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Abstract

In this thesis, a family of sharp Lp Sobolev–type inequalities is established by averaging
the length of i-dimensional projections of the gradient of a function. Moreover, it is
shown that each of these new inequalities directly implies the classical Lp Sobolev
inequality of Aubin and Talenti and that the strongest member of this family is the only
affine invariant one among them – the affine Lp Sobolev inequality of Lutwak, Yang,
and Zhang. When p = 1, the entire family of new Sobolev inequalities is extended to
functions of bounded variation to also allow for a complete classification of all extremal
functions in this case.

Next, the corresponding family of Pólya–Szegö principles, associated to the
aforementioned Sobolev–type inequalities, is established, as well as the Pólya–
Szegö principles for a family of analytic functionals introduced recently by Haberl and
Schuster. Both of these families contain the classical Pólya–Szegö principle as well as
the affine Pólya–Szegö principle by Cianchi, Lutwak, Yang and Zhang as special cases
and can therefore be seen as generalizations of the latter ones. Additionally, a complete
characterization of the cases of equality in the sense of Brothers and Ziemer is given.

Finally, it is shown that the volume product V (Φ◦K)V (K)n−1 for each continuous,
(n− 1)–homogeneous, translation invariant and SO(n) equivariant Minkowski valuation
Φ has a full dimensional convex body as maximizer. Moreover, by the same methods, the
non–polar problem for such Minkowski valuations can be dealt with as well. It is shown
that the analogous non–polar volume product V (ΦK)V (K)1−n exhibits full dimensional
minimizers.
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Zusammenfassung

In der vorliegenden Dissertation wird eine Familie Sobolev–artiger Ungleichungen
bewiesen, indem die Längen i–dimensionaler Projektionen des Gradienten einer
Funktion passend gemittelt werden. Darüberhinaus wird gezeigt, dass jede dieser
neuen Ungleichungen unmittelbar die klassische Lp Sobolev Ungleichung von Aubin und
Talenti impliziert und dass innerhalb dieser Familie die stärkste Ungleichung zugleich die
einzig affin invariante ist, nämlich die affine Lp Sobolev Ungleichung von Lutwak, Yang
und Zhang. Im Fall p = 1 wird die gesamte Familie dieser neuartigen Ungleichungen
zudem auf den Raum der Funktionen von beschränkter Variation erweitert, was eine
vollständige Charakterisierung aller Gleichheitsfälle erlaubt.

Als nächstes werden die zu obigen Sobolev–artigen Ungleichungen gehörigen
Pólya–Szegö Ungleichungen aufgestellt. Ebenso werden die zugehörigen Pólya–
Szegö Ungleichungen einer Familie von analytischen Funktionalen, die erst kürzlich
von Haberl und Schuster eingeführt wurden, bewiesen. Beide dieser neuen Familien
von Ungleichungen beinhalten insbesondere das klassische sowie das von Cianchi,
Lutwak, Yang und Zhang eingeführte affine Pólya–Szegö Prinzip, weswegen die neuen
Ungleichungen der vorliegenden Arbeit eine Verallgemeinerung dieser klassischen
Resultate darstellen. Weiters werden alle Gleichheitsfälle dieser neu erhaltenen
Ungleichungen im Sinne von Brothers und Ziemer charakterisiert.

Schlussendlich wird gezeigt, dass das Produkt der Volumina V (Φ◦K)V (K)n−1 für jede
stetige, (n − 1)–homogene, translationsinvariante und SO(n) equivariante Minkowski–
Bewertung Φ einen volldimensionalen konvexen Körper als Maximierer besitzt. Die
gleichen Methoden erlauben es auch die nicht–polare Problemstellung für solche
Minkowski–Bewertungen zu behandeln. In analoger Weise wird gezeigt, dass das nicht–
polare Produkt der Volumina V (ΦK)V (K)1−n volldimensionale Minimierer besitzt.
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1 Introduction

A classical research area in geometric analysis includes the search for sharp bounds for
analytic functionals. Probably the best known example in this context is the classical
L1 Sobolev inequality, going back in its sharp form to Federer and Fleming [FF60] and
Maz’ya [Maz60]. The latter being Euclidean in nature, it was a major breakthrough,
when in 1999 Zhang [Zha99] proved an affine Sobolev–type inequality, that strengthened
and directly implied the weaker Euclidean one. Since then a lot of effort was put into
proving new affine inequalities or establishing the affine counterparts to already existing
Euclidean inequalities (see for example [CLYZ09, HS09a, LYZ02]). One of the more
recent results in this field is given by a family of Sobolev–type inequalities by Haberl
and Schuster [HS19], which contains the classical and the affine Sobolev inequalities as
special members.
A different line of research, which is closely related to the one of Sobolev–type

inequalities, deals with the rearrangement of functions to minimize energy functionals.
Classical results in this direction show that many such functionals are minimized by
functions exhibiting enough symmetries. In this sense, a Pólya–Szegö principle refers
to any kind of inequality that assures that some energy functional E of a function
f ∈ W 1,p(Rn), p ≥ 1, does not increase under a suitable rearrangement of f . The
first and probably best known representative of such inequalities, the classical Pólya–
Szegö principle (see [PS51]), proves such an inequality for the usual Lp norm ‖∇f‖p of
|∇f |. Regarding the equality cases of such an inequality, Brothers and Ziemer [BZ88]
provided the weakest necessary conditions on f , such that equality holds exactly for
radially symmetric functions, that is functions whose level sets are concentric balls.
Analytic inequalities, such as Sobolev–type inequalities and Pólya–Szegö principles,

are strongly related to geometric inequalities of isoperimetric type. For instance,
it is very well known that the classical L1 Sobolev inequality and the classical
isoperimetric inequality are equivalent. Similarly, Pólya–Szegö principles are usually
obtained by applying isoperimetric inequalities to the level sets of a function (see
for example [CF02b, ET04, Wan13]). Thus, extending our understanding of certain
analytic inequalities goes hand in hand with an increased comprehension of solutions
to isoperimetric problems (and vice versa). As a result, many analytic inequalities
are obtained after their geometric core is established. For instance, Zhang proved the
affine Zhang–Sobolev inequality by applying (a modified version of) Petty’s projection
inequality [Pet71], the fundamental affine isoperimetric inequality for projection bodies.
Similarly, Haberl and Schuster first established the geometric core before proving their
Sobolev–type inequalities. The underlying geometry behind their result corresponds to
a generalization of the Petty projection inequality, replacing the projection body by
members from a large family of Minkowski valuations. Showing a Petty Projection–type

1
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inequality for all continuous, (n − 1)–homogeneous, translation invariant and SO(n)
equivariant Minkowski valuations is still an open problem, whose solution would again
give rise to a large class of Sobolev–type inequalities.
In this work we will establish a family of sharp Sobolev–type inequalities, by taking

suitable averages of the projection of the gradient of a function f onto lower dimensional
subspaces. We will achieve this, by first showing the underlying geometric inequalities
and then exploit the strong connection between geometric and analytic inequalities,
to prove our analytic versions. Next, we will establish the Pólya–Szegö principles for
our family of energy functionals, as well as the Pólya–Szegö principles for the family
of energy functionals introduced in [HS19]. In this way, we will recover the classical
Pólya–Szegö principles as special cases. Finally, we will follow the classical approach of
first establishing geometric inequalities in order to show analytic ones, by investigating
a large family of Minkowski valuations and proving that certain associated functionals
exhibit extremizers. This work is structured as follows:
Chapter 2 is a refresher on some background material from convex geometry and

geometric analysis, as well as functional analysis, that we will use throughout this thesis.
In Chapter 3 we recall some classical geometric and analytic inequalities as well as some

recent results, that extend the classical inequalities. Moreover, we introduce the notion
of LYZ-bodies, which allows us to easily obtain analytic inequalities from geometric ones,
and prove some important properties of them.
Next, in Chapter 4, we use the LYZ–body and methods similar to those introduced

in [HS19] to establish a family of sharp geometric inequalities and turn those into sharp
functional ones. We will see, that among our inequalities, the affine ones play an
important role, by being the strongest ones. Furthermore, we provide a characterization
of all cases of equality of the established Sobolev–type inequalities. Additionally, we
will partly answer a question raised by Monika Ludwig, by proving our inequalities for
functionals depending on other norms than the Euclidean one.
In Chapter 5 the Pólya–Szegö principles for the energy functionals introduced in

Chapter 4, as well as the ones introduced by Haberl and Schuster in [HS19], will be
established.
Finally, Chapter 6 is devoted to the study of Petty Projection–type inequalities

for a certain class of Minkowski valuations. We show that the volume product
V (Φ◦K)V (K)n−1 for any continuous, (n − 1)–homogeneous, translation invariant and
SO(n) equivariant Minkowksi valuation Φ exhibits a full dimensional maximizer K. Our
method also allows us to tackle the non–polar version of this problem and enables us to
prove the existence of minimizers of V (ΦK)V (K)1−n for the aforementioned valuations.

Some parts of the results presented in this thesis have already been submitted to
scientific journals by the author. Chapter 4 is based on joint work with Franz Schuster
[KS20]. The rearrangement inequalities presented in Chapter 5 are not published yet,
but are going to be published in [Kni20]. Finally, the geometric inequalities shown in
Chapter 6 are work in progress jointly with Georg Hofstätter and Franz Schuster and
are going to be published in [HKS20].
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2 Background and Notation

In this chapter we collect basic notions and results from the Lp Brunn–Minkowski theory
of convex bodies as well as the theory of Sobolev functions and of functions of bounded
variation, following essentially [KS20]. As a general reference for the material on convex
geometry presented here, we recommend the books by Schneider [Sch14] and Gardner
[Gar06]. A thorough introduction to the theory of Sobolev spaces, Sobolev functions and
functions of bounded variation can be found in the books by Leoni [Leo17], by Evans
and Gariepy [EG15] and by Ambrosio, Fusco and Pallara [AFP00].

2.1 Convex Bodies and the L
p Brunn–Minkowski Theory

Throughout this thesis, we will work in n–dimensional Euclidean space R
n, where we

will always assume that n ≥ 3. We will denote the (n − 1)–dimensional Hausdorff
measure by Hn−1. Whenever we write that some condition holds almost everywhere
(or a.e.) without specifying a measure, then we mean with respect to the Lebesgue
measure L in R or Ln in R

n.

A non–emtpy, compact and convex set K ⊂ R
n is called a convex body. We denote

the set of all convex bodies in R
n by Kn. Furthermore, we denote the set of convex

bodies, which have the origin in their interior, by Kn
0 . The natural metric to endow Kn

and Kn
0 with is the Hausdorff metric. We will denote the volume of a convex body K

(that is its n–dimensional Lebesgue measure) by V (K).
A convex body K is uniquely determined by its supporting hyperplanes and

consequently by its support function h(K,u) = max{u · x : x ∈ K} for u ∈ Sn−1.
From this definition, it immediately follows that

h(θK, u) = h(K, θ−1u), u ∈ Sn−1, (2.1)

for every θ ∈ SO(n). Moreover, for s, t ≥ 0, the Minkowski combination

sK + tL = {sx+ ty : x ∈ K, y ∈ L}

of two convex bodies K,L ∈ Kn can be nicely expressed via their support functions,
namely

h(sK + tL, ·) = sh(K, ·) + th(L, ·).
If K ⊂ R

n is a convex and closed set (not necessarily compact) containing the origin,
then we can define its polar set K◦ by

K◦ = {x ∈ R
n : x · y ≤ 1 ∀y ∈ K}.
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Furthermore, if K ∈ Kn
0 , then K

◦ ∈ Kn
0 . In this case, we call K◦ the polar body of K

and we have K = K◦◦.
To every origin–symmetric, closed and convex set K ⊆ R

n, we can associate its
Minkowski functional, given by ‖x‖K = min{λ ≥ 0 : x ∈ λK}. If K ∈ Kn is origin–
symmetric, then ‖·‖K is a support function, namely

h(K◦, ·) = ‖·‖K . (2.2)

Additionally, if K ∈ Kn
0 is origin–symmetric, then ‖·‖K defines a norm on R

n with
unitball K. Clearly, ‖·‖

Bn is the usual Euclidean norm in R
n.

Next, we denote by Grn,i the i–Grassmannian in R
n, that is the set of all i–dimensional

subspaces of Rn. Let 1 ≤ i ≤ n − 1 and E,F ∈ Grn,i be given and choose ϑ ∈ SO(n)
such that F = ϑE. If K ∈ Kn is origin–symmetric and i–dimensional such that K ⊆ E,
we write K(F ) instead of ϑK for the rotated copy of K contained in F . In this case, it
is easy to see that for every x ∈ R

n,

‖x|F‖K(F )◦ = h(ϑK, x). (2.3)

For 0 ≤ i ≤ n, the i–dimensional volume of the i–dimensional unitball will be denoted
by ωi, its surface area is then given by nωi. Here, the value of ωp, p ∈ N, is given by

ωp =
πp/2

Γ
(p
2 + 1

) , (2.4)

where Γ(x) denotes the Gamma function. Formula (2.4) allows to define constants for
every p ∈ R and we will often make use of those.

The volume of a linear combination of convex bodies K1, . . . ,Km ∈ Kn can be shown
to be a homogeneous polynomial of degree n, that is

V (λ1K1 + · · ·+ λmKm) =
m
∑

i1,...,in=1

V (Ki1 , . . . ,Kin)λi1 · · ·λin .

The coefficients V (Ki1 , . . . ,Kin) are called the mixed volumes of Ki1 , . . . ,Kin . They are
symmetric and positively linear in their arguments, moreover

V (K, . . . ,K) = V (K).

To simplify the presentation of mixed volumes, we introduce the following notation: for
0 ≤ ik ≤ n, k = 1, . . . ,m such that

∑m
k=1 ik = n, the mixed volume of i1 copies of K1,

i2 copies of K2 and so on, is denoted by V (K1[i1],K2[i2], . . . ,Km[im]). If only one copy
of K is used, we omit the brackets.
A few mixed volumes deserve special consideration: for 1 ≤ i ≤ n we denote by

Vi(K) =
1

ωn−i

(

n

i

)

V (K[i],Bn[n− i])
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the i–th intrinsic volume of K ∈ Kn. Moreover, we denote by

S(K) = nV (K[n− 1],Bn) = 2Vn−1(K)

the surface area of K and by

w(K) =
2

ωn
V (K,Bn[n− 1]) =

2ωn−1

nωn
V1(K)

the mean width of K. Note that Vn = V .
The surface area measure of K is the unique measure S(K, ·) defined by

V (K[n− 1], L) =
1

n

∫

Sn−1

h(L, u) dS(K,u) (2.5)

for each L ∈ Kn. The surface area measure satisfies
∫

Sn−1

f(u) dS(K,u) =

∫

∂K
f(ν(x)) dHn−1(x) (2.6)

for each f ∈ C(Sn−1), where ν(x) denotes the outer unit normal of ∂K at x. Note that
this outer unit normal exists for Hn−1–a.e. x ∈ ∂K. The surface area measure S(Bn, ·)
of the unit ball is the spherical Lebesgue measure. To avoid writing S(Bn, ·), we will use
the shorthand notation du = dS(Bn, u).
An important inequality for mixed volumes is the Minkowski inequality, stating that

for two convex bodies K,L ∈ Kn the inequality

V (K[n− 1], L)n ≥ V (K)n−1V (L) (2.7)

holds, where equality is attained if and only if K and L are homothetic, i.e. K = cL+ t
for some c > 0 and t ∈ R

n. A simple consequence of the Minkowski inequality is the
following result (see [LYZ06] for a proof).

Lemma 2.1. If K,L ∈ Kn
0 are origin–symmetric, such that

V (M,K[n− 1])

V (K)
=
V (M,L[n− 1])

V (L)

for every origin–symmetric M ∈ Kn
0 , then K = L.

Formula (2.5) implies that

V (K) =
1

n

∫

Sn−1

h(K,u) dS(K,u) (2.8)

for anyK ∈ Kn. The easiest way to compute the volume ofK◦ is via the polar coordinate
formula: if K ∈ Kn

0 , then

V (K◦) =
1

n

∫

Sn−1

h(K,u)−n du. (2.9)
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While the classical Brunn–Minkowski theory of convex bodies emerges from combining
the notion of volume with that of Minkowski addition, the development of its more
modern Lp extension, initiated by Lutwak [Lut93,Lut96], is a result of merging volume
with the Lp Minkowski addition of convex bodies. To make this more explicit, let
1 ≤ p < ∞ and suppose that K,L ∈ Kn

0 . For t > 0, the Lp Minkowski combination
K +p t · L ∈ Kn

0 was defined in [Fir62] by

h(K +p t · L, ·)p = h(K, ·)p + t h(L, ·)p.

Note that when p = 1, we have K +1 t · L = K + tL.
It was shown in [Lut93] by Lutwak that to each K ∈ Kn

0 one can associate a unique
Borel measure Sp(K, ·) on Sn−1, the Lp surface area measure of K, such that

lim
t→0+

V (K +p t · L)− V (K)

t
=

1

p

∫

Sn−1

h(L, u)p dSp(K,u)

for every L ∈ Kn
0 . Moreover, Sp(K, ·) is absolutely continuous with respect to the

classical surface area measure S1(K, ·) = S(K, ·) and its Radon–Nikodym derivative is
h(K, ·)1−p.

A map Φ : Kn → Kn is called a Minkowski valuation if it satisfies the valuation
property

Φ(K) + Φ(L) = Φ(K ∪ L) + Φ(K ∩ L)
whenever K ∪ L ∈ Kn. The natural Lp extension are the so called Lp Minkowski
valuations, where a map Φp : Kn

0 → Kn
0 is called an Lp Minkowski valuation if

Φ(K) +p Φ(L) = Φ(K ∪ L) +p Φ(K ∩ L)

whenever K ∪ L ∈ Kn
0 .

We call a Minkowski valuation translation invariant if

Φ(K + t) = Φ(K)

for each t ∈ R
n and q–homogeneous if

Φ(λK) = λqΦ(K)

for each λ > 0. In the following, we will mainly be interested in translation invariant
and (n − 1)–homogeneous Minkowski valuations that are continuous in the Hausdorff
metric.

Minkowski used Cauchy’s projection formula

Vn−1(K|u⊥) = 1

2

∫

Sn−1

|u · v| dS(K, v), u ∈ Sn−1, (2.10)
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for K ∈ Kn, to define one of the most studied Minkowski valuations. Since the right-
hand side of (2.10) is sublinear and therefore a support function for any K ∈ Kn, we
can define the so called projection body of K by

h(ΠK,x) =
1

2

∫

Sn−1

|x · v| dS(K, v), x ∈ R
n. (2.11)

A remarkable property of Π is its SL(n) contravariance, meaning that

Π(θK) = θ−tΠK

for each θ ∈ SL(n), where we denote by θ−t the transpose of the inverse of θ. An
important characterization result due to Ludwig [Lud05] shows that each continuous,
translation invariant and SL(n) contravariant Minkowski valuation is a multiple of Π.
Schuster [Sch07] studied SO(n) equivariant Minkowski valuations Φ, that is Φ satisfies

Φ(θK) = θΦ(K)

for each θ ∈ SO(n) and proved that every continuous, translation invariant, (n − 1)–
homogeneous and SO(n) equivariant Minkowski valuation can be represented in the
form

h(ΦK,u) =

∫

Sn−1

f(u · v) dS(K, v) (2.12)

for some weakly positive and continuous function f ∈ C(Sn−1). Here, a function
f ∈ C(Sn−1) is said to be weakly positive, if there exists x0 ∈ R

n such that
f(u) + x0 · u ≥ 0. This characterization result will be our starting point in Chapter 6,
to show that extremizers for certain isoperimetric problems for Φ exist.

Based on (2.11), a natural Lp extension of the projection body operator was defined
by Lutwak, Yang, and Zhang in [LYZ00]. For 1 ≤ p <∞ and K ∈ Kn

0 , the L
p projection

body of K is given by

h(ΠpK,x)
p = an,p

∫

Sn−1

|x · v|p dSp(K, v), x ∈ R
n, (2.13)

where the normalizing constant

an,p =
ωp−1

2ωn+p−2
(2.14)

was chosen such that ΠpB
n = B

n. Note that when p = 1, (2.13) is well defined for all
K ∈ Kn and that, in this case, Π1K = ω−1

n−1ΠK. Moreover, Πp satisfies the valuation
property for Lp Minkowski addition and is therefore an Lp Minkowski valuation.
The range of the Lp projection body map is contained in the class of Lp zonoids. For

p ≥ 1, an origin–symmetric convex body K ∈ Kn is an Lp zonoid if and only if there
exists an even measure µ on Sn−1 (which is uniquely determined when p is not an even
integer) such that

h(K,x)p =

∫

Sn−1

|x · v|p dµ(v), x ∈ R
n. (2.15)
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In the following, we denote by Zµ
p the Lp zonoid generated in this way by µ. L1 zonoids

are usually just called zonoids and we simply write Zµ instead of Zµ
1 for the zonoid

generated by µ.

Finally, when dealing with sequences of convex bodies, the following result, known as
the Blaschke selection theorem, is an indispensable tool.

Theorem 2.2. Every bounded sequence of convex bodies has a convergent subsequence.

2.2 Sobolev Functions and Functions of Bounded Variation

We denote the set of all functions f ∈ Lp(Rn) whose weak gradient ∇f also lies in
Lp(Rn) by W 1,p(Rn). Together with the Sobolev norm ‖f‖W 1,p(Rn) = ‖f‖p + ‖∇f‖p the

space W 1,p(Rn) becomes a Banach space. Here ‖f‖p denotes the usual Lp norm of f in
R
n and we write ‖∇f‖p for

‖∇f‖pp =
∫

Rn

‖∇f(x)‖p dx,

where ‖·‖ denotes the standard Euclidean norm on R
n. Since the quantity np

n−p appears
frequently when dealing with Lp Sobolev–type inequalities, we will from now on write

p∗ :=
np

n− p
.

It will prove useful to define the so called homogeneous Sobolev space Ẇ 1,p(Rn) via

Ẇ 1,p(Rn) = {f ∈ Lp∗(Rn) : ∇f ∈ Lp(Rn)}.

We will see later on, that W 1,p(Rn) ⊆ Ẇ 1,p(Rn). This extension will be necessary, since
many of the extremizers for Sobolev–type inequalities (see next chapter) are not in
W 1,p(Rn), but in Ẇ 1,p(Rn).

A similar extension from functions in W 1,1(Rn) to the so called space of functions of
bounded variation BV (Rn) is also necessary. A function f ∈ L1(Rn) belongs to BV (Rn)
if for every 1 ≤ i ≤ n, there exists a finite signed Radon measure Dif on R

n such that
∫

Rn

f
∂ξ

∂xi
dx = −

∫

Rn

ξ dDif (2.16)

for all compactly supported C1 functions ξ on R
n.

The variation |Df | of the vector valued measure Df = (D1f, . . . , Dnf) on R
n is the

non–negative Radon measure whose value at a Borel set L ⊆ R
n is given by

|Df |(L) = sup
π

∑

A∈π

|Df(A)|,
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where the supremum is taken over all partitions π of L into a countable number of disjoint
measurable subsets. For f ∈ BV (Rn), let σf denote the Radon-Nikodym derivative of
Df with respect to |Df |. Then, by (2.16),

∫

Rn

f divφ dx = −
∫

Rn

φ · σf d|Df |

for all continuously differentiable vector fields φ on R
n with compact support.

A subset L ⊆ R
n is called a set of finite perimeter if 1L ∈ BV (Rn). Its reduced

boundary ∂∗L is the set of points x ∈ R
n, such that the limit

νL(x) = lim
r→0

D1L(Br(x))

|D1L|(Br(x))

exists and such that |νL(x)| = 1. Here we denote by Br(x) a ball with radius r around
x ∈ R

n. νL(x) is called the generalized or measure theoretic outer unit normal to L at
x ∈ ∂∗L. With the same notation, we define the density of a measurable set L at x ∈ R

n

by

D(E, x) = lim
r→0

V (E ∩Br(x))

V (Br(x))
.

We denote the level sets of a function f : Rn → R by

[f ]t = {x ∈ R
n : f(x) ≥ t}.

If f ∈ BV (Rn) is non–negative, then [f ]t is a set of finite perimeter and ∂∗[f ]t coincides
Hn−1–a.e. with {x ∈ R

n : f(x) = t} for almost every t ≥ 0. Moreover, (as pointed out
in [ET04] in the proof of Theorem 4.1), we then have ν∂∗[f ]t(x) = σf (x) for Hn−1–a.e.
x ∈ ∂∗[f ]t.
We say that x ∈ R

n is a point of approximate continuity of f , if the limits

f−(x) := inf{t : D({f > t}, x) = 0} and f+(x) := sup{t : D({f < t}, x) = 0}

are finite and equal. If x is a point of approximate continuity of f , then we
set f̃(x) := f−(x) = f+(x). Moreover, if f is locally integrable, then we say f is
approximately differentiable at a point x of approximate continuity, if there exists a
point ∇f(x) ∈ R

n, such that

lim
r→0

1

rn+1

∫

Br(x)
|f(y)− f̃(x)− (y − x) · ∇f(x)| dy = 0.

We call ∇f the approximate gradient of f at x and we denote all those points of
approximate continutity of f , such that f admits an approximate gradient ∇f(x) at x
and such that ∇f(x) = 0, by D0

f .

The coarea formula relates the integral of the gradient of a function f over Rn with an
average of integrals over their level sets. A general formulation for Lipschitz functions
was first established by Federer [Fed59]. We state it here in a BV (Rn) version due to
Fleming and Rishel [FR60].

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Theorem 2.3. Suppose that g : Rn → [0,∞] is a Borel function. If f ∈ BV (Rn), then

∫

Rn

g(σf ) d|Df | =
∫ ∞

−∞

∫

∂∗[f ]t

g(σf ) dHn−1 dt. (2.17)

Note that if [f ]t is a convex body, say Kt, then ∂
∗Kt = ∂Kt and by ν∂∗[f ]t(x) = σf (x)

and (2.6) the inner integral on the right-hand side of (2.17) turns into

∫

∂Kt

g(ν∂Kt
(x)) dHn−1(x) =

∫

Sn−1

g(u) dS(Kt, u).
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3 Isoperimetric, Sobolev and

Rearrangement Inequalities

Geometric and analytic inequalities of isoperimetric type are a very active research field
and there is a vast amount of literature and ongoing research in this direction. In this
chapter we recall many of the classical isoperimetric and Sobolev inequalities and we
explore the deep connection between convex bodies and Sobolev functions as well as
some recent inequalities established by Haberl and Schuster in [HS19]. To characterize
all equality cases in such inequalities, the use of certain rearrangement inequalities, for
instance the so called Pólya–Szegö principle, has proven beneficial. Finally, we recall a
result by Lutwak, Yang and Zhang, which makes the connection between convex bodies
and Sobolev functions more evident, by associating to each Sobolev function f an origin
symmetric convex body 〈f〉p.
The classical results appearing here are treated in any basic literature on convex bodies

or Sobolev functions (we recommend the books by Schneider [Sch14] and Evans [EG15],
they have also been partly summarized in [KS20]). Proofs of the affine inequalities can be
found in [Pet71,Gar06,Zha99,LYZ00,LYZ02]. The result by Haberl and Schuster [HS19]
provides one of the most recent developments in this area and will be the motivation for
the topics treated in Chapter 4, 5 and 6. Proofs of the (affine) Pólya–Szegö principles can
be found in [CLYZ09,Wan13,Ngu16,Wan15]. The results from Chapter 5 will heavily rely
on this literature. Finally, the method of convexification of functions was introduced by
Lutwak, Yang and Zhang in [LYZ06] and further developed by Wang in [Wan12]. Both,
Chapter 4 and Chapter 5 will make use of this method.

3.1 Isoperimetric and Sobolev Inequalities

Probably the most prominent example highlighting the deep connection between convex
bodies and Sobolev functions is given by the isoperimetric inequality and the sharp
Sobolev inequality. The first one is one of the cornerstones of convex geometry. In its
classical form, it states that for any K ∈ Kn which is full dimensional

V (K)n−1

S(K)n
≤ V (Bn)n−1

S(Bn)n
, (3.1)

where equality is attained if and only if K is a ball. As shown in [DG58], (3.1) can be
extended to sets of finite perimeter.
It is well known that the isoperimetric inequality (3.1) gives rise to the sharp Lp

Sobolev inequality, which goes back to Federer and Fleming [FF60] and Maz’ya [Maz60]
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for p = 1 and Aubin [Aub76] and Talenti [Tal76] for p > 1, and which states that

(∫

Rn

‖∇f(x)‖p dx
)1/p

≥ an,p‖f‖ np

n−p
(3.2)

for any f ∈W 1,p(Rn), where the optimal constant is given by

an,p = n1/p
(

n− p

p− 1

)1−1/p
(

ωnΓ(
n
p )Γ(n+ 1− n

p )

Γ(n)

)1/n

.

While the explicit knowledge of the optimal constant in (3.2) has proven beneficial
in certain areas of mathematical physics, its importance is far outweighed by the
classification of the extremal functions. To get a clear picture of all the extremizers
in (3.2), we remark that, in analogy to the extension of (3.1) to sets of finite perimeter,
one can show that for p = 1, (3.2) can be extended to functions of bounded variation
and then reads

‖Df‖ ≥ nω1/n
n ‖f‖ n

n−1

. (3.3)

In this setting, the extremizers of (3.3) are characteristic functions of Euclidean balls.
Note that such functions do not belong to W 1,1(Rn), hence there are no extremizers
in W 1,1(Rn) and consequently no functions attaining equality in (3.2) when p = 1. A
similar problem arises when trying to identify all the extremizers for p > 1. Apparently,
it was known for some time that with the help of a rearrangement inequality of Brothers
and Ziemer [BZ88] all extremizers could be identified. However, the first explicit and
selfcontained proof that equality holds in (3.2) for p > 1 if and only if there exist a, b > 0,
and x0 ∈ R

n such that

f(x) = ±
(

a+ b‖x− x0‖p/(p−1)
)1−n/p

(3.4)

was given by Cordero-Erausquin, Nazaret and Villani [CENV04] (and in a more general
form). They also pointed out the disadvantage of considering inequality (3.2) merely
for functions in W 1,p(Rn), since its extremizers do not belong to that space when p ≥√
n. Instead, they showed that (3.2) holds for functions f ∈ Ẇ 1,p(Rn). Note all the

extremizers (that is functions of the form (3.4)) lie in Ẇ 1,p(Rn).
Another characteristic feature of geometric and analytic inequalities is the set

of transformations under which these inequalities are invariant, that is the set of
transformations T : Rn → R

n, such that replacing K by TK in the geometric setting or
f by f ◦ T in the analytic one, does not change the left-hand and right-hand side of the
inequality. For (3.1) and (3.2) (or (3.3) when p = 1), this set of transformations is the
set of rigid motions, that is the set of transformations T such that

T (x) = θx+ x0, x ∈ R
n,

for θ ∈ SO(n) and x0 ∈ R
n. Inequalities, which are invariant under this Euclidean group

of rigid motions are called Euclidean inequalities.
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Surprisingly, in 1971 Petty [Pet71] established an inequality stronger than the
isoperimetric inequality (3.1), while being not only Euclidean, but even affine in nature,
that is invariant under SL(n) transformations (and translations). This inequality is
nowadays known as the Petty projection inequality and states that

V (Π◦K)V (K)n−1 ≤ V (Π◦
B
n)V (Bn)n−1 (3.5)

for any K ∈ Kn. In accordance with its affine invariance, equality is attained in (3.5) if
and only if K is an ellipsoid, that is if and only if K is an affine image of a ball.

It was a major breakthrough when in 1999, Zhang [Zha99] established the first
affine invariant L1 Sobolev inequality (nowadays known as the affine Zhang–Sobolev
inequality), by replacing the length of the gradient in (3.2) (for p = 1) by an average
of the length of 1-dimensional projections of the gradient, which leads to a significantly
stronger inequality than (3.2). More precisely, Zhang showed that

(

∫

Sn−1

(∫

Rn

|u · ∇f(x)| dx
)−n

du

)−1/n

≥ 1

n1/n
2ωn−1

ωn
‖f‖ n

n−1

(3.6)

whenever f ∈ C1(Rn) has compact support. This result was recently extended by
Wang [Wan12] to functions of bounded variation. In this extended form, (3.6) reads

(

∫

Sn−1

(∫

Rn

|u · σf | d|Df |
)−n

du

)−1/n

≥ 1

n1/n
2ωn−1

ωn
‖f‖ n

n−1

(3.7)

whenever f ∈ BV (Rn). Similarly to (3.5), equality is attained in (3.7) if and only if f
is a characteristic function of an ellipsoid.

As already mentioned, the Petty projection inequality (3.5) was crucial in the first
proofs of the affine Zhang–Sobolev inequality (3.6) and (3.7). Conversely, (3.7) is a
functional form of (3.5) in the sense that the choice of a suitable function f in the
Sobolev inequality (3.7) allows to recover the Petty projection inequality (3.5). The
fundamental affine isoperimetric inequality for Lp projection bodies was established by
Lutwak, Yang, and Zhang [LYZ00] and is known as the Lp Petty projection inequality
(see also [B1̈3,CG02,HS09b,LYZ10] for alternative proofs). It states that if 1 ≤ p <∞
and K ∈ Kn

0 , then
V (Π◦

pK)pV (K)n−p ≤ ωn
n (3.8)

with equality for p > 1 if and only if K is an ellipsoid centered at the origin. Building on
[Zha99] and the Lp Petty projection inequality (3.8), Lutwak, Yang and Zhang [LYZ00]
established the Lp extension of (3.6), by showing that for 1 ≤ p < n,

(

1

nωn

∫

Sn−1

(∫

Rn

|u · ∇f(x)|p dx
)−n/p

du

)−1/n

≥ bn,p‖f‖p∗ (3.9)
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whenever f ∈ Ẇ 1,p(Rn), where

bn,p =

(

2ωn+p−2

ωnωp−1

)1/p(n− p

p− 1

)1−1/p
(

ωnΓ(
n
p )Γ(n+ 1− n

p )

Γ(n)

)1/n

. (3.10)

Note that (3.9) can be expressed in terms of an integration over the Grassmannian,
namely

(

∫

Grn,1

(∫

Rn

‖∇f(x)|E‖p dx
)−n/p

dE

)−1/n

≥ bn,p‖f‖p∗ , (3.11)

where we write ∇f(x)|E for the orthogonal projection of ∇f(x) to E ∈ Grn,1.
Throughout, integration over Grn,j is with respect to the invariant probability measure
on Grn,j . Wang [Wan13] and, independently, Nguyen [Ngu16] proved that equality holds
in (3.9) for p > 1 if and only if

f(x) = ±
(

a+ ‖A(x− x0)‖p/(p−1)
)1−n/p

, (3.12)

for some a > 0, A ∈ GL(n), and x0 ∈ R
n.

Haberl and Schuster [HS19] recently introduced a new family of Lp Minkowski
valuations and showed that those Lp Minkowski valuations satisfy an inequality in the
same vein as (3.8). Moreover, they used these new geometric inequalities to establish
a family of Sobolev–type inequalities similar to (3.2) and (3.3). To state their results,
we fix a point ē ∈ Sn−1 and denote the group of rotations θ, that fix ē by SO(n− 1).
Next, recall that a measure µ on Sn−1 is said to be zonal if µ ◦ θ−1 = µ for each
θ ∈ SO(n− 1). Now let µ be an even and zonal measure on Sn−1 and let Zµ

p be the Lp

zonoid of revolution generated by µ (with axis of revolution ē), that is

h(Zµ
p , u)

p =

∫

Sn−1

|u · v|p dµ(v).

We denote by Zµ
p (u) the rotated copy of Zµ

p = Zµ
p (ē) such that its axis of revolution is

u. For K ∈ Kn
0 , define the convex body Φµ

pK by

h(Φµ
pK,u)

p =

∫

Sn−1

h(Zµ
p (v), u)

p dSp(K, v). (3.13)

From here on we will use the shorthand notation Φµ,◦
p K = (Φµ

pK)◦.

Remark 3.1. Note that when choosing µ to be discrete, the zonality forces µ to be
concentrated exactly on the two antipodal points ē and −ē. But then, it is easily verified
that Φµ

p coincides with Πp up to a factor, so the projection body operator Πp is just a
special member of the family Φµ

p of Lp Minkowski valuations.

When choosing µ(Sn−1) = an,p (recall that the value of an,p is given by (2.14)), then
we have Φµ

pB
n = B

n. The family of geometric inequalities by Haberl and Schuster can
now be stated as follows.
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Theorem 3.2. Suppose 1 ≤ p <∞ and that µ is an even, zonal measure on Sn−1 such
that µ(Sn−1) = an,p. If K ∈ Kn

0 , then

V (Φµ,◦
p K)pV (K)n−p ≤ ωn

n. (3.14)

If µ is not discrete, then equality in (3.14) is attained if and only if K is a Euclidean
ball centered at the origin. If µ is discrete, then equality in (3.14) is attained if and only
if K is an origin–symmetric ellipsoid.

For p = 1, (3.14) can be extended to sets of finite perimeter and there is no more
need to require that the origin is in the interior of K, thus equality is attained for balls
(ellipsoids respectively), not necessarily origin–symmetric.
As a consequence of Theorem 3.2, Haberl and Schuster established a family of sharp

Lp Sobolev–type inequalities, which can be seen as the functional forms of (3.14) (in the
same sense as (3.9) is a functional form of (3.8)).

Theorem 3.3. Suppose that 1 < p < n and that µ is an even, zonal measure on Sn−1.
If Zµ

p (ē) is the Lp zonoid generated by µ, then, for every f ∈ Ẇ 1,p(Rn),

(

1

nωn

∫

Sn−1

(∫

Rn

‖∇f‖p
Zµ
p (u)◦

dx

)−n/p

du

)−1/n

≥ bn,pµ(S
n−1)1/p‖f‖p∗ . (3.15)

If µ is not discrete, then equality in (3.15) is attained if and only if f is of the form
(3.4). If µ is discrete, then equality in (3.15) is attained if and only if f is of the form
(3.12).

For p = 1, Haberl and Schuster extended Theorem 3.3 to functions of bounded
variation, which is the statement of the next result.

Theorem 3.4. Suppose that µ is an even, zonal measure on Sn−1. If Zµ(ē) is the zonoid
generated by µ, then, for every f ∈ BV (Rn),

(

∫

Sn−1

(∫

Rn

‖σf‖Zµ(u)◦ d|Df |
)−n

du

)−1/n

≥ µ(Sn−1)

n1/n
2ωn−1

ωn
‖f‖ n

n−1

. (3.16)

Equality in (3.16) is attained if and only if µ is discrete and f is the characteristic
function of an ellipsoid or µ is not discrete and f is the characteristic function of a ball.

By Remark 3.1 we see that the affine Petty projection inequality (3.8) is just a special
case of Theorem 3.2 and (3.9) a special case of Theorem 3.3. Similarly, choosing µ
to be the spherical Lebesgue measure yields the isoperimetric inequality (3.1) and its
functional form, the sharp Sobolev inequality (3.2). The equality cases directly tell,
that only if µ is discrete, then (3.15) and (3.14) turn out to be affine invariant. Indeed,
whenever µ is not discrete, inequalities (3.15) and (3.14) are merely Euclidean. Finally,
Haberl and Schuster showed that this unique affine member of their family of inequalities
is also the strongest one amongst this family.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Theorem 3.5. Suppose 1 ≤ p < ∞. If µ is an even, zonal measure on Sn−1 such that
µ(Sn−1) = an,p and K ∈ Kn

0 , then

V (Φµ,◦
p K) ≤ V (Π◦

pK) (3.17)

with equality if and only if µ is discrete or ΠpK is a Euclidean ball.

Whereas the Petty projection inequality (3.5) deals with the volume of the polar
projection body V (Π◦K) of K ∈ Kn, it was conjectured by Petty [Pet71], that a non–
polar version also holds, namely

V (ΠK)

V (K)n−1
≥ V (ΠBn)

V (Bn)n−1
(3.18)

for each K ∈ Kn with equality if and only if K is an ellipsoid. Inequality (3.18) is
nowadays known as the conjectured Petty projection inequality. In Chapter 6 we consider
a family of Minkowski valuations Φg and show the existence of minimizers of

V (ΦgK)

V (K)n−1
.

Note that the conjectured Petty projection inequality directly implies the polar one,
since for K ∈ Kn

0 , by the Blaschke–Santaló inequality

V (K)V (K◦) ≤ ω2
n (3.19)

we have

V (Π◦K)V (K)n−1 ≤ ω2
nV (K)n−1

V (ΠK)
≤ ωn

n.

A generalization of the classical isoperimetric inequality holds for the intrinsic volumes
Vi. If 1 ≤ i ≤ n and K ∈ Kn, then

(

Vn(K)

Vn(Bn)

) 1

n

≤
(

Vi(K)

Vi(Bn)

) 1

i

≤
(

V1(K)

V1(Bn)

)

. (3.20)

For i = n− 1, the left-hand inequality is exactly the isoperimetric inequality, while the
outermost inequality (or the left-hand inequality for i = 1) is called Urysohn’s inequality.
Equality in (3.20) is attained exactly for balls.

3.2 Symmetrization of Functions and the

Pólya–Szegö Principle

Clasically, the isoperimetric inequality is proved by applying a symmetrization to a
convex body that leads to a new convex body with the same volume, but smaller
surface area. Similarly, many functionals on W 1,p(Rn) decrease when a function f is

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

replaced by a suitable symmetrization of f that maintains the Lp norm of f . The
classical symmetrization to consider is f∗, the symmetric decreasing rearrangement (also
known as Schwarz symmetrization, symmetric rearrangement or spherical decreasing
rearrangement) of f . We will see that when replacing f with f∗, many functionals
satisfy a certain rearrangement inequality, the so called Pólya–Szegö principle, which
states that a functional E does not increase under rearranging its input, that is

Ef ≥ Ef∗.

To state the important results that are going to be used in Chapter 5, we begin with the
definition of f∗. Let f ∈W 1,p(Rn) (or f ∈ BV (Rn)) and define its distribution function
µf : [0,∞) → [0,∞] by

µf (t) = V ({x ∈ R
n : |f(x)| > t}).

Next, the decreasing rearrangement f̄ : [0,∞) → [0,∞] of f is defined by

f̄(s) = inf{t ≥ 0 : µf (t) ≤ s}.

Now let K ∈ Kn
0 be origin–symmetric and denote by K̃ ∈ Kn

0 a dilate of K, such that
V (K̃) = V (Bn). The convex rearrangement of f with respect to K is defined as the
function fK : Rn → [0,∞] given by

fK(x) = f̄(ωn‖x‖nK̃).

Clearly, f cK = fK for any c > 0. Moreover, the equimeasurability of the convex
rearrangement assures that

V ([f ]t) = V ([fK ]t), t ≥ 0,

and, consequently, the convex rearrangement preserves the Lp norm, that is

‖f‖p =
∥

∥fK
∥

∥

p
.

The convex rearrangement of f with respect to the Euclidean unit ball Bn is of particular
interest, it is therefore denoted by f∗ := fB

n
and called the symmetric decreasing

rearrangement of f .
The classical Pólya–Szegö principle [PS51] states that whenever f ∈ W 1,p(Rn), then

f∗ ∈W 1,p(Rn) and furthermore

‖∇f‖p ≥ ‖∇f∗‖p. (3.21)

Clearly there is equality in (3.21) when f = f∗. However, to characterize all equality
conditions in (3.21), Brothers and Ziemer [BZ88] noted that there are non–symmetric
functions leading to equality in (3.21). For instance, they constructed a function that
has no symmetries, that is such that f and f∗ do not coincide almost everywhere, but
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such that ‖∇f‖p = ‖∇f∗‖p. To assure, that only symmetric functions give equality in
(3.21), they showed that an additional assumption is required, namely

V ({|∇f∗| = 0} ∩ {0 < f∗ < ess sup f}) = 0. (3.22)

Brothers and Ziemer showed that if (3.22) holds, then there is equality in (3.21) if and
only if f = f∗ up to some translation.
Alvino, Ferone, Trombetti and Lions [AFTL97] established a generalization of

the classical Pólya–Szegö principle for general Minkowski functionals. Esposito and
Trombetti [ET04] characterized the equality cases in the sense of Brothers and Ziemer.
We collect all these results in the following theorem.

Theorem 3.6. Let K ∈ Kn
0 and 1 < p < ∞. If f ∈ W 1,p(Rn) is non-negative and

compactly supported, then

∫

Rn

h(K,∇f)p dx ≥
∫

Rn

h(K,∇fK)p dx. (3.23)

Moreover, if f is such that

V ({|∇fK | = 0} ∩ {0 < fK < ess sup f}) = 0,

then equality in (3.23) is attained if and only if f = fK up to some translation.

A BV (Rn) version of (3.21) was first established by Cianchi and Fusco [CF02b]
together with a Brothers–Ziemer type result. Moreover, they showed a generalization for
general Minkowski functionals. Note that the gradient of f is replaced by its approximate
gradient in (3.22) (see Section 2.2 for definitions and notation).

Theorem 3.7. Let K ∈ Kn
0 . If f ∈ BV (Rn) is non–negative and compactly supported,

then
∫

Rn

h(K,σf ) d|Df | ≥
∫

Rn

h(K,σfK ) d|DfK |. (3.24)

Equality is attained in (3.24) if and only if the level sets [f ]t are homothets of K for
almost every t ≥ 0. Moreover, if f is such that

V (D0
fK ∩ {0 < fK < ess sup f}) = 0,

then equality in (3.24) is attained if and only if f = fK up to some translation.

Note that the functional considered in (3.21) (that is ‖·‖p) is exactly the one appearing
on the right-hand side of the classical Sobolev inequality (3.2). A natural next step is
to consider the affine energy functional

EAff
p f := cn,p

(

∫

Sn−1

(∫

Rn

|∇f(x) · u|p dx
)−n/p

du

)−1/n

(3.25)

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

appearing in the affine Sobolev inequality (3.9), where the constant cn,p is defined by

cn,p = (nωn)
1/n

(

nωnωp−1

2ωn+p−2

)1/p

(3.26)

and chosen such that
EAff
p f∗ = ‖∇f∗‖p. (3.27)

The resulting affine Pólya–Szegö principle is an achievement by Cianchi, Lutwak, Yang
and Zhang [CLYZ09] (see also [Lin17,Lin19,HSX12] for generalizations).

Theorem 3.8. Suppose p ≥ 1. If f ∈W 1,p(Rn), then f∗ ∈W 1,p(Rn) and

EAff
p f ≥ EAff

p f∗. (3.28)

The equality cases of (3.28), in the spirit of Brothers and Ziemer, where characterized
later by Wang [Wan13], who used the solution of the functional Lp Minkowski problem
and, independently, by Nguyen [Ngu16], who used a new approach based on the
Busemann–Petty centroid inequality, inspired by a recent paper of Haddad, Jimenez
and Montenegro [HJM16]. The following theorem settles the equality cases.

Theorem 3.9. Let 1 ≤ p < ∞. If f ∈ W 1,p(Rn) is a non–negative and compactly
supported function such that (3.22) holds, then

EAff
p f = EAff

p f∗ (3.29)

if and only if there exists x0 ∈ R
n such that f(x) = fE(x + x0) almost everywhere in

R
n, where E is an origin symmetric ellipsoid in R

n.

As already carried out in [CF02b] for the BV (Rn) versions of the classical Pólya–
Szegö principle, when p = 1, all the extremizers in (3.28) can be characterized even
when assumption (3.22) is omitted. Note however, that the resulting extremizers are
not symmetric anymore: while their level sets are still homothets of a fixed ellipsoid,
they do no longer need to be concentric.

Theorem 3.10. If f ∈ W 1,1(Rn) is a non–negative and compactly supported function,
then

EAff
1 f = EAff

1 f∗

if and only if the level sets [f ]t are homothetic ellipsoids up to a set of Ln measure 0,
for almost all t ≥ 0.

In [LYZ02] it is also shown that

‖∇f‖p ≥ EAff
p f,

thus, by (3.27), the affine Pólya–Szegö principle strengthens the classical Pólya–
Szegö principle, giving another example where an affine inequality improves its
Euclidean counterpart.
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3.3 Convexification of Functions

The correspondence between geometric and analytic inequalities was made more evident
by a new more conceptualized proof of the affine Lp Sobolev inequality by Lutwak, Yang
and Zhang [LYZ06], where they associate to each f ∈ Ẇ 1,p(Rn) a convex body 〈f〉p.
This convexification of a Sobolev function is the content of the following theorem.

Theorem 3.11. If 1 ≤ p < ∞ and f ∈ Ẇ 1,p(Rn) is not identically 0, then there exists
a unique origin–symmetric convex body 〈f〉p with non-empty interior such that

∫

Rn

g(∇f(x))p dx =
1

V (〈f〉p)

∫

Sn−1

g(u)p dSp (〈f〉p, u)

for every even continuous function g : Rn → [0,∞) that is positively 1-homogeneous.

We call the convex body 〈f〉p defined by Theorem 3.11 the LYZ–body of f . In order
to see how to apply Theorem 3.11 in the context of isoperimetric inequalities, note that
if f ∈ Ẇ 1,p(Rn) and we define K = V (〈f〉p)−1/(n−p)〈f〉p, then, by (2.13) and Theorem
3.11,

h(ΠpK, y)
p =

ωp−1

2ωn+p−2

∫

Rn

|∇f(x) · y|p dx, y ∈ R
n. (3.30)

Hence, by the polar coordinate formula for volume, the left-hand side of (3.9) coincides
up to a constant with V (Π◦

pK)−1/n. Consequently, the Lp Petty projection inequality
reduces the proof of the affine Lp Sobolev inequality (3.9) to a sharp estimate of the
volume V (〈f〉p) in terms of ‖f‖p∗ (which was established in [LYZ06]). By similar
arguments, the LYZ–body allows to easily establish analytic inequalities from geometric
ones. In Chapter 4 we will proceed in this way, by first establishing a geometric inequality
to obtain an analytic one via the LYZ–body.
In order to deal with functions f ∈ BV (Rn) we require the following extension of

Theorem 3.11 by Wang [Wan12]. Originally, Wang used an equivalent formulation to
the one below without volume normalization, however in order to deal with BV (Rn)
functions analogously to W 1,p(Rn) functions without needing to adapt the proofs (too
much), we will use a volume normalized definition similar to Theorem 3.11.

Theorem 3.12. If f ∈ BV (Rn) is not identically 0, then there exists a unique origin–
symmetric convex body 〈f〉 with non-empty interior such that

∫

Rn

g(σf (x)) d|Df |(x) =
1

V (〈f〉)

∫

Sn−1

g(u) dS (〈f〉, u) (3.31)

for every even continuous function g : Rn → R that is positively 1-homogeneous.

Note that letting K = V (〈f〉)
1

n−1 〈f〉 gives the original version of Theorem 3.12
from [Wan12] without volume normalization.

In the following statement we collect a few properties of 〈f〉p and 〈f〉, that will be
used later on. The proofs can be found in [Wan12,Wan13].
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Proposition 3.13. Suppose p ≥ 1. Let K ∈ Kn
0 be an origin–symmetric convex body

and denote by Tθ : R
n → R

n a transformation of the form

Tθ(x) = θx+ x0

for some θ ∈ SL(n) and x0 ∈ R
n.

(a) If f ∈ BV (Rn), then 〈1K〉 = K.

(b) If f ∈ Ẇ 1,p(Rn), then 〈f ◦ T−1
θ 〉p = θ〈f〉p.

(c) If f ∈ BV (Rn), then 〈f ◦ T−1
θ 〉 = θ〈f〉.

In case the level sets of f ∈ Ẇ 1,p(Rn) or BV (Rn) are all homothets of a fixed convex
body (and concentric if p > 1), this body’s shape is recovered by 〈f〉p or 〈f〉, respectively.
The proofs of the next results can be found in [Wan13].

Proposition 3.14. Suppose p > 1 and let K ∈ Kn
0 be an origin–symmetric convex body.

Moreover, let f ∈ Ẇ 1,p(Rn) be non–negative.

(a) 〈fK〉p is a dilate of K.

(b) If L ∈ Kn
0 is origin–symmetric, then

V (〈fK〉p) = V (〈fL〉p). (3.32)

(c) 〈f〉p ⊆ 〈f 〈f〉p〉p and equality holds if and only if f = f 〈f〉p almost everywhere.

For f ∈ BV (Rn) we can do a little better than Proposition 3.14, however the
corresponding results have (as far as we know) not been treated yet. Although the
proofs are very similar to those given in [Wan13], for the sake of completeness and since
〈f〉 (in contrast to 〈f〉p) is translation invariant in each level set of f , which leads to a
bit more relaxed results, we will collect the analogous statements to Proposition 3.14 in
the next proposition and give the proofs.

Proposition 3.15. Suppose K ∈ Kn
0 is an origin–symmetric convex body and

f ∈ BV (Rn) is non–negative.

(a) If the level sets [f ]t are homothetic to K for almost every t ≥ 0, then 〈f〉 is a dilate
of K.

(b) If L ∈ Kn
0 is origin–symmetric, then

V (〈fK〉) = V (〈fL〉). (3.33)

(c) 〈f〉 ⊆ 〈f 〈f〉〉 and equality holds if and only if the level sets [f ]t are homothetic to 〈f〉
for almost every t ≥ 0.
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Proof. First note that for Hn−1–a.e. x ∈ ∂∗[f ]t, σf (x) is the outer unit normal ν∂∗[f ]t(x)
of ∂∗[f ]t at x for almost every t ≥ 0 (see Section 2.2). By (3.31) and the coarea formula
(2.17), we have

1

V (〈f〉)

∫

Sn−1

g(u) dS (〈f〉, u) =
∫

Rn

g(σf ) d|Df |

=

∫ ∞

0

∫

∂∗[f ]t

g(σf ) dHn−1(x) dt

=

∫ ∞

0

∫

∂∗[f ]t

g(ν∂∗[f ]t(x)) dHn−1(x) dt

for every continuous, even and positively 1–homogeneous function g : Rn → [0,∞). If we
choose g = h(M, ·) for an arbitrary origin–symmetric convex body M ∈ Kn

0 , we obtain

1

n

1

V (〈f〉)

∫

Sn−1

h(M,u) dS (〈f〉, u) = 1

n

∫ ∞

0

∫

∂∗[f ]t

h(M, ν∂∗[f ]t(x)) dHn−1(x) dt

=

∫ ∞

0
V (M, [f ]t[n− 1]) dt,

(3.34)

where the last equality is due to (2.5) and (2.6). Now let f as in (a). Since
V (M, [f ]t[n− 1]) is translation invariant in [f ]t, we can translate all the level sets [f ]t
such that they are concentric and therefore dilates (not only homothets) of K. Thus,
for each level set [f ]t we find a constant c(t) > 0 depending on t, such that

V (M, [f ]t[n− 1]) = V (M, c(t)K[n− 1]) = c(t)n−1V (M,K[n− 1]) (3.35)

and consequently

V (M, 〈f〉[n− 1])

V (〈f〉) =

∫ ∞

0
V (M, [f ]t[n− 1]) dt

= V (M,K[n− 1])

∫ ∞

0
c(t)n−1 dt

= cfV (M,K[n− 1])

(3.36)

where the constant cf > 0 is given by cf =
∫∞
0 c(t)n−1 dt. Now let K̃ be a suitable dilate

of K, namely

K̃ =
K

V (K)cn−1
f

. (3.37)

Plugging K̃ into (3.36) yields

V (M, 〈f〉[n− 1])

V (〈f〉) = cfV (M,K[n− 1]) =
V (M, K̃[n− 1])

V (K̃)

for every origin–symmetric M ∈ Kn
0 . An application of Lemma (2.1) finally shows that

〈f〉 = K̃ and proves statement (a).
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To prove (b), we first show that the constants c(t) from (3.36) (and hence cf ) do not
depend on K. For instance, since fK = f cK for any c > 0, we can freely choose the
volume of K and L and thus assume both K and L to have the same volume. If we
choose cK(t) such that [fK ]t = cK(t)K and analogously cL(t) such that [fL]t = cL(t)L,
then the equimeasurability of convex rearrangement yields

cK(t)nV (K) = V ([fK ]t) = V ([fL]t) = cL(t)
nV (L)

and thus
cK(t) = cL(t) = c(t). (3.38)

Now, denoting by K̃ and L̃ the convex bodies contructed via (3.37), which, as we have
just shown, coincide with 〈fK〉 and 〈fL〉, we conclude

V (〈fK〉) = V (K̃) =
(

cnf V (K)
)1−n

=
(

cnf V (L)
)1−n

= V (L̃) = V (〈fL〉).

Finally, in order to prove (c), note that, by (a), there exists a constant c > 0, such that
〈f 〈f〉〉 = c〈f〉. It remains to show, that c ≥ 1 and c = 1 if and only if [f ]t is a homothet
of 〈f〉 for almost every t ≥ 0. By choosing M = 〈f〉 in (3.34), we obtain

1 =
V (〈f〉)
V (〈f〉) =

1

n

1

V (〈f〉)

∫

Sn−1

h(〈f〉, u) dS(〈f〉, u)

=

∫ ∞

0
V (〈f〉, [f ]t[n− 1]) dt

≥
∫ ∞

0
V (〈f〉) 1

nV ([f ]t)
n−1

n dt,

where the last inequality is due to Minkowskis inequality (2.7) and thus equality is
attained if and only if [f ]t is a homothet of 〈f〉 (up to some set of measure 0) for
almost every t ≥ 0. Hence, replacing f with f 〈f〉 gives equality and, by using the
equimeasurability of convex symmetrization, we finish the proof by

1 ≥
∫ ∞

0
V (〈f〉) 1

nV ([f ]t)
n−1

n dt

=
1

c

∫ ∞

0
V (c〈f〉) 1

nV ([f 〈f〉]t)
n−1

n dt

=
1

c

∫ ∞

0
V (〈f 〈f〉〉) 1

nV ([f 〈f〉]t)
n−1

n dt =
1

c
,

where we have equality if and only if [f ]t is a homothet of 〈f〉 (up to some set of measure
0) for almost every t ≥ 0.
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4 Sobolev–type inequalities over the

Grassmannian

The impact of the affine Lp Sobolev inequality (3.9) is virtually unparalleled in convex
geometric analysis, as it constitutes the seminal result in a rapidly evolving theory of
affine analytic inequalities (see, e.g., [CLYZ09,HS09a,HSX12,DNHJM18,HJM19,Lin17,
LXZ11]). Among this theory’s most recent achievements is the large family of sharp
Lp Sobolev inequalities (3.15) by Haberl and Schuster [HS19] that had not just the
classical inequality (3.2) and the affine Lp Sobolev inequality (3.9) as special cases but
also an (n− 1)-dimensional counterpart to (3.9): If 1 ≤ p < n and f ∈ Ẇ 1,p(Rn), then

(

∫

Grn,n−1

(∫

Rn

‖∇f(x)|E‖p dx
)−n/p

dE

)−1/n

≥ bn,p ‖f‖p∗ (4.1)

with equality for p > 1 if and only if f(x) is of the form (3.4). The value of the
optimal constant bn,p is given by (3.10). In the case p = 1, inequality (4.1) was extended
to BV (Rn) in [HS19] and it was shown that equality holds precisely for characteristic
functions of Euclidean balls. While (4.1) is not affine invariant, it was proved in [HS19]
that it is stronger and directly implies the classical Lp Sobolev inequality (3.2) in the
same way as the affine Lp Sobolev inequality (3.9) does. However, among these three
inequalities the affine invariant one was shown in [HS19] to be the strongest one.

Comparing inequalities (3.2), (3.9), and (4.1) raises two natural questions:

• Is there a family of (sharp) Lp Sobolev inequalities obtained by averaging the
length of i-dimensional gradient projections that unifies (3.2), (3.11), and (4.1)?

• How are these gradient projection Sobolev inequalities related to each other?

In this chapter, we are going to answer both of these questions. In order to state our
results it is convenient to introduce the following notation.

Definition 4.1. Suppose that 1 ≤ i ≤ n and 1 ≤ p < n. For f ∈ Ẇ 1,p(Rn), we define

Ei,p(f) =
(

∫

Grn,i

(

2ωi+p−2

iωiωp−1

∫

Rn

‖∇f(x)|E‖p dx
)−n/p

dE

)−1/n

. (4.2)

In analogy to [HS19], we will extend our results for p = 1 to functions f ∈ BV (Rn).
For this particular case, we introduce the following notation.
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Definition 4.2. Suppose that 1 ≤ i ≤ n. For f ∈ BV (Rn), we define

Ei(f) =
(

∫

Grn,i

(

2ωi−1

iωi

∫

Rn

‖σf |E‖ d|Df |
)−n

dE

)−1/n

, (4.3)

where |Df | denotes the variation measure of Df and σf the Radon–Nikodym derivative
of Df with respect to |Df |.

Note that for f ∈ Ẇ 1,1(Rn), Eif and Ei,1f coincide. We will actually prove a Sobolev
inequality for energy functionals more general than Ei,p (and Eif respectively), where the
Euclidean norm of the gradient projection in (4.2) can be replaced by any norm whose
unit ball is a polar zonoid in E (see Chapter 2 for definitions). The results presented
here will appear in [KS20].

4.1 Auxiliary results

Here, we first recall how to lift integration of functions and measures on the homogeneous
spaces Sn−1 and Grn,i to the Lie group SO(n) and use this in the second part to prove the
underlying geometric inequality behind our main results in this chapter. Recall that the
unit sphere Sn−1 is a homogeneous space with respect to the action of SO(n). Therefore,
Sn−1 is diffeomorphic to SO(n)/SO(n− 1) and there is a one-to-one correspondence
between functions and measures on Sn−1 and right SO(n− 1) invariant measures on
SO(n). More precisely, if µ is a measure on Sn−1, then there exists a unique right
SO(n− 1) invariant measure µ̆ on SO(n) such that

∫

Sn−1

f(u) dµ(u) =

∫

SO(n)
f(φen) dµ̆(φ) (4.4)

for every f ∈ C(Sn−1). In other words, the pushforward of µ̆ under the natural projection
π : SO(n) → Sn−1, π(φ) = φen, is µ (see, e.g., [GZ99,HS19] for more details).

From now on, let {e1, . . . , en} denote a fixed orthonormal basis of Rn and for 1 ≤ i ≤ n,
let Ei ∈ Grn,i and S

i−1 ⊆ Sn−1 be given by

Ei = span{e1, . . . , ei} and Si−1 = Sn−1 ∩ Ei.

We write SO(i) for the subgroup of SO(n) which leaves Ei invariant and acts as the
identity on E⊥

i . Note that for 2 ≤ i ≤ n, SO(i) acts transitively on Si−1 and that

SO(1) ⊆ SO(2) ⊆ · · · ⊆ SO(n− 1) ⊆ SO(n).

Since, similarly, for 2 ≤ i ≤ n, Si−1 is diffeomorphic to SO(i)/SO(i− 1), any measure
on Sn−1 whose support is concentrated on Si−1 may be lifted either to a right SO(n− 1)
invariant measure on SO(n) or to a right SO(i− 1) invariant measure on SO(i). In
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particular, we make frequent use of the fact that if σi denotes the restriction of the
(i− 1)-dimensional Hausdorff measure to Si−1, then

∫

Sn−1

f(u) dσi(u) = iωi

∫

SO(i)
f(φei) dφ (4.5)

for every f ∈ C(Sn−1), where integration on the right is with respect to the Haar
probability measure on SO(i).

Since the Lie group SO(n) also acts transitively on Grn,i for every 1 ≤ i ≤ n− 1, the
Grassmannian Grn,i is diffeomorphic to SO(n)/S(O(i)×O(n− i)), where the subgroup
S(O(i) × O(n − i)) is the stabilizer of Ei in SO(n). Thus, we can also lift integration
with respect to measures on Grn,i to the group SO(n). Specifically, we have (as for the
sphere Sn−1) that for every f ∈ C(Grn,i),

∫

Grn,i

f(E) dE =

∫

SO(n)
f(φEi) dφ. (4.6)

Let us turn to Lp zonoids. For p ≥ 1 and an even measure µ on Sn−1, the support
function of the Lp zonoid Zµ

p generated by µ can be written, by (2.15) and (4.4), as

h(Zµ
p , x)

p =

∫

SO(n)
|x · φen|p dµ̆(φ), x ∈ R

n. (4.7)

Since for x ∈ R
n, we have

‖x‖p = h(Bn, x)p =
ωp−1

2ωn+p−2

∫

Sn−1

|x · u|p dσn(u) =
nωnωp−1

2ωn+p−2

∫

SO(n)
|x · φen|p dφ,

we see that the Euclidean unit ball Bn is an Lp zonoid for any p ≥ 1. More general, if
we denote by Di = B

n ∩ Ei the i-dimensional unit ball in Ei, then, by (4.5),

‖x|Ei‖p = h(Di, x)p =
ωp−1

2ωi+p−2

∫

Sn−1

|x · u|p dσi(u) =
iωiωp−1

2ωi+p−2

∫

SO(i)
|x · φei|p dφ, (4.8)

which shows that also Di is an Lp zonoid for every 2 ≤ i ≤ n and any p ≥ 1. When
i = 1, we have h(D1, x)p = h([−e1, e1], x)p = |x · e1|p = ‖x|E1‖p, that is, D1 is also an
Lp zonoid for any p ≥ 1.
For 1 ≤ i ≤ n and p ≥ 1, we now define

qi,p =
2ωi+p−2

iωiωp−1
and νi,p = iωiqi,p σi.

Then the measure νi,p on Sn−1 is concentrated on Si−1 and, by (4.8), the Lp zonoid Di
p

generated by νi,p satisfies for every x ∈ R
n,

h(Di
p, x)

p =

∫

Sn−1

|x · u|p dνi,p(u) =
∫

SO(i)
|x · φei|p dφ = qi,p ‖x|Ei‖p. (4.9)
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Noting that D1
p = [−e1, e1] for every p ≥ 1 and h(D1

p, x) = |x · e1| = ‖x|E1‖, we
conclude from the invariance of the Haar measure on SO(i) and (4.9) that for any
2 ≤ i ≤ n and every x ∈ R

n,

qi,p ‖x|Ei‖p =
∫

SO(i)
|x · φei|p dφ =

∫

SO(i)
|x · φe1|p dφ =

∫

SO(i)
‖x|φE1‖p dφ. (4.10)

With the next lemma, we generalize (4.10) by proving a useful relation between the
length of j-dimensional projections in terms of averages of the length of i-dimensional
projections, when i < j.

Lemma 4.3. If p ≥ 1 and 1 ≤ i < j ≤ n, then

qj,p ‖x|Ej‖p = qi,p

∫

SO(j)
‖x|φEi‖p dφ

for every x ∈ R
n.

Proof. First note that, by (4.9), the desired relation is equivalent to

h(Dj
p, x)

p =

∫

SO(j)
h(φDi

p, x)
p dφ. (4.11)

In order to prove (4.11), we use (2.1) and a combination of (4.9) and (4.10) to see that

∫

SO(j)
h(φDi

p, x)
p dφ =

∫

SO(j)
h(Di

p, φ
−1x)p dφ =

∫

SO(j)

∫

SO(i)
h(θD1

p, φ
−1x)p dθ dφ.

Thus, from an application of Fubini’s theorem, (2.1), and the fact that SO(i) ⊆ SO(j)
as well as the invariance of the Haar measure on SO(j), we obtain

∫

SO(j)
h(φDi

p, x)
p dφ =

∫

SO(i)

∫

SO(j)
h(φθD1

p, x)
p dφ dθ =

∫

SO(j)
h(φD1

p, x)
p dφ.

Finally, another application of (4.9) and (4.10) completes the proof of (4.11).

4.2 A Grassmannian Isoperimetric Inequality

With the help of Lemma 4.3, we can now prove a geometric inequality which is critical for
our proofs of the Sobolev–type inequalities over the Grassmannian in the next section.

Theorem 4.4. Suppose that 1 ≤ i < j ≤ n and p ≥ 1. If K ∈ Kn
0 , then

∫

Grn,j

(

qj,p

∫

Sn−1

‖u|E‖p dSp(K,u)
)−n/p

dE ≤
∫

Grn,i

(

qi,p

∫

Sn−1

‖u|F‖p dSp(K,u)
)−n/p

dF.

(4.12)
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Proof. By Lemma 4.3 and Fubini’s theorem, we have that, for any fixed θ ∈ SO(n),

(

qj,p

∫

Sn−1

‖u|θEj‖p dSp(K,u)
)−n/p

=

(

qi,p

∫

SO(j)

∫

Sn−1

‖u|θφEi‖p dSp(K,u) dφ
)−n/p

.

Hence, by Jensen’s inequality,
(

qj,p

∫

Sn−1

‖u|θEj‖p dSp(K,u)
)−n/p

≤
∫

SO(j)

(

qi,p

∫

Sn−1

‖u|θφEi‖p dSp(K,u)
)−n/p

dφ.

Integrating now both sides of this inequality with respect to the Haar probability measure
on SO(n), followed by an application of Fubini’s theorem and the invariance of the Haar
measure on the right-hand side, we obtain
∫

SO(n)

(

qj,p

∫

Sn−1

‖u|θEj‖p dSp(K,u)
)−n/p

dθ ≤
∫

SO(n)

(

qi,p

∫

Sn−1

‖u|θEi‖p dSp(K,u)
)−n/p

dθ

which concludes the proof by (4.6).

4.3 Sharp Sobolev–type Inequalities via Projection Averages

Let us start this section, by giving an answer to the second of the questions, asked in
the introduction of this chapter. The next theorem shows, that the functionals Ei,p and
Ei form a decreasing sequence.

Theorem 4.5. Suppose that 1 ≤ i ≤ n and 1 ≤ p <∞. If f ∈ Ẇ 1,p(Rn), then

En,p(f) ≥ En−1,p(f) ≥ · · · ≥ E2,p(f) ≥ E1,p(f). (4.13)

Analogously, if f ∈ BV (Rn), then

En(f) ≥ En−1(f) ≥ · · · ≥ E2(f) ≥ E1(f). (4.14)

Proof. First, suppose that 1 ≤ p < ∞ and that f ∈ Ẇ 1,p(Rn). We may also assume
that f is not identically 0. Next, note that by taking

K = 〈f〉p, (4.15)

it follows from Theorem 3.11 that for 1 ≤ i ≤ n and E ∈ Grn,i,

qi,p

∫

Rn

‖∇f(x)|E‖p dx = qi,p
1

V (K)

∫

Sn−1

‖u|E‖p dSp(K,u).

Hence, definition (4.2) and Theorem 4.4 yield that for 1 ≤ i < j ≤ n,

Ej,p ≥ Ei,p
which proves (4.13).
The inequalities from (4.14) for f ∈ BV (Rn) not identically 0, follow from similar

arguments, by taking K = 〈f〉 and applying Theorems 3.12 and 4.4. Alternatively,
(4.14) can also be deduced from (4.13) by an approximation argument.
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Note that a combination of inequalities (4.13) with the affine Lp Sobolev inequality
(3.9), directly implies the following family of Lp Sobolev inequalities: if 1 ≤ i ≤ n,
1 ≤ p < n and f ∈ Ẇ 1,p(Rn), then

Ei,p(f) ≥ cn,p‖f‖p∗ , (4.16)

where

cn,p =

(

2ωn+p−2

ωnωp−1

)1/p(n− p

p− 1

)1−1/p
(

ωnΓ(
n
p )Γ(n+ 1− n

p )

Γ(n)

)1/n

.

Similarly, inequalities (4.14) and Wang’s extension of the affine L1 Sobolev inequality to
BV (Rn) yield the following family of Sobolev inequalities: if 1 ≤ i ≤ n and f ∈ BV (Rn),
then

Ei(f) ≥
2ωn−1

ω
1−1/n
n

‖f‖ n
n−1

. (4.17)

However, in both cases the equality conditions remain to be settled.
In the following, we are not going to approach the characterization of extremal

functions in (4.16) and (4.17) directly, but rather establish generalizations of these
inequalities that are motivated by the fact that in the classical Lp Sobolev inequality
(3.2) the Euclidean norm of the gradient can be replaced by an arbitrary norm on R

n

(see, e.g., [CENV04]). To this end, let 1 ≤ i ≤ n − 1, 1 ≤ p < n and suppose that µ is
an even measure on Sn−1 such that span suppµ = Ei. For f ∈ Ẇ 1,p(Rn), we now define

Eµ
i,p(f) =

(

∫

Grn,i

(∫

Rn

‖∇f(x)|E‖p
Zµ
p (E)◦

dx

)−n/p

dE

)−1/n

, (4.18)

where Zµ
p denotes again the Lp zonoid generated by µ (see Section 2).

The problem of whether a version of inequalities (4.16) and (4.17) also holds for more
general norms than the Euclidean one was first raised by Ludwig.

Open Problem 4.6. Suppose that 1 ≤ i ≤ n−1, 1 ≤ p <∞ and let f ∈ Ẇ 1,p(Rn). For
which i–dimensional and origin symmetric convex bodies L ⊂ Ei does a sharp inequality
of the form

(

∫

Grn,i

(∫

Rn

‖∇f(x)|E‖pL(E)◦ dx

)−n/p

dE

)−1/n

≥ cn,i,p(L) ‖f‖p∗ ,

where cn,i,p is some optimal constant, hold?

With our next result, we establish a chain of inequalities similar to (4.13), with which
we answer this question in the affirmative, when p ≥ 1 and the unit ball of the norm is
a polar Lp zonoid. Later in Theorem 4.10 we will show the corresponding version for
general norms for functions of bounded variation. Moreover, we characterize all equality
cases in this general setting.
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Theorem 4.7. Suppose that 1 ≤ i ≤ n− 1, 1 ≤ p <∞, and that µ is an even measure
on Sn−1 such that span suppµ = Ei and µ(S

n−1) = 1. If f ∈ Ẇ 1,p(Rn), then

En,p(f) ≥ Eµ
i,p(f) ≥ E1,p(f) (4.19)

with equality in the right-hand inequality if and only if Πp〈f〉p is a ball.

Proof. We may assume that f is not identically 0. Since 1 ≤ i ≤ n−1, we have, by (2.3)
and (4.6),

∫

Grn,i

(∫

Rn

‖∇f(x)|E‖p
Zµ
p (E)◦

dx

)−n/p

dE =

∫

SO(n)

(∫

Rn

h(φZµ
p ,∇f(x))p dx

)−n/p

dφ.

(4.20)
Hence, by definition (4.18) and Jensen’s inequality,

Eµ
i,p(f) ≤

(

∫

SO(n)

∫

Rn

h(φZµ
p ,∇f(x))p dx dφ

)1/p

.

Thus, by (2.1) and (4.7), Fubini’s theorem, the invariance of the Haar measure on SO(n),
and the fact that µ(Sn−1) = µ̆(SO(n)) = 1, we have

Eµ
i,p(f) ≤

(

∫

Rn

∫

SO(n)

∫

SO(n)
|∇f(x) · φψen|p dφ dµ̆(ψ) dx

)1/p

=

(

∫

Rn

∫

SO(n)
|∇f(x) · φen|p dφ dx

)1/p

=

(

qn,p

∫

Rn

‖∇f(x)‖p dx
)1/p

= En,p(f),

which proves the left-hand inequality in (4.19).
In order to prove the right-hand inequality in (4.19), we use as before (4.20), (2.1),

and (4.7), followed by Fubini’s theorem, to see that

Eµ
i,p(f) =





∫

SO(n)

(

∫

SO(n)

∫

Rn

|∇f(x) · φψen|p dx dµ̆(ψ)
)−n/p

dφ





−1/n

. (4.21)

Since µ̆(SO(n)) = 1, an application of Jensen’s inequality therefore shows that

Eµ
i,p(f) ≥

(

∫

SO(n)

∫

SO(n)

(∫

Rn

|∇f(x) · φψen|p dx
)−n/p

dµ̆(ψ) dφ

)−1/n

. (4.22)
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Finally, Fubini’s theorem, the invariance of the Haar measure on SO(n), (4.6), and
the fact that q1,p = 1, yield the desired inequality

Eµ
i,p(f) ≥

(

∫

SO(n)

∫

SO(n)

(∫

Rn

|∇f(x) · φψen|p dx
)−n/p

dφ dµ̆(ψ)

)−1/n

=

(

∫

SO(n)

(∫

Rn

‖∇f(x)|φE1‖p dx
)−n/p

dφ

)−1/n

= E1,p(f).

Note that for 1 ≤ p < n, h(Zµ
p , x)p is a positive multiple of ‖x|E1‖p when i = 1, thus

Eµ
1,pf and E1,pf coincide in this case.
It remains to show that equality in the second inequality in (4.19) implies Πp〈f〉p is

a ball, when 2 ≤ i ≤ n − 1. In order to see this, let K = 〈f〉p and note that to have
equality, we must have equality in (4.22), or, equivalently, by (2.13),

(∫

Sn−1

h(ΠpK,φv)
p dµ(v)

)−n/p

=

∫

Sn−1

h(ΠpK,φv)
−n dµ(v) (4.23)

for every φ ∈ SO(n). By the equality conditions of Jensen’s inequality, (4.23) holds if
and only if for each φ ∈ SO(n), there exists a cφ > 0 such that

h(ΠpK,φv) = cφ for µ-a.e. v ∈ Sn−1.

Thus, since 2 ≤ i ≤ n − 1 and span suppµ = Ei, there exist (at least) two linearly
independent unit vectors u1, u2 ∈ Sn−1 such that for each φ ∈ SO(n),

h(ΠpK,φu1) = h(ΠpK,φu2) = cφ. (4.24)

Let t = u1 · u2 and denote by Hu1,t = {x ∈ R
n : u1 · x = t}. Then, −1 < t < 1 and for

w ∈ Sn−1 ∩Hu1,t, there exists ϑ ∈ SO(n) such that ϑu1 = u1 and ϑu2 = w. Replacing
φ by φϑ in (4.24), thus yields

cφϑ = h(ΠpK,φϑu1) = h(ΠpK,φϑu2) = h(ΠpK,φu1) = h(ΠpK,φw) = cφ.

Since w ∈ Sn−1∩Hu1,t was arbitrary, we see that for each φ ∈ SO(n), there exists cφ > 0
such that

h(ΠpK,φv) = cφ for all v ∈ Sn−1 ∩Hu1,t

or, equivalently,
h(ΠpK,u) = cφ for all u ∈ Sn−1 ∩Hφu1,t. (4.25)

In particular, by choosing φ to be the identity, we obtain

h(ΠpK,u) = cid for all u ∈ Sn−1 ∩Hu1,t.

Now, if we choose φ in (4.25) such that Sn−1 ∩Hu1,t and S
n−1 ∩Hφu1,t have non-empty

intersection, then it follows that cid = cφ. But, since we can reach any point on Sn−1 by
finitely many iterations of this procedure, we obtain h(ΠpK,u) = cid for all u ∈ Sn−1,
that is, ΠpK is a ball as desired.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

The extension of (4.16) to general norms and the characterization of the equality
conditions is now a consequence of the above theorem.

Theorem 4.8. Suppose that 1 ≤ i ≤ n − 1, 1 ≤ p < n, and that µ is an even measure
on Sn−1 such that span suppµ = Ei. If f ∈ Ẇ 1,p(Rn), then

Eµ
i,p(f) ≥ µ(Sn−1)1/pcn,p‖f‖p∗ (4.26)

with equality for p > 1, if and only if f(x) has the form (3.4) when i > 1, and if and
only if f(x) has the form (3.12) when i = 1.

Proof. Note that for 1 ≤ p < n, the homogeneity of Eµ
i,p and a combination of the right-

hand inequality in (4.19) with the affine Lp Sobolev inequality (3.9), yield inequality
(4.26). Moreover, since h(Zµ

p , x)p is a positive multiple of ‖x|E1‖p when i = 1, we see
that (4.26) reduces to (3.9) in this case. In particular, equality holds in (4.26) when
i = 1 if and only if f(x) has the form (3.12). It remains to settle the equality conditions
for (4.26) when 2 ≤ i ≤ n− 1. To this end, note that by (4.19), any function of the form
(3.4) must be an extremizer of (4.26). In order to show the converse, we may assume
again that f is not identically 0 and that µ(Sn−1) = 1. Now, since, equality in (4.26)
implies equality in the right-hand inequality of (4.19), we must have that Πp〈f〉p is a
Euclidean ball and equality must also hold in (3.9), that is, f(x) is of the form (3.12).
The latter implies that there exists an origin–symmetric ellipsoid E ⊆ R

n and x1 ∈ R
n

such that f(x) = fE(x + x1) for a.e. x ∈ R
n (cf. proof of Corollary 4.1 in [Ngu16]).

Hence, by Proposition 3.14 (a), 〈f〉p is a dilate of E = ABn for suitable A ∈ GL(n).
However, since

Πp(AB
n) = |detA|1/pA−TΠpB

n = |detA|1/pA−T
B
n

for any A ∈ GL(n) (cf. [LYZ00]) and Πp〈f〉p is a ball, E must be a Euclidean ball as
well. This implies that f is an extremizer of (3.2) (see, e.g., [Wan13]).

Let us note that the special case of Theorem 4.8, where µ is taken to be the (i − 1)-
dimensional Hausdorff measure on Si−1 normalized such that µ(Si−1) = q−1

i,p , gives the
following Sobolev–type inequality together with its equality cases, which answers the
first question asked in the introduction of this chapter.

Theorem 4.9. Suppose that 1 ≤ i ≤ n and 1 ≤ p < n. If f ∈ Ẇ 1,p(Rn), then

Ei,p(f) ≥ cn,p‖f‖p∗ , (4.27)

where

cn,p =

(

2ωn+p−2

ωnωp−1

)1/p(n− p

p− 1

)1−1/p
(

ωnΓ(
n
p )Γ(n+ 1− n

p )

Γ(n)

)1/n

.

For p > 1, equality holds if and only if f(x) has the form (3.4) when i > 1, and if and
only if f(x) has the form (3.12) when i = 1.
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Next, we want to emphasize that by (4.19), each of the Lp Sobolev inequalities from
(4.26) is stronger than the classical inequality (3.2) and that, in turn, the strongest one
among them is the affine Lp Sobolev inequality (3.9). Finally, let us remark that it is
an open problem whether an inequality like (4.26) still holds, when the Lp zonoids Zµ

p

in the definition of Eµ
i,p are replaced by more general convex bodies.

With our next result, we establish an extension of Theorem 4.8 for the case p = 1 to
functions of bounded variations.

Theorem 4.10. Suppose that 1 ≤ i ≤ n − 1 and that µ is an even measure on Sn−1

such that span suppµ = Ei. If f ∈ BV (Rn), then

Eµ
i (f) :=

(

∫

Grn,i

(∫

Rn

‖σf |E‖pZµ(E)◦ d|Df |
)−n

dE

)−1/n

≥ 2ωn−1µ(S
n−1)

ω
1−1/n
n

‖f‖ n
n−1

(4.28)

with equality if and only if f is the multiple of a characteristic function of a ball when
i > 1 and that of an ellipsoid when i = 1. Moreover, if 1 ≤ p < ∞ and µ(Sn−1) = 1,
then

En(f) ≥ Eµ
i (f) ≥ E1(f) (4.29)

where equality is attained in the right-hand inequality if and only if Π〈f〉 is a ball.

Proof. Since the proof of (4.29) is almost verbatim the same as that of (4.19) (basically,
by replacing∇f by σf ), we will not repeat it here. Having established (4.29), the Sobolev
inequalities (4.28) follow from Wang’s extension of the affine Zhang–Sobolev inequality.
Moreover, when i = 1, inequality (4.28) reduces to the affine Zhang–Sobolev inequality
on BV (Rn).

In order to settle the equality conditions for (4.28) when 2 ≤ i ≤ n − 1, note that
by (4.29) and the (extended) affine Zhang–Sobolev inequality, f must be a multiple of
the characteristic function of an ellipsoid E = ABn for suitable A ∈ GL(n). Since, by
Proposition 3.13 (a), we have 〈1E〉 = E, we infer that ΠE must be a ball. But, since

Π(ABn) = | detA|A−TΠBn = ωn−1| detA|A−T
B
n

for any A ∈ GL(n) (cf. [Gar06, Theorem 4.1.5]), f must actually be a multiple of the
characteristic function of a ball.

Our last result of this section is a sharp Sobolev–type inequality together with its
equality cases, that is an extension of Theorem 4.9 for the case p = 1 to functions of
bounded variations. It is a direct consequence of Wang’s BV (Rn) extension of the affine
Zhang–Sobolev inequality, together with Theorem 4.10, where, again as in the proof
of Theorem 4.9, µ is chosen to be the (i − 1)–dimensional Hausdorff measure on Si−1,
normalized such that µ(Si−1) = q−1

i,1 .
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Theorem 4.11. Suppose that 1 ≤ i ≤ n. If f ∈ BV (Rn), then

Ei(f) ≥
2ωn−1

ω
1−1/n
n

‖f‖ n
n−1

(4.30)

with equality if and only if f is the multiple of a characteristic function of a ball when
i > 1 and that of an ellipsoid when i = 1.

4.4 Moser–Trudinger and Morrey–Sobolev type Inequalities

over the Grassmannian

In the last sections we established Sobolev–type inequalities for Ei,p when 1 ≤ p <
n. A natural next step is to consider the limiting value p = n and the superlimiting
values p > n and, similarly to the classical Sobolev inequalities, consider bounds for the
norms ‖∇f‖p. In the first case, the resulting inequalities are so called Moser–Trudinger
inequalities, whereas the second case leads to so called Morrey–Sobolev inequalities.

In this section we will establish the Moser–Trudinger and Morrey–Sobolev inequalities
for the energies Ei,p and Eµ

i,p. All the inequalities appearing in this section are a direct
consequence of (4.19).

Moser–Trudinger type inequalities

Let us start with the limiting case p = n of the classical Lp Sobolev inequality. A
classical result by Moser and Trudinger [Tru67,Mos71] (see also [CLYZ09,HSX12,Wan15]
for extensions) states that there exists a constant c(n), such that

1

supp(f)

∫

supp(f)
exp

(

nω
1/n
n |f(x)|
‖∇f‖n

)

dx ≤ c(n) (4.31)

for every f ∈ W 1,n(Rn) such that 0 < V (supp(f)) < ∞. Here, the constant nω
1/n
n is

optimal in the sense that inequality (4.31) would fail for any real number c̃(n) if nω
1/n
n

were to be replaced by a larger number.
If we denote by G the set of all nondecreasing and locally absolutely continuous

functions g on [0, 1], then the optimal constant c(n) can be computed via

c(n) = sup
g∈G

∫ ∞

0
exp(g(t)n/(n−1) − t) dt.

The affine Moser-Trudinger inequality by Cianchi, Lutwak Yang and Zhang [CLYZ09]
is a stronger version of (4.31) and states that

1

supp(f)

∫

supp(f)
exp

(

nω
1/n
n |f(x)|
EAff
p f

)

dx ≤ c(n) (4.32)
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for every f ∈ W 1,n(Rn) such that 0 < V (supp(f)) < ∞. By applying Theorem 4.7, we
can prove a Moser–Trudinger type inequality over the Grassmannian.

Corollary 4.12. Suppose 1 ≤ i ≤ n and let f ∈ W 1,n(Rn), such that
0 < V (supp(f)) <∞. With the same constant c(n) as above, the inequality

1

supp(f)

∫

supp(f)
exp

(

nω
1/n
n |f(x)|
Ei,pf

)

dx ≤ c(n)

holds. The constant nω
1/n
n is optimal in the sense that this inequality would fail for any

real number c̃(n) if nω
1/n
n were to be replaced by a larger number.

Proof. The Moser–Trudinger inequality for the affine energy EAff
p together with (4.19)

gives

c(n) ≥ 1

supp(f)

∫

supp(f)
exp

(

nω
1/n
n |f(x)|
EAff
p f

)

dx

≥ 1

supp(f)

∫

supp(f)
exp

(

nω
1/n
n |f(x)|
Ei,pf

)

dx.

Morrey–Sobolev type inequalities

For p > n, the sharp Morrey–Sobolev embedding theorem [Tal94] states that every
function in W 1,p(Rn) is essentially bounded, where the optimal bound is given by

‖f‖∞ ≤ dn,pV (supp(f))1/n−1/p‖∇f‖p (4.33)

for any f ∈ W 1,p(Rn) such that V (supp(f)) < ∞. Here, the optimal constant dn,p is
given by

dn,p = n−1/pω−1/n
n

(

p− 1

p− n

)1/p∗

,

where, as usual, p∗ = np
n−p . The affine version of (4.33) was established by Cianchi,

Lutwak, Yang and Zhang [CLYZ09] and states that

‖f‖∞ ≤ dn,pV (supp(f))1/n−1/pEAff
p f (4.34)

for any f ∈ W 1,p(Rn) such that V (supp(f)) < ∞, with the same optimal constant dn,p
as in (4.33). Equality in (4.34) holds whenever

f(x) = a(1− |A(x− xx)
p−n

p−1 |)+, (4.35)

for some a ∈ R, x0 ∈ R
n and A ∈ GL(n). Here, the subscript “+” denotes the positive

part. The affine Morrey–Sobolev inequality immediately implies a Grasmann version.
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Corollary 4.13. Let 1 ≤ i ≤ n, p > n and f ∈W 1,p(Rn). If V (supp(f)) <∞, then

‖f‖∞ ≤ dn,pV (supp(f))1/n−1/pEi,pf. (4.36)

Equality in (4.36) holds whenever

f(x) = a(1− |b(x− x0)|
n−p

p−1 )+ (4.37)

for some a, b ∈ R and x0 ∈ R
n.

Proof. The inequality is a direct consequence of (4.34) and Theorem 4.7. To obtain the
desired equality cases, note that for any function f of the form (4.37), Πp〈f〉p is a ball.
Thus, combining the equality cases in Theorem 4.7 with (4.35) finishes the proof.
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5 Generalized Pólya–Szegö Principles and

other Rearrangement Inequalities

A Pólya–Szegö principle refers to any kind of inequality that assures that some energy
functional E of a function f ∈ W 1,p(Rn), p ≥ 1, does not increase under symmetric
decreasing rearrangement of f . In the last chapter, we established Moser–Trudinger
and Morrey–Sobolev inequalities for the family Ei,p of energy functionals. Such
inequalities are traditionally proved by establishing a Pólya–Szegö principle for the
energy functionals first, and then using this principle and the fact that the Lp norm of
f does not change under rearrangement, to obtain a large class of further Sobolev–type
or rearrangement inequalities. Moreover, Pólya–Szegö principles are used to solve a
wide range of variational problems (see [Kaw85,Kaw86,Kes06,Tal93] and the references
therein).

We have already seen in Chapter 3 how energy functionals exhibiting a Sobolev–type
inequality are natural candidates for a Pólya–Szegö principle, such as the classical energy
‖∇f‖p, giving rise to the classical Pólya–Szegö principle, or the energy functional EAff

p f ,
leading to the affine Pólya–Szegö principle. Here we will consider two families of energy
functionals. The first family consists of the energy functionals

Eµ
p f :=

(

1

n

∫

Sn−1

(∫

Rn

‖∇f‖p
Zµ
p (u)◦

)−n/p

du

)−1/n

, (5.1)

appearing in the Sobolev–type inequalities (3.15) and (3.16) by Haberl and Schuster
[HS19]. The second one,

Eµ
i,pf =

(

∫

Grn,i

(∫

Rn

‖∇f(x)|E‖p
Zµ
p (E)◦

dx

)−n/p

dE

)−1/n

,

was introduced in the last Chapter.
In this chapter, we are going to establish the Pólya–Szegö principles for Eµ

p and Eµ
i,p,

namely
Eµ
p f ≥ Eµ

p f
∗ and Eµ

i,pf ≥ Eµ
i,pf

∗, (5.2)

for f ∈ W 1,p(Rn), 1 ≤ p < ∞, and f ∈ BV (Rn), together with the characterization of
extremal functions in (5.2) in the sense of Brothers and Ziemer, that is we will show
that, assuming

V ({|∇f∗| = 0} ∩ {0 < f∗ < ess sup f}) = 0, (5.3)
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equality in (5.2) holds if and only if f satisfies certain symmetries.

We will achieve this via two different approaches, one exploiting directly the underlying
isoperimetric inequality

V (Φµ,◦
p K) ≤ V (Φµ,◦

p B
n) (5.4)

if V (K) = V (Bn), the other one relying on the affine bound

Eµ
i,pf ≥ EAff

p f. (5.5)

While the second proof is a bit easier, using the already known affine Pólya–
Szegö principle and its corresponding Brothers–Ziemer type characterization of the
equality cases, the first proof does not assume any kind of relation as in (5.5). We will
introduce a family of Minkowski valuations in Chapter 6, for which the corresponding
functional energy does not necessarily satisfy relation (5.5) and thus for which the second
approach is more beneficial.
All the results presented here are not published yet, but are going to appear in [Kni20].

5.1 The Pólya–Szegö Principle for Eµp
In this section we will establish the Pólya–Szegö principle for the energy functionals Eµ

p .
Note that we could use the same proof as for Theorem 5.5 given in the next section.
However, we want to give a proof here which does not depend on the bound via the
affine energy, that is

Eµ
p f ≥ EAff

p f,

or on its geometric counterpart, namely

V (Φµ,◦
p K) ≤ V (Πµ,◦

p K).

Moreover, since for p = 1 the affine Pólya–Szegö principle was shown only for functions
f ∈W 1,1(Rn) [CLYZ09,Wan13], this procedure allows us to prove it for f ∈ BV (Rn)
(although the proof given in [Wan13] can be adapted easily for f ∈ BV (Rn)). To this
end, we are going to use a method introduced by Wang in [Wan13] and [Wan15]. Note
that the results from this section can also be shown via a different approach, based on
the method by Nguyen [Ngu16] (as was pointed out to us in a private communication
with V.H. Nguyen).
Let us start by showing how to write Eµ

p f in terms of V (Φµ,◦
p K).

Lemma 5.1. Suppose that 1 ≤ p < ∞ and that µ is an even, zonal measure on Sn−1.
If f ∈W 1,p(Rn), then

Eµ
p f =

V (Φµ,◦
p 〈f〉p)−1/n

V (〈f〉p)1/p
.
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Proof. By the polar coordinate formula (2.9) and the definition of Φµ
p (3.13), we have

V (Φµ,◦
p 〈f〉p) =

1

n

∫

Sn−1

h(Φµ
p 〈f〉p, u)−n du

=
1

n

∫

Sn−1

(∫

Sn−1

h(Zµ
p (u), v)

p dSp(〈f〉p, v)
)−n/p

du.

Hence, Theorem 3.11 yields

V (Φµ,◦
p 〈f〉p)−1/n =

(

1

n

∫

Sn−1

(

V (〈f〉p)
∫

Rn

h(Zµ
p (u),∇f)p dx)

)−n/p

du

)−1/n

= V (〈f〉p)1/p Eµ
p f.

We are now in a position to prove the Pólya–Szegö principle and a Brothers–Ziemer
type result for Eµ

p .

Theorem 5.2. Suppose that 1 ≤ p <∞ and that µ is an even, zonal measure on Sn−1.
If f ∈W 1,p(Rn) is non–negative and compactly supported, then

Eµ
p f ≥ Eµ

p f
∗. (5.6)

Furthermore, if (5.3) holds, then there is equality in (5.6) if and only if µ is discrete
and

f(x) = fE(x+ x0) a.e.

for some x0 ∈ R
n and some ellipsoid E ⊂ R

n, or if µ is not discrete and

f(x) = f∗(x+ x0) a.e.

for some x0 ∈ R
n.

Proof. Let us first note, that the map

K 7→ V (Φµ,◦
p K)−1/n

V (K)1/p

is (−1)–homogeneous, thus, by Proposition 3.14 (a), we have

V (Φµ,◦
p 〈f〉p)−1/n

V (〈f〉p)1/p
=
V (Φµ,◦

p
1
c 〈f 〈f〉p〉p)−1/n

V (1c 〈f 〈f〉p〉p)1/p
= c

V (Φµ,◦
p 〈f 〈f〉p〉p)−1/n

V (〈f 〈f〉p〉p)1/p

for some c ≥ 1. Consequently,

Eµ
p f =

V (Φµ,◦
p 〈f〉p)−1/n

V (〈f〉p)1/p

≥ V (Φµ,◦
p 〈f 〈f〉p〉p)−1/n

V (〈f 〈f〉p〉p)1/p

(5.7)
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with equality if and only if f = f 〈f〉p almost everywhere. Now, by Proposition 3.14 (b),
we have V (〈fBn〉p) = V (〈f 〈f〉p〉p), and by applying Theorem 3.2 and Proposition 3.14
(a), we obtain

V (Φµ,◦
p 〈f 〈f〉p〉p)−1/n

V (〈f 〈f〉p〉p)1/p
≥ V (Φµ,◦

p 〈fBn〉p)−1/n

V (〈fBn〉p)1/p
= Eµ

p f
B
n

. (5.8)

Since fB
n
= f∗, the inequality follows.

Now let f ∈W 1,p(Rn) be non–negative, such that

V ({|∇f∗(x)| = 0} ∩ {0 < f∗(x) < ess sup f}) = 0.

To have equality in (5.6), we must have equality in (5.7) and (5.8), which forces

f = f 〈f〉p (5.9)

almost everywhere and
〈f 〈f〉p〉p = E (5.10)

for some ellipsoid E ⊂ R
n if µ is discrete, and

〈f 〈f〉p〉p = cBn (5.11)

for some constant c > 0 otherwise. Finally, since by Proposition 3.14 (a) 〈f 〈f〉p〉p is a
multiple of 〈f〉p, (5.10) and (5.11) show that 〈f〉p is an ellipsoid and therefore, by (5.9),
f = fE up to translation if µ is discrete, and that 〈f〉p is a ball and, thus, f = f∗, up
to translation, otherwise.

Using the same proof, but replacing 〈f〉p with 〈f〉 for f ∈ BV (Rn), yields the BV (Rn)
version of Theorem 5.2.

Theorem 5.3. Suppose that µ is an even, zonal measure on Sn−1. If f ∈ BV (Rn) is
non–negative and compactly supported, then

Eµf ≥ Eµf∗. (5.12)

Furthermore, if
V (D0

f∗ ∩ {0 < f∗ < ess sup f}) = 0, (5.13)

then there is equality in (5.12) if and only if µ is discrete and

f(x) = fE(x+ x0) a.e.

for some x0 ∈ R
n and some ellipsoid E ⊂ R

n, or if µ is not discrete and

f(x) = f∗(x+ x0) a.e.

for some x0 ∈ R
n.
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For f ∈ BV (Rn) we can utilize Proposition 3.15 to characterize all equality cases
in (5.12) even without the additional assumption (5.13). Note however, that while the
resulting functions will still have level sets homothetic to a ball (or ellipsoid if µ is
discrete), those level sets need no longer be concentric.

Theorem 5.4. Suppose that µ is an even, zonal measure on Sn−1. If f ∈ BV (Rn) is
non–negative and compactly supported, then

Eµf = Eµf∗.

if and only if µ is discrete and the level sets [f ]t are homothets of an ellipsoid up to some
set of Ln measure 0 for almost every t ≥ 0, or if µ is not discrete and the level sets [f ]t
are homothets of a Euclidean ball up to some set of Ln measure 0 for almost every t ≥ 0.

Proof. To have equality, we need to have equality in (5.7) and (5.8) (where p = 1 and
〈f〉p has to be replaced by 〈f〉). Hence, by (3.24), [f ]t has to be a homothet of 〈f〉 for
almost every t ≥ 0 and furthermore

〈f 〈f〉〉 = E (5.14)

for some ellipsoid E ⊂ R
n if µ is discrete and

〈f 〈f〉〉 = cBn (5.15)

for some c > 0 otherwise. Now (5.14) and (5.15) force 〈f〉 to be an ellipsoid or a ball,
thus, the level sets [f ]t need to be homothets of an ellipsoid or a ball as stated.

Note that taking µ to be discrete, recovers the affine Pólya–Szegö principle by
Cianchi, Lutwak, Yang and Zhang as well as the equality cases by Wang for functions
f ∈ BV (Rn).

5.2 The Pólya–Szegö Principles for Eµi,p and Ei,p
As in the last section, let us start by proving the Pólya–Szegö principle for Eµ

i,p when

f ∈W 1,p(Rn) for p ≥ 1 and characterize the equality conditions in the sense of Brothers
and Ziemer.

Theorem 5.5. Suppose that 1 ≤ i ≤ n− 1, 1 ≤ p <∞, and that µ is an even measure
on Sn−1 such that span suppµ = Ei and µ(S

n−1) = 1. If f ∈W 1,p(Rn) is non–negative
and compactly supported, then

Eµ
i,pf ≥ Eµ

i,pf
∗. (5.16)

Furthermore, if (5.3) holds, then there is equality in (5.16) if and only if i = 1 and

f(x) = fE(x+ x0) a.e. (5.17)

for some x0 ∈ R
n and some ellipsoid E ⊂ R

n, or if i > 1 and

f(x) = f∗(x+ x0) a.e.

for some x0 ∈ R
n.
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Proof. Since the case i = 1 is already settled (this is just the special case of Theorem
5.2 when µ is discrete), we will assume i > 1 throughout this proof.

For f ∈W 1,p(Rn), let us first show that plugging in f∗ in (5.5) gives equality. To this
end, since f∗ = fB

n
, note that we have 〈f∗〉p = cBn for some constant c > 0. Applying

the p–projection body yields

Πp〈f∗〉p = cn−1ΠpB
n = cn−1

B
n.

Thus, Πp〈f∗〉p is a ball, which, according to Theorem 4.7, implies

Eµ
i,pf

∗ = EAff
p f∗. (5.18)

The claim is now a simple consequence of (5.5), the affine Pólya–Szegö principle
and (5.18), since

Eµ
i,pf ≥ EAff

p f ≥ EAff
p f∗ = Eµ

i,pf
∗. (5.19)

To have equality in Theorem 5.16, we must have equality in (5.19), which implies that
Πp〈f〉p is a ball. The Brothers–Ziemer type characterization of the equality cases of the
affine Pólya–Szegö principle [Wan13] states that if (5.3) holds, then there is equality in
the second inequality if and only if

f(x) = fE(x+ x0) a.e.

for some x0 ∈ R
n and some ellipsoid E. Together, the equality conditions yield that

if (5.3) holds, then Πp〈f〉p is a ball and

Πp〈f〉p = Πp〈fE〉p = cΠpE

for some constant c > 0. However, ΠpE is a ball if and only if E is a multiple of the
Euclidean unitball Bn. Therefore f(x) = fB

n
(x + x0) for some x0 ∈ R

n which finishes
the proof.

Note that (5.19) shows that the affine Pólya–Szegö principle is stronger than (5.16),
which in turn is stronger than the classical Pólya–Szegö principle, since

‖∇f‖p ≥ Eµ
i,pf ≥ Eµ

i,pf
∗ = EAff

p f∗ = ‖∇f∗‖p.

An analogous argument as in the proof of Theorem 5.5, using 〈f〉 for f ∈ BV (Rn)
gives the following version of Theorem 5.5 for functions f ∈ BV (Rn).

Theorem 5.6. Suppose that 1 ≤ i ≤ n− 1 and that µ is an even measure on Sn−1 such
that span suppµ = Ei. If f ∈ BV (Rn) is non–negative and compactly supported, then

Eµ
i f ≥ Eµ

i f
∗. (5.20)

Furthermore, if
V (D0

f∗ ∩ {0 < f∗ < ess sup f}) = 0,
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then there is equality in (5.16) if and only if i = 1 and

f(x) = fE(x+ x0) a.e.

for some x0 ∈ R
n and some ellipsoid E ⊂ R

n, or if i > 1 and

f(x) = f∗(x+ x0) a.e.

for some x0 ∈ R
n.

Similar to Theorem 5.4, we can get rid of assumption (5.13).

Theorem 5.7. Suppose that 1 ≤ i ≤ n− 1 and that µ is an even measure on Sn−1 such
that span suppµ = Ei. If f ∈ BV (Rn) is non–negative and compactly supported, then

Eµ
i f = Eµ

i f
∗

if and only if i = 1 and the level sets [f ]t are homothets of an ellipsoid up to some set
of Ln measure 0 for almost every t ≥ 0, or if i > 1 and the level sets [f ]t are homothets
of a Euclidean ball up to some set of Ln measure 0 for almost every t ≥ 0.

Proof. If i = 1, the statement is the same as Theorem 5.4. So it remains to show the
statement when i > 1. To have equality we need to have equality in (5.19) (for p = 1
and f ∈ BV (Rn)), which, by Theorem 5.4 and Proposition 3.15 (a), forces [f ]t to be
homothetic to B

n for almost every t ≥ 0.

By choosing µ to be the (i−1)–dimensional Hausdorff measure on Si−1 normalized such
that µ(Si−1) = q−1

i,p (see last chapter for precise definitions and values of the constants),
gives a Pólya–Szegö principle for Ei,p.
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6 Generalized Petty Projection–type

Inequalities

Our approach towards the functional inequalities so far has been to prove an underlying
geometric inequality first and then to exploit the strong connection to functional
inequalities given via the LYZ–body 〈f〉p of functions f ∈ W 1,p(Rn) (or 〈f〉 for
f ∈ BV (Rn) respectively). For instance, the underlying geometry behind the Sobolev–
type inequalities (3.15) established by Haberl and Schuster was a Petty Projection–type
inequality for the Minkowski valuations Φµ (see Chapter 3 for the defintion of Φµ).
The following representation theorem for continuous, (n− 1)–homogeneous, translation
invariant and SO(n) equivariant Minkowski valuations was shown by Schuster [Sch07]
and is the basis for our investigation of a generalization of the Petty Projection–type
inequalities (3.14) by Haberl and Schuster [HS19]. Recall that we say a function is
zonal, if it is invariant under rotations θ ∈ SO(n− 1) about a fixed axis ē, and that by
θu ∈ SO(n− 1) we denote an arbitrary rotation such that θuē = u.

Theorem 6.1. If Φ : Kn → Kn is a continuous, (n − 1)–homogeneous, translation
invariant and SO(n) equivariant Minkowski valuation, then there is a weakly positive
and zonal function g ∈ C(Sn−1), unique up to addition of a linear function, such that

h(Φn−1K,u) =

∫

Sn−1

g(θ−1
u v) dS(K, v). (6.1)

Note that θu in (6.1) is not uniquely defined, but the zonality of g makes (6.1) well
defined for any choice of θu. Moreover, note that Theorem 6.1 was stated in [Sch07]
for so called Blaschke–Minkowski homomorphisms. However, as shown in [SW18]
(where also a representation for support functions of Minkowski valuations without
assumption on its degree is shown), every Minkowski valuation as in Theorem 6.1 is a
Blaschke–Minkowski homomorphism.

The geometric inequality established for Φµ is a first step at proving a Petty
projection–type inequality for Minkowski valuations given by (6.1), by proving this type
of inequality when g is the support function of a zonoid of revolution. A generalization
of this result could give valuable insights into an answer to Open Problem 4.6 in
full generality and thus could be used to establish Sobolev–type inequalities (over the
Grassmannian) for arbitrary norms.

We will partially extend the result by Haberl and Schuster in this chapter, by showing,
that the volume product

Pg(K) := V (Φ◦
gK)V (K)n−1 (6.2)
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has maximizers in Kn
0 , where g is a continuous, positive and zonal function. Here, we

denote an (n− 1)–homogeneous Minkowski valuation that is generated by a function g
in the sense of (6.1) by Φg. Next, we prove the existence of minimizers for the non–polar
version, that is we prove that

Rg(K) :=
V (ΦgK)

V (K)n−1
(6.3)

has minimizers in Kn
0 . In both cases we do not know the exact extremizers, but we

conjencture those extremizers to be balls. If this is the case, than we could choose
g = h(L, ·) for some origin symmetric convex body of revolution L ∈ Kn

0 and (6.2) would
directly yield BV (Rn) Sobolev–type inequalities for general norms.

The classical approach by Lutwak,Yang and Zhang [LYZ00] to show the Petty
projection inequality (3.8) for Πp, was to establish the relation

SuΠ
∗
pK ⊆ Π∗

pSuK, (6.4)

for smooth origin symmetric convex bodies K, where we denote by SuK the Steiner
symmetrization of K ∈ Kn in direction u. Applying the volume on both sides of (6.4)
and using the facts that Steiner symmetrization is volume preserving and that one can
find a sequence of directions (ui)i∈N, ui ∈ Sn−1 for i ∈ N, such that the consecutive
application Suk

· · ·Su1
K converges to a Euclidean ball as k → ∞, directly gives Petty’s

projection inequality (3.8). However, such an approach does not work for our general
setting, as can be seen by taking g = h(D, ·), where D = B

n ∩ ē⊥ is the unit disk in R
n.

Haberl and Schuster could circumvent this problem when g is the support function of a
zonoid of revolution by establishing the strong connection

V (Φ◦
gK) ≤ V (Π◦K).

Since it is not clear, if such an inequality holds for every continuous, translation invariant,
(n− 1)–homogeneous and SO(n) equivariant Minkowski valuation, we will approach the
problem in a different way, which will allow us to also prove the existence of extremizers
in the non–polar version. The main idea behind our proof is to show that the polar
volume product (or the non–polar ratio) can be bounded by a constant multiple of the
isoperimetric ratio

I(K) :=
V (K)n−1

S(K)n

(by the reciprocal of this ratio, respectively). However, by showing that I(K) tends to
zero if the convex body K tends to something lower dimensional (but not to a point),
we conclude that a converging and maximizing sequence of convex bodies (minimizing
sequence respectively) must converge to a full dimensional convex body. Hence, an
extremizer exists.
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6.1 Auxiliary Results

From now on, we say Φg is generated by g, if Φg and g satisfy relation (6.1). Furthermore,
note that by the SO(n)–invariance of the spherical Lebesgue measure we have

h(ΦgB
n, v) =

∫

Sn−1

g(θ−1
v u) du =

∫

Sn−1

g(u) du.

Thus, in order to make sure that ΦgB
n = B

n, we may always assume that g is normalized
such that

∫

Sn−1

g(u) du = 1. (6.5)

We will make use of the fact that g(θ−1
u v) depends only on the scalar product u · v,

therefore g(θ−1
u v) = g(θ−1

v u).

Let us first recall a lemma by Esposito, Fusco and Trombetti (Lemma 4.1 in [EFT05],
see also [DFMS17]), which lets us estimate the isoperimetric ratio I(K) by the diameter
diam(K) of K ∈ Kn.

Lemma 6.2. Suppose n ≥ 2. If K ∈ Kn
0 , then there exists a constant cn depending only

on the dimension n, such that

diam(K) ≤ cn
S(K)n−1

V (K)n−2
. (6.6)

Next we show that if (Kl)l∈N is a sequence of convex bodies with the origin in their
interior, converging to something lower dimensional, then the isoperimetric ratio I(Kl)
tends to zero as l → ∞.

Lemma 6.3. Let (Kl)l∈N be a sequence of convex bodies with the origin in their interior,
which converges to some convex body K of dimension dimK = i. If 1 < i < n, then

I(Kl) → 0

as l → ∞.

Proof. First note that since dimK ≥ 1, the diameter diam(K) is positive. By (6.6) and
the isoperimetric inequality (3.1) we have

I(Kl) =
V (Kl)

n−2

S(Kl)n−1

V (Kl)

S(Kl)
≤ cn

diam(Kl)

V (Kl)

S(Kl)
≤ c̃n

V (Kl)
1

n

diam(Kl)

for some constant c̃n depending only on n. Since diam(Kl) → diam(K) > 0 as l → ∞,
the claim follows.

The key ingredients for the proofs are the following two estimates for

Pg(K)

I(K)
= V (Φ◦

gK)S(K)n
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and

Rg(K) I(K) =
V (ΦgK)

S(K)n
. (6.7)

Lemma 6.4. Let Φg be a continuous, translation invariant, (n − 1)–homogeneous and
SO(n) equivariant Minkowski valuation with generating function g. If K ∈ Kn, then

cn,g ≤ V (Φ◦
gK)S(K)n ≤ dn,g, (6.8)

where the constants cn,g and dn,g are given by

cn,g = ωn(nωn)
n.

and

dn,g =
1

n

∫

Sn−1

g(u)−n du

Proof. By the polar coordinate formula, (6.1), Jensen’s inequality, Fubini’s theorem and
the SO(n)–invariance of the spherical Lebesgue measure, we obtain

V (Φ◦
gK) =

1

n

∫

Sn−1

h(ΦgK,u)
−n du

= S(K)−n 1

n

∫

Sn−1

(

h(ΦgK,u)

S(K)

)−n

du

= S(K)−n 1

n

∫

Sn−1

(∫

Sn−1

g(θ−1
u v)

dS(K, v)

S(K)

)−n

du

≤ S(K)−n 1

n

∫

Sn−1

∫

Sn−1

g(θ−1
u v)−ndS(K, v)

S(K)
du

= S(K)−n 1

n

∫

Sn−1

g(u)−n du,

which shows the right-hand inequality.
To get the left-hand inequality in (6.8), we apply the polar coordinate formula, Jensen’s

inequality, (6.1) and Fubini’s theorem to obtain

V (Φ◦
gK) =

1

n

∫

Sn−1

h(ΦgK,u)
−n du

≥ ωn

(∫

Sn−1

h(ΦgK,u)
du

nωn

)−n

= ωn

(∫

Sn−1

∫

Sn−1

g(θ−1
u v) dS(K, v)

du

nωn

)−n

= ωn

(

S(K)

nωn

)−n

,

where the last equality is due to the chosen normalization (6.5) for g.
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Note, that if g is the support function of a full dimensional convex body of revolution,
say L, then

dn,g = V (L◦).

Lemma 6.5. Let Φg be a continuous, translation invariant, (n − 1)–homogeneous and
SO(n) equivariant Minkowski valuation with generating function g. If K ∈ Kn, then

c̃n,g ≤ V (ΦgK)

S(K)n
≤ d̃n,g (6.9)

where the constants c̃n,g and d̃n,g are given by

c̃n,g =

(

min
w∈Sn−1

g(w)

)n

ωn

and

d̃n,g =
ω1−n
n

nn
.

Proof. Observe that by (2.8), (6.1), Fubini’s theorem and (2.5) we obtain

V (ΦgK) =
1

n

∫

Sn−1

h(ΦgK,u) dS(ΦgK,u)

=
1

n

∫

Sn−1

∫

Sn−1

g(θ−1
u v) dS(K, v) dS(ΦgK,u)

≥ min
w∈Sn−1

g(w)
1

n

∫

Sn−1

∫

Sn−1

dS(ΦgK,u) dS(K, v)

= min
w∈Sn−1

g(w)

∫

Sn−1

V (B,ΦgK[n− 1]) dS(K, v).

(6.10)

Now, an application of Minkowski’s inequality (2.7) yields

V (ΦgK) ≥ min
w∈Sn−1

g(w)

∫

Sn−1

V (B)
1

nV (ΦgK)
n−1

n dS(K,u)

= min
w∈Sn−1

g(w)ω
1

n
n V (ΦgK)

n−1

n S(K),

which, after dividing by V (ΦgK)
n−1

n , gives

V (ΦgK)
1

n ≥ min
w∈Sn−1

g(w)ω
1

n
n S(K).

Taking this inequality to the power n and dividing by S(K)n gives the left-hand
inequality in (6.9).
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To prove the upper bound, we apply Urysohn’s inequality (that is i = 1 in (3.20)) to
V (ΦgK) to obtain

V (ΦgK) ≤
(

nV (ΦgK,B
n[n− 1])

nωn

)n

ωn

=
ω1−n
n

nn

(∫

Sn−1

h(ΦgK,u) du

)n

=
ω1−n
n

nn

(∫

Sn−1

∫

Sn−1

g(θ−1
u v) dS(K, v) du

)n

=
ω1−n
n

nn
S(K)n

where the last equality is due to Fubini’s theorem and the chosen normalization of g.

By restricting ourselves to support functions, say g = h(L, ·) for some origin–
symmetric L ∈ Kn

0 , we can obtain a better lower bound by directly applying Minkowski’s
inequality in (6.10). This leads to the constant

c̃n,L = V (L)

and consequently, by (6.9), to the inequalities

V (L) ≤ V (ΦgK)

S(K)n
≤ ω1−n

n

nn
. (6.11)

Note that now the outermost inequality in (6.11) is exactly Urysohn’s inequality for L,
since the normalization

∫

Sn−1 g(u) du = 1 corresponds to the mean width normalization
w(L)
2 = nV (L,Bn[n− 1]) = 1.

6.2 Existence of Maximizers for the Polar Volume Product

We are now in a position to prove the existence of maximizers of

V (Φ◦
gK)V (K)n−1.

Theorem 6.6. Suppose Φg is a continuous, translation invariant, (n−1)–homogeneous
and SO(n) equivariant Minkowski valuation with generating function g > 0. There exists
a full dimensional convex body Kg ∈ Kn, such that

V (Φ◦
gK)V (K)n−1 ≤ V (Φ◦

gKg)V (Kg)
n−1

for each full dimensional K ∈ Kn.
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Proof. Let K ∈ Kn be full dimensional. We start by showing that
K 7→ V (Φ◦

gK)V (K)n−1 is bounded. By Lemma 6.4 and the classical isoperimetric
inequality (3.1), we have

V (Φ◦
gK)V (K)n−1 ≤ dn,g

V (K)n−1

S(K)n

≤ dn,g
V (Bn)n−1

S(Bn)n

for some constant dn,g depending on n and g only. Thus, the supremum

S := sup
K∈Kn

V (Φ◦
gK)V (K)n−1 <∞

exists. Since the product V (Φ◦
gK)V (K)n−1 is 0–homogeneous and translation invariant,

we can restrict ourselves to convex bodies K ⊆ B
n. Now let (Kl)l∈N be a maximizing

sequence of full dimensional convex bodies, that is such that V (Φ◦
gKl)V (Kl)

n−1 converges
to S for l → ∞. Again, by the scale invariance of V (Φ◦

gK)V (K)n−1, we can assume that
diam(Kl) = 1 for all l ∈ N. Now, since (Kl)l∈N is bounded by B

n, Blaschke’s selection
theorem (Theorem 2.2) guarantees the existence of a convergent subsequence of (Kl)l∈N.
W.l.o.g. we will denote this subsequence again by (Kl)l∈N and its limit by K. If K is
full dimensional, the claim is proved.
Let us therefore assume K is lower dimensional. By the normalization diam(Kl) = 1

and since Kl → K for l → ∞, we have diam(K) = 1. Thus, K can not be a point
and consequently 1 < dimK < n. What remains to show is that K can not be a
maximizer of V (Φ◦

gK)V (K)n−1, which contradicts our construction of K and proves
that the assumption dimK < n is wrong. To prove this, observe that by Lemma 6.4 we
have

V (Φ◦
gKl)V (Kl)

n−1 ≤ dn,g
V (Kl)

n−1

S(Kl)n
.

for all l ∈ N. But since by our assumption (Kl)l∈N converges to something lower
dimensional, Lemma 6.3 shows that

V (Φ◦
gKl)V (Kl)

n−1 → 0

as l → ∞, which contradicts the fact that (Kl)l∈N was a maximizing (sub–)sequence.

Note that this proof gives no insight into how the maximizer Kg looks like. We
conjecture however, that Kg is a ball and that balls are the only maximizers.

6.3 Existence of Minimizers for the Volume Ratio

Similar to the existence proof in the last section, we will show here the existence of
minimzers of the volume ratio

V (ΦgK)

V (K)n−1
.
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Theorem 6.7. Suppose Φg is a continuous, translation invariant, (n−1)–homogeneous
and SO(n) equivariant Minkowski valuation with generating function g > 0. There exists
a full dimensional convex body Kg ∈ Kn, such that

V (ΦgK)

V (K)n−1
≥ V (ΦgKg)

V (Kg)n−1

for all full dimensional K ∈ Kn.

Proof. Let K ∈ Kn be full dimensional. We start by showing that K 7→ V (ΦgK)
V (K)n−1 is

bounded from below. By Lemma 6.5 and the classical isoperimetric inequality (3.1), we
have

V (ΦgK)

V (K)n−1
≥ c̃n,g

S(K)n

V (K)n−1

≥ c̃n,g
S(Bn)n

V (Bn)n−1

for some constant c̃n,g depending on n and g only. Thus, the infimum

inf
K∈Kn

V (ΦgK)

V (K)n−1
(6.12)

is strictly positive. By the same arguments as in the proof of Theorem 6.6, we find

a convergent sequence (Kl)l∈N of full dimensional convex bodies, such that
V (ΦgKl)
V (Kl)n−1

converges to the infimum (6.12). If we denote the limit of Kl by K, it remains to show
that K is full dimensional. Let us therefore assume K is lower dimensional. By the
normalization diam(Kl) = 1 and since Kl → K for l → ∞, we have diam(K) = 1. Thus,
K can not be a point and consequently 1 < dimK < n. Now observe that by Lemma
6.5 we have

V (ΦgKl)

V (Kl)n−1
≥ c̃n,g

S(Kl)
n

V (Kl)n−1

for all l ∈ N. But since by our assumption (Kl)l∈N converges to something lower
dimensional, Lemma 6.3 shows that

V (ΦgKl)

V (Kl)n−1
→ ∞

as l → ∞, which contradicts our construction of (Kl)l∈N as minimizing (sub–)sequence.

The exact minimizers (or their uniqueness) are not known, but the next result shows
that Kg and Φ2

gKg have to be homothets, where Φ2
gKg = ΦgΦgKg. This result can

already be found in [Sch07].

Proposition 6.8. If Kg is a minimizer of (6.3), then it is homothetic to Φ2
gKg.
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Proof. First, let K ∈ Kn and note that by (2.5),(6.1) and Fubini’s theorem we have

V (ΦgK,L[n− 1]) =
1

n

∫

Sn−1

h(ΦgK,u) dS(L, u)

=
1

n

∫

Sn−1

∫

Sn−1

g(θn−1
v u) dS(K, v) dS(L, u)

=
1

n

∫

Sn−1

h(ΦgL, v) dS(K, v)

= V (ΦgL,K[n− 1]).

If we choose L = ΦgK we obtain

V (ΦgK) = V (ΦgK,ΦgK[n− 1]) = V (Φ2
gK,K[n− 1]). (6.13)

Now, Minkowskis inequality (2.7) gives

V (Φ2
gK,K[n− 1])n ≥ V (Φ2

gK)V (K)n−1 (6.14)

with equality if and only if K and Φ2
gK are homothetic. Together, (6.13) and (6.14)

yield
V (ΦgK)n ≥ V (Φ2

gK)V (K)n−1

and consequently
V (ΦgK)

V (K)n−1
≥

V (Φ2
gK)

V (ΦgK)n−1
(6.15)

where equality is attained if and only if K is homothetic to Φ2
gK. Setting K = Kg in

(6.15), we must have equality since Kg is a minimizer and the claim follows.

Just like the conjectured Petty projection inequality implies the polar Petty projection
inequality (3.5), Theorem 6.7 implies Theorem 6.6 if we can show that Euclidean balls
are minimizers of Theorem 6.7.

Proposition 6.9. If Euclidean balls are minimizers of Rg, then Theorem 6.7 implies
Theorem 6.6 and Euclidean balls are maximizers of Pg.

Proof. Let Kg be a maximizer of Pg. By the Blaschke–Santaló inequality (3.19) we
obtain

V (Φ◦
gKg)V (Kg)

n−1 ≤ ω2
n

V (Kg)
n−1

V (ΦgKg)
≤ ω2

n

V (Bn)n−1

V (Bn)
= ωn

n = V (Φ◦
gB

n)V (Bn)n−1,

thus Kg = B
n.
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