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Witnessed entanglement
Classes of entanglement measures are defined as [1]

EM(ρ) := max{0,− min
W∈M

Tr[Wρ]} , (1)

where M is a subset of entanglement witnesses M⊂W.

• MBSA = {W ∈ W|1 +W ≥ 0} ⇒ best separable approx. EBSA

min t ∈ [0, 1] such that ρ = (1− t)σ + t δρ , (2)

• MGR = {W ∈ W|1−W ≥ 0} ⇒ generalized robustness EGR

min s ∈ [0,∞) such that
1

1 + s
ρ+

s

1 + s
ρ′ is separable , (3)

Bounds from linear uncertainty relations
Let us consider entanglement criteria in the form

S(ρ) :=
∑
k

∆2(Ok)− 〈B〉 ≥ 0 (4)

with ∆2(Ok) =
〈
O2
k

〉
− 〈Ok〉2. We have n∗ ≤ S(ρ) ≤ m∗ for all ρ with

−n∗ ≤ n := λmax(B), (5)

m∗ ≤ m :=
∑
k

λmax(Ok)2 − λmin(B) , (6)

where λmin(max)(A) denoting the minimal (maximal) eigenvalue of A

Lemma 2. Every entanglement criterion that can be written in the form of
Eq. (4) provides a lower bound on the best separable approximation EBSA ≥
−S(ρ)/n, and to the generalized robustness EGR ≥ −S(ρ)/m.

Proof: We write ∆2(Ok)ρ = minsk
〈
(Ok − sk1)2

〉
, with sk ∈ R. Thus:

S(ρ) = min
s
〈W (s)〉 with W (s) :=

∑
k

(Ok − sk1)2 −B. (7)

Since W (s)/n ∈MBSA we have the bound

EBSA ≥ −min
s
〈W (s)/n〉 = −S(ρ)/n (8)

Similarly, to bound EGR, one notices that

∆2(Ok) ≤ λmax(Ok)2 ⇒ W (s)/m ∈MGR ⇒ EGR ≥ −S(ρ)/m (9)

Application I: single spin squeezed state

Consider the Wineland parameter [3] ξ2 := N∆2(Jz)/ 〈Jx〉2. We have:

EBSA ≥ C
(

1−
√
ξ2
)

with C := 〈Jx〉 /(N/2) ,

EGR ≥
C2

N
(1− ξ2) +O(N−2) .

(10)
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Lower bounds on the BSA, panel a), and on the GR, panel b), as per
Eqs. (10). The red circles is data from [4] where N = 476

Bounds from product uncertainty relations
Let us consider entanglement criteria in the form

U2(ρ) :=
∆2(O1)∆2(O2)

〈B〉2
≥ 1 (11)

Lemma 3. Every entanglement criterion that can be written in the form
of Eq. (11) provides a lower bound on the best separable approximation

EBSA ≥ 〈B〉n [1− U(ρ)], and to the generalized robustness.

Proof: Eq. (11) implies that for all separable states

P(ρ) := ∆2(O1)∆2(O2)− 〈B〉2 ≥ 0 , (12)

which can be written as [2]

∆2(O1) = −4 inf
t∈R

[
t2∆2(O2)− |t| 〈B〉

]
. (13)

To summarise, Eq. (13) implies that for any t ∈ R, all separable states
satisfy the inequality

St(ρ) := ∆2(O1) + 4t2∆2(O2)− 4 |t| 〈B〉 ≥ 0, (14)

which takes the form of Eq. (4) with O2 7→ 2tO2 and B 7→ 4 |t|B.
Thus, we find

P(ρ) = min
s,t

4 |t|n 〈W (s, t)〉 with W (s, t) ∈MBSA . (15)

Analytically optimizing over t proves the claim. Similar reasoning can be
done for the generalized robustness. �

Application II: Split spin-squeezed state
For a split spin squeezed state we can use a criterion from Giovannetti et
al. [2]:

G2 :=
∆2(gzJ

A
z + JBz )∆2(gyJ

A
y + JBy )

(|gzgy| |〈JAx 〉|+ |〈JBx 〉|)
2
/4

≥ 1 (16)

for gz, gy ∈ R. The largest lower bound on EBSA and EGR arises from a
minimization over gz and gy.
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Left: Lower bounds on the BSA and the GR, as obtained from Eq. (16)
according to Lemma 3. Data from [5] with N = 590 atoms. The dotted
lines show the maximum amount of entanglement that could be explained
by detection cross-talk [5]. Right: single-shot absorption images of the
atomic densities for the two internal degrees of freedom, with an example
of regions A and B.
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