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Abstract  

This thesis provides a method for the automatic detection of arousals in EEG-signals as well as an 

analysis of the possible relation between leg movements and arousals. For this purpose, seven patients 

of AKH Wien are considered: three without diagnosis and four with Periodic Leg Movement Syndrome. 

The detection algorithm consists of two main steps: Firstly, the recording is divided in segments of 

three seconds and these are classified with a Support Vector Machine (SVM) as arousal start or no-

start segments. The features extracted for each segment are mainly frequency based according to the 

definition of an arousal of the AASM American Academy of Sleep Medicine. In addition, newly 

investigated feature sets, based on AR-models and statistical tests, are implemented. Secondly, the 

exact position and length of the detections are computed and further arousal criteria are checked.  

For the validation of the classifier for the arousal start segments a Leave-One-Out-Cross validation is 

performed and parameters for the SVM are chosen out of a grid according to the Youden-Index of the 

average performance for the seven patients. On average a sensitivity and specificity of 96% 

(classification performance of start segment detection on segments of three seconds) and a positive 

predictive value of 24% are reached. After the second step of the algorithm the number of False 

Positives is reduced and the detection of the definite final arousals performed on average with a 

sensitivity of 86% and a positive predictive value of about 60%.  

Moreover, an analysis on the relation between arousals and leg movements is done. It can be 

supported that events are dependent from each other, but that the relation follows a complex 

mechanism rather than a simple causality. In addition, the relation between the intensity of a leg 

movement and the occurrence of an associated arousal is investigated. As a measure for intensity, the 

duration of a leg movement and a value computed from the 3D detection of leg movements, which 

can be interpreted as the size of a leg movement, are tested. An interesting finding is, that with both 

intensity values it is shown that more intense leg movements are more likely to occur with arousals. 

From a clinical point of view a leg movement is more critical when it causes more disruptions of sleep 

and an associated arousal is considered as a kind of wakefulness, which could reduce the quality of 

sleep. The performance of the 3D detection is supported, because of the finding that the number of 

leg movements associated with an arousal is about 50% less for not 3D detected leg movements than 

for the ones that were 3D detected. Hence, it can be supposed that most of the not 3D detected leg 

movements are less relevant for the diagnosis of sleep disorders.  
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1 Introduction 

1.1 Motivation  

Sleep plays an important role in everybody’s health throughout the whole life. The quality of sleep 

influences mental and physical condition and can be considered as one of the key points for our well-

being. The famous sleep expert Allan Rechtschaffen said in 1971:  

“If sleep doesn`t serve some vital function, it is the biggest mistake evolution ever made” 

The relevance of sleep medicine is steadily increasing as the consciousness of the importance of sleep 

for our health is raising. Nowadays, more and more people suffer from several sleep disorders and/or 

problems with falling or staying asleep. Possible reasons for these disorders can be analyzed in sleep 

laboratories where the sleep of the patient is monitored and a wide range of bio signals is recorded.  

In this thesis, the detection of so called “arousals” and their relation to leg movements will be 

investigated. Arousals belong to microstructural patterns in the EEG-signal that characterize a kind of 

wakefulness during sleep but rarely result in actual awakening. Nevertheless, the quality of sleep can 

be reduced, which can result in daytime fatigue and somnolence as well as less productivity and further 

diseases. Here the definition of the American Academy of Sleep Medicine (AASM) will be used: “Score 
arousals […] if there is an abrupt shift of EEG frequency including alpha, theta and/or frequencies 

greater than 16 Hz (but not spindles) that lasts at least 3 seconds, with at least 10 seconds of stable 

sleep preceding the change. […]” (Berry, et al., 2016)  

Even though this definition is widely used by sleep experts for visual scoring it turns out not to be very 

precise when it comes to the automatic analyzation of EEG signal and leaves space for interpretation. 

Therefore, a reproducible and accurate automation of this process is highly desirable and would help 

to overcome manual scoring issues. 

One of the common sleep disorders is the Periodic Limb Movement Disorder (PLMD), in which the 

patient’s sleep is affected by frequent and periodic leg or hand movements. Abnormalities like periodic 
leg movement are only diagnosed as a sleep disorder if the patient suffers from actual sleep problems, 

like for example a high number of arousals and consequential daytime sleepiness. For this reason, the 

relation between leg movements and arousals is of high interest and will be investigated in the second 

part of this work.   

1.2 Structure of the thesis 

The work is generally divided in two main parts: Materials and Methods and Results. Within the first 

part the used algorithms and methods are derived. The results are presented in the second part of the 

work. 
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More precisely, the chapter Materials and Methods is further divided in the explanation of the used 

data set, the methods for the arousal detection and the methods for the investigation of the relation 

between leg movements and arousals. 

The section Methods for arousal detection provides detailed explanations about signal preprocessing 

and filtering, feature extraction and analyzation, classification of arousal start segments as well as the 

process of the final determination of the detected arousals. Moreover, the section Methods for the 

investigation on the relation between arousals and leg movements is concerned with the analysis of 

the general possible dependence of the two events, a cause/effect relation between them and the 

relation between the intensity of a leg movement and its association with an arousal.  

The results of all sections are provided with the same structure in the chapter Results. 

For better readability, numbers will not be written in full word form and the term “seconds” will be 
shortened to “s”.  

1.3 Polysomnographic terms and definitions 

Polysomnography (PSG) 

Polysomnography is a type of sleep study, usually consisting in recording several bio signals 

summarized in the polysomnogram in sleep laboratories to diagnose different sleep disorders. 

Commonly used signals are different body functions like brain activity (Electroencephalogram), eye 

movements, muscle activity (Electromyogram), heart rate or respiratory signals. Several tests are 

performed while the patient is sleeping and a whole night recording describing his body functions is 

stored. (Chaudhary, 2007) 

Electroencephalography (EEG)  

Electroencephalography is a method to record electrical brain activity. Although the EEG alone is not 

sufficient for doing an overall sleep analysis it still plays a key role in the polysomnogram. It’s done by 
placing several electrodes along the scalp and measuring voltage fluctuation over time. The analysis of 

this signal is done by looking at its spectral content and filtering different frequency bands (“brain 
waves”) out of the signal for further diagnosis. (Chaudhary, 2007) 
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There are different methods to place the electrodes along the scalp but one of the most common and 

the used one here is the international 10-20 system: 

Electrocardiography (ECG) 

Electrocardiography is a method to record the electrical activity of the heart. Electrodes are placed on 

the patient’s limbs and on his chest to record electrical changes on the skin that occur from the heart 
muscle. 

Electromyography (EMG) 

Electromyography is a method to record the electrical activity that arise from skeletal muscles. It is an 

important tool for analyzing muscle activity to diagnose disorders of motor control. In sleep medicine, 

it is important for the analysis of leg (or arm) movements during sleep. The periodic limb movement 

(PLM) of sleep (PLMS) describes the frequent occurrence of involuntary movement of legs (or arms) 

during sleep. If it leads to daytime sleepiness or problems with staying or falling asleep, the patient is 

diagnosed with periodic limb movement disorder (PLMD). 

Leg Movement (LM) and PLM series 

The scoring of a LM and further of a series of consecutive LM events is defined by the AASM as follows: 

• The following defines a significant leg movement (LM) event: 

a. The minimum duration of a LM event is 0.5 seconds. 

b. The maximum duration of a LM event is 10 seconds. 

c. The minimum amplitude of a LM event is an 8 μV increase in EMG voltage above resting 
EMG (duration of at least 0.5 seconds). 

d. The timing of the onset of a LM event is defined as the point at which there is an 8 μV 
increase in EMG voltage above resting EMG. 

Figure 1: Placement of electrodes along the scalp with respect to the 10-20 system. (Trans Cranial Technologies ldt., 2016) 
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e. The timing of the ending of a LM event is defined as the start of a period lasting at least 

0.5 seconds during which the EMG does not exceed 2 μV above resting EMG. 
 

• The following defines a PLM series:    

o The minimum number of consecutive LM events needed to define a PLM series is 4 LMs. 

o The period length between LMs (defined as the time between onsets of consecutive 

LMs) to include them as part of a PLM series is 5 to 90 seconds. 

o Leg movements on 2 different legs separated by less than 5 seconds between 

movement onsets are counted as a single leg movement. The period length to the next 

LM following this group of LMs is measured from the onset of the first LM to the onset 

of the next.  

(Berry, et al., 2016) 

Hypnogram and characteristic frequency bands in sleep medicine 

Sleep consists of nonrapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep 

is divided in stages 1-4 and REM sleep is also often called sleep stage 5. The sleep stages are visualized 

in the hypnogram, where the number of the current stage is displayed as a constant, changing with 

sleep stages.  Stages 1 and 2 are characteristic for light sleep and stage 3 and 4 are called deep or slow-

wave sleep. Sometimes stage 3 and 4 are considered as one sleep stage (for example in the American 

Academy of Sleep Medicine). Periods of awakening may also interrupt sleep during the night and are 

marked in the hypnogram with zero.  

Sleep stage scoring is done by sleep experts visualizing successively 30s-epochs of EEG signal and 

deciding to which sleep stage most these 30s are belonging to. In some institutions there already exists 

a software for automatical staging that also considers 30s-epochs. The American Academy of Sleep 

Medicine (AASM) released a variety of rules for sleep staging. (Carney MD, Geyer MD, & Sachin PHD, 

2012) A major throwback of these rules is that they were developed for manual analyzing in 30s epochs 

and therefore abrupt changes in the hypnogram could mean that the real change in sleep stage could 

have happened at any time in the last epoch.  

In sleep medicine when working with EEG data the following characteristic frequency bands – 

according to the AASM rules - are analyzed (Berry, et al., 2016):  

• Delta δ (0 – 3.99 Hz): typical for dreamless deep sleep 

• Theta 𝜃 (4 – 7.99 Hz): typical for light sleeping stage 

• Alpha α (8 – 13 Hz): typical for being awake but with closed eyes 

• Sigma σ (11 – 16Hz): typical for the so called sleep spindles 

• Beta β (13 – 30 Hz): typical for being awake with eyes open but no special concentration  

For the implementation, the following slightly adjusted bands will be used:  

• Delta δ (0.4 – 4 Hz): typical for dreamless deep sleep 

• Theta 𝜃 (4 – 8 Hz): typical for light sleeping stage 

• Alpha α (8 – 12 Hz): typical for being awake but with closed eyes 

• Sigma σ (12 – 16 Hz): typical for so called sleep spindles 
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• Beta β (16 – 30 Hz): typical for being awake with eyes open but no special concentration  

Further the whole signal is filtered within a frequency band of 0.4 to 40 Hz because frequencies greater 

than 40 Hz are not commonly analyzed frequencies in sleep analysis.  

Sleep spindle 

A sleep spindle (also called sigma waves) is a burst or change of EEG signal that occurs during sleep 

stage 2 and is often seen over central or frontal head regions. It consists of 11 – 16 Hz (mostly 12 – 14 

Hz) waves that occur for at least 0.5 seconds. Sleep spindles represent brain activity that intents to 

keep the patient in a tranquil condition.  (Berry, et al., 2016) 

K-Komplex 

A K-Komplex is a negative wave with a sharp increase until it reaches a maximum of amplitude and a 

directly following decrease and a return to the zero line. The duration should be at least 0.5 seconds 

and it usually occurs in sleep stage 2 and can be seen over central head regions. The maximum 

amplitude that is reached is normally about 75 µV but can also reach values above 200 µV. (Berry, et 

al., 2016) 

Arousal 

In literature one can find various definitions of an arousal. In general, an arousal is a kind of 

wakefulness during sleep but rarely resulting in actual awakening. They are rather like K-Komplexes 

and sleep spindles kind of patterns found in non-stationary EEG epochs, mostly found in sleep stage 2 

or REM sleep. (De Carli, Nobili, Gelcich, & Ferrilo, 1999) Nevertheless, the quality of sleep can be 

reduced, which can result in daytime fatigue and somnolence as well as less productivity and further 

diseases. In this work the widely common definition of the American Academy of Sleep Medicine will 

be used:  

“Score arousals during sleep stages N1, N2, N3 or R1 if there is an abrupt shift of EEG frequency including 

alpha, theta and/or frequencies greater than 16 Hz (but not spindles) that lasts at least 3 seconds, with 

at least 10 seconds of stable sleep preceding the change. Scoring of arousal during REM requires a 

concurrent increase in submental EMG lasting at least 1 second. 

Note 1. Arousal scoring should incorporate information from the frontal, central, and occipital 

derivations. 

Note 2. Arousal scoring can be improved by the use of additional information in the recording such as 

respiratory events and/or additional EEG channels. Scoring of arousals, however, cannot be based on 

this additional information alone and such information does no modify any of the arousal scoring rules. 

Note 3. Arousals meeting all scoring criteria but occurring during an awake epoch in the recorded time 

between “lights out” and “lights on” should be scored and used for computation of the arousal index. 

                                                           
1 The definition of sleep stages is not consistent throughout literature. The American Academy of Sleep Medicine 
(AASM) uses the following terminology: “N1” for sleep stage 1, “N2” for sleep stage 2, “N3” for sleep stage 3 and 
4, “R” for REM-sleep and “W” for periods of awakening. 
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Note 4. The 10 seconds of stable sleep required prior to scoring an arousal may begin in the preceding 

epoch, including a preceding epoch that is scored as stage W. 

Note 5. An arousal may still be scored if it immediately precedes a transition to stage W. That is, both 

arousal and transition to wake are scored.” (Berry, et al., 2016) 

Even though this definition is widely used by sleep experts for visual scoring it turns out not to be very 

precise when it comes to automatic analyzation of EEG signal and leaves space for interpretation.  

The scoring of arousals during the rapid eye movement (REM) phase requires a concurrent increase in 

the submental electromyography (EMG) lasting for at least 1s. The considered sleep laboratory uses 

the chin EMG for submental EMG. Spontaneous arousals in NREM sleep may occur without an increase 

in the submental EMG amplitude. This extra condition for REM sleep was added because spontaneous 

bursts of alpha rhythm are a quite common occurrence in REM (but not NREM) sleep. 

Sometimes it’s difficult to distinguish between an arousal and the transition to wake. In the work An 

Introduction to Sleep and Polysomnography (Carney MD, Geyer MD, & Sachin PHD, 2012), the authors 

suggest that an arousal is only scored when the shift in EEG frequency is followed by at least 10 

continuous seconds of any stage of sleep. On contrary the AASM says in a note related to the scoring 

rule of arousals that an arousal may still be scored if it immediately precedes a transition to wake. Due 

to different opinions on this topic and the lack of a clear difference between arousals and the transition 

to wake, the 30s preceding a wakefulness will be excluded from arousal detection.  

The arousal index is a common magnitude to describe the frequency of arousals and is usually 

computed as the number of arousals per hour of sleep. 

Association of an arousal and a PLM event 

An arousal and a limb movement that occur in a PLM series should be considered associated with each 

other if they occur simultaneously, overlap, or when there is <0.5 seconds between the end of one event 

and the onset of the other event regardless of which is first. (Berry, et al., 2016) 

Figure 2 visualizes the association of an arousal and a PLM. 
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Figure 2: Association of a PLM event and an arousal (Berry, et al., 2016) 

1.4 State of the art 

To score arousals polysomnographic recordings must be analyzed, especially the EEG signal. 

Traditionally some special ink-writing pens were used to produce 30s epochs on paper, which later 

were analyzed manually by an expert. Therefore, sleep was staged in epochs of 30s. Later this 

convention of scoring sleep stages and other events in 30s epochs was also used in digital analysis and 

is still standard. Nowadays the scoring of arousals is done partly automatically and partly manually by 

experts, which is time-consuming and quite subjective. For that reason, a reproducible and accurate 

automation of this process is highly desirable. As later described, the used data is provided by the AKH 

Wien, where the scoring of arousals is still done manually. 

During a meeting with sleep medicine experts Mrs. Böck and Prof. Seidl at AKH Wien Sleep Laboratories 

it was possible to gain an insight into the daily work of the analysis of polysomnographic data. In the 

following a short summary of important points that should be mentioned for better understanding is 

provided:  

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


State of knowledge 

 

 
8 

 

• The annotation of the data used in this work is done by following the definition of the AASM 

and by using two central EEG derivations C3A2 and C4A1 and the chin EMG for the scoring of 

arousals during REM sleep. An arousal doesn’t need to be clearly seen in both channels.  
• Additional channels are used for the scoring of “critical arousals”: 

o ECG: An arousal seems to come along with an accelaration in ECG singal. 

o Respiratory Signals: An arousal seems to come along with irregularities in breathing 

o EMG: An arousal seems to come along with some leg movements 

• If a K-Komplex or a Delta-Artifact with similar shape directly precedes an arousal it is not 

counted as part of the arousal.  

• Due to medical reasons arousals scored during wakeness have less importance for the 

microanalysis of sleep and the further diagnosis of sleep disorders. Therefore most of the time 

arousals during waking phase are not scored.  

• Note 5 of the definition of an arousal according to the AASM says that the transitions to wake 

can also be scored as an arousal. This has to be seen critically because the same event would 

count to the arousal index as well as to the number of transitions to waking phase during the 

night. Hence, most of the time transitions to wake are not additionally scored as arousals.  

• The end of an arousal is not defined by the AASM and is therefore rather subjective. Sleep 

experts say that an arousal ends when the EEG signal returns to “normal sleep waves”. 

• The maximum duration of an arousal depends on its start within a 30s epoch. 

o Within one 30s epoch an arousal can last a maximum of 15s. If it lasts longer the whole 

epoch is scored as wake.  

o Within two 30s epochs an arousal can last a maximum of 30s starting from the middle 

of the first epoch and ending in the middle of the second epoch. If is lasts longer one 

or both epochs are scored as wake. 

• Arousal scoring during REM sleep requires a significant increase in chin EMG. The increase shall 

be seen at the start of an arousal.   

• The exact definition of the 10s stable sleep preceding an arousal is a discussion point. But it’s 
clear that there can’t be another arousal within the first 10s after the end of an arousal.  

1.5 State of knowledge 

The aim of this chapter is to provide an overview of already existing publications on this topic. A part 

of the studies mentioned in this section specialize on a very specific group of patients, for example 

patients with obstructive sleep apnea syndrome or with periodic limb movement syndrome. The 

publications are analyzed with special focus on preprocessing of the signal, regarding segmentation 

and filtering, the extracted features and the used algorithms. Finally, the results of the mentioned 

studies are provided for comparison reasons. 

Automatic Detection of Sleep Arousal Events from Polysomnographic Biosignals 

(Shahrbabaki, Dissanayaka, Patti, & Cvetkovic, 2015) 

In the work of (Shahrbabaki, Dissanayaka, Patti, & Cvetkovic, 2015) 9 subjects were analyzed and out 

of these, 4 suffered from Obstructive Sleep Apnea, 1 from PLMD and the remaining 4 subjects were 

healthy. The aim of this paper is to develop an algorithm for automatic detection of sleep arousals 

without distinguishing different arousal types or sleep disorder groups. Nevertheless, different feature 

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Introduction 

 

 
 9  
 

sets are extracted for the detection of special arousal types, as for instance arousals related to 

respiratory events, are extracted. After feature extraction, a K-nearest-neighbors (KNN) algorithm is 

applied to classify epochs of 30s in arousal epochs and no-arousal epochs.   

This study makes use of more than just the EEG-signal. In addition, the left and right electrooculogram, 

submental electromyogram, electrocardiography, leg movement actigraphy, nasal and oral airflow, 

snoring sound, saturation of oxygen and chest and abdomen breathing effort are used.  

The signal is segmented in 30s epochs, a common convention in sleep medicine, and bandpass filtered 

through a Butterworth filter with second order cut-off frequency from 0.4 to 40Hz. To obtain the power 

spectral values the epochs are transformed to frequency domain with Welch’s algorithm (a sequential 
Fast Fourier Transformation). The power spectral values are categorized into the following EEG bands: 𝛿 (0.5 − 4 𝐻𝑧), 𝜃 (4 − 8 𝐻𝑧), 𝛼 (8 − 15 𝐻𝑧) 𝑎𝑛𝑑 𝛽 (16 − 32 𝐻𝑧). 

Features:  

• EEG features: 

o For each epoch of 30s and each of the three channels used, the percentage of signal 

power generated by a special frequency band was calculated. 

o Within each epoch the ratio of 𝛼- and 𝛽- power (signal filtered from 8-40 Hz) of a 10s 

window and a consecutive 3s window is calculated for each moment. As features the 

minimum and maximum as well as the area under the resulting curve of the ratio in 

signal power is calculated.  

• EMG features:  

o For each epoch of 30s the root mean square of the submental EMG signal is calculated. 

o In addition the EMG was transformed into frequency domain using Welch’s algorithms 
and the center of power spectral values was calculated.  

• Leg movement features: The root mean square of the leg movement time series was calculated 

and used as a special feature for the detection of movement related arousals 

• Respiratory features: The airflow time series was transformed into frequency domain and 

three features such as arithmetic mean, standard deviation and maximum of power spectral 

values were calculated.  

• Heart rate features: Peaks of ECG signal were detected using an algorithm proposed by Murthy 

et al. and statistical values for heart rate were stored. 

Detection algorithm:  

A feature matrix with n rows for the number of 30s epochs and 32 columns for the extracted features 

was built and classification was done with a K-Nearest-Neighbor algorithm. This algorithm classifies 

30s epochs in arousal epochs or no-arousal epochs. An exact localization of the arousal within this 

epoch is not performed. 

Validation: 

Common statistical performance indicators like Sensitivity, Specificity and Accuracy were used for 

Leave-One-Out-Cross validation. On average arousal epochs of 30s could be scored with an average of 

79% in sensitivity, 96% in specificity and 94% in accuracy. 
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A method for the Automatic Detection of Arousals during sleep  

(De Carli, Nobili, Gelcich, & Ferrilo, 1999) 

The aim of this work is to develop an algorithm to mark segments as arousal segments using two EEG 

and one submental EMG derivation. 

In the study of (De Carli, Nobili, Gelcich, & Ferrilo, 1999) the EEG-data is transformed with a wavelet 

transformation (uses a family of functions to decompose the signal) of thirty-two second overlapping 

epochs. The signal power was evaluated with a time resolution of 0.125s, for six frequency bands:  𝑠𝑙𝑜𝑤 𝛿 (0 − 0.5𝐻𝑧), 𝛿 (0.5 − 4𝐻𝑧), 𝜃 (4 − 8𝐻𝑧), 𝛼 (8 − 12𝐻𝑧), 𝜎 (12 − 16𝐻𝑧) 𝑎𝑛𝑑 𝛽 (16 −64𝐻𝑧). 

Features:  

To detect shifts in EEG frequency, especially an increase in theta, alpha and/or beta activity, the 

following indices are used for every 0.125s basic epoch:  

• EEG features: 

o Signal power within the 6 frequency bands in epochs of 0.125s 

o A long term and a short term moving average 

▪ First six indices are the ratio between short term and long term average in 

each band (indicating variation within each band). 

Special features in addition: 

▪ Ratio between short term and long term mean (central) frequency 

▪ Ratio between δ and α plus 𝛽 power for short-term and long-term average 

(highlights presence of slow wave sleep) 

▪ Ratio between short-term and long-term α relative power (highlights 

variations in alpha activity) 

▪ Ratio between long-term α plus slow-δ and 𝜃 plus δ power (could indicate 

awakening) 

▪ Ratio between σ und α plus β power (highlights sleep spindles) 

▪ Ratio between β and δ variations 

• EMG features: 

o A long term and a short term moving average of the submental EMG signal were 

computed and compared as in the EEG analysis. 

Detection algorithm:  

After marking and weighting of overlapping EEG and EMG events a linear discriminant function was 

estimated by maximizing sensitivity and specificity on the training set. Possible arousals were marked 

when the discriminant function remained positive for 3-30s. The scoring of arousals was done with 

respect to the mean value of the discriminant function. 

Validation:  

The discriminant function is tested and estimated on a test set of patients with different disorders. 

Afterwards the sensitivity and the selectivity are calculated and the computer program as well as a 

second expert are compared to the original expert annotations. Considering only definite arousals (for 
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more detail consider the publication of (De Carli, Nobili, Gelcich, & Ferrilo, 1999)) the sensitivity of the 

computer program resulted in 88.1% while selectivity was 74.4%. 

Automatic Detection of Micro-Arousals (Agarwal, 2005) 

The method presented in this paper is based on three basic steps: the segmentation in variable length 

epochs (adaptive segmentation), the spectral feature extraction and the identification of EEG epochs 

with potential arousals using statistical methods and decision rules. 

The central lead EEG is filtered in the extended 𝛽-band (16-40 Hz) and the occipital data is filtered in 

the 𝛼-band (7.5-12 Hz). Using these filtered data, the signal is segmented (in segments with a minimum 

length of 3s) according to a non-linear energy operator, which enhances bursts of 𝛼- and 𝛽-

frequencies. Features are calculated on segments of different length. The idea is to calculate a new 

frequency weighted energy operator and apply it consecutively to two parts of a rolling window and 

calculate the difference. High differences in frequency between the two windows are pointed out at 

the maxima of the new curve. 

Features: 

• Total power of 𝛼- and extended 𝛽- band in each segment 

• Find the maximum absolute amplitude of each considered band in each segment 

Detection algorithm: 

In order to select the correct segments containing candidates for arousals (CMA) the following steps 

are done:  

• Remove segments containing large amplitude artifacts and all segments not occurring in valid 

sleep stage (1-4 and REM) 

• Calculate the mean 𝛼/𝛽 power and stay with all the segments where the mean of 𝛼/𝛽 power 

is K times the standard deviation greater than the entire mean. 

The final selection for arousal segments is done as follows: 

• Remove all CMA which are shorter than 3s and occur at least 10s after the last arousal 

(mandatory 10s of stable sleep) and check if the whole CMA appears in a valid sleep stage 

• Stay with the CMA in which either 𝛼 or 𝛽 power that is at least 2 times greater than the left or 

right neighboring segment 

Validation: 

The method was compared to three expert annotations. Compared to two of them the algorithm 

showed more consistent results with sensitivity from 70.1% to 82.2% and specificity from 56.6% to 

72.4%. 
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Identification of Electroencephalographic Arousals in Multichannel Sleep Recordings 

(Álvarez-Estévez & Moret-Bonillo, Identification of Electroencephalographic Arousals in 

Multichannel Sleep Recordings, 2011) 

The methods presented in this paper are based on two central EEG channels (C3A2, C4A1) and a 

submental EMG signal. After extracting several features four different classifiers, namely Fisher’s linear 
and quadratic discriminant, a support vector machine (SVM) and an artificial neural network (ANN), 

are compared. By using machine learning models, the method is no longer dependent of a set of 

prefixed thresholds.  

It must be mentioned that there is a second publication of the same authors available applying mostly 

the same methods on Sleep Apnea patients. (Álvarez-Estévez & Moret-Bonillo, Model Comparison for 

the Detection of EEG Arousals in Sleep Apnea Patients, 2009)  

In order to prepare the signal for feature extraction it is bandpass filtered within characteristic bands: 𝛿 (0.5 − 3 𝐻𝑧), 𝜃 (4 − 7 𝐻𝑧), 𝛼 (8 − 12 𝐻𝑧), 𝛽 (13 − 30 𝐻𝑧), 𝜎 (12 − 14 𝐻𝑧), as well as a joined 𝛼𝛽 − 𝑏𝑎𝑛𝑑 (8 − 30 𝐻𝑧).  

Features: 

The main idea of feature extraction is to get an information of the evolution of the signal by comparing 

the signal power of a 10s window, representing the prior information, with the power of an 

immediately consecutive 3s window for each second of the signal.  

• EEG-features:  

A new curve 𝑒𝛼𝛽 is calculated (1Hz resolution) by comparing the 𝛼𝛽 signal power (power of 

the signal filtered within the band 8 − 30𝐻𝑧) within the two consecutive windows, and a 

possible event is marked when 𝑒𝛼𝛽 is greater than zero: 

o Area under 𝑒𝛼𝛽 and duration of the possible event 

o Maximum value of 𝑒𝛼𝛽 during the possible event 

o Area under curve, maximum and minimum for each power change curve 𝑒 obtained 

for each single frequency band 

• EMG-features:  

A new curve 𝑎 is calculated (1Hz resolution) by comparing the amplitude within the two 

consecutive windows (here 30s and 3s), and a possible event is marked when 𝑎 is greater than 

zero: 

o Area over a certain threshold and duration of the possible event 

o Maximum value of 𝑎 during the possible event 

• Contextual features:  

Binary features marking if a possible event is marked in one of the EEG-channels or in the 

submental EMG.  

Detection algorithm: 

For classification, the signal is segmented in classifiable epochs of 30s and described by feature vectors 

of the possible events within the epoch. Four different classifiers are tested and their ability to classify 

epochs of 30s as arousal or no-arousal epochs is compared:  
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• Fisher’s linear discrimimant 

• Fisher’s quadratic discriminant 

• Support vector machine with radial basis kernel 

• Artificial neural network 

Validation: 

The validation was carried out on balanced and unbalanced test and training sets (for more detail see 

(Álvarez-Estévez & Moret-Bonillo, Identification of Electroencephalographic Arousals in Multichannel 

Sleep Recordings, 2011)) and resulted in a mean sensitivity of 86% and specificity of 76% within the 

finally chosen training and test sets.  

Automatic artifacts and arousals detection in whole-night sleep EEG recordings  

(Wallant, et al., 2016) 

The arousal detection in the study of (Wallant, et al., 2016) only plays a minor role next to the artifact 

detection. Signal is filtered with a Butterworth filter of order 3 and low- and high-pass filtered with a 

forward-backward filter. The segmentation is done fixed in 20-30s windows and within these in 1s-

epochs. Power spectral density was computed from the average of central electrodes, where so called 

“bad channels” were excluded and the averaged power of frequency bands (  𝜃 (3 − 7 𝐻𝑧),𝛼 (7 − 13 𝐻𝑧), 𝜎 (11 − 16 𝐻𝑧) 𝑎𝑛𝑑 𝛽 (16 − 32 𝐻𝑧)) was calculated for each 1s-epoch and stored. 

Features: 

• EEG-features: 

The median of each averaged power vector (1Hz resolution) is calculated for the whole 

recording and for each scoring window and considered as a fixed threshold to detect abnormal 

acitivity.  

• EMG-features: Similar procedure, combination of median, standard deviation and peaks of the 

signal are extracted as thresholds. 

Detection algorithm: 

All 1s-epochs in one scoring window are considered as a shift in EEG if their signal power within one of 

the frequency bands is larger than two times the median within the scoring window as well as greater 

than the overall median. If three consecutive seconds fulfill this condition an arousal is detected. 

Validation: 

Since the purpose of this paper is to remove epochs with arousals there is no validation provided. 

 

In addition to the above mentioned and in more detail described studies, there are a few more papers 

specializing on arousal detection for Sleep Apnea Syndrome as well as arousal detection in Parkinson 

disease. The methods provided are very similar to the ones in the already described works. For Sleep 

Apnea patients the following works are referenced: Automatic EEG Arousals Detection for Obstructive 

Sleep Apnea Syndrome (Sugi, Kawana, & Nakamura, 2008) or (Sugi, Kawana, & Nakamura, 2009), 
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Detection of Arousals in Patients with Respiratory Sleep Disorders Using a Single Channel EEG (Cho, 

Lee, Park, & Lee, 2005) 

A study for Parkinson’s disease patients is covered for example in the work: Detection of arousals in 

Parkinson’s disease patients (Sorensen, Kempfner, Jennum, & Sorensen, 2011) 

1.6 Research question 

The practical research was done during a research activity at the AIT Austrian Institute of Technology 

in corporation with the AKH Wien by analyzing exclusively PSG-data of their sleep laboratories. The 

analysis will be done by using two sets of annotations: On the one hand the original annotations of the 

AKH Wien and on the other hand a modified set of annotations with EEG-arousals which show a clear 

frequency shift and are technically AASM conform without taking other bio-signals into account.   

The first aim of this thesis is to develop an automatic detection algorithm to detect arousals in EEG 

signals following the definition of the AASM American Academy of Sleep Medicine. Several features 

and statistical measures will be derived to describe the event of an arousal. The algorithm will be tested 

on the technically modified annotations of the AKH Wien.  

The second and clinically motivated aim is to examine whether the EEG-arousals show any relation 

with annotated leg movements during sleep. To answer this question the original and the technically 

modified data will be tested.   
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2 Materials and methods 

2.1 Data set 

In this thesis, PSG recordings from the AKH-Wien sleep laboratories will be used. More specifically, 

seven patients with 5 to 9 hours of sleep data recordings that are either diagnosed without sleep 

disorder or with PMLS are considered.  

Identification number of used patients: 

• TS100714, TS090714, TC070814, MB200814: diagnosed with Periodic Limb Movements of 

Sleep (PLMS)  

• CP101214, MC250614, MP020714: no sleep disorder diagnosis 

Patients with respiratory disorders have been removed because they are not relevant for the clinical 

question of the relation between leg movements and arousals in this work. Nevertheless, some few 

remaining respiratory events can occur in the PSG data of all patients. The available EEG data, recorded 

with a sample rate of 256 Hz, consists in two central derivations: C3A2 and C4A1. Both channels will 

be used for arousal detection, as well as the chin EMG channel for detection of REM-sleep arousals 

and the hypnogram to exclude periods of awakening. Figure 3 shows the used data for the arousal 

detection algorithm. The marked area describes an annotated arousal of 3.079s during sleep stage 2. 

 

Figure 3: Illustration of the used PSG data for arousal detection, visualized with the “Sleep-Data-Viewer-Tool” of the AIT; 1. 

Line: Arousal annotations; 2. Line: EEG channel C3A2; 3. Line: EEG channel C4A1; 4. Line: Hypnogram; 5. Line: chin EMG 
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As described in chapter State of the art annotations are mainly done manually by sleep experts. These 

annotations are clinically approved by considering much more than just the EEG-signal. The experts 

evaluate the patient by looking at other bio signals like respiratory anomalies, ECG irregularities, leg 

movements, etc. sometimes even video analysis or the knowledge of the clinical history of the person 

is considered.  

The detection algorithm derived in this work is exclusively based on the EEG signal, the chin EMG and 

the hypnogram. The features are mainly derived from the definition of the AASM. To evaluate the 

performance of the algorithm correctly, the annotations needed to be modified to technically clear 

annotations following the AASM definition without access to other information except for the 

mentioned data. Although most of the annotations in both sets coincide, there are slight differences, 

wherefore in the following it will be referred to:  

• Original annotations 

• Modified annotations 

2.1.1 Original annotations 

This term will be used for the original arousal annotations, done manually by a team of sleep experts 

of the AKH Wien. These annotations may also consider additional information from other bio signals. 

2.1.2 Modified annotations 

This term will be used for the slightly modified (in case of unclear cases) original annotations by using 

only the EEG-signal and the definition of the AASM for the annotation decisions. The whole signal of 

all 7 recordings was checked with the “Sleep-Data-Viewer-Tool” (see Figure 3) of the AIT and newly 

annotated. Since the definition of an arousal is rather vague and the annotations of AKH Wien are 

made professionally manually by experts, the intention was not to change the annotation set too 

much. Therefore, arousals were only added in clear abrupt frequency shift cases that don’t let any 
doubts and likewise arousals were only removed from the annotation set if the criteria of the definition 

of the AASM was not clearly fulfilled.  

For the documentation of the modified annotation set, each arousal was classified in either “unclear” 
or “clear” arousal and one of 10 reasons was added to the comments while annotation process:  

• “Expert annotation”: Describes an annotation done by a sleep expert and used without 

changes for the modified set. 

• “Modified expert annotation”: Describes an annotation done by a sleep expert but changed 

in start or end time. 

• “Added annotation”: Describes an annotation that was added to the modified set but wasn’t 
in the original set. 

• “Patient awake”: Describes an annotation that occurs partly or completely when hypnogram 

was set zero. These got removed for the modified annotation set because epochs of awakening 

are not considered in the algorithm, as described later. 

• “No frequency shift”: Describes an annotation that doesn’t show a clear frequency shift and 
was probably annotated because of other criteria, which are not available in the following 

detection algorithm. 
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• “Confusion with artifact”: Describes an annotation that shows a very high amplitude, mostly 

for a very short time, that is more likely to be an artifact than an arousal.  

• “Confusion with delta-artifact or K-Komplex”: Describes an annotation that shows high delta 

frequencies or only consists in a sharp wave similar to a K-Komplex. Since a shift in delta 

frequencies is not considered to be an arousal these are also removed.  

• “Confusion with sleep spindle”: Describes an annotation that shows high sigma frequencies 

that are a criteria for a sleep spindle and may have been confused with alpha frequencies. 

Since sleep spindles need to be distinguished from arousals these are also removed. 

• “Freq shift shorter than 3s”: Describes an annotation that shows a frequency shift but it lasts 

shorter than 3s. 

• “No stable sleep 10s before”: Describes an annotation that is not fullfilling the 10s of stable 

sleep before the arousal because of an other arousal or because of frequency shifts shorter 

than 3s that are not considered as an arousal. 

The modified set consists of arousals classified as “clear”. These are all with one of the following 

comments: 

• “Expert annotation” 

• “Modified expert annotation” 

• “Added annotation” 

Table 1 and Table 2 give an overview of the difference between the original and the modified 

annotation set. 

 TS100714 TS090714 TC070814 MB200814 

# arousals in original set 238 235 113 115 

# arousals in modified set 205 201 79 83 

% of arousals in the original set that got 

removed 
17% 18% 30% 30% 

% of arousals in the modified set that are 

added annotations 
4% 5% 0% 2% 

 

Table 1: Statistics of original and modified annotation set of PLMS patients 

 

Table 2: Statistics of original and modified annotation set of patients without sleep disorder diagnosis 

  

 CP101214 MC250614 MP020714 

# arousals in original set 15 78 76 

# arousals in modified set 11 68 53 

% of arousals in the original set that got removed 27% 17% 32% 

% of arousals in the modified set that are added 

annotations 
0% 4% 2% 
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2.2 Methods for arousal detection 

The aim of the following chapter is to explain the functionality of the arousal detection algorithm and 

to derive the methods used in each step. As already mentioned in the section Data set, the automatic 

detection will be developed and evaluated with a modified data set of annotations. Arousals that can’t 
be clearly annotated without the information of other channels got removed. The appearance of an 

arousal may take various forms, depending on the patient and many other factors like leg movements, 

respiratory events, sleep stage, etc.  

  

  

  
 

Figure 4: Various forms of arousal appearance in two channels 
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Figure 4 illustrates that some arousals may be easier to identify than others. Most of the time there is 

also an amplitude shift noted next to the frequency shift.  

Figure 5 gives an overview about the arousal detection process. In the following sections the details of 

the detection process are explained and methods are derived.  

2.2.1 Signal preprocessing  

2.2.1.1 Signal filtering 

As described in Polysomnographic terms and definitions in sleep medicine five characteristic frequency 

bands are analyzed. Hence, it is necessary to bandpass filter the EEG signal.  The implemented filter is 

a window-based finite impulse response (FIR) filter constructed with a Hamming-window. The 

following methods are derived based on the book Zeitdiskrete Signalverarbeitung (Oppenheim, 

Schafer, & Buck, 2004) and the script Stationäre Prozesse und Zeitreihenanalyse (Scherrer, 2015). 

Figure 5: Overview of arousal detection algorithm 
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Construction of a FIR-bandpass filter 

Let (𝑥𝑡|𝑡 ∈ ℤ) be the input signal and (𝑦𝑡|𝑡 ∈ ℤ) the filtered signal. A linear, dynamic filter is a function 

of the form:  

(𝑥𝑡) ⟼ 𝐴(𝑥𝑡) ≔ (𝑦𝑡 = ∑ 𝑎𝑗𝑥𝑡−𝑗∞
𝑗=−∞ ) , 𝑤𝑖𝑡ℎ (𝑎𝑗 ∈ ℝ𝑚𝑥𝑛|𝑗 ∈ ℤ) 

A filter with (𝑎𝑗|𝑗 ∈ ℤ) is commonly called: 

• Dynamic, if 𝑎𝑗 ≠ 0 for at least one 𝑗 ≠ 0 

• Static, if 𝑎𝑗 = 0 for all 𝑗 ≠ 0 

• Causal, if 𝑎𝑗 = 0 for all 𝑗 < 0 

• Anti-causal, if 𝑎𝑗 = 0 for all 𝑗 > 0 

The output 𝑦𝑡 doesn’t have to exist for a filter with an infinite number of filter coefficients. To construct 

a filter with a well-defined output, one has to impose certain assumptions on coefficients and input. If 

the input (𝑥𝑡) is bounded, |𝑥𝑡| < 𝑐, and the filter coefficients are absolutely summable (𝑙1 −𝑓𝑖𝑙𝑡𝑒𝑟), then the output 𝑦𝑡 is well-defined. One option to fulfill the condition, that filter coefficients 

are absolutely summable, is to create a filter with a finite number of non-zero filter coefficients. This 

is the main idea of constructing FIR-filters with the window-method. A non-causal FIR-filter of order 𝑞 

with 2q+1 filter coefficients (finite number) is defined as follows: 

(𝑥𝑡) ⟼ 𝐴(𝑥𝑡) ≔ (𝑦𝑡 = ∑ 𝑎𝑗𝑥𝑡−𝑗𝑞
𝑗=−𝑞 ) ,    𝑤𝑖𝑡ℎ  𝑡 > 𝑞 + 1 𝑎𝑛𝑑 𝑡 < 𝑇 − 𝑞  

When analyzing filter in frequency domain the transferfunction of the filter 𝐴 with coefficients (𝑎𝑗|𝑗 ∈ℤ) can be defined as the discrete Fourier transformation of the filter coefficients:  𝜆 ∈ [−𝜋, 𝜋] ⟼ 𝑎(𝑒−𝑖𝜆) = ∑ 𝑎𝑗𝑒−𝑖𝜆𝑗  

The function 𝜆 ⟼ |𝑎(𝑒−𝑖𝜆)| is called the gain of the filter. The gain of the filter can tell which 

frequencies are enhanced and which are damped: 

• If |𝑎(𝑒−𝑖𝜆)| < 1 frequency 𝜆 is damped 

• If |𝑎(𝑒−𝑖𝜆)| > 1 frequency 𝜆 is enhanced 

For the further analysis of the characteristic frequency bands of the EEG-signal, it is necessary to 

construct a bandpass filter, to “let through” only a specific frequency range of the signal. The green 

area in Figure 10 and Figure 11 illustrates a perfect bandpass filter, with a filtergain that equals one 

within the desired frequency band and is zero elsewhere. Unfortunately, there is no 𝑙1 − 𝑓𝑖𝑙𝑡𝑒𝑟 with 

such a transferfunction, because this transferfunction is not continuous. The aim is to find a filter with 

a well-defined output and a transferfunction that is relatively close to the ideal one.  
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Let (𝑎𝑗|𝑗 ∈ ℤ) be the filter coefficients of the ideal bandpass filter. A common method to construct a 

FIR filter is to construct a window 𝑤(𝑗) defined as:  

𝑤(𝑗) = {𝑤𝑗,      𝑗 ∈ [−𝑞, 𝑞]0,                    𝑒𝑙𝑠𝑒 

Figure 6 shows two possible choices of window functions.  

 

The filter coefficients (𝑎𝑗𝑤) of the FIR filter then are defined as the product of the filter coefficients (𝑎𝑗) with the window function 𝑤(𝑗), 𝑗 ∈ ℤ:  𝑎𝑗𝑤 = 𝑎𝑗 ⋅ 𝑤(𝑗) 

The transferfunction of the FIR filter with coefficients (𝑎𝑗𝑤 = 𝑎𝑗 ⋅ 𝑤(𝑗)) is the convolution of the 

transferfunction 𝑎(𝑒−𝑖𝜆) and the discrete Fourier transformation of the window function 𝑤(𝑒−𝑖𝜆) =∑ 𝑤(𝑗)𝑞𝑗=−𝑞 𝑒−𝑖𝜆. It can be written as:  

𝑎𝑤(𝑒−𝑖𝜆) = 12𝜋 ∫ 𝑎(𝑒−𝑖𝜃)𝑤(𝑒−𝑖(𝜆−𝜃))𝑑𝜃𝜋
−𝜋  

When cutting the coefficients of a filter to finite length with a window function, one can observe a 

phenomenon called leakage effect. It describes that when transforming the signal into frequency 

domain, frequency components, that would not appear if the filter with filter coefficients of infinite 

length were used, inevitably emerge. The aim is choosing a window function that reduces this effect 

as much as possible.  

As visualized in Figure 6 on the right side, one of the simplest versions of a window function is the 

Fejer-window (rectangular window) which is defined as:  

𝑤𝑓(𝑗) =  {1, 𝑗 ∈ [−𝑞, 𝑞]0,                     𝑒𝑙𝑠𝑒 

 

Figure 6: Illustration of Fejer-window (rectangular window) and Hamming window of order q = 64 
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Another window function was proposed by the US mathematician R. W. Hamming. In order to 

minimize the side lobes closest to the main lobe (see Figure 7-11) the hamming window is defined as  

𝑤ℎ(𝑗) =  {0.54 − 0.46 cos ( 2𝜋𝑗(2𝑞 + 1) − 1) , 𝑗 ∈ [−𝑞, 𝑞]0,                                                                               𝑒𝑙𝑠𝑒 

with (2𝑞 + 1) the width (in samples) of the symmetrical window function. 

Figure 7 and Figure 8 show the modulus of the Fourier transformation of both presented window 

functions in two different resolutions as well as in dB for filter orders 𝑞 = 64 and 𝑞 = 256. 

 

 

Figure 7: Modulus of the Fourier transformation of both presented window functions of order q=64 
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Figure 8: Modulus of the Fourier transformation of both presented window functions of order q=256 

Clearly, for the Fejer-window the coefficients within the non-zero interval [−𝑞, 𝑞] are the ideal filter 

coefficients. Figure 9 shows the filter coefficients for filter order 64, 128 and 1024 of the FIR-bandpass 

filter (4-7Hz) calculated as the product of the coefficients of the ideal filter with the ones of the window 

function.  

When visualizing the gain of the FIR bandpass filter for the frequency range 4-7 Hz with coefficients (𝑎𝑗𝑤), the different characteristics of the window functions can be observed. Figure 10 and Figure 11 

show the filter gain of the bandpass filters and it can be observed that the main lobe of the Hamming 

window is wider than the one of the Fejer-window but the side lobes closest to the main lobe of the 

Hamming-window are smaller.  

Figure 9: Filter coefficients of the FIR bandpass filter for 4-7 Hz constructed with window functions 
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Figure 11: Filter gain of the bandpass filter for 4-7 Hz in dB constructed with two different window functions 

Figure 10: Filter gain of the bandpass filter for 4-7 Hz constructed with two different window functions 
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The higher the chosen filter order is, the more the precision of the bandpass filter increases. But the 

drawback is that filtering the signal with a high number of coefficients means that the filtered signal 𝑦𝑡 depends on a high number of future and past data points and that could influence time critical 

detection problems. Therefore, to guarantee enough precision for the detection problem, a filter order 

of 𝑞 = 128 is used, which corresponds to half a second of time (past and future data points for a 

sample rate of 256Hz). 

Signal filtering in Python 

The filter coefficients for the bandpass filter constructed with a hamming window are calculated in 

python with the function filtwin out of the signal processing package scipy.signal. For the 

calculation of the filtered signal the function lfilter in python is used, which implements a causal 

filter of the form:    

𝑦̃𝑡 = ∑ 𝑏𝑗𝑥𝑡−𝑗2𝑞
𝑗=0 ,     𝑡 > 2𝑞     (1) 

 

In order to compute the output of a non-causal (two-sided) FIR filter of the from 

𝑦𝑡 =  ∑ 𝑎𝑗𝑥𝑡−𝑗𝑞
𝑗=−𝑞 ,     𝑡 > 𝑞 + 1 𝑎𝑛𝑑 𝑡 < 𝑇 − 𝑞 (2) 

 

by the function lfilter we simply set 𝑦𝑡 = 𝑦̃𝑡+𝑞 and 𝑏𝑗 = 𝑎𝑗−𝑞. 

In practice, to compute the output (𝑦𝑡) of filter (2) out of filter (1), realized with python, the filtered 

data needs to be shifted back 𝑞 steps by cutting the first 𝑞 points and adding 𝑞 zeros at the end of the 

signal. Since each EEG-recording has millions of data points the missing filtered data at the beginning 

and at the end doesn’t influence any results. 

Figure 12 shows a 12s interval of EEG-signal of the central derivation C3A2 without any irregularities 

filtered into the 4 characteristic frequency bands (δ-band, θ-band, α-band and β-band). The sigma 

waves are not of great interest here, because they would indicate sleep spindles and must be excluded 

from arousal detection.  
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Figure 12: Original signal bandpass filtered with a FIR-Filter constructed with a Hamming-window with filter order q = 64 into 

characteristic frequency bands 

2.2.2 Feature extraction  

2.2.2.1 Signal segmentation and feature aggregation  

EEG-signal is commonly analyzed in epochs of 30 seconds. Many publications on arousal detection 

divide the signal in fixed epochs of 20 to 30 seconds and classify if a segment contains an arousal or 

not. This idea arises from visual scoring and conventional sleep staging. The expert monitors 30s of the 

EEG signal and decides on the sleep stage and if it contains an arousal by marking it manually. An 

adaptive segmentation approach as in (Agarwal, 2005), where the segmentation is made due to 

significant changes in the signal, seems to be more suitable. A disadvantage of adaptive segmentation 

is clearly that the signal is divided in variable length epochs, which could make it more difficult to 

compare features among segments. In addition, the classification of equal length segments is more 

reasonable and reliable.   

In this work, a combination of a continuous analysis and segmentation in segments of 3s is realized. 

The later described classification algorithm has shown the best performance on 3s segments. Features 

are extracted either per second or per segment. The features extracted per second are aggregated 

within each segment as further described.  

2.2.2.2 Feature extraction derived from the definition of the AASM 

This section will be concerned with the extraction of features for the arousal start detection. All 

features will be derived from the definition of the AASM. Hence only frequency based features will be 
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extracted without making any use of additional channels except for the available EEG-channels C3A2 

and C4A1. 

For better understanding the definition of an arousal of the AASM may be repeated here:  

“Score arousals during sleep stages N1, N2, N3 or R if there is an abrupt shift of EEG frequency including 

alpha, theta and/or frequencies greater than 16 Hz (but not spindles) that lasts at least 3 seconds, with 

at least 10 seconds of stable sleep preceding the change. Scoring of arousal during REM requires a 

concurrent increase in submental EMG lasting at least 1 second. […]” (Berry, et al., 2016) 

The definition gives a relatively clear understanding of the start of an arousal. The duration and the 

end of an arousal are discussion points and highly depend on the patient, on the sleep expert scoring 

it and on the appearance of an arousal. In practice, the end of an arousal is set when the signal returns 

approximately to the state before the arousal.  

In this thesis, a two-step detection algorithm will be presented (see Figure 5). In the first step features 

for the detection of arousal starts are extracted and aggregated in segments. After classifying the 

segments as arousal start and no-start segments, the exact start and end of the arousals is determined. 

At the end a check for further arousal criteria, like the minimum duration of 3s, the obligatory 10s of 

stable sleep preceding an arousal and the increase in submental EMG while REM-sleep, is 

implemented. With this approach, it will be possible to score with high accuracy the exact position of 

an arousal.  

Features for the detection of arousal starts 

To display a shift in spectral content, it is necessary to extract features that measure the signal 

development and change over time. The point in time where 10s of stable sleep precedes an abrupt 

shift in frequency of at least 3s describes the start of an arousal. This core idea, taken from (Álvarez-

Estévez & Moret-Bonillo, Identification of Electroencephalographic Arousals in Multichannel Sleep 

Recordings, 2011) is used to analyze the filtered signal. This is done by rolling two consecutive 

windows, one of 10s and one of 3s, in 1s steps over the whole recording and comparing them with 

respect to abrupt frequency shifts. The 10s window represents the period of stable sleep and the 3s 

window a possible arousal start period. The analysis is performed on the filtered signal of both 

available EEG channels. Figure 13 illustrates the core idea on the example of an arousal displayed on 

the C3A2 channel. The further described sets of features extracted are measures to describe a 

difference between these two windows that would indicate an arousal start.  
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Figure 13: Illustration of the continuous analyzation of the whole recording in 1s steps with two consecutive rolling windows 

of 10s and 3s 

The features are either extracted for each second or within a 3s segment of the recording. Features 

extracted per second will be summarized in 3s segments. The later described classification algorithms 

have shown better performance on the 3s segments than on the 1s segments. After the classification, 

a more precise definition of the arousal start within the classified segments is done by going back to 

some of the original 1s features. In addition, there are also features extracted without considering the 

past 10s.  

Notation 

First, the used notation is explained:  

• Let 𝑡 =  1, … , 𝑇 be the overall time index for all samples of the recording with 𝑇 being the 

number of samples (With the considered data, 𝑇 reaches values between 6 and 8,5 million 

points, depending on the patient)  

• Let 𝑆 = 256 be the sample rate of the EEG-signal  

• Let 𝑘 = 1, … , 𝑇𝑆 be the index for whole seconds within the recording 

• Let 𝑗 = 1, … , 𝑇3𝑆 be the index for the segments with a length of 3s 

Using these indices, the start of the 𝑘𝑡ℎ second can be described as: 𝑡(𝑘) = (𝑘 − 1) ∙ (𝑆) + 1  

Furthermore, certain intervals and segments of the recording need to be described with an adequate 

notation.  

10s „stable 
sleep“ 

3s „possible 

arousal“ 

10s „stable 
sleep“ 

3s „possible 

arousal“ 

10s „stable 
sleep“ 

3s „possible 

arousal“ 

10s „stable 
sleep“ 

3s „possible 

arousal“ 

In 1s steps rolling over 

the whole recording 
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• Let 𝐼+𝑛(𝑘) = {𝑡 ∈ ℕ| 𝑡 ∈ [𝑡(𝑘) , 𝑡(𝑘 + 𝑛))} be the interval of all indices 𝑡 that are part of a 𝑛 

second interval starting in the 𝑘𝑡ℎ second at 𝑡(𝑘) and ending at the start of the second 𝑡(𝑘 +𝑛) (without the sample at 𝑡(𝑘 + 𝑛)). 

• Let 𝐼−𝑛(𝑘) = {𝑡 ∈ ℕ| 𝑡 ∈ [𝑡(𝑘 − 𝑛)) , 𝑡(𝑘))} be the interval of all indices 𝑡 that are part of a 𝑛 

second interval starting in the (𝑘 − 𝑛)𝑡ℎ second at 𝑡(𝑘 − 𝑛) and ending at the start of the 

second 𝑡(𝑘) (without the sample at 𝑡(𝑘)). 

• For classification the signal is separated in fixed segments of 3s. Using the same notation as 

for seconds 𝑘: 3s segments are notated with: 𝐼+3(3𝑗) for 𝑗 = 1, … , 𝑇3𝑆 

Figure 14 illustrates the used notation for the following derivations. 

 

 

 

 

 

 

Signal power 

The signal power is a possible measure to describe the intensity of a signal within a certain frequency 

band, which is interesting when searching for frequency shifts. The signal power 𝑃 within a certain 

frequency band is defined as the sum of the squared samples of the filtered signal 𝑦𝑡.  

Let 𝑦𝑏(𝑡), 𝑡 = 1, … , 𝑇 𝑎𝑛𝑑 𝑏 = 𝛿, 𝜃, 𝛼, 𝛽, be the bandpass filtered signal within a characteristic 

frequency band at time 𝑡. And let 𝑋(𝑡) describe the whole signal (bandpass filtered within [0.4,40] Hz). 

The cardinality of a set X is described by |X|. Then the total signal power 𝑃𝑏 within a certain frequency 

band 𝑏 for a certain interval 𝐼±𝑛(𝑘) is defined as:  

𝑃𝑏(𝐼±𝑛(𝑘)) = 1|𝐼±𝑛(𝑘)| ∑ 𝑦𝑏2(𝑡)𝑡∈𝐼±𝑛(𝑘) , 𝑏 =  𝛿, 𝜃, 𝛼, 𝛽 

The relative signal power is the part of the total signal power that is generated by a certain frequency 

band 𝑏 within a certain interval  𝐼±𝑛(𝑘) :  

𝑝𝑏(𝐼±𝑛(𝑘)) = 1|𝐼±𝑛(𝑘)| ∑ 𝑦𝑏2(𝑡)𝑡∈𝐼±𝑛(𝑘)1|𝐼±𝑛(𝑘)| ∑ 𝑋2(𝑡)𝑡∈𝐼±𝑛(𝑘) , 𝑏 =  𝛿, 𝜃, 𝛼, 𝛽 

Feature Sets 

The following sets are extracted:  

 

𝑡(𝑘 − 3) 𝑡(𝑘 − 2) 𝑡(𝑘 − 1) 𝑡(𝑘) 𝑡(𝑘 + 1) 𝑡(𝑘 + 2) 𝑡(𝑘 + 3) 

𝐼−3(𝑘) 𝐼+3(𝑘) 

𝑡 

256 samples 

Figure 14: Illustration of notation within one recording 
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• Change of total signal power within characteristic frequency bands 

During an arousal power is shifted from one frequency band to another. Normally power is 

increasing in total and especially in higher frequency bands like in 𝛼- and 𝛽-band. By comparing 

the power of the 10s window before second 𝑘 and the 3s window after second 𝑘 the first set 

of features is calculated (Álvarez-Estévez & Moret-Bonillo, Identification of 

Electroencephalographic Arousals in Multichannel Sleep Recordings, 2011): Let 𝑃𝑏(𝐼−10(𝑘)) 

be the signal power within a certain frequency band 𝑏 of the 10s window and 𝑃𝑏(𝐼+3(𝑘)) the 

one of the 3s window.  

𝑒𝑏(𝑘) = 𝑃𝑏(𝐼+3(𝑘))𝑃𝑏(𝐼−10(𝑘)) = 1|𝐼+3(𝑘)| ∑ 𝑦𝑏2(𝑡)𝑡∈𝐼+3(𝑘)1|𝐼−10(𝑘)| ∑ 𝑦𝑏2(𝑡)𝑡∈𝐼−10(𝑘) , 𝑏 =  𝛿, 𝜃, 𝛼, 𝛽 𝑎𝑛𝑑 𝑘 = 1, … , 𝑇𝑆 

 

➢ 4 features per channel are extracted: 𝑒𝑏(𝑘) is calculated for each second of the 

recording and for 4 frequency bands.  

➢ Aggregation: For classification the 𝑚𝑎𝑥(𝑒𝑏(𝑘)) within 3s segments is calculated. 

 

• Change of relative signal power within characteristic frequency bands 

During an arousal frequencies are shifted to other bands and therefore the change of the part 

of total power of one frequency band is indicating a shift in frequency. In order to compare if 

the part of total power that is generated by a certain frequency band is increasing or 

decreasing, the ratio of relative power 𝑟𝑏(𝑘) between the two windows is calculated:  

𝑟𝑏(𝑘) = 𝑝𝑏(𝐼+3(𝑘))𝑝𝑏(𝐼−10(𝑘)) =  
1|𝐼+3(𝑘)| ∑ 𝑦𝑏2(𝑡)𝑡∈𝐼+3(𝑘)1|𝐼+3(𝑘)| ∑ 𝑋2(𝑡)𝑡∈𝐼+3(𝑘)1|𝐼−10(𝑘)| ∑ 𝑦𝑏2(𝑡)𝑡∈𝐼−10(𝑘)1|𝐼−10(𝑘)| ∑ 𝑋2(𝑡)𝑡∈𝐼−10(𝑘)

, 𝑏 =  𝛿, 𝜃, 𝛼, 𝛽 𝑎𝑛𝑑 𝑘 = 1, … , 𝑇𝑆 

 

➢ 4 features per channel are extracted: 𝑟𝑏(𝑘) is calculated for each second of the 

recording and for 4 frequency bands.  

➢ Aggregation: For classification the 𝑚𝑎𝑥(𝑟𝑏(𝑘)) within 3s segments is calculated. 

 

• Ratio of change in higher frequencies vs. change in lower frequencies 

A good indicator of a shift in frequency is when the part of power in lower frequencies (𝜃-

band) is decreasing and the part of power in higher frequencies (𝛼- and 𝛽-band) at the same 

time increasing. Thus, by calculating their ratio, a new set of features is extracted: 

𝑑𝜃𝑣𝑠(𝛼+𝛽)(𝑘) = 𝑟𝛼(𝑘) + 𝑟𝛽(𝑘)𝑟𝜃(𝑘) , 𝑘 = 1, … , 𝑇𝑆 

➢ 1 feature per channel is extracted: 𝑑𝜃𝑣𝑠(𝛼+𝛽)(𝑘) is calculated for each second of the 

recording.  
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➢ Aggregation: For classification the 𝑚𝑒𝑎𝑛(𝑑𝜃𝑣𝑠(𝛼+𝛽)(𝑘)) within 3s segments is 

calculated. 

 

• Band percentage 

During an arousal the relative signal power of higher frequencies is greater. The relative signal 

power within segments of 3s is calculated. (Shahrbabaki, Dissanayaka, Patti, & Cvetkovic, 

2015) 

𝑝𝑏(𝐼+3(3𝑗)) = 1|𝐼+3(3𝑗)| ∑ 𝑦𝑏2(𝑡)𝑡∈𝐼+3(3𝑗)1|𝐼+3(3𝑗)| ∑ 𝑋2(𝑡)𝑡∈𝐼+3(3𝑗) , 𝑏 =  𝛿, 𝜃, 𝛼, 𝛽 𝑎𝑛𝑑 𝑗 =  1, … , 𝑇3𝑆  
➢ 4 features per channel are extracted: 𝑝𝑏(𝐼(𝑗)) is calculated for each 3s segment.  

 

• The center of frequency 

The next approach is to calculate the center of frequency within one segment, because one 

may suppose that it shows higher values during an arousal. Therefore a mean value of all 

possible frequency bands is calculated (Shahrbabaki, Dissanayaka, Patti, & Cvetkovic, 2015):  

 𝑓̅(𝐼+3(3𝑗)) =  [𝑃𝛿(𝐼+3(3𝑗))∙(0.4+4−0.42 )+𝑃𝜃(𝐼+3(3𝑗))∙(4+8−42 )+𝑃𝛼(𝐼+3(3𝑗))∙(8+12−82 )+𝑃𝜎(𝐼+3(3𝑗))∙(12+16−122 )+𝑃𝛽(𝐼+3(3𝑗))∙(16+40−162 )]𝑃𝛿(𝐼+3(3𝑗))+𝑃𝜃(𝐼+3(3𝑗))+𝑃𝛼(𝐼+3(3𝑗))+𝑃𝛽(𝐼+3(3𝑗))    
 

➢ 1 feature per channel is extracted: 𝑓̅(𝐼+3(3𝑗)) is calculated for each 3s segment  

(𝑗 = 1, … , 𝑇3𝑆). 

 

A more statistical point of view leads to the idea of testing on a significant difference in mean of the 

squared filtered signal between the 10s and the 3s window. 

• Statistical test on structure break between the two consecutive windows  

Let 𝑦𝑏(𝑡), 𝑡 ∈ 𝐼−10(𝑘) ∪ 𝐼+3(𝑘) be the filtered signal in the joined interval of both windows. 

To analyze if there is a significant difference in mean or a so called structure break between 

the two windows, a regression model for the squared filter signal is estimated. As mentioned 

before, this new interval of 13s is rolling in 1s steps over the whole recording. Let |𝐼−10(𝑘)| =10 ∙ 𝑆 = 2560 be the length of the 10s window,|𝐼+3(𝑘)| = 3 ∙ 𝑆 = 768 the length of the 3s 

window and 𝐷(𝑡), 𝑡 ∈ 𝐼−10(𝑘) ∪ 𝐼+3(𝑘) be a dummy variable, which is defined as:  𝐷(𝑡) = 0, 𝑖𝑓 𝑡 ∈ 𝐼−10(𝑘) 𝐷(𝑡) = 1, 𝑖𝑓 𝑡 ∈ 𝐼+3(𝑘) 

Doing so, the dummy variable 𝐷(𝑡) is equal to one in the 3s interval and equal to zero in the 

10s interval. The mean of a variable can be estimated by performing a regression of the 

dependent variable on a constant. It is of interest if there is a difference in mean between the 

squared filtered signal of the two intervals.  
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The regression model can be formulated as follows:  𝑦𝑏2(𝑡) =  𝛽𝑏,0(𝑘) + 𝛽𝑏,1(𝑘) ∙ 𝐷(𝑡) + 𝑢𝑏(𝑡),   
𝑡 ∈ 𝐼−10(𝑘) ∪ 𝐼+3(𝑘), 𝑏 = 𝛿, 𝜃, 𝛼, 𝛽, 𝑘 = 1, … , 𝑇𝑆 

With 𝛽𝑏,0(𝑘) and 𝛽𝑏,1(𝑘) representing the unknown parameters and 𝑢𝑏(𝑡) the errors.  

The parameters are estimated with ordinary least squares method, by minimizing the sum of 

squared errors. 𝛽𝑏,1(𝑘) can be interpreted as the change in the mean value of 𝑦𝑏2 if 𝑡 ∈ 𝐼+3(𝑘), 

or, in other words, it is the difference in the estimated mean of 𝑦𝑏2 between the 10s and the 

3s window. If 𝛽𝑏,1(𝑘) is significantly different from zero, the mean in both windows is 

statistically not the same and one can extract the related t-test statistic as a feature and 

indicator for a frequency shift.  The hypothesis is:  𝐻0: 𝛽𝑏,1(𝑘) = 0 𝐻1: 𝛽𝑏,1(𝑘) ≠ 0 

Assumed that the above defined regression model fulfills the assumptions of a classical 

regression model, the t-test statistic 𝜏𝑏(𝑘) = 𝛽𝑏,1̂(𝑘)√𝑉𝑎𝑟̂(𝛽𝑏,1̂(𝑘)) is under the 𝐻0 and the assumption 

that the errors 𝑢𝑏 are normally distributed 

 𝑢𝑏~𝑁(0, 𝜎2𝐼|𝐼−10(𝑘)∪𝐼+3(𝑘)|) 

t-distributed with |𝐼−10(𝑘) ∪ 𝐼+3(𝑘)| − 1 = 3327 degrees of freedom. 

Although we can’t assume a normal distribution of the errors, we still can calculate the t-test 

statistic for 𝛽𝑏,1(𝑘) and use it as a feature set.   

𝜏𝑏(𝑘) = 𝛽𝑏,1̂(𝑘)√𝑉𝑎𝑟̂ (𝛽𝑏,1̂(𝑘)) , 𝑏 =  𝛿, 𝜃, 𝛼, 𝛽 𝑎𝑛𝑑 𝑘 = 1, … , 𝑇𝑆 

➢ 4 features per channel are extracted: 𝜏𝑏(𝑘) is calculated for each second of the 

recording and for 4 frequency bands.  

➢ Aggregation: For classification the 𝑚𝑎𝑥(𝜏𝑏(𝑘)) within 3s segments is calculated. 

Thinking in terms of time series analysis, one can try to fit an AR-model to the data within the segments 

and compare the coefficients of the model within arousal segments and no-arousal segments.  

• AR coefficients 

In each 3s segment (quasi stationary segment) an AR(p)-Model with parameters 𝑎1, … , 𝑎𝑝 is 

fitted to the EEG data 𝑋𝑡: 𝑋𝑡 = 𝑎1𝑋𝑡−1 + 𝑎2𝑋𝑡−2 + ⋯ + 𝑎𝑝𝑋𝑡−𝑝 + 𝑢𝑡 

➢ 𝑝 features per channel are extracted: 𝑎1, … , 𝑎𝑝 is estimated within each 3s 

segment.  
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2.2.2.3 Feature analysis and reduction 

The aim of this section is to analyze which features are relevant for the classification afterwards. Too 

many features and especially features that have no meaning for the classification can result in a poor 

performance of the algorithm. It has to be noted that the purpose here is to find indicative features 

for arousal starts. The duration for detected arousal is calculated in a second step. 

Before analyzing the relevance of the features for the classification, a short analysis is done on the AR-

Model features to determine a model order. 

  
 

Figure 15: Autocorrelation function and Partial Autocorrelation function for the EEG C4A1 signal of patient CP101214 

Figure 15 shows the ACF and the PACF of the whole recording of the EEG channel C4A1 of patient 

CP101214. Due to the high amount of data points the correlation and the partial correlation for all lags 

are significant. A simple and flexible way to model this, is using an AR-model. There are publications 

on this topic, for example (Zhang, Ji, & Zhang, 2015) where more can be read about classification of 

EEG-signal with AR-models. In this work the coefficients are suggested as features and therefore no 

further time series analysis is done.  

 

Figure 16 shows how ACF and PACF differ between two randomly chosen segments, one with and one 

without an arousal.  
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Figure 16: First row shows the ACF and the PACF during a segment of the first arousal of patient CP101214 and the second 

row shows the same for a random chosen no-arousal segment 

Features will be extracted within segments of 3s and therefore the order 𝑝 of the AR(𝑝)-Model for 𝑋𝑡 

within one segment is estimated with BIC information criteria for the whole recording.  

  
 

Figure 17: Distribution of AR model order p estimated with BIC criterion for the C3A2 data of patient TS100714 

 

Figure 17 shows the distribution of the model order within one segment along the recording of one 

patient (other patients show similar results). The order 𝑝 = 20 seems to be a good approximation for 

the estimated order. The order is fixed at 𝑝 = 20 and development of the parameters (estimated 

within each segment) for the whole recording is plotted for patient MP020714 in Figure 18 (lags 1-10) 

and in Figure 19 (lags 11-20). In addition, the center of frequency within each segment is plotted below 

and arousal segments are marked with black lines. 
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Figure 18: Development of AR(20) parameters for lags 1-10 and the center of frequency for the same segments; Patient: 

MP020714; EEG-channel: C3A2 

 

Figure 19: Development of AR(20)-parameter for lags 11-20 and the center of frequency for the same segments. Patient: 

MP020714; EEG-channel: C3A2 

Furthermore it seems that the coefficients of the AR(20)-model are quite stable with the exception of 

time intervals close to arousals. It can be observed that especially the coefficients for smaller lags are 

more sensible to segments, in which the center of frequency is increasing and arousals are occurring. 

Although the estimation of the order of the model resulted in order 𝑝 = 20, it appears that smaller 

lags may contain more information about arousals (see boxplots in Figure 23) and therefore a smaller 

model with order 𝑝 = 6 is tested for feature extraction (see boxplots in Figure 24).  
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Figure 20 shows that the coefficients of the AR(6)-model, with exception of the coefficients for lag 1 

and lag 6, react sensible in segments where the center of frequency is increasing and arousals are 

occurring. This characteristic is useful for the detection of arousals.  

 

Figure 20: Development of AR(6)-parameter for lags 1-6 and the center of frequency for the same segments. Patient: 

MP020714: C3A2 

In order to examine in greater detail how features are distributed between no-arousal start segments 

(0) and arousal start segments (1) one possibility is to visualize them using boxplots. Figure 21 and 

Figure 22 show boxplots of all calculated features except for the AR(p)-coefficients.  

The high amount of outliers can have different reasons. One reason is that EEG-signal is in general an 

unstable data set and there are many artifacts. In this work, there is no removal of artifacts performed 

when preprocessing data and therefore signal reaches values high above the average in moments of 

amplitude artifacts and causes outliers when calculating features, that use squared values of the signal. 

In most of the cases the boxes in the boxplot overlap between the arousal start segment group and no 

arousal start segment group. This can be partly caused by facts like, that arousals may have very 

different appearances (see Figure 4), that also periods without arousals can show abrupt frequency 

shifts and that segments directly next to arousal starts can show similar values of features but are 

labeled as no-arousal start segments.  

In Figure 21 and Figure 22 features in a red box show a clearer difference between arousal and no 

arousal segments than others and are chosen for classification process. Features calculated exclusively 

with delta filtered signal aren’t considered for the classification process because according to the 

AASM definition of an arousal, a shift in delta frequency is not counted as an arousal. In addition, delta 

artifacts are quite common in EEG-signal and the inclusion of delta features would cause wrong 

detection of artifacts instead of real arousals.   
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Figure 21: Boxplots of 8 features between arousal start segments (1) and no arousal start segments (0) of 3s of channel C3A2. 

 

Figure 22: Boxplots of 10 features between arousal start segments (1) and no arousal start segments (0) of 3s of channel C3A2.  
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Figure 23: Boxplots of AR(20)-coefficients until max lag = 20 between arousal start segments (1) and no-arousal start segments 

(0) of 3s 

 

Figure 24: Boxplots of AR(6)-coefficients until max lag = 6 between arousal start segments (1) and no-arousal start segments 

(0) of 3s 

Figure 23 shows the boxplots of the coefficients of the estimated AR(20) model for each segment. 

Compared to Figure 24, which provides the boxplots of the coefficients of the AR(6) model for each 

segment, it can be seen that the boxes never overlap for the AR(6) model and a clearer difference in 

distribution between arousal and no-arousal start segments can be seen. Although the order 𝑝 = 6 

may not be the real order of the model, the coefficients of this model are included in the classification 

algorithm.  

The performance of the later described classification algorithm was tested with backward feature 

reduction, by successively removing features and staying with the smallest set of features (marked 

with red boxes in Figure 21 and Figure 22 plus the coefficients of the AR(6) model) that gave the best 

performance results. In the end, 13 features times 2 channels (26 features) were chosen for the 

classification process.  
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2.2.3 Preparation for Classification 

2.2.3.1 Definition of arousal start segments 

For the training of the classifier, it has to be decided which segments are considered to be true arousal 

start segments. As segmentation is done strictly in 3s segments, it can happen that the start of the 

annotated arousal is just at the very end of a segment. In this case the next segment should be 

considered as the real start segment to avoid “bias” in the level of features within real start segments. 

Arousal segments are labeled according to the following condition:  

• A segment is labeled to be an arousal segment if at least 15% of the 3s segment is part of the 

arousal. 

• The first segment of each group of 3s segments describing an arousal is marked as the arousal 

start segment, which is used for classification. 

Figure 25 shows on the left side the case in which more than 15% of the start segment are part of the 

arousal, and on the right side the case in which less than 15% of the start segment are part of the 

arousal and the next segment is considered to be the real start segment.  

  
 

Figure 25: Illustration of the definition of an arousal start segment. Patient TS100714; EEG-channel: C4A1 

2.2.3.2 Check of hypnogram  

Referring to Note 3 and Note 5 of the AASM definition of an arousal, it is possible to score arousals 

during awakening. But from a clinical point of view and according to the practice of manual scoring, it 

is not common to score arousals during a phase where the patient is awake. Hence, all segments where 

the hypnogram appears to be zero in any moment are excluded from further arousal detection.  

Another critical point is how to distinguish between a real arousal and a transition to wake. In practice, 

there is either an arousal or a transition to wake scored. Therefore, due to the fact that the sleep stages 

are given and trusted, the last 30s (the last 10 segments) before hypnogram turns zero are also 

excluded.  

Referring to Note 4, the 10s of stable sleep can start during an epoch staged as wake. Therefore, 

nothing will be excluded after an epoch with hypnogram equal to zero.  
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2.2.4 Classification 

There are many different options to classify segments. In literature, machine learning algorithms as 

well as different discriminant functions (Álvarez-Estévez & Moret-Bonillo, Identification of 

Electroencephalographic Arousals in Multichannel Sleep Recordings, 2011), K-Nearest-Neighbors 

classification (Shahrbabaki, Dissanayaka, Patti, & Cvetkovic, 2015) or simple threshold decision 

algorithms (Agarwal, 2005) are applied. A great number of publications on this topic rely on machine 

learning algorithms because of better performance as already researched for example in (Álvarez-

Estévez & Moret-Bonillo, Identification of Electroencephalographic Arousals in Multichannel Sleep 

Recordings, 2011). Thus, in this thesis a support vector machine (SVM) is applied.   

For validation of the detection performance tested on the 7 patients of AKH Wien a “Leave-One-Out-

Cross validation” is used. That means that 6 patients are used as training set and the remaining one 

patient is used to validate the algorithm. Here the python support vector machine algorithm is used 

out of the scikit-learn module. (scikit-learn, 2010-2016) 

2.2.4.1 Support Vector Machine 

The aim of this section is to give a short overview of the functionality of a SVM. Due to the fact, that 

the algorithms were implemented in python, the following methods are derived based on the book 

Introduction to Machine Learning with Python (Guido & Müller, 2016) and the documentation of the 

scikit-learn package (scikit-learn, 2010-2016). 

A SVM constructs a hyper-plane (in 2D a line) or set of hyper-planes in a high or infinite dimensional 

space, which can be used for classification, regression or other tasks. Intuitively, a good separation is 

achieved by the hyper-plane that has the largest distance to the nearest training data points of any 

class (so-called functional margin), since in general, the larger the margin, the lower the generalization 

error of the classifier. (scikit-learn, 2010-2016) 

Support vectors are the feature-vectors within the training set that lie closest to the separation hyper-

plane and are therefore the most difficult to classify. A support vector machine finds the optimal hyper-

plane to separate the dataset by maximizing the margin between them (see Figure 26).  

Figure 26: Illustration of the maximization of the margin between the classes done by the SVM (scikit-learn, 2010-2016) 
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A SVM solves an optimization problem for the weights that correspond to the support vectors. 

Compared to linear regression or neural nets the important difference in support vector machines is 

that only some points and not all of them are considered when finding the optimal separation. 

SVM with kernel function 

If there is no linear hyperplane that separates the groups, the feature space can be mapped into a 

higher dimensional space to find a linear separation. This can be realized by substituting the inner 

product 𝑥𝑖 • 𝑥𝑗 in the optimization problem (4) with a kernel function 𝐾(𝑥𝑖, 𝑥𝑗) =  𝜑(𝑥𝑖)′𝜑(𝑥𝑗). The 

function 𝜑 transforms the features into a higher dimensional space and is defined implicitly by the 

kernel function 𝐾. Figure 27 shows how the separation hyperplanes between the classes are changing 

when using different kernel functions. 

SVM optimization in ℝ𝟐 

Figure 28 shows an example for a 2D-space with a linear hyperplane to separate the training set. Let 𝑥𝑖 ∈ ℝ2, 𝑖 = 1, … , 𝑁 be the training vectors in two classes and 𝑦 ∈ {−1,1}𝑁 a vector to label the 

classes, and ‖𝑥‖ be the Euclidian norm of 𝑥.  

 

Figure 28: Illustration of SVM optimization (scikit-learn, 2010-2016) 

Figure 27: Illustration of different kernel functions for SVM (scikit-learn, 2010-2016) 
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The hyperplanes 𝐻1 and 𝐻2 can be defined as:  

• 𝐻1:  𝑥𝑖 • 𝜔 + 𝑏 = +1  
• 𝐻2:  𝑥𝑖 • 𝜔 + 𝑏 = – 1  

The distance between a point 𝑥 and a line {𝑦 | 𝑦 • 𝜔 + 𝑐 = 0} can be calculated as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, {𝑦 | 𝑦 • 𝜔 + 𝑐 = 0}) =  |𝑥 •  𝜔 + 𝑐|‖𝜔‖  

Since it holds for all points on 𝐻1 that |𝜔 • 𝑥 + 𝑏| = 1, the distance 𝑑 between 𝐻0 and 𝐻1 is given by:  

𝑑 =  |𝜔 • 𝑥 + 𝑏|‖𝜔‖ = 1‖𝜔‖ 

Hence, the total distance between 𝐻1 and 𝐻2 is  
2‖𝜔‖. 

To maximize the distance, we need to minimize ‖𝜔‖ under the condition that there are no data points 

between the hyper-planes. This condition can be formulated as:  𝑥𝑖 • 𝜔 + 𝑏 ≥ +1 𝑤ℎ𝑒𝑛 𝑦𝑖 = +1 𝑥𝑖 • 𝜔 + 𝑏 < – 1 𝑤ℎ𝑒𝑛 𝑦𝑖 = −1 

By combining them into one condition we obtain: 𝑦𝑖(𝑥𝑖 • 𝜔 + 𝑏) ≥ 1 

SVM optimization in ℝ𝒑 

Given training vectors 𝑥𝑖 ∈ ℝ𝑝, 𝑖 = 1, … , 𝑁 in two classes and a vector 𝑦 ∈ {−1,1}𝑁. Let 𝜔 be the 

vector of weights corresponding to the support vectors. 𝐶 is a constant to scale the penalty term and  𝜁𝑖  are the so called slack variables to soften the condition.  

A SVM solves the following primal problem:  

 

The function 𝜑 is implicitly defined by the kernel function 𝐾(𝑥𝑖, 𝑥𝑗) =  𝜑(𝑥𝑖)′𝜑(𝑥𝑗), and maps the 

features into higher dimensional space, when no linear separation can be found directly. In the study 

of (Álvarez-Estévez & Moret-Bonillo, Identification of Electroencephalographic Arousals in 

Multichannel Sleep Recordings, 2011) as well as in other studies, that are making use of SVM for 

classification, a SVM with radial basis function for the kernel is used. A radial basis function is a kernel 

function defined as 𝐾(𝑥, 𝑦) = exp (−𝛾‖𝑥 − 𝑦‖2) with γ =  12𝜎2. 

min𝜔,𝑏,𝜁 12 𝜔′𝜔 + 𝐶 ∑ 𝜁𝑖𝑛
𝑖=1  

 𝑠. 𝑡.    𝑦𝑖(𝜔′𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜁𝑖 
 𝜁𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 

(3) 
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 The dual problem of the above formulated primal optimization problem can be defined as follows:  

 

Where 𝑒 is the vector of ones, 𝐶 > 0 is the upper bound, 𝑄 is an 𝑛x𝑛 positive semidefinite matrix, 𝑄𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) where 𝐾(𝑥𝑖, 𝑥𝑗) =  𝜑(𝑥𝑖)′𝜑(𝑥𝑗) is the kernel. (scikit-learn, 2010-2016) 

The decision function can be formulated as:  

𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝜌𝑛
𝑖=1 ) 

A critical point when using SVMs is the selection of the parameters 𝐶 and 𝛾. Intuitively, the parameter 𝛾 describes how far the influence of a single training value reaches, low values of gamma meaning far 

and high values of 𝛾 meaning close. The parameter 𝐶 deals with misclassification of training samples. 

The complexity of the decision surface is highly determined by the selection of the parameter 𝐶. High 

values of 𝐶 mean that the algorithm tends to not misclassify any trainings set by choosing more support 

vectors and providing a rather complex decision surface. If the parameter 𝐶 is chosen low the simplicity 

of the decision surface has more importance than the possible misclassification of trainings sets.  

In general, the behavior of the SVM is more sensitive to the parameter 𝛾 than to the parameter 𝐶. On 

the one hand, if 𝛾 is chosen too large, the region of influence of one support vector included only itself 

and no more regulation can be done by modifying 𝐶. On the other hand, if 𝛾 is chosen too small, the 

model is similar to a linear model and the complexity can be increased by choosing higher values of 𝐶, 

which gives the model the freedom of selecting more support vectors. Figure 29 is a visualization of 

min𝛼 12 𝛼′𝑄𝛼 − 𝑒′𝛼 

 𝑠. 𝑡.    𝑦′𝛼 = 0 
 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛 

(4) 

Figure 29: Illustration of influence of different choices of parameters C and gamma on the decision function (scikit-learn, 2010-

2016) 
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the decision function for different choices of parameters 𝐶 and 𝛾 of a classification problem with only 

two features and two possible classes. 

The arousal detection problem is a highly unbalanced one. In fact, there are a lot more segments not 
containing arousals than actual arousal segments. This has to be considered in the classification by 
choosing class weights.  

2.2.4.2 Validation of classifier 

In this work, it has to be differentiated between the validation of the classifier, to measure its 

performance and to choose the best parameters, and the validation of the overall detection algorithm. 

In the case of the validation of the classifier there is a clear true classification decision on each 3s 

segment if it is an arousal start segment or not. Each arousal has one unique start segment (as 

explained in section determination of arousal start segments) that is desired to be detected by the 

classifier.  

The following common statistical terms are used to calculate how good the classifier performs in 

detecting arousal start segments:  

• TP (True Positives) = Number of events detected which matched with the actual events 

• FP (False Positives) = Number of events detected which did not match with the actual ones 

• TN (True Negatives) = Number of no-events which matched correctly 

• FN (False Negatives) = Number of no-events which did not match correctly 

In the case of arousal start segment classification it is clear how to interpret these terms: 

• TP (True Positives) = Number of annotated arousal start segments that are correctly detected  

• FP (False Positives) = Number of detected arousal start segments that don’t match with the 

actual annotated segments 

• FN (False Negatives) = Number of annotated arousal start segments that are not detected 

• TN (True Negatives) = Number of correctly detected no-start segments  

As the classifier makes decisions without knowledge of the neighboring segments, a detection of a 

neighboring segment is also counted as a False Positive. Trials on detection of start areas, in terms of 

detected neighboring segments performed worse. 

The following statistical values are considered for validation:  

• True Positive Rate (Sensitivity):  
𝑇𝑃𝑇𝑃+𝐹𝑁  

(Percentage of all true arousal starts that were correctly detected - capability of the process to 

detect arousal starts) 

• Specificity: 
𝑇𝑁𝑇𝑁+𝐹𝑃 

(Percentage of all true no-starts that were correctly detected - capability of the process to 

detect that there is no arousal start) 

• False Negative Rate: 
𝐹𝑁𝑇𝑃+𝐹𝑁 = 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

(Percentage of all true arousal starts that were not correctly detected) 

• False Positive Rate: 
𝐹𝑃𝑇𝑁+𝐹𝑃 
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(Percentage of all true no-starts that were not correctly detected) 

• Positive predictive value: 
𝑇𝑃𝑇𝑃+𝐹𝑃 

(Percentage of all detected arousal starts that are true arousal starts) 

• Negative predictive value: 𝑇𝑁𝑇𝑁+𝐹𝑁 

(Percentage of all detected no-starts that are true no-starts) 

• Accuracy: 
𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 

2.2.4.3 Parameter search 

To choose the optimal parameters for the SVM a grid search is performed. The searched parameter 

sets are:  

• 𝐶 ∈ {1, … ,20,30,100} 

• 𝛾 ∈ {2−7, 2−8, 2−9, 2−10, 2−11, 2−12, 2−13}.  

The performance of the classification algorithm is measured with common statistical values described 

in the section Validation of classifier. In order to choose the best parameters for a classifier one has to 

consider the trade-off between a high sensitivity and the least wrong detections possible.  

A common calculation method for the decision of the best parameters is to determine the parameter 

combination with the maximum of the Youden-Index:  𝑌𝑜𝑢𝑑𝑒𝑛 𝐼𝑛𝑑𝑒𝑥 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − 1 

Graphically, this can be displayed by plotting the Receiver Operating Characteristics (ROC) curve (see 

Figure 30) for all parameter combinations (𝐶, 𝑔𝑎𝑚𝑚𝑎) the Sensitivity (y-axis) is plotted against the 

False-Positive-Rate (x-axis). The parameters of the point with the maximum distance to the diagonal 

give the best trade-off between True-Positive-Rate and False-Positive-Rate. (medistat, 2016) 

The results for each parameter combination are computed by applying Leave-One-Out-Cross validation 

and calculating the mean value over all 7 patients. This means that results for each patient are received 

by training the SVM on the remaining 6 patients and testing it on one patient. 

The best parameters according to the Youden-Index and the ROC curve are:  𝐶 = 11 𝑎𝑛𝑑 𝛾 = 2−12 𝑤𝑖𝑡ℎ 𝑌𝑜𝑢𝑑𝑒𝑛 − 𝐼𝑛𝑑𝑒𝑥 = 92,67% 
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Figure 30: ROC curve of the average of all patients: Sensitivity and False-Positive-Rate for all parameter combinations with 

marked max distance point to diagonal 

2.2.5 Final arousal determination 

2.2.5.1 Specification of the arousal start 

After detecting arousal starts with the classification algorithm, the detected segments are analyzed 

and the precise start is set according to the following rules: 

• Segments that are are directly next to each other and classified as arousal start segments are 

joined and counted as one arousal start area. (see yellow area in Figure 31) 

• Within one arousal start area it is searched for the maximum of the sum of t-test statistics 𝜏𝑏,𝑐(𝑘) for 𝑏 = 𝜃, 𝛼, 𝛽 and summed up for all channels 𝑐. This feature set turns out to react 

sensible and is therefore suitable for precise specification of the start.  

𝑘∗ = max𝑘=1…(#𝑗𝑜𝑖𝑛𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠)∙3 ( ∑ 𝜏𝜃,𝑐(𝑘) + 𝜏𝛼,𝑐(𝑘) + 𝜏𝛽,𝑐(𝑘)𝑐∈{𝐶3𝐴2,𝐶4𝐴1} )   
• The exact start second 𝑘∗ is set at the maximum. 

Figure 31 illustrates the specification of the exact arousal start (maximum of red curve) within the 

detected start area (yellow area).  
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Figure 31: Illustration of specification of the exact arousal start within the detected start area. Start is set where the red curve 

within the yellow area reaches its maximum. Patient TS100714; EEG-channel: C4A1 

2.2.5.2 Calculation of arousal duration 

In a next step the duration of the detected arousals needs to be calculated. Therefore, an adjusted 

version of the core analyzation technique of the 10s stable sleep followed by 3s possible change is 

applied, because the practice says that the signal needs to return to its state before the arousal. That`s 

why it seems to be suitable to compare stepwise small intervals after a detected arousal start with its 

preceding 10s “normal sleep”. Figure 32 should illustrate the following main idea: The 10s before a 

possible arousal start describe the “normal sleep pattern” to which the EEG-signal should return after 

the arousal. So this interval needs to be described by a feature that saves the information about how 

the signal looked like before the start second 𝑘∗. The same feature is calculated for a rolling window 

of 2s (moving on in 0.25𝑠 steps) after the start and is successively compared (by calculating its ratio) 

to the 10s interval before the start.  

As long as the feature within a 2s interval is significantly greater (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 times greater) 

than the one while stable sleep, arousal end is not marked yet.  
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Figure 32: Illustration of the calculation of the arousal duration 

A reliable and simple value to compare the 10s normal sleep with a rolling window of 2s (moving on in 0.25𝑠 steps) is the signal power. Therefore, it is tested if the ratio of the sum of total signal power of 

the frequency bands 𝜃, 𝛼 and 𝛽 within a 2s interval and the signal power within the 10s before the 

start of an arousal is greater than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 for at least one of the two EEG-channels. Let 𝑟 =1, … ,52 be the index for the rolling window. The rolling window of 2s can be moved on 52 times until 

the maximum duration of 15s is reached. Let 𝑙 = 0.25𝑠 be the length of each step and 𝑘∗ be a detected 

start second. In each step the following condition is tested: ∑ 𝑃𝑏(𝐼+2(𝑘∗ + (𝑙 ∙ 𝑟)))𝑏=𝜃,𝛼,𝛽∑ 𝑃𝑏(𝐼−10(𝑘∗))𝑏=𝜃,𝛼,𝛽 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

Arousal duration is added in 0.25s steps as long as this condition is fulfilled for at least one of the two 

EEG-channels and maximum duration of 15s is not reached yet.  

2.2.5.3 Verification of further arousal criteria 

Check for an arousal duration of at least 3 seconds 

The definition of the AASM states that an arousal must last at least 3s. Hence, all detected arousals 

that don’t meet this criterion are excluded. Doing so, some EEG amplitude artifacts, that provoke very 

high values (outliers) with a high frequency for a short time, are excluded.  
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Check for 10s of stable sleep before an arousal start detection  

After removing all arousals shorter than 3s, a routine is implemented to verify if an arousal is not 

followed by another arousal within the following 10s after the end of the first. All detections within 

the first 10s after the end of the last detection are removed.  

Check for arousals in REM-sleep  

To verify the correct detection of arousals during REM-sleep a check for an increase in submental EMG 

(chin EMG) that lasts at least 1s is necessary. For all detections that appear to take place while the 

hypnogram is equal to 5 (which indicates REM sleep) the chin EMG is tested. There is no definition on 

what is exactly meant by an increase in chin EMG neither there is a note on when exactly the increase 

in chin EMG must appear. In practice the increase has to be around the start of an arousal, which 

means approximately not earlier than 1s before the start and 2s after the start. The second open 

question here is how to measure an increase in submental EMG. Here, a simple amplitude check within 

the interval of 1s before the start until 2s after the detected start, is implemented.  

The routine is checking if the chin EMG within a 3s interval 𝐼+3(𝑘∗ − 1) starting 1s before the start 

second of a detected arousal 𝑘∗ and ending 2s after 𝑘∗ is greater than 2x standard deviation of the 

whole recording of chin EMG (with length 𝑇): 

max𝑡∈𝐼+3(𝑘∗−1)(𝑐ℎ𝑖𝑛(𝑡) − 𝑐ℎ𝑖𝑛̅̅ ̅̅ ̅̅ ) > 2 ∙ √∑(𝑐ℎ𝑖𝑛(𝑡) − 𝑐ℎ𝑖𝑛̅̅ ̅̅ ̅̅ )2𝑇
𝑡=1  

2.2.6 Validation of detection algorithm 

The validation of the whole detection algorithm differs from the validation of the classifier. Hence, the 

already explained statistical terms have to be redefined for this validation problem: 

• TP (True Positives) = Number of annotated arousals that are overlapped by at least one 

detection 

• FP (False Positives) = Number of detected arousals that are not overlapping with any annotated 

arousal 

• FN (False Negatives) = Number of annotated arousals that are not not overlapping with any 

detection 

• TN (True Negatives) = There is no useful measure for TN when considering whole arousal as 

they could last from 3s up to 15s or in manual annotations sometimes even up to 30s. 

To validate the results, it is tested if the detected arousals after defining their start and their end are 

overlapping with any annotated arousal. Since it’s nearly impossible to detect the exact position of the 

expert annotated arousal, an arousal is seen as correctly detected if any overlapping period is detected 

(True Positives). False Negatives are all not detected, but annotated arousals.  

The following statistical values are considered for validation:  

• True Positive Rate (Sensitivity):  
𝑇𝑃𝑇𝑃+𝐹𝑁  
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(Percentage of all true arousals that were correctly detected - capability of the process to 

detect arousals) 

• False Negative Rate: 
𝐹𝑁𝑇𝑃+𝐹𝑁 = 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

(Percentage of all true arousals that were not correctly detected) 

• Positive predictive value: 
𝑇𝑃𝑇𝑃+𝐹𝑃 

(Percentage of all detected arousals that are true arousals) 

All statistical values mentioned in the section validation of classifier that need True Negatives to be 

calculated, are left out in this validation.  

The results are obtained by applying Leave-One-Out-Cross validation. For each patient, the SVM is 

trained with 6 patients and tested on the remaining one patient.  
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2.3 Methods for the investigation on the relation between arousals and 

leg movements 

The aim of this section is to investigate the relation between arousals and leg movements. 

From a medical point of view the occurrence of leg movements is more important the more it leads to 

disturbance of sleep and problems with frequent awakenings, which can lead to daytime sleepiness as 

well as further problems. Arousals can be an indicator of the quality of sleep of the patient. Thus, it is 

of high interest to investigate the relation between both events, to be able to make a statement about 

how frequent awakenings are related to leg movements.  

The complex relation between these two events has already been researched, for example in the work 

of (Ferri, et al., 2015) or the work of (Hornyak, Feige, Voderholzer, & Riemann, 2005). The outcome of 

these studies is that there might be a more complex mechanism behind the relationship of both events 

rather than a simple causality.  

For better understanding, the definition of the AASM for the association between a PLM and an arousal 

is repeated here:  

An arousal and a limb movement that occur in a PLM series should be considered associated with each 

other if they occur simultaneously, overlap, or when there is <0.5 seconds between the end of one event 

and the onset of the other event regardless of which is first. (Berry, et al., 2016) 

2.3.1 Data set 

The association of leg movements and arousals can only be tested reasonably if there are enough leg 

movements as well as arousals in the recording. Hence, for this research the tested data is a subset of 

the 7 patients of AKH Wien, consisting only of the 4 patients with IDs TS100714, TS090714, TC070814, 

MB200814, who are diagnosed with PMLS. To get a better understanding of the data set, several 

indices and sleep architecture parameters are calculated for each patient in section Results.  

The annotated leg movements in the PSG data of these patients are already classified as PLM and LM. 

For better understanding it will always be referred to leg movements (LM) as the sum of periodic limb 

movements (PLM) and isolated limb movements (iLM). In this work the above repeated definition of 

the association between a PLM and an arousal will also be applied to iLMs. 

The marked area in Figure 33 shows an annotated LM of both legs (iLM) that is associated with an 

arousal.  
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Figure 33: Illustration of a LM associated with an arousal, visualized with the “Sleep-Data-Viewer-Tool” of the AIT; 1. Line: 

Arousal annotations; 2. Line: EEG channel C3A2; 3. Line: EEG channel C4A1; 4. Line: Hypnogram; 5. Line: Chin EMG; 6. Line: 

EMG left leg; 7. line: EMG right leg; 8. Line: Leg Movement annotations 

Furthermore, the intensity of a leg movement will be measured with two different approaches: On the 

one hand with the annotated duration in the PSG data and on the other hand with a value computed 

by the 3D detection algorithm of the AIT.  

A leg movement as well as an arousal is described by its start time and its duration. For further analysis, 

the start times will be notated with capital letters and the duration with small letters:  

• 𝐿 for start time and 𝑙 for duration of leg movements  

• 𝐴 for start time and 𝑎 for duration of arousals 

Let  𝐿 = {𝐿1, … , 𝐿𝑁} be the set of all leg movements start times within all recordings of the 4 patients, 

indexed with the set 𝐼 = {1, … , 𝑁}. Each start time 𝐿𝑖 is associated with the duration 𝑙𝑖, 𝑖 ∈ 𝐼. Let 𝐼𝑃𝐿𝑀 

be a subset of 𝐼 describing all PLMs and let 𝐼𝑖𝐿𝑀 be a subset of 𝐼 describing all iLMs, so that 𝐼 ={1, … , 𝑁} = 𝐼𝑃𝐿𝑀  ∪  𝐼𝑖𝐿𝑀. The start times of PLMs and iLMs can be described as subsets of the start 

times of all LMs: 𝑃𝐿𝑀 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒𝑠 = {𝐿𝑖 | 𝑖 ∈ 𝐼𝑃𝐿𝑀} and 𝑖𝐿𝑀 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒𝑠 = {𝐿𝑖  | 𝑖 ∈ 𝐼𝑖𝐿𝑀}. The 

cardinality of the set X is described by |X|, for example: |𝐼| = 𝑁. 

For the arousal annotations, both sets of annotations, the original and the modified one are 

considered. In the following, PLMs as well as iLMs are considered to be part of an (P/i)LM-Arousal pair, 

when the criterion of the above repeated definition of the association of the two events is met.  
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Let 𝐼𝐿𝑀𝑝𝑎𝑖𝑟 , 𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟  and 𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟  also be subsets of 𝐼 to describe which LM/PLM/iLM is associated 

with an arousal. 

Let arousal start times 𝐴 = {𝐴1, … , 𝐴𝐾} be indexed with  𝐽 = {1, … , 𝐾}, with 𝐾 being the number of 

arousals in all considered recordings. Each start time 𝐴𝑗 is associated with the duration 𝑎𝑗, 𝑗 = 1, … , 𝐾. 
Furthermore let 𝑗(𝑖) be the index to describe the associated arousal time or duration for leg 

movements indexed with 𝑖 ∈ 𝐼. 

2.3.2 Analysis of occurrence of associated LM and arousal events 

To get an idea of what part of arousals and LMs is associated to each other, various parameters are 

calculated for both arousal annotation sets.  

• Total number of LMs/ arousals: 

o LMs: |𝐼|, PLMs: |𝐼𝑃𝐿𝑀|, iLMs: |𝐼𝑖𝐿𝑀| 
o Arousals: |𝐽| 

• Part of PLMs/iLMs out of all LMs: 

o PLM: 
|𝐼𝑃𝐿𝑀| |𝐼| , iLM: 

|𝐼𝑖𝐿𝑀||𝐼|  

• Total number of LM-Arousal pairs: 

o LMs: |𝐼𝐿𝑀𝑝𝑎𝑖𝑟|, PLMs: |𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟|, iLMs: |𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟|,  
• Part of LM-Arousal pairs out of all LMs/Arousals: 

o LMs: 
|𝐼𝐿𝑀𝑝𝑎𝑖𝑟||𝐼| , 

|𝐼𝐿𝑀𝑝𝑎𝑖𝑟||𝐽|  

o PLMs: 
|𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟| |𝐼| , 

|𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟||𝐽|  

o iLMs: 
|𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟||𝐼| , 

|𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟||𝐽|  

2.3.3 Analysis of cause/effect relation between LM and arousal events 

Next to the question which part of all events is associated with each other, another interesting 

approach is to analyze a possible causality between them. Meaning which event causes the other in 

terms of earlier start time. For this analysis, only associated LM-arousal pairs are considered. Hence, 

the difference in start times of associated events is calculated: 𝐿𝑖 − 𝐴𝑗(𝑖) > 0 𝑖𝑓 𝑎𝑟𝑜𝑢𝑠𝑎𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝐿𝑀 𝐿𝑖 − 𝐴𝑗(𝑖) < 0 𝑖𝑓 𝐿𝑀 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑎𝑟𝑜𝑢𝑠𝑎𝑙 
In the chapter Results the distribution of the difference in start times of associated events is plotted 

with a histogram and it is tested for normal distribution. In addition, a statistical test is performed to 

test if the mean value of the difference in start times is significantly different from zero which would 

indicate that a certain event starts statistically significant more often before the other event.  
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2.3.4 Analysis of relation in duration between LM and arousal events 

As already mentioned in the work of (Ferri, et al., 2015) the relation between the duration of associated 

LM and arousal events can be investigated. A graphical analysis with scatterplots and a regression line 

has been calculated by estimating the parameters 𝐶 and 𝛽 in the model: 𝑎𝑗(𝑖) = 𝐶 + 𝛽 ∙ 𝑙𝑖 + 𝑢𝑡 

2.3.5 Analysis of relation between the intensity of a LM and the occurrence of an 

arousal  

Another hypothesis is that more intense leg movements are more likely to cause arousals than others. 

In this context, it has to be defined how the intensity of a LM can be measured. Two main ideas are 

realized in this work: On the one hand the duration of a LM in the PSG data and on the other hand a 

value that is computed with 3D detection of LMs in the Austrian Institute of Technology are tested.  

In the following the term “3D detection” will always refer to the 3D detection of LMs.  

At first the duration is considered as a measure for the intensity: The Operator \ means “without”. For 
example,  𝐼\𝐼𝐿𝑀𝑝𝑎𝑖𝑟 is the index set of all LMs without the indices for LMs associated with an arousal.  

The mean value of the duration of LM/arousals (not) associated with arousals is calculated: 

• Mean of duration of leg movements not associated with an arousal: 
1|𝐼\𝐼𝐿𝑀𝑝𝑎𝑖𝑟| ∑ 𝑙𝑖𝑖∈𝐼\𝐼𝐿𝑀𝑝𝑎𝑖𝑟  

• Mean of duration of leg movements associated with an arousal: 
1|𝐼𝐿𝑀𝑝𝑎𝑖𝑟| ∑ 𝑙𝑖𝑖∈𝐼𝐿𝑀𝑝𝑎𝑖𝑟   

• Mean of duration of PLMs not associated with an arousal: 
1|𝐼𝑃𝐿𝑀\𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟| ∑ 𝑙𝑖𝑖∈𝐼𝑃𝐿𝑀\𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟   

• Mean of duration of PLMs associated with an arousal: 
1|𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟| ∑ 𝑙𝑖𝑖∈𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟   

• Mean of duration of iLMs not associated with an arousal: 
1|𝐼𝑖𝐿𝑀\𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟| ∑ 𝑙𝑖𝑖∈𝐼𝑖𝐿𝑀\𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟   

• Mean of duration of iLMs associated with an arousal: 
1|𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟| ∑ 𝑙𝑖𝑖∈𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟   

One can say that the duration of different leg movements is independent from each other and 

therefore statistical tests are valid to check if there is a significant difference between the mean within 

the leg movement groups associated with arousal and not associated with arousal. A two-sided t-test 

on a significant difference in the mean within the two groups is performed and a graphical analysis 

with boxplots is provided in the chapter results.  

After investigating a possible relation between the duration of an event and its association with an 

arousal, the so called “area” value of the 3D detection is considered as a measure for the intensity of 

a leg movement. In 3D detection, the pixels in the ROI (Region of interest (2D picture): legs) are 

observed with a certain sample rate and the standard deviation of the intensity of each pixel in time, 

considering the 15 frames before and the 15 frames after a certain point in time, is computed. As long 

as this standard deviation remains over a certain threshold an event is detected. The “area” value is 

calculated by summing up all standard deviation values during a 3D detection. It can be interpreted as 

a possible value to describe how “big” or how “strong” a LM is.  
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The base of all investigations in this work is the PSG data of certain patients of AKH Wien. It is possible 

that the 3D detection algorithms detect more than one event during one annotation in the PSG data, 

or that sometimes there are PSG annotations that aren’t detected at all by the 3D detection. Area 

values are assigned to LMs according to the following rules:  

• If a LM is overlapped by one or more 3D detections, the sum of all area values of 3D detections 

that overlap the annotation is considered as the area value for the LM.  

• If a LM is not detected by 3D detection, the area value is set to zero for this LM.  

The 3D detection is validated for the considered patients. Let the exponent “3𝐷” indicate if a LM 
indexed with 𝐼 = {1, … , 𝑁} is detected by the 3D detection. The index 𝐼3𝐷 describes the LMs that are 

detected by 3D detection. The same definition can be applied to all already defined subsets of 𝐼. 

The following numbers are calculated to analyze the abilities of the 3D detection on the used data set: 

• Total number of 3D detected and not 3D detected LMs: 

o |𝐼3𝐷|,|𝐼\𝐼3𝐷| 
• Percentage of 3D detected and not 3D detected LMs out of all LMs: 

o 
|𝐼3𝐷||𝐼| , 

|𝐼\𝐼3𝐷||𝐼|  

• Total number of all LMs/PLMs/iLMs with (in pair) and without arousals that are 3D detected 

and not 3D detected: 

o 3D detected with arousals: LMs: |𝐼𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 |, PLMs: |𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 |, iLMs: |𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 | 
o 3D detected without arousals: LMs: |𝐼3𝐷\𝐼𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 |, PLMs: |𝐼𝑃𝐿𝑀3𝐷 \𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 |,  

iLMs: |𝐼𝑖𝐿𝑀3𝐷 \𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 | 
o Not 3D detected with arousals: LMs: |𝐼𝐿𝑀𝑝𝑎𝑖𝑟\𝐼𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 |, PLMs: |𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟\𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 |, 

iLMs: |𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟 \𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 | 
o Not 3D detected without arousals: LMs: |𝐼\(𝐼3𝐷 ∪ 𝐼𝐿𝑀𝑝𝑎𝑖𝑟)|,  

PLMs: |𝐼𝑃𝐿𝑀\(𝐼𝑃𝐿𝑀3𝐷 ∪ 𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟)|, iLMs: |𝐼𝑖𝐿𝑀\(𝐼𝑖𝐿𝑀3𝐷 ∪ 𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟)| 
• Percentage of all LMs/PLMs/iLMs with (in pair) and without arousals that are 3D detected and 

not 3D detected: 

o % of 3D detected with arousals: LMs: 
|𝐼𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼3𝐷| , PLMs: 

|𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼𝑃𝐿𝑀3𝐷 | , iLMs: 
|𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼𝑖𝐿𝑀3𝐷 |  

o % of 3D detected without arousals: LMs: 
|𝐼3𝐷\𝐼𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼3𝐷| , PLMs: 

|𝐼𝑃𝐿𝑀3𝐷 \𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼𝑃𝐿𝑀3𝐷 | ,  

iLMs: 
|𝐼𝑖𝐿𝑀3𝐷 \𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼𝑖𝐿𝑀3𝐷 |  

o % of not 3D detected with arousals: LMs: 
|𝐼𝐿𝑀𝑝𝑎𝑖𝑟\𝐼𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼\𝐼3𝐷| , PLMs: 

|𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟\𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼𝑃𝐿𝑀\𝐼𝑃𝐿𝑀3𝐷 | , 

iLMs: 
|𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟\𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟3𝐷 ||𝐼𝑖𝐿𝑀\𝐼𝑖𝐿𝑀3𝐷 |  
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o % of not 3D detected without arousals: LMs: 
|𝐼\(𝐼3𝐷∪𝐼𝐿𝑀𝑝𝑎𝑖𝑟)||𝐼\𝐼3𝐷| ,  

PLMs: 
|𝐼𝑃𝐿𝑀\(𝐼𝑃𝐿𝑀3𝐷 ∪𝐼𝑃𝐿𝑀𝑝𝑎𝑖𝑟)||𝐼𝑃𝐿𝑀\𝐼𝑃𝐿𝑀3𝐷 | , iLMs: 

|𝐼𝑖𝐿𝑀\(𝐼𝑖𝐿𝑀3𝐷 ∪𝐼𝑖𝐿𝑀𝑝𝑎𝑖𝑟)||𝐼𝑖𝐿𝑀\𝐼𝑖𝐿𝑀3𝐷 |  

It will be tested graphically and statistically if the mean and the median of both intensity values are 

significantly different within LMs that are associated with arousals and LMs that aren’t associated with 
arousals. For the intensity measured in area values, additionally an analysis on the intensity of LMs 

with and without arousals categorized in 4 intensity classes is done and visualized. The categories are 

defined by calculating the 25%, 50% and the 75% quantile of the distribution of all area values for all 

3D detected LMs and assigning a category to the area values according to the following rule: 

• Category = 0 if area == 0 (not 3D detected LM) 

• Category = 1 if area ∈ (0, 𝑞0.253𝐷 ) 

• Category = 2 if area ∈ [𝑞0.253𝐷 , 𝑞0.53𝐷) 

• Category = 3 if area ∈ [𝑞0.53𝐷, 𝑞0.753𝐷 ) 

• Category = 4 if area ∈ [𝑞0.753𝐷 , max(𝑎𝑟𝑒𝑎)] 
To see in which category most of the LMs with or without arousals are placed, histograms of the 

categorized “area” values are plotted.  

 

 

  

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Results 

 

 
 57  
 

3 Results 

This chapter will be concerned with the presentation of the results of the arousal detection algorithm 

and the investigation on the relation between arousals and leg movements.  

3.1 Results of the arousal detection  

All steps of the arousal detection are performed with the modified annotation set.  

3.1.1 Validation of Classifier 

As described in Section Validation of Classifier the Parameters of the SVM are chosen by performing a 

grid search and determining the best parameters by maximizing the Youden-Index.  

The following parameters were chosen: 𝐶 = 11, 𝛾 = 2−12 

Features: 𝑒𝜃, 𝑒𝛼 , 𝑒𝛽; 𝑑𝜃𝑣𝑠(𝛼+𝛽); 𝜏𝜃, 𝜏𝛼 , 𝜏𝛽; 𝑎𝑟(6): 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑙𝑎𝑔1 − 𝑙𝑎𝑔6 (each for both 

channels, resulting in a total of 26 features) 

The validation is done by applying Leave-One-Out-Cross validation, which means that for each patient 

results are received by training the SVM on 6 patients and testing it on the one remaining patient. 

Table 3 displays the results of the classifier for the detection of arousal start segments per patient. The 

last column (in grey) of Table 4 is counting the annotated arousals that are within the 30s before an 

epoch that is staged as awakening. As described in Check of hypnogram these periods are excluded 

because of the confusion with “transition to wake” events. Nevertheless, some arousals are scored in 

these epochs and for completeness they are mentioned here.  When calculating statistical values they 

are not included, because they can’t be detected due to the exclusion criteria. In further tables the 

number of arousals (start segments) annotated in the 30s before awakening are notated in brackets 

and in grey next to the total number of annotated arousals (start segments), for instance see Table 3. 

Modified annotations:  

 

Number of 

annotated 

start 

segments 

Total 

number of 

segments 

Number of 

detected 

start 

segments 

Sensitivity 

False 

Negative 

Rate 

Positive 

Predictive 

value 

Specificity Accuracy 

False 

Positive 

Rate 

Negative 

Predictive 

Value 

MB200814 83 (1) 8505 294 96% 4% 27% 97% 97% 3% 100% 

CP101214 11 (0) 9350 41 91% 9% 24% 100% 100% 0% 100% 

MC250614 68 (1) 9270 406 99% 1% 16% 96% 96% 4% 100% 

TS100714 205 (2) 6770 722 98% 2% 28% 92% 92% 8% 100% 

MP020714 53 (2) 7550 186 96% 4% 26% 98% 98% 2% 100% 

TS090714 201 (4) 8060 733 98% 2% 26% 93% 93% 7% 100% 

TC070814 79 (1) 9650 322 96% 4% 23% 97% 97% 3% 100% 

Sum/Mean 700 (11) 59155 2704 96% 4% 24% 96% 96% 4% 100% 

 

Table 3: Results of validation of arousal start detection (modified annotations) 

In addition, an analysis of the overall detection performance of arousal events is done. Therefore, the 

statistical values are calculated on the total TP/FN/FP/TN instead of per patient.  
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True 

Negatives 
True Positives 

False 

Positives 

False 

Negatives 

Arousals in 

30s before 

awakening 

MB200814 8208 79 215 3 1 

CP101214 9308 10 31 1 0 

MC250614 8863 66 340 1 1 

TS100714 6044 199 523 4 2 

MP020714 7362 49 137 2 2 

TS090714 7324 194 539 3 4 

TC070814 9325 75 247 3 1 

Sum 56434 672 2032 17 11 
 

Table 4: Validation results of overall start detection performance 

Sensitivity 

False 

Negative 

Rate 

Positive 

Predictive 

Value 

Specificity Accuracy 

False 

Positive 

Rate 

Negative 

Predictive 

Value 

97,53% 2,47% 24,85% 96,52% 96,54% 3,48% 99,97% 
 

Table 5: Statistical values for overall arousal start segment (3s) detection performance 

3.1.2 Validation of arousal start area 

For the final determination of arousals, the detected start segments that are located directly next to 

each other are joined and further analyzed as described in Final arousal determination. The following 

table shows how many start areas are detected, that are further analyzed for final determination of 

definite arousal. When considering variable length start areas the calculation of True Negatives doesn’t 
make any sense and for that reason only statistical values without necessity of True Negatives are 

calculated. One has to note that the Sensitivity and the False Negative Rate don’t change when joining 

start segments to start areas. Only the Positive Predictive Value is increasing because False Positive 

segments that are joined with a True Positive segment are no longer counted as a False Positive 

segment, but part of one start area that is overlapping with a true start segment.  

 
Number of 

annotated 

arousals 

Number of 

detected 

start areas 

Sensitivity 
False 

Negative Rate 

Positive 

Predictive 

Value 

MB200814 83 (1) 187 96% 4% 42% 

CP101214 11 (0) 21 91% 9% 48% 

MC250614 68 (1) 250 99% 1% 26% 

TS100714 205 (2) 368 98% 2% 54% 

MP020714 53 (2) 105 96% 4% 47% 

TS090714 201 (4) 397 98% 2% 49% 

TC070814 79 (1) 181 96% 4% 41% 

Sum/Mean 700 (11) 1509 96% 4% 44% 
 

Table 6: Validation results after joining detected start segments next to each other 

3.1.3 Validation of final arousals 

After classifying arousal starts with the SVM and joining segments to start areas, the second step of 

the detection algorithm is done. The threshold for the calculation of the duration of an arousal is set 

at: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 2. After computing the duration of the possible arousal, all arousals that 
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occur within the 10s after the last arousal are removed. Furthermore, all detections that happen to be 

shorter than 3s are also removed and last the check for the change in submental EMG, while REM sleep 

arousals, is done.   

As described in Section Validation of detection algorithm all values that make use of True Negatives 

can’t be calculated here. The remaining statistics are displayed in Table 7. 

Modified annotations:  

 
Number of 

annotated 

arousals 

Number of 

detected 

arousals 

Sensitivity 
False 

Negative Rate 

Positive 

Predictive 

Value 

MB200814 83 (1) 116 87% 13% 61% 

CP101214 11 (0) 15 91% 9% 67% 

MC250614 68 (1) 171 88% 12% 35% 

TS100714 205 (2) 239 84% 16% 71% 

MP020714 53 (2) 68 78% 22% 59% 

TS090714 201 (4) 228 82% 18% 71% 

TC070814 79 (1) 136 92% 8% 53% 

Sum/Mean 700 (11) 973 86% 14% 60% 
 

Table 7: Results of validation of final arousals (modified annotations) 

 True Positives False Positives False Negatives 

Arousals in 30s 

before 

awakening 

MB200814 71 45 11 1 

CP101214 10 5 1 0 

MC250614 59 112 8 1 

TS100714 170 69 33 2 

MP020714 40 28 11 2 

TS090714 162 66 35 4 

TC070814 72 64 6 1 

Sum 584 389 105 11 
 

Table 8: Validation results of overall final arousal detection performance 

Sensitivity Positive Predictive Value False Negative Rate 

84,76% 60,02% 15,24% 
 

Table 9: Statistical values for overall final arousal detection performance 

For the final determination of definite arousals, various steps were performed according to the 

definition of the AASM criteria. It can be noted that sensitivity decreased on average by about 10%. 

This is because neither the end of an arousal nor the term “stable sleep” are defined clearly by the 
AASM and so the decision for final arousals is again rather subjective. The implemented algorithms are 

configured to perform best in terms of high sensitivity and high positive predictive value. To improve 

the performance of the overall detection algorithms, especially the second step needs to be analyzed 

regarding a better understanding of the two critical points within the definition:  the end of an arousal 

and the exact definition of stable sleep. 
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3.1.4 Detection examples 

In the following, plots for detections and their features are provided for patient TS100714. The red 

area labeled with expert arousal is always referring to modified annotations as the algorithm is trained, 

tested and validated on this set of annotations. More plots of all kinds can be found in the Appendix 

True Positives 

Filtered Signal:  

 

Figure 34: Illustration of the filtered signal during a True Positive detection; EEG-channel C4A1 

Features: 

 

Figure 35: Illustration of the behavior of different feature sets, used for classification of arousal start segments, during a True 

Positive detection 
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AR-Features: 

 

False Negatives 

Filtered signal: 

 

Figure 37: Illustration of the filtered signal during a False Negative detection; EEG-channel C4A1 

 

Figure 36: Illustration of the behavior of the feature set of coefficients of an AR(6) model, used for classification of arousal start 

segments, during a True Positive detection 
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Features: 

 

Figure 38: Illustration of the behavior of different feature sets, used for classification of arousal start segments, during a False 

Negative detection 

AR-Features: 

 

 

 

 

 

 

 

 

Figure 39: Illustration of the behavior of the feature set of coefficients of an AR(6) model, used for classification of arousal start 

segments, during a False Negative detection 
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False Positives 

Filtered signal: 

 

Figure 40: Illustration of the filtered signal during a False Positive detection; EEG-channel C4A1 

Features: 

 

Figure 41: Illustration of the behavior of different feature sets, used for classification of arousal start segments, during a False 

Positive detection 
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AR-Features: 

  

Figure 42: Illustration of the behavior of the feature set of coefficients of an AR(6) model, used for classification of arousal 

start segments, during a False Positive detection 
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3.2 Results of the investigation on the relation between arousals and 

leg movements 

This section is concerned with the presentation and visualization of the results of the investigations on 

the relation between leg movements and arousal events. Firstly, a short summary of different indices 

and sleep architecture parameters is given for the set of considered patients with PLMS. Here all 

annotated arousals are included, also the ones occurring in the 30s before an awakening. In the 

following, the term “TST” describes the Total Sleep Time, a measure for the time in which the patient 

was sleeping during the recording.  

Original annotations:  

 TS100714 TS090714 TC070814 MB200814 

TST in h 6,2 7,2 8,3 7,3 

Total Limb Movement Index (per h of TST): 65,9 70,3 14,2 37,0 

Periodic Limb Movement Index (per h of TST): 55,2 56,5 4,5 33,5 

Isolated Limb Movement Index (per h of TST): 10,7 13,8 9,8 3,4 

Arousal Index (per h of TST): 38,4 32,7 13,6 15,8 

Periodic Limp Movements paired with an 

Arousal Index (per h of TST): 
17,9 14,5 1,7 6,6 

Total number of Arousals (in recording): 238 235 113 115 

Total number of Limb Movements  

(in recording): 
408 505 118 269 

Total number of Isolated Limb Movements  

(in recording): 
66 99 81 25 

Total number of Periodic Limb Movements  

(in recording): 
342 406 37 244 

Total number of LM-Arousal pairs  

(in recording): 
142 149 47 62 

Total number of PLM-Arousal pairs  

(in recording): 
118 111 14 49 

Total number of iLM-Arousal pairs  

(in recording): 
24 38 33 13 

Part of PLMs out of all LMs: 84% 80% 31% 91% 

Part of isolated LMs out of all LMs: 16% 20% 69% 9% 
 

Table 10: Indices and sleep architecture parameters for considered patients with PLMS diagnosis; original arousal annotations 

As it can be seen in Table 10 the PLMI (Periodic Limb Movement Index) is close to 5 or greater than 5 

for all patients, which indicates a PLMS diagnosis. It can be observed, that patient TC070814 has an 

PLMI of only 4,5 (see Table 10) and shows rather different sleep architecture parameters than the 

other 3 patients. Nevertheless, the patient is included for further analysis because of the fact that there 

are still 47 LM-Arousal pairs, which can be used for investigation. 
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Modified annotations:  

 TS100714 TS090714 TC070814 MB200814 

TST in h 6,2 7,2 8,3 7,3 

Total Limb Movement Index (per h of TST): 65,9 70,3 14,2 37,0 

Periodic Limb Movement Index (per h of TST): 55,2 56,5 4,5 33,5 

Isolated Limb Movement Index (per h of TST): 10,7 13,8 9,8 3,4 

Arousal Index (per h of TST): 33,1 28,0 9,5 11,4 

Periodic Limp Movements paired with an 

Arousal Index (per h of TST): 
16,5 12,4 1,2 5,8 

Total number of Arousals (in recording): 205 201 79 83 

Total number of Limb Movements (in 

recording): 
408 505 118 269 

Total number of Isolated Limb Movements (in 

recording): 
66 99 81 25 

Total number of Periodic Limb Movements (in 

recording): 
342 406 37 244 

Total number of LM-Arousal pairs (in 

recording): 
120 119 31 53 

Total number of PLM-Arousal pairs (in 

recording): 
102 89 10 42 

Total number of iLM-Arousal pairs (in 

recording): 
18 30 21 11 

Part of PLMs out of all LMs: 84% 80% 31% 91% 

Part of isolated LMs out of all LMs: 16% 20% 69% 9% 

 

Table 11: Indices and sleep architecture parameters for considered patients with PLMS diagnosis; modified arousal 

annotations 

3.2.1 Analysis of occurrence of associated LM and arousal events 

As described in section Methods for the investigation on the relation between arousals and leg 

movements, the relevant values for the occurrence of associated arousal events are calculated. There 

is a differentiation between the original annotations and the modified annotations for arousals.   

Original annotations:  

 TS100714 TS090714 TC070814 MB200814 

Part of LM-Arousal pairs out of all LMs: 35% 30% 40% 23% 

Part of PLM-Arousal pairs out of all PLMs: 35% 27% 38% 20% 

Part of iLM-Arousal pairs out of all iLMs: 36% 38% 41% 52% 

Part of LM-Arousal pairs out of all Arousals: 60% 63% 42% 54% 

Part of PLM-Arousal pairs out of all Arousals: 50% 47% 12% 43% 

Part of iLM-Arousal pairs out of all Arousals: 10% 16% 29% 11% 

 

Table 12: Statistics for the occurrence of associated events with original arousal annotations; Approximation for the 

conditional probability of the occurrence of an arousal given that an LM appears and vice versa.  
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Modified annotations:  

 TS100714 TS090714 TC070814 MB200814 

Part of LM-Arousal pairs out of all LMs: 29% 24% 26% 20% 

Part of PLM-Arousal pairs out of all PLMs: 30% 22% 27% 17% 

Part of iLM-Arousal pairs out of all iLMs: 27% 30% 26% 44% 

Part of LM-Arousal pairs out of all Arousals: 59% 59% 39% 64% 

Part of PLM-Arousal pairs out of all Arousals: 50% 44% 13% 51% 

Part of iLM-Arousal pairs out of all Arousals: 9% 15% 27% 13% 
 

Table 13: Statistics for the occurrence of associated events with modified arousal annotations; Approximation for the 

conditional probability of the occurrence of an arousal given that an LM appears and vice versa.  

In Table 12 and Table 13 it can be observed, that in three patients with both arousal annotations sets 

more than 50% out of all arousals are associated with any LM. This is a first indicator for the existence 

of some relation between these events.    

By summarizing all statistics for the group of the 4 PLMS patients, the following values are obtained 

(all annotated arousals are included, also the ones occurring in the 30s before an awakening):  

 Original 

annotations 

Modified 

annotations 

Total number of Arousals (in all recordings): 701 568 

Total number of LMs (in all recordings): 1300 1300 

Total number of iLMs (in all recordings): 271 271 

Total number of PLMs (in all recordings): 1029 1029 

Part of PLM out of all LMs 79% 79% 

Part of iLMs out of all LMs 21% 21% 

Total number of LM-Arousal pairs (in all recordings): 400 323 

Total number of PLM-Arousal pairs (in all recordings): 292 243 

Total number of iLM-Arousal pairs (in all recordings): 108 80 

Part of LM-Arousal pairs out of all LMs 31% 25% 

Part of LM-Arousal pairs out of all Arousals 57% 57% 

Part of PLM-Arousal pairs out of all PLMs 28% 24% 

Part of PLM-Arousal pairs out of all Arousals 42% 43% 

Part of iLM-Arousal pairs out of all iLMs 40% 30% 

Part of iLM-Arousal pairs out of all Arousals 15% 14% 
 

Table 14: Statistics for the occurrence of associated events for all patients together and differentiated in original and modified 

arousal annotations 

Considering that 57% (original annotations and modified annotations) of all arousals, see Table 14, are 

associated with any kind of LM, it can be supposed that there is a relation between LM and arousals in 

patients with PLMS. Especially PLMs seem to be related to arousals, as 42% and 43% out of all arousals 

are associated with a PLM.  

Although percentages of associated pairs seem to be too high to be random, a heuristic model is 

provided to support the hypothesis that the two events aren’t independent from each other.  

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Results of the investigation on the relation between arousals and leg movements 

 

 
68 

 

Let assume that all recordings are segmented in segments of 5s and that each segment is described by 

two random variables 𝑆𝐴 (for arousals) and 𝑆𝐿𝑀 (for LMs). The binary variables 𝑆𝐴 and 𝑆𝐿𝑀 take only 

two values within each segment 𝑖 = 1, … , 𝐿 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠):  

𝑆𝑖𝐴 = {1,                     𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛 𝑎𝑟𝑜𝑢𝑠𝑎𝑙0,       𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎𝑛 𝑎𝑟𝑜𝑢𝑠𝑎𝑙 
𝑆𝑖𝐿𝑀 = {1,                     𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝐿𝑀0,       𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎 𝐿𝑀 

It is possible that one arousal or one leg movement can be part of more than one segment and 

therefore 𝑆𝑖𝐴 and 𝑆𝑖𝐿𝑀 are not completely independent in time. Nevertheless, for the purpose of getting 

an approximate idea of how likely it is that an arousal and a LM appear simultaneously, it is assumed 

that 𝑆𝑖𝐴 and 𝑆𝑖𝐿𝑀 are independently distributed.  

Let the probability that a segment contains an arousal be 𝑃(𝑆𝑖𝐴 = 1) = 𝑝 and the probability that it 

contains a LM be 𝑃(𝑆𝑖𝐿𝑀 = 1) = 𝑞.  

In order to test if events are independent from each other the following hypothesis are proposed:  𝐻0: 𝑃(𝑆𝑖𝐴 = 1, 𝑆𝑖𝐿𝑀 = 1) = 𝑝 ∙ 𝑞, 𝑖 = 1, … , 𝐿 𝐻1: 𝑃(𝑆𝑖𝐴 = 1, 𝑆𝑖𝐿𝑀 = 1) > 𝑝 ∙ 𝑞, 𝑖 = 1, … , 𝐿  
The null hypothesis is that the two events appear randomly and independent from each other. Or in 

other words: That the unconditional probability of the occurrence of a LM or an arousal is equal to the 

conditional probability of the occurrence of a LM given that the segment contains an arousal and vice 

versa. The values in Table 12 and Table 13 can be considered as an approximation for the conditional 

probabilities. To get an approximation for the unconditional probabilities 𝑝 and 𝑞, the real number of 

5s segments containing arousals and LMs is counted and divided by the total number of segments 

(when the patient is asleep and will be asleep for the next 30s).  

 
# segments 

with arousal 

#segments 

with LM 

# all 

segments in 

recording 

% of all segments 

that contain an 

arousal 

% of all 

segments that 

contain an LM 

TS100714 468 535 3826 12% 14% 

TS090714 472 707 4686 10% 15% 

TC070814 182 149 5682 3% 3% 

MB200814 159 342 5012 3% 7% 

Sum/Mean 1281 1733 19206 7% 10% 
 

Table 15: Approximation for the unconditional probability of the occurrence of an arousal or a LM 

According to Table 15 the empirical approximations for 𝑝 and 𝑞 are on average: 𝑝 ≈ 7%, 𝑞 ≈ 10% 

Under the 𝐻0, that events are independent from each other, the conditional and the unconditional 

probabilities for both events should be the same. For instance, in the case of patient TS100714 and the 

modified arousal annotation set, the approximate unconditional probability of 12% for an arousal in 

Table 15 is compared with the approximate conditional probability of 29% in Table 13 that an arousal 
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occurs given that there is a LM. Equally, for the same patient and annotation set, the approximate 

unconditional probability for a LM of 14% in Table 15 is compared with the approximate conditional 

probability of 59% in Table 13 that a LM occurs given that there is an arousal. The conditional 

probability is in both cases above the unconditional probability. Doing so for all patients it can be 

observed, that the conditional probability approximation is always above the unconditional probability 

approximation.  

Therefore, the heuristic model supports that the 𝐻0 should be rejected and the events are not 

independent from each other.   

3.2.2 Analysis of cause/effect relation between LM and arousal events 

This section also focuses exclusively on associated LM and arousal events. It is researched if there is 

any kind of causality between them. First, associated events are analyzed by calculating in which part 

of all pairs the arousal precedes the LM and vice versa.  

 Original annotations Modified annotations 

Part of LM-Arousal pairs with LM start first 52% 56% 

Part of LM-Arousal pairs with Arousal start first 48% 44% 

Part of PLM-Arousal pairs with PLM start first 53% 58% 

Part of PLM-Arousal pairs with Arousal start first 47% 42% 

Part of iLM-Arousal pairs with iLM start first 50% 50% 

Part of iLM-Arousals pairs with Arousal start first 50% 50% 
 

Table 16: Part of associated events in which arousal precedes LM and vice versa for both arousal annotation sets 

 

Table 16 shows that for all differentiations the LM precedes the arousal in more than 50% of the cases. 

Especially when considering PLM-Arousal pairs the percentage of PLMs preceding arousals even 

reaches 58%.  

To test if these percentages are statistically significant above 50%, a binomial test can be performed:  

Let the difference in start times within LM-Arousal pairs be modeled with a random variable 𝑋 that 

takes only two values:  𝐿𝑀 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝐴𝑟𝑜𝑢𝑠𝑎𝑙 = 1 𝐴𝑟𝑜𝑢𝑠𝑎𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝐿𝑀 = 0 

Let 𝑋~𝐵(𝑛, 𝑝0) and let assume that 𝑝0 = 0.5 and 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑀 − 𝐴𝑟𝑜𝑢𝑠𝑎𝑙 𝑝𝑎𝑖𝑟𝑠. The 

hypothesis to be tested is:  𝐻0: 𝑝 = 𝑝0 𝐻1: 𝑝 > 𝑝0 

Under the 𝐻0 the variable 𝑋 follows a binomial distribution with probability 𝑝0 for 𝑋 equal to 1. If the 𝐻0 is rejected, the calculated percentage of LMs preceding arousals is significantly above 50%.  
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 Original annotations Modified annotations 

LM preceding arousal 0.38318923054 0.0258844600225 

PLM preceding arousal 0.336389532122 0.0101416632378 

iLM preceding arousal 1.0 1.0 
 

Table 17: p-values for the binomial test if percentage of LM preceding arousals is significantly above 50% 

All the p-values shown in Table 17 for original annotations are clearly above a significance level of 𝛼 =0.05 and the 𝐻0 is accepted in all cases. For the modified annotations though, the p-values of “LM 
preceding arousal” and “PLM preceding arousal” indicate that the 𝐻0 is rejected with a significance 

level of 𝛼 = 0.05. That means that for this significance level LMs precede arousals significantly, which 

is partly caused by the fact that modified annotations were reviewed regarding precision in start and 

end time.  

In order to test in another way if one event precedes more often the other, the difference in start times 

of associated events is calculated. As described in section Analysis of cause/effect relation between LM 

and arousal events, let 𝐼 = {1, … , 𝑁} be the index for the LM start times and 𝐽 = {1, … , 𝐾} the index 

for the arousal start times. Furthermore, let for LM associated with an arousal 𝐿𝑖, 𝑖 ∈ 𝐼𝐿𝑀𝑝𝑎𝑖𝑟  be 𝐴𝑗(𝑖) 

the associated arousal start time. 𝐿𝑖 − 𝐴𝑗(𝑖) > 0 𝑖𝑓 𝑎𝑟𝑜𝑢𝑠𝑎𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝐿𝑀 𝐿𝑖 − 𝐴𝑗(𝑖) < 0 𝑖𝑓 𝐿𝑀 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑎𝑟𝑜𝑢𝑠𝑎𝑙 
Now the distribution of start differences is estimated with a histogram and displayed in Figure 43 and 

Figure 44. 

Original annotations: 

 

Figure 43: Difference in start times of all LM, PLM and iLM to their associated arousals. Here the original arousal annotation 

set is used. Positive values mean that the arousal precedes the LM. 
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Modified annotations:  

 

Figure 44: Difference in start times of all LM, PLM and iLM to their associated arousals. Here the modified arousal annotation 

set is used. Positive values mean that the arousal precedes the LM. 

In Figure 43 and Figure 44 a normal distribution is fitted and an excess kurtosis as well as a potential 

longer right tail (arousals preceding LMs) can be obtained.  

To test for normal distribution the Shapiro-Wilk-Test is applied: 𝐻0: 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝐻1: 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

The following table displays all p-values for all types of leg movements and the two annotation sets:  

 Original annotations Modified annotations 

[LM onset – Arousal onset] 2.0177189207337552e-19 6.363591442237823e-18 

[PLM onset – Arousal onset] 4.102200829477584e-18 1.4009898477806526e-16 

[iLM onset – Arousal onset] 3.940061105822679e-06 6.8845793066429906e-06 
 

Table 18: P-values of Shapiro Wilk test on normality of the distribution of the difference in start times 

According to the p-values in Table 18, the 𝐻0 is rejected in all cases for all reasonable significance 

levels, which means that none of the start differences is normally distributed.  

Considering that the right tail seems to be longer than the left tail, it could be interesting to test 

whether the mean of the data set is significantly greater than zero. A possible test statistic is a one-

sided t-test with hypothesis: 𝐻0: 𝜇 = 0 𝐻1: 𝜇 > 0 
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 Original annotations Modified annotations 

[LM onset – Arousal onset] 4.229592e-02 2.978582e-01 

[PLM onset – Arousal onset] 1.137213e-01 5.708760e-01 

[iLM onset – Arousal onset] 9.009532e-02 6.727113e-02 

 

Table 19: P-values of one sided t-test of mean equal to zero against mean greater than zero 

At a significance level of 𝛼 =  0.05 the 𝐻0 is accepted in all cases for both annotation sets, with the 

exception of the LM-Arousal start difference for original annotations. At a significance level 𝛼 =  0.01 

the 𝐻0 is accepted in all cases, which means that the mean of the difference in start times is not 

significantly different from zero.   

3.2.3 Analysis of relation in duration between LM and arousal events 

Motivated by the work of (Ferri, et al., 2015) the relation between the duration of associated LM and 

arousal events is investigated. The duration of an event might be interpreted as its “intensity”. 
Therefore, the hypothesis is that more intense LMs cause more intense arousals. The duration of 

associated events is visualized in Figure 45 and Figure 46 and a regression line  

is estimated with ordinary least squares to be able to tell something about the relationship between 

them. Let 𝑙𝑖 be the duration of a leg movement and 𝑎𝑗(𝑖) the duration of its associated arousal, then 

the following model is estimated: 𝑎𝑗(𝑖) = 𝐶 + 𝛽 ∙ 𝑙𝑖 + 𝑢𝑡 

Original annotations: 

 

Figure 45: Scatterplot of duration of associated events and its resulting regression line for original arousal annotation set 

 𝑪̂ 𝜷̂ 

LM/Aro duration regression 5.96448804 0.4721265 

PLM/Aro duration regression 5.60978248 0.56814512 

iLM/Aro duration regression 6.93455087 0.19763298 
 

Table 20: Estimated parameters C and beta for regression model: duration of arousals (with original annotations) regressed 

on duration of leg movements 
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Modified annotations:  

 

Figure 46: Scatterplot of duration of associated events and its resulting regression line for modified arousal annotation set. 

 𝑪̂ 𝜷̂ 

LM/Aro duration regression 5.16060486 0.52296987 

PLM/Aro duration regression 4.46507626 0.74644042 

iLM/Aro duration regression 7.45016716 - 0.2376719 
 

Table 21: Estimated parameters C and beta for regression model: duration of arousals (with modified annotations) regressed 

on duration of leg movements 

Analyzing these scatterplots graphically, it can be suspected that for these 4 patients there is no kind 

of relation between the duration of isolated LMs and arousals. In addition, it can be observed that the 

sign of the estimated coefficient 𝛽̂ is positive for original annotations and negative for modified 

annotations, which also indicates that there is no clear relation in the duration for iLMs. Considering 

LMs and PLMs, the plotted regression lines show for both annotation sets a slightly positive slope. This 

might indicate a positive relation between the intensity of PLMs and arousals.  

To test on the significance of the positive slope a t-test can be considered. To fulfill the assumptions of 

the t-test the residuals are tested on heteroscedasticity and further on normal distribution. For 

heteroscedasticity, the residuals are tested with the White-Test with hypothesis:  𝐻0: ℎ𝑜𝑚𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝐻1: ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

If homoscedasticity is rejected one can use heteroscedasticity-robust standard errors (White 

estimation of variance).  

 Original annotations Modified annotations 

LM/Aro dur. regression resid. 0.66786688326544053 0.15252011850954322 

PLM/Aro dur. regression resid. 0.42354632428916661 0.061622300672801888 

iLM/Aro dur. regression resid. 0.39091964962046166 0.16700708532355565 

 

Table 22: P-values for white-test on heteroscedasticity of residuals of the regression of arousal duration on LM/PLM/iLM 

duration in associated pairs for both arousal annotations 
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According to Table 22, for a significance level of 𝛼 = 0.05 the 𝐻0 of homoscedasticity is accepted in 

all cases.  

Furthermore, the normality of the residuals is tested with a Shapiro-Wilk test: 𝐻0: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝐻1: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

 Original annotations Modified annotations 

LM/Aro dur. regression resid. 6.193013358244434e-20 1.9654601311744926e-18 

PLM/Aro dur. regression resid. 3.295008622836594e-18 5.530128293670781e-16 

iLM/Aro dur. regression resid. 6.239530421225936e-07 1.9579608760977862e-06 

 

Table 23: P-values for test on normality of residuals of the regression of arousal duration on LM/PLM/iLM duration in 

associated pairs for both arousal annotations 

As provided in Table 23 the 𝐻0 of normality is rejected in all cases.  

So the residuals are homoscedastic but not normally distributed. There is no need for a robust variance 

estimator and the t-test statistic for the significance of the slope of the regression can be considered, 

with the assumption that the sample size (for LMs and PLMs between 243 and 400 samples; for iLMs 

between 80 and 108 samples) is large enough that asymptotical results for the classical regression 

model hold (see Table 14).  

 Original annotations Modified annotations 

LM/Aro dur. regression resid. 5.15674176e-03 2.08059687e-03 

PLM/Aro dur. regression resid. 4.81658311e-03 1.41562414e-04 

iLM/Aro dur. regression resid. 5.21864112e-01 4.83156634e-01 

 

Table 24: P-values for t-test on significance of slope coefficient of the regression of arousal duration on LM/PLM/iLM duration 

in associated pairs for both arousal annotations 

Table 24 shows the significance of the positive slopes for all LMs and for PLMs. The p-value of the test 

for the coefficient in the regression considering only iLMs (for both annotation sets) is above a 

significance level of 𝛼 = 0.05 and therefore the 𝐻0 that the slope-coefficient is equal to zero is 

accepted. In other words, there is no relation between the duration of iLMs and the duration of their 

associated arousals, but there is a slightly positive relation in the duration of PLMs and the duration of 

their associated arousals.  

To be sure that the above investigated results hold within the heterogenic data, consisting of 4 

different patients, the regression model was estimated again for each patient and all LMs (dividing into 

subsets of PLMs and iLMs per patient would result in even smaller samples). It has to be noted that 

the sample size within each patient is between 62 and 149 samples (see Table 10) for original 

annotations and between 31 and 120 samples (see Table 11) for modified annotations, and therefore 

relatively small. That’s why asymptotical results will possibly not hold for these regression models and 

the p-value for the t-test statistic on the significance of the coefficients is just provided for information.  
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Original annotations: Modified annotations: 

  
 

Figure 47: Relation in duration between the two events for each patient 

Original annotations: 

LM/Aro duration regression: 𝑪̂ (p-value) 𝜷̂ (p-value) 

TS100714 6.346015 (8.432642e-09) 0.379013 (2.074548e-01) 

TS090714 9.022891 (1.725058e-09) -0.291764 (4.696231e-01) 

TC070814 4.320019 (0.000125)  0.813125  (0.023596)  

MB200814 5.363859 (4.213682e-11) 0.346396  (3.108069e-01) 
 

Table 25: P-values for t-test on significance of the coefficients of the regression per patient (original arousal annotations) 

According to Table 25 none of the informative p-values for the slope coefficient is significant, with the 

exception of patient TC070814. As already mentioned, this can be partly caused by the fact that the 

sample size is relatively small. But with exception of patient TS090714 coefficients are positive and 

relatively close to the estimated value 𝛽̂ ≈ 0.47 for the whole set of patients. 

Modified annotations:  

LM/Aro duration regression 𝑪̂ (p-value) 𝜷̂ (p-value) 

TS100714 6.042321 (1.172367e-08) 0.330424 (2.493219e-01) 

TS090714 6.283738 (0.000015) 0.284976 (0.480324) 

TC070814 4.699030  (0.000199) 0.378725 (0.283418) 

MB200814 4.850422 (6.356049e-09) 0.255183 (4.552524e-01) 
 

Table 26: P-values for t-test on significance of the coefficients of the regression per patient (modified arousal annotations) 

According to Table 26 none of the informative p-values for the slope coefficient is significant. As 

already mentioned, this can be partly caused by the fact that the sample size is relatively small. All 

coefficients are positive and relatively close to the estimated value 𝛽̂ ≈ 0.52 for the whole set of 

patients. 

All in all, the investigated slightly positive relation between the duration of LMs and arousals, is 

supported by all patients for the modified annotation set and by all but one patient for the original 

annotation set.  
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3.2.4 Analysis of relation between the intensity of a LM and the occurrence of an 

arousal  

A slightly different approach and a clinical interesting question is if more intense LMs are more likely 

to be associated with arousals. This could be an important finding for the diagnosis of sleep disorders 

caused be LMs. If LMs aren’t causing any disruption of sleep or other problems, they are less important 

for diagnosis. Important are the leg movements that disturb sleep, which can be measured in the 

appearance of arousals. The first question in this context is how to measure intensity of a leg 

movement. In the following two ideas for a measure of the intensity are modeled: the duration and 

the “area” value computed by the 3D detection.  

Duration as a measure of the intensity of a LM  

When considering the duration as a measure of the intensity of a LM the question is if longer leg 

movements are more likely to cause disruptions of sleep. Table 27 shows the mean of the duration of 

LMs associated with arousals and not associated with arousals.  

 Original annotations Modified annotations 

Mean duration of LMs not associated with Arousal 2,38 s 2,41 s 

Mean duration of LMs associated with Arousal 2,98 s 3,02 s 

Mean duration of PLMs not associated with Arousal 2,39 s 2,40 s 

Mean duration of PLMs associated with Arousal 3,01 s 3,05 s 

Mean duration of iLMs not associated with Arousal 2,33 s 2,37 s 

Mean duration of iLMs associated with Arousal 2,89 s 2,95 s 
 

Table 27: Mean of the duration in seconds of LMs associated with arousals and not associated with arousals 

Original annotations:  

 

 

 

Figure 48: Boxplot comparison of the distribution of duration of LMs appearing with and without arousals for the original 

arousal annotation set  
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Modified annotations:  

According to Table 27, Figure 48 and Figure 49 LMs associated to arousals are on average longer than 

LMs that appear without arousal. The notch of the boxes within the plots do not overlap, which 

provides a graphical information about the significant difference in the median within the two groups. 

To test if they are statistically significantly longer than the ones without arousal another possibility is 

to perform a two sample t-test on the difference of the mean in the group of LMs with and the group 

of LMs without arousal.  

Let 𝜇𝐿𝑀+𝐴 be the mean of the duration of LMs associated with an arousal and 𝜇𝐿𝑀\𝐴 the mean of the 

duration of LMs without an associated arousal. (The same test is done exclusively for PLMs and iLMs) 𝐻0: 𝜇𝐿𝑀+𝐴 = 𝜇𝐿𝑀\𝐴 𝐻1: 𝜇𝐿𝑀+𝐴 ≠ 𝜇𝐿𝑀 \𝐴 

 Original annotations Modified annotations 

LM with and without arousal 3.9889024494984853e-16 2.2008212058631565e-15 

PLM with and without arousal 2.5504536090848689e-13 5.2205341633108542e-13 

iLM with and without arousal 0.00021899827733267127 0.00035000000939217643 

 

Table 28: P-values of two sample t-test on equal or not equal mean between two groups: LM/PLM/iLM with arousal and 

LM/PLM/iLM without arousal 

The 𝐻0 is rejected in all cases for all reasonable significance levels. This means that the mean in the 

group associated with an arousal and the group not associated with an arousal are significantly 

different from each other.  

This shows that for the used data set it holds that longer leg movements are more likely to be 

associated with an arousal and therefore to disturb sleep and cause sleep disorder problems for 

patients.  

 

 

Figure 49: Boxplot comparison of the distribution of duration of LMs appearing with and without arousals for the modified 

arousal annotation set  
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3D “Area” value as a measure of the intensity of a LM  

As already described in the section Analysis of relation between the intensity of a LM and the 

occurrence of an arousal, in the part regarding the measure of intensity with the 3D detection, firstly 

the 3D detection itself is validated by calculating a set of numbers and percentages.  

 
Number of 3D 

LM detections 

Number of PSG 

LM annotations 

Number of PSG LM 

annotations -3D 

detected 

Number of PSG LM 

annotations – not 3D 

detected 

TS100714 1370 408 349 (86%) 59 (14%) 

TS090714 1450 505 427 (85%) 78 (15%) 

TC070814 106 118 30 (25%) 88 (75%) 

MB200814 279 269 183 (68%) 86 (32%) 

SUM/overall 

% 
3205 1300 989 (76%) 311 (24%) 

 

Table 29: Analysis of the performance of the 3D detection on the used patients 

According to Table 29, 76% of the PSG annotated LMs within these 4 patients are detected by the 3D 

detection. In the following tables, it is shown how many LMs, separated in PLMs and iLMs, are 

associated with arousals. Doing so, it is again distinguished between the original and the modified 

annotation set for the arousals.  

Original arousal annotations:  

3D detected 

 
Number of 

LMs with 

arousals 

Number of 

LMs without 

arousals 

Number of 

PLMs with 

arousals 

Number of 

PLMs 

without 

arousals 

Number of 

iLMs with 

arousals 

Number of 

iLMs without 

arousals 

TS100714 127 (36%) 222 (64%) 103 (36%) 185 (64%) 24 (39%) 37 (61%) 

TS090714 138 (32%) 289 (68%) 109 (32%) 237 (68%) 29 (36%) 52 (64%) 

TC070814 24 (80%) 6 (20%) 8 (100%) 0 (0%) 16 (73%) 6 (27%) 

MB200814 51 (28%) 132 (72%) 39 (24%) 124 (76%) 12 (60%) 8 (40%) 

SUM/overall 

% 
340 (34%) 649 (66%) 259 (32%) 546 (68%) 81 (44%) 103 (56%) 

 

Table 30: Percentages and number for 3D detected LMs/PLMs/iLMs and their association to arousals (original annotation) 

Not 3D detected 

 
Number of 

LMs with 

arousals 

Number of 

LMs without 

arousals 

Number of 

PLMs with 

arousals 

Number of 

PLMs 

without 

arousals 

Number of 

iLMs with 

arousals 

Number of 

iLMs without 

arousals 

TS100714 14 (24%) 45 (76%) 13 (24%) 41 (76%) 1 (20%) 4 (80%) 

TS090714 8 (10%) 70 (90%) 1 (2%) 59 (98%) 7 (39%) 11 (61%) 

TC070814 23 (26%) 65 (74%) 6 (21%) 23 (79%) 17 (29%) 42 (71%) 

MB200814 11 (13%) 75 (87%) 10 (12%) 71 (88%) 1 (20%) 4 (80%) 

SUM/overall 

% 
56 (18%) 255 (82%) 30 (13%) 194 (87%) 26 (30%) 61 (70%) 

 

Table 31: Percentages and number for not 3D detected LMs/PLMs/iLMs and their association to arousals (original annotation) 
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 Percentage of LMs  

with arousals that are 

not 3D detected 

Percentage of PLMs 

with arousals that are 

not 3D detected 

Percentage of iLMs  

with arousals that are 

not 3D detected 

TS100714 10% 11% 4% 

TS090714 5% 1% 19% 

TC070814 49% 43% 52% 

MB200814 18% 20% 8% 

SUM/overall % 14% 10% 24% 

 

Table 32: Percentages of LMs/PLMs/iLMs associated with arousals (original annotations) that are not 3D detected 

Table 30 and Table 31 distinguish between 3D detected LMs and not 3D detected LMs. It is of high 

interest to know how many and what percentage of LMs associated with arousals are 3D detected and 

not 3D detected.  As shown in Table 30 and Table 31 the majority of LMs aren’t associated with an 
arousal, but according to Table 32 only 14% out of the LMs with arousals are dismissed by 3D detection.  

Considering only the LMs that are not 3D detected, Table 31 shows that 82% of them are not associated 

with any arousal. As arousals can be seen as short disruptions of sleep, which can cause various 

problems, like daytime sleepiness, the LMs associated with arousals may have a higher influence on 

sleep quality. This investigation shows that 3D detection is able to detect 86% of all LMs with arousals 

among these 4 patients. 

Modified arousal annotations:  

3D detected 

 
Number of 

LMs with 

arousals 

Number of 

LMs without 

arousals 

Number of 

PLMs with 

arousals 

Number of 

PLMs 

without 

arousals 

Number of 

iLMs with 

arousals 

Number of 

iLMs without 

arousals 

TS100714 116 (33%) 233 (67%) 97 (34%) 191 (66%) 19 (31%) 42 (69%) 

TS090714 120 (28%) 307 (72%) 95 (27%) 251 (73%) 25 (31%) 56 (69%) 

TC070814 19 (63%) 11 (37%) 7 (88%) 1 (12%) 12 (55%) 10 (45%) 

MB200814 47 (26%) 136 (74%) 36 (22%) 127 (78%) 11 (55%) 9 (45%) 

SUM/overall 

% 
302 (31%) 687 (69%) 235 (29%) 570 (71%) 67 (36%) 117 (64%) 

 

Table 33: Percentages and number for 3D detected LMs/PLMs/iLMs and their association to arousals (modified annotations) 

Not 3D detected 

 
Number of 

LMs with 

arousals 

Number of 

LMs without 

arousals 

Number of 

PLMs with 

arousals 

Number of 

PLMs 

without 

arousals 

Number of 

iLMs with 

arousals 

Number of 

iLMs without 

arousals 

TS100714 10 (17%) 49 (83%) 10 (19%) 44 (81%) 0 (0%) 5 (100%) 

TS090714 5 (6%) 73 (94%) 0 (0%) 60 (100%) 5 (28%) 13 (72%) 

TC070814 14 (16%) 74 (84%) 3 (10%) 26 (90%) 11 (19%) 48 (81%) 

MB200814 7 (8%) 79 (92%) 7 (9%) 74 (91%) 0 (0%) 5 (100%) 

SUM/overall 

% 
36 (12%) 275 (88%) 20 (9%) 204 (91%) 16 (18%) 71 (82%) 

 

Table 34: Percentages and number for not 3D detected LMs/PLMs/iLMs and their association to arousals (modified 

annotations) 
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 Percentage of LMs  

with arousals that are 

not 3D detected 

Percentage of PLMs 

with arousals that are 

not 3D detected 

Percentage of iLMs  

with arousals that are 

not 3D detected 

TS100714 8% 9% 0% 

TS090714 4% 0% 17% 

TC070814 42% 30% 48% 

MB200814 13% 16% 0% 

SUM/overall % 11% 8% 19% 

 

Table 35: Percentages of LMs/PLMs/iLMs associated with arousals (modified annotations) that are not 3D detected 

As already displayed for original annotations the Table 33 and the Table 34 distinguish between 3D 

detected LMs and not 3D detected LMs. The results for the modified annotation set remain the same 

as for the original annotation set in its message. As shown in Table 33 and Table 34 the majority of LMs 

aren’t associated with an arousal, but according to Table 35 only 11% out of the LMs with arousals are 

dismissed by the 3D detection. Considering only the LMs that are not 3D detected, Table 34 shows that 

88% of them are not associated with any arousal. As arousals can be seen as short disruptions of sleep, 

which can cause various problems, like daytime sleepiness, the LMs associated with arousals may have 

a higher influence on sleep quality. This investigation shows that 3D detection is able to detect 89% of 

all LMs with arousals among these 4 patients. 

The following figures show the difference in distribution of the area value within the groups with and 

without arousals. The LMs that couldn’t be detected by 3D detection are assigned with the area value 
zero and LMs that are detected by more than one 3D detection are assigned with the sum of the area 

values of all overlapping 3D detection.  

Original arousal annotations:  

 

Figure 50: Boxplot of distribution of area values within the groups of LMs/PLMs/ILMs associated and not associated with 

arousals (original annotations) 
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Modified arousal annotations:  

 

Figure 51: Boxplot of distribution of “area” values within the groups of LMs/PLMs/ILMs associated and not associated with 

arousals (modified annotations) 

Figure 50 and Figure 51 show that the median (notches of boxes aren’t overlapping) is significantly 
different between the groups with and without arousals. In addition, it can be tested with a t-test if 

the means are significantly different from each other. Let 𝜇𝐿𝑀+𝐴 be the mean of the area value of LMs 

associated with an arousal and 𝜇𝐿𝑀\𝐴 the mean of the area value of LMs without an associated arousal. 

(The same test is done exclusively for PLMs and iLMs) 𝐻0: 𝜇𝐿𝑀+𝐴 = 𝜇𝐿𝑀\𝐴 𝐻1: 𝜇𝐿𝑀+𝐴 ≠ 𝜇𝐿𝑀 \𝐴 

 Original annotations Modified annotations 

LM with and without arousal 1.2510805741058368e-16 9.6608002573776594e-20 

PLM with and without arousal 3.9498716690715905e-15 1.3375796879087781e-16 

iLM with and without arousal 0.001877574074490275 9.8550283782640761e-05 

 

Table 36: T-test on difference in mean of “area” values between the groups with and without arousals for LMs/PLMs/iLMs 

and both arousal annotation sets 

According to Table 36 all mean values are significantly different from each other because 𝐻0 is rejected 

in all cases until a significance level of 𝛼 = 0.001. 

Next to the approach of visualizing the distribution with boxplots one can think of categorizing area 

values in 4 categories of intensity and visualizing in which category the most LMs with or without 

arousals appear. Figure 52 shows the distribution of the area value for 3D detected LMs. The values 

are divided into four categories according to the quantiles of the distribution in Figure 52 plus one 

category zero for LMs that are not 3D detected. 
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Quantiles of the distribution:  

• 𝑞0.253𝐷 =  2006,77;  𝑞0.53𝐷 = 8134,82;  𝑞0.753𝐷 = 18113,51 

Categories 0-4: 

• Category = 0 if area == 0 (not 3D detected LM) 

• Category = 1 if area ∈ (0, 𝑞0.253𝐷 ) 

• Category = 2 if area ∈ [𝑞0.253𝐷 , 𝑞0.53𝐷) 

• Category = 3 if area ∈ [𝑞0.53𝐷, 𝑞0.753𝐷 ) 

• Category = 4 if area ∈ [𝑞0.753𝐷 , max(𝑎𝑟𝑒𝑎)] 
 

Figure 53 and Figure 54 show the distribution of the intensity of the LMs in the above described 

categories. It can be observed that the distribution of LMs with arousals is right-skewed and the one 

for LMs without arousals left-skewed. That means that most LMs with arousals have intensity values 

of category 4 and that most LMs without arousals are in category zero, which means that they aren’t 
even detected by 3D detection because no movement can be recognized and it’s maybe only a muscle 
tension.  

This supports the hypothesis that more intense arousals are more likely to occur with arousals and 

therefore could be more important for the diagnosis of sleep disorders. It also supports the 3D 

detection performance because the not detected LMs are about 50% less likely to occur with an arousal 

and therefore less important in terms of sleep disruption. 

 

 

 

Figure 52: Distribution of area values for 3D detected LMs. Zero values for the not 3D detected LMs are not included here 
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Original annotations:  

Modified annotations: 

 

Figure 53: Histogram of the 4 categories of intensity in area values and the zero assignments (for not 3D detected LMs) 

separated in the group with and without arousals (original annotations) 

Figure 54: Histogram of the 4 categories of intensity in area values and the zero assignments (for not 3D detected LMs) 

separated in the group with and without arousals (original annotations) 
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4 Discussion and Conclusion 

The investigations in this thesis relate on the PSG data and a manually revised set of arousal 

annotations of a group of seven patients of the AKH Wien. In the first part of this thesis the 

development of an algorithm for the automatic detection of arousals in EEG-signal was investigated. 

Due to the definition of the AASM of an arousal the method consists of two main steps: the detection 

of the start of an arousal and the final determination of an arousal.  

More precisely, the whole night recording for each patient was divided in segments of 3s and features 

were extracted for each segment. The first step of the classification of the segments as arousal start 

segments, described by a set of 13 features (per EEG-channel), extracted exclusively from two central 

EEG derivations, was realized with a Support Vector Machine with radial basis kernel. New findings in 

feature extraction were the usage of the coefficients of an AR(6)-model, estimated within each 

segment for each EEG channel, and the usage of a t-test statistic on a significant difference in the mean 

of the squared filtered signal. The parameters for the Support Vector Machine were chosen by 

performing a grid search with Leave-One-Out-Cross validation for a set of parameters and the decision 

was made by calculating common statistical performance values and considering the ROC-Curve as 

well as the Youden-Index. With the chosen parameters 𝐶 = 11 and 𝛾 = 2−12 arousal start segments 

could be detected with an average sensitivity and specificity of about 96% and a positive predictive 

value of about 24%.  

The second step and final determination of the arousals was done by calculating the duration of each 

arousal and by passing the set of detections through several algorithms to check for arousal criteria 

like minimum length of 3s, simultaneous change in submental EMG for REM-sleep arousals and 10s of 

stable sleep before the start of an arousal. Due to the fact that neither the end of an arousal, nor the 

10s of stable preceding an arousal are defined properly in the definition of the AASM, the duration of 

an arousal and the validity of the 10s stable sleep are rather subjective and performance of the 

detection algorithm dropped in terms of sensitivity but it improved in terms of selectivity after the 

second step. After determining final arousals, the average sensitivity was about 86% and the positive 

predictive value reached on average 60%. Compared to other works on the automatic arousal 

detection, described in the state of knowledge, these were still satisfying results. In particular, further 

investigations on the second step of the detection algorithm as well as on a precise definition of the 

end of an arousal and the preceding stable sleep, could improve the final performance. 

The second aim of this thesis was to investigate the relation between different kinds of leg movements 

and arousals. It was supported that leg movements and arousals can’t be completely independent of 
each other but a clear causality couldn’t be defined, even though it was tested that periodic leg 

movements precede arousals slightly significantly more often (for the modified annotation set). 

Furthermore, the analysis on the relation between the intensity of a leg movement and the association 

to an arousal led to interesting new findings. Two measures for intensity, the duration and an intensity 

value of the 3D detection of leg movements, were tested and it could be shown that more intense leg 

movements are more likely to occur with an arousal. Considering that arousals are kind of short 

disturbances of sleep, that means that more intense leg movements can be more important for the 

diagnosis of sleep disorders. In addition, the performance of the 3D detection was supported by 

demonstrating that the number of leg movements associated with an arousal is 50% less for not 3D 
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detected leg movements than for the ones that got 3D detected. Hence, the great majority of not 3D 

detected leg movements is not associated with an arousal and therefore less important in terms of 

sleep disruptions. 

For further research and after the findings in the relation between leg movements and arousals it could 

be interesting to investigate on a new set of features for the arousal detection that consider the EMG 

and the 3D leg signals. It can be supposed that these features could be especially suitable for PLMS 

patients and could lead to a higher performance in arousal detection. 
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5 Appendix 

In addition to chapter Results of the arousal detection, there are more plots of automatic arousal 

detections provided in this section. 

True Positives:   
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False Positives:  
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False Negatives: 
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6 Abbreviations 

ACF  Autocorrelation Function 

ANN  Artificial Neural Network 

ECG  Electrocardiography 

EEG  Electroencephalography/Electroencephalogram 

EMG  Electromyography/Electromyogram 

NREM  Nonrapid Eye Movement 

PACF  Partial Autocorrelation Function 

LM  Leg Movement 

iLM  isolated Limb Movement 

PLM  Periodic Limb Movement 

PLMS  Periodic Limb Movement of Sleep 

PLMD  Periodic Limb Movement Disorder 

PSG  Polysomnography/Polysomnogram 

REM  Rapid Eye Movement 

SVM  Support Vector Machine 

TST  Total Sleep Time 

AASM   American Academy of Sleep Medicine  
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