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ABSTRACT

We introduce FIM, an open-source toolkit for automated fault in-

jection and mutant generation in Simulink models. FIM allows the

injection of faults into specific parts, supporting common types of

faults and mutation operators whose parameters can be customized

to control the time of fault actuation and persistence. Additional

flags allow the user to activate the individual fault blocks during

testing to observe their effects on the overall system reliability.

We provide insights into the design and architecture of FIM, and

evaluate its performance on a case study from the avionics domain.

Tool package and demo: https://gitlab.com/DrishtiYadav/fimtool,

https://youtu.be/0EJri93Y_Gg
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· Software and its engineering→ Software verification and
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1 INTRODUCTION

Safety-critical cyber-physical systems (CPS) must be reliable both

in normal and unexpected circumstances. Hence, it is essential that

such CPS comply with relevant industrial standards (such as ISO

26262, IEC 61508, etc.) and that they conform to desired safety

requirements.
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To cope with the complexity of modern CPS, researchers and

practitioners have adopted a model-based development (MBD) as-

sociated with a light verification paradigm based on simulation and

testing. The eco-system centered around MathWorks Simulink®

is today the de-facto standard for MBD of CPS. In the last decade,

the formal methods and control theory communities have devel-

oped more principled approaches to simulation-based verification,

such as falsification testing [11] (this thread of research resulted

in many publications, we specifically mention papers on this topic

that appeared in the recent past [1, 2, 18, 19]).

While methods like falsification testing have proved successful

and effective in finding bugs in CPS designs, we observe that these

methods are often evaluated on a small number of examples and in

an ad-hoc fashion. The typical approach to systematically evaluate

a testing strategy is to analyze its effectiveness in detecting bad sys-

tem behaviors in the presence of faults [4]. This is achieved via fault

injection [3] andmutation testing [8], activities recommended by in-

dustrial safety standards, especially in safety-critical domains [13].

The main prerequisite for large-scale mutation testing evaluations

is a mechanism for injecting faults of different types into the sys-

tem model in an automated and programmatic fashion, without

human intervention during the injection process. To the best of our

knowledge, there is no fault injection solution for Simulink that

satisfies all the identified requirements, which explains the lack of

systematic experiments of CPS testing approaches.

We remedy this situation by introducing FIM (Fault Injection

and Mutation engine), an open-source tool for injecting faults into

Simulinkmodels that satisfies the above requirements. FIM provides

the following features, which can all be configured programmati-

cally:

• A rich fault model, including sensor, hardware and network

faults, as well as a library of mutation operators;

• Systematic injection of a fault in different parts of a model:

ś generating multiple copies of the original model, with one

fault injected per model copy, or

ś generating a single copy of the original model, with all

faults injected into that copy;

• Restriction of fault injection to specific parts of the model;

• Dynamic activation and deactivation of faults.

Related work. A large body of fault injection tools and techniques

is available according to the fault type, the System-under-test (SUT),

and the injection method [7, 9, 10, 15, 17, 20]. In particular, there

is a plethora of prior work on tools for fault injection in Simulink

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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models [5, 12, 14, 16], but each has some caveats and limitations.

MODIFI [16] and ErrorSim [14] have a very limited choice of fault

types and are not publicly accessible. SIMULTATE [12] offers an

interactive user interface using Python and MATLAB®. Although

practical for beginners, an interactive interface can be a blocking

factor for scalable fault injection experiments that may require

injecting hundreds or thousands of faults. Another related model-

based fault injection method [5] supports the injection of typical

faults, but lacks an automated support for fault block placement in

the SUT.

Compared to existing tools, FIM (i) integrates a richer variety

of faults/mutations (see Section 2), (ii) supports automated fault

injection via a transparent user interface that works directly in

the MATLAB® environment without any additional setup, and (iii)

provides scalable fault injection, allowing the design of experiments

via configuration files that can be processed, generating a large

number of mutants in seconds.

Paper organization. In Section 2, we provide insights into the

architecture, key functionalities and the workflow of FIM. Section 3

summarizes the usage of the tool. In Section 4, we evaluate the

performance of the tool on an example from the aerospace domain

with some experimental results, and we conclude in Section 5.

2 FIM: DESIGN AND IMPLEMENTATION

We first pinpoint several conceptual problems encountered during

the design and implementation of FIM, necessary to motivate and

understand its features:

• Specificities of Simulink: Prior to designing the tool, we iden-

tified the complexities in handling Simulink models and

thoroughly understood the programmatic editing of model

components, from lines to blocks. We also comprehended

the fundamentals of masking in Simulink prior to designing

a rich fault injection library with parameterized blocks.

• We tried several injection strategies, before implementing

the injection mechanism as the addition of new blocks, since

it guarantees the highest level of control with no issues in

its capability to observe and alter variable values.

• We focused on the possibility to do large scale experiments,

carefully designing an interface that does not require inter-

actions during experiments.

• We considered several strategies to deal with a large set

of injected faults, finally supporting two complementary

strategies: generating many models with one fault each and

generating one model with all the faults included.

We now guide the reader through the tool architecture and work-

flow, highlighting its key features. Figure 1 shows the architecture

of FIM, which consists of three main components: (1) a Fault Library,

(2) a Fault Injection Module and (3) a Fault Configuration.

2.1 Fault Library

The Fault Library is a custom Simulink library browser consisting

of different parameterized blocks for different types of faults and

mutation operators (listed in Table 1). FIM allows the user to ex-

tend the library browser with other faults/mutation operators. The

insertion or replacement of blocks depends on the type of fault
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Figure 1: Overview of FIM.

specified by the user in the list of desired mutations Fault List. The

fault blocks corresponding to ‘Faults’ in Table 1 indicate insertion

of the fault block, while those related to ‘Block mutations’ indicate

replacement of the relevant block by the specified block mutation

operator. Some faults and block mutations are illustrated in Figure 2.

The faults and mutation operators supported by FIM are realistic,

typical and commonly observed in practice, according to the avail-

able literature. In particular, the faults Stuck-at, Package drop,

Bias/Offset, Noise, Time delay and Bit flips are derived from

ErrorSim [14], MODIFI [16], SIMULTATE [12] and FIBlock [5]. The

faults Negate, Invert and Absolute and Block mutation opera-

tions ROR, LOR and P2S are derived from SIMULTATE [12]. S2P and

ASR are standard arithmetic operator replacements used inmutation

testing.
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Figure 2: Illustration of some faults/mutations in a SUT (the

injected fault blocks are highlighted in red).

Each fault block is implemented as a masked subsystem with dif-

ferent block parameters. Each fault block has a flag FIEnableflag that

enables the user to turn it on and off. Since FIM supports determinis-

tic faults, all fault blocks have the parameter FaultOccurenceTime to

specify the time of fault actuation. The block parameter FaultEffect

specifies the fault effect which governs the fault persistence time.

FIM offers two types of fault effects: 1) Infinite time: The fault block

produces erroneous output starting from the FaultOccurenceTime

until the end of the simulation, and 2) Constant time: Fault occurs

at FaultOccurenceTime and persists for the duration specified by

the block parameter FaultDuration. The blocks corresponding to

Noise, Bias/Offset and Package Drop have an additional block
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Table 1: Faults and mutation operators.

Type Name Description

Faults

Negate changes a signal u to −u

Invert inverts a non-zero signal u to 0; if u is 0, makes 0 to 1

Stuck-at 0 makes the signal value zero

Absolute changes a signal u to |u|

Noise adds a band limited white noise to the input signal based on specified fault value (i.e., noise power)

Bias/Offset adds a predefined +ve or −ve offset (bias) value to input

Stuck-at the signal value stucks at the last correct value before fault occurrence

Time Delay introduces a delay of specified duration

Bit Flip Bitwise NOT operation on boolean signal

Package Drop replaces the input by the specified fault value

Block mutations

ROR Relational Operator Replacement

LOR Logical Operator Replacement

S2P Sum to Product mutation

P2S Product to Sum mutation

ASR Arithmetic Sign Replacement (for 2-Input Sum Block)

parameter FaultValue for fault value adjustment. The blocks related

to ROR, LOR and ASR have another parameter OperatorNum to select

the relevant operator. In fact, there is a mapping between various

operators and the operator numbers (more details can be found in

the tool package).

2.2 Fault Injection

The Fault Injection Module is responsible to inject faults based on the

desired mutations (fault_list). For SINGLE-MODEL case (i.e., muta-

tions with Single model), FIM first creates a copy of the SUT such

that all the desired faults are injected in the copied file. Conversely,

for MULTI-MODEL case (i.e., mutations with Multiple models), FIM

creates a copy and injects a single fault in the copied file. Then, this

process continues until all the desired faults are injected s.t. there

are multiple copies of the SUT, one fault injected per copy.

The advantage of SINGLE-MODEL over MULTI-MODEL mode

is twofold: (a) a single model is generated and compiled, and (b) a

mutated SUT with all mutants in a single model permits the user to

investigate the simultaneous effect of multiple faults. The advantage

of MULTI-MODEL over SINGLE-MODEL is the simplicity and small

size of the individual models generated.

The Fault Injection Module exploits the basics of programmatic

editing of Simulink models to inject faults in the mutated SUT. In

essence, it stores the information of line handles, block handles,

source-destination blocks (and their respective ports) in a persis-

tent cache. This information is then used to inject the faults in

the copied file. While injecting faults, the Fault Injection Module

automatically retains the logging information of the signal(s) and

improves the model layout to abide by modeling guidelines and

enhance readability of models.

Once all the desired faults are injected, the Fault Injection Module

generates a fault table (.xlsx file) to provide detailed informa-

tion of the injected fault blocks. More precisely, the fault table

provides the following details: (i) name of the mutated SUT, (ii) the

unique name of the fault block added in the SUT, (iii) the subsystem

within which the fault is injected, (iv) the type of the fault or block

mutation operator, (v) full names of the source-destination blocks

corresponding to the line in which the fault is injected, and (vi) the

respective port numbers of the source-destination. Such a detailed

description of the injected faults will assist the user to identify the

exact location of the fault block in the mutated SUT. Note that each

injected fault block has a unique name, which is later utilized by

the Fault Configuration component to control its activation.

2.3 Fault Configuration

Based on the generated fault table, the user can now configure

the faults that must be used in an experiment. FIM allows the user

to input another configuration file: fault_enable_list which is a table

(.csv or .xlsx file) with fields to specify the block(s) to be activated

along with the relevant fault parameters. In accordance with the

fault_enable_list, the Fault Configuration component turns on the

respective fault blocks in the mutated SUT and configures them

for the specified fault parameters. The fault block (to be activated)

is specified by its unique identifier (fault number) in the fault

table.

3 TOOL USAGE

As a special requirement, FIM requires a licensed MATLAB® and

Simulink® installation, which must be provided by the user. We

have implemented FIM inMATLAB® R2020b to provide a command-

line interface which permits the user to invoke the tool from the

MATLAB® command prompt. In both SINGLE- andMULTI-MODEL

modes, the tasks of Fault Injection and Fault Configuration are gov-

erned by different customized functions. In essence, user-defined

configuration files and output directory supervise the behavior of

FIM in its entirety.

Injecting faults. As inputs, FIM takes a configuration file and the

output directory. Usually, the configuration file includes details of

the SUT and the fault_list. More precisely, the fault_list is a table

with fields to specify the target fault location and the desired type of

fault/mutation. The target fault location can be specified using the

names of source/destination/parent blocks or hierarchy levels of

the SUT, thereby giving the freedom to the user to control the fault
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Table 2: Fault Injection (mutant generation) time for AECS.

Target Location and Fault details
n

Fault Injection time (in seconds)

Target Fault type SINGLE-MODEL MULTI-MODEL

‘Controller’ subsystem with parent block ‘Left Control Laws’ Bias/Offset 20 16.38 53.53

Plant/Actuators/Right Outer Hydraulic Actuator Negate 17 14.05 46.31

Plant/Actuators/Left Outer Hydraulic Actuator/Hydraulic Actuator ASR 2 3.73 11.02

Controller/Right Control Laws/IO Control Law S2P 1 1.83 3.58

Plant/Actuators/Right Inner Hydraulic Actuator/Hydraulic Actuator P2S 3 2.58 7.92

Controller/Right Control Laws/Subsystem ROR 2 3.05 6.99

Total 45 41.62 129.35

injection space. As outputs, FIM either produces a single mutated

model or a set of mutated models depending on the mode selected,

i.e., SINGLE-/MULTI-MODEL. Also, FIM emits the generated fault

table to the output directory specified by the user.

Configuring faults.After fault injection, the user can look into the

generated fault table to identify the fault blocks which he wants to

turn on. For the Fault Configuration, the user also needs to provide

the fault_enable_list, which specifies the faults that must be acti-

vated in the next run and their activation strategy. As output, the

selected fault blocks are switched on and the respective fault param-

eters are configured after the execution of appropriate command

depending on the SINGLE-/MULTI-MODEL mode.

More details on the fault parameters and configuration parame-

ters are available in our tool package. The step-by-step demonstration

of FIM (with detailed commands) on two usage scenarios is also

available online.

4 TOOL EVALUATION

We present a case study based on the Aircraft Elevator Control Sys-

tem (AECS) from the avionics-aerospace domain [6]. This Simulink

model consists of various hierarchical subsystems including Con-

troller, Plant, Sensors, etc. The model takes the ‘Pilot Command’

as the input variable which governs the two output variables (the

positions of left and right actuators). Further, the model has dif-

ferent types of signals including real-valued, Boolean and enumer-

atedÐstate machineÐvariables. A mutation in any of these signals

might trigger a faulty behavior in the model.

To assess the performance of our tool, we conducted experiments

on the AECS for both SINGLE- and MULTI-MODEL modes. Our

experiments were performed on a MacBook Pro with Apple M1

chip, 16 GB RAM, macOS Big Sur with MATLAB® R2020b. We sum-

marize the fault injection times, measured by averaging over ten

independent runs, for the two modes in Table 2. Columns Target

and Fault type respectively indicate the target fault location and

fault type. Column n shows the number of faults injected. Note that

(i) n depends on the structure of the target location, and (ii) the

fault generation time depends on the fault type as well as the target

location. The results show that the fault injection mechanism in

SINGLE-MODEL is fast and computationally less expensive com-

pared to MULTI-MODEL. FIM takes {0.92, 2.87} seconds, on average,

to inject a single fault in the {SINGLE-, MULTI-} MODEL modes.

Based on our fault injection experiments, we report the follow-

ing results: (1) Since MULTI-MODEL is more expensive, SINGLE-

MODEL might be the best option when efficiency is important.

(2) Nevertheless, SINGLE-MODEL is large and messy, and might

be more difficult to visualize, debug and analyze. Thus, MULTI-

MODEL may facilitate the analysis of the results of fault injection

experiments. (3) Contrary to the MULTI-MODEL scenario, SINGLE-

MODEL is useful to study interference amongmultiple faults, poten-

tially activate at different times. (4) For synergistic benefits of both

modes, the user could start with the SINGLE-MODEL and then

switch to the MULTI-MODEL mode to analyze the fault effects,

making the analysis more comprehensible and interpretive.

5 CONCLUSIONS

We presented FIM, a toolkit for the automated injection of faults

and generation of mutants when dealing with Simulink models. A

tester can control the activation of the fault blocks based on the

task at hand. Further, a tester is free to adjust the fault parameters

for rigorous testing of the SUT against failures to check its fault

tolerance. We speculate that FIM can be an important step towards

refining the overall process of verification of safety-critical systems.

Verification experts and testers can reuse and repackage our ex-

isting open-source toolkit according to their safety evaluation and

testing needs. The users can update the tool by (i) making appro-

priate modifications in the automated scripts for fault injection and

configuration, and (ii) enriching the fault library with additional

faults operators as well as conditional and cascaded faults.

At present, FIM can automatically and efficiently generate a large

number of models with faults injected, enabling scalable fault in-

jection experiments. We are currently working on enriching the

tool with features that can be used to support specific application

scenarios, such as fine-grained testing options. Our future work

includes an empirical study to investigate the cost and benefit of

large-scale mutation testing in Simulink models. We envision the

extension of the tool to fault localization and failure explanation in

safety-critical systems. Future extensions may also integrate FIM

with simulation-based verification engines that encapsulate formal

approaches for safety analysis.
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