
Introducing Neural Bag of Whole-Words with ColBERTer:
Contextualized Late Interactions using Enhanced Reduction

Sebastian
Hofstätter
TU Wien

Omar Khattab
Stanford University

Sophia
Althammer
TU Wien

Mete Sertkan
TU Wien

Allan Hanbury
TU Wien

ABSTRACT
Recent progress in neural information retrieval has demonstrated
large gains in quality, while often sacrificing efficiency and in-
terpretability compared to classical approaches. We propose Col-
BERTer, a neural retrieval model using contextualized late interac-
tion (ColBERT) with enhanced reduction. Along the effectiveness
Pareto frontier, ColBERTer dramatically lowers ColBERT’s storage
requirements while simultaneously improving the interpretability
of its token-matching scores. To this end, ColBERTer fuses single-
vector retrieval, multi-vector refinement, and optional lexical match-
ing components into one model. For its multi-vector component,
ColBERTer reduces the number of stored vectors by learning unique
whole-word representations and learning to identify and remove
word representations that are not essential to effective scoring.
We employ an explicit multi-task, multi-stage training to facilitate
using very small vector dimensions. Results on the MS MARCO
and TREC-DL collection show that ColBERTer reduces the storage
footprint by up to 2.5×, while maintaining effectiveness. With just
one dimension per token in its smallest setting, ColBERTer achieves
index storage parity with the plaintext size, with very strong effec-
tiveness results. Finally, we demonstrate ColBERTer’s robustness on
seven high-quality out-of-domain collections, yielding statistically
significant gains over traditional retrieval baselines.

CCS CONCEPTS
• Information systems → Learning to rank;

KEYWORDS
Neural Ranking; Dense-Sparse Hybrid Retrieval

ACM Reference Format:
Sebastian Hofstätter, Omar Khattab, Sophia Althammer, Mete Sertkan,
and Allan Hanbury. 2022. Introducing Neural Bag of Whole-Words with
ColBERTer: Contextualized Late Interactions using Enhanced Reduction. In
Proceedings of the 31st ACM Int’l Conference on Information and Knowledge
Management (CIKM ’22), Oct. 17–21, 2022, Atlanta, GA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3511808.3557367

1 INTRODUCTION
Traditional retrieval systems have long relied on bag-of-words
representations to search text collections. This has led to mature
architectures, in which compact inverted indexes enable fast top-𝑘

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9236-5/22/10.
https://doi.org/10.1145/3511808.3557367

ü does doxycycline contain sulfa
BERT tokenized (9 subword-tokens): ’does’, ’do’, ’##xy’,
’##cy’, ’##cl’, ’##ine’, ’contain’, ’sul’, ’##fa’

ColBERTer BOW2 (30 saved vectors from 84 subword-tokens):

photosensitivity doxycycline 12.9 sulfa 14.2 sunburned

rash clothing sunlight allergic compound drugs

containing 6.6 take safely wear . is no 4.7 exposed ...

Fulltext: No doxycycline is not a sulfa containing compound, so you
may take it safely if you are allergic to sulfa drugs. You should be aware,
however, that doxycycline may cause photosensitivity, so you should
wear appropriate clothing, or you may get easily sunburned or develop a
rash if you are exposed to sunlight.

Figure 1: Example of ColBERTer’s BOW2 (Bag Of Whole-
Words): ColBERTer stores and matches unique whole-word
representations. The words in BOW2 are ordered by implic-
itly learned query-independent term importance. Matched
words are highlighted in blue with whole-word scores dis-
played in a user-friendly way next to them.

retrieval strategies, while also exhibiting interpretable behavior,
where retrieval scores can directly be attributed to contributions
from individual terms. Despite these qualities, recent progress in
Information Retrieval (IR) has firmly demonstrated that pre-trained
language models can considerably boost effectiveness over classi-
cal approaches. This progress has raises questions about how to
control the computational cost and how to ensure interpretability
of these neural models. This has sparked an unprecedented tension
in IR between achieving the best retrieval quality, maintaining low
computational costs, and prioritizing interpretable modeling.

For practical applications, IR architectures are confined to strict
cost constraints around query latency and space footprint. While
disk space might be affordable, keeping large pre-computed rep-
resentations in memory—as often needed for low query latency—
increases hardware costs considerably. For multi-vector models like
ColBERT [22], space consumption is determined by a multiplication
of three variables: 1) the number of vectors per document; 2) the
number of dimensions per vector; 3) the number of bytes per dimen-
sion. This work is motivated by the observation that reducing any
of these three variables directly reduces the storage requirement
proportionally and yet different choices carry different impact on
effectiveness. Well-studied low hanging fruits for good tradeoffs in-
clude reducing the number of dimensions and reducing the number
of bytes with quantization [12, 19, 25, 34]. Reducing the number of
vectors offers a rich design space around model architecture and
retrieval strategy.

Besides efficiency, the accelerating adoption of machine learn-
ing coincides with indications that future regulatory environments

737

https://doi.org/10.1145/3511808.3557367
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3511808.3557367
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511808.3557367&domain=pdf&date_stamp=2022-10-17

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sebastian Hofstätter et al.

will require deployed models to provide transparent and reliably
interpretable output to their users.1 This need for interpretability
is especially pronounced in IR, where the ranking models are de-
manded to be fair and transparent [6]. Despite this, the two largest
classes of neural models at the moment—namely, cross-encoders
and single-vector bi-encoders—rely on opaque aggregations that
conceal the contributions of query and document terms on retrieval
scores.

This paper presents a novel end-to-end retrieval model called
ColBERTer. ColBERTer extends the popular ColBERT model with
effective enhanced reduction approaches. These reductions increase
the level of interpretability and reduce the storage and latency cost
greatly, while maintaining the quality of retrieval.

ColBERTer fuses a single-vector retrieval and multi-vector re-
finement model into one with explicit multi-task training. Next,
ColBERTer introduces neural Bag of Whole-Words (BOW2) repre-
sentations for increasing interpretability and reducing the number
of stored vectors in the ranking process. The BOW2 consist of the
aggregation of all subword token representations contained in a
unique whole word. To further reduce the number of vectors, Col-
BERTer learns to remove BOW2 representations with simplified
contextualized stopwords (CS) [17]. And to reduce the dimensional-
ity of the token vectors down to one, our methods employ an Exact
Matching (EM) component that aligns representations across only
lexical matches from the query and document, a model variant we
call Uni-ColBERTer following the nomenclature of Lin and Ma
[26].

Figure 1 illustrates ColBERTer’s BOW2 representation and how
we can display whole-word scores to the user in a keyword view. By
aggregating all subwords to whole words, the whole-word scores
of this complex medical-domain query illustrate ColBERTer’s inter-
pretability capabilities, without cherry picking examples that only
contain words that are fully part of BERT’s vocabulary.

The ColBERTer architecture enables various indexing and re-
trieval scenarios. Building on recent work [12, 26], we provide a
holistic categorization and ablation study of five possible usage
scenarios of ColBERTer encoded sequences: sparse token retrieval,
dense single vector retrieval, as well as refining either one of the
retrieval sources and a full hybrid mode. Specifically, we study:
RQ1 Which aggregation and training regime works best for com-

bined retrieval and refinement capabilities of ColBERTer?
We find that multi-task learning with two weighted loss func-

tions for retrieval and refinement and a learned score aggregation
of both consistently outperforms fixed score aggregation. We in-
vestigate jointly training aggregation, BOW2, and contextualized
stopwords with a weighted multi-task loss. We find that tuning
the weights improves the tradeoff between removed vectors and
retrieval quality, but that the results are robust to small hyperpa-
rameter changes.

Following our definition of dense and sparse combinations, we
study various deployment scenarios and answer:
RQ2 What is ColBERTer’s best indexing and refinement strategy?
Interestingly, we find that a full hybrid retrieval deployment is

unnecessary, and only results in very modest and not significant
1Such as a recent 2021 proposal by the EU Commission on AI regulation, see:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (Art. 13)

gains compared to a sparse or dense index with passage refinement
of the other component. While a dense index produces higher recall
than a sparse one, the effect on the top 10 results becomes negligible
after refinement, especially on TREC-DL. This novel result could
lead to less complexity in deployment, as only one index is required.
Practitioners could choose to keep a sparse index, if they already
made significant investments or choose only a dense approximate
nearest neighbor index for more predictable query latency. Both
sparse and dense encodings of ColBERTer can be optimized with
common indexing improvements.

With our hyperparameters fixed, we aim to understand the qual-
ity effect of reducing storage factors along 2 axes of ColBERTer:

RQ3 Howdo different configurations of dimensionality and vector
count affect the retrieval quality of ColBERTer?

We study the effect of BOW2, CS, and EM reductions on across
dimensions (32, 16, 8, and 1) and find that, while retrieval quality is
reduced with each dimension reduction, the delta is small. Further-
more, we observe that BOW2 and CS reductions result – on every
dimension setting – in a Pareto improvement over simply reducing
the number of dimensions.

While we want to emphasize that it becomes increasingly hard
to contrast neural retrieval architectures – due to the diversity
surrounding training procedures – and make conclusive statements
about "SOTA" – due to evaluation uncertainty – we still compare
ColBERTer to related approaches:

RQ4 How does the fully optimized ColBERTer system compare
to other end-to-end retrieval approaches?

We find that ColBERTer improves effectiveness compared to re-
lated approaches, especially for systems with low storage footprint.
Uni-ColBERTer especially outperforms previous single-dimension
token encoding approaches, while offering improved transparency
with score mappings to whole words.

To evaluate the robustness of ColBERTer we test it on seven
high-quality and diverse collections from different domains. We
use a meta-analysis [45] that reveals whether statistical significant
gains are achieved over multiple collections. We investigate:

RQ5 How robust is ColBERTer when applied out of domain?

We find that ColBERTer with token embeddings of 32 or Uni-
ColBERTer with 1 dimension both show an overall significantly
higher retrieval effectiveness compared to BM25, with not a sin-
gle collection worse than BM25. Compared to a TAS-Balanced
trained dense retriever [16] ColBERTer is not statistically signifi-
cantly worse on any single collection. While we observe an overall
positive effect it is not statistically significant within a 95% confi-
dence interval. This robust analysis tries to not overestimate the
benefits of ColBERTer, while at the same time giving us more con-
fidence in the results. We publish our code, trained models, and
documentation at: github.com/sebastian-hofstaetter/colberter

2 BACKGROUND
This section empirically motivates storing unique whole-word rep-
resentations, reviews the single-vector BERTDOT and multi-vector
ColBERT architectures, and describes other related approaches.

738

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

Introducing Neural Bag of Whole-Words with ColBERTer CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

2.1 Tokenization
Many modern neural IR models use a BERT [9] variant to contex-
tualize sequences and are thus locked into a specific tokenization
scheme. The BERT tokenizer first splits full text on whitespace and
punctuation characters and then uses the WordPiece algorithm [44]
to split words to sub-word tokens in a reduced vocabulary. TAg-
gregating unique+stemmed whole-words only stores from 59% to
36% of the original sub-word units of BERT in our used collections.
Related multi-vector methods, such as ColBERT or (Uni)COIL, gen-
erally save all BERT tokens, while our BOW2 aggregation (§3.2)
saves only stemmed unique whole-words.

2.2 BERTDOT and ColBERT Architectures
BERTDOT matches a single vector of the query with a single vector
of a passage, produced by independent BERT computations [30,
32, 55]. ColBERT [22] delays the interactions between query and
document to after the BERT computation. For more information
we refer the reader to Hofstätter et al. [15].

2.3 Related Work
Vector Reduction. Previous neural IR work on reducing the

number of vectors produce fixed sizes across all passages. Lassance
et al. [23] prune ColBERT representations to either 50 or 10 vectors
by sorting tokens by Inverse Document Frequency (IDF) or attention
scores from BERT. Zhou and Devlin [57] extend ColBERT with
temporal pooling, sliding a window over the passage to create a
vector per step with a fixed target count. Luan et al. [33] represent
each passage with a fixed number of embeddings of the CLS token
and the first𝑚 token of the passage, and compute relevance as the
maximum score of the embeddings. Humeau et al. [18] compute a
fixed number of vectors per query, and aggregate them by softmax
attention against document vectors. Lee et al. [24] learn phrase
(multi-word) representations for QA collections. This reduces the
vector count, but it depends on the availability of exact answer
spans in passages and is therefore not universally applicable in IR.
Tonellotto and Macdonald [47] prune the embeddings of the query
terms but the document embeddings.

In summary, unlike related vector reduction techniques we: 1)
reduce a dynamic number of vectors per passage; 2) keep a mapping
between human-readable tokens and vectors, allowing scoring in-
formation to be used in the user interface; 3) learn the full pruning
process end-to-end without term-based supervision.

Vector Compression. Ma et al. [34] study various methods to
reduce the dimension of dense retrieval vectors. Unlike our study,
they find that learned dimension reduction performs poorly. Also
for single vector retrieval Zhan et al. [56] optimize product quan-
tization as part of the training. Recently, Santhanam et al. [43]
study residual compression of all saved token vectors as part of
the ColBERT end-to-end retrieval setting. There are concurrent
efforts revisiting lexical matching with learned sparse representa-
tions [10, 12, 26] or learned passage impacts [37], which employ
the efficiency of exact lexical matches. Different to our work, they
focus on reducing the number of dimensions of the learned em-
beddings without reducing the number of stored tokens. Many of
these approaches can be considered complementary to our pro-
posed methods, and future work should evaluate how well these
methods compose to achieve even larger compression rates.

3 ColBERTer: ENHANCED REDUCTION
ColBERT with enhanced reduction, or ColBERTer, combines the
encoding architectures of BERTDOT and ColBERT, while extremely
reducing the token storage and latency requirements along the
effectiveness Pareto frontier. Our enhancements maintain model
transparency, creating a concrete mapping of scoring sources and
human-readable whole-words.

ColBERTer independently encodes the query and the document
using a transformer encoder like BERT, producing token-level rep-
resentation similar to ColBERT:

𝑞1:𝑚+2 = BERT([CLS;𝑞1:𝑚 ; SEP])
𝑝1:𝑛+2 = BERT([CLS; 𝑝1:𝑛 ; SEP])

(1)

Tomaximize transparency, we do not apply the query augmentation
mechanism of Khattab and Zaharia [22] (see §2.2), which appends
MASK tokens to the query with the goal of implicit – and thus
potentially opaque – query expansion.

3.1 2-Way Dimension Reduction
Given the transformer encoder output, ColBERTer uses linear layers
to reduce the dimensionality of the output vectors in two ways: 1)
we use the linear layer𝑊𝐶𝐿𝑆 to control the dimension of the first
CLS-token representation (e.g. 128 dimensions):

𝑞𝐶𝐿𝑆 = 𝑞1 ∗𝑊𝐶𝐿𝑆

𝑝𝐶𝐿𝑆 = 𝑝1 ∗𝑊𝐶𝐿𝑆
(2)

and 2) the layer𝑊𝑡 projects the remaining tokens down to the token
embedding dimension (usually smaller, e.g. 32):

¤𝑞1:𝑚 = 𝑞2:𝑚+1 ∗𝑊𝑡

¤𝑝1:𝑛 = 𝑝2:𝑛+1 ∗𝑊𝑡
(3)

This 2-way reduction combined with our novel training work-
flow (§4.1) serves to reduce our space footprint compared to Col-
BERT and at the same time provides more expressive encodings
than a single vector BERTDOT model. Furthermore, it enables a
multitude of potential dense and sparse retrieval workflows (§4.2).

3.2 BOW2: Bag of Unique Whole-Words
Given the token representations (¤𝑞1:𝑚 and ¤𝑝1:𝑛), ColBERTer applies
its novel key transformation: BOW2 to the sequence of vectors.
Whereas ColBERT and COIL maintain one vector for each BERT
token, including tokens corresponding to sub-words in the BERT
vocabulary, we create a single representation for each unique whole
word. This serves to further reduce the storage overhead of our
model by reducing the number of tokens, while preserving an
explicit mapping of score parts to human understandable words.

During tokenization we build a mapping between each sub-word
token and corresponding unique whole word (as defined by a simple
split on punctuation andwhitespace characters). The words can also
be transformed through classical IR techniques such as stemming.
Then, inside the model we aggregate whole word representations
for each whole word 𝑤 in passage 𝑝 by computing the mean of
the embeddings of𝑤 ’s constituent sub-words ¤𝑝𝑖 . We get the set of
unique whole-word representation of the passage 𝑝:

𝑝1:�̂� =

{
1

| ¤𝑝𝑖 ∈ 𝑤 |
∑
¤𝑝𝑖 ∈𝑤

¤𝑝𝑖
���� ∀𝑤 ∈ BOW2 (𝑝)

}
(4)

739

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sebastian Hofstätter et al.

We apply the same procedure symmetrically to the query vectors
¤𝑞1:𝑚 from equation (7) as well to produce 𝑞1:�̂� . The resulting sets
are still dynamic in length as their length now depends on the
number of whole words (�̂� and �̂� for passage and query sequences
respectively). We refer to the new sets as bag of words, as we only
save one word once and the order of the vectors now does not
matter anymore, because the language model contextualization
already happened.

3.3 Simplified Contextualized Stopwords
To further reduce the number of passage tokens to store, we adopt
a simplified version of Hofstätter et al. [17]’s contextualized stop-
words (CS), which was first introduced for the TK-Sparse model.
CS learns a removal gate of tokens solely based on their context-
dependent vector representations. We simplify the original im-
plementation of CS and adapt the removal process to fit into the
encoding phase of the ColBERTer model.

Every whole-word passage vector 𝑝 𝑗 is transformed by a linear
layer (with weights𝑊𝑠 and bias 𝑏𝑠), followed by a ReLU activation,
to compute a single-dimensional stopword removal gate 𝑟 𝑗 :

𝑟 𝑗 = ReLU(𝑝 𝑗𝑊𝑠 + 𝑏𝑠) (5)

The original implementation [17] masks scores after TK’s kernel-
activation, meaning the non-zero gates have to be saved as well,
which increases the systems’ complexity. In contrast, we directly
apply the gate to the representation vectors. In particular, we drop
every representation where the gate 𝑟 𝑗 = 0, and otherwise scale
the magnitude of the remaining representations using their gate
scores:

𝑝 𝑗 = 𝑝 𝑗 ∗ 𝑟 𝑗 (6)

This fully differentiable approach allows us to learn the stopword
gate during training and remove all nullified vectors at indexing
time, as they do not contribute to document scores. Applying the
stopword gate directly to the representation vector allows us to
observe much more stable training than the authors of TK-Sparse
observed – we do not need to adapt the training procedure with
special mechanisms to keep the model from collapsing. Following
Hofstätter et al. [17] we train the removal gate with a regularization
loss, forcing the stopword removal gate to become active during
training (§4.1).

3.4 Matching & Score Aggregation
After we complete the independent encoding of query and passage
sequences, we need to match and score them. ColBERTer creates
two scores, one for the CLS vector and one for the token vectors.
The CLS score is a dot product of the two CLS vectors:

𝑠𝐶𝐿𝑆 = 𝑞𝐶𝐿𝑆 · 𝑝𝐶𝐿𝑆 (7)

The token score follows the scoring regime of ColBERT, with a
match matrix of word-by-word dot product and max-pooling the
document word dimension followed by a sum over all query words:

𝑠𝑡𝑜𝑘𝑒𝑛 =

�̂�∑
𝑗=1

max
𝑖=1..�̂�

𝑞𝑇𝑗 · 𝑝𝑖 (8)

The final score of a query-passage pair is computed with a
learned aggregation of the two score components:

𝑠𝐶𝑜𝑙𝐵𝐸𝑅𝑇𝑒𝑟 = 𝜎 (𝛾) ∗ 𝑠𝐶𝐿𝑆 + (1 − 𝜎 (𝛾)) ∗ 𝑠𝑡𝑜𝑘𝑒𝑛 (9)

where 𝜎 is the sigmoid function, and 𝛾 is a trainable scalar param-
eter. For ablations, 𝜎 (𝛾) can be set to a fixed number, such as 0.5.
While the learned weighting factor may seems superfluous, as the
upstream linear layers could already learn to change the magni-
tudes of the two components, we show in §6.1 that the explicit
weighting is crucial to the effectiveness of both components.

3.5 Uni-ColBERTer: Extreme Reduction with
Lexical Matching

While ColBERTer considerably reduces the dimension of the repre-
sentations already, we found in pilot studies that for an embedding
dimension of 8 or lower the full match matrix is detrimental to the
effectiveness. Lin and Ma [26] showed that a token score model can
be effectively reduced to one dimension in UniCOIL. This reduces
the token representations to scalar weights, necessitating an alter-
native mechanism to match query tokens with “similar” document
tokens.

To fit the same reduction we need to apply more techniques
to our ColBERTer architecture to create Uni-ColBERTer with sin-
gle dimensional whole word vectors. While we now occupy the
same bytes per vector, our vector reduction techniques make Uni-
COLBERTer 2.5 times smaller than UniCOIL (on MSMARCO).

To reduce the token encoding to 1 dimension we apply a second
linear layer after the contextualized stopword component:

ˆ̂𝑞1:𝑚+2 = 𝑞1:�̂� ∗𝑊𝑢

ˆ̂𝑝1:𝑛+2 = 𝑝1:�̂� ∗𝑊𝑢

(10)

Furthermore, we need to apply a lexical match bias, following
COIL’s, to only match identical words with each other. This cre-
ates engineering challenge: we do not build a global vocabulary
with ids of whole-words during training nor inference as doing so
would make it difficult to saturate modern GPUs, requiring multi-
ple synchronized CPU processes (4-10 depending on the system)
that prepare the input with tokenization, data transformation, and
subsequent tensor batching of sequences. To keep track of a global
vocabulary, these CPU processes would need to synchronize with
a read-write dictionary on every token. This is very challenging at
best in python multiprocessing while keeping the necessary speed
to fully use even a single GPU.

To overcome this problem, we propose approximate lexical inter-
actions by creating an n-bit hash𝐻 from every whole-word without
accounting for potential collisions and applying a mask of equal
hashes to the match matrix. Depending on the selection of bits to
keep this introduces different numbers of collisions.2 Depending
on the collection size one can adjust the number of bits to save
from the hash. With the hashed global id of whole words we can
adjust the match matrix of whole-words for low dimension token
models as follows:

𝑠𝑡𝑜𝑘𝑒𝑛 =

�̂�∑
1

max
1..�̂� |𝐻 (𝑤�̂�)=𝐻 (𝑤�̂�)

ˆ̂𝑞𝑇1:�̂�+2 · ˆ̂𝑝1:�̂�+2 (11)

2On MSMARCO we found that the first 32 bits of sha256 produce very few collisions
(303 collisions out of 1.6 million hashes).

740

Introducing Neural Bag of Whole-Words with ColBERTer CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

In practice, we implement this procedure by masking the full match
matrix, so that the operation works on batched tensors. Besides
allowing us reduce the token dimensionality to one, the lexical
matching component of Uni-ColBERTer enables the sparse indexing
of tokens in an inverted index, following UniCOIL.

4 MODEL LIFECYCLE
In this sectionwe describe howwe train our ColBERTer architecture
and how we can deploy the trained model into a retrieval system.

4.1 Training Workflow
We train our ColBERTer model with triples of one query, and two
passages where one is more relevant than the other. To incorporate
the degree of relevance, as provided by a teacher model we use the
Margin-MSE loss [15], formalized as follows:

L𝑀𝑎𝑟𝑔𝑖𝑛𝑀𝑆𝐸 (𝑀𝑠) = MSE(𝑀+
𝑠 −𝑀−

𝑠 , 𝑀
+
𝑡 −𝑀−

𝑡) (12)

Where a teacher model 𝑀𝑡 provides a teacher signal for our stu-
dent model 𝑀𝑠 (in our case ColBERTer’s output parts). From the
outside ColBERTer looks and acts like a single model, however
it is in essence a multi-task model: aggregating sequences into a
single vector, representing individual words, and actively remov-
ing uninformative words. Therefore, we need to train these three
components in a balanced form, with a combined loss function:

L = 𝛼𝑏 ∗ L𝑏 + 𝛼𝐶𝐿𝑆 ∗ L𝐶𝐿𝑆 + 𝛼𝐶𝑆 ∗ L𝐶𝑆 (13)

where 𝛼 ’s are hyperparamters governing the weighting of the in-
dividual losses, which we explain in the following. The combined
loss for both sub-scores L𝑏 uses MarginMSE supervision on the
final score:

L𝑏 = L𝑀𝑎𝑟𝑔𝑖𝑛𝑀𝑆𝐸 (𝑠𝐶𝑜𝑙𝐵𝐸𝑅𝑇𝑒𝑟) (14)
In pilot studies and shown in §6.1 we observed that training

ColBERTer only with a combined loss strongly reduces the effec-
tiveness of the CLS vector alone. To overcome this issue and be
able to use single vector retrieval we define L𝐶𝐿𝑆 as:

L𝐶𝐿𝑆 = L𝑀𝑎𝑟𝑔𝑖𝑛𝑀𝑆𝐸 (𝑠𝐶𝐿𝑆) (15)

Finally, to actually force the model to learn sparsity in the re-
moval gate vector 𝑟 of the contextualized stopword component, we
follow Hofstätter et al. [17] and add an L𝐶𝑆 loss of the L1-norm of
the positive & negative 𝑟 :

L𝐶𝑆 = | |𝑟+ | |1 + ||𝑟− | |1 (16)

This introduces some tension in training: the sparsity loss needs
to move as many entries to close to zero, while the token loss as
part of L𝑏 needs non-zeros to determine relevance matches. To
reduce volatility, we train the enhanced reduction components one
after another. We start with a ColBERT checkpoint, followed by
the 2-way dimensionality reduction, BOW2 and CS, and finally for
Uni-ColBERTer we apply another round of reduction.

4.2 Indexing and Query Workflow
Once we have trained our ColBERTer model we need to decide how
to deploy it into a wider retrieval workflow. ColBERTer’s passage
encoding can be fully pre-computed in an offline setting, which
allows for low latency query-time retrieval.

Previous works, such as COIL [12] or ColBERT [22] have already
established many of the potential workflows. We aim to give a
holistic overview of the possible usage scenarios, including ablation

Retrieve CLS only

CLS
Index
CLS

Index

 BOW2
Index

 BOW2
Index

 BOW2

Index
 BOW2

Index

Score

Score

CLS
Index
CLS

Index BOW2
Store

 BOW2
StoreCandidates Score

CLS
Store
CLS

Store

CLS
Index
CLS

Index
 BOW2
Index

 BOW2
Index

Merge
Candidates

CLS
Store
CLS

Store
 BOW2
Store

 BOW2
Store Score

Fill in missing

Retrieve BOW2 only

Retrieve CLS then refine BOW2

Retrieve BOW2 then refine CLS

Full hybrid: retrieve both, refine both
❶

❸

❹

❺

❷

Candidates Score

& &

Figure 2: The potential retrieval and refineworkflows ofCol-
BERTer at query time. Broadly categorized by: full hybrid
(➊), single index, then refine with the other (➋ + ➌), or only
one index for ablation purposes (➍ + ➎).

studies to select the best method with the lowest complexity. We
give a schematic overview over ColBERTer’s retrieval workflows
in Figure 2. We assume that all passages have been encoded and
stored accessibly by their id. Each of the two storage categories
can be transformed into an index structure for fast retrieval: the
CLS index uses an (approximate) nearest neighbor index, while the
BOW2 index could use either a dense nearest neighbor index, or a
classic inverted index (with activated exact matching component).

Figure 2 ➊ shows how we can index both scoring components
of ColBERTer and then use the id-based storages to fill in missing
scores for passages retrieved only by one index. A similar workflow
has been explored by Lin and Lin [28] and Gao et al. [12]. Figure
2 ➋ & ➌ utilize only one retrieval index and fill up the missing
scores from the complementary id-based storage. This approach
works vice-versa for dense or sparse indices, and represents a clear
complexity and additional index storage reduction, at the potential
of lower recall. This is akin to a two stage retrieve and re-rank
pipeline [15, 16, 29], but such pipeline have been mostly studied
with a separate model per stage (which requires larger indexing
resources than our single model). Figure 2 ➍ & ➎ represent ablation
studies that only rely on one or the other index while disregarding
the other scoring part.

Different workflows may considerably affect complexity, stor-
age, and effectiveness. We thus always indicate the type of query
workflow used (numbers given in Figure 2) in our results section
and conduct an ablation study in §6.1.

5 EXPERIMENT DESIGN
Our main training and inference dependencies are PyTorch [38],
HuggingFace Transformers [54], and the nearest neighbor search li-
brary Faiss [20]. For training we utilize TAS-Balanced [16] retrieved
negatives with BERT-based teacher ensemble scores [15].

5.1 Passage Collection & Query Sets
For training and in-domain evaluation we use the MSMARCO-
Passage (V1) collection [3] with the sparsely-judged MSMARCO-
DEV query set of 6,980 queries (used in the leaderboard) as well
as the densely-judged 97 query set of combined TREC-DL ’19 [7]
and ’20 [8]. For TREC graded relevance (0 = non relevant to 3
= perfect), we use the recommended binarization point of 2 for

741

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sebastian Hofstätter et al.

Table 1: Analysis of different score aggregation and train-
ingmethods for ColBERTer (2-way dim reduction only; CLS
dim: 128, token dim: 32;Workflow➋) in terms of retrieval ef-
fectiveness. We compare refining full-retrieval results from
ColBERTer’s CLS vector (Own) and a TAS-Balanced retriever
(TAS) with different multi-task loss weights 𝛼𝑏 and 𝛼𝐶𝐿𝑆 .
Highest Own in bold, lowest underlined.

Train Loss TREC-DL’19+20 MSMARCO DEV
nDCG@10 R@1K MRR@10 R@1K

𝛼𝑏 𝛼𝐶𝐿𝑆 Own TAS Own TAS Own TAS Own TAS

Fixed Score Aggregation
1 1 0 .684 .740 .565 .861 .336 .386 .773 .978

Learned Score Aggregation
2 1 0.1 .726 .728 .783 .861 .384 .386 .952 .978
3 1 0.2 .728 .731 .794 .861 .384 .385 .957 .978
4 1 0.5 .734 .734 .807 .861 .386 .386 .961 .978
5 1 1.0 .730 .730 .806 .861 .381 .381 .962 .978

the recall metric. For out of domain experiments we refer to the
ir_datasets catalogue [35] for collection specific information, as we
utilized the standardized test sets for the collections.

5.2 Parameter Settings
Our model instances use a 6-layer DistilBERT [42] encoder as their
initialization starting point. For our CLS vector we followed guid-
ance by Ma et al. [34] to utilize 128 dimensions, as it provides
sufficient capacity for retrieval. For token vectors, we study and
present multiple parameter configurations between 32 and 1 dimen-
sion. We initialize models with final token output smaller than 32
with the checkpoint of the 32 dimensional model. The BOW2 and
CS components do not need any parameterization, other than using
a Porter stemmer to aggregate unique words. These components
only need to be parameterized in terms of the training loss influence
𝛼 ’s. We thoroughly studied the robustness of the model to various
configurations in §6.1.

6 RESULTS
We now address our research question: we study the source of
ColBERTer’s effectiveness, and under which conditions its compo-
nents work; then we compare our results to related approaches;
and additionally we investigate the robustness of ColBERTer out of
domain in Appendix A.

6.1 Source of Effectiveness
Our first investigation seeks to understand the relation between the
CLS retrieval and token refinement capabilities. The related COIL
architecture [12] aggregates their two-way dimension reduction in
a sumwithout explicit weighting and feeds the sum through a single
loss function. COIL uses both representation types (namely, CLS
and token representations) as index, therefore it is not necessary
for any of the components to work standalone. In the ColBERTer
architecture, we want to support full retrieval capabilities of the
CLS vector as candidate generator. If it fails, the quality of the
refinement process does not matter anymore. Therefore, we study:
RQ1 Which aggregation and training regime works best for com-

bined retrieval and refinement capabilities of ColBERTer?

Table 2: Analysis of the bag of whole-words (BOW2) and con-
textualized stopword training of ColBERTer (CLS dim: 128,
token dim: 32; Workflow ➋) using different multi-task loss
parameters.

Train Loss BOW2 Vectors DL’19+20 DEV
𝛼𝑏 𝛼𝐶𝐿𝑆 𝛼𝐶𝑆 # Saved % Stop. nDCG@10 R@1K MRR@10 R@1K

BOW2 only
1 1 0.5 0 43.2 0 % .731 .815 .387 .963
2 1 0.1 0 43.2 0 % .736 .806 .387 .960

BOW2 + Contextualized Stopwords
3 1 0.5 1 29.1 33 % .731 .811 .382 .965
4 1 0.1 1 27.8 36 % .729 .802 .385 .960
5 1 0.1 0.75 30.9 29 % .730 .805 .387 .961
6 1 0.1 0.5 36.7 15 % .725 .806 .387 .962

To isolate the CLS retrieval performance for workflow ➋ (dense
CLS retrieval, followed by BOW2 storage refinement) we com-
pare different training and aggregation strategies with ColBERTer’s
CLS retrieval vs. re-ranking the candidate set retrieved by a stan-
dalone TAS-Balanced retriever in Table 1. Using COIL’s aggregation
and training approach (by fixing 𝜎 (𝛾) = 0.5 in Eq. 9 and setting
𝛼𝐶𝐿𝑆 = 0) we observe in line 1 that the CLS retrieval component
fails substantially, compared to utilizing TAS-B. We postulate that
this happens, as the token refinement component is more capable
in determining relevance and therefore it dominates the changes
in gradients, which minimizes the standalone capabilities of CLS
retrieval. Now, with our proposed multi-task and learned score
aggregation (lines 2-5) we observe much better CLS retrieval per-
formance. While it still lacks a bit behind TAS-B in recall, these
deficiencies do not manifest itself after refining the token scores for
top-10 results in both TREC-DL and MSMARCO DEV. We selected
the best performing setting in line 4 for our future experiments.

The next addition in our multi-task framework is the learned
removal of stopwords. This adds a third loss function L𝐶𝑆 that
conflicts with the objective of the main L𝑏 loss. Table 2 shows the
tradeoff between retained BOW2 vectors and effectiveness. In lines
1 & 2 we see ColBERTer without the stopword components, here
43 vectors are saved with unique BOW2 for MSMARCO (compared
to 77 for all subword tokens). In lines 3 to 6 we study different loss
weighting combinations with CS. While the ratio of removed stop-
words is rather sensitive to the selected parameters, the effectivness
values largely remain constant for lines 4 to 6. Based on the MRR
value of the DEV set (with the smallest effectiveness change, but
still 29 % removed vectors) we select configuration 5 going forward,
although we stress that our approach would also work well with
the other settings, and cherry picking parameters is not needed.
This setting reduces the number of vectors and thus footprint by a
factor of 2.5 compared to ColBERT, while keeping the same top-10
effectiveness (comparing Table 2 line 5 vs. Table 1 line 1 (TAS-B
re-ranked).

Future work could use a conservative loss setting (such as line
6) that does not force a lot of the word removal gates to become
zero (so as to not take away capacity from the loss surface for the
ranking tasks), followed by the removal words with a non-zero (but
still small) threshold during inference.

Following the ablation of training possibilities, we now turn
towards the possible usage scenarios, as laid out in §4.2, and answer:

742

Introducing Neural Bag of Whole-Words with ColBERTer CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Analysis of the retrieval quality for different query-
time retrieval and refinementworkflows of ColBERTerwith
vector dimension of 8 or 1 (Uni-ColBERTer).nDCGandMRR
at cutoff 10.

Workflow Model DL’19+20 DEV
nDCG R@1K MRR R@1K

Retrieval Only Ablation
1

➎ BOW2 only ColBERTer (Dim8) .323 .780 .131 .895
2 Uni-ColBERTer .280 .758 .122 .880

3
➍ CLS only ColBERTer (Dim8) .669 .795 .326 .958

4 Uni-ColBERTer .674 .789 .328 .958

Single Retrieval > Refinement
5

➌ BOW2 > CLS ColBERTer (Dim8) .730 .780 .373 .895
6 Uni-ColBERTer .724 .673 .369 .880

7
➋ CLS > BOW2 ColBERTer (Dim8) .733 .795 .375 .958

8 Uni-ColBERTer .727 .789 .373 .958

Hybrid Retrieval & Refinement
9

➊ Merge (➋+➌) ColBERTer (Dim8) .734 .873 .376 .981
10 Uni-ColBERTer .728 .865 .374 .979

RQ2 What is ColBERTer’s best indexing and refinement strategy?

This study uses ColBERTer with exact matching with 8 and 1
dimensions (Uni-ColBERTer) for BOW2 vectors, as these are more
likely to be used in an inverted index. The inverted index lookup
is performed by our hashed id, with potential but highly unlikely
conflicts. Then we follow the approach of COIL and UniCOIL to
compute dot products for all entries of a posting list for all exact
matches between the query and the inverted index, followed by
a summation per document, and subsequent sorting to receive a
ranked list.

Table 3 presents the results of our study grouped by the type
of indexing and retrieval. For all indexing schemes, we use the
same trained models. We start with an ablation of only one of the
two scoring parts in line 1-4. Unsurprisingly, using only one of the
scoring parts of ColBERTer lowers effectiveness. What is surprising,
though, is the magnitude of the effectiveness drop of the inverted
index only workflow ➎ compared to both using only CLS retrieval
(workflow ➍) or refining the results with CLS scores (workflow
➊). Continuing the results, in the single retrieval then refinement
section in line 5-8, we see that once we combine both scoring parts,
the underlying indexing approach matters very little at the top-10
effectiveness (comparing lines 5 & 7, as well as lines 6 & 8), only
the reduced recall of the BOW2 indexing is carried over. This a
great result for the robustness of our system, showing that it can
be deployed in a variety of approaches, and practitioners are not
locked into a specific retrieval approach. For example if one has
made large investments in an inverted index system, they could
build on these investments with Uni-ColBERTer.

Finally, we investigate a hybrid indexingworkflow➊, where both
index types generate candidates and all candidates are refined with
the complimentary scoring part. We observe that the recall does
increase compared to only one index, however, these improvements
do not manifest themselves in the top-10 effectiveness. Here, the
results are very close to the simpler workflows ➋ & ➌. Therefore, to
keep it simple we continue to use workflow ➋ and would suggest it

0.30 0.32 0.34 0.36 0.38 0.40
MRR@10 Effectiveness

1

10

102

103

In
de

x
Si

ze
 Fa

ct
or

 (x
 P

la
in

te
xt

 S
ize

)

(Hofstätter et al.) TAS-B
(Hofstätter et al.) TK-Sparse
(Khattab et al.) ColBERT
(Hofstätter et al.) ColBERT-T2

TAS-B + ColBERT (768 dims)
ColBERTer [DimRed]
ColBERTer [DimRed + BOW2]
ColBERTer [DimRed + BOW2 + CS]

Uni-ColBERTer

Figure 3: Tradeoff between storage requirements and effec-
tiveness on MSMARCO Dev. Note the log scale of the y-axis.

as the primary way of using ColBERTer, if no previous investments
make workflow ➌ more attractive.

A general observation in the neural IR community is that more
capacity in the number of vector dimensions usually leads to better
results, albeit with diminishing returns. To see how our enhanced
reduction fit into this assumption, we study:
RQ3 Howdo different configurations of dimensionality and vector

count affect the retrieval quality of ColBERTer?
We must test whether ColBERTer’s reductions of the number

of vectors improves effectiveness or reduces costs when compared
with merely reducing the number of dimensions. In Figure 3 we
show the tradeoff between storage requirements and effectiveness
of our model configurations and closely related baselines.

First, we observe that the results of the single vector TAS-B
[16] and multi-vector staged pipeline of TAS-B + ColBERT (ours)
form a corridor in which our ColBERTer results are expected to
reside. Conforming with the expectations, all ColBERTer results
are between the two in terms of effectiveness.

Figure 3 displays 3 ColBERTer reduction configurations for 32,
16, 8, and 1 (Uni-ColBERTer) token vector dimensions. Within each
configuration, we observe that increased capacity improves effec-
tiveness at the cost of larger storage. Between configurations, we
see that removing half the vectors is more efficient and at the same
time equal or even slightly improved effectiveness. Thus, using our
enhanced reductions improves the Pareto frontier, compared to just
reducing the dimensionality. In the case of Uni-ColBERTer, there is
no way of further reducing the dimensionality, so every removed
vector enables previously unattainable efficiency gains. Our most
efficient Uni-ColBERTer with all (BOW2 and CS) reductions en-
abled reaches parity with the plaintext size it indexes. This includes
the dense index which at 128 dimensions roughly takes up 2/3 of
the total space.

6.2 Comparing to Related Work
Fast and complex developments in neural IR make it increasingly
difficult to contrast retrieval models, as numerous factors influence

743

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sebastian Hofstätter et al.

Table 4: Comparing ColBERTers retrieval effectiveness to related approaches grouped by storage requirements. The storage
factor refers to ratio of index to plaintext size of 3.05 GB. * indicates an estimation by us.

Model Storage Query Interpret. TREC-DL’19 TREC-DL’20 DEV
Total Factor Latency Ranking nDCG@10 R@1K nDCG@10 R@1K MRR@10 R@1K

Low Storage Systems (max. 2x Factor)
1 [36] BM25 (PISA) 0.7 GB × 0.2 8 ms ✓ .501 .739 .475 .806 .194 .868

2 [56] JPQ 0.8 GB × 0.3 90 ms ✗ .677 – – – .341 –
3 [26] UniCOIL-Tok N/A N/A N/A ✓ – – – – .315 –
4 [36] UniCOIL-Tok (+docT5query) 1.4 GB × 0.5 37 ms ✓ – – – – .352 –
5 [10, 36] SPLADEv2 (PISA) 4.3 GB × 1.4 220 ms ✗ .729 – – – .369 .979
6 [28] DSR-SPLADE + Dense-CLS (Dim 128) 5 GB × 1.6 32 ms ✗ .709 – .673 – .344 –

7 Uni-ColBERTer (Dim 1) 3.3 GB × 1.1 55 ms ✓ .727 .761 .726 .812 .373 .958
8 ColBERTer w. EM (Dim 8) 5.8 GB × 1.9 55 ms ✓ .732 .764 .734 .819 .375 .958

Higher Storage Systems
9 [12] COIL (Dim 128, 8) 12.5 GB* × 4.1* 21 ms ✓ .694 – – – .347 .956
10 [12] COIL (Dim 768, 32) 54.7 GB* × 17.9 41 ms ✓ .704 – – – .355 .963
11 [28] DSR-SPLADE + Dense-CLS (Dim 256) 11 GB × 3.6 34 ms ✗ .711 – .678 – .348 –
12 [26, 29] TCT-ColBERTv2 + UniCOIL (+dT5q) 14.4 GB* × 4.7* 110 ms ✓ – – – – .378 –

13 ColBERTer (Dim 16) 9.9 GB × 3.2 51 ms ✓ .726 .782 .719 .829 .383 .961
14 ColBERTer (Dim 32) 18.8 GB × 6.2 51 ms ✓ .727 .781 .733 .825 .387 .961

effectiveness, including training data sampling, distillation, and
generational training, and it is crucial to also compare systems
by their the efficiency. We believe it is important to show that we
do not observe substantial differences in effectiveness compared
to other systems of similar efficiency and that small deviations of
effectiveness should not strongly impact our overall assessment,
even if those small differences come out in our favor. With that in
mind, we study:

RQ4 How does the fully optimized ColBERTer system compare
to other end-to-end retrieval approaches?

Table 4 groups models by our main efficiency focus: the storage
requirements, measured as the factor of the plaintext size.

Low Storage Systems. We find that ColBERTer improves on the
existing Pareto frontier compared to other approaches, especially
for cases with low storage footprint. Uni-ColBERTer (line 7) es-
pecially outperforms previous single-dimension token encoding
approaches, while at the same time offering improved transparency
with whole-word score attributions. We can further improve the
dense retrieval component with a technique similar to JPQ [56]
(line 2) to reduce our storage footprint.

Higher Storage Systems. While 32 dimensions per token sounds
small, the resulting storage increase is staggering. ColBERTer out-
performs similarly sized architectures as well, but a fair comparison
becomes more difficult than in the low storage systems, as the
absolute size differences become much larger. Another curious ob-
servation is that larger ColBERTer models (lines 13 & 14) seem to be
slightly faster than our smaller instances (lines 7 & 8). We believe
this is due to our non-optimized python code to lookup the top-
1000 token storage memory locations per query, which takes 10ms
for ColBERTer without exact matching and 15 ms for ColBERTer
with exact matching as there we need to access 2 locations per
passage (one for the values and one for the ids). There is potential
for lower-level optimizations in future work.

6.3 Out-of-Domain Robustness
In this section we evaluate the zero-shot performance of our Col-
BERTer architecture, when it is applied on retrieval collections from
domains outside the training data to answer:
RQ5 How robust is ColBERTer when applied out of domain?
Our main aim is to present an analysis grounded in robust eval-

uation [50, 58] that does not fall for common problematic shortcuts
in IR evaluation like influence of effect sizes [11, 52], relying on too
shallow pooled collections [2, 31, 53], not accounting for pool bias
in old collections [5, 40, 41], and aggregating metrics over different
collections which are not comparable [45]. We first describe our
evaluation methodology and then discuss our results presented in
Figure 4.

Methodology. We selected seven datasets from the ir_datasets
catalogue [35]: Bio medical (TREC Covid [49, 51], TripClick [39],
NFCorpus [4]), Entity centric (DBPedia Entity [14]), informal lan-
guage (Antique [13], TREC Podcast [21]), news cables (TREC Ro-
bust 04 [48]). The datasets are not based on web collections, have
at least 50 queries, and importantly contain judgements from both
relevant and non-relevant categories. Three datasets are also part
of the BEIR [46] catalogue. We choose not to use other datasets
from BEIR, as they do not contain non-relevant judgements, which
makes it impossible to conduct pooling bias corrections.

We follow Sakai [40] to correct our metric measurements for
pool bias by observing only measuring effectiveness on judged
passages, which means removing all retrieved passages that are
not judged and then re-assigning the ranks of the remaining ones.
This is in contrast with the default assumption that non-judged
passages are not relevant, which naturally favors methods that have
been part of the pooling process. Additionally, we follow Soboroff
[45] to utilize an effect size analysis that is popular in medicine
and social sciences. Soboroff [45] proposed to use this effect size
as meta analysis tool to be able to compare statistical significance
across different retrieval collections. In this work we combine the

744

Introducing Neural Bag of Whole-Words with ColBERTer CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

(a) BM25 vs. Uni-ColBERTer (Dim1, BOW2 + CS)

Effect Size Weight Mean CI 95%

9.4% 0.53 [0.13, 0.94]TREC Covid

17.2% 0.17 [0.09, 0.25]TripClick

15.4% 0.36 [0.20, 0.53]NFCorpus

16.0% 0.57 [0.43, 0.71]DBPedia Entity

14.5% 0.65 [0.45, 0.86]Antique

12.3% 0.33 [0.05, 0.62]TREC Podcast

15.2% 0.04 [-0.13, 0.22]TREC Robust 04

0.00 0.25 0.50 0.75 1.00
Standardized Mean Difference

0.37 [0.15, 0.59]Summary Effect (RE)

(b) BM25 vs. ColBERTer (Dim32, BOW2)

Effect Size Weight Mean CI 95%

10.1% 0.63 [0.22, 1.03]TREC Covid

16.6% 0.17 [0.08, 0.25]TripClick

15.3% 0.34 [0.17, 0.50]NFCorpus

15.7% 0.59 [0.45, 0.73]DBPedia Entity

14.5% 0.79 [0.59, 1.00]Antique

12.7% 0.32 [0.04, 0.60]TREC Podcast

15.1% 0.08 [-0.10, 0.25]TREC Robust 04

0.00 0.25 0.50 0.75 1.00
Standardized Mean Difference

0.40 [0.15, 0.65]Summary Effect (RE)

(c) TAS-B vs. ColBERTer (Dim32, BOW2)

Effect Size WeightMeanCI 95%

4.7% 0.27 [-0.13, 0.67]TREC Covid

25.1% -0.03 [-0.11, 0.05]TripClick

16.3% -0.02 [-0.18, 0.14]NFCorpus

18.4% 0.05 [-0.09, 0.18]DBPedia Entity

12.8% 0.31 [0.11, 0.51]Antique

8.1% 0.06 [-0.22, 0.34]TREC Podcast

14.7% 0.10 [-0.08, 0.28]TREC Robust 04

0.00 0.25 0.50 0.75 1.00
Standardized Mean Difference

0.07 [-0.05, 0.18]Summary Effect (RE)

Figure 4: Effect size evaluation of out of domain robustness. We compare three pairings between control vs. treatment. The
comparison is dependent on the effect size of each collection. Mean NDCG@10 differences are standardized with the effect
size. Confidence intervals are plotted around the standardized mean difference ◆. The Summary Effect is computed with the
Random-Effect (RE) model. We see an overall significant improvement for ColBERTer (Dim1 and Dim32) to BM25.

evaluation approaches of Sakai [40] and Soboroff [45] for the first
time to increase our confidence in results and analysis.

We take the standardized mean difference (SMD) in nDCG@10
score between a baseline model and our model as the effect. Besides
the variability within a collection, we assume a between collection
heterogeneity [45]. Following Soboroff [45], we use a random-effect
model to estimate the summary effect of our model and each indi-
vidual effect’s contribution, i.e., weight. We use the DerSimonian
and Laird estimate [1] to obtain the between collection variance.
We illustrate the outcome of our meta-analysis as forest plots. Dia-
monds◆ show the effect in each collection and, in turn, in summary.
Each effect is accompanied by its 95% confidence interval – the
grey line. The dotted vertical line marks null effect, i.e., zero SMD
in nDCG@10 score between our model and the compared baseline.
A confidence interval crossing the null effect line indicates that
the corresponding effect is statistically not significant; in all other
cases, it contains the actual effect of our model 95% of the time.

As baseline, we utilize BM25 as implemented by Pyserini [27].
We apply our models, trained on MSMARCO, end-to-end in a zero-
shot fashion with our default settings for retrieval. We compare
a ColBERTer version with 32 token dimensions, as well as Uni-
ColBERTer with a single token dimension and exact matching prior.

Discussion. Figure 4a illustrates the effect of using Uni-ColBERTer
instead of BM25 across collections and the corresponding summary
effect. Compared to the retrospective approach of hypothesis testing
with p-values, confidence intervals are predictive [45]. Considering
the TripClick collection, for example, we expect the effect to be be-
tween .09 and .25 95% of the time, indicating that we can detect the
effect size of .17 SMD at the given confidence level and underlining
the significant effectiveness gains using Uni-ColBERTer over BM25.
Only on TREC Robust 04 is the small improved difference inside
a 95% confidence interval. Overall, by judging the summary effect
in Figure 4a, we expect that choosing Uni-ColBERTer over BM25
consistently and significantly improves effectiveness. Similarly, con-
sidering Figure 4b, we expect ColBERTer (Dim32) to consistently
and significantly outperform BM25. However, comparing the sum-
mary effects in Figure 4a and Figure 4b, we expect Uni-ColBERTer
and ColBERTer (Dim32) to behave similarly if run against BM25,

suggesting to use the more efficient model. We also compare our
model to an effective neural dense retriever TAS-B [16], shown
to work well out of domain [46]. We report the effect of using
ColBERTer (Dim32) vs. TAS-B in Figure 4c, which paints a less
clear image than in the other two cases. Most collections overlap
inside the 95% CI, including the summary effect model, suggest-
ing the models are equally effective. Only the Antique collection
is significantly improved by ColBERTer. TREC Covid is a curious
case: looking at absolute numbers, one would easily assume a sub-
stantial improvement but because it only evaluates 50 queries the
confidence interval is very wide. Finally, what does this mean for a
deployment decision of ColBERTer vs. TAS-B? We need to consider
other aspects, such as transparency. We argue ColBERTer increases
transparency over TAS-B as laid out in this paper and it does not
show a single collection with significantly worse results, favoring
the selection of ColBERTer.

7 CONCLUSION
In this paper, we proposed ColBERTer, an efficient and effective
retrieval model that improves the storage efficiency, the retrieval
complexity, and the interpretability of the ColBERT architecture
along the effectiveness Pareto frontier. To this end, ColBERTer
learnswhole-word representations that exclude contextualized stop-
words, yielding 2.5× fewer vectors than ColBERT while support-
ing user-friendly query–document scoring patterns at the level of
whole words. ColBERTer also uses a multi-task, multi-stage training
objective—as well as an optional lexical matching component—that
together enable it to aggressively reduce the vector dimension to
1. Extensive empirical evaluation shows that ColBERTer is highly
effective on MS MARCO and TREC-DL and highly robust out of
domain, while demonstrating highly-competitive storage efficiency
with prior dense and sparse models.

Acknowledgements. This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No 822670
and from the EU Horizon 2020 ITN/ETN project on Domain Specific Systems for
Information Extraction and Retrieval (H2020-EU.1.3.1., ID: 860721).

745

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sebastian Hofstätter et al.

REFERENCES
[1] 2015. Meta-analysis in clinical trials revisited. Contemporary Clinical Trials

45 (2015), 139–145. https://doi.org/10.1016/j.cct.2015.09.002 10th Anniversary
Special Issue.

[2] Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan, and Charles LA Clarke. 2021.
Shallow pooling for sparse labels. arXiv preprint arXiv:2109.00062 (2021).

[3] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,
Rangan Majumder, Andrew Mcnamara, Bhaskar Mitra, and Tri Nguyen. 2016.
MS MARCO : A Human Generated MAchine Reading COmprehension Dataset.
In Proc. of NIPS.

[4] Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. 2016. A Full-
Text Learning to Rank Dataset for Medical Information Retrieval. In Proceedings of
the European Conference on Information Retrieval (ECIR) (Padova, Italy). Springer.

[5] Chris Buckley and Ellen M Voorhees. 2004. Retrieval evaluation with incomplete
information. In Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in information retrieval. 25–32.

[6] Carlos Castillo. 2019. Fairness and Transparency in Ranking. SIGIR Forum 52, 2
(jan 2019), 64–71. https://doi.org/10.1145/3308774.3308783

[7] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2019. Overview
of the TREC 2019 deep learning track. In TREC.

[8] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview
of the TREC 2020 Deep Learning Track. In TREC.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[10] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse lexical and expansion model for information retrieval.
arXiv preprint arXiv:2109.10086 (2021).

[11] Norbert Fuhr. 2018. Some Common Mistakes In IR Evaluation, And How They
Can Be Avoided. SIGIR Forum 51, 3 (feb 2018), 32–41. https://doi.org/10.1145/
3190580.3190586

[12] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical
Match in Information Retrieval with Contextualized Inverted List. arXiv preprint
arXiv:2104.07186 (2021).

[13] Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W Bruce Croft.
2020. ANTIQUE: A non-factoid question answering benchmark. In Proc. of ECIR.

[14] Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, K. Balog, S. E. Bratsberg, Alexan-
der Kotov, and J. Callan. 2017. DBpedia-Entity v2: A Test Collection for Entity
Search. Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (2017).

[15] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. arXiv:2010.02666 (2020).

[16] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling. In Proceedings of the 44rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR ’21).

[17] Sebastian Hofstätter, Aldo Lipani, Markus Zlabinger, and Allan Hanbury. 2020.
Learning to Re-Rank with Contextualized Stopwords. In Proc. of CIKM.

[18] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. 2020.
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast
and Accurate Multi-sentence Scoring. 1Proceedings of the International Conference
on Learning Representations (ICLR) 2020.

[19] Shiyu Ji, Jinjin Shao, and Tao Yang. 2019. Efficient Interaction-based Neural
Ranking with Locality Sensitive Hashing. In Proc of. WWW.

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-Scale Similarity
Search with GPUs. arXiv:1702.08734 (2017).

[21] Rosie Jones, Ben Carterette, Ann Clifton, Maria Eskevich, Gareth JF Jones, Jussi
Karlgren, Aasish Pappu, Sravana Reddy, and Yongze Yu. 2021. Trec 2020 podcasts
track overview. arXiv preprint arXiv:2103.15953 (2021).

[22] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In Proc. of SIGIR.

[23] Carlos Lassance, Maroua Maachou, Joohee Park, and Stéphane Clinchant. 2021.
A Study on Token Pruning for ColBERT. arXiv:2112.06540 [cs.IR]

[24] Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi Chen. 2020. Learning dense
representations of phrases at scale. arXiv preprint arXiv:2012.12624 (2020).

[25] Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen tau Yih, and
Sebastian Riedel. 2021. Boosted Dense Retriever. arXiv preprint arXiv:2112.07771
(2021).

[26] Jimmy Lin and Xueguang Ma. 2021. A few brief notes on deepimpact, coil, and
a conceptual framework for information retrieval techniques. arXiv preprint
arXiv:2106.14807 (2021).

[27] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Infor-
mation Retrieval Research with Sparse and Dense Representations. In Proc. of
SIGIR.

[28] Sheng-Chieh Lin and Jimmy Lin. 2021. Densifying Sparse Representations for
Passage Retrieval by Representational Slicing. arXiv preprint arXiv:2112.04666
(2021).

[29] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling Dense
Representations for Ranking using Tightly-Coupled Teachers. arXiv:2010.11386
(2020).

[30] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. TwinBERT: Distilling Knowledge
to Twin-Structured BERT Models for Efficient Retrieval. arXiv:2002.06275 (2020).

[31] Xiaolu Lu, Alistair Moffat, and J Shane Culpepper. 2016. The effect of pooling
and evaluation depth on IR metrics. Information Retrieval Journal 19, 4 (2016),
416–445.

[32] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2020. Sparse,
Dense, and Attentional Representations for Text Retrieval. arXiv preprint
arXiv:2005.00181 (2020).

[33] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse,
Dense, and Attentional Representations for Text Retrieval. Transactions of the
Association for Computational Linguistics 9 (2021), 329–345. https://doi.org/10.
1162/tacl_a_00369

[34] Xueguang Ma, Minghan Li, Kai Sun, Ji Xin, and Jimmy Lin. 2021. Simple and
Effective Unsupervised Redundancy Elimination to Compress Dense Vectors for
Passage Retrieval. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing.

[35] Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan,
and Nazli Goharian. 2021. Simplified Data Wrangling with ir_datasets. In SIGIR.

[36] Joel Mackenzie, Andrew Trotman, and Jimmy Lin. 2021. Wackyweights in learned
sparse representations and the revenge of score-at-a-time query evaluation. arXiv
preprint arXiv:2110.11540 (2021).

[37] AntonioMallia, Omar Khattab, Torsten Suel, andNicola Tonellotto. 2021. Learning
Passage Impacts for Inverted Indexes. Association for Computing Machinery, New
York, NY, USA, 1723–1727. https://doi.org/10.1145/3404835.3463030

[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, et al. 2017. Auto-
matic differentiation in PyTorch. In NIPS-W.

[39] Navid Rekabsaz, Oleg Lesota, Markus Schedl, Jon Brassey, and Carsten Eickhoff.
2021. TripClick: The Log Files of a Large Health Web Search Engine. In SIGIR.

[40] Tetsuya Sakai. 2007. Alternatives to Bpref. In Proc. of SIGIR.
[41] Tetsuya Sakai. 2008. ComparingMetrics across TREC andNTCIR: The Robustness

to System Bias. In Proc. of CIKM.
[42] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-

tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[43] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2021. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. arXiv preprint arXiv:2112.01488 (2021).

[44] Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search.
In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 5149–5152.

[45] Ian Soboroff. 2018. Meta-Analysis for Retrieval Experiments Involving Multiple
Test Collections. In Proc. of CIKM.

[46] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. arXiv:2104.08663 [cs.IR]

[47] Nicola Tonellotto and Craig Macdonald. 2021. Query Embedding Pruning for
Dense Retrieval. Association for Computing Machinery, New York, NY, USA,
3453–3457. https://doi.org/10.1145/3459637.3482162

[48] Ellen Voorhees. 2004. Overview of the TREC 2004 Robust Retrieval Track. In
TREC.

[49] E. Voorhees, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, W. Hersh,
Kyle Lo, Kirk Roberts, I. Soboroff, and Lucy Lu Wang. 2020. TREC-COVID: Con-
structing a Pandemic Information Retrieval Test Collection. ArXiv abs/2005.04474
(2020).

[50] Ellen M Voorhees. 2001. The philosophy of information retrieval evaluation. In
Workshop of the cross-language evaluation forum for european languages. Springer,
355–370.

[51] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,
Darrin Eide, K. Funk, Rodney Michael Kinney, Ziyang Liu, W. Merrill, P. Mooney,
D. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen, B. Stilson, A. Wade,
K. Wang, Christopher Wilhelm, Boya Xie, D. Raymond, Daniel S. Weld, Oren
Etzioni, and Sebastian Kohlmeier. 2020. CORD-19: The Covid-19 Open Research
Dataset. ArXiv (2020).

[52] William Webber, Alistair Moffat, and Justin Zobel. 2008. Statistical Power in
Retrieval Experimentation. In Proc. of CIKM.

[53] William Webber and Laurence A. F. Park. 2009. Score Adjustment for Correction
of Pooling Bias. In Proc. of SIGIR.

[54] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language

746

https://doi.org/10.1016/j.cct.2015.09.002
https://doi.org/10.1145/3308774.3308783
https://doi.org/10.1145/3190580.3190586
https://doi.org/10.1145/3190580.3190586
http://arxiv.org/abs/2112.06540
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1145/3404835.3463030
http://arxiv.org/abs/2104.08663
https://doi.org/10.1145/3459637.3482162

Introducing Neural Bag of Whole-Words with ColBERTer CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Processing. In Proc. EMNLP: System Demonstrations. 38–45.
[55] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,

Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neigh-
bor Negative Contrastive Learning for Dense Text Retrieval. arXiv preprint
arXiv:2007.00808 (2020).

[56] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2021. Jointly optimizing query encoder and product quantization to improve
retrieval performance. In Proc. of CIKM.

[57] Giulio Zhou and Jacob Devlin. 2021. Multi-Vector Attention Models for Deep
Re-ranking. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 5452–5456.

[58] Justin Zobel. 1998. How Reliable Are the Results of Large-Scale Information
Retrieval Experiments?. In Proc. of SIGIR.

747

	Abstract
	1 Introduction
	2 Background
	2.1 Tokenization
	2.2 BERT: and ColBERT Architectures
	2.3 Related Work

	3 .
	3.1 2-Way Dimension Reduction
	3.2 :: Bag of Unique Whole-Words
	3.3 Simplified Contextualized Stopwords
	3.4 Matching & Score Aggregation
	3.5 Uni-ColBERTer: Extreme Reduction with Lexical Matching

	4 Model Lifecycle
	4.1 Training Workflow
	4.2 Indexing and Query Workflow

	5 Experiment Design
	5.1 Passage Collection & Query Sets
	5.2 Parameter Settings

	6 Results
	6.1 Source of Effectiveness
	6.2 Comparing to Related Work
	6.3 Out-of-Domain Robustness

	7 Conclusion
	References

