
signature supervisor

DIPLOMA THESIS

Space-time finite volume method in
OpenFOAM®

executed to obtain the academic degree
Master of Science (MSc.) under the supervision of

Univ.Prof. Dipl.-Phys. Dr.-Ing. Andreas Otto

at the
Institute of Production Engineering and Photonic Technologies

Getreidemarkt 9, BA,
9th floor

submitted to the Vienna University of Technology
Faculty of Mechanical and Industrial Engineering

by

Tobias Florian, BSc

2. Februar 2023
signature student





Acknowledgements

I would like to express my sincerest gratitude to my thesis advisor, Prof. Andreas
Otto, for his invaluable guidance, support and encouragements throughout the
course of this project. I am grateful for his expertise and willingness to expand my
scientific knowledge.

I would also like to thank the members of the Institute of Production Engineering
and Photonic Technologies, for their valuable feedback and constructive suggesti-
ons. Special thanks are due to my co-advisor and friend, Constantin Zenz, whose
ideas and insights significantly contributed to the outcome of this thesis.

Furthermore, I would like to thank Prof. Stefanie Elgeti to share her expertise and
knowledge in space-time simulations.

Finally, I want to thank my girlfriend Vanessa, my family and friends for their
steady assistance.

Thank you all for your support.

I



Declaration in Lieu of Oath

I hereby declare to be the sole author of this thesis and that no part of my work has
been previously published or submitted for publication. I certify, to the best of my
knowledge, that this thesis does not infringe upon anyone’s copyright nor violate
any other material from the work of others. All knowledge arising from external
sources has been fully acknowledged below under standard referencing practice.

Tobias Florian, BSc

Vienna, 2. Februar 2023

II



Abstract

The interest in numerical simulations in various fields of science and engineering
is rising steadily. Because of the broad community and the easy way to genera-
te custom solvers, the open source CFD (computational fluid dynamics) software
OpenFOAM® has taken a leading role in the development of finite volume codes.
Generally, the software is designed to solve multi-physical field problems via the
conservative finite volume method and, in case of non-stationary problems, is then
proceeded in time via a finite difference scheme in order to receive a transient
solution. In this thesis, we investigate the idea of a space-time finite volume for-
mulation, where both space and time are simultaneously discretized using a finite
volume approach. Apart from the benefit of a fully conservative formulation, the
big advantages of such an approach are the possibility for local refinement in both
space and time and the convenient treatment of moving boundaries.

Within the scope of the thesis, this method is deduced, some basic OpenFOAM®

solvers are transformed into the space-time formulation, and various one- and two-
dimensional test cases are then validated and compared to the original solvers.

III



Kurzfassung

Das Interesse an numerischen Simulationen in verschiedenen Bereichen der Wissen-
schaft und Technik nimmt stetig zu. Aufgrund der breiten Community und der ein-
fachen Handhabung, eigene Solver zu erstellen, hat die Open-Source-CFD-Software
OpenFOAM® eine führende Rolle bei der Entwicklung von Finite-Volumen-Codes
übernommen. Generell ist die Software zur Lösung multiphysikalischer Feldproble-
me unter Verwendung der konservativen Finiten-Volumen-Methode ausgelegt. Im
Falle nicht-stationärer Probleme erfolgt dann die zeitliche Entwicklung mit Hilfe
eines Finiten-Differenzen-Schemas. In dieser Arbeit untersuchen wir die Idee einer
Raum-Zeit-Finite-Volumen-Formulierung, bei der sowohl die räumliche als auch die
zeitliche Ausdehnung der Simulation gleichzeitig mit Hilfe eines Finite-Volumen-
Ansatzes diskretisiert werden. Neben dem Vorteil einer vollständig konservativen
Formulierung, sind die großen Vorzüge eines solchen Ansatzes die Möglichkeit der
lokalen Netzverfeinerung sowohl in Raum als auch in Zeit und die praktische Be-
handlung von sich bewegenden Randbedingungen.

Im Rahmen der vorliegenden Arbeit wird diese Methode hergeleitet, einige grund-
legende OpenFOAM® Löser in die Raum-Zeit-Formulierung transformiert, mit
verschiedenen ein- und zwei-dimensionalen Testfällen validiert und mit den ur-
sprünglichen Solvern verglichen.

IV



List of Figures

2.1 Solution algorithm (derived from [4]) . . . . . . . . . . . . . . . . . 9
2.2 Finite volume concept [4] . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Finite volume [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Clip of mesh [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Matrix construction of transport equation [4] . . . . . . . . . . . . . 12
2.6 Linear interpolation [4] . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Surface normal gradient ∇n [4] . . . . . . . . . . . . . . . . . . . . . 14
2.8 Numerical diffusion [4] . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Linear upwind scheme [4] . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Time discretisation [4] . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 Space-time finite volume mesh . . . . . . . . . . . . . . . . . . . . . 19
2.12 Space-time finite volume . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Conventional mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Space-Time mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Space-Time solution pure diffusion . . . . . . . . . . . . . . . . . . 27
3.4 scalarTransportFoam pure diffusion t = 1.0s . . . . . . . . . . . . . 27
3.5 1D diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Space-Time solution pure advection . . . . . . . . . . . . . . . . . . 30
3.7 scalarTransportFoam solution pure advection . . . . . . . . . . . . . 30
3.8 1D advection snapshot at t = 1.0s with different discretisation schemes 32
3.9 Space-Time solution advection/diffusion . . . . . . . . . . . . . . . 34
3.10 scalarTransportFoam solution advection/diffusion . . . . . . . . . . 34
3.11 1D advection/diffusion snapshot at t = 1.0s with different discreti-

sation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.12 Illustration of the time slab method applied to the 1D+t diffusion

problem described above . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 Validation of the time slab method . . . . . . . . . . . . . . . . . . 37
3.14 PitzDaily geometry (dimensions in mm) [10] . . . . . . . . . . . . . 38
3.15 Pitz-Daily velocity field based on simpleFOAM . . . . . . . . . . . 38
3.16 Pitz-Daily computational mesh . . . . . . . . . . . . . . . . . . . . 38
3.17 Pitz-Daily reference solution with scalarTransportFOAM . . . . . . 39
3.18 Pitz-Daily space-time mesh . . . . . . . . . . . . . . . . . . . . . . 40

V



List of Figures

3.19 Pitz-Daily space-time solution for temperature field . . . . . . . . . 41
3.20 Comparison of Pitz-Daily results with the space-time method to

scalarTransportFOAM at different time steps and different discreti-
sation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.21 Pitz-Daily locally refined space-time mesh . . . . . . . . . . . . . . 43
3.22 Pitz-Daily space-time solution for temperature field on locally re-

fined mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.23 Space-time PISO algorithm (derived from [4]) . . . . . . . . . . . . 45
3.24 Lid driven cavity geometry and mesh . . . . . . . . . . . . . . . . . 46
3.25 Evolution of the ux and the streamlines over time generated with

icoFoam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.26 Lid driven cavity space-time geometry and result for ux . . . . . . . 48
3.27 Lid driven cavity space-time geometry and result at t = 0.5s . . . . 49
3.28 Velocity magnitude at probe location (22.5mm|82.5mm) over the

whole time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.29 2D channel flow with moving boundary conditions - set up . . . . . 51
3.30 2D channel flow with moving boundary conditions - space-time mesh 51
3.31 Pressure filed of 2D channel flow with moving boundary conditions 52
3.32 2D channel flow with moving boundary conditions - velocity fields

at different time slices . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.33 Velocity magnitude at center line (x = 20mm) along the y-axis at

different time slices . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34 Velocity magnitude at center line (x = 20mm) along the time-axis

at different y-locations . . . . . . . . . . . . . . . . . . . . . . . . . 54

VI



Nomenclature

I Identity matrix

Ψ Vectorial or scalar quantity

ΨD Downwind cell value of quantity Ψ

Ψf Face value of quantity Ψ

ΨN Neighbour cell value of quantity Ψ

ΨP Owner cell value of quantity Ψ

ΨU Upwind cell value of quantity Ψ

σ Stress tensor

τ Shear stress tensor

b Body force per unit mass

S∗ Space surface area vector

Sf Surface area vector

Ss Space surface area vector

St Time surface area vector

u Velocity

u′ Temporary velocity not fulfilling continuity equation

u∗ Space-Time velocity

uf Face velocity

VII



Nomenclature

∆ Laplace operator

Γ Diffusion tensor or scalar diffusion coefficient

γ∗ Space-Time tensor

κ Thermal conductivity

A Coefficient matrix

b Source vector

Cf Face center

C Cell center

nf Face unit normal vector

n Normal vector

n∗ Space-Time normal vector

ns Space normal vector

nt Time normal vector

Sf Face area vector

µ Dynamic viscosity

∇ Nabla operator

∇n Normal gradient

∇∗ Space-Time nabla operator

ν Kinematic viscosity

ϕf Volumetric face flux

ϕf Volumetric flux

ρ Density

VIII



Nomenclature

ai,j Matrix coefficients

bi Source vector coefficients

Co Courant number

F 0uter force

p Pressure

Re Reynold’s number

T Temperature

w Interpolation weighting factor

IX



Contents

1 Introduction 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Scalar transport equation . . . . . . . . . . . . . . . . . . . 5
2.1.2 Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . 6

2.2 Classical finite volume formulation . . . . . . . . . . . . . . . . . . 9
2.2.1 General concept . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Finite volume mesh . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Equation discretisation and matrix construction . . . . . . . 11
2.2.4 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Space-time finite volume formulation . . . . . . . . . . . . . . . . . 18
2.3.1 General concept . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Finite volume mesh . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Equation discretisation . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 22
2.3.5 Time slab method . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Test cases 24
3.1 1D+t - test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 1D+t - diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 1D+t - advection . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 1D+t - advection/diffusion . . . . . . . . . . . . . . . . . . . 32
3.1.4 Time slab method . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 2D+t - Advection/Diffusion . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Local time stepping . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 2D+t - Incompressible Navier-Stokes . . . . . . . . . . . . . . . . . 44
3.3.1 Lid driven cavity . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Moving boundary condition . . . . . . . . . . . . . . . . . . 50

X



Contents

4 Summary 55

5 Discussion and outlook 57

Bibliography 60

XI



«People like us who believe in physics know that the distinction
between past, present and future is only a stubbornly persistent

illusion. Time, in other words, is an illusion.»
— Albert Einstein

1



1 Introduction

1.1 Motivation

Numerical simulations have become a well-established method to investigate phys-
ical phenomena and behaviours in various fields of science and engineering. The
enormous progress in computer science and processing power brings along the sci-
entists’ hunger to simulate bigger domains on the one hand and more accurately,
on the other hand. The most commonly used methods are the finite difference,
the finite element and the finite volume method, each, having its advantages and
disadvantages. Because of its conservation property, the latter is suited very well
for predicting fluid flows and related problems. The overall aim of the method is
to transform physical partial differential equations into algebraic equations, which
the computer can solve and display. Usually, the course of action has been to
divide the spatial domain into finite control volumes, then, integrate the underly-
ing equations over these control volumes and subsequently apply Gauss’ theorem
in order to transform volume integrals into surface integrals, which can then be
approximated using suitable numerical schemes, such as upwind scheme, midpoint
scheme, and so on. If the problem is time-dependent, the time derivative is dis-
cretized via a finite difference method such as Euler or Runge-Kutta of arbitrary
order. This procedure leads to one algebraic equation per control volume, per dif-
ferential equation, per time step. In order to follow the above steps from meshing
all the way to solving the huge systems of equations, the open source CFD software
OpenFOAM® provides all the necessary functionalities and different solvers for
a broad range of physical problems. Furthermore, the C++-based code enables
editing and generating custom solvers.

The aim of this work is to use the OpenFOAM® functionalities and transform
several solvers into space-time finite volume solvers. The basic idea of this approach
is to not only discretize the spatial domain into finite volumes, but rather divide
the whole space-time domain into space-time finite volumes. To clarify the idea,
imagine a one-dimensional bar along the x-axis with a heat peak in the middle
that transiently diffuses from the middle to the side ends. The classical way is
to discretize the bar along the x-axis and process time step per time step. The

2



1 Introduction

space-time analogy discretizes the bar along the x-axis, the time along the t-axis
and by pulling the time derivative into the first spatial derivative then solves the
transient problem as one mathematically static problem. In doing so, we increase
the computational dimension of the problem by one, as in the example case, the 1D
setup is transformed into a 2D (�=1D+t) problem. The advantages of this method
are its fully conservative behaviour, its treatment with moving boundaries and its
ability to have local mesh refinement in space and time. The local refinement in
space and time potentially makes large-scale simulations on clusters more feasible,
since also parallelisation will be enabled in both, space and time.

The following investigates the space-time finite volume approach to solve fluid
dynamical problems and the suitability of OpenFOAM® to serve as a base program
to transform existing finite volume code into space-time.

The thesis is organized as follows. After an overview of the state of the art in Sec.
1.2, the second chapter covers the theoretical part, more precisely, the description
of the conventional and the space-time finite volume method, the derivation and
transformation of fundamental equations into space-time and an explanation of
the time slab method in OpenFOAM®. Within the third chapter, the space-time
OpenFOAM® implementations are validated by means of some 1D+t and 2D+t
test cases. Herein, the possibility to deal with moving boundary conditions and
also local mesh refinement is shown. The fourth chapter summarises the results
and finally, the fifth chapter provides a critical discussion and an outlook on future
studies and reveals what needs to be done to drive the method forward.

1.2 State of the art

The space-time approach solving fluid flow problems appears to be first linked
with finite element methods. Therein, also higher order schemes are introduced
in order to increase numerical accuracy. The approach also takes root in the DG
(discontinuous Galerkin) community. In general, the approach is applied more
widely in conjunction with finite elements than with finite differences or finite
volumes. Zwart [13] derives the integrated space-time finite volume method and
calculates free surface problems. Rendall et al. [12] uses the technique to perform
aerodynamic, store separation and rotor simulations in 2D+t. Herein, the moving
boundaries are in the foreground. Since the space-time finite volume description
brings along conservation in space and time, there is no need to apply the Leibnitz
integration rule[13]. In this respect, conventional finite volume solvers incorporate
the multiple reference frame (MRF) method [9], the immersed boundary condi-
tions [6] or, using the Arbitrary Lagrangian-Eulerian method, have to implement

3



1 Introduction

geometrical conservation rules [3]. Those methods demand special treatments of
the underlying equations.

Indeed, space-time simulations are still only performed up to order 2D+t using a
3D mesh. Advancing the method to 3D+t is currently under development, but to
date, there are no 4D mesh generators available. [12]

In this work, the 3D mesh generating tool that comes with OpenFOAM® is used
to execute 1D+t and 2D+t simulations. Also, the mesh refinement libraries can
be employed one-to-one.

4



2 Theory

This section covers the theoretical background of this work. It starts with an
introduction of the fundamental equations needed to solve the test cases, such
as the incompressible Navier-Stokes equations and the passive scalar transport
equation. The latter is then used to derive the classical finite volume method.
Afterwards, the space-time finite volume approach is presented. This starts with
an illustration of a space-time grid and continues with the full description of the
space-time finite volume method.

2.1 Governing equations

2.1.1 Scalar transport equation

In fluid dynamics, most processes are described by equations of the type

∂Ψ

∂t����
temporal rate of change

+∇ · (uΨ)� �� �
convection

= Γ∇2Ψ� �� �
diffusion

+ F����
sources

, (2.1)

the general transport equation of any quantity Ψ. Considering the temperature T
as the underlying quantity, Eqn. 2.1 becomes the heat transport equation

∂T

∂t����
temporal rate of change

+ u · ∇T� �� �
convection

= κ∇2T� �� �
diffusion

+ F����
heat sources/sinks

, (2.2)

that specifies the evolution of the temperature at all points x of a finite domain
at all times t > t0 based on an initial condition T0(x) = T0(x, t0). Therein, ∂T

∂t

provides the temporal change of the temperature at a fixed position x at a certain
time t. The next term, u · ∇T gives the negative rate of change due to convection
with a prescribed velocity u. The first term on the RHS, κ∇2T , is called the
diffusion term with κ being the thermal diffusivity. By means of the examined

5



2 Theory

example, it balances the local temperature differences. Eventually, the last term
F (x, t) describes sources and sinks of the present quantity T .[7]

In case the temperature field does not affect the convection velocity field u, (2.2)
is called a passive scalar transport equation. The respective OpenFOAM® solver
which handles the problem and is later transferred into space-time is called scalar-
TransportFoam[11]. In Sec. 3, this solver will be used to test pure diffusion, pure
advection and advection-diffusion in a prescribed velocity setup.

2.1.2 Navier-Stokes equation

Typically, the velocity field is not known a priori and is, in its most simplified
version, described by the famous Navier-Stokes equation for Newtonian, incom-
pressible fluids

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ F (2.3)

which is by itself a transport equation. The difference to (2.2) is that now, the
momentum per mass, u, which is a vectorial quantity, is transported. In (2.3) the
convective term u · ∇u brings along a non-linearity and with that, a number of
numerical challenges.[7]

The following shows the derivation steps to yield (2.3) and which additional equa-
tions and simplifications are necessary in order to solve for the flow field u. Ad-
ditionally, the PISO1 algorithm is shortly explained, which is implemented in the
OpenFOAM® solver icoFoam[5] and transformed into space-time in Sec. 3.

Derivation of the Navier-Stokes equation

The conservation of momentum can be written as

∂ρu

∂t
+∇ · (ρuu) = ∇ · σ + ρb (2.4)

where b is any body force per unit mass, for instance the gravitational force, and σ
represents the symmetric stress tensor. Let us have a closer look at the term ∇·σ
describing forces within a fluid. This is the point where Newton’s fluid model2
takes action, which states the linear relation between shear stress τxy and the

1Pressure-Implicit with Splitting of Operators
2or linear viscosity model

6



2 Theory

velocity gradient, by multiplication of the dynamic viscosity µ. For incompressible
fluids, it can be written as [7]

τ = µ
�∇u+∇uT

�
(2.5)

and
σ = τ − pI. (2.6)

Substitution into 2.4 yields

∂ρu

∂t
+∇ · (ρuu)−∇ · (µ∇u)

−∇ · �µ(∇u)T
�
= −∇p+ ρb.

(2.7)

Further, we denote the conservation of mass in its general form

∂ρ

∂t
+∇ · (ρu) = 0. (2.8)

Assuming an incompressible fluid, i.e. ρ = constant, it reduces to

∇ · u = 0. (2.9)

With that, ν = µ/ρ being the kinematic viscosity, p being the kinematic pressure
and the identity

∇ · �ν(∇u)T
� ≡ ν∇(∇ · u) + (∇ν) · (∇u), (2.10)

Eqn. 2.7 can be written as the Navier-Stokes equation for homogeneous, incom-
pressible, Newtonian fluids

∂u

∂t
+∇ · (uu)−∇ · (ν∇u)

− (∇ν) · (∇u) = −∇p+ b.
(2.11)

Thus, we end up with an equation with one unknown vector field u and one
unknown scalar field p. In order to yield a solvable system, we use another identity

∇ · (∇ · ∇u) ≡ ∇2(∇ · u), (2.12)

plug (2.9) into (2.11), apply the divergence operator and receive an equation for
the pressure

∇2p+∇ · [∇ · (uu)] = 0. (2.13)

For the sake of simplicity, the body force per unit mass b is assumed to be diver-
gence free and time independent. In this incompressible setup, the conservation of
mass is a steady equation, and thus, it can be interpreted as a constraint to the
flow field.[4]

7



2 Theory

PISO algorithm

Since it is intended to solve transient problems with the space-time approach, the
PISO algorithm is shortly explained in this section and transformed into space-time
in Sec.3. This algorithm is well suited for solving homogeneous, incompressible,
transient flow fields. For the sake of simplicity, no thermal coupling, no outer forces
and constant viscosity is assumed. Therefore, we recall the previously derived and
simplified momentum equation and pressure equation

I:
∂u

∂t
+∇ · (uu)−∇ · (ν∇u) = −∇p. (2.14)

and
II: ∇2p+∇ · [∇ · (uu)] = 0. (2.15)

The aim is to evaluate the vector field u and the pressure field p for every time
step n+1. The PISO algorithm belongs to the family of pressure-velocity coupling
algorithms. Thereby, the basic idea is that at the beginning of each time step n+1,
the momentum equation I is solved for u′ with pn and the one un of the non-linear
term ∇ · (uu) from the previous time step n. The u′ denotes, that this solution
does, in general, not fulfill the continuity equation (2.9) anymore. Therefore, u′ is
substituted into the pressure equation II, which is then solved for p. This p is then
used to update u′ in order to match the continuity equation (2.9) again. Now,
let us have a closer look at the equations. For the sake of clarity, we will use the
following notation in order to rewrite for example I, without the pressure gradient

A · u ≡ Au−H(u) ≡ ∂u

∂t
+∇ · (uu)−∇ · (ν∇u), (2.16)

where Au is linear in u and H(u) denotes a function of u. This way, the momen-
tum equation can be written as

A · u = −∇p, (2.17)

and is well known as the momentum predictor. The pressure equation becomes

∇ · 1
A
∇p = ∇ ·

�
H(u)

A

�
(2.18)

and the equation, that corrects u′ (momentum corrector) becomes

u :=
H(u)

A
− 1

A
∇p. (2.19)

The essence of the PISO algorithm is that after the momentum corrector, before
heading to the next time step, the pressure equation (2.18) is again solved with

8



2 Theory

the corrected momentum of (2.17)[4]. This procedure can be executed several
times. Now, since the pressure, and thus, the pressure gradient has changed, the
momentum equation is not fulfilled anymore. Hence, we could start the whole
procedure again at the momentum predictor, now with a better guess of u and p
- this can be called the outer iteration loop, which can also be seen in Fig. 2.1.
Once u and p converge, the next time step can be started.[7]

START: WHILE:

𝑡 = 𝑡 + Δ𝑡
Momentum
predictor

Pressure
equation

𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝐮
𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑝

Momentum
corrector

PISO
loop 𝐮

Outer
loop 𝐮, 𝑝

ENDWHILE

𝑡 < 𝑡_𝑒𝑛𝑑𝑡 = 𝑡_𝑠𝑡𝑎𝑟𝑡

Time
loop

𝐮, 𝑝

Figure 2.1: Solution algorithm (derived from [4])

In most cases, having small enough time steps, proceeding the outer loop once and
the PISO loop twice delivers sufficient accuracy[7].

2.2 Classical finite volume formulation

As already mentioned in the introduction, the overall goal of the finite volume
method is to transform algebraic equations, mainly partial differential equations,
into linear systems of equations, which the computer can solve. Having derived
the governing equations to solve for example a fluid flow in the previous section,

9



2 Theory

the following describes how the different terms are treated and transformed into
solvable systems of equations. The derivation is mainly based on the ideas of
Greenshields and Weller [4].

2.2.1 General concept

As relating methods like the finite element method or finite difference method, also
the finite volume method attempts to represent continuous physical phenomena by
discrete values. Thereby, time is divided into time intervals ∆t, the physical space
is split into finite volumes, which take discrete values of quantities like velocity
u or pressure p, and algebraic equations become sets of linear equations. The
following image (Fig.2.2) summarizes the general concept.[4]

Figure 2.2: Finite volume concept [4]

10



2 Theory

2.2.2 Finite volume mesh

In Fig. 2.2, the second row "space", already shows how a solution domain, here
a pipe, can be split into cells or finite volumes. These can take various shapes,
such as in the figure below (Fig.2.3). Therein, the entities cell volume V, face
area vector Sf , face unit normal vector nf = Sf/|Sf | and the relation dSf = nfdS
will play a huge role, as the finite volume method deals with volume and surface
integrals and assigns quantities like pressure p to cell centers C and face centers
Cf .[4]

Figure 2.3: Finite volume [4]

2.2.3 Equation discretisation and matrix construction

Discretisation is the process that transforms continuous differential equations into
sets of linear equations. For example, let us assume a clip of a mesh containing N
cells (Fig. 2.4). Thus, each cell holds a discrete value, e.g. pressure pi.

Figure 2.4: Clip of mesh [4]

In particular, discretisation of the p-equation for the exemplary cell 43 might yield
following equation

a43,21p21 + a43,41p41 + a43,43p43 + a43,45p45 + a43,66p66 = b43. (2.20)

11



2 Theory

This way, we obtain one linear equation per cell (e.g. cell number 43), per equation
to solve(e.g. the p-equation). Herein, ai,j correspond to coefficients derived from
discretisation schemes and bi are coefficients corresponding to sources. By sorting
the equations, the system of equations can be rewritten as

a1,1 a1,2 a1,3 · · · a1,N
a2,1 a2,2 a2,3 · · · a2,N
a3,1 a3,2 a3,3 · · · a3,N
...

...
... . . . ...

aN,1 aN,2 aN,3 · · · aN,N




p1
p2
p3
...
pN

 =


b1
b2
b3
...
bN

 (2.21)

or
[A][p] = [b] (2.22)

where the coefficient matrix A becomes a sparse matrix since for each diagonal
entry ai,i only neighbour cells contribute a non-zero entry. The solution method for
the matrix equations of type (2.22) can be chosen freely, for example Gauss-Seidel
or Conjugate Gradients etc. and is not under investigation in this work. The eval-
uation of the coefficients is dependent on the differential equation, the boundary
conditions and on the numerical schemes. Fig.2.5 , for example, shows how the
different terms in the transport equation of a quantity Ψ build up the coefficient
matrix and the source vector, where the stars illustrate a non-zero entry.[4]

Figure 2.5: Matrix construction of transport equation [4]

The following examines discretisation of

1. Laplacian term

2. advection term

3. gradient

4. source term

5. time derivative

12



2 Theory

In general, the course of action is to integrate the underlying partial differential
equation over the finite volumes to receive volume integrals. Subsequently, apply
Gauss divergence theorem to transform some volume integrals into surface inte-
grals, i.s. all the integrals containing the divergence operator, e.g. the Laplacian
term ∇ · (Γ∇Ψ) or the convective term ∇ · (uΨ) in a transport equation. Sub-
sequently, these surface integrals can be approximated by a summation over the
faces of one finite volume, s.t.�

S

(dS ·Ψ) →
�
f

Sf ·Ψf , (2.23)

with dS = ndS. Since the surface vector Sf is known from the mesh information,
Ψf between two cells still has to be computed via an interpolation scheme.[4]

Discretisation of Laplacian term

Let us start with the Laplacian term ∇ · (Γ∇Ψ) of the transport equation in Fig.
2.5. Integrating over the finite volume and applying Gauss’ divergence theorem
yields �

V

∇ · (Γ∇Ψ)dV =

�
S

(Γ∇nΨ)dS →
�
f

|Sf |Γf∇nΨf , (2.24)

with known mesh data Sf and yet to obtain diffusivity at faces Γf and surface
normal gradient ∇n. As previously described, field values like Γ or Ψ are stored
at cell centers, whereas quantities with subscript f have to be determined at cell
faces between two cells according to

Ψf = wΨP + (1− w)ΨN, (2.25)

with P, N and w denoting the owner cell, the neighbour cell and the weighting
factor, respectively. The most commonly used and most intuitive interpolation
scheme is linear interpolation with weighting factors

w =
dfN
dPN

=
n · dN

n · (dP + dN)
(2.26)

according to Fig. 2.6.

13



2 Theory

Figure 2.6: Linear interpolation [4]

Further, the surface normal gradient ∇n can be discretised as

∇nΨf =
(ΨN −ΨP)

|∆d| , (2.27)

according to Fig. 2.7, for orthogonal meshes, i.e. θ = 0.[4]

Figure 2.7: Surface normal gradient ∇n [4]

Discretisation of advection term

Now, let us examine the discretisation of the advection term ∇ · (uΨ) of the
transport equation in Fig. 2.5. Again, integrating over the finite volumes and
applying Gauss’ divergence theorem, gives�

V

∇ · (uΨ)dV =

�
S

uΨ · dS →
�
f

Sf · ufΨf →
�
f

ϕfΨf (2.28)

with the volumetric flux ϕf = Sf · uf , where uf is conventionally obtained by face
interpolation of u. The critical, i.e. the advected quantity Ψf is where advec-
tion schemes come into play. There exists a broad number of advection schemes
characterised by boundedness/unboundedness, first or higher order accuracy and

14



2 Theory

different numerical stability. In this work, only the first and second order upwind
scheme and the linear interpolation scheme are shortly discussed based on Fig. 2.6
Therein, the determination of the desired face quantity Ψf is dependent on the
flow direction. Recalling the linear interpolation scheme, already discussed above,
defines Ψf as a linear combination of the upwind cell value ΨU and the downwind
cell value ΨD, whereas the upwind scheme specifies Ψf only based on the upwind
cell value ΨU. It can be shown that the linear interpolation scheme is second
order accurate but yields unbounded solutions, whereas the upwind scheme is only
first order accurate but yields bounded results, if ∇ · u = 0. The most significant
drawback of the upwind scheme is its diffusive character. In order to see that, let
us state the Taylor’s series expansion

Ψ(x+∆x) = Ψ(x) +
∂Ψ

∂x
∆x+

∂2Ψ

∂x2

∆x2

2
+ . . . . (2.29)

In an 1D setup, application of the upwind scheme yields

ΨP −ΨU

∆x
=

∂Ψ

∂x
+

∂2Ψ

∂x2

∆x

2
+ . . . (2.30)

which implies that the upwind scheme diffuses Ψ with ∂2Ψ
∂x2

∆x
2

, i.e. a Laplacian
term with diffusion coefficient ∆x

2
. The numerical diffusion is particularly high

when the advection direction is not perpendicular to the cell faces. The extreme
case, as shown in Fig. 2.8, where we have a 2D setup, a square mesh, advection
velocity inclination of 45° and Ψ = 1 at the left boundary and Ψ = 0 at the bottom
boundary. The dashed line clearly reveals the diffusion of the step function, which
is the analytical solution in this case.[4]

Figure 2.8: Numerical diffusion [4]

Concerning this issue, the second order linear upwind scheme provides remedy.
The essence of the scheme is to additionally take the gradient ∇u of the upwind
cell into account. Thus, the upwind cell value ΨU is interpolated to the face in
terms of the upwind cell gradient ∇u and the vector dp from the upwind cell

15



2 Theory

center to the face center according to Fig.2.6. As shown in Fig. 2.9, this method
contributes the face value Ψf represented by ΨU to the system matrix [A] (see
Eqn. 2.22) and the extrapolation dp · ∇u explicitly to the RHS [b].[4]

Figure 2.9: Linear upwind scheme [4]

Discretisation of gradients

Discretisation of gradients, like for example the pressure gradient on the RHS of
the momentum equation (2.7), follows a similar procedure:�

V

∇Ψdv =

�
S

(ΨdS) →
�
f

SfΨf (2.31)

Where Ψf can be evaluated by a linear scheme like in Fig.2.6 or e.g. by a least
square method.[4] Indeed, only linear interpolation is used throughout all simula-
tions in this work.

Discretisation of source terms

Source terms like SΨ in the transport equation in Fig. 2.5 remain a volume integral
after integrating over the finite volume and contribute to the RHS in the governing
system matrix.

Discretisation of time derivative

The last term to be discretised is the time derivative. This will be the crucial
difference compared to the space-time formulation, as we will see. Conventionally,
a transient simulation over a total time is divided into time steps or intervals of
duration ∆t and is discretised in a finite difference manner. The simplest method
is the first order Euler scheme, illustrated in the following sketch.

16



2 Theory

Figure 2.10: Time discretisation [4]

Therein (Fig.2.10), Ψ0 and Ψ denote the quantity at the old and the current time
level, respectively. This way, the Ψ0 contributes to the source vector and Ψ to the
system matrix [A]. The size of the time step can be evaluated via the Courant
number

Co =
ux∆t

∆x
(2.32)

where ux and ∆x are the advection velocity and the cell size, respectively. A 1D
advection setup with an explicit upwind scheme introduces the Courant-Friedrich-
Lewi condition for convergence, Co ≤ 1, suggesting that a quantity may not be
transported further than one cell per time step. For other cases, the actual con-
vergence limit depends on the spatial and temporal discretisation schemes and
may fall below 1. Indeed, there exist also higher order time discretisation schemes
like Euler backward scheme or Crank-Nicolson scheme, which are not examined in
detail within the scope of this work. Beside the order of the time scheme, another
essential characteristic is whether the time scheme in combination with the spatial
discretisation schemes is explicit or implicit. In this context, explicit means that,
e.g. the Laplacian term is discretised at the old time level Ψ0 and as a conse-
quence only contributes to the source vector [b] in the governing system. On the
other hand, implicit implies a discretisation of the term at the current time level,
yielding contribution to the system matrix [A], also to off diagonal entries. An
implicit simulation usually brings along better stability but more computational
effort.[4]

2.2.4 Initial conditions

As described above, processing a simulation in time, values Ψ0 at the old time
level have to be known. Thus, in order to start a simulation, initial conditions
have to be set, for example, an initial temperature field.

17



2 Theory

2.2.5 Boundary conditions

The last ingredient to build up the final matrices is the incorporation of the bound-
ary conditions. At each boundary patch of the computational domain, we have
to specify conditions which correctly represent the physical behaviour of the sim-
ulated case. Herein, only the two most basic boundary conditions, the fixed value
and the fixed gradient condition are examined. More advanced boundary condi-
tions can be deduced from those two and are not needed for the test cases in this
work. Whenever the discretisation of a term demands interpolation to a boundary
face, it needs special treatment. Recalling the transport equation of (2.5) and the
discretisation schemes above, the advection term and the Laplacian term transform
to

• ∇ · (uΨ) → �
f ϕfΨ

• ∇ · (Γ∇Ψ) → �
f |Sf |Γf∇nΨf .

Thus, the values Ψf and ∇nΨf must be prescribed by the following boundary
conditions:

• The fixed value boundary condition 3 assigns Ψb a fixed value, e.g. a fixed
temperature.

• The fixed gradient boundary condition 4 assigns ∇nΨb a prescribed gradient
value, where ∇n ≡ n · ∇. For example, a zero gradient condition suggests
no change of the quantity at the boundary.

Depending on the the discretised term and the underlying boundary condition,
both, the system matrix [A] and the source vector [b] are effected. [4]

2.3 Space-time finite volume formulation

The overall aim to transform time dependent partial differential equations into sys-
tems of linear equations does not change. The crucial difference of the space-time
finite volume method is the treatment of the time discretisation. The following
investigates the general idea and the necessary steps to transform the previously
described finite volume method into space-time.

3Also called Dirichlet boundary condition
4Also called Neumann condition

18



2 Theory

2.3.1 General concept

In this model, the finite volumes do not only fill the spatial domain but rather
the whole space-time domain. In this way, the time discretisation is no longer
treated with a finite difference scheme which makes the method fully conservative.
Further, the dimension of the computational domain increases by one, such that
e.g. a transient 1D problem, where each time step is computed after another,
transforms into a 1D+t (�=2D) problem, which is then solved as one connected
algebraic problem.

2.3.2 Finite volume mesh

In order to visualize an example space-time mesh, imagine a 1D beam which is
divided into 8 finite volumes. Now assume that we want to compute a transient
temperature distribution at this domain where the total simulation time is divided
into 8 time steps. Hence, conventionally, 8 time steps would be processed on this
1D domain. If the space-time method is applied on the same spatial domain, the
control volume transforms into a 1D+t (�=2D) mesh, as depicted in Fig. 2.11.

Figure 2.11: Space-time finite volume mesh

19



2 Theory

2.3.3 Equation discretisation

Above, in Sec.2.2.3, the discretisation methods for the conventional finite volume
method have already been investigated. Concerning the transformation into space-
time, most of the techniques remain equivalent, and only a few changes have to
be done. The most incisive difference is the fusion of the time derivative into the
convection term of a transport equation. In order to demonstrate this, let us recall
the transport equation (2.2) of a quantity Ψ without sources

∂Ψ

∂t����
temporal rate of change

+∇ · (uΨ)� �� �
convection

= Γ∇2Ψ� �� �
diffusion

. (2.33)

Further, we introduce the space-time identities u∗,∇∗ and γ∗:

u∗ =


ux

uy

uz

1

 (2.34)

∇∗ =


∂
∂x
∂
∂y
∂
∂z
∂
∂t

 (2.35)

γ∗ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (2.36)

These identities can be used to transform (2.33) into

∇∗ · (u∗Ψ) = γ∗Γ(∇∗)2Ψ (2.37)

where u∗ contains the convection velocities in the spatial dimensions and the time
velocity being 1 in the time dimension, ∇∗ is the nabla operator extended by the
time derivative and γ∗ ensures that Ψ only diffuses into the spatial directions.
Before heading to the next steps, let us first take a look at a 2D+t space-time
finite volume5 (Fig. 2.12).

5a 3D+t space-time finite volume is hard to imagine, however, mathematically nothing
changes

20



2 Theory

Figure 2.12: Space-time finite volume

Therein, the important quantities are the spatial face normal vectors ns with their
surface area vectors Ss = nsdS and the time face normal vectors nt with their
surface area vectors St = ntdS. Extending these entities to 3D+t we obtain

n∗ =


nx

ny

nz

nt

 (2.38)

and

S∗ =


Sx

Sy

Sz

St

 (2.39)

with the important relation
S∗ = n∗dS (2.40)

where the cell surface encloses the space-time volume V ∗. Integrating (2.37) over
those volumes

�
V ∗

∇∗ · (u∗Ψ)dV ∗ =
�
V ∗

γ∗Γ(∇∗)2ΨdV ∗ =
�
V ∗

γ∗∇∗ · (Γ∇∗Ψ)dV ∗ (2.41)

and applying Gauss’ divergence theorem gives

21

n , = ( ~: ) 

n• = ( : : ) = ( ~ ) 

n , = ( ~: ) 

s· = ( ~; ) = 0: ) 
t 

X 



2 Theory

�
S∗
(u∗Ψ)n∗ · dS∗ =

�
S∗

γ∗(Γ∇∗Ψ)n∗ · dS∗. (2.42)

Now, using (2.40) and the surface integral approximation of Sec.2.2.3�
S∗
(dS∗ ·Ψ) →

�
f

S∗
f ·Ψf , (2.43)

the diffusion term of (2.42) becomes

γ∗
�
V

∇∗ · (Γ∇∗Ψ)dV = γ∗
�
S

(Γ∇∗
nΨ)dS∗ → γ∗ �

f

|S∗
f |Γf∇∗

nΨf , (2.44)

which is effectively equivalent to (2.24) with zero entries in the time dimension,
since γ∗ excludes them and does not change the spatial terms. On the other hand,
the advection term of (2.42) becomes�

S∗
(u∗Ψ)n∗ · dS∗ =

�
S∗
(dS∗ · u∗Ψ) →

�
f

S∗
f · u∗Ψf →

�
f

ϕ∗
fΨf , (2.45)

with ϕ∗
f = S∗

f · u∗
f , the volumetric flux, as in (2.28). And also here, the already

described advection schemes have to be applied to obtain the face values Ψf in the
spatial directions as well as in the time direction.

In other words, the decisive difference to the conventional finite volume method
is the fusion of the time derivative and the advection term. The discretisation of
the other terms remain the same. The space-time tensor γ∗ ensures that spatial
phenomena like diffusion or surface tension are not propagated in time.

2.3.4 Boundary conditions

The boundary conditions in the space-time approach represent different physical
meanings. Having a computational domain like in Fig. 2.11, the bottom boundary
at tstart represents the initial condition of the case. For example, if we recall the
setup in 2.3.2 and want to assign the 1D beam a starting temperature, the face
values at the bottom boundary have to be set accordingly. The boundary vis-à-vis
at tend is set to zero gradient (see Sec. 2.2.5), which actually enforces a steady
state at the tend boundary. Hence, if the steady state is not yet reached, an error
is induced at this point. A more appropriate boundary condition would be a zero
second derivative condition, which reflects the physical behaviour more reasonably.
However, the zero gradient is used in this work, since it is a standard functionality

22



2 Theory

in OpenFOAM® and the location and the extend of the error are acceptable for
most cases. Along the time axis the boundary conditions can be set arbitrarily
and have the same meaning as in a conventional simulation. In this context, it
is easy to incorporate moving boundary conditions, provided that the motion is
known a priori, since the boundaries capture the whole space-time domain.

2.3.5 Time slab method

In order to investigate the computational effort of both the conventional and the
space-time approach, let us imagine a 1D spatial domain with ns cells and the
request to compute nt time steps. If we seek a solution for one partial differential
equation, e.g the heat PDE, the conventional method requires solving nt times a
ns×ns system of linear equations, whereas the space-time method requires solving
once a (ns∗nt)×(ns∗nt) system of linear equations. In order to decrease the effort,
the time slab method can be used where the time domain is divided into nslabs time
slabs, which are computed one after another. This results in solving nslabs times a
(ns ∗ nt

nslabs
)× (ns ∗ nt

nslabs
) system of linear equations. Thereby, the results received

at the faces of the tend boundary of the previous time slab serves as the initial con-
dition, i.e. the face values of the tstart boundary, for the current time slab. Herein,
the previously discussed error induced by the zero gradient boundary condition
takes action at each time slab. This issue demands the implementation of the zero
second derivative boundary condition and further investigation. Nonetheless, this
method is showcased in Sec.3.

23



3 Test cases

This section deals with the validation of the space-time finite volume method in
OpenFOAM®. The complexity of the test cases will grow from the first to the
last and will cover

• 1D+t - Diffusion

• 1D+t - Advection

• 1D+t - Advection/Diffusion

• 2D+t - Advection/Diffusion

• 2D+t - Incompressible Navier-Stokes

• 2D+t - Incompressible Navier-Stokes with moving boundary conditions

Each of the following subsections will start with a description of the case, followed
by the underlying mathematical formulation, the transformation into space-time,
the visualization of the results achieved by the conventional and the space-time
OpenFOAM® solver. Additionally, possible benefits or weaknesses of the existing
OpenFOAM® architecture will be carried out and also will be mentioned in the
subsequent chapters, sections 4 and 5.

3.1 1D+t - test cases

The one-dimensional test cases investigate pure diffusion, pure advection and ad-
vection/diffusion each on the same geometry and mesh. For the following, let us
assume a one dimensional bar. The meshes for the conventional and the space-time
method are shown in Figs. 3.1 and 3.2. Therein, we can see the same discretisation
in space and time, i.e. the spatial extension of 2m into 100 cells with ∆x = 0.02
and the time extension of 2s into 100 cells with ∆t = 0.02. For the sake of consis-
tency, the time step of the conventional simulations is always set to ∆t = 0.02 and
also 100 steps are proceeded with the OpenFOAM® scalarTransportFoam. Keep
in mind that a one dimensional bar only has spatial extensions in one direction.

24



3 Test cases

Figure 3.1: Conventional mesh

Figure 3.2: Space-Time mesh

3.1.1 1D+t - diffusion

The simplest setup to start is solving the diffusion equation

∂T

∂t����
temporal rate of change

= κ∇2T� �� �
diffusion

(3.1)

for temperature T and thermal conductivity κ = 0.1m2

s
. Let us assume

T (0, t) = 1

T (2, t) = 0

T (x, 0) = 0

(3.2)

25



3 Test cases

which is a fixed temperature of 1K and 0K at the left and right boundary and
an initial temperature contribution of 0K elsewhere. The according space-time
problem reads

∇∗ · (u∗T ) = γ∗κ(∇∗)2T (3.3)

with

u∗ =
�

0
1

�
(3.4)

∇∗ =
�

∂
∂x
∂
∂t

�
(3.5)

γ∗ =
�

1 0
0 0

�
(3.6)

with fixed value boundary conditions at the left, right and bottom boundaries set
to be 1K, 0K and 0K, respectively and a zero gradient boundary condition at the
top boundary of Fig. 3.2. The analytical solution to this particular problem is

T = 1− erf(x/2
√
κt) (3.7)

according to [1]. The result of the space-time finite volume method is revealed
in Fig. 3.4, where we can see that the temperature diffuses away from the left
boundary.

26



3 Test cases

Figure 3.3: Space-Time solution pure diffusion

The scalarTransportFoam solver outputs the following temperature distribution
recorded at t = 1.0s:

Figure 3.4: scalarTransportFoam pure diffusion t = 1.0s

A closer look at the results in Fig. 3.5, where the temperature distributions at
t = 1.0s of the analytical solution, the space-time simulation and the scalarTrans-
portFoam simulation are plotted, outlines a good agreement of the data. The

27



3 Test cases

absolute error is of the order ∆t, which is not surprising, since the discretisation
schemes in use are of order O(∆t) and O(∆x2).

(a) Temperature distribution at t = 1.0s (b) Absolute error at t = 1.0s

Figure 3.5: 1D diffusion

3.1.2 1D+t - advection

Next, the advection equation

∂T

∂t����
temporal rate of change

+ u · ∇T� �� �
convection

= 0 (3.8)

is considered on the same geometry with the only difference that the fixed value
boundary condition on the right boundary is changed into a zero gradient con-
dition. Here, the temperature is transported along the domain purely by the
advection velocity, which yields the problem specification:

T (0, t) = 1

∂T (2, t)

∂x
= 0

T (x, 0) = 0

ux(x, t) = 1

(3.9)

The according space-time formulation of the problem is

∇∗ · (u∗T ) = 0 (3.10)

28



3 Test cases

with

u∗ =
�

ux

1

�
(3.11)

∇∗ =
�

∂
∂x
∂
∂t

�
(3.12)

Here, the analytical solution is just the step function

T (x, t) = T0(x− uxt) (3.13)

with T0 being the initial contribution according to 3.12. For starters, first order
schemes, i.s. Gauss upwind scheme in space and Euler implicit scheme in time are
used for the scalarTransportFoam simulations. The space-time equivalent to the
Euler implicit scheme is Gauss upwind scheme to discretise the time component of
∇∗. The result of the space-time simulation (Fig. 3.4) clearly reveals the numerical
diffusion (similar to see Fig. 2.8) increasing in time. Also the scalarTransportFoam
simulation (Fig. 3.7 snapshot at t = 1.0s) indicates the same effect.

29



3 Test cases

Figure 3.6: Space-Time solution pure advection

Figure 3.7: scalarTransportFoam solution pure advection

Further, having a closer look at the data at t = 1.0s plotted against the analytical
solution (see Fig. 3.8a), clarifies the impact of the numerical diffusion. Remedy for
this is using higher order schemes. Those higher order schemes are commonly in use
in OpenFOAM® performing conventional finite volume simulations, but correct

30



3 Test cases

application within the space-time method demands special treatment. Therefore,
we reorder 3.24 and introduce the pseudo time derivative ∂

∂t∗

∂T

∂t∗
+∇∗ · (u∗T )− γ∗κ(∇∗)2T = 0 (3.14)

and iterate over pseudo time steps with the desired discretisation schemes for ∇∗

and (∇∗)2 until ∂T
∂t∗ = 0, speaking in numeric terms until ∂T

∂t∗ < δtolerance. The
improvement of high order schemes can be seen in Figs. 3.8. Interestingly, using
first order schemes in space and time yields the same result for both simulations.
Then, increasing the order in space outputs small differences where the space-
time simulation performs slightly worse before the advection step of the analytical
solution, and slightly better afterwards. Switching both, spatial and temporal
discretisation order to 2 indicates an advantage of the space-time method when it
comes to overshoots in the surrounding of sharp steps, as we have it in this case.
Therein, it has to be mentioned that the conventional simulation is processed with
Crank-Nicolson scheme [2], which is, indeed, not the optimal choice in this case.
OpenFOAM® offers the possibility to blend between Eulerian and Crank-Nicolson
scheme, which would decrease the overshoots, but this is not within the scope of
this work.

31



3 Test cases

(a) Temperature distribution first order in
space, first order in time

(b) Temperature distribution second order
in space, first order in time

(c) Temperature distribution second order in
space, second order in time

Figure 3.8: 1D advection snapshot at t = 1.0s with different discretisation schemes

3.1.3 1D+t - advection/diffusion

Having examined pure diffusion and pure advection separately, let us now solve
the combined advection/diffusion equation

∂T

∂t����
temporal rate of change

+ u · ∇T� �� �
convection

= κ∇2T� �� �
diffusion

(3.15)

within the same setup, boundary and initial conditions as for the pure advection
problem with κ = 0.01. The space-time problem reads

32



3 Test cases

∇∗ · (u∗T ) = γ∗κ(∇∗)2T (3.16)

with

u∗ =
�

ux

1

�
(3.17)

∇∗ =
�

∂
∂x
∂
∂t

�
(3.18)

γ∗ =
�

1 0
0 0

�
(3.19)

The analytical solution for this particular setup is [7]

T̄ (x, t) =
1

2
−

∞�
k=1

2

(2k − 1)π
sin[(2k − 1)πX/L]e−κ(2k−1)2π2t/L2

. (3.20)

The space-time solution and the scalarTransportFoam solution (again snapshot at
t = 1.0s) are revealed in Figs. 3.9 and 3.10.

33



3 Test cases

Figure 3.9: Space-Time solution advection/diffusion

Figure 3.10: scalarTransportFoam solution advection/diffusion

As done above, let us have a closer look at the results and the analytical solution
plotted at t = 1.0s in Figs. 3.11, where also different discretisation schemes are
used. Compared to the pure advection case, the first order schemes already perform
reasonably. Increasing the discretisation order to 2 for both space and time leads
to sufficient accuracy in most cases.

34



3 Test cases

(a) Temperature distribution first order in
space, first order in time

(b) Temperature distribution second order
in space, first order in time

(c) Temperature distribution second order in
space, second order in time

Figure 3.11: 1D advection/diffusion snapshot at t = 1.0s with different discretisa-
tion schemes

3.1.4 Time slab method

In Sec. 2.3.5 the time slab method has already been discussed. In short, the main
idea is to split the whole time domain of the space-time simulation into evenly
spaced time slabs in order to save computational effort. Thereby, the result at
the end of one time slab serves as the initial condition of the next time slab. The
applicability of the method is restricted to non moving boundaries. Fortunately,
the OpenFOAM® architecture to process and save time steps can be fully utilised
to carry out the method. This can be illustrated by a simple 1D+t diffusion
simulation, where we have a 1D bar that is discretised by 11 evenly spaced cells in
space direction with ∆x = 0.1. Initially, the bar has a temperature of 1K at the
center cell and is 0 elsewhere. At the space boundaries the zero gradient condition

35



3 Test cases

is applied, expecting a diffusion of the temperature in time. Thus, we want to
solve the space-time equation

∇∗ · (u∗T ) = γ∗κ(∇∗)2T (3.21)

as in Sec.3.1.1, now, with κ = 0.001m2

s
. If we seek to know the solution after 10s

with a ∆t = 0.1 we would yield a [11×100] domain and solve a (11∗100)×(11∗100)
system of equations. Applying the time slab method and dividing the time domain
into 10 time slabs, we now have to solve 10 times a (11 ∗ 10) × (11 ∗ 10) matrix.
Fig.3.12 shows the solutions of the first, second, third and last time slab for the
underlying problem.

(a) Temperature distribution at first time
slab [0s, 1s]

(b) Temperature distribution at second time
slab [1s, 2s]

(c) Temperature distribution at third time
slab [2s, 3s]

(d) Temperature distribution at last time
slab [9s, 10s]

Figure 3.12: Illustration of the time slab method applied to the 1D+t diffusion
problem described above

As already discussed in Sec. 2.3.5 the zero gradient boundary condition is expected
to carry along an error, since it forces a steady state at the tend boundary. The
plots in Fig. 3.13 show the difference between the conventional simulation with

36



3 Test cases

scalarTransportFoam and the space-time simulation using the time slab method.
At the first sight, no difference can be seen in the left left figure. Only the right
plot shows the small maximum offset of about 2e-5, which legitimises the use of
the zero gradient boundary condition for the test cases within this work.

(a) Temperature distribution along x direc-
tion at t = 9.6s

(b) Temperature distribution difference be-
tween space-time and scalarTransport-
Foam simulation along x direction at
t = 9.6s

Figure 3.13: Validation of the time slab method

3.2 2D+t - Advection/Diffusion

The 1D+t cases in the previous section validate the concept and implementation
of the space-time finite volume method in OpenFOAM®. Now, as the complexity
increases, there will no longer be analytical solutions. Thus, the space-time im-
plementations will from now on only be compared to the standard OpenFOAM®

solvers. The following test case solves the scalar transport equation 1 of tem-
perature T for a prescribed constant velocity field in a 2D spatial domain. The
geometry (see Fig.3.14) and setup is based on the experimental work of Pitz and
Daily (1981) and, in terms of numerical investigations, has been much researched
within the OpenFOAM® community [10].

1equivalent to advection/diffusion equation

37



3 Test cases

Figure 3.14: PitzDaily geometry (dimensions in mm) [10]

Herein, the inlet velocity and outlet pressure condition (see Fig.3.14) induce a
steady velocity field that can be evaluated with the OpenFOAM® solver simple-
FOAM [10].

Figure 3.15: Pitz-Daily velocity field based on simpleFOAM

Figure 3.16: Pitz-Daily computational mesh

38



3 Test cases

The steady velocity field (Fig.3.15) and the computational mesh (Fig.3.16) are the
basis for our scalar transport test case. Therefore, we apply a fixed temperature
of 1K at the inlet boundary, a zero gradient at the outlet and wall boundary and
set an initial temperature field of 0K elsewhere according to

T (x, y, t) = 1 at ∂Ωinlet

∂T (x, y, t)

∂x
= 0 at ∂Ωoutlet,wall

T (x, y, 0) = 0 at Ω

(3.22)

The according equation to solve is again

∂T

∂t
+ u · ∇T = κ∇2T (3.23)

with κ = 0.01m2

1
and u being the prescribed advection velocity field. Conducting

the simulation with scalarTransportFOAM from t = [0s, 0.05s] with ∆t = 0.001
gives following temperature distributions at t = 0.01s, t = 0.03s and t = 0.05s
(Fig. 3.17). The numerical discretisation schemes for the time derivative and
advection term are chosen to be first order for starters.

Figure 3.17: Pitz-Daily reference solution with scalarTransportFOAM

The according space-time problem again reads

39



3 Test cases

∇∗ · (u∗T ) = γ∗κ(∇∗)2T (3.24)

with

u∗ =

 ux

uy

1

 (3.25)

∇∗ =

 ∂
∂x
∂
∂y
∂
∂t

 (3.26)

γ∗ =

 1 0 0
0 1 0
0 0 0

 . (3.27)

Keeping the same discretisation as in the transient simulation in time and space
yields following space-time mesh (Fig. 3.18) and solution for the temperature field
(Fig. 3.19). Also here, the discretisation schemes for the ∇∗-operator are set to
be first order in space and time directions.

Figure 3.18: Pitz-Daily space-time mesh

40



3 Test cases

Figure 3.19: Pitz-Daily space-time solution for temperature field

At the first sight, the temperature field achieved by the space-time method resem-
bles the one with scalarTransportFOAM qualitatively. In order to compare the
results quantitatively, the temperatures are plotted at different time steps along
the spacial iso line between (−20.6mm, 10mm) and (290mm, 10mm) in Fig. 3.20.
The plots reveal that using first order discretisation schemes yield the same results
for both approaches. The graphs, obtained with second order schemes, feature a
much sharper step at the transportation front, suggesting that the first order
schemes come along with numerical diffusion, as we have seen it in the 1D-t cases.
However, within the transient simulations, Crank-Nicolson [2] time discretisation
is in use. This explaines the small offset between the space-time and the transient
simulations. At any rate, second order schemes also work for 2D+t cases within
the underlying implementation fully using OpenFOAM® methods.

41



3 Test cases

(a) Temperature plotted over x-coordinate
at t = 0.01s

(b) Temperature plotted over x-coordinate
at t = 0.025s

(c) Temperature plotted over x-coordinate
at t = 0.05s

Figure 3.20: Comparison of Pitz-Daily results with the space-time method to
scalarTransportFOAM at different time steps and different discreti-
sation schemes

3.2.1 Local time stepping

The previous case provides a suitable possibility to introduce local time stepping.
Let us assume the same setup as before and double the time domain, i.e. t =
[0s, 0.1s]. Having high temperature gradients at the conspicuous transportation
front offers the idea to refine the space-time volumes in this region. Figs. 3.21 and
3.22 show the refined mesh and the according solution of the problem. Therein, full
usage of the OpenFOAM® methods can be applied, i.e. static as well as dynamic
refinement. The advantage compared to dynamic refinement in according transient
simulations is the local placement of refined cells. Thus, coarse cells can be used
in regions of small change and fine local refinement can be complied in critical

42



3 Test cases

regions where higher accuracy is demanded. In conventional simulation, having
some velocities in regions where spatial refinement is high, forces us to use a small
time step for the whole domain.

Figure 3.21: Pitz-Daily locally refined space-time mesh

Figure 3.22: Pitz-Daily space-time solution for temperature field on locally refined
mesh

43



3 Test cases

3.3 2D+t - Incompressible Navier-Stokes

The second OpenFOAM® solver transferred into space-time is icoFoam [5], which
computes the Navier-Stokes equations for incompressible, Newtonian fluids. Ico-
Foam applies the PISO algorithm to couple the velocity and pressure fields, as
described in Sec.2.1.2. Thereby, the space-time equivalent to

I:
∂u

∂t
+∇ · (uu)−∇ · (ν∇u) = −∇p (3.28)

is

I∗: ∇∗ · (u∗u∗)− γ∗ · [∇∗ · (ν∇∗u)] = −γ∗ · ∇∗p (3.29)

and

II: ∇2p+∇ · [∇ · (uu)] = 0 (3.30)

becomes

II∗: γ∗ · [(∇∗)2p+∇∗ · [∇∗ · (uu)]] = 0. (3.31)

In other words, the time derivative in the momentum predictor (3.33) is pulled
into the advection term and pressure equation (3.31) effectively remains unchanged
contributing to spatial dimensions only. Similar to the steps described in Sec.2.1.2,
we can write the momentum predictor without the pressure gradient as

A∗ · u∗ ≡ A∗u∗ −H∗(u∗) ≡ ∇∗ · (u∗u∗)−∇∗ · (ν∇∗u∗). (3.32)

Including the pressure gradient, the momentum equation becomes

A∗ · u∗ = γ∗ · [−∇∗p], (3.33)

the pressure equation

γ∗ · [∇∗ · 1

A∗∇∗p] = γ∗ · [∇∗ ·
�
H∗(u∗)
A∗

�
], (3.34)

and the momentum corrector

44



3 Test cases

u∗ := γ∗ · [H
∗(u∗)
A∗ − 1

A∗∇∗p]. (3.35)

The procedure of the space-time PISO algorithm is similar to the conventional
one, depicted in Fig.2.1. Also now, the momentum equation (3.33) is solved first,
followed by solving the pressure equation (3.34) and the momentum correction
(3.35), which form the inner PISO loop. After several runs of the inner PISO
loop, the momentum equation (3.33) is solved again, denoting the outer loop, as
can be seen in Fig.3.23. This procedure is done until the velocity field converges.
After that, the flow and pressure fields are determined for the whole space-time
domain. In general, both the inner and the outer loop have to be passed through
by far more often than in conventional transient simulations.

Figure 3.23: Space-time PISO algorithm (derived from [4])

3.3.1 Lid driven cavity

The first case to test the space-time icoFoam solver is the calculation of the flow
field inside a fixed cavity driven by a moving wall at the top. The geometry and
also the 2D mesh for the reference simulation with icoFoam can be seen in Fig.3.24.

45

Momentum 
predictor 

Pressure 
equation 

Momentum 
corrector 

A * · u * = 1 * · [-v'*p] 

solve f or u * 

l 
,y* . [V* · 1. V*p] = ,y* . [V* . [H}~*) ]] 

solve f or p* 
PISO 

/oop ,u• 
u * := 'Y*. [H*(u*) _ _2.._ 'v*p] Outer A * A* _______ __, /oop 

WHILE u*,p* not converged 

lf u *, p* converged 
ENDWHILE 

u*,p* 



3 Test cases

Figure 3.24: Lid driven cavity geometry and mesh

The fluid inside is assumed to be Newtonian and incompressible, with a constant
viscosity of ν = 0.01m2/s. As usual, the boundary conditions for the velocity at
the walls are set to no slip which means zero relative velocity between the fluid
and the wall 2. For the pressure, the zero gradient condition is used. The moving
wall, that drives the flow is prescribed as

ux =

�
2t ∀t < 0.5

2− 2t ∀t >= 0.5
(3.36)

with a total simulation time of t[0; 1s] and a ∆t = 0.005s, yielding 200 time steps
for the transient simulation. The reference simulation with icoFoam results in
the the following evolution of the x-component of the velocity field (Figs.3.25).
Therein, the evolution of secondary vortices can be seen.

2This is equivalent to a Dirichlet boundary condition set to zero

46



3 Test cases

(a) Velocity ux and streamlines at t = 0.25s (b) Velocity ux and streamlines at t = 0.5s

(c) Velocity ux and streamlines at t = 0.75s (d) Velocity ux and streamlines at t = 1s

Figure 3.25: Evolution of the ux and the streamlines over time generated with
icoFoam

In order to perform the according space-time simulation, the front boundary con-
dition for the velocity at t = 0 is set to be zero and the back one to zero gradient.
The respective pressure boundary conditions are also set to zero gradient. Fig.3.26
reveals the space-time geometry of the underlying problem and already the result-
ing velocity field of the x-component. At the top boundary, the wall movement
can be clearly seen. Mind that not the boundary values are shown here, but the
cell values adjacent to the boundary. Therefore, the top values do not resemble
the velocity of the wall.

47



3 Test cases

Figure 3.26: Lid driven cavity space-time geometry and result for ux

This simulation converges after 10 outer loops with each 10 inner PISO loops
(according to Fig.3.23). In order to show the result more accurately, Fig.3.27
reveals the velocity components ux, uy, the velocity magnitude and the streamlines
at the time slice t = 0.5s, showing a good agreement with the reference simulation
with icoFoam.

48



3 Test cases

Figure 3.27: Lid driven cavity space-time geometry and result at t = 0.5s

Further comparison between the two simulations in Fig.3.28 indicate a small offset
between the space-time and the reference simulation. Therein, the velocity magni-
tude is plotted at probe location (22.5mm|82.5mm) over the entire time domain.
There is a small deviation between the two solutions which could stem from slightly
different behaviours of the employed discretization schemes and their space-time
counterparts, or the different handling of temporal boundary conditions, which
is unavoidable in space-time, or from the different convergence behaviour of the
PISO loop in space-time, which requires a different number of corrector loops, and
small errors could potentially accumulate over course of the solution. For such
more complex cases like this one, a small deviation is to be expected.

49



3 Test cases

Figure 3.28: Velocity magnitude at probe location (22.5mm|82.5mm) over the
whole time domain

3.3.2 Moving boundary condition

The second test case is designed to demonstrate the simple handling of moving
boundary conditions. For that, let us imagine an incompressible, Newtonian fluid
flow in a 2D channel with time dependent indentation of the walls. Fig. 3.29 shows
the dimensions of the simulation, the location of the time dependent indentation
and the parabolic velocity distribution at the inlet boundary according to [8].
Selecting a maximum velocity of umax = 0.4m

s
and a no slip condition at the walls,

the inlet velocity profile typically becomes

uy(x) = 1000 ∗ (0.04 ∗ x− x2). (3.37)

The indentation of the channel happens symmetrically with

h(t) =

�
0.04− 0.2t ∀ t < 0.1

0.02 ∀ t | 0.1 <= t <= 0.3
. (3.38)

50



3 Test cases

Figure 3.29: 2D channel flow with moving boundary conditions - set up

The according space-time geometry and mesh is depicted in Fig. 3.30. The bound-
ary condition at the outlet is set to zero for the pressure and zero gradient for the
velocity. At the inlet, we apply zero gradient for the pressure and the fixed veloc-
ity profile (3.39), suggesting that the indentation does not affect the inlet velocity.
The same holds for the tstart boundary condition, which implies a steady state
velocity profile before the indentation takes place. The tend boundary conditions
are set to zero gradient for both, the velocity and the pressure, which is legit,
assuming a steady state at this point of the simulation.

Figure 3.30: 2D channel flow with moving boundary conditions - space-time mesh

51



3 Test cases

In order to remain a laminar flow state, the viscosity is chosen to be ν = 0.0005m2

s

for which the Reynolds number becomes Re = vL
ν
= 0.4∗0.004

0.0005
= 32, with v and L the

maximum velocity and the gap height, respectively. After [8], turbulence occurs
for Re > 1000 in a flow between two plates. The simulation of the underlying
problem with the space-time icoFoam solver yields the following pressure field
(Fig. 3.31), and velocity fields for different time slices at t = 0s, 0.05s, 0.1s and
0.2s (Fig. 3.32).

Figure 3.31: Pressure filed of 2D channel flow with moving boundary conditions

Figure 3.32: 2D channel flow with moving boundary conditions - velocity fields at
different time slices

52



3 Test cases

The velocity profile at the first time slice t = 0 shows the initial boundary condition
at tstart. As the walls narrow down within the first 0.1s, the velocity has to rise
within the indentation. We see, that the peak velocity is not yet fully developed at
0.1s, when the boundary movement is finished, but rather further increases, as we
see at time slice 0.2s. The indentation also induces a pressure peak in the vicinity
of the inlet in order to uphold the velocity profile. The pressure peak occurs at
about 0.15s before the gap and decreases afterwards. A closer look at the velocity
development is brought by the subsequent plots, where the velocity magnitudes
are plotted along different lines. More precisely, Fig. 3.33 shows the velocity
magnitudes at the center (x = 20mm) along the y-axis at different times and Fig.
3.34 reveals the velocity magnitudes also at the center (x = 20mm) but along the
time-axis at different locations y. If we have a close look at the first plot (Fig.
3.33), we see that the indentation presses the fluid towards the outlet, implying
an increase in the velocity magnitude in this direction. As the indentation finishes
at t = 0.1s, two velocity maxima form at both sides of the gap. After that, at
t = 0.15s, the velocity maximum shifts back in the direction of the inlet until it
finally approaches its expected3 plateau of 0.8m

s
. The latter plot (Fig. 3.34) also

reveals that the evolution of the velocity magnitude right in the middle of the
indentation (blue curve) does not rise linearly, but rather suggests more complex
phenomena taking place. Furthermore, the orange graph at y = 350mm near
the outlet indicates an increase of the velocity during the indentation followed by
a decrease in order to fulfill the mass conservation. Conservation of mass can be
checked by integrating the volume flow at the inlet boundary, which gives 0.0032m2

and equals the volume flow at the outlet boundary. This simulation output accords
the analytic flow rate, calculated to be

� x=h

0

uy(x)dx ∗ 0.3s =
� x=h

0

1000 ∗ (0.04 ∗ x− x2)dx ∗ 0.3s = 0.0032m2. (3.39)

3The expected maximum velocity within the indentation is double the inlet maximum velocity
as the height halves

53



3 Test cases

Figure 3.33: Velocity magnitude at center line (x = 20mm) along the y-axis at
different time slices

Figure 3.34: Velocity magnitude at center line (x = 20mm) along the time-axis at
different y-locations

When it comes to moving boundary conditions, the conservation property reveals a
huge advantage of the space-time method compared to conventional finite volume
methods, where the Leibnitz rule or geometric conservation laws have to be applied
[13]. The underlying test case shows that the fusion of the time derivative into
the advection term naturally implies a fully conservative description. Hence, such
cases can be solved without further modification of the solver.

54



4 Summary

This thesis has investigated the possibility to calculate time-dependent fluid me-
chanic problems by means of the space-time finite volume method by full usage of
the OpenFOAM® functionality. In particular, the research has carried out follow-
ing points.

• The governing equations for basic fluid flow problems such as the passive
scalar transport equation and the Navier-Stokes equations for incompress-
ible, Newtonian fluids are derived.

• The conventional finite volume method is presented including each step from
simulation set up all along to solving the governing system of equations. Par-
ticular interest is put on the discretisation of the various terms of the partial
differential equations.

• Based on the conventional method, the space-time finite volume method is in-
troduced all along with the steps necessary to transform native OpenFOAM®

solvers into space-time solvers.

• Having transformed OpenFOAM® solver scalarTransportFoam into space-
time, the method is tested on basic pure diffusion, pure advection and
advection-diffusion cases. Thereby, the 1D+t simulations yield the same
result for both the conventional and the space-time solver. As the advec-
tion equation brings along numerical diffusion, higher order schemes provide
remedy and give the desired order of error. Further, the time slab method
is showcased at a pure diffusion test case. Moreover, the space-time method
delivers reasonable results in the 2D+t Pitz-Daily [10] test case, where local
refinement in space and time is applied.

55



4 Summary

• Finally, the OpenFOAM® solver icoFoam is transferred into space-time and
tested on two cases. The lid driven cavity test case yields reasonable agree-
ment between the native OpenFOAM® solver and the space-time solver
with a small offset due to the advanced complexity of the problem. The
second case, i.e the moving boundary case, demonstrates the simple han-
dling dealing with time dependent domains. Therein, the flow evolution in
an indenting 2D channel is investigated. This test case shows the implicit
conservation property in space and time and reveals the advantage compared
to conventional moving boundary techniques.

56



5 Discussion and outlook

The essence of the underlying thesis is that the transformation of native OpenFOAM®

finite volume solvers into space-time finite volume solvers does work. Thereby, the
space-time method involves some advantages and some disadvantages. The two
main weaknesses of the method are:

• The investigation of the computational costs, examined in Sec. 2.3.5, sug-
gests that a simulation with the space-time method demands far more re-
sources than the conventional method, provided that the simulations feature
the same discretisation in space and time.

• As already mentioned in the introduction, there is no algorithm known yet
that manages 4D mesh generation. Hence, the space-time method is still
settled with up to 2D+t problems or at most, rotationally symmetric 3D+t
simulations. Indeed, 4D mesh generators are currently under development.
For a matter of fact, the maths remain the same.

Of course, these are severe drawbacks limiting the applicability of the space-time
method. Nevertheless, some advantages and potentials arise that justify further
development of the approach:

• This thesis shows the huge benefit that it is not necessary to write new
space-time finite volume code from scratch but rather manipulate existing
finite volume programs in order to transform established methods into space-
time. In this regard, for example OpenFOAM® brings full functionality
from mesh generation all the way to the visualisation of the simulation. Es-
pecially, available adaptive mesh refinement and paralellisation techniques
enable enormous performance improvement. For sure, OpenFOAM® is not
the only software providing the suitable basis to conduct space-time simula-
tions. Therefore, this work should encourage researchers to make their own
experiences with the space-time method based on their finite volume and
also finite element codes and enlarge the space-time community. Anyway,

57



5 Discussion and outlook

further OpenFOAM® solvers have to be transformed in order to deal with
turbulence modelling, multi-phase flows, compressability etc.. Actually, the
space-time method should be applicable to any time-dependent problem that
is suited for a numerical simulation.

• Counteraction regarding the issue of higher computational effort using the
space-time method is brought by the possibility of local refinement and par-
allelisation in space and time. Imagine a conventional transient simulation
on a big domain, suggesting the difference between the smallest cells and the
domain dimensions is of several orders of magnitude. One according example
is the simulation of an additive manufacturing process, where the domain is
relatively large and, in some regions, the resolution demand is extremely high
in order to reasonably resolve the underlying phenomena. If then, in those
regions of small cells, higher velocities occur, the Courant number enforces
a very small time step. As a consequence, the whole computational domain
has to be processed with this time step, also in regions, where nearly noth-
ing is happening at that time. As a consequence, if we wanted to process
the simulation in parallel, on a cluster for instance, communication between
the cores as well scales with the enlarged number of time steps. In this
scenario, the according space-time simulation with its opportunity to refine
locally in space and time, paired with optimal parallelisation and the time
slab method, could yield performance benefits compared to the conventional
simulation. At this stage of research, this is yet hypothetical, but still, a
permissible thought experiment.

• Incorporation of moving boundary conditions is still a big issue in finite
volume simulations. As demonstrated here, handling prescribed boundary
motion is straight forward due to the conservation property of the space-time
method in both space and time. This offers a huge advantage compared to
conventional methods. The quite simple test case in this thesis, where a
channel flow undergoes boundary indentation, could be extended to far more
complex cases as soon as turbulence models and compressability are included
in the space-time solvers. Another interesting use case could be aerodynamic
investigations on airfoils with time-varying inclination angle.

58



5 Discussion and outlook

All in all, this study has only scratched the surface of potential research. Sub-
sequent steps will be the implementation of the zero second gradient boundary
condition and the transformation of compressible multi-phase solvers. Further-
more, an analytic study on the possible performance gain regarding large scale
simulations has to be done. And last but not least, a proof of concept to expand
the space-time method to the fourth dimension is planned.

59



Bibliography

[1] R. R. Yadav Atul Kumar Dilip Kumar Jaiswal. Analytical Solutions of One-
Dimensional Temporally Dependent Advection-Diffusion Equation along Lon-
gitudinal Semi-Infinite Homogeneous Porous Domain for Uniform Flow. De-
partment of Mathematics Astronomy, Lucknow University, Lucknow-226007,
U.P, India, (2012).

[2] Crank-Nicolson scheme. https://www.openfoam.com/documentation/
guides/latest/doc/guide-schemes-time-crank-nicolson.html. Ac-
cessed: 2022-11-25.

[3] R.Ma et al. On the geometric conservation law for unsteady flow simula-
tions on moving mesh. Computational Aerodynamics Institute, China Aero-
dynamics Research and Development Center, Mianyang Sichuan, 621000,
China, 2015.

[4] Christopher Greenshields and Henry Weller. Notes on Computational Fluid
Dynamics: General Principles. Reading, UK: CFD Direct Ltd, 2022.

[5] icoFoam. https://www.openfoam.com/documentation/guides/latest/
doc/guide-applications-solvers-incompressible-icoFoam.html. Ac-
cessed: 2022-10-13.

[6] J. Kettemann and C. Bonten. Application of the immersed boundary surface
method in OpenFOAM. IKT, Institut für Kunststofftechnik, University of
Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany, (2020).

[7] Hendrik C. Kuhlmann. Numerische Methoden der Strömungsmechanik. In-
stitut für Strömungslehre und Wärmeübertragung, Technische Universität
Wien, (2004-2021).

[8] Hendrik C. Kuhlmann. Strömungslehre für Wirtschaftsingenieure-Maschinenbau.
Institut für Strömungslehre und Wärmeübertragung, Technische Universität
Wien, (2004).

[9] Multiple Reference Frame. https://www.learncax.com/knowledge-base/
blog / by - author / ganesh - visavale / cfd - modeling - approach - for -
turbomachinery-using-mrf-model. Accessed: 2023-01-17.

60

https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes-time-crank-nicolson.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes-time-crank-nicolson.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-incompressible-icoFoam.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-incompressible-icoFoam.html
https://www.learncax.com/knowledge-base/blog/by-author/ganesh-visavale/cfd-modeling-approach-for-turbomachinery-using-mrf-model
https://www.learncax.com/knowledge-base/blog/by-author/ganesh-visavale/cfd-modeling-approach-for-turbomachinery-using-mrf-model
https://www.learncax.com/knowledge-base/blog/by-author/ganesh-visavale/cfd-modeling-approach-for-turbomachinery-using-mrf-model


Bibliography

[10] Pitz Daily OpenFOAM. https://www.openfoam.com/documentation/
tutorial-guide/3-compressible-flow/3.1-steady-turbulent-flow-
over-a-backward-facing-step. Accessed: 2022-11-29.

[11] scalarTransportFoam. https://www.openfoam.com/documentation/guides/
latest/doc/guide-applications-solvers-basic-scalarTransportFoam.
html. Accessed: 2022-10-12.

[12] Christian B. Allen Thomas C. S. Rendall and Edward D.C. Power. Conser-
vative unsteady aerodynamic simulation of arbitrary boundary motion using
structured and unstructured meshes in time. Department of Aerospace Engi-
neering, University of Bristol, Bristol, BS8 1TR, UK, (2011).

[13] Philip J. Zwart. The Integrated Space-Time Finite Volume Method. Univer-
sity of Waterloo, (1999).

61

https://www.openfoam.com/documentation/tutorial-guide/3-compressible-flow/3.1-steady-turbulent-flow-over-a-backward-facing-step
https://www.openfoam.com/documentation/tutorial-guide/3-compressible-flow/3.1-steady-turbulent-flow-over-a-backward-facing-step
https://www.openfoam.com/documentation/tutorial-guide/3-compressible-flow/3.1-steady-turbulent-flow-over-a-backward-facing-step
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-basic-scalarTransportFoam.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-basic-scalarTransportFoam.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-basic-scalarTransportFoam.html

	Introduction
	Motivation
	State of the art

	Theory
	Governing equations
	Scalar transport equation
	Navier-Stokes equation

	Classical finite volume formulation
	General concept
	Finite volume mesh
	Equation discretisation and matrix construction
	Initial conditions
	Boundary conditions

	Space-time finite volume formulation
	General concept
	Finite volume mesh
	Equation discretisation
	Boundary conditions
	Time slab method


	Test cases
	1D+t - test cases
	1D+t - diffusion
	1D+t - advection
	1D+t - advection/diffusion
	Time slab method

	2D+t - Advection/Diffusion
	Local time stepping

	2D+t - Incompressible Navier-Stokes
	Lid driven cavity
	Moving boundary condition


	Summary
	Discussion and outlook
	Bibliography



