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a b s t r a c t

Recent advances in neuro-imaging enable scientists to create brain network data that can lead to novel
insights into neurocircuitry, and a better understanding of the brain’s organization. These networks
inherently involve a spatial component, depicting which brain regions are structurally, functionally
or genetically related. Their visualization in 3D suffers from occlusion and clutter, especially with
increasing number of nodes and connections, while 2D representations such as connectograms,
connectivity matrices, and node-link diagrams neglect the spatio-anatomical context. Approaches to
arrange 2D-graphs manually are tedious, species-dependent, and require the knowledge of domain
experts.

In this paper, we present a spatial-data-driven approach for layouting 3D brain networks in
2D node-link diagrams, while maintaining their spatial organization. The produced graphs do not
need manual positioning of nodes, are consistent (even for sub-graphs), and provide a perspective-
dependent arrangement for orientation. Furthermore, we provide a visual design for highlighting
anatomical context, including the shape of the brain, and the size of brain regions. We present in sev-
eral case-studies the applicability of our approach for different neuroscience-relevant species, including
the mouse, human, and Drosophila larvae. In a user study conducted with several domain experts,
we demonstrate its relevance and validity, as well as its potential for neuroscientific publications,
presentations, and education.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Advances in neuro-imaging have enabled big brain initiatives
nd consortia to create vast resources of brain data that can be
ined for insights into mental processes and biological principles.
his includes brain networks, representing the relations between
ifferent spatial locations in the brain of a certain modality.
In the field of network neuroscience, brain networks represent

he relations between different spatial locations in the brain of a
ertain modality. These networks can be on various anatomical
cales, ranging from brain region level [1], to even neuron-level
ynaptic connectivity [2], i.e., connection between neurons that
an span across brain regions. The relations can be divided into
natomical/structural connectivity (anatomical links), functional
onnectivity (statistical functional dependencies), and effective
onnectivity (directed causal effects) [3]. Understanding and vi-
ualizing these networks is crucial to investigate the cognition,
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E-mail address: ganglberger@vrvis.at (F. Ganglberger).
ttps://doi.org/10.1016/j.cag.2022.04.014
097-8493/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
memory, and many neurological disorders, such as Alzheimer’s
disease, autism, and anxiety.

To relate brain networks to their anatomical context, anatomi-
cal data are needed. They are not a single type of data, they rather
represent a diverse collection of reference templates, brain par-
cellations, and neuroanatomical ontologies. Together they form
the common knowledge of how the brain is structured and how
this structure can be referenced. A reference template is in gen-
eral structural imaging data that has been combined (e.g., via
image registration) to a structural representation of the brain for
a group of specimens or a species. A neuroanatomical ontology
is the formal representation of knowledge about the anatomy of
the brain [4] of a species. This relates foremost to the compo-
sition of the brain, i.e., of which brain regions it consists and
how these brain regions are subdivided (hierarchically). It may
also include naming or color conventions. Brain parcellations
act as links between neuroanatomical ontologies and reference
templates. In principle, a brain parcellation consists of a regional
annotation of every voxel in a reference template. Hence, voxels
can be associated with brain regions of an ontology for visualizing
anatomical context and relating voxel-level to region-level data.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Spatial-Data-Driven Layouts of three different brain networks of species relevant in neuroscience. Nodes represent brain regions, colored according to a common
ierarchical ontology. The background parcellation colors indicate major brain regions. Gray areas represent regions without connections for anatomical context. Edge
pacity shows connection strength. Left: Strongest structural connections (top 2%) within the cerebral cortex of a mouse brain, transversal view (from the top).
iddle: Strongest functional connections (top 5%) within the cerebral cortex of a human brain, sagittal view (from the side). Right: Synaptic connections between
xemplarily selected individual neurons (nodes) projecting from and to the mushroom body (red) in the Drosophila larval brain, transversal view (from the top).

Neurons were assigned to brain regions (background parcellation) based on the regions they exhibit the most synapses.
Visualizations of brain networks are frequently used to show
results in neuroscientific publications or for educational purpose,
i.e., they are ubiquitous in literature because they quickly summa-
rize information [5]. One possibility to visualize rich data is to use
abstract visualization methods such as multidimensional scaling
and scatter-plots [6]. Those methods lack anatomical context,
which could provide neurobiologists with orientation, i.e., in-
tuitively knowing where to find certain brain regions, which
anatomical regions are shown, and from which area of the brain.
For this purpose, a common way to visualize brain networks is
a 3D node-link diagram, with brain regions rendered as spheres
and connections rendered as straight lines [7,8] while occluded
elements can be discovered via interactive navigation in 3D visu-
alizations. However, navigating costs time, interactive 3D visual-
izations are not yet standard in electronic papers and naturally
unavailable in printed media. A major issue with 2D node-link
visualizations is the visual clutter that occurs when many edges
and nodes overlap due to the projection of the 3D structure
onto a 2D plane. Moreover, keeping an overview of the global
network structure while visualizing a high level of detail becomes
challenging given a finite display area, since the users can lose
track of their current position while navigating.

Furthermore, most tools for such purposes are trimmed to vi-
sualize data of a particular species. For example, NeuroMap [9] vi-
sualizes the brain of the common fruit fly Drosophila melanogaster,
where the anatomical layout of the graph was generated man-
ually. Such an approach would be time-consuming regarding
multiple species, as every species has a unique hierarchical defi-
nition of brain regions. Another problem concerning these regions
is the selection regarding the level of detail within the hierarchy.

In this paper we present an approach for the visualization of
3D brain networks in 2D space that inherently preserves spatial
organization and provides spatial context for orientation. Here,
we use node-link diagrams as the graph visualization technique
for its common usage in neuroscientific visualizations [1]. In
these diagrams, we present the connectivity between brain re-
gions, which we layout based on anatomical proximity, so that
nodes that are anatomically close are also close in the graph.
Furthermore, we render a brain parcellation in the background
by introducing a visual design to optimize spatial orientation.
Exemplary visualizations of three brains of different species can
be seen in Fig. 1.

While individual parts of our approach are not novel on their
own, particularly using spatial information for graph layout-
ing [10] and providing group-level information for 2D graphs via
Voronoi tessellation [11], we introduce a new concept of using
13
these techniques for the visualization of brain networks with
spatial organization. Specifically we make the following novel
contributions:

• A novel method for generating Spatial-Data-Driven Layouts
for neural networks of multiple species and perspectives.
The proposed method overcomes the need of previous so-
lutions to manually define brain region related constraints
to generate anatomically feasible layouts.

• Visual designs providing a consistent spatial context to the
user to ease orientation and visual comparison of different
brain networks.

• A qualitative study that shows that Spatial-Data-Driven Lay-
outs allow neuroscientists a faster overall understanding of
2D network graphs compared to traditional brain network
visualization techniques.

2. Related work

In recent years, an abundance of toolboxes have been pub-
lished [12–14] that offer computation and visualization of mul-
timodal connectivity data. While they provide a rich set of sta-
tistical and mathematical methods, their visualizations are static,
and they often require experience in Matlab or Python scripting.
In contrast, visualization methods support the processing of com-
plex information, so neuroscientists can focus on understanding
the data rather than handling it. This section gives an overview on
visualization tools for connectivity data targeting a 3D anatomical
context with respect to our method.

A common way to visualize brain networks in neuroscien-
tific publications are 3D node-link diagrams [15–17]. In these
diagrams, network connections (edges) are often rendered as
straight lines or arrows between spheres representing brain re-
gions (nodes) across a 3D anatomical representation of the brain
to help neuroscientists to orient themselves. One example is used
in BrainNet Viewer [8], a graph-theoretical network visualization
toolbox to illustrate macro-scale human brain networks as ball-
and-stick models. It displays combinations of the brain surface,
nodes, and edges from multiple perspectives (sagittal, axial or
coronal) and allows the user to adjust display properties like
color and size of the network elements. Although this approach
is intuitively understandable, visual clutter increases with the
amount of edges and nodes due to the linear projection from 3D
to 2D. With our method, we overcome this problem by adapting
the graph layout based on spatial relations.

Node-link diagrams are also used by the Connectome Visu-

alization Utility [18], which offers a matrix (heatmap) and a
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ircular representation [19] of the network in separate views
hat are linked with each other. To counteract visual clutter,
hese views offer a selection/highlighting of nodes and edges,
o one can focus on specific parts of complex networks. Bezgin
t al. [20] also employed user-selected nodes to visualize only
elevant sub-networks in the Macaque monkey brain. In this case,
rain regions from a hierarchical ontology can be chosen to define
hich connections should be shown as arrows overlaying 3D
rain anatomy, i.e., a 3D node-link diagram without depicting
he nodes. Another example is BrainTrawler [7], a task-driven,
eb-based framework that incorporates visual analytics methods
o explore heterogeneous neurobiological data, including their
patial context. It enables neuroscientists to analyze of the genetic
nd functional characteristics of brain networks in real-time via
inked 2D-slice views and 3D network visualizations, as well as a
isual-query based interaction scheme for exploring sub-graphs.
imilar approaches using query-guided interactions for exploring
lectron microscopy stacks has been proposed by Beyer et al. [21,
2] in the ConnectomeExplorer. Here, labeled neuronal connec-
ions can be queried, and visually explored in linked views. These
iews comprise a 3D volume/mesh rendering, a 2D slice view,
onnectivity graphs, a tree-view showing the hierarchical struc-
ure of segmentations, and several statistical views (histograms,
catterplots etc.). All these interactive 3D network visualizations
ith linked views [7,19–21] contribute spatial context and enable
he user to focus on relevant sub-networks. Nevertheless, navi-
ating these approaches cost time, require domain expertise, and
re naturally unavailable for printed scientific papers. This is not
n issue with our method, since its output is a static figure with
nherent spatial information.

Although the 3D spatial representation of networks provides
natomical context, 2D node-link diagrams with flexible layouts
re better suited for comparing connectivity [23] or identifying
odules (well-connected groups of nodes) [24]. For this reason,
rainModulizer [25] uses a linked presentation of anatomy in 3D,
nd 2D networks to enable neuroscientists to interactively ex-
lore functional connectivity. Spatial correspondence is indicated
ia color coding of hierarchically organized brain modules, but
an be also established via brushing/selecting nodes in one of the
iews. Analogous to BrainModulizer, BRAINtrinsic [26,27] aimed
o explore brain connectivity with node-link diagrams based on
etwork topology. Instead of arranging nodes, they mapped the
etwork to a topological space by taking the networks intrinsic
eometry into account. For this purpose, they performed di-
ensionality reduction (multidimensional scaling, isomap, and

-distributed stochastic neighbor embedding) on structural and
unctional connectivity data. In a 3D view that shows the network
s a node-link diagram, one can interactively switch between
natomical and topological spaces, show/hide particular brain
egions and compute network measures. This approach has been
aken further in the NeuroCave visualization system [28], op-
imized for virtual reality environments. Networks are shown
n a coordinated view, so the network is visible in both a 3D
natomical space and a topological space simultaneously. These
pproaches combine the advantage of 3D spatial representations
ith the flexibility of 2D node-link diagram layouts. However, the
patial context needed for the 2D node-link diagram is provided
ia interaction with a linked view, which is again not avail-
ble for printed scientific papers, and not yet standard for their
lectronic versions. With Spatial-Data-Driven Layouts this can be
voided, since spatial context is not only an intrinsic part of the
isualization, but also of the graph layout.
Spatial relations and anatomical meaning can be integrated

nto an abstract visualization directly while avoiding occlusions
nd clutter simultaneously. For example, Jianu et al. [29] used

lanar projections of fiber tracts generated by Diffusion Tensor

14
Imaging to visualize neuronal connectivity as bundles, where
single bundles can be highlighted for visual distinction. The end-
points of these bundles project directly onto a silhouette of the
brain, providing spatial orientation. Due to a lack of labels and an-
notations, it is not possible to identify individual brain regions. An
abstract visualization was proposed by McGraw et al. [30], who
positioned the nodes of a graph using the automated anatomical
labeling (AAL) brain atlas, discarding one of the three coordi-
nates. The nodes are grouped by the hemisphere (left, right)
and their corresponding brain lobes. Minimizing the overlap is
achieved by using the method by Misue et al. [31]. The color
of the nodes is determined by the lobe it belongs to, while the
radius is proportional to the number of incident edges of the
node. Edges are filtered and bundled in a similar approach as
described by Holten and Van Wijk [32]. Visualization of inter- and
intrahemispheric connectivity is separated to reduce clutter in
interhemispheric connectivity. Another approach that uses edge
bundling was introduced by Böttger et al. [33] who bundled
edges within a brain parcellation to visualize groups of functional
connections between brain areas. While edge bundling reduces
visual clutter caused by edges, they do not reduce the clutter
caused by overlapping nodes caused by 3D to 2D projections. Our
Spatial-Data-Driven Layouts use force-directed layouting to avoid
overlapping nodes, while edge cluttering is reduced by using edge
routing.

As an alternative to visualize the anatomical context in ad-
dition to node-link diagrams, the context can be also integrated
directly into the graph layout. What are known as ‘‘anatomical
layouts‘‘ are abstract 2D representations of brain regions, i.e., the
3D brain anatomy is flatted to a 2D space. NeuroMap [9] renders
an interactive two-dimensional graph of the fruit fly’s brain and
its interconnections in the form of a circuit-style wiring diagram.
Anatomical context is provided by partitioning the canvas into
compartments that form an abstract representation of actual
brain regions. For this purpose, fixed compartment positions that
have been manually defined in collaboration with neuroscien-
tists are used to depict the overall structure of the brain. The
visualization can be interactively adapted by adding new con-
nections from additional data, filtering, highlighting, or layout
adjustments. A similar, static, visualization approach has been
used by Caat et al. [11] and Ji et al. [34], which maps functional
networks derived from electroencephalography (EEG) to a planar
projection of the human skull. To avoid cluttering, only the coher-
ence between functional units, i.e., network modules, units are
shown in a single image. The corresponding functional units of
the EEG electrodes are indicated by colored Voronoi tessellation
in the background. The downside of these approaches [9,11] is
the manual labor that is required to create these layouts. Hence,
they are inherently time-consuming regarding multiple species,
as every species has a unique hierarchical definition of brain
regions. We overcome this limitation by proposing a data-driven
approach.

3. Requirements

Based on a long-term collaboration with neuroscientists work-
ing on neural networks from humans, mice and drosophila
melanogaster, we identified the following requirements for a
method to generate Spatial-Data-Driven Layouts of brain net-
works:

R1) Anatomically Feasible The graph layout should intrinsically
preserve the spatial organization of the network, i.e., nodes
related to brain regions that are anatomically adjacent re-
main close in the graph layout. The layouting should also
deliver stable, anatomically feasible, layouts for partial net-
works, i.e., networks spanning only a part of the brain, to
facilitate comparability of these networks.
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Fig. 2. Scheme of a Hierarchical Representation of Brain Regions of a mouse brain.
he lowest level represents a voxel-level reference space, while higher levels
omprise brain regions.

R2) Data Driven The vast number of connections and brain parcel-
lations, i.e., different regions, within the brain makes manual
arrangement of data an extensive task. Therefore, the method
should be able to handle the layouting in a data-driven way,
i.e., without manually defined spatial restrictions on the posi-
tioning of nodes.

R3) Species-Independent Each species has a unique brain ana-
tomy and parcellation, so the method should work indepen-
dently of these differences.

R4) Perspective-Independent Different perspectives, e.g., trans-
versal (from the top) and sagittal (from the side) should be
possible to provide orientation, i.e., representing the perspective
shape of the brain.

R5) Providing Anatomical Context The final visualization should
provide sufficient context to facilitate the anatomical localiza-
tion of a brain network.

R6) Adaptable with regards to Anatomical Detail It should
be possible to highlight the anatomical detail of the graph
according to information density, (i.e., show more anatomical
detail for highly connected regions, or where networks with
more than one node per region exceeding the resolution of the
hierarchical parcellation), or by the region’s anatomical size,
i.e., where anatomical detail is evenly distributed over regions
with equal size.

R7) Consistent in Spatial Organization with respect to Changes
The layouting should be stable concerning changes in the
selection of visualized network nodes and brain regions, and
therefore, the mental map of the neuroscientist be retained.

R8) Overlap-efficient Overlap of nodes and edges should be min-
imized.

. Methodology

When using graph layouting algorithms, spatial structures and
rientation get lost if such information is not represented in the
raph data. We utilize this presumed problem by proposing a
ulti-stage algorithm, which facilitates connectivity describing
natomical proximity of each brain region (Parcellation-derived
onnectivity) for graph layouting, and the actual connectivity of
nterest for visualization (Rendered Connectivity). This means that
natomical adjacency of regions and overall shape of the brain is
eflected in the layout.

.1. Input data

Hierarchical Brain Parcellation: This data represent the over-
ll information of the species-specific hierarchical parcellation
15
f the brain. This parcellation hierarchically subdivides a 3D
eference space into brain regions, where each brain region is
efined via 3D coordinates. These can be either the regions’ voxel-
evel representations on the space, or, if not available, the brain
egions’ centers of mass (however the center is defined). Fur-
hermore, for each region it includes a name, an acronym, a
olor-code, the region’s size, and a list of its sub-regions. This
ata can be typically derived from brain reference atlases such
s the Allen Mouse Brain Common Coordinate Framework [36],
he Allen Human Reference Atlas,Ding2016, and the larvalbrain
latform [37]. A scheme of the Hierarchical Representation of Brain
egions consisting of the higher hierarchy levels of the Allen
ouse Brain Common Coordinate Framework can be seen in Fig. 2.
Brain Network: A brain network of interest is given as graph

f nodes encoding neural elements at brain region level, and
dges with weights indicating and characterizing the connectivity
etween these nodes, for example, functional resting-state con-
ectivity from the Human Connectome Project [38] or structural
onnectivity from the Allen Mouse Brain Connectivity Atlas [39]
see mouse and human usage scenarios in Sections 5.1 and 5.2). In
ase of availability of more fine grained connectivity information
here can be more than one node related to a brain region,
or example, neuron-to-neuron synaptic connectivity data from
ATMAID [40] (see Drosophila usage scenario in Section 5.3).

.2. Approach

The algorithm for Spatial-Data-Driven Layouts consists of seven
rincipal steps, depicted in Fig. 3. In principle, the nodes of a
rain network are projected onto a 2D plane, depending on the
esired perspective. In case the brain network does not cover the
hole brain, additional nodes are added to represent the missing
natomical context (Step 1, 2, 3). Then, force-directed layout-
ng based on Parcellation-derived Connectivity is used to adapt
he initial 2D node projection so that nodes that are spatially
lose in the anatomical reference space are also close in the 2D
raph (Step 4). To enforce an even distribution of nodes, another
orce-directed layouting step based on Delaunay-triangulation is
erformed (Step 5). In the background of the graph, a colored
oronoi tessellation is added to represent anatomy and overall
hape (Step 6). Finally, the original brain network’s edges are
endered. (Step 7).

tep 1 - Preprocessing: For producing anatomically feasible lay-
uts (R1) in a data driven way (R2), we introduce a Parcellation-
erived Connectivity (Fig. 3 (1)) that represents the closeness
f brain regions in the anatomical reference space. We derived
his measure from the parcellation of brain regions on a 3D
eference space by computing the number of neighboring voxels
6-connectivity) between brain regions across all hierarchy levels.
e normalize the measure by the total number of voxels of

he respective two brain regions, otherwise the measure would
irectly depend on the size of the regions. The localized nature
f this connectivity (only neighboring brain regions are con-
ected) enables graph layouts that retain these local structural
elationships between brain regions. Alternatively, or in case no
arcellation is available, it is also possible to approximate this
easure with the reciprocal distance between region centers

however this center is defined), which leads to inferior results.
or details of the effect on the layout see Section 5. If more than
ne node per brain region is included, i.e., the original network
s more fine grained than the given Hierarchical Brain Parcellation,
e add additional edges with the maximum weight between to
epresent their anatomical closeness.

tep 2 - Graph Completion: Brain networks are generally anato-
ically incomplete, i.e., not covering the whole brain. Thus, to
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Fig. 3. Principal steps to generate spatial-data-driven layouts. (Step 1) Preprocessing the Input Data Preprocessing a Hierarchical Representation of Brain Regions
o generate Parcellation-derived Connectivity which will be used in later steps to layout a brain network. (Step 2) Making the Graph Anatomically Complete: If
he brain network does not cover the whole brain, the missing anatomical context is added as Shadow Nodes, covering brain regions not being part of the original
rain network (gray). (Step 3) Initialization: Projecting the 3D positions of the brain network regions as nodes on a canvas, depending on the desired perspective
here: transversal view). (Step 4) Layouting: Layouting the graph based on the Parcellation-derived Connectivity using a force-directed layouting algorithm. (Step
) Triangulation: To evenly distribute the nodes, Delaunay-triangulation between the nodes is performed. This triangulation is used as edges to perform another
orce-directed layouting with the results of the previous step as initialization. (Step 6) Background Parcellation: Parcellating the background for anatomical context
nd providing an overall shape. A Voronoi tessellation is used, where cells that belong to the same brain regions are grouped together [35]. (Step 7) Network
endering: Rendering the nodes and edges of the brain network (Rendered Connectivity).
S
nclude the missing anatomical context (R1, R5, R7) into our lay-
uting and the final graph representation, we add ‘‘Shadow Nodes‘‘
overing the parts of the brain not being part in the original
etwork (Fig. 3 (3)). These additional nodes will be used only
or layouting process, but are not rendered. As a consequence,
hey fill space in the graph layout, but are otherwise invisible.
his empty, used-up space represents the missing anatomical
ontext, where the presence of these nodes is only indicated by
gray background coloring (hence the name ‘‘Shadow Nodes‘‘). In
ig. 3 (Steps 2,3,4, and 5) these nodes are shown in gray to help
nderstanding the method.
The selection of the hierarchy level of the parcellation used for

he Shadow Nodes is one of the degrees of freedom influencing
he layout and the final visual appearance of the background.
epending on how much context is desired, the Shadow Node
atio (the area that the rest of the brain will take for the layouting
nd background coloring in relation to the brain network nodes
see Step 6 – Background Parcellation) can be adapted:

• Shadow Node Ratio = 0: only brain network nodes will be
layouted and used for background coloring

• Shadow Node Ratio = 1: The hierarchy level for the back-
ground context will set to a level, where the Shadow Nodes,
i.e., the rest of the brain, will cover the same area (on the
2D canvas) as brain network nodes.

• Shadow Node Ratio = N: The hierarchy level for the back-
ground context will set to a level, where the Shadow Nodes,
i.e., the rest of the brain, will cover N-times the area (on the
2D canvas) as brain network nodes.

The effect of this parameter can be seen in Fig. 5. As a con-
equence, the overall shape of the visualization is still preserved
ven for sub-networks that do not cover the whole brain (R5, R6).
Since the hierarchical parcellation is not balanced by the brain

egion’s anatomical size, it is not possible to choose a hierarchy
evel that results in a number of Shadow Nodes that fit the Shadow
ode Ratio. Therefore, the hierarchy is traversed based on region
ize, so that every Shadow Nodes covers an equal anatomical
pace/region size.
16
tep 3 - Initialization:
If layouting (Section 4.2, Step 4 - Layouting) would be per-

formed with random initial position of the nodes on a 2D canvas,
its resulting representation would still resemble the anatomy due
to the construction of the graph in Step 1 - Initialization and Step 2
- Graph Completion of our method. Hence, a random initialization
would lead to tilted, turned, and deformed compared to common
standard views aligned to the main axes of the brain.

In informal interviews, domain experts expressed that the
orientation is crucial for the acceptance of the visualization. Oth-
erwise, they could not sufficiently grasp the spatial structure after
initially looking at the graph (R4).

Here, sagittal (from the side) and transversal (from the top)
are typical views used in neuroscience and provide neuroscien-
tists with an initial orientation. We approximate these views by
choosing projection planes aligned to the respective main axes of
the brain as initialization for layouting.

Based on the user’s desired orientation of the final graph, we
select a plane (e.g., X-Y plane or Y-Z plane) and orthogonally
project the 3D positions of the brain network nodes on it to
define the initial node positions for the layouting (Fig. 3 (2)).
For the sagittal view, where, due to the brain’s symmetry, the
left and right versions of brain regions would directly overlap,
we performed the layouting only on one side, and positioned
the nodes of the respective other side’s brain regions at a tilted
displacement. This mimics a form of perspective distortion, and
enables the viewer to always find the left/right versions of a brain
region at the same distance and angle from each other.

Step 4 - Layouting:We layout the graph based on the Parcellation-
derived Connectivity computed in Step 1 - Preprocessing using
a force-directed layouting algorithm to realize R1, R2, R7 and
R8. Here we used CoSE-Bilkent [41]. Depending on the occlu-
sion/overlap of nodes in Step 3 - Initialization, the forces applied
by the layouting algorithm need to be manually adjusted. Which
forces these are, depends on the chosen algorithm. For CoSE-
Bilkent this is further discussed in Section 4.3. The effect of
parameter adjustment is demonstrated in Supplementary Video
1. In the transversal view for the mouse brain, weak forces are
enough due to the flatter composition of the regions (Fig. 3 (4)).
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arameters for the sagittal view require stronger values, to pull
egions adjacent to each other together and push distant regions
urther apart.

tep 5 - Triangulation: Although the previous step will minimize
ode overlap, it is not guaranteed to lead to no overlap at all.
o counteract this, we want to drive the layout towards an even
ode distribution, i.e., nodes being equidistant to each other.
herefore, we generate edges based on a triangulation between
he nodes (Fig. 3 (5)) (R8) and perform a force-directed layouting
gain.

tep 6 - Background Parcellation: We are parceling and coloring
he background to generate anatomical context (R5).

First, all 2D nodes (real network nodes and shadow nodes) on
he 2D canvas are parceled via a Voronoi tessellation. Naturally,
he Voronoi tessellation would parcel the whole rectangular can-
as. To limit the tessellation to an area that resembles anatomy,
.e., around the nodes, we draw a convex hull with a certain
adding around the nodes. Along this hull, we place virtual nodes
hat will be only considered by the Voronoi tessellation. By setting
he cells of these virtual nodes to invisible, the remaining cells of
he network and shadow nodes form the desired shape (Fig. 3
6)). Then, we group the cells together based on background
egions. To identify these background regions, a recursive algo-
ithm is used, that, given a user-defined Number of Background
egions as parameter, traverses the hierarchy up to find either
rain regions higher in the hierarchy with similar anatomical size
r similar number of edges. Therefore, the background can be
ither focus on anatomy (size of brain regions), or provide context
ased on the information content (number of edges) (R6).
To support the perception of orientation of the domain experts

ith respect to the network of interest, we color the cells of
he parcellation by their associated brain regions’ colors which
nables the user their identification. Fig. 4 shows this approach
ith different Numbers of Background Regions based on the re-
ion size. Background regions are further indicated by an outline
round the groups/background regions in the background (Fig. 3
6)). Note that in Fig. 4, 5 and 6, we colored the whole back-
round (even the Shadow Nodes) to demonstrate the process of
ackground drawing. Otherwise, the background of regions that
o not have connections, i.e., are not part of the network (Shadow
odes), are colored in gray to not catch the viewer’s focus.
To provide further orientation for the transversal view, we

se the circumstance that the brain is typically divided into two
emispheres. Here, we highlight borders between cells of the left
nd right hemispheres in bold black, which leads to a middle line
eparating these two parts of the brain.

tep 7 - Network Rendering: Drawing the brain network (Fig. 3
7)). Here, we label network nodes at region level with the re-
ion’s name, including its brain hemisphere (L as prefix for left
r R as prefix for right) to add anatomical context at network
evel (R5). Here we use common acronyms often included in brain
ntologies, as the full name would not fit into the node. The color
oding is derived from brain reference atlases [36,42], where
very brain structure is assigned a distinct color based on its
ierarchical level in the brain ontology. For brain networks whose
esolution exceeds the Hierarchical Brain Parcellation, i.e., the net-
ork’s brain regions are more fine grained than the parcellation,
ultiple nodes per brain regions are added with similar coloring
nd rendered adjacent.
The opacity of rendered edges/links is representing the con-

ectivity strength (e.g., structural, functional or genetic) between
odes, causing weak connections to appear more transparent.
ote that due to clutter, we only render the strongest connections
n the figures of in this paper. Hence, some nodes that are part of
he networks, i.e., they have connections, are rendered without
17
Fig. 4. Effect of different Number of Background Regions on the context visualized
in the background of the brain network (strongest structural connections in the
whole brain), as described in Section 4.2, Step 6 - Background Parcellation. A
background region is represented as parcels with similar color and enclosed by
an outline.

Fig. 5. Effect of a different Shadow Node Ratios on the context visualized in the
background of brain network (structural connectivity within the thalamus), as
described in Section 4.2, Step 2 - Making the Graph Anatomically Complete.

edges. Other alternatives, such as thickness or coloring causes
more clutter, especially with growing number of edges. Edge
bundling or different edge layouts (R8) can be used to further
reduce this, several of them (orthogonal and organic edge layout-
ing) are shown in the user study (see Fig. 11 and Supplementary
Material).

4.3. Implementation

We used the graph-drawing library Cytoscape.js [43] for the
implementation of a interactive visualization. Here, we selected
the CoSE-Bilkent algorithm [41] for layouting in Step 4 - Layouting
of our method for its speed and usability. There is no limitation to
use different force-directed algorithms. CoSE-Bilkent represents
merely one approach to show that force-directed layouts can be
used for Spatial-Data-Driven Layouts.



F. Ganglberger, M. Wißmann, H.-Y. Wu et al. Computers & Graphics 105 (2022) 12–24

D
c
C

Fig. 6. Effects of Parcellation-derived Connectivity on the Spatial-Data-Driven Layouts of different species and views. Columns show species (mouse, human, and
rosophila larvae) and view (sagittal and transversal), rows the 2D projection of Parcellation-derived Connectivity (2D Projection), layouting of the nodes without
onnectivity at all, i.e., without Step 4 - Layouting of the approach (No Connectivity), layouting with the reciprocal distance between brain regions as Parcellation-derived
onnectivity (Distance), and layouting using the number of neighboring voxels (6-connectivity) between brain regions as Parcellation-derived Connectivity (Neighborhood).

There was no voxel-level definition of brain regions matching the Hierarchical Representation of Brain Regions available for human, hence the layouting is missing in
the last row. Edges for the 2D projections represent the neighborhood-based Parcellation-derived Connectivity for mouse and Drosophila larvae, and distance-based
for human.
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For our implementation, we omitted the nested layouting/
compound layouting functionality of CoSE-Bilkent, since it pro-
duced rectangular compartments which interfered with the
shape/outline of the layouted graph. We investigated the effect of
the algorithm’s parameters, and selected three (node repulsion,
edge length and edge elasticity) that had the strongest effect
on the layouting. While node repulsion acts as pushing force
between nodes, edge length and edge elasticity controls how
nodes are pulled together based on Parcellation-derived Connectiv-
ity. We created a prototype of an interactive visualization, where
these parameters can be iteratively adapted via sliders in real-
time, so that one can find a trade-off between mapping spatially
close nodes in the anatomical reference space to spatially close
positions in the 2D graph, and keeping the overall shape of the
brain. An example of how the layout is reacting to parameter
changes can be seen in Supplementary Video 1 for full and partial
networks.

5. Usage scenarios

We created usage scenarios on three different species (mouse,
human and Drosophila) relevant for neuroscience to showcase
anatomical feasibility (R1) of our approach, its general applica-
bility on different brain architectures (R2, R3) and for different
perspectives (R4). The effectiveness of our proposed visualiza-
tion on the perception of brain networks by neuroscientists was
evaluated in a separate user study in Section 6.

For each brain architecture, we created Spatial-Data-Driven
Layouts depicting common views in neuroscience (sagittal and
transversal) and different ways to create Parcellation-derived Con-
nectivity, i.e., distance or neighborhood based (R2, R3, R4). To
qualitatively evaluate the anatomical feasibility of the generated
layouts (R1), we produced visualizations that re-imagine figures
from neuroscientific publications to show that our approach can
be used to present this information in a similar way. We omit-
ted a numeric, quantitative evaluation based on the distance of
spatially-close nodes in the 2D graph. Here, one would evaluate
18
the closeness of nodes in the resulting 2D graphs by their spatial
closeness in 3D, which already depends on the input of the
force-directed layout algorithm and the spatial closeness in 3D
(Parcellation-derived Connectivity), hence one would evaluate the
force-directed layouting algorithm, and not our approach.

5.1. Mouse brain

Setup: The mouse brain is a model organism widely used in
studies about brain connectivity [16,39,44]. To provide a com-
mon ontology and reference space, the Allen Institute released
a common coordinate framework on a cellular level resolution
for analysis, visualization, and integration of multimodal and
multiscale datasets [36]. It does not only have a voxel-level rep-
resentation of brain regions, but also a brain region ontology,
i.e., a Hierarchical Representation of Brain Regions. We used this
data to create two types of Parcellation-derived Connectivity: The
number of neighboring voxels (6-connectivity) between brain re-
gions (shown as edges in Fig. 6, 2D projection), and the reciprocal
distance between their center-of-gravity.

The effects of using these connectivities on the Spatial-Data-
Driven Layouts can be seen in Fig. 6. Here, we distinguish between
the sagittal and transversal view. As one can see in Fig. 6, 2D
rojection, the mouse brain is rather flat in the transversal view,
ith rather few brain regions occluding others, in contrast to
he sagittal view. Therefore, for the transversal projection, the
ffect on the spatial-data-driven layouting is limited. The effect
ncreases with the size of the network, as can be seen in the
istribution of 997 brain regions/nodes in Fig. 8.
Results: To verify if Spatial-Data-Driven Layouts can be used to

roduce figures for neuroscientific publications, we re-imagined
n artistically drawn brain network suggested by our domain ex-
erts. Fig. 7 shows the brain reward circuitry in the mouse brain
s depicted by Russo et al. Fig. 1 [45]. For this figure, we use struc-
ural connectivity [39] to create a brain network between brain
egions that correspond to the ones given in the paper [45]. Note,
hat the structural connectivity and the dopaminergic circuitry
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Fig. 7. Schematic of brain reward circuitry in a mouse brain as depicted by
Russo et al. Fig. 1 [45], with and without colored context. The regions in the
paper figure correspond in the following way (paper figures’ region = this
igures’ regions as node labels): mPFC/medial prefrontal cortex = PL/prelimbic
rea, NAc/nuclues accumbens = ACB/nucleus accumbens, Amy/amygdala =

MA/basomedial amygdalar nucleus, Hipp/hippocampus = HPF/hippocampal for-
ation, LHb/lateral habenula = LH/lateral habenula, LHA/lateral hypothalamus,

VTA/ventral tegmental area, and LDT/laterodorsal tegmental nucleus.

Fig. 8. Effect of Spatial-Data-Driven layouting on node distribution for larger
networks (997 nodes). The left side shows a transversal 2D projection, the right
side a Spatial-Data-Driven layout of the same network. Background, labels and
edges are removed for the clarity of the layout.

do not represent the same modality, hence, it can only be seen
as an approximation, and as a consequence, not all connections
are similar or present. We investigated then if the brain regions
are correctly adjoining with the Interactive Atlas Viewer [46].
he only obvious inconsistency was the distance between the
ateral habenula (light red, LH) and lateral hypothalamus (red,
HA), whose parent regions (thalamus and hypothalamus) are
ositioned next to each other. Closer inspection revealed, that the
H lies at the superior part of the thalamus, while the LHA lies at
he lateral part of the hypothalamus. Hence, both regions are not
djoined, and are indeed positioned correctly. The visual appeal
f this diagram was then tested in a user study, which can be
ound in Section 6.

.2. Human brain

Setup: Similar to the mouse brain, the Allen Institute released
reference atlas, the Allen Human Reference Atlas [42], to provide
common reference space for the human brain. In contrast to the
ouse brain, the atlas provides only high-resolution histology 2D
lices, not a common coordinate framework to derive the voxel-
evel representation of brain regions. Therefore, neighborhood-
ased Parcellation-derived Connectivity could not be evaluated in
his scenario. We use data from a paper previously published by
awrylycz et al. [47], which provided 3D positions of samples
abeled with Allen Human Reference Atlas brain regions to create
he brain regions’ reciprocal distance between them (edges in
ig. 6, 2D projection). Note, that there have been recent releases
f voxel-level common coordinate frameworks with region-level
nnotations [48,49] that would be also suitable for applications
n the future.

We visualized the effects of using these connectivities on
he Spatial-Data-Driven Layouts similar to the usage scenario in
19
Fig. 9. Orexinergic neuron projections originating from the hypothalamus in the
human brain. Brain region hierarchy level was selected to cover the majority
of brain regions depicted by Gotter et al. Fig. 6, green [50]. Strongest 20% of
outgoing functional resting-state connections of the hypothalamus.

the mouse brain (Fig. 6). Similarly, the transversal view already
showed promising results when layouting without connectivity
(Fig. 6, No Connectivity), mainly because of the human cortex’s
parcellation in frontal, lateral and posterior lobes.

Results: Again, we re-imagined an artistically drawn brain
etwork suggested by domain experts to showcase the applicabil-
ty of Spatial-Data-Driven Layouts for neuroscience publications.
otter et al. (Fig. 6, green) [50] published a figure showing
rexinergic neuron projections originating from the hypotha-
amus in the human brain. We sought to reproduces the in-
ormation shown by Gotter et al. with our Spatial-Data-Driven
ayouts by visualizing the strongest outgoing connections (top
0%) from the hypothalamus on a hierarchical brain region level
overing the majority of the paper’s brain regions (Fig. 9). Since
o structural connectivity was available, we substituted func-
ional resting-state connectivity from the Human Connectome
roject [38]. This led to a surprisingly accurate overlap of the
apers circuit according to our domain experts: The VTA/ventral
egmental area, ACB/nucleus accumbens (equals NAc/nucleus ac-
umbens), MBRa/midbrain raphe nuclei (covering DR/dorsal raphe
ucleus), and the MBRF/midbrain reticular formation (cover-
ng PPT/pedunculopontine tegmental nucleus) are among the
trongest connections. LDT/lateral dorsal tegmental nucleus and
C/locus ceruleus were not covered in the data by Hawrylycz
t al. [47], but their parent region PTg/pontine tegmentum (in-
luding 20 other subregions) was still within the strongest 40%
f the connections (not shown in figure). Closer inspection of
he brain regions’ positions with the Interactive Atlas Viewer [46]
evealed consistency with brain anatomy. Obvious dislocations,
ike the split within brown regions (limbic lobe) can be attributed
o the distance-based Parcellation-Derived Connectivity. Although
hey are adjoined, their centers of gravity are farther apart due
o their anatomical structure. Neighborhood-derived connectivity
as the potential to compensate this issue, as can be seen in
he mouse usage scenario. Visual appeal of this figure was again
ested in the user study (Section 6).

.3. Drosophila larval brain

Setup: The neural circuits of the common fruit fly Drosophila
elanogaster are studied to investigate the generation of com-
lex behavior. Especially their larval stages are examined [51],
here their brains are with 10,000–15,000 neurons still small
nd compact, and therefore less complex. Visualizations of in-
ividual neurons and neuronal circuits are subject to current
esearch [2], but their representations in relation to anatomi-
al context require manual definition and annotations [9]. To
olve this problem with Spatial-Data-Driven Layouts, we took a
ierarchical definition of compartments/brain regions used in
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Fig. 10. DAN-KC-MBON circuitry as published by Schleyer et al. [53] (Fig. 2)
in the mushroom body (red), inferior protocerebrum (brown), and superior
lateral protocerebrum (green). Solid arrows represent synapse counts between
the neurons (nodes), dashed lines between DAN-i1 neuron nodes (in multiple
regions) indicate that it is actually the same neuron present in these three
regions.

the Drosophila community [52], and created neighborhood-based
(edges in Fig. 6, 2D projection), and reciprocal distance-based
arcellation-Derived Connectivity similarly to the mouse usage
cenario. As research on the Drosophila brain focuses on individ-
al neuronal circuits rather than brain regions (e.g., Saumweber
t al. [51]), we sought to adapt the region-level visualization
e used in the mouse and human usage scenario with neuron-

evel data. As showcase, we took the DAN-KC-MBON circuitry
ublished by Schleyer et al. [53] (Fig. 2), and extracted in close
ollaboration with Drosophila brain experts the neuron-to-neuron
synaptic connectivity data from CATMAID [40]. We added these
neurons as nodes to their respective compartments as child nodes
(Step 1) Preprocessing the Input Data), and encoded the synapse
ount between them as connectivity.
Sagittal and transversal views can be seen in Fig. 6. In contrast

o the other scenarios, we had to omit Step 5 - Triangulation from
ayouting, which is used to generate a more even distribution
f nodes. The unique form of the Drosophila larval brain with
ts elongated, slim caudal extension (thoracic ganglion in green
nd abdominal ganglion in orange) would have been distorted
therwise. As a consequence, Fig. 6 (No Connectivity) shows a

nice overall shape, but cluttered and overlapping nodes in the
protocerebrum, especially in the optic lobe (yellow). This effect
was compensated when using the distance-based Parcellation-
Derived Connectivity (Fig. 6, Distance). The neighborhood-based
Parcellation-Derived Connectivity (Fig. 6, Neighborhood) led to even
better results for the sagittal view, as it produced a more uniform
distribution in the abdominal ganglion (orange region).

Results: The result of re-imagine the showcase can be seen
in Fig. 10, with the DAN-KC-MBON circuitry in the mushroom
body (red), inferior protocerebrum (brown), and superior lateral
protocerebrum (green). The solid arrows represent synapse count
between the neurons, the dashed lines between DAN-i1 nodes
(in multiple regions) indicate that it is actually the same neuron
present in these three regions. The added nodes displaced ad-
joined regions spatially correct. According to our domain experts,
this is a good first step towards representing neuron-level cir-
cuits with anatomical context. Further enhancements, e.g., adding
markers for input and output locations [51], i.e., sensory input,
or motor output, in combination with interactive information
visualization (e.g., showing the information flow on mouse-over)
could make this a valuable tool for circuit research.

Due to the differences of the data used in this study with
respect to resolution (neuron vs region level) and scale (local con-
nectivity vs whole brain connectivity) in contrast to the mouse
and human, we did not perform a separate user study for this

species.

20
6. User study

We performed a user study to investigate the effectiveness of
our proposed layouting method and visual design on the per-
ception of network visualization by domain experts. The objec-
tive was to prove the usefulness of Spatial-Data-Driven Layouts
for brain network visualization and to receive feedback for fu-
ture development. Ideally we wanted to include as many sci-
entists as possible, to get a wide range of opinions and to be
robust to individual point of views. Hence, we designed a web-
based questionnaire which was sent out to scientists working
with brain networks, including computer scientists, computa-
tional biologists/bioinformaticians, and neuroscientists. The full
questionnaire is included in the supplementary material.

6.1. Study design

Evaluation of our approach was conducted on mouse and
human brain networks. We created a web-based questionnaire
to measure user performance and user experience [54] for each
species separately, whereby domain expert were encouraged to
participate in the studies of the species for which they felt famil-
iar with. The order of questions was randomized to counteract a
learning effect.

The studies included whole brain and partial networks in
sagittal and transversal views. To compare our results, we also
present visualizations with and without layouting, i.e., brain net-
works without our approach. Furthermore, we evaluated also
the effect of the brain regions’ coloring by including gray-scale
images. The questionnaire consists of four parts:

(S1) Identifying Nodes/Connections: The first part was to mea-
sure the efficiency of the layouting in providing orientation.
Therefore, we tested the viewers by checking how fast they
can find specific nodes and connections in the graph com-
pared to graphs without Spatial-Data-Driven Layouting. Here,
we measured the time how long it takes to click on the
node with the strongest connection to a given node in a
whole brain network. This task was performed on different
transversal views, with and without applied Spatial-Data-
Driven Layouting, and different regions. In this experiment,
the question order was randomized to prevent unexpected
learning effects.

(S2) Visualization of Anatomical Context: Here, we showed
whole and partial brain networks covering different parts
of the brain. We varied different parameters, such as the
Shadow Node Ratio (Section 4.2, Step 2 - Making the Graph
Anatomically Complete) and the Number of Background Re-
gions (Section 4.2, Step 6 - Background Parcellation), then
we asked the participants to rank them by clarity, and how
well they are suitable as paper figures and for educational
purpose based on a Likert scale. Furthermore, we com-
pared artistically drawn figures from neuroscientific pub-
lications [45,50] to similar figures generated with our ap-
proach.

(S3) Edge Visualization: Here we experimented with different
types of edge rendering. Participants were asked to rank
different numbers of edges (top 10%, 20% or 30% of the
edges), as well as different edge routing layouts (direct
arrows, organic edge routing with varied parameters, and
orthogonal edge routing, see Fig. 11), based on clarity and
suitability for publications.

(S4) Demographic Data: The last part includes personal ques-
tions including the current position held by the participant,
level of expertise, familiarity with the brain-region ontology,
color-blindness, and gender.

The major results of the user study can are shown in Table 1,

and are summarized in the following subsections.
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Table 1
Results of the user-study of Part (S1) Identifying nodes/connections, Part (S2) Visualization of anatomical context, Part (S3) Edge
visualization, and Part (S4) demographic data.
Participants Mouse Human

8 (3 female, 5 male) 6 (3 female, 3 male)

Part (S1): Median task completion time
(a) directly projected layout 31 s 43 s
(b) SDDa layout without background 24 s 32 s
(c) SDDa layout with background 30.5 s 30 s

Part (S2) Anatomical context
preferred our approach over 2D projection on different hierarchy levels (votes) 6 5
Number of Background Regions least | middle | most (votes) 5 | 2 | 1 0 | 6 | 0
Number of Shadow Nodes least | most (votes) 2 | 6 1 | 5
Shadow Nodes background colored | gray (votes) 1 | 7 1 | 5
helpfulness of background scoresb 4.05 4.58
visual appealing of re-imagined figureb 3.36 3.33

Part (S3) Preferred edge routing (votes)
direct (clarity | paper | education) 3 | 3 | 3 2 | 2 | 2
organic (clarity | paper | education) 5 | 5 | 5 4 | 4 | 4
orthogonal (clarity | paper | education) 0 | 0 | 0 0 | 0 | 0

Part (S4) Demographics
female | male 3 | 5 3 | 3
postdoc | principal investigators 5 | 3 5 | 1
neurosci. | bioinf.| comp. sci. 4 | 2 | 2 2 | 2 | 2
red-green color weakness 2 1

aSDD = Spatial-Data-Driven.
b1 (poor) to 5 (good).
Fig. 11. Edge routing algorithms that were used in the user study in addition
o direct arrows.

.2. Results

We recruited eight participants for the mouse user study
three female and five male participants), and six participants
or the human (three female and three male participants) to
nvestigate the feasibility of the presented visualization. All par-
icipants of the human user study took also part in the mouse
ser study. All participants are at a senior level (postdoctoral
esearchers principal investigators) with domain knowledge. Six
articipants have worked and are familiar with the Allen Mouse
rain Common Coordinate Framework [36] and three with the Allen
uman Reference Atlas,Ding2016.
Part (S1) consists of three configuration settings of a network

covering structural connectivity over the whole brain, including
(a) directly projected layout, (b) Spatial-Data-Driven Layout with-
ut background, and (c) Spatial-Data-Driven Layout with back-
round. There are in total six clicking questions (for each layout,
e prepared two questions) and measured the task completion
ime. Only one participant made a mistake which happened when
he graph was synthesized directly from the projection (a). It is
traightforward that the task completion time of (b) is shorter
han (a), due to the few occlusions in (b). In case (c) for the
ouse study, the time increased compared to (b), which may be
ecause the colored background induced another layer of visual
omplexity. This was also mentioned by the participants that
he concatenation of strong colors makes it difficult to read the
onnectivity of entities in the diagram. For the human study, the
21
completion of (c) was as fast as (b). This might be an effect of the
more spherical form of the human brain relative to the mouse
brain. Here, a transversal projection leads to higher deformation
of the anatomical structure due to a higher displacement of
the nodes. Hence, the background context supported the spatial
orientation to find nodes/connections rather than to divert the
viewers focus.

In Part (S2), we tested different settings for the visualiza-
tion, consisting of four questions with different hierarchy levels,
two questions with different levels of background detail (Num-
ber of Background Regions), three question with varying size of
background context (Shadow Node Ratio) for sub-networks, and
additional questions regarding coloring thereof. For the different
hierarchy levels, we tested sagittal and transversal views, and the
three configuration settings described in Part (S1). On average, six
participants considered our approach most visually preferable at
coarse, middle and detailed levels, respectively. For the Number
of Background Regions, they preferred rather low numbers to
represent major brain regions.

Half of the participant preferred to read sub-networks with
the most background, i.e., highest Shadow Node Ratio, while the
two neuroscientist with color weakness preferred simple sub-
network without background. In comparison to full color images,
seven out of eight participants prefer the mixture of gray and
color background. The helpfulness of the background for spatial
orientation was considered as for the mouse brain 4.04 on a scale
between 1 (poor) and 5 (good) and was considered even higher
with 4.58 for the human brain.

When showing the graphs in Figs. 7 and 9, where we re-
imagined a hand-crafted image from an existing work [45,50]
with our approach, we received an average ranking of 3.63 (1 is
poor and 5 is good) for the mouse and 3.33 for the human. The
slightly lower score for human might be either due to the low
number of participants (no significant difference), or because of
the higher complexity in terms of node and edge count in the
human figure.

In Part (S3), we also did a comparison on various styles of edge
rendering and various numbers of edges. Participants preferred
fewer edges for clarity due to the reduction of clutter. Not sur-
prisingly, half of the participants chose the organic edge routing,
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ince curve is well-known for its effectiveness of tracing a path
n visualization [55].

Finally, in Part (S4), we did not find demographic differences,
except for the preference of neuroscientists with color weakness
for sub-network visualization without background.

6.3. General feedback

We also received some general feedback from the partici-
pants. One participant indicated that ‘‘Good work with the nice,
omprehensive visualisations’’. Another participant mentioned that
‘the honeycomb parcellation is very nice, the edges visibility in
he long-range is quite tricky’’. Another participant suggests to
s to ‘‘summarize these arrows into one arrow, pointing to some
eaningful position in the target hierarchy, and only then branching
ut to each target area separately’’, i.e to bundle edges of nodes
hat project between two brain regions on a higher hierarchy
evel.

. Discussion

Section 5 showed the potential and relevance of our approach
n neurobiological research on different species. The results of the
ser studies in Section 6 indicate a positive effect of Spatial-Data-
riven Layouts (R1) on the perception of brain networks by neu-
oscientists. By reproducing the results of the user studies from
ouse for human, we demonstrated a species-independence of
ur approach (R2). The following discusses the combined output
f these studies in terms of usefulness of the visual design,
imitations, and potential further improvements.

Visual Design. The overall approach of layouting node-link
iagrams representing brain networks according to their spatial
elations was perceived as intuitively by our domain experts
uring the user studies. Here, we showed that the task of finding
odes and connections in a graph can be performed faster when
sing Spatial-Data-Driven Layouts over simple 2D projections of
D networks. Finding the nodes was possible by providing the
raph in perspective views, which are required to grasp the
rientation of the graph (R4).
The user studies showed that there is no unique solution to

how many background brain regions (determined by the Num-
ber of Background Regions parameter) are ideal. The participants
rather preferred either few or many (R6). Furthermore, the back-
ground can even interfere with edges, which resulted in dimin-
ishing task performance in the mouse user study, part (S1).

Furthermore, including brain regions, that are not part of sub-
networks as Shadow Nodes (set by the (Shadow Node Ratio), was
considered as highly useful, since it preserves the overall shape
of the brain (R1, R3) and allows the user to compare different
graphs. A larger Shadow Node Ratio was preferred, as it provides
a shape similar to a network covering the whole brain. Rendering
this additional context in shades of gray was chosen to not divert
the viewers focus, and was favored by a majority of participants.

Limitations. In general, our approach is spatial-data-driven
and does not require manual re-positioning of nodes. The only
two parameters specific to our approach, Shadow Node Ratio
and Number of Background Regions, are mainly influencing the
anatomical context, and not the arrangement of the nodes per
se. Nevertheless, the layouting is performed with force-directed
algorithms, which are typically not parameter free. During the
development of this method, we found that these parameters
depend strongly on the type of Parcellation-derived Connectivity
and the size of the graph. Our implementation can produce these
graphs in an instant, so adapting the parameters interactively via
sliders (Supplementary Video 1) leads to brain anatomy represent-
ing graphs (R5) that also retain the overall shape of the brain (R3).
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A way to investigate the parameter space automatically would be
to use optimization algorithms such as gradient decent. Here, the
force-directed layouting parameters could be optimized towards
maximizing the Parcellation-derived Connectivity between neigh-
boring nodes, i.e., what is close in the anatomical reference space
is also close in the layout. Note, that the purpose of this paper was
to show that Parcellation-derived Connectivity can be used for lay-
outing networks while maintaining spatial organization. Hence,
the optimization of parameters for force-directed layouting was
not in the scope, for they represent only one exemplary way of
layouting Parcellation-derived Connectivity. As a consequence, this
approach would not guarantee keeping the overall shape of the
brain.

Another limitation is that, the background parcellation de-
pends on the availability of Hierarchical Representation of Brain
Regions, which is not necessarily given for every species. Cre-
ating a Parcellation-derived Connectivity can be also seen as an
overhead, that not every potential user is willing to take.

To ensure that nodes do not overlap (R8) and are evenly
istributed, we added an additional layouting step based on tri-
ngulation between nodes (Section 4.2, Step 5 - Triangulation). In

the Drosophila usage scenario, we had to omit this task because
its slim, caudal extension was distorted otherwise. Therefore, we
can only recommend this step for species with bulkier brains such
as the mouse and the human.

Potential. Our user study showed that the figures that were
re-imagined from hand-crafted paper illustrations are well per-
ceived, so they could be considered for publications. However,
more interactive features could enable this tool to be used also
directly for neuroscience research. For example, features, such
as highlighting the information flow from and to a node, edge
filtering, interactive changing the networks hierarchy level, hi-
erarchical edge bundling, or overlaying additional region-level
data such as gene expression, might enable novel visual analytics
workflows.

Furthermore, our proposed visualization of neuronal circuits
in the Drosophila larval brain represents only a first step. Further
developing the visualization to include markers for input/output
locations, or a different encoding for neurons that span multiple
brain regions, could make this approach a valuable addition to
currently used circuit diagrams.

Last but not least, we want to point out that our approach is
not limited to spatial brain networks. In principle, one could use
this approach to ’’flatten’’ spatial 3D networks from different dis-
ciplines to 2D graphs. Even without a hierarchical representation
of regions, and consequently without the rendering of context in
the background, nodes can still be layouted according to their
spatial relations, and therefore provide spatial orientation.

8. Conclusion

In this paper, we present a novel approach to visualize brain
networks via spatial-data-driven layouting, and a visual design
to render anatomical context. Our method is data-driven, so it
does not require the manual definition of spatial restrictions to
generate anatomically feasible layouts, independent of species or
perspective. This is enabled by using Parcellation-derived Connec-
tivity, generated from brain atlases, to perform graph layouting
with standard force-directed algorithms.

We show in several case-studies on different species, that this
results in a positioning of nodes that inherently represent the
spatial relations between brain regions, i.e., brain regions that
are adjoined in the reference space are close together in the
graph. This indicates that our method could be applied to various
species; generating novel anatomical layouts of neuroscientific
networks. In further research, one could even investigate the
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eneralization of this approach by applying it to other disci-
lines, where ’’flattening’’ a 3D network to a 2D space would be
eneficial.
To provide further guidance, we developed a visual design

o highlight the networks anatomical context. Here, we added a
olor-coded parcellation to the background of a brain network, to
ndicate major anatomical regions, and provide an overall shape,
ndependent of the graph’s completeness. This background is
daptable with regards to anatomical detail, to represent either
natomical size or the number of connections.
We evaluated both the layouting and the design in a web-

ased user study with domain experts from the field of neuro-
cience, computer science, bioinformatics, and computation bi-
logy, which showed the general applicability of our approach
or neuroscientific visualization. This suggest, that Spatial-Data-
riven Layouts are valuable, not only to domain experts working

with the data, but also to their audience, to give an understanding
of brain networks that would be otherwise hard to grasp.

For the future, we plan to integrate this approach into an
nteractive visual analytics tool to enable neuroscientists a quick
eployment to their data, and ad hoc adjustment regarding the
ethod’s parameters and brain regions of interest, to make this
pproach available to a wider audience. Furthermore, we want
o enhance the neuron-level visualization and visual design of
he Drosophila larval network graphs for a more detailed circuit
epresentation.

RediT authorship contribution statement

Florian Ganglberger: Conceived the method, Designed the
ser study, Analyzed the results, Wrote the manuscript. Monika
ißmann: Conceived the method, Implemented the method,
esigned the user study, Wrote the manuscript. Hsiang-Yun
u: Designed and implemented the user study, Analyzed the

esults, Wrote the manuscript. Nicolas Swoboda: Generated the
rosophila usage scenario figure. Andreas Thum: Helped to shape
equirements, Provided data and use cases. Wulf Haubensak:
elped to shape requirements, Provided data and use cases. Katja
ühler: Conceived the method, Wrote the manuscript.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research was funded in part by the Austrian Science Fund
FWF) I 4836-B. For the purpose of open access, the author has
pplied a CC BY public copyright license to any Author Accepted
anuscript version arising from this submission.
VRVis is funded by BMVIT, BMDW, Styria, SFG and Vienna

usiness Agency in the scope of COMET–Competence Centers
or Excellent Technologies (854174) which is managed by FFG.
e want to thank Gwendolyn Rippberger for a first prototype
redating Monika Wißmanns implementation. Furthermore, we
ant to thank the participants of the user study, especially the
aubensak group at the Institute of Molecular Pathology in Vi-
nna and Böhringer-Ingelheim in Biberach an der Riß. Last but not
east we want to thank Thomas Torsney-Weir for writing support.

ppendix A. Supplementary data

Supplementary material related to this article can be found

nline at https://doi.org/10.1016/j.cag.2022.04.014.

23
eferences

[1] Margulies DS, Böttger J, Watanabe A, Gorgolewski KJ. Visualizing the hu-
man connectome. NeuroImage 2013;80:445–61. http://dx.doi.org/10.1016/
j.neuroimage.2013.04.111.

[2] Strauch M, Hartenstein V, Andrade IV, Cardona A, Merhof D. Annotated
dendrograms for neurons from the larval fruit fly brain. In: VCBM 2018
- Eurographics workshop on visual computing for biology and medicine.
2018, http://dx.doi.org/10.2312/vcbm.20181229.

[3] Sporns O. Structure and function of complex brain networks. Dialogues
Clin Neurosci 2013;15(3):247–62. http://dx.doi.org/10.31887/DCNS.2013.
15.3/osporns.

[4] Larson SD, Martone ME. Ontologies for neuroscience: What are they and
what are they good for? Front Neurosci 2009;3(1):60–7. http://dx.doi.org/
10.3389/neuro.01.007.2009.

[5] Marai GE, Pinaud B, Bühler K, Lex A, Morris JH. Ten simple rules to
create biological network figures for communication. PLoS Comput Biol
2019;15(9). http://dx.doi.org/10.1371/journal.pcbi.1007244.

[6] Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E.
Neurophysiological architecture of functional magnetic resonance images
of human brain. Cerebral Cortex 2005;15(9):1332–42. http://dx.doi.org/10.
1093/cercor/bhi016.

[7] Ganglberger F, Swoboda N, Frauenstein L, Kaczanowska J, Haubensak W,
Bühler K. BrainTrawler: A visual analytics framework for iterative explo-
ration of heterogeneous big brain data. Comput Graph 2019;82:304–20.
http://dx.doi.org/10.1016/j.cag.2019.05.032.

[8] Xia M, Wang J, He Y. BrainNet viewer: a network visualization tool for
human brain connectomics. PLoS One 2013;8(7). http://dx.doi.org/10.1371/
journal.pone.0068910.

[9] Sorger J, Bühler K, Schulze F, Liu T, Dickson B. NeuroMAP—Interactive
graph-visualization of the fruit fly’s neural circuit. In: 2013 IEEE sympo-
sium on biological data visualization. IEEE; 2013, p. 73–80. http://dx.doi.
org/10.1109/BioVis.2013.6664349.

[10] Schöttler S, Yang Y, Pfister H, Bach B. Visualizing and interacting with
geospatial networks: A survey and design space. Comput Graph Forum
2021;40(6):5–33. http://dx.doi.org/10.1111/cgf.14198.

[11] ten Caat M, Maurits NM, Roerdink JB. Data-driven visualization and group
analysis of multichannel EEG coherence with functional units. IEEE Trans
Vis Comput Graphics 2008;14(4):756–71. http://dx.doi.org/10.1109/TVCG.
2008.21.

[12] Gerhard S, Daducci A, Lemkaddem A, Meuli R, Thiran J-P, Hagmann P. The
connectome viewer toolkit: An open source framework to manage, analyze,
and visualize connectomes. Front Neuroinf 2011;5:3. http://dx.doi.org/10.
3389/fninf.2011.00003.

[13] Ribeiro AS, Lacerda LM, Ferreira HA. Multimodal imaging brain connectivity
analysis (MIBCA) toolbox. PeerJ 2015;3:e1078. http://dx.doi.org/10.7717/
peerj.1078.

[14] Rubinov M, Sporns O. Complex network measures of brain connectivity:
Uses and interpretations. NeuroImage 2010;52(3):1059–69. http://dx.doi.
org/10.1016/j.neuroimage.2009.10.003.

[15] Bassett DS, Sporns O. Nature neuroscience. 2017, http://dx.doi.org/10.1038/
nn.4502, arXiv:0106096v1.

[16] Richiardi J, Altmann A. Correlated gene expression supports synchronous
activity in brain networks. Science 2015;348(6240):11–4. http://dx.doi.org/
10.1126/science.1255905.

[17] Zalesky A, Fornito A, Bullmore ET. Network-based statistic: Identifying
differences in brain network. NeuroImage (4):1197–207.

[18] LaPlante RA, Douw L, Tang W, Stufflebeam SM. The connectome visualiza-
tion utility: Software for visualization of human brain networks. PLoS One
2014;9(12):e113838. http://dx.doi.org/10.1371/journal.pone.0113838.

[19] Irimia A, Chambers MC, Torgerson CM, Filippou M, Hovda DA, Alger JR,
et al. Patient-tailored connectomics visualization for the assessment of
white matter atrophy in traumatic brain injury. Front Neurol 2012;3:10.
http://dx.doi.org/10.3389/fneur.2012.00010.

[20] Bezgin G, Reid AT, Schubert D, Kötter R. Matching spatial with ontological
brain regions using java tools for visualization, database access, and
integrated data analysis. Neuroinformatics 2009;7(1):7–22.

[21] Beyer J, Al-Awami A, Kasthuri N, Lichtman JW, Pfister H, Hadwiger M.
ConnectomeExplorer: Query-guided visual analysis of large volumetric
neuroscience data. IEEE Trans Vis Comput Graphics 2013;19(12):2868–77.
http://dx.doi.org/10.1109/TVCG.2013.142.

[22] Beyer J, Hadwiger M, Al-Awami A, Jeong W-K, Kasthuri N, Lichtman JW,
et al. Exploring the connectome: Petascale volume visualization of mi-
croscopy data streams. IEEE Comput Graph Appl 2013;33(4):50–61. http:
//dx.doi.org/10.1109/MCG.2013.55.

[23] Alper B, Bach B, Henry Riche N, Isenberg T, Fekete J-D. Weighted graph
comparison techniques for brain connectivity analysis. In: Proceedings
of the SIGCHI conference on human factors in computing systems. CHI
’13, New York, NY, USA: ACM; 2013, p. 483–92. http://dx.doi.org/10.1145/
2470654.2470724.

https://doi.org/10.1016/j.cag.2022.04.014
http://dx.doi.org/10.1016/j.neuroimage.2013.04.111
http://dx.doi.org/10.1016/j.neuroimage.2013.04.111
http://dx.doi.org/10.1016/j.neuroimage.2013.04.111
http://dx.doi.org/10.2312/vcbm.20181229
http://dx.doi.org/10.31887/DCNS.2013.15.3/osporns
http://dx.doi.org/10.31887/DCNS.2013.15.3/osporns
http://dx.doi.org/10.31887/DCNS.2013.15.3/osporns
http://dx.doi.org/10.3389/neuro.01.007.2009
http://dx.doi.org/10.3389/neuro.01.007.2009
http://dx.doi.org/10.3389/neuro.01.007.2009
http://dx.doi.org/10.1371/journal.pcbi.1007244
http://dx.doi.org/10.1093/cercor/bhi016
http://dx.doi.org/10.1093/cercor/bhi016
http://dx.doi.org/10.1093/cercor/bhi016
http://dx.doi.org/10.1016/j.cag.2019.05.032
http://dx.doi.org/10.1371/journal.pone.0068910
http://dx.doi.org/10.1371/journal.pone.0068910
http://dx.doi.org/10.1371/journal.pone.0068910
http://dx.doi.org/10.1109/BioVis.2013.6664349
http://dx.doi.org/10.1109/BioVis.2013.6664349
http://dx.doi.org/10.1109/BioVis.2013.6664349
http://dx.doi.org/10.1111/cgf.14198
http://dx.doi.org/10.1109/TVCG.2008.21
http://dx.doi.org/10.1109/TVCG.2008.21
http://dx.doi.org/10.1109/TVCG.2008.21
http://dx.doi.org/10.3389/fninf.2011.00003
http://dx.doi.org/10.3389/fninf.2011.00003
http://dx.doi.org/10.3389/fninf.2011.00003
http://dx.doi.org/10.7717/peerj.1078
http://dx.doi.org/10.7717/peerj.1078
http://dx.doi.org/10.7717/peerj.1078
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1038/nn.4502
http://dx.doi.org/10.1038/nn.4502
http://dx.doi.org/10.1038/nn.4502
http://arxiv.org/abs/0106096v1
http://dx.doi.org/10.1126/science.1255905
http://dx.doi.org/10.1126/science.1255905
http://dx.doi.org/10.1126/science.1255905
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb17
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb17
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb17
http://dx.doi.org/10.1371/journal.pone.0113838
http://dx.doi.org/10.3389/fneur.2012.00010
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb20
http://dx.doi.org/10.1109/TVCG.2013.142
http://dx.doi.org/10.1109/MCG.2013.55
http://dx.doi.org/10.1109/MCG.2013.55
http://dx.doi.org/10.1109/MCG.2013.55
http://dx.doi.org/10.1145/2470654.2470724
http://dx.doi.org/10.1145/2470654.2470724
http://dx.doi.org/10.1145/2470654.2470724


F. Ganglberger, M. Wißmann, H.-Y. Wu et al. Computers & Graphics 105 (2022) 12–24
[24] Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A, Chen M-Y, et al.
Long-term neural and physiological phenotyping of a single human. Nature
Commun 2015;6:8885.

[25] Murugesan S, Bouchard K, Brown JA, Hamann B, Seeley WW, Trujillo A,
et al. Brain modulyzer: interactive visual analysis of functional brain
connectivity. IEEE/ACM Trans Comput Biol Bioinform 2016;14(4):805–18.

[26] Conte G, Ye AQ, Almryde KR, Ajilore O, Leow AD, Forbes AG. Intrinsic
geometry visualization for the interactive analysis of brain connectivity
patterns. In: Visualization and data analysis. 2016.

[27] Conte G, Ye AQ, Forbes AG, Ajilore O, Leow A. BRAINtrinsic: A virtual
reality-compatible tool for exploring intrinsic topologies of the human
brain connectome. In: Brain informatics and health. Springer; 2015,
p. 67–76. http://dx.doi.org/10.1007/978-3-319-23344-4_7.

[28] Keiriz JJG, Zhan L, Ajilore O, Leow AD, Forbes AG. NeuroCave: A web-based
immersive visualization platform for exploring connectome datasets. Netw
Neurosci 2018;2(3):344–61. http://dx.doi.org/10.1162/netn_a_00044.

[29] Jianu R, Demiralp C, Laidlaw DH. Exploring brain connectivity with
two-dimensional neural maps. IEEE Trans Vis Comput Graphics
2012;18(6):978–87. http://dx.doi.org/10.1109/TVCG.2011.82.

[30] McGraw T. Graph-based visualization of neuronal connectivity using ma-
trix block partitioning and edge bundling. In: International Symposium on
Visual Computing. Springer; 2015, p. 3–13. http://dx.doi.org/10.1007/978-
3-319-27857-5_1.

[31] Eades P, Lai W, Misue K, Sugiyama K. Layout adjustment and the mental
map. J Vis Lang Comput 1995;6(2):183–210.

[32] Holten D, Van Wijk JJ. Force-directed edge bundling for graph visualization.
In: Comput Graph Forum. 28, (3):Wiley Online Library; 2009, p. 983–90.
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x.

[33] Böttger J, Schäfer A, Lohmann G, Villringer A, Margulies DS. Three-
dimensional mean-shift edge bundling for the visualization of func-
tional connectivity in the brain. IEEE Trans Vis Comput Graphics
2014;20(3):471–80. http://dx.doi.org/10.1109/TVCG.2013.114.

[34] Ji C, Maurits NM, Roerdink JBTM. Data-driven visualization of multichannel
EEG coherence networks based on community structure analysis. Appl
Netw Sci 2018;3(1):41. http://dx.doi.org/10.1007/s41109-018-0096-x.

[35] Wu H-Y, Nollenburg M, Viola I. Multi-level area balancing of clustered
graphs. IEEE Trans Vis Comput Graphics 2020;1. http://dx.doi.org/10.1109/
TVCG.2020.3038154.

[36] Wang Q, Ding SL, Li Y, Royall J, Feng D, Lesnar P, et al. The Allen
Mouse Brain common coordinate framework: A 3D reference atlas. Cell
2020;181(4):936–53. http://dx.doi.org/10.1016/j.cell.2020.04.007.

[37] Larvalbrain. 2021, http://www.larvalbrain.org/. [Accessed 08 November
2021].

[38] Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K.
The WU-Minn human connectome project: An overview. NeuroImage
2013;80:62–79. http://dx.doi.org/10.1016/j.neuroimage.2013.05.041.

[39] Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, et al. A mesoscale
connectome of the mouse brain. Nature 2014;508(7495):207–14. http:
//dx.doi.org/10.1038/nature13186.

[40] Saalfeld S, Cardona A, Hartenstein V, Tomančák P. CATMAID: Collaborative
annotation toolkit for massive amounts of image data. Bioinformatics
2009;25(15):1984–6. http://dx.doi.org/10.1093/bioinformatics/btp266.
24
[41] Dogrusoz U, Giral E, Cetintas A, Civril A, Demir E. A layout algorithm
for undirected compound graphs. Inform Sci 2009;179(7):980–94. http:
//dx.doi.org/10.1016/j.ins.2008.11.017.

[42] Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, et al. Compre-
hensive cellular-resolution atlas of the adult human brain. J Comp Neurol
2016;524(16):3127–608. http://dx.doi.org/10.1002/cne.24080.

[43] Cytoscape.js - A graph theory (network) library for visualisation and
analysis. 2021, https://js.cytoscape.org/. [Accessed 08 November 2021].

[44] Feng D, Lau C, Ng L, Li Y, Kuan L, Sunkin SM, et al. Exploration and visu-
alization of connectivity in the adult mouse brain. Methods 2015;73:90–7.
http://dx.doi.org/10.1016/j.ymeth.2015.01.009.

[45] Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev
Neurosci 2013;14(9):609–25. http://dx.doi.org/10.1038/nrn3381.

[46] Interactive Atlas viewer. 2021, http://atlas.brain-map.org/. [Accessed 26
March 2021].

[47] Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA,
et al. An anatomically comprehensive atlas of the adult human brain
transcriptome. Nature 2012;489(7416):391–400. http://dx.doi.org/10.1038/
nature11405.

[48] Ding S-L, Royall JJ, Sunkin SM, Facer BA, Lesnar P, Bernard A, et al. Allen
human reference Atlas – 3D, 2020. 2020, RRID:SCR_017764.

[49] Amunts K, Mohlberg H, Bludau S, Zilles K. Julich-Brain: A 3D
probabilistic Atlas of the human brain’s cytoarchitecture. Science
2020;369(6506):988–92. http://dx.doi.org/10.1126/science.abb4588.

[50] Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow Dr. CJ. International
union of basic and clinical pharmacology. LXXXVI. orexin receptor function,
nomenclature and pharmacology. Pharmacol Rev 2012;64(3):389–420.
http://dx.doi.org/10.1124/pr.111.005546.

[51] Saumweber T, Rohwedder A, Schleyer M, Eichler K, Chen YC, Aso Y, et
al. Functional architecture of reward learning in mushroom body extrinsic
neurons of larval drosophila. Nature Commun 2018;9(1):1104. http://dx.
doi.org/10.1038/s41467-018-03130-1.

[52] Hartenstein V, Younossi-Hartenstein A, Lovick JK, Kong A, Omoto JJ,
Ngo KT, et al. Lineage-associated tracts defining the anatomy of the
Drosophila first instar larval brain. Dev Biol 2015;406(1):14–39. http:
//dx.doi.org/10.1016/j.ydbio.2015.06.021.

[53] Schleyer M, Weiglein A, Thoener J, Strauch M, Hartenstein V, Weigelt MK,
et al. Identification of dopaminergic neurons that can both establish
associative memory and acutely terminate its behavioral expression. J Neu-
rosci 2020;40(31):5990–6006. http://dx.doi.org/10.1523/JNEUROSCI.0290-
20.2020.

[54] Isenberg T, Isenberg P, Chen JJ, Sedlmair M, Möller T. A systematic review
on the practice of evaluating visualization. IEEE Trans Vis Comput Graphics
2013;19:2818–27. http://dx.doi.org/10.1109/TVCG.2013.126.

[55] Wu H-Y, Niedermann B, Takahashi S, Roberts MJ, Nöllenburg M. A survey
on transit map layout from design, machine, and human perspectives.
Comput Graph Forum (Special Issue of EuroVis 2020) 2020;39(3). http:
//dx.doi.org/10.1111/cgf.14030.

http://refhub.elsevier.com/S0097-8493(22)00066-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb26
http://dx.doi.org/10.1007/978-3-319-23344-4_7
http://dx.doi.org/10.1162/netn_a_00044
http://dx.doi.org/10.1109/TVCG.2011.82
http://dx.doi.org/10.1007/978-3-319-27857-5_1
http://dx.doi.org/10.1007/978-3-319-27857-5_1
http://dx.doi.org/10.1007/978-3-319-27857-5_1
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb31
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb31
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb31
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://dx.doi.org/10.1109/TVCG.2013.114
http://dx.doi.org/10.1007/s41109-018-0096-x
http://dx.doi.org/10.1109/TVCG.2020.3038154
http://dx.doi.org/10.1109/TVCG.2020.3038154
http://dx.doi.org/10.1109/TVCG.2020.3038154
http://dx.doi.org/10.1016/j.cell.2020.04.007
http://www.larvalbrain.org/
http://dx.doi.org/10.1016/j.neuroimage.2013.05.041
http://dx.doi.org/10.1038/nature13186
http://dx.doi.org/10.1038/nature13186
http://dx.doi.org/10.1038/nature13186
http://dx.doi.org/10.1093/bioinformatics/btp266
http://dx.doi.org/10.1016/j.ins.2008.11.017
http://dx.doi.org/10.1016/j.ins.2008.11.017
http://dx.doi.org/10.1016/j.ins.2008.11.017
http://dx.doi.org/10.1002/cne.24080
https://js.cytoscape.org/
http://dx.doi.org/10.1016/j.ymeth.2015.01.009
http://dx.doi.org/10.1038/nrn3381
http://atlas.brain-map.org/
http://dx.doi.org/10.1038/nature11405
http://dx.doi.org/10.1038/nature11405
http://dx.doi.org/10.1038/nature11405
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb48
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb48
http://refhub.elsevier.com/S0097-8493(22)00066-8/sb48
http://dx.doi.org/10.1126/science.abb4588
http://dx.doi.org/10.1124/pr.111.005546
http://dx.doi.org/10.1038/s41467-018-03130-1
http://dx.doi.org/10.1038/s41467-018-03130-1
http://dx.doi.org/10.1038/s41467-018-03130-1
http://dx.doi.org/10.1016/j.ydbio.2015.06.021
http://dx.doi.org/10.1016/j.ydbio.2015.06.021
http://dx.doi.org/10.1016/j.ydbio.2015.06.021
http://dx.doi.org/10.1523/JNEUROSCI.0290-20.2020
http://dx.doi.org/10.1523/JNEUROSCI.0290-20.2020
http://dx.doi.org/10.1523/JNEUROSCI.0290-20.2020
http://dx.doi.org/10.1109/TVCG.2013.126
http://dx.doi.org/10.1111/cgf.14030
http://dx.doi.org/10.1111/cgf.14030
http://dx.doi.org/10.1111/cgf.14030

	Spatial-data-driven layouting for brain network visualization
	Introduction
	Related work
	Requirements
	Methodology
	Input data
	Approach
	Implementation

	Usage scenarios
	Mouse brain
	Human brain
	Drosophila larval brain

	User study
	Study design
	Results
	General feedback

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


