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ABSTRACT
Most work on query optimization has concentrated on loop-free

queries. However, data science and machine learning workloads to-

day typically involve recursive or iterative computation. In this

work, we propose a novel framework for optimizing recursive

queries using methods from program synthesis. In particular, we

introduce a simple yet powerful optimization rule called the “FGH-

rule”which aims to find a fasterway to evaluate a recursive program.

The solution is found by making use of powerful tools, such as a

program synthesizer, an SMT-solver, and an equality saturation sys-

tem. We demonstrate the strength of the optimization by showing

that the FGH-rule can lead to speedups up to 4 orders of magnitude

on three, already optimized Datalog systems.
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1 INTRODUCTION
Most database systems are designed to support primarily non-

recursive (loop-free) queries. Their optimizers are based on the

rule-driven, cost-based Volcano architecture, designed specifically

for optimizing non-recursive query plans. However, most data sci-

ence and machine learning workloads today involve some form

of recursion or iteration. Examples include finding the connected

components of a graph, computing the page rank, computing the
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network centrality, minimizing an objective function using gradi-

ent descent, etc. The importance of supporting recursive queries

has been noted by system designers. Some modern data analytics

systems, like Spark or Tensorflow, support for-loops. The SQL stan-

dard defines a limited form of recursive queries, using the with
construct, and some popular engines, like Postgres or SQLite, do

support this restricted form of recursion.

Datalog is a language designed specifically for recursive queries,

and it is gaining in popularity [3, 12, 14, 22, 35, 37, 38, 48, 49].

But the optimization problem for recursive queries is much less

studied. A datalog program consists of multiple rules, defining

several, mutually recursive relations, and one distinguished relation

name which is the output of the program. The effect of the program

consist of repeatedly applying the rules, sometimes called the body
of the program, until a fixpoint is reached, then it returns the output

relation. Datalog engines typically optimize the loop body, without

optimizing the actual loop. The few systems that do, apply only

limited optimization techniques, like magic set optimization and

semi-naive evaluation, which are restricted to positive queries.

In this paper we describe a new query optimization framework

for recursive queries. Our framework replaces a recursive program

with another, equivalent recursive program, whose body may be

quite different, and thus focuses on optimizing the recursive pro-

gram as a whole, not on optimizing its body in isolation; the latter

can be done separately, using standard query optimization tech-

niques. Our optimization is based on a novel rewrite rule for re-

cursive programs, called the FGH-rule, which we implement using

program synthesis, a technique developed in the programming lan-

guages and verification communities. We introduce a new method

for inferring loop invariants, which extends the reach of the FGH-

rule, and also show how to use global constraints on the data for

semantic optimizations using the FGH-rule.

The FGH-Rule At the core of our approach is a novel, yet

very simple rewrite rule, called the FGH-rule (pronounced fig-rule),
which can be used to prove that two recursive programs are equiv-

alent, even when their loop bodies are quite different. We show

that the FGH-rule can express previously known optimizations

for Datalog, including magic sets and semi-naive evaluation, and

also a wide range of new optimizations. The optimized program is

often significantly more efficient than the original program, and

sometimes can have a strictly lower asymptotic complexity. We

implemented a source-to-source optimizer using the FGH-rule, eval-

uated its effectiveness on several Datalog systems, and observed

speedups of up to 4 orders of magnitude (Sec. 8).
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𝑇𝐶 (𝑥,𝑦) :- [𝑥 = 𝑦] ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧,𝑦))
𝐶𝐶 [𝑥] :- min

𝑦
{𝐿[𝑦] | 𝑇𝐶 (𝑥,𝑦)}

(a)

𝐶𝐶 [𝑥] :- min(𝐿[𝑥],min

𝑦
{𝐶𝐶 [𝑦] | 𝐸 (𝑥,𝑦)})

(b)

Figure 1: Unoptimized (a) and optimized (b) Datalog program
for the connected components of an undirected graph.

For a taste of the FGH-optimization, consider the following ex-

ample, from [54, 55]: compute the connected components of an

undirected graph 𝐸 (𝑥,𝑦). The Datalog program in Fig. 1 (a) achieves

this by first computing the transitive closure relation𝑇𝐶 (𝑥,𝑦), then
computing a min-aggregate query assigning to every node 𝑥 the

smallest label 𝐿[𝑦] of all nodes 𝑦 reachable from 𝑥 . In contrast, the

optimized program in Fig. 1 (b) computes directly the CC label of

every node 𝑥 as the minimum of its own label and the smallest

CC label of its neighbors, using a single recursive rule with min-

aggregation. The space complexity of the transitive closure is𝑂 (𝑛2),
which, in practice, is prohibitively expensive on large graphs. On

the other hand, the optimized query has space complexity 𝑂 (𝑛).
Pattern Matching vs. Query Synthesis Applying the FGH-

rule is an instance of query rewriting using views. In that problem

we are given a set of view expressions and a query, and the task

is to rewrite the query to use the view expressions rather than

the base relations. This problem has been extensively studied in

the literature [21], and today’s database systems perform it using

pattern matching [16]. This is a form of transformational synthesis,

where every candidate query rewriting is guaranteed to be correct,

because it is obtained by applying a limited set of manually crafted

rules (patterns), which are guaranteed to be correct. However, the

FGH-rule often requires exploring a very large space, which cannot

be covered by a limited set of rules. In this paper we propose to use

counterexample-guided inductive synthesis (CEGIS) for this purpose,
which is a technique designed for program sketching [43, 46]. When

applied to our context, we call this technique query synthesis. Unlike
pattern matching, query synthesis explores a much larger space,

by examining rewritings that are not necessarily correct, and need

to be checked for correctness by a verifier (z3 in our system). The

verifier also produces a small counterexample database for each

rejected candidate, and these counterexamples are collected by the

synthesizer and used to produce only candidate rewritings that

pass all the previous counterexamples, which significantly prunes

the search space of the synthesizer. We report in Sec. 8 synthesis

times of less than 1 second, even for complex queries that use global

constraints and require inferring loop invariants.

Monotone Queries and Semiring Semantics Datalog is, by
definition, restricted to monotone queries. This ensures that ev-

ery query has a well-defined semantics, namely the least fixpoint

of its immediate consequence operator. Existing optimizations for

Datalog, like semi-naive evaluation and magic set rewriting, apply

mainly to monotone queries. Even stratified negation can (if at

all) only be handled by imposing appropriate restrictions [44]. But

queries that contain aggregates or negation (expressed in SQL via

subqueries) are not monotone, and most systems that support re-

cursion prohibit the combination of aggregates and recursion. This

has two shortcomings: it limits what kind of queries the user can

express, and also prevents many of our FGH-rewritings. For exam-

ple, the simple computation of connected components in Fig. 1 (a)

can be expressed in PostgreSQL, or in SQLite, or in Soufflé, because

the first rule uses only recursion and the second rule uses only

aggregation. However, none of these systems accepts the query in

Fig. 1 (b), because it combines recursion and aggregation.
1
In order

to express such queries, in this paper we propose an extension of

Datalog, following the approach in [18], where the relations are

interpreted over ordered semirings.
A semiring is an algebraic structure with two operations, ⊕, ⊗.

Traditional Datalog corresponds to the Boolean semiring, where

these two operators are ∨,∧, while the query in Fig. 1 (b) is over the

Tropical semiring, where the two operators are min, + (reviewed
in Sec. 2). We call this extension of Datalog to ordered semirings

Datalog◦, pronounced “Datalogo”, where the circle represents the

semiring. In Datalog◦ recursion is still restricted to monotone
2

queries, but monotone queries in Datalog◦ include queries with
aggregates, over an appropriate semiring. The query in Fig. 1 (b) is

monotone over the (ordered) tropical semiring.

Loop Invariants One difficulty in reasoning about loops in

programming languages is the need to discover loop invariants.

Some (but not all) applications of the FGH-rule also require the

discovery of loop invariants. We describe a novel technique for

inferring loop invariants for Datalog◦ programs, by combining

symbolic execution with equality saturation, and using a verifier.

We execute symbolically the recursive program for a very small

number of iterations (five in our system), obtain query expressions

for the IDBs (the recursive predicates), and construct all identities

satisfied by the IDBs. Then, we retain only candidates that hold at

each iteration, and check each candidate for correctness using the

SMT solver. By inferring and using loop invariants we show that we

can significantly improve some instances of magic-set optimizations

from the literature: we call the new optimization beyond magic.
Constraints and Semantic Optimizations Optimizations that

are conditioned on certain constraints on the database are known

as semantic optimizations [32]. SQL optimizers routinely use key

constraints and foreign key constraints to optimize queries. More

powerful optimizations can be performed using the chase and back-

chase framework [10, 30], and these include optimizations under

inclusion constraints, or conditional functional dependencies, or

tuple generating constraints. However, all constraints that are useful

for optimizing non-recursive queries are local. In contrast, the FGH-

rule optimizes recursive queries, and therefore it can also exploit

global constraints. For example, suppose the database represents a

graph, and the global constraint states that the graph is a tree. This

global constraint does not help optimize non-recursive queries, but

can be used to great advantage to optimize some recursive queries;

we give details in Sec. 3.3.

1
Prior work [15, 37] has proposed extending Datalog with min and max aggregates by

explicitly re-defining the semantics of recursive rules with aggregates. Our approach

keeps the standard least fixpoint semantics, but generalizes the semiring.

2
This monotonicity is over the partial order from the ordered semiring.
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Equality Saturation Systems Throughout our optimizer we

need to manage symbolic expressions of queries, and their equiva-

lence classes, as defined by a set of rules. We uses for this purpose a

state-of-the-art Equality Saturation System (EQSAT), EGG [53]. We

show how to use EQSAT for checking equality under constraints, in-
ferring loop invariants, and “denormalization” (which is essentially

query rewriting using views).

RelatedWorkOur work was partially inspired by the PreM con-

dition, described by Zaniolo et al. [54], which, as we shall explain, is

a special case of the FGH-rule. Unlike our system, their implemen-

tation required the programmer to check the PreM manually, then

perform the corresponding optimization. Seveal prior systems lever-

aged SMT-solvers to reason about query languages [8, 19, 36, 47, 50];

but none of these consider recursive queries. Datalog synthesizers

have been described in [2, 31, 41, 42, 51]. Their setting is different

from ours: the specification is given by input-output examples, and

the synthesizer needs to produce a program that matches all ex-

amples. A design choice that we made, and which sets us further

aside from the previous systems, is to use an existing CEGIS system,

Rosette; thus, we do not aim to improve the CEGIS system itself,

but optimize the way we use it.

Contributions In summary, the main contribution of this paper

consists of a new, principled and powerful method for optimizing

recursive queries. We make the following specific contributions:

• We introduce a simple optimization rule for recursive queries,

called the FGH-rule (Sec. 3).

• We show the FGH-rule captures known optimizations (magic

sets,PreM, semi-naive), (Sec. 3.1), new optimizations (Sec. 3.2),

and optimizations under global constraints (Sec. 3.3).

• We present our novel framework for query optimization via

the FGH-rule (Sec. 4).

• We describe how an SMT solver (Sec. 5) and a CEGIS system
(Sec. 6) can be profitably integrated into our FGH-optimizer.

• We describe how to use an EQSAT system for various tasks

in the FGH optimizer: loop-invariant inference, denormal-

ization, and checking equivalence under constraints (Sec. 7).

2 BACKGROUND
Datalog A relation of arity 𝑘 is a finite subset of 𝐷𝑘 , where 𝐷 is a

fixed domain. The abbreviations EDB and IDB stand for Extensional
Database and Intensional Database, and represent the base relations
and the computed relations respectively. A rule has the form:

𝑅0 (vars) :- 𝑅1 (vars1) ∧ · · · ∧ 𝑅𝑚 (vars𝑚)

where 𝑅0 is an IDB, and 𝑅1, . . . , 𝑅𝑚 are IDBs or EDBs. The rule

is safe if every variable occurs in at least some predicate in the

body, and the rule is linear if its body contains at most one IDB. A

Datalog program consists of a set of possibly mutually recursive

rules. Usually, only a subset of the IDB predicates are returned to

the user, and we will call them the answer IDBs. The Immediate
Consequence Operator, ICO, is the mapping on the IDB predicates

that consists of one application of all the Datalog rules. The seman-
tics of a Datalog program is given by the least fixpoint of its ICO.

The naive evaluation algorithm consists of repeatedly applying the

ICO until the IDBs no longer change.

In this paper we will combine multiple rules with the same head

into a single rule by OR-ing their bodies, and writing explicitly all

existential quantifiers. This is a common convention used in the

literature, see e.g., [13]. For example the following datalog program,

which computes the transitive closure of a relation 𝐸,

𝑇𝐶 (𝑥,𝑦) :- 𝐸 (𝑥,𝑦)
𝑇𝐶 (𝑥,𝑦) :- 𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧,𝑦)

becomes 𝑇𝐶 (𝑥,𝑦) :- 𝐸 (𝑥,𝑦) ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧,𝑦)).
(Pre-)Semirings A pre-semiring is a tuple 𝑺 = (𝑆, ⊕, ⊗, 0̄, 1̄)

where ⊕ is commutative, both ⊕, ⊗ are associative, have identi-

ties 0̄ and 1̄ respectively, and ⊗ distributes over ⊕. When ⊗ is

commutative, then we call 𝑺 a commutative pre-semiring. All pre-

semirings in this paper are commutative, and we will simply refer

to them as pre-semirings. When the equality 𝑥 ⊗ 0̄ = 0̄ holds

for all 𝑥 , then it is called a semiring. An ordered pre-semiring is a

pre-semiring with a partial order ⪯, where both ⊕, ⊗ are mono-

tone operations. When the partial order is defined by 𝑥 ⪯ 𝑦 iff

∃𝑧, 𝑥 ⊕ 𝑧 = 𝑦 then it is called the natural order. Examples of or-

dered (pre-)semirings are the Booleans B = ({0, 1},∨,∧, 0, 1), the
closed natural numbers N∞ = (N ∪ {∞}, +, ∗, 0, 1), the tropical

semiring Trop = (N ∪ {∞},min, +,∞, 0), the reversed tropical

semiring Trop𝑟 = (N,max, +, 0, 0), the lifted naturals and lifted

reals N⊥ = (N ∪ {⊥}, +, ∗, 0, 1), R⊥ = (R ∪ {⊥}, +, ∗, 0, 1), where
⊥+𝑥 = ⊥∗𝑥 = ⊥. The structuresB,N∞, Trop are semirings, the oth-

ers are pre-semirings. B, N∞, Trop, and Trop𝑟 are naturally ordered.
Confusingly (!!), the order relation on Trop is the reverse one:∞ is

the smallest, and 0 is the largest element. The order relation in N⊥
and R⊥ is given by ⊥ ⪯ 𝑥 for all 𝑥 : they are ordered pre-semirings

but not naturally ordered.
3

𝑺-relations An 𝑺-relation 𝑅 is a function that associates to each

tuple 𝑡 ∈ 𝐷𝑘 a value in the semiring, 𝑅 [𝑡] ∈ 𝑺 . In this context, 𝑺 is
called the value space of the relation 𝑅, while the domain 𝐷 of its

attributes is called the key space. 𝑺-relations were first introduced4

by Green et al. [18] in order to model data provenance. A B-relation
is a set, anN∞-relation is a bag (with possibly infinite multiplicities),

an R⊥-relation is a tensor (with possibly undefined entries).

Queries Consider a relational schema 𝑅1, 𝑅2, . . . over a pre-

semiring 𝑺 . A positive (relational algebra) query is a relational

algebra expression using selections, projections, joins, and unions

(no difference operator in the positive fragment). The most com-

mon definition of the relational algebra restricts the predicates used

in selections to equality predicates, 𝑥 = 𝑦. In this paper we fol-

low [18] and allow arbitrary predicates 𝑝 (𝑥,𝑦, . . .) over the value
space, including disequality 𝑥 ≠ 𝑦, inequality 𝑥 < 𝑦, or any other

interpreted predicate. Green [18] showed that positive relational

algebra extends naturally to an arbitrary semiring 𝑺 . When 𝑺 is

the Boolean semiring, then this coincides with the set semantics of

relational algebra, and when 𝑺 is the semiring of natural numbers,

then it coincides with bag semantics.

3
Note that we define Trop and Trop𝑟 over the natural numbers rather than the reals.

The motivation for this slight deviation from the standard definition of these semirings

will become clear in Section 5: the support of integer theories by the SMT-solver z3.
4
Under the name 𝐾 -relations.
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Normal Forms Alternatively, a query can be described using

rules, as follows. A sum-product query is an expression

𝑇 (𝑥1, . . . , 𝑥𝑘 ) :-
⊕

𝑥𝑘+1,...,𝑥𝑝 ∈𝐷
𝐴1 ⊗ · · · ⊗ 𝐴𝑚 (1)

where each 𝐴𝑢 is a relational atom of the form 𝑅𝑖 (𝑥𝑡1𝑖 , . . . , 𝑥𝑡𝑘𝑖 ),
or some interpreted predicate such as 𝑥𝑖 > 5𝑥 𝑗 + 3. The variables

𝑥1, . . . , 𝑥𝑘 are called free variables, or head variables, and the others

are called bound variables. A sum-sum-product query has the form:

𝑄 (𝑥1, . . . , 𝑥𝑘 ) :- 𝑇1 (𝑥1, . . . , 𝑥𝑘 ) ⊕ · · · ⊕ 𝑇𝑞 (𝑥1, . . . , 𝑥𝑘 ) (2)

where 𝑇1,𝑇2, . . . ,𝑇𝑞 are sum-product expressions with the same

head variables 𝑥1, . . . , 𝑥𝑘 . When the semiring is B,N∞ and the inter-

preted predicates are restricted to equality predicates, these queries

are (Unions of) Conjunctive Queries (UCQs) under set semantics,

or under bag semantics; when the semiring is R⊥, the sum-products

are tensor expressions, sometimes called Einsum expressions [34].
Every positive relational algebra query 𝑄 can be converted into a

sum-sum-product expression, which we call the normal form of 𝑄 .

Datalogo Let 𝑺 be an ordered pre-semiring. ADatalog◦ program
consists of a set of (possibly recursive) sum-sum-product rules (2)

over 𝑺-relations. We allow two extensions to the expressions (1)

and (2): the summation in (1) may be restricted by some Boolean

predicate, and we also allow an atom 𝐴 in (1) to be an interpreted
function. One important interpreted function is the cast operator

[−] 1̄
0̄

: B→ 𝑺 , which maps 0 to 0̄ and 1 to 1̄ and therefore, for any

predicate 𝑃 , [𝑃] 1̄
0̄

is an atom in the pre-semiring 𝑺 . For example,

[𝑥 < 𝑦] 1̄
0̄

is 0̄ ∈ 𝑺 when 𝑥 ≥ 𝑦 and 1̄ ∈ 𝑺 when 𝑥 < 𝑦; when

0̄, 1̄ are clear from the context, we drop them and write simply

[𝑥 < 𝑦]. We treat interpreted functions in a similar way to negation

in standard Datalog, and require a program to be stratified, such
that the interpreted functions are applied only to EDBs or to IDBs

defined in earlier strata. This implies that the ICO of that stratum

is a monotone function in the IDBs defined by that stratum, and

its semantics is defined as its least fixpoint. Abo Khamis et al. [23]

proved that any Datalog◦ program over the semirings discussed

in this section (except for N∞ and Trop𝑟 ) converges in polynomial

time in the size of the input database.

Example 2.1. Consider the body of the rule in Fig. 1(b). The re-

lations 𝐿,𝐶𝐶 are over the tropical semiring, while 𝐸 is over the

Boolean semiring. Formally, its body is a sum-sum-product expres-

sion, with a Boolean predicate:

𝐿[𝑥] ⊕
⊕
𝑦

{𝐶𝐶 [𝑦] | 𝐸 (𝑥,𝑦)}

Here the summation

⊕
𝑦 is restricted to those values 𝑦 that satisfy

the predicate 𝐸 (𝑥,𝑦). Equivalently, we can rephrase it as:

𝐿[𝑥] ⊕
⊕
𝑦

(
𝐶𝐶 [𝑦] ⊗ [𝐸 (𝑥,𝑦)]0∞

)
where [−]0∞ is the cast operator from B to Trop; it maps 0, 1 to∞, 0
respectively. Alternatively, suppose that we represent a label 𝑣 =

𝐿[𝑥] using a standard, Boolean-valued relation 𝐿(𝑥, 𝑣), where 𝑥 is a

key, and 𝑣 is the numerical value (label). Then, instead of the atom

𝐿[𝑥] we would write

⊕
𝑣{𝑣 | 𝐿(𝑥, 𝑣)}, or

⊕
𝑣

(
𝑣 ⊗ [𝐿(𝑥, 𝑣)]0∞

)
.

Here 𝑣 is considered to be an atom.

3 THE FGH-RULE
In this section we introduce a simple rewrite rule that allows us to

rewrite an iterative program to another, possibly more efficient pro-

gram. Then, we illustrate how this rule, when applied to Datalog◦

programs, can express several known optimizations in the literature,

as well as some new ones.

Consider an iterative program that repeatedly applies a func-

tion 𝐹 until some termination condition is satisfied, then applies a

function 𝐺 that returns the final answer 𝑌 :

𝑋 ← 𝑋0

loop 𝑋 ← 𝐹 (𝑋 ) end loop (3)

𝑌 ← 𝐺 (𝑋 )

We call this an FG-program. The FGH-rule (pronounced FIG-rule)
provides a sufficient condition for the final answer𝑌 to be computed

by the alternative program, called the GH-program:

𝑌 ← 𝐺 (𝑋0)
loop 𝑌 ← 𝐻 (𝑌 ) end loop (4)

Theorem 3.1 (The FGH-Rule). If the following identity holds:

𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 )) (5)

then the FG-program (3) is equivalent to the GH-program (4).

Proof. Let 𝑋0, 𝑋1, 𝑋2, . . . denote the intermediate values of the

FG-program, and 𝑌0, 𝑌1, 𝑌2, . . . those of the GH-program. By the

FGH-rule, the following diagram commutes, proving the claim:

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑛

𝑌0 𝑌1 𝑌2 · · · 𝑌𝑛

𝐹

𝐺

𝐻

𝐺

𝐹

𝐻

𝐺

𝐹

𝐻

𝐺

𝐹

𝐻

□

In this paper we will apply the FGH-rule to optimize Datalog◦

programs. In this context, 𝐹 is the ICO of the Datalog◦ program,

𝑋 is the tuple of all its IDB predicates, and 𝑌 are the answer-IDB

predicates. We will also make the natural assumption that 𝐺 maps

the initial state 𝑋0 of the IDBs of the program (3) to the initial state

𝑌0 of (4). For example, if both programs are traditional Datalog

programs, then the initial state consists of all IDBs being the empty

set, which we denote, with some abuse, by 𝑋0 = ∅, even when

𝑋 consists of several mutually recursive IDBs. Similarly, 𝑌0 = ∅.
Typically, 𝐺 is a conjunctive query, which maps ∅ to ∅, and in that

case the theorem implies that, if Eq. (5) holds, then the following

Datalog◦ programs Π1,Π2 return the same answer 𝑌 :

Π1 : 𝑋 :- 𝐹 (𝑋 ) Π2 : 𝑌 :- 𝐻 (𝑌 )
𝑌 :- 𝐺 (𝑋 ) (6)

More generally, however, the theorem does not care about the

termination condition of the FG-programs (3). It only assumes that

the GH-program is executed the same number of iterations as the

FG-program. However, it follows immediately that, if 𝐹 reaches a

fixpoint, then so does 𝐻 :

Corollary 3.2. If the FG-program reaches a fixpoint after 𝑛 steps
(meaning: 𝑋𝑛 = 𝑋𝑛+1) then the GH-program also reaches a fixpoint
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𝐶𝐶1 [𝑥 ]
def

= min

𝑦
{𝐿 [𝑦 ] | 𝑇𝐶′ (𝑥, 𝑦) }

=min

𝑦
{𝐿 [𝑦 ] | [𝑥 = 𝑦 ] ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧, 𝑦)) }

=min(𝐿 [𝑥 ],min

𝑦
{𝐿 [𝑦 ] | ∃𝑧 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧, 𝑦)) })

=min(𝐿 [𝑥 ],min

𝑦,𝑧
{𝐿 [𝑦 ] | 𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧, 𝑦) })

𝐶𝐶2 [𝑥 ]
def

= min(𝐿 [𝑥 ],min

𝑦
{𝐶𝐶 [𝑦 ] | 𝐸 (𝑥, 𝑦) })

=min(𝐿 [𝑥 ],min

𝑦
{min

𝑦′
{𝐿 [𝑦′ ] | 𝑇𝐶 (𝑦, 𝑦′) } | 𝐸 (𝑥, 𝑦) })

=min(𝐿 [𝑥 ],min

𝑦′,𝑦
{𝐿 [𝑦′ ] | 𝐸 (𝑥, 𝑦) ∧𝑇𝐶 (𝑦, 𝑦′) })

Figure 2: Computing 𝐶𝐶1 and 𝐶𝐶2 from Example 3.3.

after 𝑛 steps (𝑌𝑛 = 𝑌𝑛+1). The converse fails: the GH-program may
converge much faster than the FG-program.

In summary, the optimization proceeds as follows. Given an

FG-program defined by the query expressions 𝐹 and 𝐺 , find a new

query expression𝐻 such that the identity𝐺 ◦ 𝐹 = 𝐻 ◦𝐺 holds, then

replace the FG-program with the GH-program. We will describe

this process in detail in Sec. 4. In the remainder of this section we

present several examples showing that the FGH-rule can express

several known optimizations, like magic set rewriting, and new

optimizations, like semantic optimizations using global constraints.

3.1 Simple Examples
Example 3.3 (Connected Components). Consider the computation

of the connected components of a graph, which is a well-known

target of query optimization in the literature, see e.g., [55]. The

program is given in Fig. 1 (a), and its optimized version in Fig. 1 (b).

The three transformations 𝐹,𝐺, 𝐻 are as follows:

𝐹 (𝑇𝐶) def=𝑇𝐶′ where 𝑇𝐶′ (𝑥, 𝑦) def= [𝑥 = 𝑦 ] ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧, 𝑦))

𝐺 (𝑇𝐶) def=𝐶𝐶 where 𝐶𝐶 [𝑥 ] def= min

𝑦
{𝐿 [𝑦 ] | 𝑇𝐶 (𝑥, 𝑦) }

𝐻 (𝐶𝐶) def=𝐶𝐶′ where 𝐶𝐶′ [𝑥 ] def= min(𝐿 [𝑥 ],min

𝑦
{𝐶𝐶 [𝑦 ] | 𝐸 (𝑥, 𝑦) })

To check the FGH-rule, we compute 𝐶𝐶1

def

= 𝐺 (𝐹 (𝑇𝐶)) = 𝐺 (𝑇𝐶 ′),
then compute 𝐶𝐶2

def

= 𝐻 (𝐺 (𝑇𝐶)) = 𝐻 (𝐶𝐶), both shown in Fig. 2,

and observe that it becomes identical to 𝐶𝐶1 after renaming the

variables 𝑦′, 𝑦 to 𝑦, 𝑧 respectively.

Example 3.4 (PreM Property). Zaniolo et al. [54] define the Pre-
mappability rule (PreM), and prove that, under this rule, one Data-

log program with ICO 𝐹 is equivalent to another program with a

simpler ICO. The PreM property is a restricted form of the FGH-rule,

more precisely it asserts that the identity 𝐺 (𝐹 (𝑋 )) = 𝐺 (𝐹 (𝐺 (𝑋 )))
holds. In this case one can simply define 𝐻 as 𝐻 (𝑋 ) = 𝐺 (𝐹 (𝑋 )),
and the FGH-rule holds. The PreM rule is more restricted than the

FGH-rule, in two ways. First, the types of the IDBs of the F-program

and the H-program must be the same. Second, the new query 𝐻

is uniquely defined, namely 𝐻
def

= 𝐺 ◦ 𝐹 . While this simplifies the

optimizer significantly, it also limits the type of optimizations that

are possible under PreM.

Example 3.5 (Simple Magic). The simplest application of magic

set optimization [5, 28, 29] converts transitive closure to reachability.

𝐹 (𝑇𝐶) def=𝑇𝐶′ where𝑇𝐶′ (𝑥, 𝑦) def= [𝑥 = 𝑦 ] ∨ ∃𝑧 (𝑇𝐶 (𝑥, 𝑧) ∧ 𝐸 (𝑧, 𝑦))

𝐺 (𝑇𝐶) def=𝑄 where 𝑄 (𝑦) def=𝑇𝐶 (𝑎, 𝑦)

𝐻 (𝑄) def=𝑄′ where 𝑄′ (𝑦) def= [𝑦 = 𝑎] ∨ ∃𝑧 (𝑄 (𝑧) ∧ 𝐸 (𝑧, 𝑦))

Figure 3: Expressions 𝐹,𝐺, 𝐻 in Example 3.5.

More precisely, it rewrites this program:

Π1 : 𝑇𝐶 (𝑥,𝑦) :- [𝑥 = 𝑦] ∨ ∃𝑧 (𝑇𝐶 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦))
𝑄 (𝑦) :- 𝑇𝐶 (𝑎,𝑦) (7)

where 𝑎 is some constant, into this program:

Π2 : 𝑄 (𝑦) :- [𝑦 = 𝑎] ∨ ∃𝑧 (𝑄 (𝑧) ∧ 𝐸 (𝑧,𝑦)) (8)

This is a powerful optimization, because it reduces the run time

from 𝑂 (𝑛2) to 𝑂 (𝑛). Several Datalog systems support some form

of magic set optimizations. We check that (7) is equivalent to (8) by

verifying the FGH-rule. The functions 𝐹,𝐺, 𝐻 are shown in Fig. 3.

One can verify that 𝐺 (𝐹 (𝑇𝐶)) = 𝐻 (𝐺 (𝑇𝐶)), for any relation 𝑇𝐶 .

Indeed, after converting both expressions to normal form, we obtain

𝐺 (𝐹 (𝑇𝐶)) = 𝐻 (𝐺 (𝑇𝐶)) = 𝑃 , where:

𝑃 (𝑦) def= [𝑦 = 𝑎] ∨ ∃𝑧 (𝑇𝐶 (𝑎, 𝑧) ∧ 𝐸 (𝑧,𝑦))
We prove in the full version of this paper that, given a sideways

information passing strategy (SIPS) [6] every magic set optimiza-

tion [4] over a Datalog program can be proven correct using a

sequence of applications of the FGH-rule.

Example 3.6 (Generalized Semi-Naive Evaluation). The naïve eval-
uation algorithm for (positive) Datalog re-discovers each fact from

step 𝑡 again at steps 𝑡 + 1, 𝑡 + 2, . . . The semi-naive algorithm aims at

avoiding this, by computing only the new facts. We generalize the
semi-naive evaluation from the Boolean semiring to any ordered

pre-semiring 𝑺 , and prove it correct using the FGH-rule. We require

𝑺 to be a complete distributive lattice and ⊕ to be idempotent, and

define the “minus” operation as: 𝑏 ⊖ 𝑎 def

=
∧{𝑐 | 𝑏 ⪯ 𝑎 ⊕ 𝑐}, then

prove using the FGH-rule the following programs equivalent:

Π1 : Π2 :

𝑋0 := ∅; 𝑌0 := ∅; Δ0 := 𝐹 (∅) ⊖ ∅; (= 𝐹 (∅))
loop 𝑋𝑡 := 𝐹 (𝑋𝑡−1); loop 𝑌𝑡 := 𝑌𝑡−1 ⊕ Δ𝑡−1;

Δ𝑡 := 𝐹 (𝑌𝑡 ) ⊖ 𝑌𝑡 ;

To prove their equivalence, we define 𝐺 (𝑋 ) def

= (𝑋, 𝐹 (𝑋 ) ⊖ 𝑋 ),
𝐻 (𝑋,Δ) def= (𝑋 ⊕ Δ, 𝐹 (𝑋 ⊕ Δ) ⊖ (𝑋 ⊕ Δ)), and then we prove that

𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 )) by exploiting the fact that 𝑺 is a complete

distributive lattice. In practice, we compute the difference Δ𝑡 =

𝐹 (𝑌𝑡 ) ⊖𝑌𝑡 = 𝐹 (𝑌𝑡−1⊕Δ𝑡−1) ⊖𝐹 (𝑌𝑡−1) using an efficient differential

rule that computes 𝛿𝐹 (𝑌𝑡−1,Δ𝑡−1) = 𝐹 (𝑌𝑡−1 ⊕ Δ𝑡−1) ⊖ 𝐹 (𝑌𝑡−1),
where 𝛿𝐹 is an incremental update query for 𝐹 , i.e., it satisfies the

identity 𝐹 (𝑌 ) ⊕ 𝛿𝐹 (𝑌,Δ) = 𝐹 (𝑌 ⊕ Δ).
Thus, semi-naive query evaluation generalizes from standard

Datalog over the Booleans to Datalog◦ over any complete distribu-

tive lattice with idempotent ⊕, and, moreover, is a special case of the

FGH-rule. However, the semi-naive program (more precisely, func-

tion 𝐻 ) is no longer monotone, while our synthesizer (described in

Sec. 6) is currently restricted to infer monotone functions 𝐻 . For
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that reason we do not synthesize the semi-naive algorithm; instead

we apply it using pattern-matching as the last optimization step.

3.2 Loop Invariants
More advanced uses of the FGH-rule require a loop-invariant, 𝜙 (𝑋 ).
By refining Theorem 3.1 with a loop invariant we obtain the fol-

lowing corollary:

Corollary 3.7. Let𝜙 (𝑋 ) be any predicate satisfying the following
three conditions:

𝜙 (𝑋0) (9)

𝜙 (𝑋 ) ⇒ 𝜙 (𝐹 (𝑋 )) (10)

𝜙 (𝑋 ) ⇒ (𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 ))) (11)

then the FG-program (3) is equivalent to the GH-program (4).

To prove the corollary, we consider the restriction of the function

𝐹 to values 𝑋 that satisfy 𝜙 . Conditions (9) and (10) state that 𝜙 is

a loop invariant for the FG-program (3), while condition (11) is the

FGH-rule applied to the restriction of 𝐹 to 𝜙 .

Example 3.8 (Beyond Magic). By using loop-invariants, we can

perform optimizations that are more powerful than standard magic

set rewritings. For a simple illustration, consider the following

program:

Π1 : 𝑇𝐶 (𝑥,𝑦) :- [𝑥 = 𝑦] ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧,𝑦)) (12)

𝑄 (𝑦) :- 𝑇𝐶 (𝑎,𝑦)
which we want to optimize to:

Π2 : 𝑄 (𝑦) :- [𝑦 = 𝑎] ∨ ∃𝑧 (𝑄 (𝑧) ∧ 𝐸 (𝑧,𝑦)) (13)

Unlike the simple magic program in Example 3.5, here rule (12) is

right-recursive. As shown in [6], the magic set optimization using

the standard sideways information passing optimization [1] yields

a program that is more complicated than our program (13). Indeed,

consider a graph that is simply a directed path 𝑎0 → 𝑎1 → · · · →
𝑎𝑛 with 𝑎 = 𝑎0. Then, even with magic set optimization, the right-

recursive rule (12) needs to derive quadratically many facts of the

form 𝑇 (𝑎𝑖 , 𝑎 𝑗 ) for 𝑖 ≤ 𝑗 , whereas the optimized program (13) can

be evaluated in linear time. Note also that the FGH-rule cannot be

applied directly to prove that the program (12) is equivalent to (13).

To see this, denote by 𝑃1

def

= 𝐺 (𝐹 (𝑇𝐶)) and 𝑃2

def

= 𝐻 (𝐺 (𝑇𝐶)), and
observe that 𝑃1, 𝑃2 are defined as:

𝑃1 (𝑦)
def

= [𝑦 = 𝑎] ∨ ∃𝑧 (𝐸 (𝑎, 𝑧) ∧𝑇𝐶 (𝑧,𝑦))

𝑃2 (𝑦)
def

= [𝑦 = 𝑎] ∨ ∃𝑧 (𝑇𝐶 (𝑎, 𝑧) ∧ 𝐸 (𝑧,𝑦))
In general, 𝑃1 ≠ 𝑃2. The problem is that the FGH-rule requires that

𝐺 (𝐹 (𝑇𝐶)) = 𝐻 (𝐺 (𝑇𝐶)) for every input 𝑇𝐶 , not just the transitive
closure of 𝐸. However, the FGH-rule does hold if we restrict 𝑇𝐶 to

relations that satisfy the following loop-invariant 𝜙 (𝑇𝐶):
∃𝑧1 (𝐸 (𝑥, 𝑧1) ∧𝑇𝐶 (𝑧1, 𝑦)) ⇔ ∃𝑧2 (𝑇𝐶 (𝑥, 𝑧2) ∧ 𝐸 (𝑧2, 𝑦)) (14)

If 𝑇𝐶 satisfies this predicate, then it follows immediately that 𝑃1 =

𝑃2, allowing us to optimize the program (12) to (13). It remains

to prove that 𝜙 is indeed an invariant for the function 𝐹 . The

base case (9) holds because both sides of (14) are empty when

𝑇𝐶 = ∅. It remains to check 𝜙 (𝑇𝐶) ⇒ 𝜙 (𝐹 (𝑇𝐶)). Let us denote

Ψ1 (𝑥, 𝑦) ≡∃𝑧1 (𝐸 (𝑥, 𝑧1) ∧ ( [𝑧1 = 𝑦 ] ∨ ∃𝑧 (𝐸 (𝑧1, 𝑧) ∧𝑇𝐶 (𝑧, 𝑦))))
≡∃𝑧1 (𝐸 (𝑥, 𝑧1) ∧ [𝑧1 = 𝑦 ] ∨ 𝐸 (𝑥, 𝑧1) ∧ ∃𝑧 (𝐸 (𝑧1, 𝑧) ∧𝑇𝐶 (𝑧, 𝑦)))
≡𝐸 (𝑥, 𝑦) ∨ ∃𝑧1 (𝐸 (𝑥, 𝑧1) ∧ ∃𝑧 (𝐸 (𝑧1, 𝑧) ∧𝑇𝐶 (𝑧, 𝑦)))
≡𝐸 (𝑥, 𝑦) ∨ ∃𝑧1 (𝐸 (𝑥, 𝑧1) ∧ ∃𝑧2 (𝐸 (𝑧1, 𝑧2) ∧𝑇𝐶 (𝑧2, 𝑦)))

Ψ2 (𝑥, 𝑦) ≡∃𝑧2 ( ( [𝑥 = 𝑧2 ] ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧, 𝑧2))) ∧ 𝐸 (𝑧2, 𝑦))
≡𝐸 (𝑥, 𝑦) ∨ ∃𝑧, 𝑧2 (𝐸 (𝑥, 𝑧) ∧𝑇𝐶 (𝑧, 𝑧2) ∧ 𝐸 (𝑧2, 𝑦))
≡𝐸 (𝑥, 𝑦) ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧ ∃𝑧2 (𝑇𝐶 (𝑧, 𝑧2) ∧ 𝐸 (𝑧2, 𝑦)))
≡𝐸 (𝑥, 𝑦) ∨ ∃𝑧1 (𝐸 (𝑥, 𝑧1) ∧ ∃𝑧2 (𝑇𝐶 (𝑧1, 𝑧2) ∧ 𝐸 (𝑧2, 𝑦)))

Figure 4: Predicates Ψ1 and Ψ2 from Example 3.8.

𝑇𝐶 ′
def

= 𝐹 (𝑇𝐶), then we need to check that, if (14) holds, then the

predicate Ψ1 (𝑥,𝑦)
def

= ∃𝑧1 (𝐸 (𝑥, 𝑧1) ∧ 𝑇𝐶 ′(𝑧1, 𝑦)) is equivalent to
the predicate Ψ2 (𝑥,𝑦)

def

= ∃𝑧2 (𝑇𝐶 ′(𝑥, 𝑧2) ∧ 𝐸 (𝑧2, 𝑦)). We expand

both predicates in Fig. 4, where we renamed 𝑧 to 𝑧2 in the last line

of Ψ1, and renamed 𝑧 to 𝑧1 in Ψ2. Their equivalence follows from

the assumption (14).

3.3 Semantic Optimization Under Constraints
Semantic optimization refers to optimization rules that hold when

the database satisfies certain constraints [32]. For example, most

database systems today can optimize key/foreign-key joins by sim-

ply removing the join when the table containing the key is not used

anywhere else in the query.

A priori knowledge on the structure of the underlying data may

often provide additional potential for optimization. For instance,

in [5], the counting and reverse counting methods are presented

to further optimize the same-generation program if it is known

that the underlying graph is acyclic. We present a principled way

of exploiting such a priori knowledge. As we show here, recursive

queries have the potential to use global constraints on the data

during semantic optimization; for example, the query optimizermay

exploit the fact that the graph is a tree, or the graph is connected.

Let Γ denote a set of constraints on the EDBs. Then, the FGH-

rule (5) needs to be be checked only for EDBs that satisfy Γ. We

illustrate this with an example:

Example 3.9 (Semantic Optimization). Consider a hierarchy of

subparts consisting of two relations: SubPart(𝑥,𝑦) indicates that
𝑦 is a subpart of 𝑥 , and Cost[𝑥] ∈ N represents the cost of the

part 𝑥 . We want to compute, for each 𝑥 , the total cost 𝑄 [𝑥] of all
its subparts, sub-subparts, etc. Since the hierarchy can, in general,

be a DAG, we first need to compute the transitive closure, before

summing up the costs of all subparts, sub-subparts, etc:

Π1 : 𝑆 (𝑥,𝑦) :- [𝑥 = 𝑦] ∨ ∃𝑧 (𝑆 (𝑥, 𝑧) ∧ SubPart(𝑧,𝑦)) (15)

𝑄 [𝑥] :-
∑︁
𝑦

{Cost[𝑦] | 𝑆 (𝑥,𝑦)}

The first rule, defining the 𝑆 predicate, is over the B semiring, while

the second rule, defining 𝑄 , is over the N⊥ semiring. Consider now

the case when our subpart hierarchy is a tree. Then, we can compute

the total cost much more efficiently, using the following program:

Π2 : 𝑄 [𝑥] :- Cost[𝑥] +
∑︁
𝑧

{𝑄 [𝑧] | SubPart(𝑥, 𝑧)} (16)
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𝑃1 [𝑥 ] =
∑︁
𝑦

{Cost[𝑦 ] | [𝑥 = 𝑦 ] ∨ ∃𝑧 (𝑆 (𝑥, 𝑧) ∧ SubPart(𝑧, 𝑦)) }

=Cost[𝑥 ] +
∑︁
𝑦

{Cost[𝑦 ] | ∃𝑧 (𝑆 (𝑥, 𝑧) ∧ SubPart(𝑧, 𝑦)) }

−
∑︁
𝑦

{Cost[𝑦 ] | [𝑥 = 𝑦 ] ∧ ∃𝑧 (𝑆 (𝑥, 𝑧) ∧ SubPart(𝑧, 𝑦)) }

=Cost[𝑥 ] +
∑︁
𝑦

{Cost[𝑦 ] | ∃𝑧 (𝑆 (𝑥, 𝑧) ∧ SubPart(𝑧, 𝑦)) }

=Cost[𝑥 ] +
∑︁
𝑦

∑︁
𝑧

{Cost[𝑦 ] | (𝑆 (𝑥, 𝑧) ∧ SubPart(𝑧, 𝑦)) }

Figure 5: Transformation of 𝑃1

def
= 𝐺 (𝐹 (𝑆)) in Example 3.9.

Optimizing the program (15) to (16) is an instance of semantic
optimization, since this only holds if the database instance is a tree.

We do this in three steps. We define the constraint Γ stating that the

data is a tree; using Γ we infer a loop-invariant Φ of the program

Π1; using Γ and Φ we prove the FGH-rule, concluding that Π1 is

equivalent to Π2.

The constraint Γ is the conjunction of the following statements:

∀𝑥1, 𝑥2, 𝑦 (SubPart(𝑥1, 𝑦) ∧ SubPart(𝑥2, 𝑦) ⇒ 𝑥1 = 𝑥2) (17)

∀𝑥,𝑦 (SubPart(𝑥,𝑦) ⇒ 𝑇 (𝑥,𝑦)) (18)

∀𝑥,𝑦, 𝑧 (𝑇 (𝑥, 𝑧) ∧ SubPart(𝑧,𝑦) ⇒ 𝑇 (𝑥,𝑦)) (19)

∀𝑥,𝑦 (𝑇 (𝑥,𝑦) ⇒ 𝑥 ≠ 𝑦) (20)

The first asserts that 𝑦 is a key in SubPart(𝑥,𝑦). The last three

are an Existential Second Order Logic (ESO) statement: they assert

that there exists some relation 𝑇 (𝑥,𝑦) that contains SubPart, is
transitively closed, and irreflexive. Next, we infer the following

loop-invariant of the program Π1:

Φ : 𝑆 (𝑥,𝑦) ⇒ [𝑥 = 𝑦] ∨𝑇 (𝑥,𝑦) (21)

Finally, we check the FGH-rule, under the assumptions Γ,Φ. Denote

by 𝑃1

def

= 𝐺 (𝐹 (𝑆)) and 𝑃2

def

= 𝐻 (𝐺 (𝑆)). To prove 𝑃1 = 𝑃2 we simplify

𝑃1 using the assumptions Γ,Φ, as shown in Fig. 5. We explain each

step. Line 2-3 are inclusion/exclusion. Line 4 uses the fact that the

term on line 3 is = 0, because the loop invariant implies:

𝑆 (𝑥, 𝑧) ∧ SubPart(𝑧, 𝑦) ⇒ ( [𝑥 = 𝑧 ] ∨𝑇 (𝑥, 𝑧)) ∧ SubPart(𝑧, 𝑦) by (21)

≡ SubPart(𝑥, 𝑦) ∨ (𝑇 (𝑥, 𝑧) ∧ SubPart(𝑧, 𝑦))
⇒ 𝑇 (𝑥, 𝑦) ∨𝑇 (𝑥, 𝑦) by (19)

≡ 𝑇 (𝑥, 𝑦)
⇒ 𝑥 ≠ 𝑦 by (20)

Line 5 follows from the fact that 𝑦 is a key in SubPart(𝑧,𝑦). A
direct calculation of 𝑃2 = 𝐻 (𝐺 (𝑆)) results in the same expression

as line 5 of Fig. 5, proving that 𝑃1 = 𝑃2.

4 ARCHITECTURE OF FGH-OPTIMIZATION
In the rest of the paper we describe our synthesis-based FGH-

optimizer, whose architecture is shown in Fig. 6. We optimize

one stratum at a time. We denote by Π1 one stratum of the input

program, denote by 𝑋 its recursive IDBs, by 𝑌 its output IDBs,

and by 𝐹,𝐺 the ICO and the output operator respectively; see

Eq. (6). The optimizer also takes as input a database constraint,

Γ. The optimizer starts by inferring the loop invariant Φ; this is
discussed in Sec. 7. Next, the optimizer needs to find 𝐻 such that

Counterexample- 
based synthesis

Invariant 
inference

Rule-based 
synthesis

Grammar 
generator

Fail CEGIS 
(Rosette)

Denormalize

Success

Generalized Semi-Naive 
rewriting (GSN)

Fail

Success

EQSAT 
(EGG)

SMT Solver 
(Z3)

Figure 6: The architecture of the FGH-optimizer. The input
is the unoptimized program Π1, consisting of the functions
𝐹,𝐺 and the database constraint Γ. The output consists of the
optimized program Π2, see Eq. (6). Blue boxes are described
in Section 6 and the green boxes in Section 7. The yellow
box (generalized semi-naive optimization) is described in
Section 3.1. The red boxes represent three state-of-the-art
systems: Rosette is a CEGIS system [43, 45, 46], z3 is an SMT
solver [9], and EGG is an EQSAT system [53].

Γ ∧ Φ |= (𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 ))). To reduce clutter we will often

abbreviate this to Γ |= (𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 ))), assuming that Γ in-

corporates Φ. The optimizer makes two attempts at synthesizing 𝐻 :

it first tries using a simpler rule-based synthesizer, and, if that fails,

then it tries the state-of-the-art Counterexample-Guided Inductive

Synthesis (CEGIS). This is described in Sec. 6. Finally,𝐻 (or the orig-

inal program if the FGH-optimization failed) is further transformed

using generalized semi-naive optimization, as we already described

in Sec. 3.1. Notice that stratification ensures that no interpreted

functions are applied to the IDBs 𝑋 ; they can still be applied to the

EDBs, or occur in predicates.

The FGH-optimization is an instance of query rewriting using

views [16, 21]. Denoting by 𝑄
def

= 𝐺 (𝐹 (𝑋 )) and 𝑉
def

= 𝐺 (𝑋 ), one
has to rewrite the query 𝑄 using the view(s) 𝑉 , in other words

𝑄 = 𝐻 (𝑉 ). This is a total rewriting, in the sense that 𝐻 may no

longer refer to the IDBs 𝑋 . This problem is NP-complete for UCQs

with set semantics [26], in NP for UCQs with bag semantics
5
, and

undecidable for realistic SQL queries that include aggregates and

arithmetic [16]. Systems that support query rewriting using views

are rule-based, and apply a set of hand crafted, predefined patterns;

our first attempt to synthesize 𝐻 is also rule-based. Such synthe-

sizers usually cannot take advantage of database constraints, but

we will show in Sec. 7 how to exploit the constraint Γ in the rule-

based synthesizer. However, rule-based rewriting explores a limited

space, which is insufficient for many FGH-optimizations. In a semi-

nal paper [43] Solar-Lezama proposed an alternative to rule-based

transformation, called Counterexample-Guided Inductive Synthesis,
CEGIS: the synthesizer produces potentially incorrect candidates,

5
This follows from the fact that, under bag semantics, two UCQ queries are equivalent

iff they are isomorphic. [17, 52].
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𝐶𝐶1 [𝑥 ] =
⊕
𝑦

𝐿 [𝑦 ] ⊗
(
[𝑥 = 𝑦 ]0∞ ⊕

⊕
𝑧

[𝐸 (𝑥, 𝑧) ]0∞ ⊗ [𝑇𝐶 (𝑧, 𝑦) ]0∞
)

𝐶𝐶2 [𝑥 ] = 𝐿 [𝑥 ] ⊕
⊕
𝑦

(⊕
𝑦′

𝐿 [𝑦′ ] ⊗ [𝑇𝐶 (𝑦, 𝑦′) ]0∞
)
⊗ [𝐸 (𝑥, 𝑦) ]0∞

Figure 7: 𝐶𝐶1 and 𝐶𝐶2 in semiring notation; their normal
forms are isomorphic.

and an SMT solver verifies their correctness. In the FGH-optimizer

we use a program synthesizer, Rosette [45], to synthesize 𝐻 .

At a conceptual level, program synthesis has two abstract steps:

generate 𝐻 , and verify 𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 )). While the verifier is

not used explicitly, it is used implicitly in the synthesizer, and we

describe it in Sec. 5. Then we describe the synthesizer in Sec. 6.

5 VERIFICATION
We introduced the FGH-rule in Sec. 3 and showed several examples.

In order to apply the rule, one needs to check the identity (5),

𝐹 (𝐺 (𝑋 )) = 𝐺 (𝐻 (𝑋 )). In this section we describe how we verify

this identity. This step is implicit in both boxes Rule-based Synthesis
and CEGIS in Fig 6. The identity can be checked in one of two

ways: by applying a predefined set of identity rules (as currently

done by most query optimizers), or by using an SMT solver.

5.1 Rule-based Test
Let 𝑃1 = 𝐺 (𝐹 (𝑋 )), 𝑃2 = 𝐻 (𝐺 (𝑋 )). To check 𝑃1 = 𝑃2, the rule-
based test first normalizes both expressions into a sum-sum-product

expression (Eq. (2)) via the semiring axioms, then checks if the

expressions are isomorphic: if yes, then 𝑃1 = 𝑃2, otherwise we

assume 𝑃1 ≠ 𝑃2. The treatment of a constraint Γ will be discussed

in Sec. 7. This test can be visualized as follows:

𝑃1

axioms−−−−−−→ normalize(𝑃1) ≃ normalize(𝑃2)
axioms←−−−−−− 𝑃2 (22)

where ≃ denotes isomorphism. The Rule-based test is sound. When

both 𝑃1, 𝑃2 are over the N∞ semiring and have no interpreted func-

tions then it is also complete [17, 52]. This simple test motivates

the need for a complete set of axioms that allows any semiring

expression to be normalized. The axioms include standard semir-

ing axioms, and axioms about summations and free variables fv.
For example, in order to prove 𝐶𝐶1 = 𝐶𝐶2 in Example 3.3 (with

semiring notation in Figure 7) one needs all three axioms below:⊕
𝑥

⊕
𝑦

(· · · ) =
⊕
𝑥,𝑦

(· · · ) (23)

𝐴 ⊗
⊕
𝑥

𝐵 =
⊕
𝑥

𝐴 ⊗ 𝐵 when 𝑥 ∉ fv(𝐴) (24)⊕
𝑥

(𝐴(𝑥) ⊗ [𝑥 = 𝑦]) = 𝐴(𝑦) (25)

5.2 SMT Test
When the expressions 𝑃1, 𝑃2 are over a semiring other than N∞,
or they contain interpreted functions, then the rule-based test is

insufficient and we use an SMT solver for our verifier. We still

normalize the expressions using our axioms, because today’s solvers

cannot reason about bound/free variables (as needed in axioms (23)-

(25)). The SMT test is captured by the following figure:

𝑃1

axioms−−−−−−→ normalize(𝑃1)
SMT←−−→normalize(𝑃2)

axioms←−−−−−− 𝑃2 (26)

Example 5.1 (APSP100). Consider a labeled graph 𝐸 where 𝐸 [𝑥,𝑦]
represents the cost of the edge 𝑥,𝑦. The following query over Trop
computes the all-pairs shortest path up to length of 100:

𝐷 [𝑥, 𝑦 ] :- if 𝑥 = 𝑦 then 0 else min

𝑧
(𝐷 [𝑥, 𝑧 ] + 𝐸 [𝑧, 𝑦 ])

𝑄 [𝑥, 𝑦 ] :- min(𝐷 [𝑥, 𝑦 ], 100) (27)

The program is inefficient because it first computes the full path

length, only to cap it later to 100. By using the FGH-rule we get:

𝑄 [𝑥, 𝑦 ] :- if 𝑥 = 𝑦 then 0 else min

(
min

𝑧
(𝑄 [𝑥, 𝑧 ] + 𝐸 [𝑧, 𝑦 ]) , 100

)
(28)

We show how to verify that (28) is equivalent to (27). Denote

by 𝑃1

def

= 𝐺 (𝐹 (𝐷)) and 𝑃2

def

= 𝐻 (𝐺 (𝐷)) (where 𝐹,𝐺, 𝐻 are the

obvious functions in the two programs defining 𝑄). After we de-
sugar, convert to semiring expressions, and normalize, they become:

𝑃1 [𝑥, 𝑦 ] =
(
0 ⊗ [𝑥 = 𝑦 ]0∞

)
⊕

(⊕
𝑧

𝐷 [𝑥, 𝑧 ] ⊗ 𝐸 [𝑧, 𝑦 ]
)
⊕ 100

𝑃2 [𝑥, 𝑦 ] =
(
0 ⊗ [𝑥 = 𝑦 ]0∞

)
⊕

(⊕
𝑧

𝐷 [𝑥, 𝑧 ] ⊗ 𝐸 [𝑧, 𝑦 ]
)
⊕

(
100 ⊗

⊕
𝑧

𝐸 [𝑧, 𝑦 ]
)

⊕ 100

In the normalized expressions we push the summations past the

joins, i.e., we apply rule (24) from right to left, thus we write 100 ⊗⊕
(· · · ) instead of

⊕
(100 ⊗ · · · ): we give the rationale below. At

this point, the normalized 𝑃1 and 𝑃2 are not isomorphic, yet they

are equivalent if they are interpreted in Trop. We explain below in

detail how the solver can check that. In this particular semiring,

the identity 100 =
(
100 ⊗

⊕
𝑧 𝐸 [𝑧,𝑦]

)
⊕ 100 holds since it becomes

100 = min(100+min𝑧 𝐸 [𝑧,𝑦], 100) with 𝐸 [𝑧,𝑦] ≥ 0, once we replace

the uninterpreted operators ⊕, ⊗ with min, +.

ImplementationWe describe how we implemented the SMT

test Γ |= 𝑃1 = 𝑃2 using a solver, now also taking the database

constraint Γ into account, where 𝑃1, 𝑃2 are the expressions 𝐺 ◦ 𝐹
and 𝐻 ◦𝐺 . We used the z3 solver [9], but our discussion applies to

other solvers as well. We need to normalize 𝑃1, 𝑃2 before using the

solver, because solvers require all axioms to be expressed in First

Order Logic. They cannot encode the axioms (23)-(25), because they

are referring to free variables, which is a meta-logical condition

not expressible in First Order Logic. Once normalized, we encode

the equality as a first-order logic formula, and assert its negation,

asking the solver to check if Γ ∧ (𝑃1 ≠ 𝑃2) is satisfiable. The solver
returns UNSAT, a counterexample, or UNKNOWN. UNSAT means

the identity holds. When it returns a counterexample, then the

identity fails, and the counterexample is given as input to the syn-

thesizer (Sec. 6). UNKNOWNmeans that it could neither prove nor

disprove the equivalence and we assume 𝑃1 ≠ 𝑃2. For the theory

of reals with +, ∗, despite its decidability, z3 often timed out in our

experiments. We therefore used the theory of integers, and z3 never
timed out or returned UNKNOWN in our experiments.

We encode every 𝑺-relation 𝑅(𝑥1, . . . , 𝑥𝑛) as an uninterpreted

function 𝑅 : N × · · · × N→ 𝑺 , where 𝑺 is the interpreted semiring,

i.e., B, Trop, N∞, etc. We represent natural numbers as integers

with nonnegativity assertions, and represent the sets N∞,N⊥,R⊥
as union types. Operators supported by the solver, like +, ∗,min,−,
are entered unchanged; we treat other operators as uninterpreted
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functions. Unbounded aggregation, like

⊕
𝑥 𝑒 (𝑥), poses a challenge:

there is no such operation in any SMT theory. Here we use the fact

that 𝑃1 and 𝑃2 are normalized sum-sum-product expressions:

𝑃1 =

(⊕
𝑥1

𝑒1

)
⊕

(⊕
𝑥2

𝑒2

)
⊕ · · · 𝑃2 =

©­«
⊕
𝑥 ′

1

𝑒 ′
1

ª®¬ ⊕ ©­«
⊕
𝑥 ′

2

𝑒 ′
2

ª®¬ ⊕ · · ·
Assume first that each 𝑥𝑖 is a single variable. We ensure that all the

variables 𝑥1, 𝑥2, . . . in 𝑃1 are distinct, by renaming them if necessary.

Next, we replace each expression

⊕
𝑥𝑖
𝑒𝑖 with 𝑢 (𝑥𝑖 , 𝑒𝑖 ) where 𝑢 is

an uninterpreted function. Finally, we ask the solver to check

Γ |=
(
𝑢 (𝑥1, 𝑒1) ⊕ 𝑢 (𝑥2, 𝑒2) ⊕ · · · = 𝑢 (𝑥 ′

1
, 𝑒 ′

1
) ⊕ 𝑢 (𝑥 ′

2
, 𝑒 ′

2
) ⊕ · · ·

)
This procedure is sound, because if the identity 𝑢 (𝑥, 𝑒) = 𝑢 (𝑥 ′, 𝑒 ′)
holds, then 𝑥 = 𝑥 ′ (they are the same variable) and 𝑒 = 𝑒 ′, which
means that

⊕
𝑥 𝑒 =

⊕
𝑥 ′ 𝑒
′
. Moreover, when synthesizing 𝑃2,

we will ensure that the generator includes the variables 𝑥1, 𝑥2, . . .

present in 𝑃1 to achieve a limited form of completeness, see Sec. 6.

Finally, if a summation is over multiple variables, we simply nest

the uninterpreted function, i.e., write

⊕
𝑥,𝑦 𝑒 as 𝑢 (𝑥,𝑢 (𝑦, 𝑒)).

Example 5.2. We now finish Example 5.1. After introducing the

uninterpreted functions described above, we obtain:

𝑃1 =min(0 +𝑤 (𝑥,𝑦), 𝑢 (𝑧, 𝐷 [𝑥, 𝑧] + 𝐸 [𝑧,𝑦]), 100)
𝑃2 =min(0 +𝑤 (𝑥,𝑦), 𝑢 (𝑧, 𝐷 [𝑥, 𝑧] + 𝐸 [𝑧,𝑦]), 100 + 𝑢 (𝑧, 𝐸 [𝑧,𝑦]), 100)

where𝑤 (𝑥,𝑦) is an uninterpreted function representing [𝑥 = 𝑦]0∞,
and𝑢 is our uninterpreted function encoding summation. The solver

proves that the two expressions are equal, given that 𝑤 ≥ 0 and

𝑢 ≥ 0. Notice that it was critical to factorize the term 100: had

we not done that, then the expression 100 + 𝑢 (𝑧, 𝐸 [𝑧,𝑦]) would be

𝑢 (𝑧, 100 + 𝐸 [𝑧,𝑦]) and the identity 𝑃1 = 𝑃2 no longer holds.

Discussion Readers unfamiliar with First Order Logic may be

puzzled by our statement that the identity 𝑢 (𝑥, 𝑒) = 𝑢 (𝑥 ′, 𝑒 ′) holds
iff 𝑥 = 𝑥 ′ and 𝑒 = 𝑒 ′. In order to explain this, it helps to first review

the basic definitions of validity and satisfiability in logic. A state-

ment is “valid” if it is true for all interpretations of its uninterpreted

symbols. For example, the equality 𝑓 (𝑥) +𝑦 = 𝑦 + 𝑓 (𝑥) is valid over
integers, because it holds for all function 𝑓 and all values of 𝑥 and

𝑦. A statement is “satisfiable” if there exists interpretations of its

uninterpreted symbols that make the statement true. A statement

is valid iff its negation is not satisfiable. In our case, the statement

𝑢 (𝑥, 𝑒) = 𝑢 (𝑥 ′, 𝑒 ′) is valid if the equality is true for all possible inter-
pretations of 𝑢, 𝑥, 𝑥 ′. For example, suppose we asked the solver to

check whether 𝑢 (𝑥, 2(𝑥 + 1)) = 𝑢 (𝑦, 2𝑦 + 2) is valid. To answer this

question, we negate the statement and ask the z3 solver whether
the negation is satisfiable: 𝑢 (𝑥, 2(𝑥 +1)) ≠ 𝑢 (𝑦, 2𝑦 +2). One can eas-

ily satisfy this with pen and paper, e.g., 𝑥 = 1, 𝑦 = 2, 𝑢 (𝑎, 𝑏) = 𝑎 + 𝑏,
then 𝑢 (𝑥, 2(𝑥 + 1)) = 5, 𝑢 (𝑦, 2𝑦 + 2) = 8. z3 also answers “yes”, and

provides the following example for the inequality
6
:

𝑥 = 0, 𝑦 = 38, 𝑢 (𝑎, 𝑏) = if 𝑎 = 38 ∧ 𝑏 = 78 then 6 else 4

Therefore, the identity 𝑢 (𝑥, 2(𝑥 + 1)) = 𝑢 (𝑦, 2𝑦 + 2) is not valid.
In contrast, suppose we asked the solver whether 𝑢 (𝑥, 2(𝑥 + 1)) =
𝑢 (𝑥, 2𝑥 + 2) is valid. Its negation is 𝑢 (𝑥, 2(𝑥 + 1)) ≠ 𝑢 (𝑥, 2𝑥 + 2),
6
Please refer to the documentation of z3 for how models for uninterpreted functions

are constructed.

and z3 returns UNSAT, which means that the identity is valid. In

general, the identity𝑢 (𝑥, 𝑒) = 𝑢 (𝑥 ′, 𝑒 ′) is valid iff 𝑥 = 𝑥 ′ and 𝑒 = 𝑒 ′.

6 SYNTHESIS
We have seen in Sec. 5 how to use an SMT solver to check the

identity 𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 )). We are now ready to discuss the

core of the FGH-optimizer: given the query expressions 𝐹,𝐺 , find

𝐻 such that the identity 𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 )) holds; recall that
we denote these expressions by 𝑃1, 𝑃2. As for verification, this can

be done by using only rewriting, or using program synthesis with

an SMT solver. We are also given a database constraint Γ, and we

assume that we have already added to it the loop invariant Φ.

6.1 Rule-based Synthesis
The optimizer first attempts to synthesize𝐻 using rule-based rewrit-

ing. This process is akin to our initial verifier that relies only on

normalization and isomorphism checking.

𝑃1

axioms−−−−−−→ normalize(𝑃1)
axioms−−−−−−→ 𝑃2 (29)

There is no obvious way to “denormalize” an expression, since many

expressions share the same normal form. We used for this purpose

an equality saturation system (EQSAT), also used for multiple tasks

of the FGH-optimizer, see Fig 6. We describe EQSAT in Sec. 7.

6.2 Counterexample-based Synthesis
The rule-based synthesis (29) explores only correct rewritings 𝑃2,

but its space is limited by the hand-written axioms. The alternative

approach, pioneered in the programming language community [43],

is to synthesize candidate programs 𝑃2 from a much larger space,

then using an SMT solver to verify their correctness. This technique,

called Counterexample-Guided Inductive Synthesis, or CEGIS, can
find rewritings 𝑃2 even in the presence of interpreted functions,

because it exploits the theory of the underlying domain. As a first

attempt it can be described as follows (we will revise it below):

𝑃1

axioms−−−−−−→ normalize(𝑃1)
CEGIS−−−−−→ 𝑃2 (30)

6.2.1 Brief Overview of CEGIS. We give a brief overview of the

CEGIS system, Rosette [45, 46], that we used in our optimizer. Un-

derstanding its working is important in order to optimize its usage

for FGH-optimization. The input to Rosette consists of a specifica-
tion and a grammar, and the goal is to synthesize a program defined

by the grammar and that satisfies the specification. The main loop

is implemented with a pair of dueling SMT-solvers, the generator
and the checker. In our setting, the inputs are the query 𝑃1, the

database constraint Γ, and a small grammar Σ (described below).

The specification is Γ |= (𝑃1 = 𝑃2), where 𝑃2 is defined by the gram-

mar Σ. The generator generates syntactically correct programs 𝑃2,

and the verifier checks Γ |= (𝑃1 = 𝑃2). In the most naive attempt,

the generator could blindly generate candidates 𝑃2, 𝑃
′
2
, 𝑃 ′′

2
, . . ., until

one is found that the verifier accepts. This is hopelessly inefficient.

The first optimization in CEGIS is that the verifier returns a small

counterexample database instance 𝐷 for each unsuccessful candi-

date 𝑃2, i.e., 𝑃1 (𝐷) ≠ 𝑃2 (𝐷). When considering a new candidate 𝑃2,

the generator checks that 𝑃1 (𝐷𝑖 ) = 𝑃2 (𝐷𝑖 ) holds for all previous
counterexamples𝐷1, 𝐷2, . . ., by simply evaluating the queries 𝑃1, 𝑃2
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on the small instance𝐷𝑖 . This significantly reduces the search space

of the generator.

CEGIS applies a second optimization, where it uses the SMT

solver itself to generate the next candidate 𝑃2, as follows. It requires

a fixed recursion depth for the grammar Σ; in other words we can

assumew.l.o.g. that Σ is non-recursive. Then it associates a symbolic

Boolean variable 𝑏1, 𝑏2, . . . to each choice of the grammar. The

grammar Σ can be viewed now as a BDD (binary decision diagram)

where each node is labeled by a choice variable𝑏 𝑗 , and each leaf by a

completely specified program 𝑃2. The search space of the generator

is now completely defined by the choice variables 𝑏 𝑗 , and Rosette

uses the SMT solver to generate values for these Boolean variables

such that the corresponding program 𝑃2 satisfies 𝑃1 (𝐷𝑖 ) = 𝑃2 (𝐷𝑖 ),
for all counterexample instances 𝐷𝑖 . This significantly speeds up

the choice of the next candidate 𝑃2.

6.2.2 Using Rosette. To use Rosette, we need to define the specifica-
tion and the grammar. A first attempt is to simply define some gram-

mar for 𝐻 , with the specification Γ |= (𝐺 (𝐹 (𝑋 )) = 𝐻 (𝐺 (𝑋 ))). This
does not work, since Rosette uses the SMT solver to check the iden-

tity: as explained in Sec. 5.2, modern SMT solvers have limitations

that require us to first normalize 𝐺 (𝐹 (𝑋 )) and 𝐻 (𝐺 (𝑋 )) before
checking their equivalence. Even if we modify Rosette to normalize

𝐻 (𝐺 (𝑋 )) during verification, there is still no obvious way to incor-

porate normalization into the program generator driven by the SMT

solver. Instead, we define a grammar Σ for normalize(𝐻 (𝐺 (𝑋 )))
rather than for 𝐻 , and then specify:

Γ |= normalize(𝐺 (𝐹 (𝑋 ))) = normalize(𝐻 (𝐺 (𝑋 )))

Then, we denormalize the result returned by Rosette, in order to

extract 𝐻 , using the denormalization module in Fig. 6, described in

Sec. 7. In summary, our CEGIS-approach for FGH-optimization can

be visualized as follows:

𝑃1

axioms−−−−−−→ normalize(𝑃1)
CEGIS−−−−−→ normalize(𝑃2)

axioms−−−−−−→ 𝑃2 (31)

The choice of the grammar Σ is critical for the FGH-optimizer. If

it is too restricted, then the optimizer will be limited too, if it is

too general, then the optimizer will take a prohibitive amount of

time to explore the entire space. We briefly describe our design at

a high level. Recall that 𝑋 denotes multiple IDBs, and the query

𝐺 (𝑋 )may also returnmultiple intermediate relations. In our system

𝐺 (𝑋 ) is restricted to return a single relation, so we will assume that

𝑌 = 𝐺 (𝑋 ) is a single IDB. The expression 𝐺 is known to us, and is

a sum-sum-product expression, see Eq. (2),

𝐺 (𝑋 ) =𝐺1 (𝑋 ) ⊕ · · · ⊕ 𝐺𝑚 (𝑋 )

where each 𝐺𝑖 (𝑋 ) is a sum-product expression, Eq. (1), using the

IDBs 𝑋 and/or the EDBs.

To generate normalize(𝐻 (𝐺 (𝑋 ))), we group its sum-products

by the number of occurrences of 𝑌 :

normalize(𝐻 (𝑌 )) =𝐻 (0) ⊕ 𝐻 (1) (𝑌 ) ⊕ · · · ⊕ 𝐻 (𝑘max) (𝑌 )

where 𝐻 (𝑘) is a sum-sum-product 𝐻 (𝑘) = 𝑄1 ⊕ 𝑄2 ⊕ · · · s.t. each
𝑄𝑖 contains exactly 𝑘 occurrences of 𝑌 , and an arbitrary number

of EDBs (it may not contain the IDBs 𝑋 ). We choose 𝑘max as the

largest number of recursive IDBs 𝑋 that occur in any rule of the

original program 𝐹 (𝑋 ), e.g., if the original program was linear, then

𝐴→𝐴0 ⊕ 𝐴1 ⊕ · · · ⊕ 𝐴𝑘max
,

𝐴0 →𝑄0 | 𝑄0 ⊕ 𝐴0, 𝑄0 → 𝑢 (𝑍,𝑄0) | 𝑄0 ⊗ 𝑄0 | 𝐸 (𝑍,𝑍, · · · , 𝑍 ),
𝐴1 →𝐴11 ⊕ · · · ⊕ 𝐴1𝑚, 𝐴2 → 𝐴211 ⊕ · · · ⊕ 𝐴2𝑚𝑚, 𝐴3 → 𝐴3111 ⊕ · · ·
𝐴1𝑖 →𝑄1𝑖 | 𝑄1𝑖 ⊕ 𝐴1𝑖 , 𝑄1𝑖 → 𝑢 (𝑍,𝑄1𝑖 ) | 𝑄1𝑖 ⊗ 𝑄0 | 𝐺𝑖 (𝑋 ), 𝑖 =1,𝑚

𝐴2𝑖 𝑗 →𝑄2𝑖 𝑗 ⊕ 𝐴2𝑖 𝑗 , 𝑄2𝑖 𝑗 → 𝑢 (𝑍,𝑄2𝑖 𝑗 ) | 𝑄1𝑖 ⊗𝐺 𝑗 (𝑋 ), 𝑖, 𝑗 =1,𝑚

𝐴3𝑖 𝑗ℓ →𝑄3𝑖 𝑗ℓ ⊕ 𝐴3𝑖 𝑗ℓ , 𝑄3𝑖 𝑗ℓ → 𝑢 (𝑍,𝑄3𝑖 𝑗ℓ ) | 𝑄2𝑖 𝑗 ⊗𝐺ℓ (𝑋 ), 𝑖, 𝑗, ℓ =1,𝑚

Figure 8: Grammar Σ for normalize(𝐻 (𝐺 (𝑋 ))), for 𝑘max = 3.

1 2

3 4 5

6

Figure 9: Example e-graph.

𝑘max

def

= 1. We obtain:

normalize(𝐻 (𝐺 (𝑋 ))) =
𝐻 (0) ⊕ normalize(𝐻 (1) (𝐺 (𝑋 ))) ⊕ · · · ⊕ normalize(𝐻 (𝑘max ) (𝐺 (𝑋 )))

The grammar Σ is shown in Fig. 8. The start symbol, 𝐴, generates

a sum matching the expression above. 𝐴0 generates 𝐻 (0) , which is

a sum of sum-product terms without any occurrence of 𝑌 . Recall

from Sec. 5.2 that the expression 𝑢 (𝑧,𝑄) denotes
⊕

𝑧 𝑄 . 𝐸 is one

of the EDBs, and 𝑍 is a non-terminal for which we define rules

𝑍 → 𝑧1 |𝑧2 | · · · |𝑧𝑚 |𝑧′
1
|𝑧′

2
· · · where 𝑧1, . . . , 𝑧𝑚 are variables that al-

ready occur in normalize(𝐺 (𝐹 (𝑋 ))), and 𝑧′
1
, 𝑧′

2
, . . . is some fixed

set of fresh variable names.𝐴𝑘 generates normalize(𝐻 (𝑘) (𝐺 (𝑋 ))),
which is a sum of sum-products, each with exactly 𝑘 occurrence of

𝑌 . As stated in Fig. 8, the rules for𝐴𝑘 are incorrect. For example con-

sider 𝐴1: the𝑚 non-terminals 𝐴11, . . . , 𝐴1𝑚 should have identical

derivations, instead of being expanded independently. For example,

assume𝐺 = 𝐺1⊕𝐺2 (thus𝑚 = 2) and we want𝐻 to be one of 𝐸1⊗𝑌
or 𝐸2 ⊗𝑌 or 𝐸3 ⊗𝑌 . Then, normalize(𝐻 (𝐺 (𝑋 ))) can be one of the

following three expressions 𝐸1 ⊗𝐺1 ⊕ 𝐸1 ⊗𝐺2 or 𝐸2 ⊗𝐺1 ⊕ 𝐸2 ⊗𝐺2

or 𝐸3 ⊗ 𝐺1 ⊕ 𝐸3 ⊗ 𝐺2. However, the grammar 𝐴1 → 𝐴11 ⊕ 𝐴12

also generates incorrect expressions 𝐸1 ⊗ 𝐺1 ⊕ 𝐸2 ⊗ 𝐺2, because

𝐴11, 𝐴12 can choose independently the IDB 𝐸1, 𝐸2, or 𝐸3. We fix this

by exploiting the choice variables in Rosette: we simply use the

same variables in𝐴11, 𝐴12, . . . ensuring that all these non-terminals

make exactly the same choices. We note that our current system is

restricted to linear programs, hence 𝑘max = 1.

6.2.3 Discussion. Even though our grammar is restricted to𝑘max =

1, it is more complex than Fig 8, in order to further reduce the search

space. We use more non-terminals to better control which variables

𝑧 can be used where, and we also consider the choice of including

entire subexpressions that occur in the original program 𝑃1, since

they are often reused in the optimized program. The synthesizer

would require many trials to find them, had we not included them

explicitly.
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7 EQUALITY SATURATION
Throughout the FGH-optimizer we need to manipulate expressions,

apply rules, and manage equivalent expressions. This problem is

common to all query optimizers. Instead of implementing our own

expression manager, we adopt a state-of-the-art rewriting system

dubbed Equality Saturation (EQSAT). Specifically, we used EGG [53]

to implement the green boxes in the architecture shown in Fig. 6.

An EQSAT system maintains a data structure called an e-graph
that compactly represents a set of expressions, together with an

equivalence relation over this set. Each e-graph consists of a set

of e-classes, each e-class consists of a set of e-nodes, and each

e-node is a function symbol with e-classes as children. Figure 9
shows an e-graph representing the two expressions in Eq. (24),

their subexpressions, and other equivalent expressions. Each e-
class (dotted box) represents a class of equivalent expressions. For

example e-class 5 represents𝐴 ⊗ 𝐵 and 𝐵 ⊗𝐴, which are equivalent

by commutativity. e-class 6 represents four equivalent expressions
(including the two choices in e-class 5).

The EQSAT system maintains separately a collection of rules,
each represented by a pair of patterns. For example, one rule may

state that ⊗ is commutative: 𝑥⊗𝑦 = 𝑦⊗𝑥 . The e-graph can efficiently

add a new expression to its collection, insert a new rule, and match

a given expression against the e-graph.
We describe howwe use EGG in the FGH-optimizer. First, we use

it to extend the Rule-based test (Sec. 5.1) to account for a constraint

Γ. By design, the e-graph makes it easy to infer the equivalence

𝑃1 = 𝑃2 from a set of rules. Suppose we want to check such an

equivalence conditioned on Γ. We may assume w.l.o.g. that Γ is

a logical implication, Δ ⇒ Θ since all database constraints are

expressed this way. We convert it into an equivalence Δ ∧ Θ = Δ,
and insert it into the e-graph, then check for equivalence 𝑃1 = 𝑃2.

Second, we use the e-graph to denormalize an expression. More

precisely, recall from Sec. 6.1 that we attempt to synthesize 𝐻 by

denormalizing 𝑃1

def

= normalize(𝐹 (𝐺 (𝑋 ))), in other words, writing

it in the form 𝐻 (𝐺 (𝑋 )). For that we add 𝐺 (𝑋 ) to the e-graph,
observe in which e-class it is inserted, and replace that e-class
with a new node 𝑌 . The root of the new e-graph represents many

equivalent expressions, and each of them is a candidate for 𝐻 . We

choose the expression 𝐻 that has the smallest AST and does not

have any occurrence of the IDBs 𝑋 .

Finally, we use the e-graph to infer the loop invariants. We do

this by symbolically executing the recursive program 𝐹 for up to

5 iterations, and compute the symbolic expressions of the IDBs

𝑋 : 𝑋0, 𝑋1, . . . Using an e-graph we represent all identities satisfied

by these (distinct!) expressions. The identities that are satisfied by

every 𝑋𝑖 are candidate loop invariants: for each of them we use the

SMT solver to check if they satisfy Eq. (10) from Sec. 3.2.

8 EVALUATION
We implemented a source-to-source FGH-optimizer, based on Fig. 6.

The input is a program Π1, given by 𝐹,𝐺 , and a database constraint

Γ, and the output is an optimized program 𝐻 . We evaluated it on

three Datalog systems, and several programs from benchmarks pro-

posed by prior research [12, 38]; we also propose new benchmarks

that perform standard data analysis tasks. We did not modify any

of the three Datalog engines. We asked two major questions:

(1) How effective is our source-to-source optimization, given

that each system already supports a range of optimizations?

(2) How much time does the actual FGH optimization take?

8.1 Setup
There is a great number of commercial and open-source Datalog

engines in the wild, but only a few support aggregates in recursion.

We were able to identify five major systems with such support:

SociaLite [37], Myria [49], the DeALS family of systems (DeALS [40],

BigDatalog [39], and RaDlog [20]), RecStep [12], and Dyna [14].

Prior work [38] reports SociaLite and Myria are consistently slower

than newer systems, so we do not include them in our experiments.

Dyna is designed to experiment with novel language semantics and

not for data analytics, and we were not able to run our benchmarks

without errors using it. Systems in the DeALS family are similar

to each other; we pick BigDatalog because it is open source and

runs our benchmarks without errors; we include RecStep for the

same reasons. Both BigDatalog and RecStep are multi-core systems.

Finally, we run experiments on an unreleased commercial system

X, which is single core. As we shall discuss, X is the only one that

supports all features for our benchmarks.

We conducted all experiments on a server running CentOS

8.3.2011. The server has a total of 1008GB memory, and 4 Intel

Xeon CPU E7-4890 v2 2.80GHz CPUs, each with 15 cores and 30

threads. We ran seven benchmarks, shown in Fig 10. BM and CC

are Examples 3.8 and 3.3; MLM is basically Example 3.9. CC, SSSP

and MLM are from [38], the others are designed by us. R and MLM

require a database constraint stating that the data is a tree. BM, R,

and MLM each have a non-trivial loop invariant that is inferred by

the optimizer. Our optimizer requires each program to consist of

two rules, one each for 𝐹 and 𝐺 , and so a meaningful metric for

program size is the number of semiring operations. These numbers

are listed in the last column of Fig 10. Our benchmark programs

are comparable in size to those used in prior work [12, 38]. All pro-

grams are available in our git repository. The real-world datasets

twitter [27], epinions [33], and wiki [24] are from the popular SNAP

collection [25]. We follow the setting in [12, 38] when generating

the synthetic graphs. We additionally generate random recursive

trees with an exponential decay, modeling the decay of associa-

tion in multi-level marketing [11]. For WS, we input the vector

[1, . . . , 𝑛], since the values of the entries do not affect run time. In

general, we used smaller datasets than [12, 38] because some of our

experiments run single-threaded.

8.2 Run Time Measurement
For each program-dataset pair, we measure the run times of three

programs: original, with the FGH-optimization, and with the FGH-

optimization and the generalized semi-naive (GSN, for short) trans-

formation. We report only the speedups relative to the original

program in Fig. 11 and 12. In some cases the original program timed

out our preset limit of 3 hours, where we report the speedup against

the 3 hours mark. In some other cases the original program ran

out of memory and we mark them with “o.o.m.” in the figure. The

absolute runtimes are irrelevant for our discussion, since we want

to report the effect of adding our optimizations. (We also do not

have permission to report the runtimes of X.) All three systems
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Program Synthesis Type Constraint? Invariant? Dataset Size (# ops)

Beyond Magic (BM) rule-based No Yes twitter, epinions, wiki 6

Connected Components (CC) rule-based No No twitter, epinions, wiki 6

Single Source Shortest Path (SSSP) rule-based No No twitter, epinions, wiki 17

Sliding Window Sum (WS) CEGIS No Yes Vector of Numbers 15

Betweenness Centrality (BC) CEGIS No No Erdős–Rényi Graphs 43

Graph Radius (R) CEGIS Yes Yes Random Recursive Trees 12

Multi-level Marketing (MLM) CEGIS Yes Yes Random Recursive Trees 6

Figure 10: Experimental Setup

Figure 11: Speedup of the optimized v.s. original program; higher is better; t.o. means the original program timed out after 3
hours, in which case we report the speedup against 3 hours; o.o.m. means the original program ran out of memory.
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Figure 12: Runtime increase as a function of the data size; lower is better.

Program BM CC SSSP R MLM BC WS

Invariance inference 0.092 0 0 0.129 0.132 0 0

Synthesis 0.004 0.005 0.004 0.284 0.299 1.2 0.821

Total 0.096 0.005 0.004 0.413 0.431 1.2 0.821

Opt. / Exec. (max-min) .82% - .16% .04%-.01% .24%-.002% .41%-.07% .76%-.09% 6.3%-.51% 7.4%-.66%

Program R MLM BC WS

Search space 10 20 132 94

Figure 13: Optimization time in seconds, optimization time over execution time, and size of the search space.
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already perform semi-naive evaluation on the original program,

since that is expressed over the Boolean semiring. But the FGH-

optimized program is over a different semiring (except for BM), and

GSN has non-stratifiable rules with negation, which are supported

only by system X; we report GSN only for system X. While the

benchmarks in Fig. 11 were on real datasets, those in Fig. 12 use

synthetic data, for multiple reasons: we did not have access to a

good tree dataset needed in the R and MLM benchmarks, BC timed

out on our real data (BC is computationally expensive), andWS uses

only a simple array. A benefit of synthetic data is that we can report

how the optimizations scale with the data size. Unfortunately, the

FGH-optimized programs in Fig. 12 require recursion with SUM
aggregation, which is not supported by BigDatalog or RecStep; this

is in contrast with those in Fig. 11, which require recursion with

MIN aggregation which is supported by all systems.

8.2.1 Findings. Figure 11 shows the results of the first group of

benchmarks optimized by the rule-based synthesizer. Overall, we

observe our optimizer provides consistent and significant (up to 4

orders of magnitude) speedup across systems and datasets. Only a

few datapoints indicate the optimization has little effect: BM and

CC on wiki under BigDatalog, and SSSP on wiki under X. This

is due to the small size of the wiki dataset: both the optimized

and unoptimized programs finish very quickly, so the run time is

dominated by system overhead which cannot be optimized away.

We also note that (under X) GSN speeds up SSSP but slows down CC

(note the log scale). The latter occurs because the Δ-relations for CC
are very large, and as a result the semi-naive evaluation has the same

complexity as the naive evaluation; but the semi-naive program

is more complex and incurs a constant slowdown. GSN has no

effect on BM because the program is in the boolean semiring, and X

already implements the standard semi-naive evaluation. Optimizing

BMwith FGH on BigDatalog sees a significant speedup even though

the systems already implements magic set rewrite, because the

optimization depends on a loop invariant.
7
Overall, both the semi-

naive and naive versions of the optimized program are significantly

faster than the unoptimized program.

Figure 12 shows the results of the second group of benchmarks,

which required CEGIS. Since we used synthetic data, we examined

here the asymptotic behavior of the optimization as a function of

the data size. The most advanced optimization was for BC, which

leads essentially to Brandes’ algorithm [7]: its effect is dramatic. R

and MLM rely on semantic optimization for a tree. We generated

two synthetic trees, a random recursive tree with expected depth

of𝑂 (log𝑛) and one with exponential decay with expected depth of

𝑂 (𝑛). Since the benefit of the optimization depends on the depth,

we see a much better asymptotic behavior in the second case. Here,

too, the optimizations were always improving the runtime.

8.3 Optimization Time and Search Space
CEGIS can quickly become very expensive if its search space is

large, and, for that reason, we have designed the grammar genera-

tor carefully to reduce the search space without losing generality.

Fig. 13 reports the runtime of the synthesizer (in seconds) for both

rule-based synthesis and CEGIS, and the size of the search space.

7
BigDatalog can optimize the left-recursive version of BM (7) to obtain similar speedup,

via the classic magic set rewrite.

The rule-based synthesizer runs in milliseconds, while CEGIS took

over 1s for BC (our hardest benchmark). These numbers are close

to those demanded by modern query optimizers, and represent

only a tiny portion of the total runtime of the optimized query.

Optimization time takes less than 1% of the query run time for all

benchmarks except for BC and WS on the smallest input data. To

our surprise, our grammar managed to narrow the search space

considerably, to no more than 132 candidates, which (in hindsight)

explains the low optimization times. The search space can grow

rapidly, and even exponentially, as the size of the input program

grows. Our optimizer optimizes a single stratum at a time, focusing

on improving critical “basic blocks” of a program. Our benchmark

programs demonstrate a wide range of data analysis computation

can be expressed succinctly using just a few semiring operations,

and optimization can have a dramatic impact on performance.

8.4 Summary
We conclude that our optimizer can significantly speedup already

optimized Datalog systems, either single-core or multi-core. GSN

can, sometimes, further improve the runtime. We achieved this

using a rather small search space, which led to fast optimization.

9 CONCLUSION
We have presented a new optimizationmethod for recursive queries,

which generalizes many previous optimizations described in the

literature. We implemented it using a CEGIS and an EQSAT system.

Our experiments have shown that this optimization is beneficial,

regardless of what other optimizations a Datalog system supports.

We discuss here some limitations and future work.

Our current implementation is restricted to linear programs, but

our techniques apply to nonlinear programs as well. Non-linear

programs require a more complex grammar Σ; this is likely to

increase the search space, and possibly increase the optimization

time. We leave this exploration to future work.

Our current optimizer is heuristic-based, and future work needs

to integrate it with a cost model. This, however, will be challenging,

because very little work exists for estimating the cost of recursive

queries. This paper applies a simple cost-model. We use the arity

of the IDB predicate as a proxy for a simple asymptotic cost model,

because 𝑁 arity
is the size bound of the output, when 𝑁 is the size

of the active domain. This simple cost-model is currently used by

the commercial DB system mentioned in the paper. If the optimized

program reduces the arity, then it is assessed to have lower cost.

Two limitations of our current implementation are the fact that

we currently do not “invent” new IDBs for the optimized query,

and do not apply the FGH-optimizer repeatedly. Both would be

required to support more advanced magic set optimizations.

Our initial motivation for this work came from a real application,

which consists of a few hundred Datalog rules that were compu-

tationally very expensive, and required a significant amount of

manual optimizations. Upon close examination, at a very high level,

the manual optimization that we performed could be described, ab-

stractly, as a sliding window optimization (WS in Fig. 10), which is

one of the simplest instantiations of the FGH-rule. Yet, our current

system is far from able to optimize automatically programs with

hundreds of rules: we leave that for future work.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

91



REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley. http://webdam.inria.fr/Alice/

[2] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. 2017.

Constraint-Based Synthesis of Datalog Programs. In Principles and Practice of
Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings (Lecture Notes in Computer
Science, Vol. 10416), J. Christopher Beck (Ed.). Springer, 689–706. https://doi.org/

10.1007/978-3-319-66158-2_44

[3] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David

Maier, and Russell Sears. 2010. Dedalus: Datalog in Time and Space. In Datalog
Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-19,
2010. Revised Selected Papers (Lecture Notes in Computer Science, Vol. 6702), Oege
de Moor, Georg Gottlob, Tim Furche, and Andrew Jon Sellers (Eds.). Springer,

262–281. https://doi.org/10.1007/978-3-642-24206-9_16

[4] Isaac Balbin, Graeme S. Port, Kotagiri Ramamohanarao, and Krishnamurthy

Meenakshi. 1991. Efficient Bottom-UP Computation of Queries on Stratified

Databases. J. Log. Program. 11, 3&4 (1991), 295–344. https://doi.org/10.1016/0743-
1066(91)90030-S

[5] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. 1986.

Magic Sets and Other Strange Ways to Implement Logic Programs. In Proceedings
of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
March 24-26, 1986, Cambridge, Massachusetts, USA, Avi Silberschatz (Ed.). ACM,

1–15. https://doi.org/10.1145/6012.15399

[6] Catriel Beeri and Raghu Ramakrishnan. 1991. On the Power of Magic. J. Log.
Program. 10, 3&4 (1991), 255–299. https://doi.org/10.1016/0743-1066(91)90038-Q

[7] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163–177.

[8] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.

Cosette: An Automated Prover for SQL. In 8th Biennial Conference on Inno-
vative Data Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11,
2017, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2017/papers/p51-

chu-cidr17.pdf

[9] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-

ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

337–340.

[10] Alin Deutsch, Lucian Popa, and Val Tannen. 1999. Physical Data Independence,

Constraints, and Optimization with Universal Plans. In VLDB’99, Proceedings of
25th International Conference on Very Large Data Bases, September 7-10, 1999, Edin-
burgh, Scotland, UK, Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez,

Stanley B. Zdonik, and Michael L. Brodie (Eds.). Morgan Kaufmann, 459–470.

http://www.vldb.org/conf/1999/P44.pdf

[11] Yuval Emek, Ron Karidi, Moshe Tennenholtz, and Aviv Zohar. 2011. Mechanisms

for multi-level marketing. In Proceedings of the 12th ACM conference on Electronic
commerce. 209–218.

[12] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, AwsAlbarghouthi, Paraschos Koutris, and

Jignesh M. Patel. 2019. Scaling-Up In-Memory Datalog Processing: Observations

and Techniques. Proc. VLDB Endow. 12, 6 (2019), 695–708. https://doi.org/10.

14778/3311880.3311886

[13] Melvin Fitting. 1991. Bilattices and the Semantics of Logic Programming. J. Log.
Program. 11, 1&2 (1991), 91–116. https://doi.org/10.1016/0743-1066(91)90014-G

[14] Matthew Francis-Landau, Tim Vieira, and Jason Eisner. 2020. Evaluation of Logic

Programs with Built-Ins and Aggregation: A Calculus for Bag Relations. In 13th
International Workshop on Rewriting Logic and Its Applications. 49–63.

[15] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. 1991. Minimum and Maximum

Predicates in Logic Programming. In Proceedings of the Tenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 29-31, 1991,
Denver, Colorado, USA, Daniel J. Rosenkrantz (Ed.). ACM Press, 154–163. https:

//doi.org/10.1145/113413.113427

[16] Jonathan Goldstein and Per-Åke Larson. 2001. Optimizing Queries Using Ma-

terialized Views: A practical, scalable solution. In Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, Santa Barbara, CA,
USA, May 21-24, 2001, Sharad Mehrotra and Timos K. Sellis (Eds.). ACM, 331–342.

https://doi.org/10.1145/375663.375706

[17] Todd J. Green. 2009. Containment of conjunctive queries on annotated relations.

In Database Theory - ICDT 2009, 12th International Conference, St. Petersburg,
Russia, March 23-25, 2009, Proceedings (ACM International Conference Proceeding
Series, Vol. 361), Ronald Fagin (Ed.). ACM, 296–309. https://doi.org/10.1145/

1514894.1514930

[18] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance

semirings. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China,
Leonid Libkin (Ed.). ACM, 31–40. https://doi.org/10.1145/1265530.1265535

[19] Shelly Grossman, Sara Cohen, Shachar Itzhaky, Noam Rinetzky, and Mooly Sagiv.

2017. Verifying Equivalence of Spark Programs. In Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10427), Rupak Majum-

dar and Viktor Kuncak (Eds.). Springer, 282–300. https://doi.org/10.1007/978-3-

319-63390-9_15

[20] Jiaqi Gu, Yugo H.Watanabe,WilliamA.Mazza, Alexander Shkapsky, Mohan Yang,

Ling Ding, and Carlo Zaniolo. 2019. RaSQL: Greater Power and Performance for

Big Data Analytics with Recursive-aggregate-SQL on Spark. In Proceedings of
the 2019 International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan
Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM,

467–484. https://doi.org/10.1145/3299869.3324959

[21] Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB J. 10, 4
(2001), 270–294. https://doi.org/10.1007/s007780100054

[22] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog and

Emerging Applications: An Interactive Tutorial. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data (Athens, Greece) (SIG-
MOD ’11). Association for Computing Machinery, New York, NY, USA, 1213–1216.

https://doi.org/10.1145/1989323.1989456

[23] Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and

Yisu Remy Wang. 2021. Convergence of Datalog over (Pre-) Semirings.
arXiv:2105.14435v1 [cs.DB]

[24] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks

in social media. In Proceedings of the SIGCHI conference on human factors in
computing systems. 1361–1370.

[25] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[26] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.

1995. Answering Queries Using Views. In Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May
22-25, 1995, San Jose, California, USA, Mihalis Yannakakis and Serge Abiteboul

(Eds.). ACM Press, 95–104. https://doi.org/10.1145/212433.220198

[27] Julian J McAuley and Jure Leskovec. 2012. Learning to discover social circles in

ego networks.. In NIPS, Vol. 2012. Citeseer, 548–56.
[28] Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu

Ramakrishnan. 1990. Magic is Relevant. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, Atlantic City, NJ, USA, May
23-25, 1990, Hector Garcia-Molina and H. V. Jagadish (Eds.). ACM Press, 247–258.

https://doi.org/10.1145/93597.98734

[29] Inderpal Singh Mumick and Hamid Pirahesh. 1994. Implementation of Magic-

sets in a Relational Database System. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, Minneapolis, Minnesota, USA,
May 24-27, 1994, Richard T. Snodgrass and Marianne Winslett (Eds.). ACM Press,

103–114. https://doi.org/10.1145/191839.191860

[30] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. 2000. A Chase

Too Far?. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas, Texas, USA, Weidong Chen, Jeffrey F.

Naughton, and Philip A. Bernstein (Eds.). ACM, 273–284. https://doi.org/10.

1145/342009.335421

[31] Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and

Bernhard Scholz. 2020. Provenance-guided synthesis of Datalog programs. Proc.
ACM Program. Lang. 4, POPL (2020), 62:1–62:27. https://doi.org/10.1145/3371130

[32] Raghu Ramakrishnan and Divesh Srivastava. 1994. Semantics and Optimization

of Constraint Queries in Databases. IEEE Data Eng. Bull. 17, 2 (1994), 14–17.

http://sites.computer.org/debull/94JUN-CD.pdf

[33] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. 2003. Trust man-

agement for the semantic web. In International semantic Web conference. Springer,
351–368.

[34] Tim Rocktäschel. [n.d.]. Einsum is all you need - Einstein summation in deep

learning. https://rockt.github.io/2018/04/30/einsum.

[35] Timothy Roscoe and Boon Thau Loo. 2018. Declarative Networking. In Encyclo-
pedia of Database Systems, Second Edition, Ling Liu and M. Tamer Özsu (Eds.).

Springer. https://doi.org/10.1007/978-1-4614-8265-9_1220

[36] Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and Malavika Samak. 2017. Op-

timizing Big-Data Queries Using Program Synthesis. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017.
ACM, 631–646. https://doi.org/10.1145/3132747.3132773

[37] Jiwon Seo, Stephen Guo, and Monica S. Lam. 2015. SociaLite: An Efficient Graph

Query Language Based on Datalog. IEEE Trans. Knowl. Data Eng. 27, 7 (2015),
1824–1837. https://doi.org/10.1109/TKDE.2015.2405562

[38] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,

and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on Spark.

In Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,

New York, NY, USA, 1135–1149. https://doi.org/10.1145/2882903.2915229

[39] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,

and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on Spark. In

Proceedings of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan,

Georgia Koutrika, and Sam Madden (Eds.). ACM, 1135–1149. https://doi.org/10.

1145/2882903.2915229

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

92

http://webdam.inria.fr/Alice/
https://doi.org/10.1007/978-3-319-66158-2_44
https://doi.org/10.1007/978-3-319-66158-2_44
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1016/0743-1066(91)90030-S
https://doi.org/10.1016/0743-1066(91)90030-S
https://doi.org/10.1145/6012.15399
https://doi.org/10.1016/0743-1066(91)90038-Q
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
http://www.vldb.org/conf/1999/P44.pdf
https://doi.org/10.14778/3311880.3311886
https://doi.org/10.14778/3311880.3311886
https://doi.org/10.1016/0743-1066(91)90014-G
https://doi.org/10.1145/113413.113427
https://doi.org/10.1145/113413.113427
https://doi.org/10.1145/375663.375706
https://doi.org/10.1145/1514894.1514930
https://doi.org/10.1145/1514894.1514930
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1007/978-3-319-63390-9_15
https://doi.org/10.1007/978-3-319-63390-9_15
https://doi.org/10.1145/3299869.3324959
https://doi.org/10.1007/s007780100054
https://doi.org/10.1145/1989323.1989456
https://arxiv.org/abs/2105.14435v1
http://snap.stanford.edu/data
https://doi.org/10.1145/212433.220198
https://doi.org/10.1145/93597.98734
https://doi.org/10.1145/191839.191860
https://doi.org/10.1145/342009.335421
https://doi.org/10.1145/342009.335421
https://doi.org/10.1145/3371130
http://sites.computer.org/debull/94JUN-CD.pdf
https://rockt.github.io/2018/04/30/einsum
https://doi.org/10.1007/978-1-4614-8265-9_1220
https://doi.org/10.1145/3132747.3132773
https://doi.org/10.1109/TKDE.2015.2405562
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1145/2882903.2915229


[40] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. 2015. Optimizing re-

cursive queries with monotonic aggregates in DeALS. In 31st IEEE Interna-
tional Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April
13-17, 2015, Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim, Sang Kyun

Cha, and Guy M. Lohman (Eds.). IEEE Computer Society, 867–878. https:

//doi.org/10.1109/ICDE.2015.7113340

[41] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and

Mayur Naik. 2018. Syntax-guided synthesis of Datalog programs. In Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro

Garcia, and Corina S. Pasareanu (Eds.). ACM, 515–527. https://doi.org/10.1145/

3236024.3236034

[42] Xujie Si, Mukund Raghothaman, KihongHeo, andMayur Naik. 2019. Synthesizing

Datalog Programs using Numerical Relaxation. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 6117–6124. https://doi.org/

10.24963/ijcai.2019/847

[43] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and

Vijay A. Saraswat. 2006. Combinatorial sketching for finite programs. In Pro-
ceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 2006, John Paul Shen andMargaret Martonosi (Eds.). ACM, 404–415.

https://doi.org/10.1145/1168857.1168907

[44] K. Tuncay Tekle and Yanhong A. Liu. 2019. Extended Magic for Negation: Effi-

cient Demand-Driven Evaluation of Stratified Datalog with Precise Complexity

Guarantees. In Proceedings 35th International Conference on Logic Programming
(Technical Communications), ICLP 2019 Technical Communications, Las Cruces,
NM, USA, September 20-25, 2019 (EPTCS, Vol. 306), Bart Bogaerts, Esra Erdem,

Paul Fodor, Andrea Formisano, Giovambattista Ianni, Daniela Inclezan, Ger-

mán Vidal, Alicia Villanueva, Marina De Vos, and Fangkai Yang (Eds.). 241–254.

https://doi.org/10.4204/EPTCS.306.28

[45] Emina Torlak and Rastislav Bodík. 2013. Growing solver-aided languages with

rosette. In ACM Symposium on New Ideas in Programming and Reflections on
Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31,
2013, Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld (Eds.). ACM,

135–152. https://doi.org/10.1145/2509578.2509586

[46] Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In

Tools and Algorithms for the Construction and Analysis of Systems, 13th Interna-
tional Conference, TACAS 2007, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1,
2007, Proceedings (Lecture Notes in Computer Science, Vol. 4424), Orna Grumberg

and Michael Huth (Eds.). Springer, 632–647. https://doi.org/10.1007/978-3-540-

71209-1_49

[47] Margus Veanes, Pavel Grigorenko, Peli de Halleux, and Nikolai Tillmann. 2009.

Symbolic Query Exploration. In Formal Methods and Software Engineering, 11th
International Conference on Formal Engineering Methods, ICFEM 2009, Rio de
Janeiro, Brazil, December 9-12, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5885), Karin K. Breitman and Ana Cavalcanti (Eds.). Springer, 49–68. https:

//doi.org/10.1007/978-3-642-10373-5_3

[48] Victor Vianu. 2021. Datalog Unchained. In Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (Virtual Event, China)
(PODS’21). Association for Computing Machinery, New York, NY, USA, 57–69.

https://doi.org/10.1145/3452021.3458815

[49] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. 2015. Asynchronous

and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines.

Proc. VLDB Endow. 8, 12 (Aug. 2015), 1542–1553. https://doi.org/10.14778/2824032.

2824052

[50] Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2018. Veri-

fying equivalence of database-driven applications. Proc. ACM Program. Lang. 2,
POPL (2018), 56:1–56:29. https://doi.org/10.1145/3158144

[51] Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data

Migration using Datalog Program Synthesis. Proc. VLDB Endow. 13, 7 (2020),

1006–1019. https://doi.org/10.14778/3384345.3384350

[52] Yisu Remy Wang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan Leang.

2020. SPORES: Sum-Product Optimization via Relational Equality Saturation

for Large Scale Linear Algebra. Proc. VLDB Endow. 13, 11 (2020), 1919–1932.

http://www.vldb.org/pvldb/vol13/p1919-wang.pdf

[53] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary Tatlock,

and Pavel Panchekha. 2021. egg: Fast and extensible equality saturation. Proc.
ACM Program. Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434304

[54] Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie,

and Matteo Interlandi. 2017. Fixpoint semantics and optimization of recursive

Datalog programs with aggregates. Theory Pract. Log. Program. 17, 5-6 (2017),
1048–1065. https://doi.org/10.1017/S1471068417000436

[55] Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky,

and Tyson Condie. 2018. Declarative BigData Algorithms via Aggregates and

Relational Database Dependencies. In Proceedings of the 12th Alberto Mendelzon
International Workshop on Foundations of Data Management, Cali, Colombia, May
21-25, 2018 (CEUR Workshop Proceedings, Vol. 2100), Dan Olteanu and Barbara

Poblete (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-2100/paper2.pdf

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

93

https://doi.org/10.1109/ICDE.2015.7113340
https://doi.org/10.1109/ICDE.2015.7113340
https://doi.org/10.1145/3236024.3236034
https://doi.org/10.1145/3236024.3236034
https://doi.org/10.24963/ijcai.2019/847
https://doi.org/10.24963/ijcai.2019/847
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.4204/EPTCS.306.28
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-642-10373-5_3
https://doi.org/10.1007/978-3-642-10373-5_3
https://doi.org/10.1145/3452021.3458815
https://doi.org/10.14778/2824032.2824052
https://doi.org/10.14778/2824032.2824052
https://doi.org/10.1145/3158144
https://doi.org/10.14778/3384345.3384350
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf
https://doi.org/10.1145/3434304
https://doi.org/10.1017/S1471068417000436
http://ceur-ws.org/Vol-2100/paper2.pdf

	Abstract
	1 Introduction
	2 Background
	3 The FGH-Rule
	3.1 Simple Examples
	3.2 Loop Invariants
	3.3 Semantic Optimization Under Constraints

	4 Architecture of FGH-Optimization
	5 Verification
	5.1 Rule-based Test
	5.2 SMT Test

	6 Synthesis
	6.1 Rule-based Synthesis
	6.2 Counterexample-based Synthesis

	7 Equality Saturation
	8 Evaluation
	8.1 Setup
	8.2 Run Time Measurement
	8.3 Optimization Time and Search Space
	8.4 Summary

	9 Conclusion
	References



