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a b s t r a c t

Similarity maps show dimensionality-reduced activation vectors of a high number of data points and
thereby can help to understand which features a neural network has learned from the data. However,
similarity maps have severely limited expressiveness for large datasets with hundreds of thousands
of data instances and thousands of labels, such as ImageNet or word2vec. In this work, we present
‘‘concept splatters’’ as a scalable method to interactively explore similarities between data instances as
learned by the machine through the lens of human-understandable semantics. Our approach enables
interactive exploration of large latent spaces on multiple levels of abstraction. We present a web-based
implementation that supports interactive exploration of tens of thousands of word vectors of word2vec
and CNN feature vectors of ImageNet. In a qualitative study, users could effectively discover spurious
learning strategies of the network, ambiguous labels, and could characterize reasons for potential
confusion.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Similarity maps are often used by the computer vision, ma-
hine learning, and visualization community, but also in appli-
ation domains like biology or geoscience, to better understand
hat features a network has learned [1]. For this, each data

nstance is associated with a high-dimensional feature vector
efined by the activations of the last hidden layer in the network.
hese feature vectors are then projected to two dimensions using
imensionality reduction techniques. In the final similarity map
catterplot, data instances are rendered as dots, and those that the
etwork considers similar are rendered in close proximity (see
ig. 1(a)). This encoding can help users to understand implicitly
ow a model interprets input items [2].
Similarity maps can be found as static images in papers or as

ne of multiple coordinated views in a visual analytics system
3–5]. They are used to illustrate how the network gradually
earns features during the training process [2], at different net-
ork layers [3,4], or using different training settings [6]. Further-
ore, similarity maps can help to identify mislabeled training
amples [7]. Probably the most common usage is to demonstrate
hether a network successfully learned to distinguish semantic
oncepts [8–10] by visualizing if data instances of the same class
end to form separated clusters. Based on the characteristics of
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E-mail address: waldner@cg.tuwien.ac.at (M. Waldner).
ttps://doi.org/10.1016/j.cag.2022.04.013
097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
the data instances associated with these clusters, it is possible
to reason based on which features the network learned this
discrimination [11,12].

Consider, as an example, the similarity map of a latent space
learned by a network from Fashion-MNIST [13] (FMNIST) in Fig. 1.
It is clearly visible that the ten fashion categories are not well
separated, yet the network tends to cluster the data instances
into four distinct groups. Reasoning why the categories are not
separated well, is not possible in such a view: the axes do not
carry any semantic meaning, and it would be required to inspect
individual data points to be able to characterize the content
of these four clusters. For example in Fig. 1(b), we show im-
ages labeled as bags or trousers that are considered similar to
dresses (shown in green). From just these four examples, we
can already speculate which visual attributes are responsible so
that the network considers them similar to dresses: they have a
long-stretched visual appearance.

Interactive similarity maps, such as shown in Fig. 1, may still
work fairly well with ten ground truth labels. However, more
than twelve colors are hard to discriminate [14]. It is there-
fore clear that classic similarity maps are no longer sufficient
when analyzing what a network has learned from a large and
more complex dataset, such as ImageNet [15] with 1000 different
classes and dozens to hundreds of images associated with each
class or large word embeddings, where every word represents its
own class.

The goal of this work is to scale up similarity maps so that
users can explore if the similarity of a large-scale dataset learned
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Similarity map of a latent space created by a two-layer network trained
n FMNIST: the ten ground truth classes are spread over four clusters (a). Few
xamples are sufficient to grasp their similarity to the class ‘‘dress’’ (b).

y a network (i.e., visual similarity or linguistic contexts) corre-
ates with an expected pre-defined semantic categorization with
undreds to thousands of classes. To this end, we contribute an-
otated concept splatters as novel foundation for scalable visual
xploration of large latent spaces based on human interpretable
oncepts. The visual encoding principle of concept splatters is
ased on prototype theory [16], which is a theory of cognitive hier-
rchical categorization, where exemplars serve as representatives
f categories. The concept splatters technique has the following
ovel aspects:

• a multi-scale visualization approach based on a novel com-
bination of hierarchical aggregation in a human
interpretable concept space and an adjustable density vi-
sualization in machine-learned latent space, which enables
new zoom & filter interaction techniques to qualitatively
assess what the network has learned on multiple levels of
abstraction,

• illustration of agreements and disagreements between con-
cept and latent space through automatically generated in-
sets annotating the concept splatters, and

• new selection-based interaction techniques supporting
multi-scale exploration of latent spaces consisting of tens
of thousands of samples and labels in multiple coordinated
views with interactive frame rates on the web.

e provide an online1 latent space exploration interface to in-
pect concepts in large, widely used word embeddings (word2vec
17]) and CNN feature spaces (using ImageNet [15]) with real-
ime performance. Using this online interface, users of a qual-
tative study discovered several insightful characteristics of the

1 https://kontor.cg.tuwien.ac.at/ConceptSplatters/
74
neural network, such as the presence of spurious learning strate-
gies, as well as potential issues of the inspected dataset, such as
ambiguous labels.

We first discuss the state-of-the-art of scalable similarity maps
(Section 2) followed by a description of the theoretical back-
ground based on prototype theory [16] and the hypotheses de-
rived therefrom guiding the visual encoding principle (Section 3).
We then present the visual encoding of concept splatters and
their annotations along with a first quantitative validation of the
hypotheses in Section 4. Section 5 explains the new zoom &
filter and selection interaction techniques, and Section 6 describes
the web-based implementation. Finally, we present the data for
our use cases in Section 7 and the results from a qualitative
thinking-aloud study in Section 8.

2. Related work

Visual exploration of latent spaces can happen in isolation
[18–20], but can also be a part of a deeper inspection of how
neural networks behave [3–5]. In the majority of cases, visual
exploration of latent spaces is at least partially enabled by clas-
sic similarity maps, i.e., dimensionality-reduced scatterplots of
high-dimensional activation vectors of a large dataset. Latent
space similarity maps reveal information about sample numeros-
ity and separability of classes. To qualitatively characterize the
features a network has learned, users have to manually select
map regions [9,19] or individual data instances [4,18] for closer
inspection. Such a manual inspection approach does not scale
well with increasing numbers of data instances.

A relatively simple approach to create scalable scatterplots is
to use a sampling strategy [21]. This approach has been used for
the latent space similarity map in the network analytics system
ActiVis [3], where users are asked to only select a subset of the
data for inspection in the latent space scatterplot. The problem
of sampling is that it always leads to potential loss of outliers or
fine-grained patterns [21].

A simple scalable approach to visualize classed similarity maps
is to aggregate all instances per class to a class prototype and
only draw one dot per class on the class’ average position [5,22].
This effectively increases the scalability in terms of the number
of instances and reveals classes that are considered very similar,
on average. However, due to averaging, intra-class variability is
not revealed.

For image-based latent spaces, a popular technique is to as-
sume a grid over the whole projected 2D space and show the
nearest neighbor image to the center of each grid cell [23]. A
similar approach is used for activation atlases, which show fea-
ture visualizations of the average activations per grid cell [24].
Although this creates an aesthetic, space efficient overview of the
latent space, creating such a grid of images can be considered
as a form of sampling strategy. Thus, rare categories and subtle
variations may get lost if they are not explicitly detected and
visualized [25].

Another approach to ensure scalability is to apply clustering
in the latent space. Combinations of dimensionality reduction and
clustering are very common, not only with respect to neural net-
work analysis [26,27]. Clusters computed from the projected data
instances in latent space generate well-defined, non-overlapping
regions in similarity maps and can therefore facilitate labeling
with word clouds, embedded charts, or images [28]. For each
cluster, one representative image [29] or multiple representative
words [30] can be shown. Rathore et al. [31] construct a graph
out of cluster nodes, where edges connect overlapping clusters,
to properly reflect the latent space topology. Ventocilla et al. [32]
use a variant of the GNG clustering algorithm [33] to visualize
representative data instances and their connections. Clustering

https://kontor.cg.tuwien.ac.at/ConceptSplatters/
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rom the instances in latent space alone reveals groups of in-
tances the network considers to be similar. However, instances
ithin a latent space cluster may not necessarily be consid-
red as semantically similar by a human observer. Conversely,
roups of semantically similar data instances may lead to multi-
le clusters in latent space. Concept splatters therefore explicitly
isualize how groups of instances with high semantic similarity
re distributed in the network’s latent space. In other words, we
isualize if the user’s expected categorization is reflected by what
he machine has learned.

A general approach to avoid overplotting in scatterplots is
o show densities instead of individual dots — either as dis-
rete rectangular or hexagonal bins [34], as scalar fields derived
rom kernel density estimations [35], or bounded density re-
ions for classed scatterplots [36]. In the context of visual latent
pace exploration, density-based similarity maps have been used
o observe the sample distribution of a single user-selected la-
el [37]. In contrast, we want to visualize the distribution of
undreds to thousands of data instances that can be associated
ith thousands of concepts.
In interactive systems, the approaches listed above can be

ombined with hierarchical aggregation. Using zooming or other
ypes of drill-down interaction techniques, users can interactively
eveal more and more details [38]. For instance, zooming into
grid-based activation atlas increasingly reveals further acti-

ation labels (i.e., labels that are supported most in one grid
ell of activation vectors) [24]. Hierarchical stochastic neighbor
mbedding (HSNE) [9] iteratively aggregates high-dimensional
eighboring sample points into sets of landmarks, and for each
ayer of landmarks, a t-SNE projection is computed. The main
otivation of hierarchical dimensionality reduction techniques
tems from the computational demand, but they also implicitly
upport overview+detail [9] or focus+context [39] exploration
f very large, high-dimensional datasets. Similarly to clustering
pproaches in latent space, landmarks in latent space represent
roups that the machine considers to be similar, which does not
ecessarily correspond to the user’s expected categorization.
In contrast of hierarchical aggregation in data space, El Assady

t al. [40] proposed a hierarchical aggregation in data and a user-
enerated concept space to explore and refine topic models in
he context of text analysis. In contrast, concept splatters com-
ine hierarchical aggregation in an explanatory concept space
nd combine it with a data-driven density visualization in the
imilarity map. We discuss and demonstrate how this new visual
ncoding can reveal insightful visual patterns and lead to an
llustrative selection of data instances for visual annotation.

. Theoretical background

Prototype theory states that humans tend to group the stimuli
hey receive into basic categories [16]. A category thereby is a
amed group of objects that are considered to be equivalent,
nd a taxonomy is a hierarchical categorization. A basic category
s the level of abstraction an observer chooses from a taxonomy
o that objects are grouped into a cognitively usable number
f categories that can be clearly differentiated from each other.
hen training a neural network, the expectation is that the
etwork learns a categorization that corresponds to a human
nterpretable taxonomy. For example, if we train a network to
ifferentiate categories of fashion items on images, we expect it
o consider images that contain shoes to be more similar to each
ther than images of bags. Only if we look closer into shoes, we
xpect that the network categorizes shoes into sub-categories,
uch as sandals and sneakers.
Depending on the dataset used to diagnose the network, use-

ul taxonomies can be biological taxonomies, categorizations of
75
Fig. 2. Patterns observable through visual topological analysis of two basic
concept space categories (represented by their color) in latent space.

objects, such as fashion items, furniture, or vehicles, or topic clas-
sifications, such as hierarchical keyword classifications. The man-
ually curated WordNet [41] captures many of such taxonomies
into a large lexical database and is also used, for example, to
classify images in the large-scale ImageNet dataset [15]. We refer
to such a taxonomy of human interpretable concepts as concept
space.

We postulate that the explicitly or implicitly learned basic
categories of a network for a set of data instances can be in-
ferred from its latent space. A latent space is a high-dimensional
vector space in which each data item is represented as a single
vector. We focus on two types of latent spaces in this work:
(1) Word embeddings are created through the analysis of word
co-occurrences [17]. They are based on the distributional hypoth-
esis, stating that words in similar contexts have similar meanings.
Thus, it is expected that word vectors that cluster together have
similar hypernym–hyponym relations [42]. (2) Feature vectors
are extracted from the activations of convolutional neural net-
works (CNNs). Their induced latent space is created through
the successive use of convolutions leading to the extraction of
higher-level features the further an image progresses through the
network. The extracted features of the last layer serve as the
basis of the classification. Hereby, images with similar contents
are expected to have similar activation vectors [2].

High-dimensional latent space vectors can be visualized in 2D
using a dimensionality reduction technique like t-SNE [43] or
UMAP [44] to create similarity maps. Dense regions in similarity
maps then can be considered to be the basic categories the
network has learned. Visual topological analysis of dense class
regions allows for a qualitative inspection of (1) the inter-class
variability, (2) the intra-class variability, or (3) rare categories of
data instances. If well-separated dense regions correspond to the
basic concepts of the concept space (i.e., the inter-class variability
is high, and the intra-class variability is low, as shown in Fig. 2 top
left), this indicates that the network has learned basic concepts as
expected from the concept space. In Fig. 1(a), for instance, ‘‘bag’’
and ‘‘trousers’’ have a low intra-class variability so that their
data instances form tight clusters. On the other hand, overlapping
concept space categories may indicate a low inter-class variability
(Fig. 2 bottom) and that the machine cannot properly distinguish
them. For example, in Cluster 3 of Fig. 1, multiple fashion cate-
gories overlap, such as T-shirt, shirt, and pullover. High intra-class
variability (Fig. 2 right) could be an indication that the network
has learned to categorize images based on spurious correlations,
such as watermarks in images [45], the context in which an
object is depicted in images, as well as ambiguous or incorrect
labels [7]. Fig. 2 summarizes possible patterns that can emerge
when mapping basic concept space categories onto dense regions
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Fig. 3. Overview of the concept splatters generation process: From the distribution of data samples in the 2D projected latent space (A) and a pre-defined hierarchical
concept space (B), we find dense region of samples associated with basic categories (the concept splatters) (C). From the samples contained within these dense regions
D), we select representative prototypes, which are then used to annotate the concept splatters (E).
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f data instances in the latent space visualization. In summary,
e hypothesize that visualizing the distribution of basic categories
f the concept space in the latent space can reveal if a machine
as successfully learned the expected categorization expressed in the
oncept space (H1).
Rosch et al. [16] explain that basic categories can be repre-

ented by prototypes, i.e., the most characteristic instances of a
ategory, which share the most of their attributes with other
embers of the category. Indeed, to communicate their inter-
retations visually, authors of machine learning papers often
anually augment figures of similarity maps with hand-picked
amples [2,10] or carefully selected detail insets [8,11,12]. There-
ore, we hypothesize that few prototype data samples of dense
egions associated with basic concept space categories in the latent
pace are sufficient to characterize what the network has learned on
given level of abstraction (H2).

. Visual encoding

In this section, we describe how we perform the mapping of
he basic categories of the concept space into a similarity map
isualization of the latent space. This linkage is the foundation
or our interaction design presented in Section 5.

Let S be the set of data samples whose activations by the
etwork should be visualized in the latent space. Each sample
as a set of one or more associated labels L(s), a 2D coordinate in
he dimensionality reduced latent space x(s) (see Fig. 3A), and a
epresentation of itself, such as an image thumbnail. Although our
pproach is agnostic to the underlying dimensionality-reduction
ethod, we specifically chose UMAP to obtain x(s). It preserves

he global structure well, enabling the exploration of overarching
atterns in the data [44,46], and is significantly faster to compute
han t-SNE [47].

Let L be the set of unique labels associated with all samples.
hese labels can be ground truth class labels of images or the
ords themselves in word embeddings. Let C be the set of human

nterpretable concepts (the concept space), which are organized
s a rooted tree, where each child node represents a separate
ubset of all human interpretable concepts, which can be further
ubdivided (Fig. 3B). Each label l ∈ L now needs to be mapped
o one or multiple concepts of C . For example, an image tagged
ith the text label ‘‘dog’’ can be associated with seven synsets in
ordNet, from a domestic pet to an informal term for a man. To

ink all samples s ∈ S with concepts, we therefore find C(s) =

c|c ∈ C, c ∼ l ∈ L(s)}, which contains all concepts that match
he sample’s labels.
76
We are linking the latent space (i.e., what the machine con-
iders to be similar) and the concept space (i.e., what the users
onsider to be similar) through concept splatters. Concept splatters
re continuous regions in the projected latent space and enclose
amples that are similar with respect to both, the concept space
nd the latent space (Fig. 3C).

.1. Mapping concepts to latent space

The level of abstraction in the concept space is set by selecting
subset of concepts rooted at the selected concept Cr in the

oncept tree. We create concept splatters for all n proper subsets
f Cr = {C1, C2, . . . , Cn}, i.e., the basic categories of the chosen
evel of abstraction in the concept space. For the ith subconcept
f Cr , we then find all samples S(Ci) = Si = {s|s ∈ S, C(s) ⊂ Ci}

hat have at least one label associated with Ci. These samples
hen represent the input to the splatters of the ith subset of the
elected root concept Cr . If samples have multiple labels, each
ample can serve as input to multiple splatters.
Concept splatters are regions in the 2D latent space projection

ontaining samples of the same concept. The shape of the concept
platters are based on the density of associated samples in the la-
ent space. To define the concept splatters for a subconcept Ci, we
se the principle of splatterplots [36] and compute a kernel den-
ity estimation for all samples associated with this subconcept Si:

ˆh(x, Si) =
1

|Si| · h

|Si|∑
j=1

K
(
x − x(sj)

h

)
, (1)

where x(sj) is the 2D coordinate of the jth sample of Si after
dimensionality reduction, K is a Gaussian kernel, and h ≥ 1
is an adjustable bandwidth, which controls the smoothness of
the estimated probability density function. The shape of the final
splatters is defined by an isocontour from the density field using
an adjustable density threshold t . The lower the bandwidth h, the
ower the level of abstraction, i.e., the more intra-class variability
an be observed through an increasing number of separated
platters. Through the density threshold t , the user controls the
ize and number of visible concept splatters. The higher t , the
smaller the splatters, and the more likely that small isolated
concept splatters disappear.

Conversely, we can compute a mapping of arbitrary latent
space regions onto the concept space. Users manually create
regions in the latent space that represent queries for the con-
cept space. A query selects a subset of samples S = {s|x(s)
q
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CSq, C(s) ⊂ Cr}, where all sample positions of Sq lie within the
anual splatter query region CSq and their labels are leaf nodes
f the user-selected root concept Cr . For each concept c ∈ Cr , we
an now compute its relevance to the user query simply as the
atio of its associated samples within the query splatter Sq(c) to
ll its associated samples S(c):

(c, Sq) = |Sq(c)|/|S(c)|. (2)

.2. Splatter annotation

Our second hypothesis states that a few data samples are suf-
icient to characterize the content of a splatter. As representative
rototype samples, we select one data instance for up to k most
elevant labels in the splatter. We define the relevance of a label
and its associated concepts, respectively) for a splatter as its
roportional contribution to the splatter content:

(c, i, j) = |Sij(c)|/|Sij|, (3)

here Sij = {s|x(s) ∈ CSij, C(s) ⊂ Ci} is the set of data instances
ssociated with CSij, i.e., the jth concept splatter of Ci (Fig. 3D).
We select one prototype sample for each label. If a ranking

ttribute is available, data instances are sorted within Sij(c) ac-
ording to this attribute. For word embeddings we use vocabulary
requency to sort the instances so that more popular words
re ranked higher. If no attribute is given, the underlying data
istribution can be used to select representative samples [48,49].
In addition, each concept splatter gets a title. The title corre-

ponds to the lowest common ancestor concept of the contained
ata instances. In other words, the title corresponds to the hyper-
ym of the contained data. When visualizing thousands of classes,
t is unlikely to have spatial regions that are 100% covered by
single concept. We therefore set the threshold for the lowest
ommon ancestor concept to 95% of instances in the splatter. This
eans that the hypernym title corresponds to the label of the
eepest descendant concept c ∈ Ci with relevance r(c, i, j) ≥ .95
Eq. (3)).

.3. First validation

For a first validation of our hypotheses, we use a simple neural
etwork consisting of two fully connected layers to classify ten
ifferent categories of fashion items represented as 28 × 28
ixel-resolution black-and-white images from Fashion MNIST
FMNIST) [13]. For the latent space, the features of the second-
o-last layer were extracted based on 70,000 images, from both,
he training and the validation dataset.

To validate H1, we investigated whether the observable vi-
ual patterns using concept splatters are indeed indicative of
uantifiable network properties. As quantification of the visual
atterns, we used the simple class distance consistency (DSC)
core, which measures the ratio of class instances that are located
loser to their own class centroid than to the centroid of another
lass [50]. Our expectation is that classes which the network has
earned to separate well should also yield a high DSC score in
similarity map. Indeed, for the 10 classes of FMNIST, there is a
trong positive correlation between the DSC and the classification
ccuracy (Pearson’s r = 0.85). As the truthfulness of the 2D
resentation decreases due to distortions caused by the dimen-
ionality reduction [28], this correlation is slightly lower in the 2D
rojection than between accuracy and DSC in high-dimensional
pace (Pearson’s r = 0.91).
To illustrate the effectiveness of the visual patterns, we show

he concept splatters of the class ‘‘shirt’’, which has the low-
st accuracy and is often mis-classified with t-shirts and other
pper body clothing classes [51] (another case can be found in
77
Fig. 4. Heatmap encoding the number of mis-classified data instances on top of
concept splatters for shirt (green), t-shirt (brown) and pullover (pink) (left) and
a confusion matrix of the same data (right).

Fig. 5. 25 random samples for each of the two shirt splatters in Fig. 4.

Section A.1 of the supplemental document). Fig. 4 shows that
shirt is separated into two splatters, overlapping with splatters of
t-shirt and pullover , respectively. The overlaid heatmap illustrates
that mis-classifications are mostly associated with data instances
within regions where splatters are overlapping. This shows that
overlapping splatters can be indeed a strong indication whether
the network has sufficiently learned the expected categorization.
In contrast to a confusion matrix (Fig. 4 right), however, concept
splatters not only provide hints whether the potential confusion
may stem from low inter-class variability but also reveal high
intra-class variability and rare categories, which may explain why
the network tends to confuse the classes.

Second, we analyzed if separate splatters of the same concept
stem from explainable intra-class variability. We again looked
at the class label ‘‘shirt’’ and retrieved 25 random images for
both shirt splatters shown in Fig. 4 (more samples in Section A.2
of the supplemental document). If separate splatters represent
an explainable categorization, which is not expressed by the
concept space, then the content of each group of images should
be able to be characterized by visual attributes that applies to
all images within the group, but not to any image of another
group. As shown in Fig. 5, the two shirt splatters can be clearly
characterized by their sleeve length. This illustrates that sepa-
rated splatters can be interpreted as basic categories a network
applies on the data instances — in this case long sleeved vs. short-
sleeved/sleeve-less tops. As it is possible to find a characterization
that applies to all the random samples of a splatter, but not to any
instance of the respective other splatter, it should therefore also
be possible to pick any instance of a splatter as prototype sample,
as stated in H2.

5. Interaction design

Our goal is to facilitate network diagnosis by an interactive

visual investigation of network responses to a large dataset. We
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Fig. 6. Concept splatters visualize what the human and the machine consider to be similar by showing how a human-understandable concept space (B) maps onto
latent space constructed from activations of 50,000 ImageNet images (A). The detail view shows the current root selection (C) and allows to inspect selected

platters (like the right organism splatter in D) or spatial selections. We can visually confirm a previous observation by Deng et al. [52] that the network distinguishes
etween man-made artifacts (purple) and organisms (green), as well as natural objects (pink). In addition, we can observe that the organism concept is separated into
nvertebrates/reptiles etc. (E) and a second splatter containing vertebrates like mammals and birds (as shown in the detail view in (D)). The enlarged top left inset shows a
eparated splatter of artifact, which contains only vehicles (F). Please zoom in for more details.
Fig. 7. Concept space used for FMNIST, adapted from the Zalando web page
structure.

use the principle of concept splatters explained in Section 4
to support such a diagnosis following the famous information
seeking mantra [53] in multiple coordinated views (Fig. 6).

The concept view represents the hierarchical, explanatory
oncept space as an icicle plot. Each bar represents a concept
∈ C and its width encodes the number of associated samples

S(c)|. This allows users to see the structure of the complete
oncept space and also to spot important concepts with large
umbers of associated data instances. In Fig. 7, we show the
ierarchical categorization of fashion items on the Zalando web
age as concept space, where each leaf concept has an equal
umber of associated data instances.
In the latent view, each sub-concept of a user-selected con-

ept Cr is represented by one or more concept splatters. We
provide two visual representations of concept splatters: They can
be shown as bounded and annotated regions on top of a classic
color-coded similarity map (as shown in Fig. 3E and Fig. 6A)
or as simple curves, similarly to multi-class splatterplots [36]
(as shown in Fig. 3C), with annotations. We use simple splat-
ter curves as default view in our web implementation as they
are more efficient to render and therefore more suitable for
interactive exploration. We allow users to switch to a color-
coded similarity map view for creating more visually interesting
screenshots.

Visual linking between the concept and latent view is based on
common color scheme, where concept splatters are assigned

he distinct color of their associated concept Ci. We applied a
ierarchical coloring scheme adapted from Tennekes et al. [54].
ur variant assigns larger parts of the hue spectrum to nodes with
ore child nodes. This has the effect that large nodes with many
hildren get assigned very distinct colors which leads to a better
olor separation deep down in the hierarchy for unbalanced trees.
he resulting color scheme can be seen in Fig. 6B.
78
Fig. 8. Selection of sub-concept organism highlights the associated concept
splatters and shows their associated insets, as well as scattered outliers. The
enlarged inset (A) shows a rare organism category of fish held by humans.

Concept splatter annotations to characterize their content are
shown as insets attached to the respective splatters. We show
a maximum of six insets at a time, where each inset depicts up
to k = 9 most relevant labels (see Section 4.2). To indicate the
prominence of a label for the concept splatter, we encode its
relevance (Eq. (3)) as a bar at the bottom of the prototype. The
insets are spaced equally at the vertical sides of the latent view,
avoiding overlaps with its contents.

5.1. Selections

We support interactive exploration on a fixed level of abstrac-
tion through brushing and linking between the concept and latent
view. The default selection is Cr , i.e., the root node of the concept
space at the chosen level of abstraction.

Users can select a sub-concept of Cr by hovering over the icicle
plot cells in the concept view. This highlights the corresponding
concept splatters in the latent view, and we only show insets for
the selected sub-concept (Fig. 8). In the latent view, up to 1000
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Fig. 9. Heatmap of the concept space in Fig. 7 after hovering the top right
lothing splatter in Fig. 3. This splatter contains all types of clothing, except for
rousers.

Fig. 10. Query selection around bag outliers in the latent space (a) and the
orresponding detail view (b). The Euler diagram in the detail view shows that
dresses make up around 95% of the query’s content .

scattered outlier instances become visible upon a sub-concept
selection.

To select a single splatter of a sub-concept, users hover over
the desired splatter in the latent view. Then, we only show
the inset associated with the selected splatter. The icicle plot
visualizes the relevance of each concept for the selected splatter
(Eq. (2)). The relevance is encoded through opacity, which creates
a heatmap-like concept tree representation, as shown in Fig. 9.

Finally, we allow users to select arbitrary query splatters in
the latent space through a free-form lasso-selection. Employing
query splatters, users can inspect the local neighborhood of over-
lapping sub-concepts to reason about the attributes overlapping
concepts have in common. In addition, query splatters allow
them to select regions containing outliers that are not covered
by concept splatters (see Fig. 10(a)). Like a conventional concept
splatter, query splatters are also illustrated by insets showing
prototype samples. The query splatter stays active until users
manually close it using the x-symbol above it.

To explore the content of selections in more detail, we provide
a detail view. The detail view initially shows the lowest common
ancestor concept of the selection as title (see Section 4.2), as well
as up to six samples for each child concept of the user-selected
79
Fig. 11. Samples associated with the parent concept fashion selected from the
detail view of Fig. 10(b). Some bags and shoes look very similar to dresses due to
their elongated shapes.

root concept Cr (see Fig. 10(b)). Child concepts with a relevance
≤ 5% according to Eq. (2), are aggregated into a common category
Others. The users can investigate data instances of the children
of each concept by clicking on the concept labels in the detail
view. They can also use the breadcrumbs at the top of the view
to navigate to a higher hierarchy level. This way, users can use
query splatters to select concept outliers that are not captured
by the visualized concept splatters and inspect them in the detail
view, such as bags and shoes looking like dresses in Fig. 11.
We show a Euler diagram to illustrate the relation between the
selected root concept in the detail view and the user selection. In
Fig. 10, the query splatter consists almost exclusively of dresses,
and most dress images lie within this spatial region in the latent
space. The few other fashion items in the selection are similarly
long-stretched as dresses (Fig. 11).

5.2. Zoom & filter

To effectively inspect very large datasets with a high number
of data instances and concepts, we support interactive adjust-
ments of the level of abstraction for both, the concept space and
the latent space. Drill-down in concept space can be performed
by clicking on a node in the concept view, so that the selected
node then represents the new root concept. Both, the concept
view and the latent view, are updated, revealing the sub-concept
structures. The latent view is filtered so that only data instances
associated with the selected sub-concept are shown. Fig. 12(a)
shows a drill-down from the overview in Fig. 3 to the clothing
concept, which is separated into four sub-concepts.

A problem with dimensionality reduction is that many of
the neighborhood relationships in the higher-dimensional space
cannot be preserved if reducing the data to two dimensions. In
lower hierarchy levels of the concept space, this can result into
non-existing concept overlaps. For a more truthful inspection and
better usage of the display space, we therefore provide the option
to recalculate the latent space projection only for the samples
associated with the selected concept Cr after drill-down (for an
example, see Section A.3 in the supplemental document).

To change the level of abstraction in the latent space, we vary
the bandwidth and density threshold parameter of the kernel
density estimation (Eq. (1)). The lower the bandwidth, the lower
the level of abstraction and the more intra-class variability in
the latent space can be observed. For example, Fig. 12(b) shows
concept splatters of the root fashion on a low level of abstraction
to observe how the machine sub-categories the dataset. When
selecting the sub-concept clothing , it can be observed how the
machine ‘‘sees’’ most variability based on the overall length of
the top and the length of its sleeves.
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Fig. 12. Drill-down approaches from the overview of FMNIST shown in Fig. 3E: selecting clothing as root concept (a) or lowering the bandwidth (b).
. Web-based implementation

We provide concept splatters as web-based tool for the ex-
loratory diagnosis of network behavior. As we let users interac-
ively explore network responses based on a large dataset, the
ain challenge is to find a balance between interface respon-
iveness and flexibility by carefully selecting which aspects to
recompute. The major bottlenecks are (1) the dimensionality
eduction calculation and (2) querying the selected samples after
ser interaction, such as drill-down, hovering over concepts or
oncept splatters, and manual splatter queries. Our implementa-
ion was tested in Google Chrome on a consumer laptop, with
6 GB of RAM and 4 CPU cores.
Our implementation uses a client–server architecture. The

ython server is used to process the data samples and precom-
ute both, concept space and latent space, during the start of the
erver. Using the networkX library [55], we convert concept space
ata structures into proper trees by removing potential cycles. For
imensionality reduction of the latent space we use the UMAP
mplementation by McInnes et al. [44]. We chose 30 neighbors
nd a minimum distance of 0.2 as hyperparameters to balance
reservation of global and local structures (see Section A.4 in the
upplemental document for a parameter comparison). Updating
he dimensionality reduction is the most time-consuming process
nd can take several minutes for datasets with hundreds of thou-
ands of samples and hundreds of dimensions [44]. Our server
herefore pre-computes UMAP for all data instances at start-up.
hen users drill into the concept space and thereby filter the

nstances, they can recompute the dimensionality reduction for
sub-concept on demand, and the server caches the result for

ater reuse. For the user interface and interaction on the client
ide, we employ a combination of HTML, CSS, and JavaScript. The
isualizations are created with D3.js [56], and the d3-contour
ibrary is used to compute the concept splatter geometry.

A key requirement for the interactive exploration of the hi-
rarchical concept space are real-time selections — either of a
ub-concept Ci (concept query) or a latent space query by selecting
single splatter CSij or making a spatial query Sq using the lasso
election (see Sections 4.1 and 5.1). As the ground truth labels of
he data instances are fixed, so is the mapping of the instances
o concepts. We therefore optimize concept queries by precom-
uting the sets of data instances for each concept during the
onstruction of the concept tree. However, latent space queries
annot be precomputed, as the splatter shape and the spatial user
election can be arbitrary. To speed up the selection process, we
rganize the data instances of the latent space in a 128 × 128
80
Fig. 13. Comparison of the runtime for concept and latent space selections, as
well as their combination for an increasing number of data samples. Note: The
measurements for the not optimized, combined latent and concept query at 106

samples were terminated after an hour .

quadtree. For the insets, data instances are ranked to ensure that
more popular instances, such as more well-known words, are
preferred as prototype samples. This means that data instances
need to be sorted across multiple quadtree cells. To make this
sorting more efficient, we only save up to nine samples per cell,
which is sufficient to generate insets such as shown in Fig. 6. As
users can drill down the concept space and make spatial queries
in the latent space, we have to perform a complex query for Sq, as
described in Section 4.1. To speed up this process, we precompute
multiple quadtrees for all higher-level concepts in the concept
space. In practice, we found that computing quadtrees for all
concepts with at least 10% of all data instances provides a good
balance between precomputation time, storage, and runtime per-
formance. If users create a query splatter, we consult the quadtree
associated with the selected concept Cr or the closest ancestor
concept that has a quadtree. As shown in Fig. 13, this approach is
beneficial for large latent spaces with more than 10,000 samples,
but it leads to a constant overhead of around 10 ms. Tests with an
artifically generated dataset on a consumer laptop, as described
in Fig. 13, showed that complex queries require around 10 ms for
100,000 samples and slightly below one second for one million
samples.

7. Use cases

In the previous sections, our examples were primarily based
on FMNIST and a simple neural network (see Section 4.3). To
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emonstrate the applicability of concept splatters beyond this
imple example, our web-based implementation of concept splat-
ers supports three additional scenarios:

ImageNet is an image database containing millions of human-
nnotated images organized into tens of thousands of WordNet
oun synsets. It is the standard benchmark for large-scale ob-
ect recognition [57]. Latent space representations of ImageNet
ave been shown as grid of thousands of images based on their
imensionality-reduced activation vectors [23] and as hierarchi-
al scatterplots of landmark samples [9]. Using concept splatters,
e analyzed the latent space created by Inception-V1, which was
rained on the ILSVR 2012 validation dataset [57] with 50,000
mages assigned to 1000 labels. As concept space, we use Word-
et itself, rooted at physical entity. Fig. 6 shows clearly how well
eural networks can separate between organisms and man-made
bjects already on a high level of abstraction. Other interesting
bservations can be found in Section B of the supplementary
ocument.
It has been shown that pretrained ImageNet weights provide

ood initial features for many fine-grained image classification
asks [6]. Here, we use concept splatters to visually inspect the
ransferability of a pretrained network. In our example, we aim to
ransfer the feature representation learned from ImageNet images
o the images of the Oxford flowers dataset [58] by freezing the
ntire convolutional base. This dataset contains 17 classes with 80
mages each. In the initial 1000 ImageNet classes, there are only
wo flower classes, from which only the class daisy is included
n the Oxford flowers dataset. This means that 16 out of the 17
lower classes have not been seen by the network during training.
s concept space, we use the botanical taxonomy, starting from
he order of the plants. Fig. 15 shows a high inter- and intra-class
ariability of the dicotyledons group with a query splatter around
verlapping orders. Further drilling down in concept space re-
eals that individual flower families can be separated quite well
see Section C of the supplementary document).

As a complimentary example to image-based data samples,
e also investigated the applicability of concept splatters to
xplore word embeddings. One of the most wide-spread word
mbeddings based on word2vec was trained on the Google news
ataset, containing around three million words, each described by
300-dimensional feature vector [17]. As concept space, we again
se WordNet [41] as it captures a very large variety of concepts.
e map all words to one or multiple synsets, which leaves us
ith a subset of around 200,000 words that are known in both
paces. As nouns, adjectives, and verbs do not share a common
oot node in WordNet, we introduce intermediate nodes for each
art of speech and combine them in a common root node. As
any words can be associated with multiple synsets, and, con-
ersely, many words can also be associated with the same synset
s synonyms, we end up with 103,000 synsets as leaf nodes of the
oncept space. As prototype samples were often very rare words,
e only keep the lemmas of each word. We end up with around
5,000 sample words and 89,000 concept leaf nodes. We use a
ord2vec vocabulary that is sorted by frequency so that more
ommonly used words are shown in the insets. Fig. 14 shows
ow word2vec separates nouns describing abstract concepts and
hysical entities. Individual splatters thereby contain topically
imilar words. Further scenarios are shown in Section D of the
upplementary document.

. Qualitative evaluation

The goal of our work was to provide a scalable solution for
imilarity maps so that users can visually inspect if the similari-
ies learned by the network correspond to the users’ expectations.
o evaluate if concept splatters fulfill this goal, we gathered
81
Fig. 14. Exploration of WordNet entities learned by word2vec: Splatters of
various physical entities (blue) are revealed besides abstract concepts (green) (in
clock-wise order): plants, animals, medical terms, chemical compounds, house-
hold items and places, food and drinks. Insets manually enlarged for better
readability.

feedback from four users with different professional backgrounds
and prior knowledge levels ( Table 1). Due to the pandemic situ-
ation, three of these feedback sessions were conducted remotely.
Depending on the users’ professional backgrounds, we let them
explore different datasets. All users were first introduced to the
concept of similarity maps by demonstrating Tensorflow’s em-
bedding projector [18] with the MNIST dataset. Subsequently, we
demonstrated the features of concept splatters using our simple
FMNIST example. Afterwards, users were encouraged to explore
the latent space of their assigned dataset (see Table 1) while
thinking aloud. All sessions were screen- and audio-recorded. The
audio tracks were transcribed and analyzed through open coding.
On average, a session lasted 45 min.

8.1. Observations and discoveries by users

Users utilized the concept view to navigate through the con-
cept space and seemed to grasp the hierarchical aggregation of
labels immediately. User PS quickly discovered an error in the
plant taxonomy, which was fixed before the exploration session
continued. Users DS, SC, and MM also soon discovered that Word-
Net is not a perfect hierarchy because some synsets are associated
with more than one parent. In our implementation, these synsets
are duplicated, which initially caused slight confusion. A promi-
nent example for a duplicated child node is the synset dog, which
s descendant of canine and domestic animal (see Fig. 6B). User
M thereby also discovered a strong imbalance towards dogs

n the ImageNet dataset [15], of which he has been previously
naware.
Most discoveries were done in the latent view, and most

f these discoveries concerned inter-class variability. User DS
iscovered, for instance, that Inception-V1 can clearly separate
ome types of food, while user MMwas impressed about the clear
eparation between cat and dog, as well as higher-level animal
ategories like fish and other vertebrates. User PS felt confident to
onclude that the network had rather successfully learned to sep-
rate different flower classes — apart from few exceptions. Most
ttention was attracted by overlapping splatters indicating low
nter-class variability. For instance, SC found similarities between
hale, sea lion, and megalith, and DS pointed out striking visual
imilarities between different musical instruments (e.g., piano,
arimba, and accordion). MM specifically explored overlapping

splatters between cat and dog and thereby discovered several
visually similar examples or problematic cases, like mislabeled
instances. In the flowers dataset, PS spotted an overlap between



N. Grossmann, E. Gröller and M. Waldner Computers & Graphics 105 (2022) 73–84

(

b
t
i

Table 1
Users of the qualitative evaluation.
User Professional background Prior knowledge Dataset

DS PhD student and
researcher in data
science

Solid ML and Vis
background

ImageNet

SC Professional in science
communication

Basic knowledge of ML
and Vis

ImageNet

MM Senior researcher in
multimedia retrieval

Deep knowledge of ML,
solid knowledge of Vis

ImageNet

PS Post-doctoral researcher
in plant science

No special prior
knowledge in ML or Vis

Flowers
Fig. 15. Overlap between plant orders containing cowslip (red) and buttercup
green) discovered by user PS.

uttercup and cowslip (Fig. 15), as well as a strong similarity be-
ween coltsfoot and dandelion, which is known to be challenging
n this dataset [58].

High intra-class variability was discussed relatively rarely.
One of the few exceptions was user MM who found the separa-
tion of organism into two groups, as shown in Fig. 6, notable. Rare
categories were discussed more often: Among other discoveries,
SC spotted a small isolated splatter of fish held by humans (see
Fig. 8) – a known spurious learning strategy, where networks
have learned to identify the class tench, as well as other ‘‘trophy
fish’’, based on hands or fingers instead of visual features of the
fish itself [5,59].

Users tended to reason about their discoveries based on the
examples shown in the insets or the detail view. For instance,
PS speculated that the network sometimes focuses too much on
colors and camera angles and still too little on the most relevant
features, like inflorescence. SC argued that megalith, sea lion, and
whale probably share similar texture properties. Similarly, MM
explained that some of the structure instances overlapping with
organism share visual resemblance with animal parts, such as
instances of coil looking like a snail or a honeycomb resembling
insect eyes. He also explained that some rare categories of artifact
are ambiguous because they also contain an animal or human. He
pointed out that it is known that a lot of ImageNet images could
have more than one valid label [60].

More user findings as well as screenshots illustrating these
findings can be found in Section E of the supplementary docu-
ment.

8.2. User feedback

Users intuitively understood and appreciated the notion of
hierarchically organized labels. MM noted that, this way, it is pos-
sible to explore even very small subclasses. MM and DS were also
82
intrigued by the option to perform spatial selections, especially
for exploring overlaps. For that purpose, DS particularly liked the
detail view with the display of the lowest common ancestors and
the Euler diagram to assess selections. He said that, this way,
he could see how splatters overlap and how they are distinct to
explore how things are similar and dissimilar. MM also liked the
option to drill down in latent space to be able to inspect different
types of overlaps. SC explained that, through concept splatters
and their insets, one can discover potential confusions he would
never think of if he would not see it, such as the strong visual
similarity between some fish and airplanes.

Users also mentioned shortcomings and suggestions for im-
provement. DS and MM pointed out the limited ability of a
2D projection to convey true high-dimensional relations. Both
users therefore highly appreciated the ability to recompute the
projection based on the current selection. However, SC mentioned
that he had slight problems staying oriented as some splatter
distances were significantly altered by this recomputation. For
instance, the relative distance between trophy fish and the re-
maining fish was significantly shortened after the recomputation.
DS worked a lot with selections and was asking for more elab-
orate selection methods, such as being able to not only select
the common instances between two concepts but also their dis-
criminating aspects. He considered lasso selections sometimes
tedious for such queries. Similarly, MM suggested to have richer
options to discover and inspect individual outliers apart from
lasso selections to spot potential problems in the training data.

As an expert in machine learning, MM pointed out that con-
cept splatters are not only valuable for judging how well net-
works separate human-interpretable concepts but also to assess
the quality of training data. Especially for the second scenario, he
appreciated the provided interaction techniques. The key aspect,
for him, was how concept splatters solve the ‘‘visual overflow
problem’’ when analyzing datasets beyond MNIST, which ‘‘is not
real world complexity’’.

9. Conclusions and future work

In this work, we presented concept splatters as a novel method
based on prototype theory [16] to interactively assess networks
based on large datasets. We showed that a visual encoding,
which maps a pre-defined taxonomy (i.e., a categorization that
is expected by the user) onto dense regions within a machine’s
learned latent space (i.e., the categorization by the network), can
reveal if a network has learned the expected categorization. This
categorization may capture the ground truth labels of a classifi-
cation network, such as in our FMNIST and ImageNet scenarios,
but any other explanatory, specialized concept space can be used,
such as the botanical taxonomy. Through the mapping of the con-
cept space onto the latent space, we can derive a selection of few
prototypical data instances, which can provide indications why a
network categorizes data instances differently than expected. Our
web-based implementation can handle image and text data and
is sufficiently fast to support smooth interactive exploration of
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atasets such as ImageNet or vocabulary from the Google news
orpus. Using concept splatters, we could generate visualizations
llustrating known characteristics of neural networks using large
abeled datasets, such as inter-class variabilities that indicate
otential misclassifications. Users of our qualitative evaluation
ould effectively explore which concepts the network could sep-
rate well across multiple levels of abstraction using datasets of
eal-world complexity. Annotated concept splatters enabled them
o reason about causes of potential confusion, such as spurious
earning strategies, ambiguous class labels, or unexpected visual
imilarities.
We have presented concept splatters as isolated visualizations

nd interactive exploration tool. In the future, we see a great
otential of concept splatters to serve as effective interaction
ethod to select a group of interesting data instances for further

nspection in linked views, for instance through confusion ma-
rices or attribution graphs [5]. Concept splatters can also serve
s new underlying mechanism to visually compare network re-
ponses to a large dataset across different network architectures,
raining sets, or along the training progress. While our current
pproach requires a pre-defined concept space for large numbers
f labels, we could investigate data-driven methods to create
ierarchical concept spaces for unstructured datasets. Finally,
uture extensions of concept splatters can go beyond fully labeled
atasets by predicting labels of unknown instances — optimally
ombined with active learning to interactively steer the mapping
etween latent space and concept space.
Concept splatters combine multiple strategies to address the

calability of similarity maps based on prototype theory — namely
ierarchical aggregation in both, latent and concept space, splat-
er illustration through automatically generated insets, and new
election-based interaction techniques. To better understand how
hese individual strategies facilitate visual exploration of large
atent spaces, it will be necessary to investigate these strategies
n controlled user studies in the future.
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