
RIPEMB: A framework for assessing hardware-assisted software
security schemes in embedded systems

Stefan Tauner
stauner@ecs.tuwien.ac.at

TU Wien
Embedded Computing Systems Group (ECS)

Wien, Austria

ABSTRACT
Memory corruption bugs remain one of the biggest threats to soft-
ware security. The increasing complexity of SoCs and prevalence
of connected embedded devices require larger software support
packages that inevitably contain more bugs. Unfortunately, as of
now, hardware-assisted security measures are not widely available
in smaller embedded devices based on MCUs. Even if they are, ven-
dors might configure them inadequately and validating the correct
behavior of such important features is advisable.

In this paper, we present RIPEMB, an open-source software pack-
age for validating hardware-assisted protection mechanisms such
as memory protection units (MPUs), control flow integrity (CFI)
enforcement, code pointer integrity (CPI), data flow tracking etc. It
works as a self-contained embedded application performing up to
almost 3000 different attacks based on memory corruption. While it
contains some target-specific components, it is easy to port to new
environments and can be used during development of new security
schemes and in validation alike. We evaluate the applicability on
two instruction set architectures (ISAs) (ARM and RISC-V), four
hardware platforms, two C runtime environments, and a total of 8
different hardware defenses.

CCS CONCEPTS
• Security and privacy→ Embedded systems security.

ACM Reference Format:
Stefan Tauner. 2022. RIPEMB: A framework for assessing hardware-assisted
software security schemes in embedded systems. In The 17th International
Conference on Availability, Reliability and Security (ARES 2022), August 23–26,
2022, Vienna, Austria. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3538969.3539013

1 INTRODUCTION
In the last years, security research in academia has increased mas-
sively in some fields like microarchitectural side channels (e.g.,
SPECTRE [13]) or vulnerabilities and countermeasures to attacks
in deep neural networks (DNNs) [18]. However, in practice more
mundane problems continue to haunt administrators and software
developers alike: Traditional security vulnerability categories like

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

ARES 2022, August 23–26, 2022, Vienna, Austria
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9670-7/22/08.
https://doi.org/10.1145/3538969.3539013

out-of-bounds buffer access and use-after-free continue to have the
biggest impact in the wild [2].

Prominent examples are the notorious class of stack buffer over-
flows [16] and format string vulnerabilities [20]. These can be used
to divert the control flow by corrupting data in memory, namely
code pointers, and disclose secrets like passwords, cryptographic
keys, or defeat address space layout randomization (ASLR) [21].

Academia has presented a plethora of approaches to mitigate
these problems from safer new programming languages, over prob-
abilistic software mechanisms, to extended microarchitectures. In
many cases the evaluations of these works focus on benchmark
programs to show the overheads in execution time, code size, mem-
ory usage etc. and to prove the absence of obvious regressions, i.e.,
that the new security features do not perturb the regular opera-
tion. Determining overheads of security provisions comes with its
own set of difficulties [14] but arguably even more important is
demonstrating the effectiveness of averting attacks in a sound way.
Nevertheless – albeit being the main motivation behind their con-
tributions – security is often merely discussed without systemically
evaluating the implementation in practical terms that go beyond
trivial test cases.

Also, security research often focuses on Intel’s x86 architecture,
which has led to some blind spots in regards to embedded systems.
However, the connectivity of ever wider spreading IoT devices
in this domain requires additional defenses that could largely be
ignored in the past without dramatic consequences. Simultaneously,
the complexity of these devices’ hardware as well as software has
increased significantly. Therefore, vendors have to provide large
SDKs or even code generators that often rely on third-party libraries
(e.g., real-time operating systems (RTOSes) implementations like
FreeRTOS). Unfortunately, many hardware vendors are notorious
for the lack of quality in their software packages. Over the years
we have discovered numerous problems in the libraries provided by
different vendors that clearly show a complete lack of awareness
for the importance of quality assurance. Other engineers with five-
decade-long experience describe these circumstances in less polite
words [19]. Therefore, we argue that any hardware provisions for
security in these systems require additional scrutiny due to their
importance in helping to secure the IoT. System integrators would
also benefit from being able to independently verify hardware-
assisted software security schemes.

In this paper, we present RIPEMB, a cross-platform software
package for evaluating hardware-assisted software security schemes
in embedded systems. Compared to its predecessor, Runtime In-
trusion Prevention Evaluator (RIPE) [26], it has been improved in

https://orcid.org/0000-0002-8806-7730
https://doi.org/10.1145/3538969.3539013
https://doi.org/10.1145/3538969.3539013
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3538969.3539013


ARES 2022, August 23–26, 2022, Vienna, Austria Stefan Tauner

several ways, for example, it (1) does neither require operating sys-
tem services nor an external execution manager, (2) relies on vastly
less implementation-defined and undefined behavior allowing for
easier reuse, (3) provides facilities to automatically set up and reset
security mechanisms between test cases, (4) comprises a refined set
of attacks better suited for freestanding runtime environments.

In the next section we discuss the related work and the short-
comings of RIPE for our use case. In the Implementation chapter
we explain our approach in detail and in Section 4 we document
the evaluation in different environments. Finally, we present an
outlook on further research and our conclusion.

2 RELATEDWORK
There is no shortage of buggy source code in the world [no cita-
tion needed]. A tremendous amount of work has been put into
contriving categorization systems to classify and group software
defects, e.g., Common Weakness Enumeration (CWE). These allow
researchers and practitioners to systematically dissect problems
in real-world projects and measure their distribution and sever-
ity, e.g., in combination with the Common Vulnerability Scoring
System (CVSS).

Furthermore, various groups have been collecting programs and
code snippets containing known flaws [7, 15, 22]. They are cre-
ated by injecting artificial vulnerabilities into production software,
extracted from reported actual vulnerabilities (e.g., the Common
Vulnerabilities and Exposures (CVE) system), or generating syn-
thetic snippets (manually or automatically). These can be used as
examples for educating developers but their main purpose is to
function as test cases for tools providing static analysis, vulnera-
bility detection, penetration testing, automatic attack and patch
generation etc. When comparing respective tools by using these
code collections, it is important to validate that they are representa-
tive for the intended environment since overall they don’t correlate
with the distribution of real-world weaknesses [3].

For the purpose of our paper the existing libraries are of little
help unfortunately. While there are plenty of examples written in
C, most of them are not suitable for freestanding environments
(i.e., without an operating system (OS)). Furthermore, creating a
weakness is only the first step that is only sufficient for the main
use case of these collections, where the code is never run but just
analyzed.

However, to realistically mimic an attack as we require, the flaw
has to be exploited to modify the state of the application, e.g., by
alternating the control flow and/or accessing memory malevolently.
In our application, the execution flow must be kept under control to
some extent since we cannot rely on an OS to clean up after every
test case. This demands rigor when constructing the attacks, which
reduces the available options to procure suitable programs signifi-
cantly and only leaves those instances that include a proper exploit
including the correct inputs to not only trigger the vulnerability
but remain in control. Unfortunately, these are almost exclusively
targeting hosted environments (i.e., applications running on top of
an OS), which we don’t have at our disposal.

2.1 RIPE’s History
While not a vulnerability collection in the traditional sense and
although it is bound to an OS, the RIPE project serves as the base
for our implementation [26]. Its principal part is a C program that
is able to set up various attacks on itself and execute them. RIPE
itself is based on a tool written by John Wilander and Mariam
Kamkar for their evaluation of run-time mechanisms that (try to)
prevent buffer overflows [25]. The work investigates the various
early attempts by run-time libraries and compiler extensions to
secure return addresses and function pointers in the early 2000s, e.g.,
StackGuard [8]. The tool itself tests for 20 possible buffer overflow
attacks combining values from three sets of properties (later termed
dimensions by Wilander et al):

• 2 techniques: either directly overwriting the target address
or indirectly manipulating a pointer to point to that address
and manipulating it through that.

• 4 locations: buffers stored on the stack or in the heap, BSS or
data section.

• 6 targets: function return address, the previous base/frame
pointer, function pointers (as local variables or function pa-
rameter), and setjmp/longjmp buffers (local or parameter
too).

RIPE extends the previous work “in an attempt to standardize
the comparison between countermeasures and to further support
research on code-injection countermeasures” [26]. It adds two more
dimensions:

• 10 functions that are used to overflow the respective buffers,
including notorious string functions (e.g., strcpy).

• 5 attack code modes: three shellcodes with different types of
NOP sleds, one return-to-libc and return-oriented program-
ming (ROP) attack, respectively.

In both works the results of protection schemes based on soft-
ware alone were devastating while they simultaneously showed
the effectiveness of simply declaring data memory non-executable
and enforcing this by hardware (via no-execute (NX)/execute dis-
able (XD) features of x86-CPUs). The latter thwarts all attacks that
introduce new instructions (i.e., shellcode) by writing them to data
memory and manipulating the execution flow to jump to them.

RIPE relies on an external executionmanager in form of a Python
script (cf. Fig. 1 on Page 4). This script launches the main application
(the Attack Generator) that is written in C with different command
line arguments configuring the respective attack. Every instance is
only executing a single attack and cleaning up is completely left
to the OS. This architecture is very disadvantageous in embedded
systems: Starting applications often take a long time as they have to
be downloaded from a host PC to the device’s flash or RAM. There
is no OS that is able to clean up failed attempts or even detect them,
nor to keep track of the progress and results. Additionally, some of
the attacks require an OS themselves to execute because they use
system calls and file streams.

Furthermore, the implementation of the Attack Generator has
some significant issues as it unnecessarily relies on a very pecu-
liar layout of variables by the compiler that breaks when slightly
changing the environment, e.g., upgrading the compiler or chang-
ing its configuration. These makes it hardly possible to use RIPE



RIPEMB: A framework for assessing hardware-assisted software security schemes in embedded systems ARES 2022, August 23–26, 2022, Vienna, Austria

reliably in different environments and complicates porting it to
other platforms.

Although the source code of RIPE has been publicly available
for over 10 years and the respective paper has been cited over
100 times, very little (public) development has been happening.
Two noteworthy exceptions are the port to ARM created for the
evaluation of FastCFI [9] and to RISC-V [11] as they target non-x86
architectures. The former modification is rather crude comprising
only the minimal changes needed to make RIPE run in a Linux
environment on ARM. It contains hard-coded addresses for the
frame layout used to attack function returns.

The RISC-V port is targeting the 64-bit version of the Spike
instruction set simulator (ISS) [4]. It does not alleviate the main
problems of the original version but provides two notable improve-
ments: (1) The constant shellcode is replaced by instructions dy-
namically generated at runtime that call a given address. (2) Some
data-oriented attacks have been added, e.g., an information leak
and a restriction bypass.

In the next section we describe how the mentioned problems
can be solved and how our modifications can improve RIPE’s appli-
cation in embedded systems.

3 IMPLEMENTATION
Our aim is to allow for validating hardware-assisted security provi-
sions in embedded systems without an OS. To refine RIPE for this
purpose, we first analyze its architecture.

3.1 RIPE’s Legacy
The original RIPE architecture (depicted in Fig. 1) splits the man-
agement of the test execution between three parts:

RIPE Tester. The main user interface of RIPE is a Python script
that essentially iterates through all possible combinations of dimen-
sion values to set up the list of arguments to be passed to the Attack
Generator via Python’s os.system(), which is a simple wrapper
around C’s system() function. It is also responsible for managing
the two files used to communicate with the Attack Generator and
evaluating the result of every run. Furthermore, it aggregates and
prints the final results.

Operating System. RIPE exploits the operating system’s capabili-
ties to handle processes that together with the memory manage-
ment unit (MMU) are able to detect and stop the Attack Generator,
if it accesses memory addresses outside the process’ legal address
range or if it produces exceptions, e.g., by executing illegal instruc-
tions. However, in the current implementation RIPE would wait
forever if the Attack Generator ends up in an infinite loop. Also, the
reason for the end of the Attack Generator processes is not taken
into account by the Python script. No matter why the result file
(i.e., /tmp/rip-eval/f_xxxx) is not created by a run of the Attack
Generator , it is counted as a failed attack. This might happen either
because of a security mechanism thwarting the attack or due to a
problem within the Attack Generator (e.g., by deliberately exiting
because a buffer is misaligned or due to some peculiarity of the
attack). Conversely, it does not matter if the process is killed after
it created the file.

Attack Generator. The actual attacks are contained within an
ordinary C application that comprises the necessary flaws as well
as the necessary code to exploit them. The program’s parameters
specify the values of the five dimensions that eventually determine
which attack is to be executed. The Attack Generator checks if the
values make any sense and signals impossible combinations back
to the RIPE Tester via a log file. If the attack is valid, the Attack
Generator continues by setting up numerous buffers, initializing
the target address to overwrite, before corrupting the data via some
deliberately included weakness (e.g., by copying a prepared payload
into a too small buffer). Finally, the exploit is triggered by executing
an innocent statement that relies on the previously manipulated
data (e.g., returning from a function or de-referencing a function
pointer).

3.2 RIPEMB
Since we do not have a full-grown OS nor processes at our dis-
posal on microcontrollers, we have to refine all of the respective
functionalities and provide alternatives.

To replace the Python script, we move the nested loops to gen-
erate all possible attack combinations into the Attack Generator . To
aid development and debugging, we keep the possibility of execut-
ing individual attacks alone via compile-time options. Furthermore,
it is possible to lock individual dimensions to a single value and
iterate over the remaining ones.

The accounting of results has been integrated into the Attack
Generator and extended to distinguish between several possible
outcomes. RIPEMB counts the following result types individually
in addition to the statically impossible one of original RIPE:

Dynamically Impossible attacks fail a run-time check, e.g., if a
payload contains null characters while the attack vector is a
string function (as the payload would be cut short).

Setup Error logs unexpected problems before an attack.
Failed is counted in cases where the attacks fail without any

observable ill effects (i.e., if the control flow continues on
the same path as it would do without corruption).

Detected allows implementations to count successfully detected
attacks.

Illegal Instruction can be used by implementations to count
recoveries from botched attacks.

Successful is only counted if the program follows the intended
attack path, e.g., not only jumping into shellcode but also
successfully calling the target function.

If RIPEMB works as intended, only Detected and Successful
are logged for attacks that are statically and dynamically possible.
Note that distinguishing between Failed and Detected is funda-
mental to validate security mechanisms as a failed attack might
not necessarily be rooted in a successful defense. The other possi-
ble outcomes (Setup Error, Failed, and Illegal Instruction)
should always remain zero if a platform including any respective
security mechanisms is properly supported.

3.2.1 Retaining Control. The biggest challenge in consecutively
running hundreds of exploits in a freestanding environment is to
not crash completely nor trash essential data structures to separate
cause-effect relations among different attacks.



ARES 2022, August 23–26, 2022, Vienna, Austria Stefan Tauner

 

Operating System

/tmp/ripe_log

Signals (segfaults etc.)

/tmp/rip-eval/f_xxxx

Python Interpreter

ripe_tester.py

foreach variant:
/* Execute generator */
/* Is impossible? */
/* Success/Failure? */

Success/ 
Failure

ripe_attack_generator(Attack n)
ripe_attack_generator(Attack 2)

ripe_attack_generator(Attack 1)

is_attack_possible()

/* Check parameters */ 

perform_attack()

/* Setup buffers */
build_payload()
/* Attack */

Impossible main()

is_attack_possible()
perform_attack()

Figure 1: Overview of the original RIPE architecture.

No

Done?Exit

Start

Save Heap

Yes

Setup Protections

Restore Checkpoint

Restore Heap

Yes

Attack Possible?

Create Checkpoint

Overflow Buffers

Setup ErrorSetup Attack- 
Specific Buffers

Setup Error
Build Payload

Successful

Illegal 
Instruction 

Detected

Trigger Attack

Evaluate Result

No

Interrupts

Disable Protections

Failed

Figure 2: Flow diagram of RIPEMB.

Figure 2 shows the execution flow of a full run of RIPEMB. At
the very beginning RIPEMB mirrors the current heap memory
including management data into a backup location that is restored
at the very end of every round. That way, even corruption of the
heap metadata is not fatal in future iterations. However, it requires
a save/restore implementation that is tailored to the used heap
manager, which is usually bundled with the C runtime library. All
other memory sections do not need such a safeguard as RIPEMB’s
attacks on variables within them are precise enough to not tamper
with surround data, which cannot be guaranteed for the heap due
to its implementation-defined metadata that is often intertwined
with user data.

Afterwards, the nested loops iterate through all (enabled) com-
bination of dimension values, which are checked for validity. The
execution of each attack iteration heavily depends on the use of
setjmp/longjmp to retain control and jump back to a defined lo-
cation. To that end, we use setjmp at the beginning to create a
checkpoint that can then be used in all kinds of situations, e.g., if
an attack succeeds that ends up in a function called by shellcode.

The next step allows for configuring any security mechanisms,
e.g., enable hardware units, set attributes for memory ranges etc.
This and its inverse that is executed before restoring the heap are
optional.

Then the various memories used in the respective vulnerability
have to be set up according to the current attack. As many of the
attacks rely on overflows, the actual layout and relative positions
of the used buffers are critical. The C language does not specify
the relationships between unrelated variables and the compiler is
free to rearrange them as it sees fit if no constraints are given. This
made the previous implementation very unreliable as it depended
on a peculiar layout of local, static and global variables that could
change with compiler updates, changed optimization settings etc.
Fortunately, the C standard at least guarantees the order of objects
in one type of object: aggregates (i.e., structs and arrays): “If the ob-
jects pointed to are members of the same aggregate object, pointers
to structure members declared later compare greater than pointers
to members declared earlier in the structure” [12, § 6.5.8.5]. The

compiler is allowed to add some padding between structs members
but this is benign if taken care of by calculating the correct offsets
(e.g., to include them in the data used to overflow a buffer). For
that reason, RIPEMB keeps all variables that require some sort of
relative order to each other within structs.

Finally, the payload containing the address value to be overwrit-
ten and potentially some shellcode is created and used to overflow
the respective buffer. The attack is then triggered by de-referencing
a function pointer, restoring a return address etc. that has been
manipulated by the overflow. Unlike RIPE, the new implementation
then uses longjmp to return from there to the previous checkpoint
passing information about the status.

To facilitate this level of control, platform-specific ports need
to implement some additional support functions. For example, any
security measure must pass RET_ATTACK_DETECTED to a dedicated
longjmp function (that does not trigger the security reaction re-
cursively) to inform the implementation about any unexpected
deviation from the intended control flow or memory access pat-
terns it detects.

3.2.2 Additional Improvements and Limitations. Apart from the
unified and stable execution, we refined some aspects of RIPE’s
attacks as well.

The three different shellcodes have been replaced by a single
(architecture-dependent) one that is generated dynamically at run-
time. The return-to-libc attack is simulated by targeting an ordinary
dedicated custom function to make it applicable in freestanding en-
vironments (without system() and the like). No (fake) parameters
have to be passed to this function, making it universally applicable
even on platforms with application binary interfaces (ABIs) where
these parameters might not be reachable on the stack because they
are passed in registers. Similarly, fscanf() has been removed as
attack vector and sscanf() can be turned off at build time in case
it is not available in the respective C library.

The target variables have been cleaned up as explained in the
previous section and now comprise function pointers and longjmp
buffers in parameters as well as in all four memory sections. We



RIPEMB: A framework for assessing hardware-assisted software security schemes in embedded systems ARES 2022, August 23–26, 2022, Vienna, Austria

STM32F STM32L TM4C PULPissimo

ISA Armv7-M Armv7-M Armv7-M RISC-V
Core C.-M4F C.-M4F C.-M4F CV32E40P
Fmax [MHz] 168 80 120 16
Perf. [DMIPS] 210 100 150 11
RAM [KiB] 192 64 256 512
Flash [KiB] 1024 256 1024 –
C Runtime Newlib Newlib Newlib PULP
GCC Version 7.3.1 7.3.1 7.3.1 7.1.1

Table 1: Evaluation platforms.

have adopted two of the data-oriented attacks by John Merrill as
they strikingly depict some limitations of defensive mechanisms
against control-oriented attacks. Furthermore, we have added more
fine-grained variants of the control-oriented attacks to further dis-
tinguish techniques forCFI enforcement: For each attack using the
return-to-libc and shellcode principles, a variant targeting a func-
tion that is legally called indirectly (i.e., that is contained in the
intended control flow graph (CFG)) has been added. Additionally,
we target an ancestor function, i.e., one having a respective frame in
the stack trace, with an ROP and return-to-libc attacks, respectively.

4 EVALUATION
4.1 Platforms
We have evaluated RIPEMB on four different hardware platforms
with 32-bit CPUs as summarized in Table 1. Three are commer-
cial MCUs from STMicroelectronics and Texas Instruments with
single-core Cortex-M4 CPUs by ARM mounted on typical develop-
ment boards. The fourth one is an open-source SoC based on the
CV32E40P (formerly RI5CY) CPU core originally developed by the
PULP project [10]. For our evaluation we synthesized it to run in a
Xilinx Zynq Z-7020 FPGA with a CPU frequency of 16MHz.

4.2 Security Mechanisms
In our evaluation we employ various different CFI enforcement
schemes that extend PULPissimo. Additionally, a memory access
restriction system already present on the ARM platforms is tested.

4.2.1 Label-based CFI. The majority of tested defenses use differ-
ent CFI mechanisms based on labels, i.e., theymaintain a connection
between caller and callees based on additional instructions added
by the compiler similar to what Abadi et al. have proposed in their
seminal paper [1]. We use six hardware-assisted implementations
that differ in the amount and locations of extra instructions as well
as their coverage and granularity [24].

4.2.2 CFI via Pointer Authentication. Another HW-assisted CFI
approach we used is based on pointer authentication (PA), which
comprises some extra instruction to cryptographically authenticate
pointers. We have implemented a scheme somewhat similar to Au-
thenticated Call Stack (ACS) [17], where the return address used
in ret instructions is authenticated before use to guarantee that
it has not been modified. To that end, we have extended PULPis-
simo to support the necessary instructions and use a hardware
implementation of the QARMA block cipher [6]. Due to the smaller

addresses of our 32-bit MCU, we use only 13 bits to store the pointer
authentication code (PAC) in contrast to ACS’s 16.

4.2.3 Memory Protection Unit. The Armv7-M architecture speci-
fication [5] defines an optional MPU that limits possible accesses
on configurable memory regions, which can be as small as 32 B. It
is not a full memory management unit (MMU) and does not per-
form address translation but grants access to physical addresses. If
a program accesses a location that is prohibited by the MPU, the
processor generates a memory management fault. Most implemen-
tations restrict the number of supported regions fairly low, e.g., to
8 in our devices. Each region can be set to limit read, write, and
execute/instruction accesses for privileged/unprivileged software,
respectively.

For the evaluation of RIPEMB we have exploited the MPUs of
the three ARM MCUs to thwart all attacks that use shellcode by
prohibiting instruction fetches from all data memories (e.g., stack).

4.3 Results
While the assessed defenses differ in capabilities, precision, and
scope, RIPEMB is able to successfully determine their individual
limitations. Currently it executes up to 2803 individual attacks.
However, in most practical scenarios the involved addresses contain
0-bytes and thus drastically reduce this number since string func-
tions (e.g., strcpy) cannot be used as vulnerable target functions
because they would abort early when encountering the ostensible
string delimiters during the overflowing call. For example, on the
STM32L target only 822 attacks remain of which 110 are based on
executing shellcode, which is detected by the MPU.We refrain from
assigning the exact numbers of detected attacks to the individual
security measures here to not give the false impression that these
can be interpreted as some kind of security benchmark, which they
clearly aren’t. The purpose of RIPEMB is to validate that theoretical
predictions about a defense mechanism concur with the practical
implementation, not to compare security mechanisms numerically
with each other. You can find an elaborate report at the RIPEMB
website and are invited to send us results of your own projects.

The runtime is primarily limited by the output method (e.g.,
UART), the selected verbosity, and the number of possible tests. On
the STM32L hardware with a 1MBaud connection a complete run
without MPU protection (i.e., with 822 successful attacks) takes
under 30 seconds.

5 CONCLUSION
Fully-fledged computer systems have had to deal with adversarial
users for decades and have therefore been continuously hardened
against malicious intents. There is no doubt that there are still
numerous open issues in the security domain in these environments
and even the wider society has recognized this as a problem. The
contrary is true for embedded systems: While the attack surface
and prevalence of microcontroller units (MCUs) increases steadily,
the amount of resources to secure them is scarce and often focuses
on protecting intellectual property of vendors instead of the data
of end users. Our work aims at providing security researchers and
embedded engineers alike an easily adaptable tool to help alleviate
this imbalance.



ARES 2022, August 23–26, 2022, Vienna, Austria Stefan Tauner

In this paper we have presented RIPEMB, an open-source soft-
ware package that mounts memory corruption attacks on itself
to challenge hardware-assisted security mechanisms in MCUs. It
specifically improves on the state of the art by removing the re-
quirement to utilize an operating system to contain the ramification
of the attacks. RIPEMB . . .

• precisely controls the memory layout of the allocated buffers
and the execution of the attacks,

• provides facilities to easily encapsulate platform-dependent
code,

• keeps a shadow copy of the application’s heap memory to
avoid corruptions from influencing the individual tests,

• allows for easily integrating the necessary instructions to
configure HW security entities.

We have shown that RIPEMB can be applied to different types of
defense mechanisms and hardware platforms. It is freely available
for download [23].

5.1 Future Work
While RIPEMB uses the heap memory in its attacks, e.g., as one
possible location for shellcode, it does not directly attack the heap
metadata yet. To avoid impairing platform-independence when
adding such attacks, a heap management library independent from
the system’s own heapmanager seems to be the best option. Support
for integer over- and underflows are also a viable enhancement
goal.

Extending RIPEMB to cooperate with an RTOS could test poten-
tial defense features like task separation. Adding further support
for running RIPEMB in hosted environments would allow for shar-
ing new attacks and other improvements between systems on the
whole spectrum.

ACKNOWLEDGMENTS
This work has been supported by the Doctoral College Resilient
Embedded Systems, which is run jointly by the TU Wien’s Faculty
of Informatics and the UAS TechnikumWien. We would also like to
thank Andreas Steininger and all other reviewers of the manuscript
for their helpful feedback. Additionally, thanks are due to John
Wilander and Nick Nikiforakis as well as John Merrill and Arun
Thomas for open-sourcing their work on RIPE.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-Flow

Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (Oct. 2009). https://doi.org/10.
1145/1609956.1609960

[2] Adam Chaudry, Steve Christey Coley, Kerry Crouse, Kevin Davis, Devon Ellis,
Parker Garrison, Christina Johns, Luke Malinowski, Rushi Purohit, Becky Powell,
David Rothenberg, Alec Summers, and Brian Vohaska. 2021. 2021 CWE Top 25
Most Dangerous Software Weaknesses. https://cwe.mitre.org/top25/archive/
2021/2021_cwe_top25.html

[3] Kayla Afanador and Cynthia Irvine. 2020. Representativeness in the Benchmark
for Vulnerability Analysis Tools (B-VAT). In 13th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 20). USENIX Association. https://www.
usenix.org/conference/cset20/presentation/afanador

[4] Andrew Waterman, Chih-Min Chao, Tim Newsome, and Scott Johnson. 2022.
Spike RISC-V ISA Simulator. https://github.com/riscv-software-src/riscv-isa-sim

[5] ARM. 2021. Arm V7-M Architecture Reference Manual. Spec DDI 0403E. ARM.
https://developer.arm.com/documentation/ddi0403/latest Issue E.e.

[6] Roberto Avanzi. 2017. The QARMA Block Cipher Family. IACR Transactions on
Symmetric Cryptology (March 2017), 4–44. https://doi.org/10.13154/tosc.v2017.
i1.4-44

[7] Paul E. Black. 2017. SARD: Thousands of Reference Programs for Software
Assurance. 5, 3 (Oct. 2017), 6–13. https://tsapps.nist.gov/publication/get_pdf.
cfm?pub_id=923127 Last Modified: 2021-05-04T09:23-04:00.

[8] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and
Qian Zhang. 1998. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In Proceedings of the 7th Con-
ference on USENIX Security Symposium. USENIX Association, San Anto-
nio, TX, USA. https://www.usenix.org/conference/7th-usenix-security-
symposium/stackguard-automatic-adaptive-detection-and-prevention

[9] Lang Feng, Jeff Huang, Jiang Hu, and Abhijith Reddy. 2019. FastCFI: Real-Time
Control Flow Integrity Using FPGA Without Code Instrumentation. In Runtime
Verification, Bernd Finkbeiner and Leonardo Mariani (Eds.). Springer, Cham,
221–238. https://doi.org/10.1007/978-3-030-32079-9_13

[10] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio
Pullini, Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. 2017.
Near-Threshold RISC-V Core with DSP Extensions for Scalable IoT Endpoint
Devices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 10
(Oct. 2017), 2700–2713. https://doi.org/10.1109/tvlsi.2017.2654506

[11] John Merrill and Arun Thomas. 2018. Hope-RIPE. The Charles Stark Draper
Laboratory, Inc.. https://github.com/draperlaboratory/hope-RIPE

[12] JTC 1/SC 22/WG 14. 2018. Programming Languages — C. Std 9899:2018. ISO/IEC.
https://www.iso.org/standard/74528.html

[13] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy. IEEE, San Francisco, CA, USA,
19–37. https://doi.org/10.1109/SP.2019.00002

[14] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Herbert Bos, and Cristiano
Giuffrida. 2019. SoK: Benchmarking Flaws in Systems Security. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 310–325. https:
//doi.org/10.1109/EuroSP.2019.00031

[15] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions
on Software Engineering 41, 12 (Dec. 2015), 1236–1256. https://doi.org/10.1109/
TSE.2015.2454513

[16] Elias Levy. 1996. Smashing the Stack for Fun and Profit. Phrack 7, 49 (Nov. 1996).
http://phrack.org/issues/49/14.html

[17] Hans Liljestrand, Thomas Nyman, Jan-Erik Ekberg, and N. Asokan. 2019. Authen-
ticated Call Stack. In Proceedings of the 56th Annual Design Automation Conference
2019. ACM, Las Vegas, NV, USA. https://doi.org/10.1145/3316781.3322469

[18] Sparsh Mittal, Himanshi Gupta, and Srishti Srivastava. 2021. A Survey on Hard-
ware Security of DNN Models and Accelerators. Journal of Systems Architecture
117 (May 2021), 30. https://doi.org/10.1016/j.sysarc.2021.102163

[19] Dave Nadler. 2021. FreeRTOS Helpers. https://github.com/DRNadler/FreeRTOS_
helpers

[20] scut. 2001. Exploiting Format String Vulnerabilities. Techrep. Team TESO. https:
//cs155.stanford.edu/papers/formatstring-1.2.pdf

[21] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy. IEEE, 48–62.
https://doi.org/10.1109/SP.2013.13

[22] Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roychoudhury.
2017. Codeflaws: A Programming Competition Benchmark for Evaluating Auto-
mated Program Repair Tools. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). 180–182. https://doi.org/10.1109/ICSE-
C.2017.76

[23] Stefan Tauner. 2022. RIPEMB Website. https://ripemb.github.io
[24] Stefan Tauner and Mario Telesklav. 2021. Comparative Analysis and Enhance-

ment of CFG-Based Hardware-Assisted CFI Schemes. ACM Transactions on
Embedded Computing Systems 20, 5s, Article 58 (Sept. 2021). https://doi.org/10.
1145/3476989

[25] John Wilander and Mariam Kamkar. 2003. A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention. In NDSS Symposium 2003. Inter-
net Society. https://www.ndss-symposium.org/ndss2003/comparison-publicly-
available-tools-dynamic-buffer-overflow-prevention/

[26] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter
Joosen. 2011. RIPE: Runtime Intrusion Prevention Evaluator. In Proceedings of
the 27th Annual Computer Security Applications Conference (ACSAC ’11). ACM,
New York, NY, USA, 41–50. https://doi.org/10.1145/2076732.2076739

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://www.usenix.org/conference/cset20/presentation/afanador
https://www.usenix.org/conference/cset20/presentation/afanador
https://github.com/riscv-software-src/riscv-isa-sim
https://developer.arm.com/documentation/ddi0403/latest
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923127
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923127
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://doi.org/10.1007/978-3-030-32079-9_13
https://doi.org/10.1109/tvlsi.2017.2654506
https://github.com/draperlaboratory/hope-RIPE
https://www.iso.org/standard/74528.html
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/EuroSP.2019.00031
https://doi.org/10.1109/EuroSP.2019.00031
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
http://phrack.org/issues/49/14.html
https://doi.org/10.1145/3316781.3322469
https://doi.org/10.1016/j.sysarc.2021.102163
https://github.com/DRNadler/FreeRTOS_helpers
https://github.com/DRNadler/FreeRTOS_helpers
https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1109/ICSE-C.2017.76
https://ripemb.github.io
https://doi.org/10.1145/3476989
https://doi.org/10.1145/3476989
https://www.ndss-symposium.org/ndss2003/comparison-publicly-available-tools-dynamic-buffer-overflow-prevention/
https://www.ndss-symposium.org/ndss2003/comparison-publicly-available-tools-dynamic-buffer-overflow-prevention/
https://doi.org/10.1145/2076732.2076739

	Abstract
	1 Introduction
	2 Related Work
	2.1 RIPE's History

	3 Implementation
	3.1 RIPE's Legacy
	3.2 RIPEMB

	4 Evaluation
	4.1 Platforms
	4.2 Security Mechanisms
	4.3 Results

	5 Conclusion
	5.1 Future Work

	Acknowledgments
	References

