counter with Separate Oscillator

– 6-channel ADC in PDIP package
Six Channels 10-bit Accuracy

– Byte-oriented Two-wire Serial Interface

– Programmable Serial USART

– Master/Slave SPI Serial Interface

– Programmable Watchdog Timer with Separate On-chip Oscillator

• Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection

– Internal Calibrated RC Oscillator

– External and Internal Interrupt Sources

– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby

3 System Setup 43

• Operating Voltages / 2.7 V - 5.5 V (ATmega8L)

• Speed Grades / 0 - 8 MHz (ATmega8L)

• Power Consumption at 4 Mhz, 3 V, 25 ◦C

– Active: 3.6 mA
– Idle Mode: 1.0 mA
– Power-down Mode: 0.5 µA

The AVR family is classified into many different series offering variants for every purpose.
The most common series are ATmega, ATtiny (slimmed down version in comparison to
ATmega) and ATxmega (newest generation - enhanced version in comparison to ATmega).
For this project a microcontroller of the ATmega series was chosen. The ATmega series
offers great flexibility for prototyping and the fairly large program memory allows the
programmer to not worry about program size.

Originally it was decided that an ATmega328P will be used as the microcontroller
shown in figure 8. The ATmega328P offers low power consumption in power-save mode
(0.75 µA at 1.8 V, 25 ◦C) which is a quite significant power consumption save in com-
parison to the ATmega8L, which uses about 9 µA at 3.0 V, 25 ◦C. In power-save mode
the microcontroller can wake up from its sleep state every given time interval. A detailed
description of this feature will be given in section 4.1.1. Unfortunately, the ATmega328P
is out of stock and therefore the available ATmega8L had to be used. This is not a big
issue because the power consumption is already very low and offers plenty of battery life
(Refer calculation in section 4.1.2). However, future projects should be implemented with
an up-to-date microcontroller such as ATmega328P.

For easy accessibility and prototyping the DIP Dual In-line Package variant was cho-
sen. Figure 16 shows the DIP pin configuration of the ATmega8/L [46]. DIPs offer a

GNDVCC

ATMEGA8-16PU

1

28 15

14
PB0
ICP1

PD7
AIN1

PD6
AIN0

PD5
T1

PB7
XTAL2

PB6
XTAL1

OC1B

PB2

OC2

PB3
MISO
PB4

SCK
PB5AVCCAREF

OC1A

PB1
MOSIADC2

PC2
ADC3
PC3

ADC4
PC4

ADC5
PC5

ADC1
PC1

ADC0
PC0

PC6
PD2
INT0

PD1
TXD

PD0
RXD

PD4
XCK

PD3
INT1

T0 TOSC2TOSC1

RESET

GND
SS

SDASCL

Figure 16: Atmega8L pins [46]

inter-lead spacing of 0.1 inches (2.54 mm) and rowing spacing of 0.3 inches (7.62 mm). A
ZIF Zero Insertion Force socket is available for DIPs, which is shown in figure 17 and 23.

The ATmega8L code is written and compiled via Microchip Studio which was already
presented in section 3.2.2. The datasheet is the main tool for coding, offering information

3 System Setup 44

about register values and how to implement certain features. Section 3.2.6 describes the
procedure to program the compiled machine code onto the microcontroller.

3 System Setup 45

3.2.6 Programmer - Arceli TL866II Plus

The Arceli TL866II Plus is a universal programmer that can be used to program over 15000
different chips. In this project the TL866II is used to upload code to the ATmega8L. The
TL866II is not an ideal choice for fast code debugging because it requires the processor
to be removed from the test board for the programming procedure. There are better
alternatives on the market but none of them can be used for such a wide variety of
different chips. Figure 17 shows the Arceli TL866II Plus Programmer [47].

Figure 17: Arceli TL866II Plus [47]

The TL866II Plus Programmer Application Software Xgpro v9.00 main window after
startup is shown in figure 18.

Figure 18: Xgpro v9.00 main window

3 System Setup 46

The most important areas are highlighted with a red circle. On the right side of the
main window, it is possible to check whether the programmer is correctly connected to
the PC. The first step before programming a microcontroller is to select the correct IC (in
this example the ATMEGA8L @DIP28 Dual In-line Package) via the Select IC button.
In the second step the correct .hex-file has to be loaded. The .hex-file is provided by the
Microchip compiler and can be found in the Microchip projects folder - subfolder Debug.
After that it is recommended to check the settings of the FUSE bits which can be done
by “clicking” on the FUSE. Bits tab. Figure 19 shows the open FUSE. Bits tab window.

Figure 19: Xgpro v9.00 FUSE. Bits tab

Fuse bits are like little switches that can be turned on and off to enable and disable
various features on AVR microcontroller. A detailed description of the features can be
found in the datasheet [45]. To set up the processor speed the bits CKSEL0 to CKSEL3
and SUT0 and SUT1 are of special interest. In default settings the processor runs at 1 MHz
which can be increased to 8 MHz by “checking” the CKSEL0=0 bit and “unchecking”
the CKSEL2=0 bit. For different clock frequencies refer to the datasheet table shown in
figure 20 [45].

To program an IC with the TL866II it is required to check if the IC is placed and
secured correctly in the IC ZIF socket. A “click” on the highlighted P as shown in figure
18 opens a new window called Chip Program. Make sure to set the correct program range
(Include FUSE.Bits), if it is desired to use a higher clock frequency as the default one
and press Program.

3 System Setup 47

Figure 20: ATmega8L CKSEL settings - frequency [45]

4 System Implementation 48

4 System Implementation

4.1 Basic Operation Setup
Figure 21 shows the basic system structure, used programming languages and communi-
cation flow between the different modules.

Arduino Mega 2560microC/Atmega8L

Database

Webserver

Transceiver/nRF24L01+
Any sensor

RPi

Transceiver/nRF24L01+

UserPC

AdminPC

Figure 21: Basic system structure and used programming languages

Every data collection procedure starts on the left side of the figure. The microcontoller
ATmega8L which is programmed in C (indicated by the C programming language logo)
gathers the data every given interval a sensor (of any kind) provides. The data is then
sent to a transmitter (nRF24L01+) and afterwards collected by a receiving nRF24L01+
connected to an Arduino Mega 2560. The Arduino is programmed in C++. Through an
UART interface the data is then transmitted to the RPi where a Python script reads the
incoming data and stores it by using the database engine SQLite local on the RPi in a
beforehand created database file. Parallel to the storing Python script runs another script
which periodically checks the data and sends an email to a specified address if a problem
occurs. Furthermore, it sends an email daily, giving information about the current system
status. The database is accessed through a webserver using a combination of PHP, CSS,
JS, HTML programming languages to display stored data to any UserPC connecting to
the webserver.

Every module and basic software functions will be discussed in the following sections
starting with the ATmega8L microcontroller. Full commented code will be provided in the

4 System Implementation 49

appendix (7.2). This chapter gives an overview on the thought process how to implement
such a system by providing flow charts and highlighting important code lines.

4 System Implementation 50

4.1.1 Microcontroller - ATmega8L

As previously in section 4.1 discussed the ATmega8L is programmed in C in Microchip
Studio. Figure 22 shows the flowchart of a basic transmission with the ATmega8L. The

Figure 22: ATmega8L code flowchart

main code starts by defining various variables. The Payload variable is used to store
sensor data which then will be AES-128 encrypted with the help of an AESKey before it is
transmitted over the air with the nRF24L01+ module. In the next step the nRF24L01+
module will be initialized (more on that in section 4.1.1.2) followed by the initialization
of the timer interrupt (see section 4.1.1.1). After globally enabling interrupts and

4 System Implementation 51

configuring the nRF24L01+ as transmitter the sleep mode will be configured and
entered.

If a Timer 2 overflow interrupt occurs the ATmega8L will wake up from its sleep
mode and check if enough time passed since the last transmission procedure. If that
statement is true sensor data will be gathered and saved in the previously defined Payload
variable, followed by encrypting the data with the previously defined AESKey.

After powering up the nRF24L01+ module, sending the data and powering down the
module the ATmega8L returns the power-save mode where it remains until another Timer
2 overflow interrupt occurs.

Two of the most difficult challenges when writing an energy-efficient code for the AT-
mega8L are on the one hand to configure the microcontroller to use as little energy as
possible and on the other hand to configure the nRF24L01+ to send acquired data and
otherwise remain in power-down mode with minimal current draw. Sections 4.1.1.1 and
4.1.1.2 take a deeper look at these challenges. With the help of key code fragments, the
required settings to achieve those tasks will be discussed.

4.1.1.1 Configure ATmega8(L) for power-save mode
A look at the ATmega8(L) datasheet - section Power Management and Sleep Modes

shows that the ATmega8 offers five different sleep modes which can be selected by set-
ting sleep mode corresponding bits in the MCU Control Register [45]. The sleep mode
which is of most interest for this project is called Power-save Mode which is identical to
Power-down, with one exception (see datasheet p.34) [45]: “If Timer/Counter2 is clocked
asynchronously, that is, the AS2 bit in ASSR is set, Timer/Counter2 will run during
sleep. The device can wake up from either Timer Overflow or Output Compare event
from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set
in TIMSK, and the global interrupt enable bit in SREG is set.”

That means it is possible to let the µC sleep most of the time and thereby minimizing
the current draw. Every few seconds (if a Timer 2 overflow interrupt occurs) the µC
wakes up from its sleep and decides if enough time has passed since the last transmission
procedure. If so, new sensor data will be gathered and transmitted to the host (RPi).
Otherwise, the µC will sleep for another time interval.

Lets see how that description from the datasheet translates into C code:

1ASSR |= (1<<AS2) ; //enable asynchron mode − clock timer/counter2 from
crystal o s c i l l a to r connected to the TOSC1 pin

2TCCR2 |= (1<<CS22)|(1<<CS21)|(1<<CS20) ; //set prescaler to 1024
3while ((ASSR & (1<< TCR2UB))) ; //wait for end of access
4TIFR = (1<<TOV2) ; //clear interrupts (∗) datasheet : " Alternatively ,

TOV2 i s cleared by writing a log ic one to the f lag . "
5TIMSK |= (1 << TOIE2) ; //enable timer compare match interrupt − i f

overflow in timer/counter2 occurs −> interrupt
6TCNT2 = 0; // i n i t i a l i z e the timer/counter2 with 0

4 System Implementation 52

To understand that code it is necessary to understand the fundamental concepts of bit
manipulation. Individual bits can be set by using the bitwise OR operator (|) and reset
by using the bitwise AND operator (&) in combination with the bitwise NOT operator
(∼). Bits can be flipped by using the bitwise XOR operator (ˆ). A bit shift can be done
by using the operators ≪ (left shift) and ≫ (right shift).

This knowledge applied to the above included C code shows that in the codes first line
the AS2 bit from the ASSR ASynchronous Status Register is set. Note: The ATmega8
header file #include <avr/io.h> includes definitions for every pin and register bit. It is
defined that AS2 equals 3 and therefore 1≪AS2 equals 1≪3 which means that the bit
0b00001000 is set which corresponds to the AS2 bit (see datasheet).

Now that AS2 is written to 1 Timer/Counter2 is clocked asynchronously from the crys-
tal oscillator connected to the TOSC1/XTAL1/PB6 pin (refer section 4.1.2.2). The next
line of the code sets all of the CS (Clock Select) bits from the TCCR2 (Timer/Counter
Control Register 2). As a result of this the frequency provided by the crystal oscillator is
divided by 1024 which reduces its design frequency from 32 768 Hz to 32 Hz. If another
write is performed to any of the three Timer/Counter2 Registers while the update busy
flag is set (TCR2UB from the ASSR gets set if TCCR2 is written), the value might get
corrupted and an unintentional interrupt can occur. The while loop checks for the bit and
continues only when the busy bit is cleared.

In the next line the Timer/Counter2 Overflow Flag (TOV2) from the TIFR
(Timer/Counter Interrupt Flag Register) is manually cleared by writing a logic one to the
flag. This bit is set when an overflow occurs in Timer/Counter2. After that the Timer/-
Counter2 Overflow Interrupt can be enabled by setting the TOIE2 Timer/Counter2
Overflow Interrupt Enable bit of the TIMSK (Timer/Counter Interrupt Mask Regis-
ter). The timer initialization concludes by setting the start number of the Timer/Counter
Register 2. We want the µC to sleep as long as possible therefore TCNT2 is initialized with
0. The TCNT2 is an 8-bit register offering a counting range from 0 to 255 which divides
the crystal oscillator frequency once more to 32 Hz/256=1/8 Hz. To activate interrupts
globally on the µC one more line of code is necessary - sei(); (Set Enable Interrupts).
Now every 8 seconds an overflow occurs in Timer/Counter 2 which wakes the µC (if the
following settings are made inside the main loop).

1OCR2 = 0; //dummy access
2while ((ASSR & (1<< OCR2UB))) ; //wait for end of access
3
4set_sleep_mode(SLEEP_MODE_PWR_SAVE) ; //set sleep mode power−save
5//sleep_enable () ; //enable sleep mode
6sleep_mode() ; //change into sleep mode
7//sleep_disable () ; // f i r s t thing after waking from sleep :

The first two lines (in the beginning of the main loop) are required if it is not guar-
anteed that the interrupt and main loop take more time than one clock cycle of the

4 System Implementation 53

Timer/Counter 2 (1/32.768 kHz≈ 31µs). Otherwise, the interrupt logic is deactivated
and the µC stays in sleep mode forever. The two other lines setup the sleep mode (power-
save) and switch into it. If a Timer/Counter 2 overflow interrupt occurs, the µC gets
back to the main loop after processing the interrupt service routine, to the next code line
after switching into sleep mode. There sensor data can be gathered, encrypted and send.
Afterwards, all interfaces that are used have to be switched off (eg., SPI, TWI) before
entering the power-save mode, otherwise the microcontroller draws unnecessary current
the next time it wakes up.

Notice: It should not be forgotten to reactivate the modules before they are used
again. Additionally, it is very important to avoid floating inputs as they increase current
consumption. Therefore, it is recommended to enable the internal pull-ups on unused pins.

After processing the last lines of the main loop, it continues from the top where the
µC enters power-save mode.

4.1.1.2 Configure nRF24L01+
First of all to establish a communication between the µC and the nRF24L01+ it is re-

quired to initialize the nRF24L01+ module (see flowchart figure 22 second block). During
the initialization procedure it is defined which pins are used for the chip enable and chip
select signals (wl_module.h), the external Interrupt 0 which is connected to the IRQ of
the nRF24L01+ is initialized and activated (wl_module.c) and the spi module of the µC
is initialized (spi.c).

The used libraries (nRF24L01.h, wl_module.h, spi.h) and C codes (wl_module.c, spi.c)
are slight variations of the files offered by Ernst Buchmann, Stefan Engelke and Brennan
Ball. Some changes had to be made in order to work properly. Most of it is related to
the power_down and power_up procedures as well as the configuration of the maximum
package transmission retries.

After initializing the nRF24L01+, the module has to be configured as transmitter. Call-
ing the function wl_module_tx_config(wl_module_TX_NR_0); configures the module
i.a. with its default transmission address 0xE7E7E7E7E7 (see nRF24L01+ datasheet [27]).
The function also does power_up the module and sets the correct RF channel (defined in
wl_module.h) frequency (has to match which the receiving nRF24L01+ connected to the
Arduino). Additionally, the RF output power (0dBm), a data rate of 250 Kbps and other
interrupt IRQ, CRC and transmission retry related settings are configured. The corre-
sponding register mapping table which is used for configuring the nRF24L01+ registers
is located in the nRF24L01.h file.

A transmission procedure is initiated by calling the wl_module_power_up(); function
which as the name suggests does power_up the nRF24L01+. Important note: It is
required to draw the CE pin to logic high for the radio to enter Standby-I state, different
to the procedure given in section 3.2.4.1 and stated in the datasheet [27]. Just setting the
PWR_UP bit in the CONFIG register is not enough to power_up.

4 System Implementation 54

Calling the wl_module_send(tmpOutput,wl_module_PAYLOAD); function (tm-
pOutput holds the encrypted payload and wl_module_PAYLOAD holds the payload size)
transmits the data to the receiving nRF24L01+ module. Incoming interrupts coming from
the IRQ pin of the nRF24L01+ are handled by the ISR (interrupt service routine) bound
to the INT0_vect interrupt 0 vector which is located in the nRF24L01main.c file.

The data transmission is concluded by calling the wl_module_power_down(); func-
tion returning from the Standby-I state to the Power Down state.

For the AES encryption the functions aes_expandKey(); and
aes_encryptWithExpandedKey(); were used. These functions are defined in the aes.c,
aes.h, aes_asm.S files written by Berthold Van den Bergh (Karl Malbrain) and were left
unchanged.

4 System Implementation 55

4.1.2 Prototype Board

The prototype board is used to test the code written for the ATmega8L. At first a bread-
board was used to check the functionality of the software but unfortunately the reliability
of a breadboard is quite bad and caused many headaches. After switching to a stripboard
and connecting the electrical components through a wiring pencil and soldering, most
of the problems were solved. Figure 23 shows the circuit design of the stripboard. The

Figure 23: Prototype board

complete schematic is found in the appendix (7.1). The circuit design consists of several
different function blocks which can be simplified and structured as shown in figure 24.

4 System Implementation 56

Figure 24: Prototype board - schematic

4.1.2.1 Power supply
Two 3 V button cells of the type CR2032 power the prototype board. A SB160 Schottky

diode is used to offer reverse polarity protection for the subsequent circuit. According to
the datasheet the SB160 has a forward voltage of 0.3 V at 25 ◦C junction temperature
and 10 mA forward current [48]. This guarantees longer operational time in comparison
to a silicon diode with a forward voltage of approximately 0.7 V.

Following the SB160 a MCP1702-3302E CMOS Low DropOut (LDO) voltage regulator
is used to offer a constant power supply of 3.3 V. Two buffer capacitors stabilize the signals
as shown in the application circuit offered in the datasheet [49]. The MCP1702 offers a
low dropout voltage of under 1 V, a quiescent current (typical) of only 2 µA and an input
operating voltage range of up to 13.2 V. It is therefore possible to connect a power supply
different to the 2xCR2032 as long as the voltage is under 13.2 V and above approximately
4.5 V.

4.1.2.2 Asynchronous clock
To reduce power consumption the ATmega8L remains in power-save mode (refer section

4.1.1) most of the time, where only its timer/counter 2 will run during sleep. An external
watch crystal connected to the ATmega8L pins PB6/XTAL1 and PB7/XTAL2 offers
the required clock pulses for operating timer/counter 2. Typical watch crystals offer a
frequency of 32 768 Hz (allows for simple 2-bit calculations e.g., division by the 10-bit
prescaler (1024 steps) leads to 32 Hz), small dimensions, high accuracy and low power
consumption.

The watch crystal needs two additional load capacitors with a capacitance of about
12.5 pF in order to oscillate. In this regard microchip released informative applications

4 System Implementation 57

notes [50]. For the prototype board two 22 pF capacitors were used which performed well
enough for given purpose.

To calculate the accuracy of the external oscillator it is important to know the accuracy
of a watch crystal/RTC (Real Time Clock). A typical RTC has an error of about 20 ppm
(2 ∗ 10−5) which gives an error of 86400 * 2 ∗ 10−5 = 1.73 s over a day. In a month the
time deviation adds up to 30*1.72 = 51 seconds or about 1 minute a month which is
completely fine for given purpose.

4.1.2.3 Buffer capacitors
It is recommended to place capacitors in short distance to the power supply of every chip.
The capacitors supply the ICs if short peak current is drawn from the supply and the
chemical reaction of the connected battery is too slow to follow the fast peak current draw.
Typical values of such buffer capacitors are 100 nF and therefore they were included in the
circuit design. In addition to the 100 nF capacitors a 100 µF (x1000 capacity) electrolytic
capacitor is placed in short distance to the nRF24L01+ offering enough reserves during
the transmission procedure where the current draw can reach up to 20 mA.

4.1.2.4 ADC
To test the internal ADC (Analog Digital Converter) of the ATmega8L (for more details
about the implementation refer to section 4.2.2) a switchable (on/off) voltage divider was
implemented on the prototype board. A PNP transistor (BC556) is used to switch on the
power supply for the voltage divider during every AD conversion.

Drawing the ATmega8L pin PC3 to logic “0” allows a basis current to flow through
the basis resistor RV which causes the current to flow through the collector supplying
the voltage divider trimmer RT1. A part of the voltage (depending on the position of the
sliding contact of the trimmer (pin 1/2)) is guided to the pin PC2 (ADC2) followed by
an AD conversion. The remaining voltage drops between pin 2/3. An AD conversion is
concluded by drawing the pin PC3 to logic “1” to stop current from flowing through the
transistor respectively trimmer and drawing unnecessary current.

4.1.2.5 ATmega8L, nRF24L01+, Debug LED, BMP180
Core element of the prototype board is the ATmega8L microcontroller. A ZIF Zero
Insertion Force socket holds the ATmega8L in place and allows for easy code testing
and debugging.

The nRF24L01+ is directly connected to the power supply and the SPI interface of
the microcontroller. The IRQ (Interrupt ReQuest) pin is connected to the ATmega8L
pin PD2 (INT0), the CE (Chip Enable) to PB0 and CSN (Chip Select Not) to PB1. For
easy plug-in functionality the nRF24L01+ is connected through a two row 4 pin (2x4)
female pin header.

A debug LED is connected to pin PC1 for simple debugging purposes. It is not used in
the final software but it can be used to indicate if the transmitter works as expected by

4 System Implementation 58

flashing the LED every few seconds/minutes. Note that every flashing draws unnecessary
current and therefore reducing battery life.

The BMP180 is a simple digital pressure sensor from BOSCH which will be used in
the programming example described in section 4.2.1. It offers an I2C interface for easy
system integration with a microcontroller. As described in section 2.3.3.5 I2C uses open-
collector lines which need to be pulled up with external resistors to the supply voltage.
Therefore, the Data (SDI) and the Clock (SCK) lines are pulled up to the 3.3 V power
supply through 10 KΩ resistors.

4.1.2.6 Calculate power consumption
To estimate the total power consumption of the prototype board, two different scenarios

have to be measured. First one is the normal case, which refers to the consumption most
of the time (ATmega8L in power-save - no data transmission). The current consumption
during this mode was measured as 11 µA.

Second one is the transmission case (the ATmega8L is active, reads sensor data and the
nRF24L01+ transmits the collected data). To measure and therefore estimate the typical
power consumption of the prototype board during data acquisition and transmission a 5.6
Ω shunt was placed in between the power supply (2xCR2032) and the power input of the
board (see schematic 7.1 - J1 (bottom right)). The voltage drop through the resistor was
measured with a RIGOL DS1054 50MHz oscilloscope. Figure 25 shows the measured
signal on the shunt. One can see that over 20 voltage peaks extend over a span of 53.2 ms

Figure 25: Measurement current consumption prototype board

with a maximum amplitude of 37.6 mV. A closer look into each peak offers figure 26 with
a time resolution of 1 ms per division. Each peak has a width of approximately 500 µs

4 System Implementation 59

Figure 26: Measurement current consumption prototype board - zoomed in

and repeats every 2.38 ms. Its shape resembles the shape of a rectangular function passed
through a low pass filter.

For a worst-case estimation of the total power consumption during transmission it is
reasonable to make following simplifications:

• each peak is a rectangle

• each peak has a height of 37.6 mV

• the 5.6 Ω shunt has a real resistance of 5.6 Ω - 5% tolerance = 5.32 Ω

Due to Ohm’s law U=R*I the peak current can be calculated as:

I = U

R
= 37.6mV

5.32Ω = 7, 07mA ≈ 7mA .

Multiplied with the peak width and peak count results in an electric charge of:

Qtransmit = n ∗ I ∗ t = 20 ∗ 7mA ∗ 0.5ms = 70µAs .

Comparison to the measured current consumption during power-save mode of 11 µA shows
that transmission and standby consumption are of same magnitude if a transmission
occurs every few seconds. If the transmission interval is increased to e.g., 15 min the
influence of the transmission procedure decreases significantly to

100 ∗ Qtransmit

Qstandby
= 100 ∗ 70µAs

15 ∗ 60 ∗ 11µAs
≈ 0.7%,

4 System Implementation 60

and therefore, the battery life can be calculated by only considering the standby current
consumption.

It is possible to power the prototype board with two CR2032 coin cells as specified
in section 4.1.2.1. A typical CR2032 battery has a rated capacity of 210 to 240 mAh
but it is possible that coin cells of “No name” vendors offer only about 50% of the rated
capacity [51]. Let’s assume that the coin cell has a capacity Qbat of 200 mAh. The current
consumption over a day adds up to:

Qday = 11µA ∗ 24h = 264µAh .

Therefore, the battery life can be calculated as follows:

tx = Qbat

Qday
= 200mAh

264µAh
= 758d .

The self-discharge rate of coin cells is 1% of capacity loss per year at 20◦C.
To sum up it can be said that a typical battery life of about 2 years can be expected

using a similar setup as described in this thesis.

4 System Implementation 61

4.1.3 Arduino

On the receiving side the nRF24L01+ is connected to the Arduino via an adapter board
as shown in figure 27 and 28. The adapter board is widely available on the internet and

Figure 27: Circuit design of the Arduino receiving unit

offers easy connection of nRF24L01+ modules to breadboards e.g., Arduino, input voltage
ranges from 4.8 V to 12 V and stable operation due to additional capacitors. However,
it is possible to connect the transceiver module directly to Arduino breadboard by using
the 3.3 V power supply instead (nRF24L01+ is only 1.8 to 3.3 V tolerable) but it is
recommended to place an additional capacitor (≈ 100µF) parallel to the power supply.
The SPI input pins of the nRF24L01+ are 5 V tolerable but a generally a saver approach
is to use the adapter circuit.

Figure 28 shows the wiring diagram of the Arduino receiving unit connecting the
Arduino to the adapter board. The nRF24L01+ is plugged into the neighboring 2x4 pin
female header as shown in figure 27.

Figure 29 shows the flowchart of the Arduino code used for receiving incoming data
by the transceiver module, decrypt its data and transmit it via UART (USB) to the
processing unit - the RPi. The full Arduino main code including comments is provided in
the appendix (7.2).

4 System Implementation 62

Figure 28: Wiring diagram of the Arduino unit

Figure 29: Arduino code flowchart

4 System Implementation 63

4.1.4 Raspberry Pi

The RPi serves many functions as shown in figure 30 and discussed in section 4.1.

Database

Webserver

RPi

UserPC

AdminPC

Figure 30: RPi system structure and used programming languages

Its scope can be divided into three different key tasks:

1. Store incoming data (from the Arduino) into a database

2. Check data and alert user if a problem occurred

3. Offer access to the database through a web interface provided by a webserver

To fulfill each of these tasks it is recommended to choose suitable programming lan-
guages. The chosen languages and their intended purpose will be described in the follow-
ing.

Database
For reading and storing incoming data the script language Python was chosen. Python
is a general-purpose, high-level programming language which is due to its simplicity
and high popularity a great fit for given purpose. To store and manage the data the
database engine SQLite was chosen. SQLite is the most popular database engine of
the world which makes it an ideal choice for this project.

Check & alert
To check the incoming data for errors or problems and give the user updates about
the automation system it makes sense to follow the same approach and let a Python
script (in combination with SQLite code) check the data. To alert the user an email
will be sent which uses a SMTP (Simple Mail Transfer Protocol) client called msmtp.

Web interface
The web interface is used to display the data stored in the database and con-

4 System Implementation 64

trol (start/stop) the Python scripts. The standard markup language for docu-
ments designed to be displayed in a web browser is HTML (HyperText Markup
Language). Other languages like PHP (stands for the recursive initialism PHP:
Hypertext Preprocessor), CSS (Cascading Style Sheets) and the scripting language
JS (JavaScript) are core technologies of the World Wide Web and were used in
combination with HTML for the web interface.

PHP code fragments can be embedded in HTML by using the tag:

<?php
// PHP code goes here

?> .

PHP is used in combination with SQLite to access the database and display its data,
as well as controlling (start/stop) the Python scripts.

CSS is used to design the website, change its layout, color, fonts, table design,
button design and much more. It is introduced in HTML by using the tag:

<style>
<!−− CSS code goes here −−>

</style>.

JS defines the webpage behavior on the client side. It is used for automatic refreshing
of the webpage, dynamic coloring of the control buttons and displaying the database
data through a graph. It is introduced in HTML by using the tag:

<script>
<!−− JS code goes here −−>

</script>.

The first steps for commissioning the RPi were already discussed in section 3.2.1.1, now
it is important to install and setup required software (section 4.1.4.1), that the provided
code in the appendix (7.2) can be run on the RPi.

4 System Implementation 65

4.1.4.1 Installations and settings

Install scheduler
Schedule is a Python library that is used for scheduling periodic jobs like updating
the user via email every 24h about the current automation system status or alerting
the user every 30min about an error. The package installer for Python - pip is used
for installing the library.

$ sudo pip in s t a l l schedule

Setup USB permissions
The Python script which is used for reading and storing incoming data is controlled
by the web interface. It is therefore required to add the Apache user to the dialout
group so that if the script which is run by Apache, can access the USB device and
open a serial communication.

$ sudo usermod −a −G dialout www−data

After restarting the RPi the user www-data should be member of the dialout group.

Python permissions
To start Python script through PHP it is required to add following shebang line at
the beginning of the Python script.

#!/ usr/bin/python3 .7

The shebang line determines the script’s ability to be executed like a standalone
executable. In addition, the file needs to have correct permissions i.e., the file needs
to be executable.

$ sudo chmod +x myscript .py

Setup mail client msmtp
To send an email the SMTP client msmtp needs to be installed.

$ sudo apt i n s t a l l bsd−mailx msmtp msmtp−mta

This command should i.a. create a file called msmtprc in /etc/. If it does not exist
it has to be created with following content:

#Set defaul t values for a l l accounts .
defaults
auth on
t l s on
t l s_start t l s on
tls_trust_fi le /etc/ s s l /certs/ca−ce r t i f i c a t e s . crt
l o g f i l e /var/log/msmtp. log

4 System Implementation 66

#Gmail se t t ings
account gmail
host smtp . gmail .com
port 587
from name@gmail .com
user name
password XXXXXX

#Set a defaul t account
account default : gmail

In this example the email provider Gmail was used, but it is possible to use a different
email provider. Notice: Gmail requires an app password to log into the account which
has to be generated in the Google Account Settings → Security → App passwords.
Next it is recommended to secure this file, as there is a clear text password in it.

$ sudo chown root :msmtp /etc/msmtprc
$ sudo chmod 640 /etc/msmtprc

Finally, a logfile has to be created otherwise msmtp throws an error message.

$ sudo touch /var/log/msmtp
$ sudo chown msmtp:msmtp /var/log/msmtp
$ sudo chmod 660 /var/log/msmtp

Password protect website
To save webpage access from improper usage it is recommended to password protect
the website. A .htaccess file tells the web server what folder you want to protect
and what username/password file to use. The webserver folders are generally located
in /var/www/html so it is recommended to put the .htaccess file in there (/var/
www/html/.htaccess). Following content should be written to the .htaccess file.

AuthUserFile /home/pi/Documents/.htpasswd
AuthType Basic
AuthName "My␣restr i cted␣Area"
Require valid−user
ErrorDocument 404 /404.html

The specification of an ErrorDocument is optional but it is recommended to catch
further problems.
The line AuthUserFile specifies the location of the password file which should be
saved locally on the RPi in a folder which is not fetchable through the webserver
with a browser (e.g., /home/pi/Documents/.htpasswd). The password file can be
created by typing following command:

4 System Implementation 67

$ htpasswd −c −B /home/pi/Documents/.htpasswd pi

which is followed by two prompts asking for the password you want to set.

$ New password :
$ Re−type new password :

Lastly it is required to change following line in /etc/apache2/apache2.conf from:

<Directory /var/www/>
Options Indexes FollowSymLinks
AllowOverride None
Require a l l granted

</Directory>

to:

<Directory /var/www/>
Options Indexes FollowSymLinks
AllowOverride All
Require a l l granted

</Directory>

and enable module rewrite. After restarting the server, the webpage access is limited
to users who know the defined username and password (see figure 31).

$ sudo a2enmod rewrite
$ sudo service apache2 restart

Figure 31: Website requires username and password

4 System Implementation 68

Setup shutdown trough web interface
If it is desired to shut down the RPi there is typical one approach. Connect to the
RPi through SSH and type in:

$ sudo shutdown −h now .

This is quite cumbersome and slow. To make things easier a shutdown button is
provided by the web interface (refer to the sidebar figure 34) which allows every user
knowing the website password to shut down the RPi. To make sure that PHP and
respectively the webserver is able to use the shutdown command it is required to set
the SUID-Bit (also setuid, Set User ID) of the shutdown command. The shutdown
command was located in /usr/sbin/shutdown for a long time but was moved during
writing of this thesis to /bin/systemctl.

$ sudo chmod +s /bin/systemctl

Note: When the setuid or setgid attributes are set on an executable file, then any
users able to execute the file will automatically execute the file with the privileges of
the file’s owner (commonly root) and/or the file’s group, depending upon the flags
set.

4 System Implementation 69

4.1.4.2 Database

Initialization
Before storing data into a database, the database and its table layout has to be ini-
tialized. The python script initialize_DB_Tables.py does just that by creating a
database file called IoT.db containing the table ATMEGA8_Data. The table con-
tains five columns: id (number of current entry), Date (date of entry), Temperature
(Temperature readings of BMP180), Pressure (Pressure readings of BMP180), AD-
CValue (ADC2 input reading). The table entries correspond to data gathered and
transferred by the ATmega8L and need to be customized for specific applications.

It is possible to create the database file on the admin PC (if a python interpreter
is installed) and transfer it with winSCP to the RPi or simply enter in the SSH
terminal following command (if file located in the same folder):

$ python3 initialize_DB_Tables .py

Read and store data
For reading incoming data and storing it in the before created database IoT.db the
python script saveTest.py is being used. Figure 32 shows a simplified flowchart
of saveTest.py. The reading and storing procedure will be described in detail in
section 4.2.1.4, as the code is adapted to the examples given in section 4.2.1 and
4.2.2. The script starts by defining and calling the function get_lock(). This

Figure 32: saveTest.py flowchart

function checks if an instance of the python script is already open and denies opening

4 System Implementation 70

a second one. Only one saveTest.py script can be active at a time and store data
into the database. After that it is checked if the Arduino is in the connected
USB devices. If not, an exception is raised and the script is terminated. Otherwise
a connection to the database as well as a serial connection to the Arduino
is established. An infinite while loop reads incoming data and stores it in the
format provided by the initialize_DB_Tables.py file. The same condition applies
to the code inside the while loop as for the table initialization file: The table en-
tries correspond to data gathered and transferred by the ATmega8L and need to be
customized for its application.

Unlike the initialization script, saveTest.py can be started through the web interface
as shown in figure 37.

Check & alert
The python script checkdaily.py gives the user daily updates about the automation
system and checks current database data for problems and alerts the user through
email. Figure 33 shows a simplified flowchart of checkdaily.py. The functions dai-

Figure 33: checkdaily.py flowchart

lyjob() and alert() can be customized. They are described in section 4.2.1.4 as the
code is adapted to the examples given in section 4.2.1 and 4.2.2.

The script starts by calling the above mentioned get_lock function. After that the
SMTP server is configured as well as the login data defined. The class Emailer
holds the method sendmail which creates the email header, connects and log-ins to
the mail server and sends the mail. Then the scheduler functions dailyjob() and

4 System Implementation 71

alert() are defined. The code is concluded by setting up a scheduler timing (how
often are the functions called) and running the scheduler every 60 seconds.

4 System Implementation 72

4.1.4.3 Website
The webserver folders are located in /var/www/html. Entering the IP address of the

server in this case 10.0.0.2 into any browser within the local network opens the start
page /var/www/html/index.html (see figure 34) after entering the correct username and
password (see figure 31). The IP address of the server is the same as used when opening a
SSH connection through PuTTY. It can be gathered by checking the routers list for the
RPi’s address or by entering in the RPi’s terminal:

$ i f con f i g

and reading the IP address right beside the label inet.

Home
The start page gives a short introduction about the different features the website
offers (see figure 34). On the left side is a sidebar menu located which redirects the
user to predefined websites after “clicking” on the corresponding name. Home redi-
rects to the start page HTML file /var/www/html/index.html. Every HTML document

Figure 34: Startpage after logging in

follows the same structure.

1. Document declaration on top of the document specifying the Document Type
Definition (DTD)

2. HTML-header which holds technical or other document related information - it
contains not visible page content.

3. HTML-body which holds visible page content

A typical HTML document example is given in the following.

<!DOCTYPE html>
<html>
<head>
<t i t l e>Website t i t l e</ t i t l e>
<meta content=" text/html ; ␣charset=ISO−8859−1" http−equiv=" content−

type ">

4 System Implementation 73

<!−− other header informations −−>
<link re l=" stylesheet " type=" text/css " href="/ style/dropdown. css ">

</head>
<body>
<!−− Load an icon l ibrary −−>
<!−− arrow −−>
<link re l=" stylesheet " href=" https :// cdnjs . c loudf lare .com/ajax/ l ib s /

font−awesome/4.7.0/ css/font−awesome.min . css ">
<!−− The sidebar −−
<?php include ’php/sidebar .php ’ ; ?>
<p>Visible content</p>

</body>
<scr ipt src=" j s /dropdown. j s "></scr ipt>

</html>

The index.html file is similar in structure, adding only a few body entries and a
second script printing current time and date. The sidebar menu is outsourced to a PHP
file as it is visible on every site. Outsourcing has the advantage that the outsourced
code can be integrated to the website similar to a function call. The file needs to be
located in /var/www/html/php/sidebar.php and is embedded by using the tag:

<?php include ’php/sidebar .php ’ ; ?>

The corresponding CSS code needs to be placed in /var/www/html/style/dropdown.
css and is integrated through the following line:

<link rel=" stylesheet " type=" text/css " href="/style/dropdown. css ">

Lastly the corresponding JS code needs to be placed in /var/www/html/js/
dropdown.js and is integrated through:

<script src=" j s /dropdown. j s "></script>

In the sidebar.php file the location of the HTML documents to which the sidebar
menu entries redirect, are specified.

4 System Implementation 74

Clients
By “clicking” on the sidebar menu Clients the HTML document /var/www/html/
clients.html opens (see figure 35). There are two similar rows visible. One for

Figure 35: Sidebar menu Clients

controlling (start/stop) the ATmega8L Data gathering script and showing the
latest data entry. The second one for controlling the Status Updates script.

ATmega8L Data
To start/stop a Python script through HTML the user needs an interface to interact
with the website. For this problem HTML offers a form and buttons which can be
integrated through following code fragment.

<form action=" " method=" post ">
<input type="submit " name=" start1 " id=" start1 " value=" start " />
<input type="submit " name=" stop1 " id=" stop1 " value=" stop " />

</form>

The form uses the method “post”. To collect form data after submitting an HTML
form the variable $_POST in PHP is used. Following code, which is a fragment
of the first few lines of the /var/www/html/clients.html code shows that the
PHP script checks if the “start1” button was “clicked” and if that statement is
true starts the Python script.

<?php
i f (i s s e t ($_POST[’ start1 ’]))
{

$mystring = exec (’/home/pi/code/saveTest .py␣>␣/dev/null␣2>&1␣&’) ;
sleep (5) ;
exec (’pgrep␣saveTest .py ’ , $output) ;
i f ($output)
{

echo ’<script>alert (" Successful ly␣connected ! ")</script>’ ;
}
e l se
{
echo ’<script>alert ("Can␣not␣connect␣to␣Arduino␣−>␣Please␣check␣

connection ")</script>’ ;
}

4 System Implementation 75

}
i f (i s s e t ($_POST[’ stop1 ’])){
exec (" sudo␣ pk i l l ␣saveTest ") ;

}
?>

The exec() function is used to execute an external program in this case the
Python script that is located in home/pi/code/saveTest.py. On the right side
of the file name are a few statements which are described in the following.
1. >: redirect output
2. /dev/null: special file used for disposing unwanted output streams
3. 2>&1: merge output from stream 2 with stream 1 - stderr merge with stdout

and dispose output
4. &: run Python script in background

After 5 seconds (function sleep(5)) it is checked whether the connection was suc-
cessful. Therefore the command exec(’pgrep saveTest.py’, $output) checks
if a python script with the name saveTest.py is running (returns a value if
running - otherwise not). If the script is still running an alert pops up with the
message “Successfully connected!” otherwise the alert shown in figure 36. The

Figure 36: Error massage Arduino

script can be stopped by “clicking” on the “stop1” button which executes the
command ‘sudo pkill saveTest’ killing the process with the name saveTest.
For the button coloring based on “clicking” the start or stop button a JS script
is used (/var/www/html/clients.html lines 180 to 226). The button “stop” is
colored red if the script is stopped, the button “start” is colored green if the script
is running (see figure 37). If the connection to the Arduino was not successful

Figure 37: ADC Sensor Data - Python script started

the user needs to “click” on the “stop” button otherwise the colors do not match
the current status.

4 System Implementation 76

A PHP script is used to access the data from the SQLite3 database (/var/www/
html/clients.html lines 137 to 156) and print the latest entry as table content.

Status Updates
The Status Updates row controls the script located in home/pi/code/
checkdaily.py using the same approach as described section 4.1.4.3 AT-
mega8L Data.

Logs
“Clicking” on the sidebar menu Logs opens a dropdown menu with one entry Log1
which redirects to the HTML document /var/www/html/log1.html. The dropdown
menu is not required since there is only one table dataset to print. However, if more
than one ATmega8L transmits data the website can be easily expanded by adding
another entry in the division class container dropdown-container in the /var/
www/html/php/sidebar.php file. Figure 38 shows the website opened by “clicking”
Log1 and Data history - Table. The HTML code is similar to the code used in

Figure 38: Sidebar menu Logs - Table

/var/www/html/clients.html except that in this case the complete database entry
is plotted. Another “click” on Data history -Table hides the table.

“Clicking” on Data history - Graph opens the graph as shown in figure 39. It is
possible to zoom-in and -out the graph by aiming the mouse at the area of interest
and using the mouse wheel. The zoom can be reset by “clicking” the button “Reset
Zoom” which is located beneath Data history - Graph. Furthermore “clicking”
on the names of the graph entries (temperature [◦C], pressure [Pa], ADCValue) lo-
cated above the line-chart lets the user hide/show entries in the graph. The diagram
automatically adjusts its borders to fit the new value range.

4 System Implementation 77

Figure 39: Sidebar menu Logs - Graph

For the creation of this chart the JS library Chart.js is used (see /var/www/html/
log1.html lines 97 to 99). To control the zoom the Chart.js plugin chartjs-plugin-
zoom is used (see /var/www/html/log1.html lines 105 to 107). Refer to /var/www/
html/log1.html - lines 109 to 157 for the JS code used to create the graph.

Restart
“Clicking” on the sidebar menu Restart redirects the user to the PHP script lo-
cated in /var/www/html/php/restart.php where the script executes the command
exec("/sbin/shutdown -r now"); which restarts the RPi if the manual given
in section 4.1.4.1 - Setup shutdown trough web interface has been followed.
/var/www/html/php/restart.html

Shutdown
“Clicking” on the sidebar menu Shutdown redirects the user to the PHP script lo-
cated in /var/www/html/php/shutdown.php where the script executes the command
exec("/sbin/shutdown -h now"); which shuts down the RPi if the manual given
in section 4.1.4.1 - Setup shutdown trough web interface has been followed.

4 System Implementation 78

4.2 Step by step instruction for different sensors

4.2.1 Example: Temperature/Pressure Measurement

Figure 40 shows the system structure of the temperature/pressure measurement example.
The setup is almost identical to the setup described in section 4.1 with the difference that

Figure 40: System structure of the Temperature/Pressure Measurement Example

the sensor used is specified (BMP180). In the following the implementation of the sensor
will be discussed, what code changes are made to gather, transmit, store and print the
sensor data. The hardware - how to connect the sensor to the prototype board is discussed
in section 4.1.2 (see figure 24).

4.2.1.1 Temperature/Pressure Sensor
The BMP180 is an ultra-low power, low-voltage digital pressure sensor used for con-
sumer applications. It is based on piezo- resistive technology for EMC (ElectroMagnetic
Compatibility) robustness, high accuracy and linearity as well as long term stability. In
the following key features of the BMP180 are listed from the datasheet.

• Pressure range: 300 ... 1100 hPa (+9000 m ... -500 m relating to sea level)
• Supply voltage: 1.8 ... 3.6 V (VDD)
• Package: LGA package with metal lid - 3.6 mm x 3.8 mm x 0.93 mm height
• Low power: 5µA at 1 sample / sec. in standard mode
• Low noise (ULPM): 0.06 hPa (0.5 m) in ultra low power mode
• Low noise (ARM): 0.02 hPa (0.17 m) in advanced resolution mode

4 System Implementation 79

- Temperature measurement included
- I2C interface
- Fully calibrated

Typical applications include enhancement of GPS navigation, in- and out-door navigation,
weather forecast and vertical velocity indication.

4.2.1.2 Microcontroller - ATmega8L
The manual given in section 4.1.1 holds true for every sensor connected to the ATmega8L.
The only difference is, that the point Get sensor/adc data or create dummy data
of the flow chart as seen in figure 22 gets specified and will be discussed in the following
(nRF24L01BmpAdc.c combines the codes used in example 1 and 2).

To communicate with the sensor the I2C/TWI protocol is used which uses the library
provided by Peter Fleury i2chw/twimaster.c, i2cmaster.h. For pressure and temperature
readings of the BMP180 the library bmp085/bmp085.c, bmp085.h provided by Davide
Gironi is used. BMP085 is a function compatible predecessor of the BMP180. It is therefore
possible to use code written for the BMP085 and use it to communicate with the BMP180.

The datasheet of the BMP180 by BOSCH specifies a flow chart (page 15) on
how to calculate pressure and temperature for the BMP180. The functions given in
bmp085/bmp085.c use exactly this flow chart to calculate the pressure and tempera-
ture which can be read by calling the functions bmp085_gettemperature(); (returns a
double value) and bmp085_getpressure(); (returns a long value).

To store the data readings of the BMP180 on the ATmega8L for further processing
(i.g. encryption, transmission), variables have to be declared. For this purpose, the special
data type union is used that allows to store different data types in the same memory
location. In C code this translates as shown in the following.

1union Temp
2{
3double dtemp;
4uint8_t itemp [4] ;
5}temp;
6
7union Press
8{
9long lpress ;
10uint8_t ipress [4] ;
11}press ;

A double value for the temperature (dtemp) and a long value for the pressure (lpress)
is used. The memory can also be accessed by using the uint8_t array datatype (itemp[],
ipress[]), which splits the respective memory locations in four bytes. For initializing the
payload with the BMP180 readings this is the matching datatype as the payload is also

4 System Implementation 80

stored in 16 uint8_t bytes. Following code shows the function calls for temperature and
pressure reading and the payload initialization procedure which are performed every time
the ATmega8L wakes up.

1temp.dtemp = bmp085_gettemperature() ; // [degC]
2press . lpress = bmp085_getpressure () ; // [Pa]

1for (uint8_t i =0; i <4; ++i) //payload data 1:4 represents temperature
/ 4=MSB : l i t t l e −endian

2{
3payload [i+1]=temp. itemp [i] ;
4}
5for (uint8_t i =0; i <4; ++i) //payload data 5:8 represents pressure /

8=MSB : l i t t l e −endian
6{
7payload [i+5]=press . ipress [i] ;
8}

The payload byte 0 is used to count how many packages were sent since start-up (Notice:
Resets at 250, continues with 0). It is possible to use the use payload byte 0 to indicate
which nRF24L01+ wants to transmit data (see section 4.2.1.3). The payload bytes 1 to 4
are used to store the temperature in the integer little-endian notation. Little-endian means
that the Most Significant Byte (MSB) is stored in the highest memory address (in this
case payload[4]). Payloads bytes 5 to 8 are used to store the pressure in the same integer
little-endian notation (MSB=payload[8]). On the receiving RPi the payload bytes have
to be identified and reformatted to resemble the original values. This procedure will be
described in section 4.2.1.4. Afterwards the 16 byte payload is encrypted with the aes
library as seen in the flow chart figure 22 followed by the standard transmission procedure.

To use the BMP180 it is necessary to initialize/calibrate the sensor and the I2C inter-
face. The function bmp085_init(); which is called before the main loop does just that by
calling the i2c_init(); function and calibrating the sensor.

4 System Implementation 81

4.2.1.3 Arduino
The Arduino code (see section 4.1.3) does not change as the Arduino is only used as a

gateway to collect, decrypt and redirect the payload to the RPi independent of its content.
Notice: If more than one nRF24L01+ module is used to gather and transmit data the

code for the Arduino has to be adapted.
There are multiple possibilities on how to implement such a system, in the following

two of the most common will be discussed.

Pipe address
The nRF24L01+ offers the so-called MultiCeiverTM feature as described in the
nRF24L01+ datasheet on page 37 to 39 [27]. Up to six parallel data pipes with
unique addresses can be received by one nRF24L01+ configured as a receiver on one
frequency channel. Pipe 0 has a unique 5-byte address, pipe 1-5 share the four most
significant address bytes. It is possible to change pipe 1 to a desired value, but the
LSB must be unique for all six pipes.

In the examples given in this thesis only the pipe 0 is used with its default value
of 0xE7E7E7E7E7. If multiple nRF24L01+ transmit data on different pipes on the
same frequency channel it is required to open more than one reading pipe on the Ar-
duino by using multiple statements of the method radio.openReadingPipe(X, value);
where X represents the pipe (0 to 5) and value the pipe address. The method ra-
dio.available(&pip); is used to check if a nRF24L01+ wants to transmit data where
the arguments holds the pipe number of the active radio. A simple if statement
checking for the pip number is sufficient to find out which nRF24L01+ in the system
wants to send data.

Changing the pipe address on the ATmega8L is more complex. The function
wl_module_tx_config(wl_module_TX_NR_0); configures the module with its
default (pipe 0) value 0xE7E7E7E7E7. To change the pipe it is possible to
alter the argument to another predefined value (see wl_module.h) or setup
another TX pipe address (tx_addr[]) in the switch case statement in the
wl_module_tx_config(uint8_t tx_nr); function defined in wl_module.c.

Create individual header
A much simpler approach is to use the payload 0 byte to represent the transmit-
ter. For example transmitter 1 has a fixed value of 42 stored in payload[0] and
transmitter 2 the fixed value of 83 in payload[0]. The Arduino checks for the first
payload byte it receives and processes the data accordingly (Serial.println(“Receive
from sensor1”); or Serial.println(“Receive from sensor2”);) to inform the RPi which
database table it should use.

4 System Implementation 82

4.2.1.4 Raspberry Pi
An introduction to the basic operation of the python script used for data storage (Read

and store data) and email alerts Check & alert are given in section 4.1.4.2 (see
flowchart figure 32 and 33). In the following it will be discussed how data storage works
adjusted to the data provided by the ATmega8L (saveTest.py) and what the code ex-
ample given by checkdaily.py does and how it can be customized. Additionally, it will
be discussed how to adjust the website if different data is provided.

saveTest.py
As in section 4.2.1.2 discussed the data gathered from the BMP180 sensor is provided
in the datatype double for the temperature and long for the pressure. The data is
then split into individual bytes (uint8_t) and sent in little-endian notation to the
RPi. On the receiving RPi the data is read (function s.readline();) cast to the integer
datatype and stored in individual lists (temp, press) as seen in the code below.

1s . readline () . r s t r ip () #f i r s t byte represents packetnumber
2for x in range (4) :
3temp. append(int (s . readline () . s t r ip (b ’\r\n ’)))
4for x in range (4) :
5press . append(int (s . readline () . r s t r ip ()))

To identify the bytes stored in the lists as the data format which had been origi-
nally defined, the function struct.unpack(); from the library struct is used. The first
argument defines the byte order and the datatype. For example, ‘<f’ stands for little-
endian float (4 byte) and ‘<l’ stands for little-endian long (4 byte). Applied to the
result of this function is the map() and afterwards the join() function. The map()
function converts the resulting tuple into a string and the join() function joins the
tuple into one string which can be stored in the database.

1tuple = (datestamp ,
2’ ’ . jo in (map(str , (struct . unpack(’<f ’ , bytearray (temp))))) ,
3’ ’ . jo in (map(str , (struct . unpack(’<l ’ , bytearray (press))))) ,

checkdaily.py
The checkdaily.py code runs the alert() schedule function every minute. The alert()
function access the database and reads the last temperature entry. The temperature
is compared to a predetermined value (in that case 21) and if the last temperature
table entry exceeds the predetermined value an email is sent to the specified email
address. This is just an example on how to program such a scheduler and the function
can be customized to specific preferences.
The dailyjob() schedule function runs once a day (in this case every day at 06:00).
This function sends an email to the specified email address containing the last tem-
perature entry.
How often the scheduler should run can be set as seen in the code below.

4 System Implementation 83

1schedule . every () . day . at (" 06:00 ") . do(dailyjob , ’ It ␣ i s ␣06:00 ’) #change
time according to your preferences for daily updates

2schedule . every (1) . minutes . do(a lert) #change time according to your
preferences for a le r t s

Website
To adjust the website for different database entries each file accessing the database
has to be modified (clients.html,log1.html). The table entries of the website
change as well as the PHP code used for accessing the database. If the changes are
made according to the code example provided by this thesis, every similar database
can be displayed.

4 System Implementation 84

4.2.2 Example: ADC Measurement

In this section the ADC of the ATmega8L is introduced by showing and explaining impor-
tant code lines of the ADC implementation. An introduction on how the ADC is connected
to the test circuit is given in section 4.1.2.4 (see figure 24).

4.2.2.1 ADC
As described in section 2.4.3 an ADC is used to convert analog signals into digital values

which represent the magnitude of the voltage. These digital values are necessary for further
data processing.

As the ATmega8L datasheet states the ATmega8L features a 10-bit ADC connected
to an 8-channel analog multiplexer which allows for eight analog voltage inputs [45]. The
minimum value represents GND and the maximum value represents the voltage on the
AREF pin minus 1 LSB. If the internal ADC voltage reference of 2.56 V is used, this
translates to a voltage resolution of 2.56 V/1024=2.5 mV. The ADC further contains a
sample and hold circuit which ensures that the input voltage to the ADC is held at a
constant level during conversion. A sample and hold is an indispensable part of an ADC
to get an accurate conversion result.

The AD conversion is done through successive approximation. Successive approxima-
tion works as follows. The analog signal which is hold constant throughout the conver-
sion through a sample and hold circuit, is compared to the voltage output an internal
DAC (Digital Analog Converter) provides. The comparison starts with the MSB (Most
Significant Bit) and ends on the LSB (Least Siginificant Bit).

For example, the voltage on the ADC input is 1.33 V. This voltage is compared to the
voltage the DAC supplies if only the MSB is set

V DAC = V REF

1023 ∗ 512 = 1.28V .

As the voltage is lower than the ADC input voltage, this bit can be set. Now the next bit
(MSB-1) is set and the DAC voltage compared to the input voltage

V DAC = V REF

1023 ∗ (512 + 256) = 1.92V .

The DAC voltage is too high, so the (MSB-1) bit has to reset. If this procedure is completed
until ending on the LSB, 1.33 V should be represented by the digital value of 531

Ndigital = 1.33V ∗ 1023
2.56V

= 531 .

Another important value is given by the following statement given in the ATmega8L
datasheet [45]. “By default, the successive approximation circuitry requires an input clock
frequency between 50kHz and 200kHz to get maximum resolution.” This means that the
ADC prescaler has to be set according to the internal clock frequency of the ATmega8L.

4 System Implementation 85

4.2.2.2 Microcontroller - ATMEGA8L
Following code lines are used to setup the ADC on the ATmega8L and setup the pins
used for controlling the debug LED and the ADC test circuit power supply (see figure
24).

1DDRC |= (1 << PC1) |(1 << PC3) ; // Setup PC1 (LED) as output
; PC3 (ADC Switch on/ o f f)

1ADMUX = (1<<REFS1)|(1<<REFS0)|(1<<MUX1) ; //Internal 2.56V Voltage
Reference with external capacitor at AREF pin and ADC2

2ADCSRA = (1<<ADEN)|(1<<ADPS2) ; // Enable ADC, set prescaler to 16
3// Fadc=Fcpu/prescaler=1000000/16=62.5kHz
4// Fadc=Fcpu/prescaler=8000000/64=125kHz
5// Fadc should be between 50kHz and 200kHz

DDRC stands for Data Direction Register Port C. The ATmega8L has got 3 different
ports Port B, C and D each containing up to 8 different I/O pins. The ADC multiplexer
and the I2C pins are connected to the pins on port C therefore it makes sense to use
adjacent pins for simple tasks like switching on/off the ADC test circuit power supply
and controlling the debug LED to reduce wiring on the prototype board.

ADMUX stands for ADC MUltipleXer Selection Register. The ADMUX controls the
ADC reference source REFS1:0 (REFerence Selection) bits and the ADC multiplexer
MUX3:0 (Analog Channel Selection) bits. If both REFS bits are set to one the internal
2.56 V voltage reference is used. An external capacitor at the AREF (Analog REFerence
pin for the A/D Converter) pin increases the voltage stability of the internal voltage
reference and therefore is included in the prototype board schematic (see figure 24). By
setting the MUX1 bit of the ADMUX register the ADC2 on pin PC2 is selected which is
connected to the sliding contact of the trimmer (see section 4.1.2.4).

ADCSRA stands for ADC Control and Status Register A. It is used to switch on the
ADC (set the ADEN: ADC ENable bit) and setup the ADC prescaler. ADPS2:0 are the
ADC Prescaler Select bits. If the ADPS2 bit is set, the prescaler is set to 16. As the
ADC frequency should be between 50 KHz and 200 KHz (see section 4.2.2.1) this value
is sufficient if the ATmega8L clock frequency is set to 1 MHz.

To initiate an AD conversion following code lines have to be implemented. In the code
example given in the appendix (7.2 - nRF24L01BmpAdc.c) an AD conversion is carried
out every time the ATmega8L wakes up from power save, so therefore these lines are
placed within the while loop.

1PORTC &= ~(1 << PC3) ; //switch on power supply for trimmer
2ADCSRA |= (1<<ADEN)|(1<<ADSC) ; // start f i r s t conversion
3while (ADCSRA &(1<<ADSC)) ; //wait unti l conversion i s f inished
4//ACSR = 0x80 ;
5ADCSRA &= ~(1<<ADEN) ; //switch o f f ADC

4 System Implementation 86

6PORTC |= (1<<PC3) ; //switch o f f power supply for trimmer
7
8adcdata . valadc16=ADC;

The first line is used to switch on the power supply for the circuit connected to the ADC
by pulling the PNP transistor base to logic “0”. Then the AD conversion is started by
enabling the ADC and setting the ADSC (ADC Start Conversion) bit. The ADSC stays
at logic one as long as a conversion is in progress. When it is complete it returns to zero.
The while loop waits for the conversion to finish. After that the ADC and power supply
are switched off.

The ADC data can be read by accessing the variable ADC. It is stored in the variable
valadc16, element of the union structure adcdata.

4.2.2.3 Arduino
Refer to section 4.2.1.3.

4.2.2.4 Raspberry Pi
Refer to section 4.2.1.4.

5 Results 87

5 Results

5.1 Sensor 1/2 example - nRF24L01BmpAdc.c

5.1.1 Settings

To test the code and ensure correct functionality a continuous measurement over 24 hours
was performed. The code given in the appendix (See section 7.2) was left unchanged except
in the wl_module.c file ARC (Auto Retransmit Counter) was set to 1, ARD (Auto
Retransmit Delay) was set to 750 µs and in the nRF24L01BmpAdc.c file the identifier
SENDRATE was initialized with 75 (send every 10 minutes).

The prototype board with the transmitting nRF24L01+ was placed in approximately 4
m distance to the receiver - no walls in between and in direct sight. The antenna (onboard)
orientation was not taken into consideration.
Notice: A wireless router using the 2.4 GHz band is located in about 1 m distance to the
receiver, which could interfere the measurement.

5.1.2 Results

Table 9 and 10 show the database data entries added during the measurement and can
be found in the appendix (See section 7.3).

As the trimmer position was held constant during the measurement, only fluctuations
in the last digit of the ADC value occurred (629 to 631).

Moreover, the measurement showed, if the seconds of the table entries are compared
(not shown in the tables presented in the appendix), that every 6 hours the data is sent
1 second earlier. Over a day this adds up to 4 seconds time deviation (46 ppm) which is
approximately double the value presumed in section 4.1.2.2 (20 ppm).

Temperature and pressure curves are given by figure 41 and 42. These figures are
screenshots from the webinterface graph similar to the graph presented in section 4.1.4.3
(Figure 39).

Furthermore, one can see that a few table entries are missing. There are no values
transmitted at 05:15, 07:35, 9:30 and a few more. The missing entries add up to 8. From
the 149 packets transmitted, a package loss percentage of 5.4 % can be calculated. This
is quite surprising as ARC was set to 1, meaning that the package is re-transmitted if the
preceding failed, which should reduce package loss.

The assumption was made, that the ARD value was set too low and should be in-
creased, even if the datasheet states that: “ARD=500 µs is long enough for any ACK
(ACKnowledge) payload length” (See datasheet [27] - page 32).

5 Results 88

Figure 41: Temperature measurement data

Figure 42: Pressure measurement data

5.1.2.1 ARD & ARC variation
Subsequently, several measurement series were performed with different distances, ARD
and ARC values to determine the optimum value for ARD and ARC for reliable data
transfers. Table 8 shows the measurement results where Nsent stands for the number of
packages sent, Nreceived for the packages received and PL for the package loss.

One can see, that at constant held ARD (750 µs) variation of ARC has little to no
impact on package loss (Table entries 1-5). Only when an ARC value of 5 is reached, the
package loss is reduced to 0%.

In the following ARC was held constant at 1 and ARD was varied (Table entries 6-12).
The measurement was terminated if a package loss was noticed. The results suggest that
an ARD value of about 1750 µs or more is required to reduce package loss.

5 Results 89

Entry Distance [m] ARC ARD [µs] Nsent Nreceived PL [%]
1 1 0 750 100 93 7
2 1 1 750 100 96 4
3 1 2 750 100 94 6
4 1 3 750 100 92 8
5 1 5 750 200 200 0
6 1 1 1500 25 22 12
7 1 1 3000 100 100 0
8 1 1 2750 100 100 0
9 1 1 2250 100 100 0
10 1 1 1750 100 100 0
11 1 1 1500 100 100 0
12 1 1 750 100 97 3
13 6* 1 1500 25 19 24
14 6* 1 2250 100 100 0
15 6* 1 1750 25 20 20
16 6* 1 2000 50 47 6
17 6* 1 2250 100 95 5

* Through wall

Table 8: Different ARC and ARD values

To confirm the result the distance between the transmitter and the receiver was in-
creased (brick wall in between) and the ARD value varied (Table entries 13-17). The best
result was achieved by setting ARD to 2250 µs.

However, a major drawback of the measurement method is, that to confirm the findings
at least one package loss has to occur and it has to be reproducible. Unfortunately, many
factors of influence cannot be controlled (e.g., interference radiation, person blocking the
signal) so different results are common. Additionally, very important factors influencing
the package loss are the data rate (250 Kbps, 1 Mbps, 2 Mbps), distance to the receiver,
transmission power and sensor placement.

To achieve the highest reliability ARC and ARD can be set to their respective maximum
values. However, this setting drastically increases power consumption, if it is placed in a
noisy environment. In the code example provided in the appendix (7.2 - wl_module.c)
ARD is set to 2250 µs (Maximum is 4000 µs) and ARC is set to its maximum value
of 15. To find the best settings for individual purposes, the factors presented have to be
considered. Moreover, there are nRF24L01+ modules on the market offering compatibility
to external (SMA) antennas, increasing their transmission range. In conclusion in can be
said that due to the large uncertainty of this measurement, it is recommended to do
further research in this regard.

6 Summary and Outlook 90

6 Summary and Outlook
This thesis should give an impression on how easy but yet so complicated it is to develop
such an energy efficient, low-cost automation system.

During working on this project countless problems were faced, which needed creative
solutions. For example, many parts which were selected beforehand were not available due
to shortages (corona pandemic 2021) and therefore different parts had to be used.

Another issue were changes made in the operating system (see section 4.1.4.1) and
changes done by the email provider Gmail, who changed how the account can be accessed
through third party providers. It therefore cannot be excluded that future updates of the
operating system or other changes (email provider, libraries) parts of this thesis do not
work as described. Software is dynamic and it is not surprising that usually software needs
continuous support to ensure functionality.

Furthermore, many problems were faced which were only fixed after researching for a
long time. For example, solving the problem described in section 4.2.1.2 (see after Notice:)
that the TWI register of the ATmega8L has to reset after waking up from power save
mode did cost several hours to find and fix.

Particularly the sheer amount of programming languages which had to be learned
where another challenge and therefore this thesis is only directed to people who have
basic knowledge in coding and hardware development.

To sum up it was a great project combining many different aspects in hardware and
software engineering and personally I learned a lot during the period of this thesis.

References 91

References
[1] Whalen SA Markin RS. “Laboratory automation: trajectory, technology, and tactics.” In: Clinical

chemistry, 46(5), 764–771 (2000 May). doi: https://doi.org/10.1093/clinchem/46.5.764.

[2] Mikell P. Groover. Fundamentals of Modern Manufacturing. John Wiley & Sons, Inc., 2010. isbn:
978-0470-467002.

[3] Kamminga Johan Cotterell Brian. Mechanics of pre-industrial technology: An introduction to the
mechanics of ancient and traditional material culture. Cambridge University Press, 1990. doi: 10.
1017/S0003598X00080431.

[4] Jr. Edward B.Driscoll. The history of X10. url: http://home.planet.nl/~lhendrix/x10_
history.htm (visited on 09/04/2022).

[5] The difference between a centralized and a decentralized smart home system. 2018. url: https:
//www.hestiamagazine.eu/the-difference-between-a-centralized-and-a-decentralized-
smart-home-system#:~:text=In%20a%20decentralized%20system%20all,the%20remaining%
20devices%20still%20function. (visited on 09/04/2022).

[6] BehrTech Blog. Mesh vs. Star Topology – How to Find the Right Architecture for Your IoT Networks.
url: https://behrtech.com/blog/mesh-vs-star-topology/ (visited on 09/08/2022).

[7] “KNX – der weltweit einzige offene Standard für die Haus- und Gebäudesystemtechnik.” In: KNX
Deutschland im ZVEI – Zentralverband Elektrotechnik- und Elektronikindustrie e. V. (2007 Octo-
ber).

[8] Bernd Aschendorf. Energiemanagement durch Gebäudeautomation. Springer, 2014. doi: http://
dx.doi.org/10.1007/978-3-8348-2032-7.

[9] Local Control Network. url: https://de.wikipedia.org/wiki/Local_Control_Network (visited
on 09/10/2022).

[10] Ulrich Klein. Loxone Smart Home im Test-Überblick – System für Häuser & Gewerbe. 2020. url:
https://www.homeandsmart.de/loxone-smart-home (visited on 09/10/2022).

[11] Ulrich Klein. Smart Home Bussysteme im Vergleich und Überblick. 2020. url: https://www.
homeandsmart.de/smart- home- bussysteme- vergleich#:~:text=KNX%20ist%20aufgrund%
20seiner % 20Standardisierung , f % C3 % BCr % 20private % 20Wohnh % C3 % A4user % 20genutzt %
20wird. (visited on 09/10/2022).

[12] Loxone oder KNX. url: https : / / www . 1home . io / de / blog / loxone - oder - knx/ (visited on
09/10/2022).

[13] digitalSTROM Smart Home – Funktionsweise, Architektur & Tests. url: https : / / www .
homeandsmart.de/digitalstrom- smart- home- hausautomation- intelligenter- strom (vis-
ited on 09/11/2022).

[14] Wired vs. Wireless: Which Is Better for Home Automation? url: https://theonetechstop.com/
wired-vs-wireless-which-is-better-for-home-automation/ (visited on 09/15/2022).

[15] Silvia Benetti. ZigBee, Z-Wave oder WLAN: Der beste Funkstandard. 2020. url: https://www.
haus.de/smart-home/funkstandards-im-smart-home-29884 (visited on 09/20/2022).

[16] Tobias Zillner. “ZIGBEE EXPLOITED - The good, the bad and the ugly.” In: cognosec (2015
August).

[17] EnOcean. url: https://en.wikipedia.org/wiki/EnOcean (visited on 09/27/2022).

https://doi.org/https://doi.org/10.1093/clinchem/46.5.764
https://doi.org/10.1017/S0003598X00080431
https://doi.org/10.1017/S0003598X00080431
http://home.planet.nl/~lhendrix/x10_history.htm
http://home.planet.nl/~lhendrix/x10_history.htm
https://www.hestiamagazine.eu/the-difference-between-a-centralized-and-a-decentralized-smart-home-system#:~:text=In%20a%20decentralized%20system%20all,the%20remaining%20devices%20still%20function.
https://www.hestiamagazine.eu/the-difference-between-a-centralized-and-a-decentralized-smart-home-system#:~:text=In%20a%20decentralized%20system%20all,the%20remaining%20devices%20still%20function.
https://www.hestiamagazine.eu/the-difference-between-a-centralized-and-a-decentralized-smart-home-system#:~:text=In%20a%20decentralized%20system%20all,the%20remaining%20devices%20still%20function.
https://www.hestiamagazine.eu/the-difference-between-a-centralized-and-a-decentralized-smart-home-system#:~:text=In%20a%20decentralized%20system%20all,the%20remaining%20devices%20still%20function.
https://behrtech.com/blog/mesh-vs-star-topology/
https://doi.org/http://dx.doi.org/10.1007/978-3-8348-2032-7
https://doi.org/http://dx.doi.org/10.1007/978-3-8348-2032-7
https://de.wikipedia.org/wiki/Local_Control_Network
https://www.homeandsmart.de/loxone-smart-home
https://www.homeandsmart.de/smart-home-bussysteme-vergleich#:~:text=KNX%20ist%20aufgrund%20seiner%20Standardisierung,f%C3%BCr%20private%20Wohnh%C3%A4user%20genutzt%20wird.
https://www.homeandsmart.de/smart-home-bussysteme-vergleich#:~:text=KNX%20ist%20aufgrund%20seiner%20Standardisierung,f%C3%BCr%20private%20Wohnh%C3%A4user%20genutzt%20wird.
https://www.homeandsmart.de/smart-home-bussysteme-vergleich#:~:text=KNX%20ist%20aufgrund%20seiner%20Standardisierung,f%C3%BCr%20private%20Wohnh%C3%A4user%20genutzt%20wird.
https://www.homeandsmart.de/smart-home-bussysteme-vergleich#:~:text=KNX%20ist%20aufgrund%20seiner%20Standardisierung,f%C3%BCr%20private%20Wohnh%C3%A4user%20genutzt%20wird.
https://www.1home.io/de/blog/loxone-oder-knx/
https://www.homeandsmart.de/digitalstrom-smart-home-hausautomation-intelligenter-strom
https://www.homeandsmart.de/digitalstrom-smart-home-hausautomation-intelligenter-strom
https://theonetechstop.com/wired-vs-wireless-which-is-better-for-home-automation/
https://theonetechstop.com/wired-vs-wireless-which-is-better-for-home-automation/
https://www.haus.de/smart-home/funkstandards-im-smart-home-29884
https://www.haus.de/smart-home/funkstandards-im-smart-home-29884
https://en.wikipedia.org/wiki/EnOcean

References 92

[18] Ulrich Klein. Bluetooth LE Smart Home Funkstandard – Wissen, Geräte, Bedeutung. 2021. url:
https://www.homeandsmart.de/bluetooth-low-energy-smart-home (visited on 09/27/2022).

[19] Florian Jung. Funkstandards im Smart Home. 2016. url: https : / / www . smart - home . one /
funkstandards - im - smart - home - warum - nicht - wlan - und - bluetooth - 201623 (visited on
09/27/2022).

[20] Kasper Rasmussen Daniele Antonioli Nils Ole Tippenhauer. “BIAS: Bluetooth Impersonation At-
tackS.” In: Research (Sept. 27, 2022). doi: 10 . 1109 / SP40000 . 2020 . 00093. url: https : / /
francozappa.github.io/about- bias/publication/antonioli- 20- bias/antonioli- 20-
bias.pdf.

[21] Ulrich Klein. WLAN Funkstandard – alles über WiFi im Smart Home. 2021. url: https://www.
homeandsmart.de/bluetooth-low-energy-smart-home (visited on 10/02/2022).

[22] OpenThread. url: https://openthread.io/ (visited on 10/05/2022).

[23] Smart Home mit Thread. url: https://www.reichelt.de/magazin/ratgeber/smart-home-mit-
thread/ (visited on 10/05/2022).

[24] Thread (network protocol). url: https://en.wikipedia.org/wiki/Thread_(network_protocol)
(visited on 10/05/2022).

[25] Apple introduces HomePod mini: A powerful smart speaker with amazing sound. 2020. url: https:
//www.apple.com/ca/newsroom/2020/10/apple-introduces-homepod-mini-a-powerful-
smart-speaker-with-amazing-sound/ (visited on 10/02/2022).

[26] nRF5340 DK. url: https://www.nordicsemi.com/Products/Development-hardware/nrf5340-
dk# (visited on 10/05/2022).

[27] nRF24L01+ Single Chip 2.4GHz Transceiver - Preliminary Product Specification v1.0. url: https:
//www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_
Specification_v1_0.pdf (visited on 10/12/2021).

[28] Informationen über den 1-Wire-Bus, Einsatzbereich, Nutzen, Installation. url: https://shop.
elabnet.de/info/1-wire (visited on 10/07/2022).

[29] Stan Zurek. iButton (1-Wire) lock and key. 2006. url: https://commons.wikimedia.org/wiki/
File:1-Wire_lock.jpg (visited on 10/07/2022).

[30] CAN bus. url: https://www.can- cia.org/can- knowledge/can/can- history/ (visited on
10/07/2022).

[31] Serial Peripheral Interface. url: https : / / www . mikrocontroller . net / articles / Serial _
Peripheral_Interface (visited on 10/08/2022).

[32] en:User:Cburnett. A single master and a single slave on a Serial Peripheral Interface (SPI) bus.
2006. url: https://commons.wikimedia.org/wiki/File:SPI_single_slave.svg (visited on
10/08/2022).

[33] I2C. url: https://en.wikipedia.org/wiki/I%C2%B2C (visited on 10/10/2022).

[34] Tim Mathias. An example I2C schematic with one controller (a microcontroller), three target nodes
(an ADC, a DAC, and a microcontroller), and pull-up resistors Rp. 2021. url: https://commons.
wikimedia.org/wiki/File:I2C_controller-target.svg (visited on 10/10/2022).

[35] Sam Jebakumar J Veeramani P Vimala Juliet A and Jagadish R. “Design and Fabrication of
Temperature Sensor for Weather Monitoring System using MEMS Technology.” In: Oriental Journal
of Chemistry (8.10.2018). doi: http://dx.doi.org/10.13005/ojc/340537.

https://www.homeandsmart.de/bluetooth-low-energy-smart-home
https://www.smart-home.one/funkstandards-im-smart-home-warum-nicht-wlan-und-bluetooth-201623
https://www.smart-home.one/funkstandards-im-smart-home-warum-nicht-wlan-und-bluetooth-201623
https://doi.org/10.1109/SP40000.2020.00093
https://francozappa.github.io/about-bias/publication/antonioli-20-bias/antonioli-20-bias.pdf
https://francozappa.github.io/about-bias/publication/antonioli-20-bias/antonioli-20-bias.pdf
https://francozappa.github.io/about-bias/publication/antonioli-20-bias/antonioli-20-bias.pdf
https://www.homeandsmart.de/bluetooth-low-energy-smart-home
https://www.homeandsmart.de/bluetooth-low-energy-smart-home
https://openthread.io/
https://www.reichelt.de/magazin/ratgeber/smart-home-mit-thread/
https://www.reichelt.de/magazin/ratgeber/smart-home-mit-thread/
https://en.wikipedia.org/wiki/Thread_(network_protocol)
https://www.apple.com/ca/newsroom/2020/10/apple-introduces-homepod-mini-a-powerful-smart-speaker-with-amazing-sound/
https://www.apple.com/ca/newsroom/2020/10/apple-introduces-homepod-mini-a-powerful-smart-speaker-with-amazing-sound/
https://www.apple.com/ca/newsroom/2020/10/apple-introduces-homepod-mini-a-powerful-smart-speaker-with-amazing-sound/
https://www.nordicsemi.com/Products/Development-hardware/nrf5340-dk#
https://www.nordicsemi.com/Products/Development-hardware/nrf5340-dk#
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf
https://shop.elabnet.de/info/1-wire
https://shop.elabnet.de/info/1-wire
https://commons.wikimedia.org/wiki/File:1-Wire_lock.jpg
https://commons.wikimedia.org/wiki/File:1-Wire_lock.jpg
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.mikrocontroller.net/articles/Serial_Peripheral_Interface
https://www.mikrocontroller.net/articles/Serial_Peripheral_Interface
https://commons.wikimedia.org/wiki/File:SPI_single_slave.svg
https://en.wikipedia.org/wiki/I%C2%B2C
https://commons.wikimedia.org/wiki/File:I2C_controller-target.svg
https://commons.wikimedia.org/wiki/File:I2C_controller-target.svg
https://doi.org/http://dx.doi.org/10.13005/ojc/340537

References 93

[36] How Does MEMS Temperature Sensor Works. url: https://econtroldevices.com/how-does-
mems-temperature-sensor-works/#:~:text=The%20MEMS%20temperature%20sensors%20are,
and%20no%20contact%20temperature%20sensors. (visited on 10/11/2022).

[37] GY-68 BMP180 Barometrischer Sensor Luftdruck Modul für Arduino und Raspbbery Pi Daten-
blatt. url: https : / / cdn . shopify . com / s / files / 1 / 1509 / 1638 / files / GY - 68 _ BMP180 _
Barometrischer_Sensor_Luftdruck_Modul_fur_Arduino_und_Raspberry_Pi_Datenblatt.
pdf?15836792964504220844 (visited on 10/11/2022).

[38] MEMS pressure sensors. url: https : / / www . avnet . com / wps / portal / abacus / solutions /
technologies/sensors/pressure-sensors/core-technologies/mems/ (visited on 10/13/2022).

[39] So nutzen Sie die Vorteile der piezoresistiven Druckmesstechnik. 2020. url: https://www.fluid.
de/mechatronik/so-nutzen-sie-die-vorteile-der-piezoresistiven-druckmesstechnik-
123.html (visited on 10/13/2022).

[40] MEMS Capacitive vs Piezoresistive Pressure Sensors – What are their differences? 2020. url:
https://esenssys.com/capacitive- piezoresistive- pressure- sensors- differences/#:
~:text=Piezoresistive%20technology%20measurement%20principle,physical%20pressure%
20applied%20upon%20them. (visited on 10/13/2022).

[41] Rama Komaragiri Suja K J Kumar G S and Nisanth A. “Analysing the effects of temperature
and doping concentration in silicon based MEMS piezoresistive pressure sensor.” In: ScienceDirect
(6-8.09.2016). doi: 10.1016/j.procs.2016.07.189.

[42] Dr. Hans-Gerd Kürschner. Sensors - Systems for the detection of object states and properties. url:
https://www.indutrax.net/en/technologien/sensorik/ (visited on 10/13/2022).

[43] Michael H. („Laserlicht“) / Wikimedia Commons / CC BY-SA 4.0. Raspberry Pi 4 Model B from
the side. 2019. url: https://de.wikipedia.org/wiki/Datei:Raspberry_Pi_4_Model_B_-
_Side.jpg (visited on 10/13/2022).

[44] althaus. Arduino Due (Rev2b). 2013. url: https://paulvollmer.net/FritzingParts/parts/
Arduino_DUE_V02b.html (visited on 10/13/2022).

[45] ATmega8 - ATmega8L. url: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf (visited on 10/12/2021).

[46] FDominec. Pin names of the ATMEGA8 microcontroller. Drawn using information from the Atmel
datasheet. 2013. url: https://de.m.wikibooks.org/wiki/Datei:Atmega8_pinout.svg (visited
on 10/13/2022).

[47] ARCELI TL866II Plus USB Hochleistungs-EEPROM Flash BIOS Programmierer. url: https:
//www.amazon.de/ARCELI- TL866II- Hochleistungs- EEPROM- Programmierer- ATMEGA/dp/
B07CQQBGVK (visited on 10/13/2022).

[48] SB120 - SB160: 1.0A SCHOTTKY BARRIER RECTIFIER. url: https://www.diodes.com/
assets/Datasheets/ds23022.pdf (visited on 10/12/2022).

[49] MCP1702: 250 mA Low Quiescent Current LDO Regulator. url: https://ww1.microchip.com/
downloads/en/DeviceDoc/22008E.pdf (visited on 01/16/2022).

[50] AVR4100: Selecting and testing 32kHz crystal oscillators for Atmel AVR microcontrollers. url:
http://ww1.microchip.com/downloads/en/appnotes/doc8333.pdf (visited on 10/12/2022).

[51] Mathias Jensen. White Paper SWRA349 - Coin cells and peak current draw. 2010. url: https:
//www.ti.com/lit/wp/swra349/swra349.pdf?ts=1663462237174 (visited on 01/28/2023).

https://econtroldevices.com/how-does-mems-temperature-sensor-works/#:~:text=The%20MEMS%20temperature%20sensors%20are,and%20no%20contact%20temperature%20sensors.
https://econtroldevices.com/how-does-mems-temperature-sensor-works/#:~:text=The%20MEMS%20temperature%20sensors%20are,and%20no%20contact%20temperature%20sensors.
https://econtroldevices.com/how-does-mems-temperature-sensor-works/#:~:text=The%20MEMS%20temperature%20sensors%20are,and%20no%20contact%20temperature%20sensors.
https://cdn.shopify.com/s/files/1/1509/1638/files/GY-68_BMP180_Barometrischer_Sensor_Luftdruck_Modul_fur_Arduino_und_Raspberry_Pi_Datenblatt.pdf?15836792964504220844
https://cdn.shopify.com/s/files/1/1509/1638/files/GY-68_BMP180_Barometrischer_Sensor_Luftdruck_Modul_fur_Arduino_und_Raspberry_Pi_Datenblatt.pdf?15836792964504220844
https://cdn.shopify.com/s/files/1/1509/1638/files/GY-68_BMP180_Barometrischer_Sensor_Luftdruck_Modul_fur_Arduino_und_Raspberry_Pi_Datenblatt.pdf?15836792964504220844
https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors/core-technologies/mems/
https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors/core-technologies/mems/
https://www.fluid.de/mechatronik/so-nutzen-sie-die-vorteile-der-piezoresistiven-druckmesstechnik-123.html
https://www.fluid.de/mechatronik/so-nutzen-sie-die-vorteile-der-piezoresistiven-druckmesstechnik-123.html
https://www.fluid.de/mechatronik/so-nutzen-sie-die-vorteile-der-piezoresistiven-druckmesstechnik-123.html
https://esenssys.com/capacitive-piezoresistive-pressure-sensors-differences/#:~:text=Piezoresistive%20technology%20measurement%20principle,physical%20pressure%20applied%20upon%20them.
https://esenssys.com/capacitive-piezoresistive-pressure-sensors-differences/#:~:text=Piezoresistive%20technology%20measurement%20principle,physical%20pressure%20applied%20upon%20them.
https://esenssys.com/capacitive-piezoresistive-pressure-sensors-differences/#:~:text=Piezoresistive%20technology%20measurement%20principle,physical%20pressure%20applied%20upon%20them.
https://doi.org/10.1016/j.procs.2016.07.189
https://www.indutrax.net/en/technologien/sensorik/
https://de.wikipedia.org/wiki/Datei:Raspberry_Pi_4_Model_B_-_Side.jpg
https://de.wikipedia.org/wiki/Datei:Raspberry_Pi_4_Model_B_-_Side.jpg
https://paulvollmer.net/FritzingParts/parts/Arduino_DUE_V02b.html
https://paulvollmer.net/FritzingParts/parts/Arduino_DUE_V02b.html
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://de.m.wikibooks.org/wiki/Datei:Atmega8_pinout.svg
https://www.amazon.de/ARCELI-TL866II-Hochleistungs-EEPROM-Programmierer-ATMEGA/dp/B07CQQBGVK
https://www.amazon.de/ARCELI-TL866II-Hochleistungs-EEPROM-Programmierer-ATMEGA/dp/B07CQQBGVK
https://www.amazon.de/ARCELI-TL866II-Hochleistungs-EEPROM-Programmierer-ATMEGA/dp/B07CQQBGVK
https://www.diodes.com/assets/Datasheets/ds23022.pdf
https://www.diodes.com/assets/Datasheets/ds23022.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/22008E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/22008E.pdf
http://ww1.microchip.com/downloads/en/appnotes/doc8333.pdf
https://www.ti.com/lit/wp/swra349/swra349.pdf?ts=1663462237174
https://www.ti.com/lit/wp/swra349/swra349.pdf?ts=1663462237174

7 Appendix 94

7 Appendix

7.1 Schematic

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

K
iC

ad
 E

.D
.A

.
ki

ca
d

(6
.0

.2
)

R
ev

:
S

iz
e:

 A
4

Id
: 1

/1

Ti
tle

:
Fi

le
: f

irs
tp

rin
t.k

ic
ad

_s
ch

S
he

et
: /

G
N

D

1 2 3 4

J3
C

on
n_

01
x0

4_
M

al
e

G
N

D

C
V

i1
.2

2u

G
N

D

G
N

D

D
1

S
B

16
0

C
P

in
7-

8
10

0n

C
P

in
1-

G
N

D
10

0n

GND 1VCC2

C
E

3

~{
C

S
N

}
4

S
C

K
5

M
O

S
I

6

M
IS

O
7

IR
Q

8

U
2 N
R

F2
4L

01
_B

re
ak

ou
t

C
V

o1
.2

2u

+3
.3

V

D
1

LE
D

C
P

in
20

-2
2

10
0n

Y
1 32

.7
68

 K
H

z

+6
V

C
Q

1
22

p

12

J1
C

on
n_

01
x0

2_
Fe

m
al

e

P
C

6/
~{

R
E

S
E

T}
1

P
B

7/
X

TA
L2

10

P
D

5
11

P
D

6
12

P
D

7
13

P
B

0
14

P
B

1
15

P
B

2
16

P
B

3
17

P
B

4
18

P
B

5
19

P
D

0
2

AVCC20

A
R

E
F

21

AGND 22

P
C

0
23

P
C

1
24

P
C

2
25

P
C

3
26

P
C

4
27

P
C

5
28

P
D

1
3

P
D

2
4

P
D

3
5

P
D

4
6

VCC7 GND 8

P
B

6/
X

TA
L1

9

U
1 A
Tm

eg
a8

L-
8P

R
LE

D
1

10
k

R
P

in
1

10
k

GND1

V
I

2
V

O
3

U
3

M
C

P
17

02
-3

30
2E

_T
O

92

R
P

U
2

10
k

R
P

U
1

10
k

+3
.3

V

GND 1

C
S

B
2

S
D

I
3

S
C

K
4

S
D

O
5

VDDIO6

GND 7VDD8

U
3 B
M

P
18

0

+3
.3

V

+3
.3

V

C
V

pp
2

10
0n

C
V

pp
1

10
0u

C
Q

2
22

p

R
V

10
k

1 2 3 4 J2
C

on
n_

01
x0

4_
Fe

m
al

e

1
2

J4
Conn_01x02_Female

1

2

3

Q
1

B
C

55
6

1
2

J5
Conn_01x02_Male1

2

JP1
Jumper_2_Bridged

1

2

3

R
T1 10

 O
hm

s
to

 2
 M

O
hm

s

+3
.3

V

S
D

A
S

C
L

G
N

D

7 Appendix 95

7.2 Code

7.2.1 ATmega8L

7.2.1.1 MAIN

• nRF24L01main.c

• nRF24L01BmpAdc.c

7.2.1.2 AES

• aes.c

• aes.h

• aes_asm.S

7.2.1.3 BMP085/180

• bmp085.c

• bmp085.h

7.2.1.4 I2C/TWI

• i2cmaster.h

• twimaster.c

7.2.1.5 nRF24L01

• nRF24L01.h

• wl_module.c

• wl_module.h

7.2.1.6 SPI

• spi.c

• spi.h

7 Appendix 96

7.2.2 Arduino

7.2.2.1 MAIN

• arduinocode.c

7.2.2.2 Library - RF24

• nRF24L01.h

• printf.h

• RF24.cpp

• RF24.h

• RF24_config.h

7.2.3 RPi

7.2.3.1 Python

• initialize_DB_Tables.py

• saveTest.py

• checkdaily.py

7.2.3.2 Webserver

• HTML

– clients.html

– index.html

– log1.html

• CSS

– style/dropdown.css

• PHP

– php/restart.php

– php/shutdown.php

– php/sidebar.php

• JS

– js/dropdown.js

7 Appendix 97

7.3 Measurement Table

id Date T [◦C] P [Pa] ADC
830 1/28/23 1:05 21.30 99953 631
831 1/28/23 1:15 21.10 99953 630
832 1/28/23 1:25 21.10 99953 630
833 1/28/23 1:35 21.10 99952 630
834 1/28/23 1:45 21.00 99952 630
835 1/28/23 1:55 20.90 99951 630
836 1/28/23 2:05 20.60 99950 630
837 1/28/23 2:15 20.80 99950 630
838 1/28/23 2:25 20.30 99950 630
839 1/28/23 2:35 19.90 99950 631
840 1/28/23 2:45 19.60 99951 630
841 1/28/23 2:55 19.50 99951 630
842 1/28/23 3:05 19.50 99952 629
843 1/28/23 3:15 19.60 99952 630
844 1/28/23 3:25 19.50 99952 629
845 1/28/23 3:35 19.30 99953 630
846 1/28/23 3:45 19.20 99954 630
847 1/28/23 3:55 19.40 99954 630
848 1/28/23 4:05 19.10 99955 630
849 1/28/23 4:15 19.20 99956 630
850 1/28/23 4:25 19.00 99956 631
851 1/28/23 4:35 18.90 99957 630
852 1/28/23 4:45 18.90 99959 630
853 1/28/23 4:55 18.80 99960 630
854 1/28/23 5:05 18.70 99962 630
855 1/28/23 5:25 18.80 99966 631
856 1/28/23 5:35 18.60 99968 630
857 1/28/23 5:45 18.70 99969 630
858 1/28/23 5:55 18.70 99971 631
859 1/28/23 6:05 18.40 99973 630
860 1/28/23 6:15 18.40 99974 630
861 1/28/23 6:25 18.40 99976 630
862 1/28/23 6:35 18.50 99979 630
863 1/28/23 6:45 18.30 99983 630
864 1/28/23 6:55 18.30 99986 631
865 1/28/23 7:05 18.30 99989 630
866 1/28/23 7:15 18.30 99992 630
867 1/28/23 7:25 18.10 99996 630
868 1/28/23 7:45 18.10 100005 630
869 1/28/23 7:55 18.00 100009 630
870 1/28/23 8:05 18.10 100014 629
871 1/28/23 8:15 18.10 100019 630
872 1/28/23 8:25 18.00 100024 630
873 1/28/23 8:35 18.10 100029 629
874 1/28/23 8:45 18.00 100034 630
875 1/28/23 8:55 18.00 100039 630
876 1/28/23 9:05 17.70 100045 630
877 1/28/23 9:15 17.90 100052 629
878 1/28/23 9:25 17.90 100059 630
879 1/28/23 9:45 18.10 100074 630
880 1/28/23 9:55 18.30 100082 630

881 1/28/23 10:05 18.30 100090 630
882 1/28/23 10:15 18.30 100097 630
883 1/28/23 10:25 18.50 100104 630
884 1/28/23 10:35 18.90 100111 630
885 1/28/23 10:45 18.90 100118 629
886 1/28/23 10:55 18.90 100124 629
887 1/28/23 11:05 19.10 100131 630
888 1/28/23 11:15 19.20 100137 630
889 1/28/23 11:25 19.10 100142 629
890 1/28/23 11:35 19.40 100147 630
891 1/28/23 11:45 19.50 100151 629
892 1/28/23 11:55 19.30 100156 630
893 1/28/23 12:05 19.50 100160 630
894 1/28/23 12:15 19.40 100164 630
895 1/28/23 12:25 19.10 100168 629
896 1/28/23 12:35 19.00 100171 630
897 1/28/23 12:45 18.70 100174 630
898 1/28/23 12:55 19.10 100175 630
899 1/28/23 13:05 19.20 100176 629
900 1/28/23 13:15 19.60 100177 630
901 1/28/23 13:25 19.60 100177 630
902 1/28/23 13:35 19.40 100176 630
903 1/28/23 13:45 19.60 100176 630
904 1/28/23 13:55 19.40 100176 630
905 1/28/23 14:05 19.40 100177 629
906 1/28/23 14:15 19.50 100177 630
907 1/28/23 14:25 19.70 100178 630
908 1/28/23 14:35 19.80 100178 630
909 1/28/23 14:45 20.10 100179 630
910 1/28/23 14:55 20.10 100181 629
911 1/28/23 15:05 19.90 100182 630
912 1/28/23 15:15 19.90 100185 630
913 1/28/23 15:25 20.00 100187 630
914 1/28/23 15:35 20.30 100189 630
915 1/28/23 15:45 20.40 100192 630
916 1/28/23 15:55 20.60 100196 630
917 1/28/23 16:15 20.30 100203 630
918 1/28/23 16:25 20.50 100207 630
919 1/28/23 16:35 20.30 100212 629
920 1/28/23 16:45 20.20 100218 630
921 1/28/23 16:55 20.30 100224 630
922 1/28/23 17:05 20.80 100230 631
923 1/28/23 17:15 20.80 100237 630
924 1/28/23 17:25 21.00 100244 630
925 1/28/23 17:35 21.00 100251 631
926 1/28/23 17:45 21.00 100258 630
927 1/28/23 17:55 20.90 100266 630
928 1/28/23 18:05 21.10 100275 631
929 1/28/23 18:15 20.80 100283 630
930 1/28/23 18:25 20.70 100291 630
931 1/28/23 18:35 21.10 100299 630
932 1/28/23 18:45 21.20 100307 630

Table 9: Measurement data table part 1

7 Appendix 98

933 1/28/23 18:55 21.00 100315 630
934 1/28/23 19:05 21.20 100324 630
935 1/28/23 19:15 20.90 100333 631
936 1/28/23 19:35 20.80 100350 630
937 1/28/23 19:45 20.90 100359 630
938 1/28/23 19:55 20.80 100367 630
939 1/28/23 20:15 20.40 100384 630
940 1/28/23 20:25 20.30 100393 631
941 1/28/23 20:35 20.60 100401 630
942 1/28/23 20:45 20.60 100409 630
943 1/28/23 20:55 20.70 100417 630
944 1/28/23 21:05 20.50 100425 630
945 1/28/23 21:15 20.80 100433 630
946 1/28/23 21:25 20.70 100441 630
947 1/28/23 21:35 20.80 100449 630
948 1/28/23 21:45 20.80 100457 630
949 1/28/23 21:55 20.80 100465 630
950 1/28/23 22:05 20.90 100472 630
951 1/28/23 22:15 20.70 100479 630
952 1/28/23 22:25 20.70 100487 629
953 1/28/23 22:35 20.90 100494 630
954 1/28/23 22:45 20.70 100502 630
955 1/28/23 22:55 20.80 100509 630
956 1/28/23 23:05 20.80 100517 630
957 1/28/23 23:15 20.60 100524 630
958 1/28/23 23:25 20.50 100532 629
959 1/28/23 23:35 20.40 100540 631
960 1/28/23 23:45 20.60 100547 630
961 1/28/23 23:55 20.40 100553 630
962 1/29/23 0:05 20.60 100560 630
963 1/29/23 0:15 20.50 100565 630
964 1/29/23 0:35 20.50 100576 630
965 1/29/23 0:45 20.40 100580 630
966 1/29/23 0:55 20.20 100584 630
967 1/29/23 1:05 20.20 100588 630
968 1/29/23 1:25 20.30 100597 630
969 1/29/23 1:35 20.30 100601 631
970 1/29/23 1:45 20.10 100605 631

Table 10: Measurement data table part 2

	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Purpose
	1.4 Method

	2 Automation Systems
	2.1 Types of Control Systems
	2.1.1 Centralized system
	2.1.2 Decentralized system
	2.1.3 Hybrid system

	2.2 Topology
	2.2.1 Star topology
	2.2.2 Mesh topology

	2.3 Connection
	2.3.1 Wired Systems for Automation
	2.3.1.1 KNX
	2.3.1.2 LCN
	2.3.1.3 Loxone
	2.3.1.4 digitalSTROM
	2.3.1.5 Discussion

	2.3.2 Wireless Systems
	2.3.2.1 Zigbee
	2.3.2.2 EnOcean
	2.3.2.3 Bluetooth
	2.3.2.4 WLAN
	2.3.2.5 Thread
	2.3.2.6 nRF24L01+
	2.3.2.7 Discussion

	2.3.3 Wired Systems for on-board communication
	2.3.3.1 1-Wire
	2.3.3.2 UART
	2.3.3.3 CAN
	2.3.3.4 SPI
	2.3.3.5 TWI/I2C

	2.4 Tasks
	2.4.1 Temperature Measurement
	2.4.2 Air Pressure Measurement
	2.4.3 ADC - Analog Digital Converter
	2.4.4 Other Tasks

	2.5 Conclusion
	2.5.1 Wireless Transceiver - RS Components
	2.5.2 Wireless Transceiver - Mouser Electronics
	2.5.3 Wireless Transceiver - Amazon
	2.5.4 Discussion

	3 System Setup
	3.1 System Structure
	3.2 Module Description
	3.2.1 Raspberry Pi
	3.2.1.1 System Setup

	3.2.2 Admin PC
	3.2.2.1 System Setup

	3.2.3 Arduino
	3.2.4 Transceiver - nRF24L01+
	3.2.4.1 Radio Control
	3.2.4.2 Receiver path:
	3.2.4.3 Transmitter path:

	3.2.5 - ATmega8L
	3.2.6 Programmer - Arceli TL866II Plus

	4 System Implementation
	4.1 Basic Operation Setup
	4.1.1 Microcontroller - ATmega8L
	4.1.1.1 Configure ATmega8(L) for power-save mode
	4.1.1.2 Configure nRF24L01+

	4.1.2 Prototype Board
	4.1.2.1 Power supply
	4.1.2.2 Asynchronous clock
	4.1.2.3 Buffer capacitors
	4.1.2.4 ADC
	4.1.2.5 ATmega8L, nRF24L01+, Debug LED, BMP180
	4.1.2.6 Calculate power consumption

	4.1.3 Arduino
	4.1.4 Raspberry Pi
	4.1.4.1 Installations and settings
	4.1.4.2 Database
	4.1.4.3 Website

	4.2 Step by step instruction for different sensors
	4.2.1 Example: Temperature/Pressure Measurement
	4.2.1.1 Temperature/Pressure Sensor
	4.2.1.2 Microcontroller - ATmega8L
	4.2.1.3 Arduino
	4.2.1.4 Raspberry Pi

	4.2.2 Example: ADC Measurement
	4.2.2.1 ADC
	4.2.2.2 Microcontroller - ATMEGA8L
	4.2.2.3 Arduino
	4.2.2.4 Raspberry Pi

	5 Results
	5.1 Sensor 1/2 example - nRF24L01BmpAdc.c
	5.1.1 Settings
	5.1.2 Results
	5.1.2.1 ARD & ARC variation

	6 Summary and Outlook
	References
	7 Appendix
	7.1 Schematic
	7.2 Code
	7.2.1 ATmega8L
	7.2.1.1 MAIN
	7.2.1.2 AES
	7.2.1.3 BMP085/180
	7.2.1.4 I2C/TWI
	7.2.1.5 nRF24L01
	7.2.1.6 SPI

	7.2.2 Arduino
	7.2.2.1 MAIN
	7.2.2.2 Library - RF24

	7.2.3 RPi
	7.2.3.1 Python
	7.2.3.2 Webserver

	7.3 Measurement Table

