B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Enhancing Page Object
Maintainability in Modern
Automated Software Testing Life
Cycles

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering and Internet Computing

eingereicht von

Christoph Hafner, BSc.
Matrikelnummer 01326088

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuer: Thomas Grechenig

Wien, 08.07.2020

Unterschrift Verfasser Unterschrift Betreuer

Technische Universitat Wien
Karlsplatz 13 | 1040 Wien | +43-1-58801-0 | www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Enhancing Page Object
Maintainability in Modern
Automated Software Testing Life
Cycles

Master’s Thesis
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering and Internet Computing
by

Christoph Hafner, BSc.
Registration Number 01326088

elaborated at the

Institute of Information Systems Engineering
Research Group for Industrial Software

to the Faculty of Informatics

at TU Wien

Advisor: Thomas Grechenig

Vienna, July 8, 2020

Technische Universitat Wien, Forschungsgruppe INSO
A-1040 Wien Wiedner Hauptstr. 76/2/2 = Tel. +43-1-587 21 97 » www.inso.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Statement by Author

Christoph Hafner, BSc.
Wiedner Hauptstralle 73 /2 /12, 1040 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit — einschlieBlich
Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet im Wortlaut oder dem
Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich ge-
macht habe.

I hereby declare that I am the sole author of this thesis, that I have completely indicated all sources
and help used, and that all parts of this work — including tables, maps and figures — if taken from
other works or from the internet, whether copied literally or by sense, have been labelled including
a citation of the source.

(Place, Date) (Signature of Author)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

Acknowledgements

I would like to thank everyone who was involved in this thesis and made it possible. This especially
includes Markus for reviewing the content and providing scientific answers on every question in
almost no time and Matthias for proofreading my thesis and pointing out the same mistakes over
and over again. Furthermore, great appreciation goes to all of my friends, especially my girlfriend
Andrea, for motivating me throughout the whole process of writing this thesis and never allowing
me to quit it. Lastly, I would like to thank my family, without their help neither this thesis nor my
study would have been possible.

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Kurzfassung

Das Testen von Software nimmt einen entscheidenden Teil des Software-Entwicklungsprozesses
ein. Abhingig von der Art der geschriebenen Software werden verschiedene Testtechniken ange-
wandt, um die Software bestmoglich zu testen. Das Testen von Benutzeroberflachen, als Teil von
Systemtests, kann entweder automatisch oder manuell erfolgen. Wihrend der manuelle Ansatz
die Moglichkeit bietet, schnell auf Anderungen in der Benutzeroberfliiche zu reagieren, erlaubt es
der automatische Ansatz, die Benutzeroberflache in verschiedenen Umfeldern ohne viel manuelle
Arbeitsleistung zu testen. Um eine wartbare Testumgebung im automatischen Ansatz zu erhalten,
wird das Page Object-Entwurfsmuster verwendet, welches eine Abstraktionsschicht zwischen dem
Test und dem getesteten System formt. Da die Identifizierung von Web-Elementen jedoch sehr sta-
tisch ist und bereits durch kleine Anderungen in der Benutzeroberfliiche falsch oder ungiiltig sein
kann, miissen Page Objects wihrend des Entwicklungsprozesses oft verifiziert und gegebenenfalls
adaptiert werden, was in sich wiederholenden Aufgaben resultiert. Trotz verschiedener bestehen-
der Programme, welche dieses Problem zu 16sen versuchen, existiert keine Losung, welche beste-
hende Page Objects wiederverwenden und die Verifizierung dieser automatisch durchfiihren kann.
Basierend auf bestehenden Losungen und sogenannten "Best Practices" der Software-Entwicklung
werden in dieser Masterarbeit Anforderungen an ein Programm definiert, welches Tester in der
Evaluierung und Adaptierung von Page Objects unterstiitzt und wiederkehrende Aufgaben redu-
ziert. Um diese Anforderungen im Zuge einer Expertenevaluierung zu verifizieren und zusitzlich
zu verbessern, wurde ein Prototyp entwickelt, welcher auf diesen Anforderungen aufbaut. Das
Ergebnis dieser Evaluierung ist, dass, obwohl der Prototyp - aufgrund von nicht unterstiitzten Pro-
grammiersprachen oder Page Objekt Struktur - nicht fiir jeden Experten verwendbar ist, die An-
forderungen bestitigt und akzeptiert wurden und grofes Potential in einem Programm mit diesen
gesehen wurde, besonders fiir Anfanger im Bereich des Testens von Software. Eine Adaptierung
des Prototyps fiir weitere Programmiersprachen sowie eine bessere Integration in das Projekt wer-
den in dieser Masterarbeit als zukiinftige Schritte in diesem Themenbereich vorgeschlagen.

SchllUsselworter

Software testen, Benutzeroberfldchen Tests, Page Object Entwurfsmuster, Expertenevaluierung

il

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

Abstract

Software testing has taken a crucial part in the software development life cycle in recent years.
Depending on the type of software written, different approaches are used to achieve satisfying
results. User interface tests, which are executed as a system test — i.e. testing the whole system at
once —, can be achieved in either an automated or manual approach. While the manual approach
allows for easy adaption to changes in the user interface, the automatic approach allows for easily
testing the user interface in different environments regularly without the need for much manpower.
In order to achieve a maintainable approach on automated tests, the page object design pattern is
used, which provides an abstraction layer between the test and the system under test. However, as
identification methods for web elements are very static and can be wrong or invalid even after small
changes on the user interface, page objects need to be verified and potentially adapted often during
the development life cycle, requiring a lot of repeating and time-consuming tasks doing so. While
there are tools available which try to solve this problem, no tool allows for reusing existing page
objects and verify their validity automatically. Based on existing state-of-the-art approaches and
using best practices in software development, this thesis proposes requirements for a tool which
supports the tester in the evaluation and adaption of page objects and tries to reduce the amount of
repeating tasks. In order to verify the defined requirements and to refine them, a prototype taking
the requirements into account is developed and used for an expert evaluation. The result of this
evaluation is that, while the prototype is not ready to support every expert in their daily work — due
to differences in programming languages or page object styles used —, they accept all the defined
requirements and see a great potential in such a tool, especially for new or young software testers.
An adaption of the prototype for further programming languages and a deeper integration into the
project are future work tasks proposed in this thesis.

Keywords

software testing, user interface testing, page object pattern, expert evaluation

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

1 Introduction

1.1 Problemdescription
1.2 Aimofwork.
1.3 Methodological approach
1.4 Structure of thethesis
2 Fundamentals
2.1 Softwaretesting
2.1.1 Relevance of software testing
2.1.2 Definition e
213 Testlevels. e
214 Testtypes e e e e
2.1.5 Implementation approaches, .
2.1.6 Frameworks
2.2 Testautomation e e e
2.3 Userinterface testing e
2.3.1 Fundamentals of user interface testing
2.3.2 User interface element identification
233 Thepageobjectpattern
3 State of the Art
3.1 APOGEN e
3.1.1 APOGEN’SStePS . . . v v v v v e i e e e e e e e e e e e
3.1.2 Toolevaluation
32 PageModeller
3.3 Selenium Page Object Generator
3.4 SWET - Selenium WebDriver Elementor Toolkit
3.5 Furtherfindings L
3.5.1 WTF PageObject Utility Chrome Extension
3.5.2 PageObject-1I0
3.5.3 Selenium Code Generator

4 Motivation and requirements

4.1
4.2

Quality characteristics and their relevance for page objects
Requirements

5 Prototype concept

5.1

52

Prototype characteristics
5.1.1 Applicationtype
Expected usage behavior and mock-ups
521 Toolbar
522 Projectarea e
5.23 Pageobjectareao

EENNOS I S

AN

11
12
15
16
19
20
20
21
24

28
28
28
30
30
31
32
33
33
33
33

34
34
35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6 Implementation

6.1 Implementationbasics
6.1.1 Chrome extensionbasics
6.1.2 WebExtension API Polyfill
6.1.3 Selenium
6.2 POGIto e
6.2.1 POGitoingeneral o
6.2.2 Codestructure ot e e
6.2.3 Selected implementations

7 Evaluation
7.1 Evaluation process
7.1.1 Goal. . .
7.1.2 Participant
7.1.3 Evaluation

characterization
ENVIFONMENL v v e e e e e

7.1.4 Methodology

7.1.5 Scenarios
7.2 Threats to validity
7.3 Evaluation results

7.3.1 Results of the pre-demonstration questionnaire
7.3.2 Requirementrelevance
7.3.3 Feedback on the prototype and its functionality

8 Conclusion

8.1 Recap e
82 Futurework
8.2.1 Better source code integration
8.2.2 Wider range of programming languages
8.2.3 Method maintenance
8.2.4 Support for different page object formats
8.2.5 Mobilesupport
Bibliography
References e
Online References

A Appendix
A.1 Interview
A.2 Scenario-Outline

vi

44
44
44
47
48
49
49
51
53

60
60
60
60
60
61
65
70
71
71
72
73

76
76
77
77
77
77
77
78

79
79
81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

2.1
22
23
24

2.5
2.6
2.7
2.8
29
2.10

3.1

32

4.1

5.1
5.2
53

54

5.5

6.1

6.2

6.3
6.4

7.1
7.2
7.3
7.4

Error-Fault-Failure adapted from [60] 8
Test-process as shown in [72] 9
Four levels of software tests [32]o 13
Visualization of a usual testing approach (left) and a model-based testing approach
(right) e 15
Sequencediagram of running a JUnit test with Selenium 19
The test automation pyramid as described in [16] 20
Break-Even point of manual and automatic software testing as shown in [57] 21
The DOM tree displayed as graph 22
Page objects inrelationtotestscripts 24
Web page (left) and its corresponding source code (right) 25
High-level overview of APOGEN’s approach for web page object creation as shown
in[73] . 29
Screenshot of Selenium Page Object Generator 32
Overview of the requirements’ origin 37
Basic userinterface parts 39
Mock-up of the toolbar on top of the application 40
Mock-up of the project-related view on the left of the application with an opened
drop-down menu for further actions oL 41
Mock-up of the page object view allowing modification and verification with an opened
drop-down menu for further actions L oL 42
The full user interface as planned 43

Screenshot of a web page in normal state (left) and during the highlighting of an

element in the top right corner (right) oL L. 49
Screenshot of POGito after verification of the paths, resulting in three valid and one

invalid variables 52
Page object in POGito before theexport 56
Screenshot of POGito (left) and the browser (right) during adding a new variable . . 57
Screenshot of the bugstore L 61
Scenarios and the defined requirements they address 70
Relevance for the given feature between 1 (not relevant) and 4 (very relevant) 73
The mean value of the answers given by the experts on the defined question from 1

(most negative option) to 4 (most positive option) when asked about POGito 74

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

List of Tables

Project size and typical error density [48]
2.2 Side-by-side comparison of different syntax [87]

2.1

23

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

qny a8pajmoud| INoA

Saylolqie

viil

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Listings

2.1 Example JUnit testclass (simplified) 17
2.2 The DOM tree serialized astext 22
2.3 Examplepageobject e 26
2.4 Example JUnit 5 test using page objects 27
6.1 Excerpt of POGito’s manifestfile 45
6.2 Sample background script method [24]o 46
6.3 Sample messaging between extension and content script [49] 46
6.4 Usage of content scripts as shownin [17] 47
6.5 Sample messaging between content script and extension [84] 48
6.6 Sample code of the highlighting of an element as used in POGito 50
6.7 Package structure of POGito (notcomplete) 53
6.8 Sample code of the export function as used in POGito 54
6.9 Handlebars template used for Javaexport 55
6.10 Exported page objectof POGito 56
6.11 Sample code of the select process foranew varibale 58
6.12 Excerp of the TargetSelector (in targetSelector.js) 59

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq

qny a8pajmoud| INoA

Saylolqie

X1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

Chapter 1. Introduction

1 Introduction

This chapter introduces the master thesis by giving an overview of problems that could be en-
countered when using the page object pattern and how these problems could be approached. Fur-
thermore, the methodological approach is presented, based on which this thesis tries to solve the
problems. Finally, an overview of the chapters in this thesis is given.

1.1 Problem description

In modern-day software development, testing the software is a crucial part in the development life
cycle. Due to the size and complexity of applications, testing is mostly done in an automated fash-
ion using frameworks and tools supporting the activity. Depending on the type of software written,
different approaches are used to achieve satisfying results. For example, backend components can
be tested on a low level (i.e. methods). User interfaces are often tested by simulating the user’s
behavior either by capture and replay or by defining steps programmatically.

Independent of the chosen development process, software is changed frequently, especially during
the development phase. When following the Scrum process, a de-facto standard in agile software
development for applications [26], the application gets changed in most cases at least bi-weekly,
resulting in the need of adaptions of existing tests and writing new ones for newly implemented
features. While software tests on a low level are implemented calling the methods directly, high
level tests focusing on interactions with the user interface often have to deal with a very volatile
component. Depending on the chosen approach for accessing elements on the screen, even the
smallest change can result in a failure of one or more tests. If the test is using the coordinates of an
element, these coordinates can easily be off when the element gets shifted, for example, if a pre-
decessor label is added. Another way for accessing the elements is by using the DOM tree which
is further explained in chapter 2. When working with this approach the element is accessed via its
path on the DOM tree, which again can easily be shifted, for example, if the element gets wrapped
into another element. As before, the test then fails even though the element is present. Properly
creating and maintaining user interface tests, therefore, requires a lot of resources. However, as
these tests can also be seen as system tests (explained more deeply in chapter 2) the relevance of
these tests is also high and therefore not neglectable.

As the number of software tests in a test suite can get very high on large-scale applications, dif-
ferent testing principals can be used to reduce the work needed for adaptions of the tests. One
principal for such volatile environments are model-based tests, where an abstraction layer is built
between the test and the system under test. This abstraction layer then can be adapted to the new
environment without the need of adaptions on the tests. When testing user interfaces, the page
object pattern is often used for implementing model-based tests on user interfaces in various ap-
plications like native ones, as well as together with Selenium and their WebDriver-API [69] for
simulating the user’s behavior in a web browser. By doing so, page objects are expected to pro-
vide a maintainable approach on writing tests for web applications. Another benefit of them is that
they are mostly written in the same programming language as the tests [44] and provide access to
the page’s elements in the DOM tree. Identifying the page’s elements uniquely, however, is often
difficult to achieve or even impossible and dynamic approaches reach their limits doing so. There-
fore, static approaches are often chosen instead. Static approaches allow satisfactory results on
static pages, but can also result in false positives or failure due to the volatility of the DOM tree in

Enhancing Page Object Maintainability 1/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 1. Introduction 1.2. Aim of work

more dynamic environments. Even small changes on the user interface can result in a completely
unusable page object.

Along with adaptions of tests validating the application’s code, page objects have to be maintained
after each development cycle as well. Besides writing new page objects for newly created pages,
existing ones need to be validated and manually updated in case of changes. Even though several
tools exist which try to tackle the problem, none of them are capable of actually maintaining the
page object. When using these tools, page objects either require a lot of manual action by the user
in each iteration or produce a lot of boilerplate or dead code. As this code is in most cases also
maintained and tracked in version control systems like Git, the history also gets easily polluted by
this unnecessary code, resulting in harder traceability of changes.

1.2 Aim of work

The aim of this work is to improve the creation and maintenance process of page objects in the
software testing life cycle by providing a tool-supported, semi-automated approach. The main
benefit of this approach, in contrast to existing ones, is the reusability of existing page objects
throughout the life cycle by providing import and export capabilities. Furthermore, the user has
visual support to spot invalid or moved variables of a page object easily along with support to add
and modify variables on the page object. In addition, a prototype is implemented, which is used
for the evaluation of the suggested approach.

The mentioned evaluation of the approach is conducted by experts in this field, using expert in-
terviews. Besides an assessment of the defined requirements, the interviews shall also provide
insights regarding further problems software testers face when maintaining page objects.

In order to achieve the aim of this work, the following research questions shall be answered:

e RQ1: What are existing solutions for page object generation and how do they support
the developer?

This question shall be answered by conducting a literature and state of the art research
of available solutions in this research field. By doing so, the benefits and drawbacks of
available solutions shall be found in order to define requirements for a system enhancing
them. This research question will be answered in chapter 3, which focuses on the state of
the art of page object generation.

¢ RQ2: What are the main requirements and a suitable design for a system that creates
and maintains page objects in a semi-automated way?

The focus of this research question is to define requirements on a system improving the
creation and maintenance process of page objects. Furthermore, a prototype is designed
taking the requirements into account. For the requirements as well as for the design, best
practices of already available solutions shall be taken into account and enhanced by general
best practices for supporting the maintainability. This research question will be answered in
chapter 4, focusing on the requirements analysis and chapter 5, focusing on the concept of
the prototype.

Enhancing Page Object Maintainability 2/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 1. Introduction 1.3. Methodological approach

o RQ3: Can the defined requirements enhance the current situation for software testers
and what are the benefits and drawbacks of the proposed approach in productive en-
vironments?

Based on the developed prototype, the defined requirements are appraised using an expert
evaluation. This research question shall be answered based on the results of the interviews
with the experts. Furthermore, shortcomings and directions for future work on the require-
ments and prototype shall be received from the answers. The discussion and outcome of
this research question can be found in chapter 7 which discusses the results of the expert
evaluation.

Along with the research questions which shall be answered in this thesis, the following hypothesis
is set and shall be answered after the expert evaluation:

The developed prototype, which is based on the defined requirements for a
tool-supported semi-automated approach for page object maintenance, improves the
testing process of volatile web applications by reducing the work needed for
maintaining the model objects of the tests. By doing so, automated regression tests
can be performed more efficiently and less error-prone as opposed to manual
maintenance.

1.3 Methodological approach

This section describes the chosen methodological approach for writing this thesis. The following
steps are executed in the order mentioned to follow a scientific methodology:

Literature and state of the art analysis

In the first step, a literature research was conducted in order to find existing solutions for the prob-
lem. As one publication was already known, the snowballing method using forward and backward
snowballing as described in [42] was initially used for finding additional scientific literature. As
this showed that research on page object maintenance is not very broad, the research technique
switched to a general keyword-based search. Based on the results of this research, additional tools
could also be found. The combined results of all research show that a variety of tools exists, but
many of them are deprecated or have not been maintained for years. Furthermore, none of the
found tools follow a maintainability approach for their page object generation.

Requirement analysis

With the information gathered during the research and from available solutions, requirements
for introducing a maintainability approach to the field of automatic page object generation were
defined. These requirements were based either on functionality provided by existing tools or based
on best practices for areas no tool provides functionality in. In addition to functional requirements,
non-functional requirements were also defined.

Design & Conception

Using the defined requirements, a concept for a prototype was developed. Based on that, experts
in the field shall evaluate the requirements for their meaningfulness.

Enhancing Page Object Maintainability 3/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 1. Introduction 1.4. Structure of the thesis

Implementation

Based on the concept defined in the previous step, a prototype was implemented. This prototype
was developed based on a commonly known Capture & Replay tool called Selenium IDE. Fur-
thermore, the prototype was called "POGito" — using the first letters of Page Object Generator
followed by the ending -ito stemming from the popular testing tool mockito — to better refer to
it in this thesis and during the interviews. The developed prototype tries to solve the previously
defined problems which experts have to deal with.

Evaluation

In order to answer the research questions and hypothesis defined previously and to evaluate if
the defined requirements really address the experts’ daily problems, an expert evaluation was
conducted. For this evaluation, an expert interview was chosen as an approach to gain the experts’
opinions using both quantitative and qualitative questions in the questionnaire. This mix allows
for gathering data about the thoughts of the experts but also allows for gathering statistical data
across all experts. Before the interview was conducted, a demonstration of the main use cases
using the developed prototype was done, giving them an overview of capabilities a tool with the
defined requirements can have. The given demonstration was intentionally not done by the experts
themselves but rather by the interviewer, as the questionnaire shall only be answered based on the
experts’ thoughts of the functionality rather than the usability of the prototype.

1.4 Structure of the thesis

This thesis describes the development and evaluation process of a prototype application, solving
the problems described above. In order to understand the underlying chapters, chapter 2 gives an
introduction to software testing in general, automatic software testing as well as page objects and
how they are used in the testing process.

Based on the literature research conducted, the following chapter 3 gives an overview of the results
found. In this overview, besides a description, the expected advantages and drawbacks of the
solutions are discussed.

Following the literature review, a requirement analysis is done in chapter 4. The expected outcome
of this are requirements for solving the defined problem of maintainability in the page object
generation. These requirements are on one hand based on already available solutions with their
advantages and drawbacks and on the other hand specific requirements for solving the described
problem.

Based on the defined requirements, chapter 5 will then present the concept for a prototype im-
plementing them. Besides a general discussion on the implementation approach, mock-ups will
be presented and the expected usage behavior described, based on which a prototype shall be
implemented.

Chapter 6 then presents the developed prototype, discusses the technology stack and includes
source code snippets for better comprehensibility. Furthermore, screenshots of the tool will be
provided to visualize the experience. Additionally, background information on the development
process and problems occurred are described and limitations of the prototype known at this stage
presented.

In order to verify the defined requirements, an expert evaluation is conducted. The process and the
results of this evaluation are presented in chapter 7, along with questionnaires used for the expert
interviews. Besides the direct results of the questionnaires, the newly acquired knowledge, as well
as new limitations found through the evaluation, are also presented and discussed.

Enhancing Page Object Maintainability 4789

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

Chapter 1. Introduction 1.4. Structure of the thesis

Chapter 8 concludes the thesis by giving a recapitulation of the process and results. Additionally,
future work on both the research part and the prototype are presented.

Enhancing Page Object Maintainability 5/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 2. Fundamentals

2 Fundamentals

In this chapter, the fundamentals of this master thesis are explained. Therefore, section 2.1 fo-
cuses on software testing in general, its definition and relevance in the development life cycle.
Furthermore, different testing levels, test types and implementation approaches are described in
this section along with two frameworks relevant for this thesis. Section 2.2 then focuses on the au-
tomation of software testing and describes why testing software should be automated. The chapter
ends in section 2.3 by describing and discussing the fundamentals of user interface testing along
with how elements in the user interface can be identified in automated tests. Additionally, the page
object pattern is described in this section, giving an introduction on what the pattern is used for
and how it can be used for testing web applications.

2.1 Software testing

This section focuses on the fundamentals of software testing. Software testing has long been seen
as a duty demanding high resources but has evolved to be a fixed part of the development life cycle
and is also seen as an expert task [29] [91]. Therefore, establishing good testing skills should begin
as early as possible when developing programming skills [15].

2.1.1 Relevance of software testing

Software has taken a crucial part in modern life and can be found almost everywhere today. While
software can enhance the experience of a product, it can also lead to immense problems if behaving
unexpectedly. Errors in software may result in a completely unusable state of the application,
sensitive data being lost or stolen, or potentially even death of people. One of the most discussed
software problems in recent history is the story of Boeing. Even though it also included human
fault, the software was responsible for the death of 346 people and a standstill of all Boeing 737-
Max for several months [52].

With even more upcoming products, which depend heavily on software, like self-driving cars,
software is aimed to contain as few errors as possible not to harm anyone by taking wrong de-
cisions based on wrongly developed software. On the other hand, as pointed out by McConnell
[48], when software is getting bigger the number of potential software errors also rises as shown
in table 2.1.

] Project size (in lines of code) \ Typical Error Density ‘

Smaller than 2K 0-25 errors per thousand lines of code (KLOC)
2K-16K 0-40 errors per KLOC

16K-64K 0.5-50 errors per KLOC

64K-512K 2-70 errors per KLOC

512K or more 4-100 errors per KLOC

Table 2.1: Project size and typical error density [48]

According to statistics by Doughty-White, an average modern car in 2015 had about 100 million
lines of code [20]. Considering that a program with 512 thousand lines of code already contains
2.048-51.200 errors, an average modern car would contain more than 600.000 software errors. Of

Enhancing Page Object Maintainability 6/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

course, this can only be seen as a rough calculation based on the mentioned numbers and without
any quality assurance. Furthermore, not every error is leading to a problem, however it shows that
testing software is crucial to reduce the number of errors and the chances to harm either the car
itself or any person on the inside or outside.

Another sector of software testing becoming more and more important is security testing. Ac-
cording to Potter and McGraw "standard software testing literature is concerned only with what
happens when software fails, regardless of intention" [56]. In contrast to testing the correct execu-
tion of code, testing software security "is about making software behave correctly in the presence
of a malicious attack" [56]. This also includes preventing leakage or modification of data saved
on the system by the user or other information leakages like source code [82]. Even model-based
testing (described in 2.1.4), the testing technique this thesis focuses on, can be conducted on the
security side, as discussed in [22].

Software testing does not only include testing parts of a program that are executed in the back-
ground (e.g. the software’s code) but also access points to these parts for an external user. This
user could either be a program again or a human on a terminal or a graphical user interface. User
interface tests ensure that interactions by a third party are handled as expected and the user is able
to interact with the application as they should. This includes testing for the presence of elements
on the user interface, that they are displayed correctly and the application is controllable with
respect to usability.

In general, software testing is intended to gain confidence about the quality of the developed
application in every aspect of its existence, like behavior, usability and security. As already shown
in table 2.1, it is impossible to write software without any error, but not every error will lead to a
problem for the user and most of the errors remain hidden for a long time as their impact is very
small [89]. However, the goal of software testing is to find as many of these problems as possible
to reduce the risk of a problem occurring in a productive environment either noticed or unnoticed
by the developer, but with respect to resources like money, manpower or time.

2.1.2 Definition

Besides the relevance software testing has gained in the software development process, it has also
been defined in literature. When conducting a literature research, several different definitions can
be found, but all have in common that software testing belongs to the field of quality assurance
[60] [55] [32]. The Institute of Electrical and Electronics Engineer (IEEE) defines in their standard
glossary of software engineering the process of software testing as follows [34]:

Software testing is a formal process carried out by a specialized testing team in
which a software unit, several integrated software units or an entire software package
are examined by running the programs on a computer. All the associated tests are
performed according to approved test procedures on approved test cases.

In this definition, IEEE requires a formal process, approved test procedures and test cases for
software testing. In order to comply to this definition, testing has to be planned and executed
over the whole process of developing the application, but in a formal way. Grechenig, however,
suggests a combination of formal and informal methods for finding bugs [29]. While formal
methods use a defined setting and execution, informal methods are executed based on intuition of
the tester [29].

The International Software Testing Qualifications Board (ISTQB), an international software test-
ing certification board, provides a standardized qualification for software testers which also defines
software testing but in a different way to the previous one [9]:

Enhancing Page Object Maintainability 7/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

Missing
Typo knowledge Performance

Prob Security-Issues
Carelessness robjems

Communication

Crash
Process .
Failure |:,‘ > Fault Failure
Missing Wrong
time results

Crash due to

Missing Null-Check NullPointerException unhandled
NullPointerException

Figure 2.1: Error-Fault-Failure adapted from [60]

Software testing is a way to assess the quality of the software and to reduce the risk
of software failure in operation.

In contrast to the definition of the IEEE, the ISTQB includes software failures in their definition.
A software failure is the end result of a mistake made by a developer. Figure 2.1 shows how a
mistake (error) can lead to a failure and extends the figure from [60] by an example. It should also
be noted that according to Yadav, Yadav, and Verma not every defect will necessarily result in a
failure as erroneous code might not be accessed by the user [89].

While the previous two definitions were a more formal way to describe software testing, Myers
and Sandler define software testing short and precisely [51]:

The objective of testing is to prove that there are bugs [..]

As already discussed in table 2.1, every software contains bugs. The definition from Myers and
Sandler confirms this. This standpoint and the fact that testing everything is impossible — resulting
in finding a chance to find a bug everywhere — are two of the seven testing principals of the ISTQB,
which should provide the tester with so-called best practices in software testing [28] [72]:

1. Testing shows the presence of defects, not their absence
When testing software, defects can be found, and the number of defects can be reduced. But
even in case no test detects a defect anymore, it cannot be seen as proof of total correctness.

2. Exhaustive testing is impossible
Testing the whole application, meaning all combinations and inputs, is mostly not achiev-
able. Setting and focusing on priorities and using "best practice" is sufficient to achieve a
good confidence about the program.

3. Early testing saves time and money
Testing the software early and regularly results in finding and fixing errors as soon as they
arise. Fixing errors in later stages or even in production often results in high costs. Tech-
niques like Test-Drive-Development (TDD) have become popular in recent years, where
tests are written before the corresponding code is written [37].

4. Defects cluster together
"A small number of modules usually contain most of the defects discovered during pre-
release testing or are responsible for the most operational failures" [28]. Therefore, it is
often good to do a risk analysis in order to detect clusters of defects more easily [72].

Enhancing Page Object Maintainability 8/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Chapter 2. Fundamentals 2.1. Software testing

Test Planning

Test Analysis

Test Design

Test Implementation

Test Control

Test Execution

Test Closure

Figure 2.2: Test-process as shown in [72]

5. Beware of the pesticide paradox
Testing the same code by using the same tests multiple times does not result in finding any
more defects. Test cases should be maintained, adapted and recreated in order to find new
defects regularly.

6. Testing is context depended
Different software needs to be tested differently. Therefore, the testing process needs to be
adapted to fit the specific project.

7. Absence-of-errors is a fallacy
Even though the system is well tested, this does not mean that there are no errors, or the
system is perfect. Well tested software can still be unusable due to missing usability or not
meeting the customer’s needs [72].

The last one of the testing principles — number 7 — focuses on a common mistake. Software testing
is often seen as only writing and executing test scripts. However, tests should not only cover if the
program is running without failures, but also if the product is usable and built right according to the
requirements of the customer. Testing the program against the requirements is called verification,
while testing if the product is built as expected by the customer is called validation [55]. Both tasks
have to be planned in a planning phase of the software test and analyzed afterwards. This shows
that testing is rather a process than single activity which is wrapped around the whole software
development life cycle. Without common sets of test activities forming a test process, software
testing might not achieve the objectives according to ISTQB [9]. Spillner and Linz also mention
that the testing process needs to be adapted to the project’s needs, considering test levels and types
as well as available resources [72]. The ISTQB fundamental test process, depicted in figure 2.2,
shows the different activities of the process and how they belong together. It should be noted that
the activities can also take place concurrently or even iteratively in certain development processes
[59].

The following list briefly describes the objective of each part shown in figure 2.2 according to [72],
[59] and [9]:

Enhancing Page Object Maintainability 9/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

o Test Planning

The test planning phase is the first one, started together with the project. It defines a test
concept containing a definition of the test strategy, test objects and test procedures as well as
an effort estimation and role allocations. Additionally, a test plan is developed, containing
all test tasks with prioritization and due dates. During the development phase, the mentioned
artifacts are monitored and, if needed, adapted.

Test Control

Like the previous stage, this stage happens over the whole development life cycle. The test
control is responsible for starting, monitoring and reporting tasks defined in the test plan
and taking steps in case of problems occurring. These activities also include the measuring
of the quality of the tasks based on developed metrics. If some defined end criteria cannot
be met, additional tests have to be developed and executed. Furthermore, the progress using
the defined metrics is reported to stakeholders regularly.

Test Analysis

This phase is used to analyze all the information available for the future project. Therefore,
documents like specifications and use case descriptions, design and implementation infor-
mation like diagrams, or already available code is analyzed to determine test objectives.
Furthermore, features of the application are identified to define tests for them. When cre-
ating the tests, a bidirectional traceability shall be available such that one can trace the test
back to its requirements and vice-versa.

Test Design

The test design phase uses the knowledge of the previous stage to define concrete high-level
test cases and other test ware. While the previous stage was about "what to test?", this stage
defines "how to test?". Artifacts of this stage are designed and prioritized test cases as well
as required data for them and a design of the test environment with required infrastructure
and tools.

Test Implementation

This phase often takes place simultaneously to the test design stage or is combined with it
into one. Most of the previous tasks are finalized and verified in this stage, for example
the test ware - the underlying support structure of the tests. In this stage, test procedures
are developed and prioritized and automated test scripts are written. ISTQB [9] describes
the question to be answered in this stage as "do we now have everything in place to run the
tests?"

Test Execution

In this stage, the defined tests are executed either manually or automatically, depending on
the implementations of the tests defined in the previous steps. Each execution and its results
are documented including a unique ID, versions, tools and test ware to trace each test. In
case of a failure, found defects are reported back to developers and, after changes, old tests
repeated or adapted. This might also include confirmation testing or regression testing as
part of the whole test life cycle.

Test Closure

This stage concludes the testing activities and archives the data gathered in the testing life
cycle. This happens at regular intervals, e.g. at a release, when a project milestone is reached
or in an agile project after an iteration. This stage also includes a retrospective in order to
improve the test process by analyzing the previous test activities.

Enhancing Page Object Maintainability 10/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

2.1.3 Test levels

Following the above-defined process for testing, the implementation and execution activities can
be further broken down into different test levels. These levels do not only define which part of
the software is being tested but also their temporal relation to each other [32]. Furthermore, the
effort required for the implementation, maintenance and execution increases in each test level.
According to Hoffmann each test case can be defined in one of the following four test levels [32]:

e Component or Unit Test

Component tests are used to test the smallest elements of a program. As this kind of test
evaluates the methods and other isolateable sections of a program independently of each
other, component tests are often referred to as Unit tests - testing a single unit of software.
External components like other classes are mocked for these tests to provide expected re-
sponses. Component tests then evaluate if the method is behaving as expected by calling the
method with predefined parameters (if there are any) and comparing the outcome of it with
the expected outcome. There is a wide range of results which can be evaluated depending
on the functionality a method provides, like the return value of the method or the number of
invocations of other methods.

This kind of software test is done by developers at the stage of writing the component.
Depending on their developing approach, these tests are either written before (Test-Driven-
Development [37]) or after the component is finished. Due to their size, these tests — or at
least a subset of them — can be executed regularly on their own device.

e Integration Test
When several components are finished and each has been tested on its own, those com-
ponents are connected. An Integration Test then makes sure that connected components
still work together as expected. Hoffmann [32] describes the following three strategies for
integration:

— Big-Bang-Integration
In this integration strategy, all components are integrated at once. While the advantage
of this strategy is that all connections are available at once and no component has to
be simulated (mocked), it also has the downside of harder localization of problems
occurring in the connections. Another downside is that all components need to be
finished in order to integrate them.

— Structural Integration
The structural integration focuses on the structural dependencies between multiple
components. If there are, for example, 4 components A->B->C->D depending on
each other in this way, they are integrated in a defined order. This order is chosen out
of 4 possible structural strategies:

* Bottom-Up-Integration
This integration starts with the lowest components which do not have a connection
to any other component. In the defined case component D would be the first
component to be implemented and integrated, followed by C, B and finally A.

* Top-Down-Integration
This strategy is the opposite of the Bottom-Up-Integration. Component A would
be the first to be integrated, followed by B, C and finally D. The advantage of
this approach is that for the end user the base is already available while different
components are added throughout the life cycle. A downside of this approach is
that missing components have to be simulated until they are integrated.

Enhancing Page Object Maintainability 11/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

* Outside-In-Integration

The Outside-In-Integration approach combines Bottom-Up- and Top-Down-Integration.

In this case, A and D would be integrated first, followed by B and C. This again
has the advantage that the end-user has a first prototype available while the de-
veloper does not have to simulate the lowest components - usually containing the
most logic, as they are providing the data.
* Inside-Out-Integration

This approach is again the opposite of the Outside-In-Integration. It is the least
used approach of the mentioned ones, because it does not provide any advantage
not provided by the others but brings the downsides of Bottom-Up- and Top-
Down-Integration with it.

— Function-Oriented Integration
Using this integration strategy, functional criteria are used for integrating several com-
ponents with each other. Mentioned strategies in this category are schedule-driven
(components which come first, are integrated first), risk-driven (those components with
the highest risk of interfering in the connection are integrated first), test-driven (based
on a given test-case, required components are integrated first) and use case driven
(components belonging to a common use case are integrated first).

e System Test
On the system test level, the whole system is used and tested as one, throughout all of its
layers. In this test level, it is checked that the system works as expected and corresponds to
the specification. The test environment should resemble the productive environment in order
to verify that the software works as expected. However, finding the cause of the problem or
debug the program at this stage gets increasingly difficult, which requires the components
to be tested well before.

Furthermore, it should be noted that the test perspective of this level is from the users’
standpoint, interacting through a provided interface with the application. Therefore, user
interface tests — on which the focus of this thesis lies — are executed on this test level [72]

e Acceptance Test
This test level is the final stage before the system is brought into production. In this stage the
software is already tested by the customer and is executed on the customer’s environment
with real data provided. This level is also relevant for legal reasons regarding expectations
and specifications of the customer. In contrast to system tests, the goal here is not to find
problems of the implementation, but, according to ISTQB, to verify if the system is accepted
for production.

Figure 2.3 shows the four test levels in their temporal and structural relation.

2.1.4 Testtypes

Testing software can be achieved using different approaches, referred to as test types. Many test
plans often consist of a mix of different types in order to find problems one approach alone might
not have found. Test types in general can be divided into two main categories: Software can
be tested either statically (using code reviews, code walkthroughs, code analysis tools, etc.) or
dynamically, by executing an instance or parts of a program and running different tests on it [45].
As this thesis focuses on user interface testing, a dynamic way of testing the application, only
dynamic test approaches relevant for user interface testing will be described. In the following, the
four test types that are most relevant for this thesis are discussed, while the main focus lies on the
last one - model-based testing.

Enhancing Page Object Maintainability 12/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

System- Acceptance-Test

Level

Integration-

Integration-Tests
Level 9

Module-

Level Component-Tests

Development-Phase

Figure 2.3: Four levels of software tests [32]

Manual testing

As the name suggests, this is the least automated approach and executed by a tester manually.
When executing manual tests, the tester might use a predefined plan and step definitions for ex-
ecuting the tests, to have reproducible results, or just interact with the application exploratively.
While this kind of test can be executed mostly without a setup needed, the downside is that it is a
time-consuming approach, as one or more tester are needed for execution. Another downside of
this approach is that repetitive executions of a test run require the same amount of resources each
time and can get very boring over time. [77]

Script-based testing

When using the script-based testing approach, test scripts are developed which execute the applica-
tion and verify its behavior. Most script-based tests are executed on lower levels of the application,
e.g. the methods, but there are also script based tests for user interfaces like Espresso [1] for testing
Android user interfaces. The main benefit of this approach is that tests can run automatically and
fast either on local devices or in a build pipeline as already described before. Drawbacks of this
approach are the prior knowledge required by a tester to write tests, and the resources which are
required for creating and maintaining test scripts. Using this approach, the test scripts also need
to be adapted once requirements or implementation details change. As the number of test scripts
rises with the size of the application, their maintenance can be very time consuming and require
a lot of resources. Therefore, good abstraction of the tests is the key to reduce maintenance costs.
[77]

Capture-Replay testing

The capture-replay approach is a combination of the before mentioned manual testing and script-
based testing approaches. In the first phase, the tester interacts with the application as they would
do in a manual test. However, their behavior is recorded by a tool and later translated and exported
to test scripts [72]. These test scripts can be executed automatically as mentioned before in script-
based testing, or simply be interpreted by the same program used for recording it for execution
as well. While this approach has the benefit of not requiring the user to have any knowledge
in a programming language, there are several downsides of this approach: This approach again
requires a lot of resources, as tests need to be re-recorded or adapted as soon as small changes
in the user interface are made. Another downside can be the quality of the test scripts as they
heavily depend on the export of the tool. This might result in code duplication or higher resource
requirements due to bad test cases. [77]

Enhancing Page Object Maintainability 13/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

Model-based testing

Using the model-based testing approach, models are used to assist the testing process by generating
test artifacts automatically. Marciniak [47] is cited in [59] describing model-based testing as
follows:

Model-Based Testing (MBT) is [...] an approach that bases common testing tasks
such as test case generation and test result evaluation on a model of the application
under test.

By shifting the logic and data to a model, the test cases which are executed on the application
can easily be changed by changing parameters in the model. This allows the tester to easily adapt
the test cases even in volatile applications, saving a lot of resources and a significant speedup in
testing.

RoBner describes in [59] three different approaches on how an application can be tested using
model-based testing:

e System-Model-driven
Using the System-model-driven approach, the system and its behavior are modeled using
a modeling language like UML. Based on that system model, tests can be generated and
exported. As a main benefit here, the single model can be seen, which can be used for code
and test generation. However, this approach comes with the downside that if the model
contains an error, the tests will not find any error in the code as they are based on the same
definition.

e Test-Model-driven

When using this approach, modeling languages like UML 2.0 Testing Profile (U2TP) or Test
Control Notation (TTCN-3) are used for modeling test cases or test environments. Based on
the modeled environments tests are generated automatically. According to [7] UML models
can even be seen as software program from a tester’s perspective. One advantage of U2TP,
for example, is the reusability of already generated UML system models. Both modeling
languages mentioned provide a graphical representation of the modeled test. Another way
to transform models to actual test cases are from formal models like Finite State Machines,
which generation process to JUnit tests is discussed in [30].

e System- and Test-Model-driven
This approach is a combination of both previously mentioned ones. Depending on the pref-
erence, the focus can be laid either on the system side, the testing side or equally on both.
As a benefit of this approach, the two independent models can be seen. If one contains an
error, the chances are high that the other one detects it. However, this can also be seen as a
drawback, as two models have to be maintained, meaning higher maintenance costs [59].

Furthermore RoBner defines three model categories used in model-based testing:

e Environment models
It represents the environment the system shall exist and work in. It models characteristics of
the environment like its behavior or limitations and can also include its physical conditions
[59].

Enhancing Page Object Maintainability 14/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

e System models
They describe the modeled system, the components of it and how they interact with each
other. According to [59], system models are mostly used on a lower level like component
or integration tests and can also be used to generate tests. They further provide an overview
of the inner structures of the system [59].

o Test models

This category is mentioned to be the most important one in model-based testing in [59]
where the authors further explain that a test model "describes the system characteristics
as well as generates or creates tests or their properties”" [59]. Test models can further be
broken down into test-base model and test-specification model. While the focus of the test-
specification model lies on the tests, the test-base model’s focus lies on relevant parts of the
test base like structure and behavior. Zoffi mentions that the test-base model provides an
abstraction layer between the tests and the system under test (SUT) allowing to easily adapt
the model after changes in the SUT as also shown in figure 2.4 [91].

System under

Test Model Test scripts

System under

Test Test scripts

System under

Test Model Test scripts

Figure 2.4: Visualization of a usual testing approach (left) and a model-based testing approach
(right)

2.1.5 Implementation approaches

When implementing and executing tests, the application which shall be tested - often referred to
as system under test (SUT) - can be seen in different ways. This subsection shortly describes three
different viewpoints on an application during the development and execution period of tests.

e Black-Box tests

Black-Box tests are created and executed without knowing the characteristics of the soft-
ware’s internal behavior. Tests in this category have to be generated based on the specifica-
tion, as no other characteristics are known to the tester [32]. In order to reduce the number
of required tests, Hoffmann mentions that using for example equivalence partitioning or
boundary value analysis allows for narrowing down the possible inputs. It should also be
noted that user interface tests are mostly executed as black-box tests, as the user interfaces
hides the internal functions of a system.

o White-Box tests
Using White-Box testing, the internal behavior is known to the tester. Tests in this category
are mostly done by the developer itself, knowing the code and structure or by a tester who
made himself familiar with it. This allows for testing with the knowledge of the character-
istics in mind. The authors of the mentioned publication differentiate between control-flow
testing or data-flow testing in this category. [32]

Enhancing Page Object Maintainability 15/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

e Gray-Box tests
This test category is a combination of Black-Box and White-Box tests. Without a formal
process specified, the tester gains an overview of the software code and writes its Black-
Box tests based on this knowledge. In contrast to White-Box tests, the tests still focus on
the characteristics of the specification and the outside and do not take concrete code paths
into account. [32]

2.1.6 Frameworks

In the following, two frameworks used for implementing tests with page objects are described.
The frameworks have been chosen as they are relevant for this thesis and most widely used in
practice. There are of course several other frameworks and systems which provide equivalent or
more specific functionality.

JUnit

The JUnit Framework [39] is very popular and known for developing automated tests in Java and
seen as a de facto standard for it [46]. As described by Sneha and Malle, the "JUnit framework
eliminated the gap with developers and testers", as the developer can now test their own implemen-
tation against the specification [71]. The currently available version is JUnit 5, which introduced
a new architecture, programming and extension model in respect to JUnit 4 [23]. It belongs to the
xUnit-family, which provides similar frameworks for different languages [80].

Writing JUnit test classes is similar to the way a general Java class is written. The main difference
between them is the way the user has to annotate the class and its methods. Annotations can
be added using the @-character before the definition and allow for passing information to the
compiler or during the runtime as described in the Java Documentation [2]. The following list
describes some of the most used annotations [39]:

o @Test
This Annotation tells JUnit that the method annotated is a test case.

o @BeforeEach/@AfterEach
Methods annotated with one of the given annotations are executed before/after each test case
is called. This can, for example, be used to reset some values before/after each test case

o @BeforeAll/@AfterAll
Using one of these annotations on methods results in the execution of the method once
before/after the tests are executed. In such methods, one might initialize or destroy objects

e @Disabled
Test cases which should not be executed due to various reasons like wrong assertions can be
annotated with @Disabled to ignore them.

e @Tag
When having hundreds of Unit tests, not every test is relevant for specific situations. Using
@Tag allows setting tags to test cases and later only execute tests which are relevant.

Test classes are generally structured starting with a variable declaration, followed by annotated
methods which should be executed before or after the tests, as described above. Following these
setup methods, all test methods follow. While the name of the test methods is not relevant for the
execution itself, a good name allows for easily identifing the goal of the test. However, different
naming schemes exist and are often adapted to the project’s needs.

Enhancing Page Object Maintainability 16/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

To better demonstrate the usage of a JUnit test, listing 2.1 shows a very basic JUnit 5 test, which
evaluates if the addition is correctly executed. To demonstrate @BeforeAll/@AfterAll the two
methods setUp () and tearDown () are used to set a specific value to the variables.

1 import org.junit.Test;

2 import org.junit.jupiter.api.AfterAll;
3 import org.junit.jupiter.api.BeforeAll;
4

5 import static org.junit.Assert.assertEquals;
6

7 public class AdditionTest {

8

9 private Integer numberl;

10 private Integer number2;

11

12 @BeforeAll

13 public void setUp () {

14 numberl = 3;

15 number?2 = 2;

16 }

17

18 @AfterAll

19 public void tearDown () {

20 numberl = null;

21 number?2 = null;

22 }

23

24 @Test

25 public void testAddition() {

26 assertEquals (5, numberl + number?2);
27 }

28 }

Listing 2.1: Example JUnit testclass (simplified)

One feature not yet discussed but a crucial part in JUnit test can be found in line 26 of the listing
2.1: assertEquals (). The method assertEquals () is one of several assertion methods used
to evaluate the outcome of the call. Each test method consists of three parts: the setup phase in
which the environment is set to the expected one (GIVEN), the execution phase where the method
gets called (WHEN) and finally the evaluation phase in which the expected outcome is compared
with the real outcome (THEN). With the help of assertions these evaluations can be done in a very
simple and efficient way, without the need of a high amount of logic in the test case. There are, for
example, methods evaluating if a value is true, false or null. The following list gives an overview
of the most relevant assertions which are used with JUnit [40]:

o assertTrue(): Assert that the given parameter is the boolean true

assertFalse(): Assert that the given parameter is the boolean false

assertNull(): Assert that the given parameter is null

assertEquals(): Assert that both parameters are equal

assertArrayEquals(): Assert that both supplied arrays are equal

Enhancing Page Object Maintainability 17/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.1. Software testing

o assertNotEquals(): Same as assertEquals() but both parameters must not be equal

o assertAll(): Assert that all executables do not throw an exception

JUnit 5 also provides assertions for evaluating if a method throws an exception during execution
in order to also test negative use cases. Besides the mentioned JUnit assertion-methods, different
third party libraries providing assertions like Assert] and Hamcrest exist, which are recommended
by JUnit as well, depending on the required use case.

Besides the mentioned features, JUnit provides a lot of other functionality as well. For example the
method fail() can be used to force a fail of a test case. However, due to the size of the framework
and the rapid development, only the basics can been mentioned in this thesis.

It should also be noted that while JUnit is seen as a de facto standard for testing in Java [46],
several other unit-testing frameworks like TestNG [75] exist, which are not relevant for this thesis.

Selenium

The previously mentioned JUnit framework cannot only be used for testing on a component level
of a program, but also on a User Interface (UI) one. A popular framework for testing web applica-
tions with JUnit is the Selenium Framework [61]. The company defines it as "a suite of tools for
automating web browsers". Selenium consists of different projects like the Selenium Webdriver
and the Selenium IDE which all share one common approach: "examing the HTML source re-
turned from a web server" [27]. Further Graham and Fewster mention that, while the appearance
of a web page still has to be evaluated manually in their case, tests using Selenium would find an
HTML element on the web page and compare the expected test with the actual value [27].

While there are also other frameworks by or based on Selenium, like the Selenium Grid [63]
which allows scaling the tests developed with the Selenium WebDriver to multiple machines and
browsers and therefore reduce the execution time, or Appium [5], which allows testing mobile
application user interfaces with Selenium, the following will describe the Selenium WebDriver
and Selenium IDE, as they are relevant for this thesis.

The Selenium WebDriver is the key part of the Selenium suite as it is responsible for controlling
the web browser as a user would. When referring to the Selenium WebDriver, two components
are meant: one being the language bindings and one being the implementation for the individual
browsers [61]. The language bindings are provided in different programming languages like Java,
Python or C# and allow the developer to create native callbacks to the web browser. The imple-
mentation for the individual web browser — also called Driver — is developed and maintained by
different parties to execute the language bindings defined by Selenium. The Driver is responsible
for calling the WebDriver API of the individual browser, which allows for accessing the web page
and executing actions on it. Due to differences of this WebDriver API in different browsers, indi-
vidual implementations are required. Currently, all major browsers like Chrome, Firefox, Safari
or Internet Explorer are supported. Figure 2.5 shows a sequence diagram displaying how a JUnit
test is executed using Selenium.

The SeleniumIDE is a browser extension, currently for Firefox and Chrome [64]. There is, how-
ever, also a standalone application in development and a command-line tool available for executing
the tests. The Selenium IDE provides a graphical way to create and execute test cases or export
them to different languages and frameworks like Java and JUnit, using the integrated exporter. The
tool also supports logical operations like if/else to develop test cases without even knowing a spe-
cific programming language. This tool can be categorized to be a capture & replay tool, as a user
can record their behavior on a web page. For more advanced usage it is also possible to define the

Enhancing Page Object Maintainability 18/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.2. Test automation

steps manually and to use one of many available commands like element-click or element-exists to
define them.

Selenium Selenium

JUnit Test (Language Binding) (Driver)

Browser

Start test — Calls native | . | '
. > method] orwards request '
>» —— Calls WebDriver

to Driver 1
API]

Executes request
Returns response

A

\4

Returns response <

Returns response

& L
<

Verifies
response

Figure 2.5: Sequencediagram of running a JUnit test with Selenium

2.2 Test automation

As already described before, testing software can take a long time depending on the project and
might require a considerable amount of resources. This section focuses on automation of tests and
how it can help to achieve better software quality.

The relevance of test automation has been widely discussed in several publications. Dustin,
Rashka, and Paul [21] describe automated testing as follows: "The management and performance
of test activities, to include the development and execution of test scripts so as to verify test re-
quirements, using an automated test tool", providing a "significant payback" [21]. In contrast to
manual execution of test cases, tests are executed either automatically on the developer’s device
or in a pipeline on a Continuous Integration (CI) system. It should also be noted that due to the
number of tests, especially if run on the developer’s device, often only a subset is chosen to be
executed. In most cases, pipelines of CI systems are triggered as soon as new commits are pushed
to a version control system (VCS), validating the newly written code.

As a general rule, the test pyramid, as described in [16] and figure 2.6, is used to visualize the
different layers of automated testing and the proportion of test cases in it. The higher the layer,
the fewer tests should be written to get a maintainable test suite. It should also be noted that the
complexity and size of the tests increases with each layer due to the broader integration tested.
The lower layers, on one hand, have the benefit to run faster, but on the other hand, only test more
isolated parts of the system in contrast to higher layers. As illustrated in figure 2.6, most tests
shall be written as unit tests. The next layer above contains the integration tests followed by the
last layer, the User Interface (UI) tests from which only a few shall exist. The higher the layer
can be found in the pyramid, the less frequent the tests are executed. While unit tests are executed
multiple times on the developers machine as well as every time the developer pushes their code to
the server, Ul tests are executed in a periodic task, for example every day at midnight, or before
each release. Graham and Fewster also include manual tests in a cloud above the pyramid, showing
that manual tests should be included as well, depending on the project’s context, but in no ratio to
the other automated layers.

Enhancing Page Object Maintainability 19/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.3. User interface testing

Ul Tests

Integration Tests
(Service Layer)

Unit Tests / Component Tests

Figure 2.6: The test automation pyramid as described in [16]

Even though test automation aims to reduce the costs of testing, it is not always the case, as Ramler
and Wolfmaier describe in [57]. In their publication, the authors provide several calculations on
when test automation saves resources like manpower and money, taking into account that the
initial setup of automated tests take longer than manual ones. Figure 2.7 shows the calculations
from this publication which describes the break-even point of manual and automated testing. Vi,
are the initial costs of manual testing, V, are the initial costs of automatic testing. As one can
see, the costs of automatic testing are not rising as much as the costs of manual testing do. After
n executions of the tests, the break-even point is reached, meaning that costs are saved in the
following executions. The authors of [57] describe the number of test executions needed to get
to the break-even point as varying between 2 and 20. In [21], Dustin, Rashka, and Paul mention
a case study where a reduction of 75% has been achieved through automated testing, with a base
of 1750 test executions. Especially the test execution task has had significant speedup of 95%
from 466 hours of manual testing to 23 hours of automated testing. Commonly used Continuous
Integration systems for testing software automatically are Jenkins [38], GitLab CI [25] or Atlassian
Bamboo [8]. Besides the systems executing the tests, different frameworks can be used to define
and evaluate them.

2.3 User interface testing

In this section, the process of user interface testing is explained by giving an overview of the
fundamentals of user interface testing, their benefits and downsides and the goal. Additionally,
different approaches to identifying user interface elements in tests are described. This section
ends by describing the page object pattern, a pattern used for model-based testing on which this
thesis focuses on.

2.3.1 Fundamentals of user interface testing

As already mentioned before, user interface testing is done in the system test phase. As the user
interface is the most visible part of the program for the user it is expected to work well in every en-
vironment the user is executing it, hence testing it is indispensable. Testing it frequently includes
tasks like verifying if elements are present, if elements are shown depending on the interaction

Enhancing Page Object Maintainability 20/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.3. User interface testing

of the user or if error messages are shown in case something in the background failed. This can
be either tested again manually by having testers interacting with the application or automatically
using various frameworks. While the manual approach cannot be neglected, an automated ap-
proach heavily supports the tester by allowing to test different screen sizes and systems. This can
be dependent on the type of the application, either different smartphones or different browsers and
operating systems for web applications.

While testing the user interface provides good feedback on its quality, there are several downsides
to these kinds of tests as well. One of the most relevant problems with user interface testing, which
is the base of this thesis’s problem, are the volatility issues encountered when doing user interface
tests. While user interfaces are very volatile and can change in each release of an application,
many of the available solutions for identifying an element require a more static approach. Several
options for identifying elements in automatic tests are described in the following subsection. Even
in case of small changes in the user interface, like a successor label in front of an input field, many
of the access options would either return the wrong element or no element at all, causing some or
all of the tests to fail.

A
Costs of
testing
automated
testing (A,)
P
V, A
o
— >
Test runs

Figure 2.7: Break-Even point of manual and automatic software testing as shown in [57]

2.3.2 User interface element identification

There are different ways how the user interface elements can be accessed by automated tests.
As the main focus on this thesis lies on web applications, only identification methods for web
applications will be discussed. Before talking about different identification approaches in detail,
one common part of all of them will be described: the Document Object Model (DOM) tree.

As a representation of web applications in the browser, the Document Object Model (DOM) is
used. The DOM is a W3C standard and described as follows in their specification: "DOM defines a
platform-neutral model for events and node trees" [78]. The DOM is often referred to as the DOM
tree, because the DOM is structured like a tree as shown in figure 2.8. One can see that the root
element acts as a parent for each of its children. Each child can then also act as a parent and have
further children. The tree shown is not only a DOM tree but rather an HTML DOM tree, which
uses HTML standard tags like <html>, <body> or <a> to describe HTML web pages. Each of
them has a special meaning and is expected to include different child elements or attributes. Based
on the tree shown in figure 2.8, listing 2.2 shows the textual representation of the HTML file before

Enhancing Page Object Maintainability 21/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.3. User interface testing

it was converted into the HTML DOM tree. In this listing the reader can see that each element
defines its child between its scope which starts with <+xname > and ends with </+name +>. While
children can be added between those braces, attributes are added directly in the starting declaration
of the element as shown in line 9, where an id is set to the paragraph element <p>.

Document

Element: <htmI>

Element: <body>

<head>

Y ¢
<title> Element: <h1> [Element: <p>]—)[Attribute: id]
Y

4
[Content: Hello World!] [Content: Hello World!] [Content: Welcome to HTMIJ

Figure 2.8: The DOM tree displayed as graph

Access via ID

The easiest way to access elements in the DOM tree is by using their ID. Using this approach is
safe in case of static web pages where the ID is defined manually, but can also be volatile in case
of frequent changes of the IDs — e.g. if they are autogenerated. In this case, the ID might vary
with every change. There are also further ways similar to accessing with IDs by providing the
class-name or a tag.

1
2
3 <head>

4 <title>Hello World!</title>
5 </head>

6

7 <body>

8 <hl>Hello World!'!'</hl>

9 <p id="textview">Welcome to html</p>
10 </body>

11

12 </html>

Listing 2.2: The DOM tree serialized as text

XPath

XPath, which is the abbreviation for XML Path Language, is one of the most widely used ways to
access elements when defining page objects and is a W3 standard for accessing parts of XML files
[86]. As HTML is akin to XML, the DOM tree of web pages can easily be accessed using XPath.
XML files consist of nodes or elements, which are nested in each other and can contain additional
information like attributes [33]. "In XPath, there are seven kinds of nodes: element, attribute, text,
namespace, processing-instruction, comment, and document nodes" [79].

Enhancing Page Object Maintainability 22/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 2. Fundamentals 2.3. User interface testing

There are several approaches how elements can be accessed by XPath, but they can be split into
two categories: Using the absolute path and using the relative path. While the first one, using the
absolute path, accesses the element from the root (the topmost node of the XML), the second one,
the relative path, uses characteristics of the element.

Absolute paths start with a single slash (/) followed by a sequence of nodes. This approach has
the downside that it is very volatile. As soon as one element is wrapped in another element after
specifying the path, this XPath is invalid — or at least does not find the right element anymore.
/html[1]/body[1]1/div[1]/p[1] is an example for a XPath expression using absolute path.

In contrast to absolute paths, the relative paths use characteristics of the element. Relative paths
start with a double slash (//) followed by a selector. It is also possible to start a path from a
relatively accessed element, e.g. to access the second element in a list. The starting path in case of
a double slash can now start anywhere in the DOM tree, at the position of the first node specified
after the double slash. Table 2.2 gives some examples and explanations for relative paths. The list
of possible selectors and their combinations is too long to be included in this thesis, but there are
several cheat sheets on the internet, for example [88].

Access via CSS selector

Another approach to access the DOM tree is by using Cascading Style Sheet (CSS) selectors.
This approach is similar to the XPath approach mentioned before in many ways, but uses slightly
different commands for accessing the DOM tree. CSS selectors are mainly used to style elements
on a web page but can also be used to identify elements when executing tests.

The list of selectors and their combinations is again long and therefore not fully mentioned here.
There are, however, several lists like [18] available on the internet, which give the reader a better
overview. There are 5 basic selectors which are the most notable ones, that select based on the
type, class, id or attribute along with the wildcard selector, which selects everything. Combining
these 5 selectors already allows for receiving a wide range of elements.

In contrast to XPath, CSS selectors are seen to be more robust towards changes to the web applica-
tion and also faster in matching elements due to the optimization of the browsers to quickly match
CSS files to the web page for styling. Furthermore, CSS selectors are in most cases shorter than
XPaths and also easier to read - especially for developers as they are used to style web pages with
CSS selectors. However, CSS selectors only allow accessing child elements, while with XPath
also the parent can be accessed from the current element.

For better understandability, the aforementioned table 2.2 does not only list and describe relative
XPaths but also shows the way CSS selectors would access the same element.

| Goal XPath CSS Selector
All elements Ir* *
All p (paragraph) elements /Ip p
All child elements /Ipl* p>*
Element by ID /¥ @id="fo0’] #foo
Element by class Difficult to obtain .foo
Element with attribute /*] @title] *[title]
First child of all p /Ip/*10] p > *:first-child
All p with an a (hyperlink) child | //p[a] Not possible
Next element /Ip/following-sibling::*[0] | p + *

Table 2.2: Side-by-side comparison of different syntax [87]

Enhancing Page Object Maintainability 23/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.3. User interface testing

2.3.3 The page object pattern

The page object pattern is a widely used pattern in model-based testing to gain a better maintain-
ability in user interface tests. It belongs to the in section 2.1.4 described category of test-base
models. When testing using the page object pattern, the web page is modeled as an object in the
same programming language as used to write test cases [44]. Using best practices, each subpage
of the web application is represented as an object and connected with other page objects like the
web application. By doing so, "page objects form a layer of abstraction to separate test code from
actual elements of web pages under test" [90]. The main benefit of doing so is that only the page
object has to be modified when the web page has changed. The tests defined against this page
object do not change. Figure 2.9 shows how the page object is connected to the test scripts and the
different web pages.

<html> <htmlI> <html>

S

Page Object Page Object Page Object

o~

Test Script Test Script

Figure 2.9: Page objects in relation to test scripts

As described in section 2.3.2, there are several ways how elements can be accessed in the DOM
tree. In order to build a robust and maintainable page object, it is in most cases more efficient to
mix different ways in one page object. For example, one variable might access the DOM tree via
a CSS selector while another one uses a XPath. Another relevant best practice for page objects
is the already discussed combination of absolute and relative XPaths to receive a robust element
identification.

Furthermore, page objects should contain as little logic as possible in order to not influence test
scripts in case of updates. Methods of page objects should, following best practices, only reflect
the behavior of the web page modeled. This means that methods accessing a paragraph only act
as a getter for the text, methods setting data to a text field only set data to that one text field and
methods representing clicks on a button should only click the button. In the last case, however, the
next page should be returned as a page object as well, allowing the test script to navigate through
the web application in the same way a user would.

In the remaining section the page object pattern will be described more deeply using code samples.
All code samples are written in Java 8 and use JUnit 5 and Selenium WebDriver in version 3.141.x.
The web page used for modeling the page object is shown in figure 2.10 on the left, while the
corresponding source code can be seen on the right. For simplicity, this page object should be a
simple login form only containing a header text, a text field and a button.

Before discussing the test script which shall evaluate this page, the page object is modeled. There-
fore, listing 2.3 shows the code of the page object for the demo page. For demonstration purposes
the page object uses three different selectors: one XPath, one CSS selector and one via the id.
It should also be noted that, while the page object is modeled using annotations for defining the

Enhancing Page Object Maintainability 24789

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 2. Fundamentals 2.3. User interface testing

<html>

<head>
<title>Demo-Login</title>

</head>

Welcome! <body>

<h1l>Welcome'!</h1>
<form>
Password: <label for="password">Password:</label>
<input id="password" type="text" />
Login </form>
<button id="login"
onclick="window. location="profile.html'">
Login
</button>
</body>
</html>

Figure 2.10: Web page (left) and its corresponding source code (right)

variables, there is also an inline option available, allowing for accessing the element in the method
directly which, again, does not only work with XPaths but also with CSS, id or other described
options for accessing elements in the DOM tree. However, the approach using annotation is seen
as best-practice, having an overview of all variables used in the page object at the beginning of the
file, while the inline option is commonly used for more specific or edge cases like dynamic paths.

The type of the variables in the presented listing 2.3 is a WebElement object, provided by Se-
lenium WebDrivers. In the Selenium documentation it is described as follows: "Represents an
HTML element. Generally, all interesting operations to do with interacting with a page will be
performed through this interface" [66]. While there are other options as well, e.g. defining a
List of WebElements or using the extension of WebElement (e.g. Select), for simplicity
only WebElement is used in the demo. The WebElement provides methods which can be ex-
ecuted on the given element, for example getText () provides a way to access the text of the
element, as shown in line 23 in the listing 2.3. Further relevant methods on a WebElement are
the sendKeys () method for sending actions like text to the WebElement, as shown in the listing
on line 27, or the click () method for executing a click on the element, as shown in line 31 in
the listing. The return type of the method, as already described, always represents the outcome
of the page. For example, the method getHeaderText () returns a string, while the method
clickLogin () returns the profile page object (not modeled in this example), as the browser nav-
igates to this page after the click. Before the methods described, the page object also defines a
constructor for setting up the object with relevant variables. This constructor is called by the Page-
Factory, a simple factory class for initializing page objects in Selenium, either at the start of a test
or when returned by a method (as for example in method c1ickOnLogin ()). Furthermore, this
constructor also calls driver.get () in order to navigate to the page in the web browser. This is
needed as we expect this page object as the first page in the test, further pages are then navigated
through interactions on the web page.

Finally, a sample test case for evaluating the application will be demonstrated in listing 2.4. The
expected goal of the test is to access the page, insert some data and navigate to the profile page.
The setUp () method, which is executed once before the tests, sets up the Selenium WebDriver
by initializing them and defining a timeout. These WebDriver are then closed in the tearDown ()
method after the test is executed. The test starts in line 28, where the demoPageObject variable is
initialized via the PageFactory described before. To verify that the correct page is shown, on line
32 the displayed header text is compared with the expected one. In line 33 the password is entered
via the page objects method enterPassword (). Finally, the login button is clicked by calling
the c1ickOnLogin () method in line 34. As described before, this returns the page object of the
resulting page after the click, which can be used further to execute methods on it.

Enhancing Page Object Maintainability 25/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

Chapter 2. Fundamentals

2.3. User interface testing

o 0 AN AR W N =

W W W W W NN NN NN NDNDN DN = e e e e e e e e
AW N = O C 0 0N R WN =S O RN R WN =S

35
36

import
import
import
import

public

org.openga

org.opendga.
.selenium.support.FindBy;
selenium.support.PageFactory;

org.opendga

org.openga.

.selenium.WebDriver;

selenium.WebElement;

class DemoPageObject {

protected WebDriver driver;

@FindBy (xpath = "//hl")
private WebElement header;

@FindBy (css = "input#password")
private WebElement passwordField;

@FindBy (id = "enterButton")
private WebElement enterButton;

public DemoPageObject (WebDriver driver)

this.driver

driver;

driver.get ("https://peso.inso.tuwien.ac.at/demopage.html") ;

public String getHeaderText () {
return header.getText ();

public void enterPassword(String password)
passwordField.sendKeys (password) ;

public ProfilePageObject clickOnLogin () {
enterButton.click () ;
return PageFactory.initElements (driver,
— ProfilePageObject.class);

}

{

Listing 2.3: Example page object

Enhancing Page Object Maintainability

26/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

Chapter 2. Fundamentals 2.3. User interface testing

o 0 AN AR W N =

[\ I i e
S o X NN ERWN =D

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39 }

import org.junit. jupiter.api.AfterAll;

import org.junit.jupiter.api.BeforelAll;

import org.junit.jupiter.api.Test;

import org.openga.selenium.WebDriver;

import org.openga.selenium.support.PageFactory;

import java.util.concurrent.TimeUnit;
import static org.junit.jupiter.api.Assertions.assertEquals;

public class DemoTest {

private static WebDriver webDriver;
private DemoPageObject demoPageObiject;
private ProfilePageObject profilePageObject;

@BeforeAll

public static void setUp() {
webDriver = SeleniumWebDriver.getDriver();
webDriver.manage () .timeouts () .implicitlyWait (10,

< TimeUnit .SECONDS) ;

@AfterAll
static void tearDown () {
webDriver.close();

@Test
public void test_enterPassword_Succeeds () {
demoPageObject = PageFactory.initElements (webDriver,
— DemoPageObject.class);
assertEquals ("Welcome!", demoPageObject.getHeaderText ());

demoPageObject.enterPassword ("superSecretPassword") ;
profilePageObject = demoPageObject.clickOnLogin();

//Do further tasks on the profilePageObject

Listing 2.4: Example JUnit 5 test using page objects

Enhancing Page Object Maintainability 27/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 3. State of the Art

3 State of the Art

Before defining the requirements on a system addressing the current situation encountered by
testers, a literature research was conducted along with a general research of available open-source
solutions. This chapter focuses on the results found in the research and describes selected im-
plementations more deeply. Each section in this chapter is dedicated to one implementation —
describing its general purpose, advantages and disadvantages as well as its general ability to solve
the defined problem.

It should be noted that when searching the internet and especially GitHub, many implementations
can be found which are out of support for several years and no longer relevant for this thesis. The
last section, section 3.5, will list some of them without giving a deeper insight into their usage.

3.1 APOGEN

APOGEN [73], which stands for Automatic Page Object Generator, was developed over a period
of several years and research was done by the project team over the whole period, resulting in mul-
tiple publications with an ever enhanced prototype. This discussion will take the latest publication
into account. As the source code of the prototype is well described and available on GitHub [4],
this section will not only focus on general benefits and drawbacks besides the general description,
but also on the implementation part. The main purpose of APOGEN is to generate page objects of
web applications including all subpages. By crawling the whole web application, APOGEN can
generate page objects not only containing the WebElements for Selenium, but also links between
different pages as well as getter and setter for input fields or text displayed on the page. The tool
can be downloaded from their GitHub [4] page and can be set up by a technical endued person
following their README file. The output files generated by the prototype can be exported to Java
page objects.

The team behind APOGEN provides further information on their website [3]. When using the
tool, it can simply be started using Maven and configured using the provided Settings.java file
where the URL, the expected algorithm and further settings can be set. The application then runs
by executing the main method of the Java program. Depending on the settings, the whole process
is executed, resulting in Java page objects. In case any step needs to be repeated or adapted, the
user simply adapts the settings file and starts the process again.

3.1.1 APOGEN's steps

In the following subsection, the different steps taken by APOGEN to create page objects are
described in detail. A high-level overview of the tools approach and steps taken can be seen in
figure 3.1.

Crawler

In the first step the tool crawls the whole application beginning at a defined starting point and
converts the DOM tree to a state-based model which is saved in a JSON file for the next steps. The
goal of this step is to get a high-level overview of the application. Besides the graph displaying the
connections and pages, this JSON file also contains information about the URL, a list of "click-

Enhancing Page Object Maintainability 28/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 3. State of the Art 3.1. APOGEN

Web Application Graph Graph'’
[few modifications required]

v
Cluster
Crawler » Clusterer .)
Visual Editor %
L 3
[clustering not satisfactory] ,5,
]
g.
wQ
State Object-based Model %
................................... - - 1
Page Objects for : reiC_ 8 v... 3
i Web Application : A =
P Code
L APn — Static Analyzer [«
15 S, : Generator
_— G
................................... 1 D8

m = full automatic module % = (possible) manual intervention

Figure 3.1: High-level overview of APOGEN’s approach for web page object creation as shown
in [73]

able" elements and other relevant information. As an implementation of the crawler, Crawljax
was chosen by the developers. The crawler’s default settings were used to decide when to stop the
crawling process. Furthermore, relevant input data can be provided such that the crawler could
also navigate to pages which, for instance, require a login.

Clusterer

When using the crawled data, the authors experienced two problems. First, duplicate pages are
contained in the result multiple times due to different dynamic states a page can have. The second
problem was the number of edges between the states, making the visualization of the graph tan-
gled. To overcome these problems, a clustering algorithm was implemented as a second stage. As
a result, page objects which could be combined, for instance, because they are the same page but
with minor differences, are clustered together. For clustering, two clustering algorithms had been
chosen: Hierarchical Agglomerative as of [41] and K-means++ of [6], with the first one beeing
the default approach of APOGEN as it was "empirically found to be more effective in producing
clusters of web pages close to those manually defined by a human tester" [74]. As a result, another
JSON file is created.

Cluster Visual Editor

In the third step in the APOGEN process, a cluster visual editor is used. This cluster visual editor
has the purpose to give a human feedback of the clusterer before, as it might result in wrong
clusterings. The visual editor is a web-based tool, which reads the JSON file from the previous
task and visualizes the clusterings to the user. Three possible outcomes are described by the
authors:

1. Clustering is unsatisfactory for the tester. In this case, the clusterer is run again with a
different algorithm or different number of clusters.

2. Clustering is satisfactory for the tester. In this case, the tester proceeds to the next step.

Enhancing Page Object Maintainability 29/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 3. State of the Art 3.2. Page Modeller

3. Clustering is satisfactory, but some changes are expected by the tester. In this case, the
visual editor provides capabilities to drag and drop elements and update the JSON file in
that way.

Static Analyzer

This process is mentioned to be divided into three parts: DOM diff calculation, FSM modification
and merged state object creation. In the first part, the clusters are analyzed and for each cluster a
"master" is chosen, representing the base of the page object along with its slaves as sub-elements
of the page. This is done by the Static Analyzer through calculating the differences between master
and slaves. In the second step, the slaves are combined with the master, taking into account links
between the elements of the cluster and to other clusters. This includes some modifications of the
edges, as edges might now either point to the element itself or to a different master. The third part
then creates a state object-based model of the web application, including a class name, variables
and transitions. This model is given to the final stage, the code generator.

Code Generator

The last stage of the APOGEN process is the code generator stage which creates the page objects
by conducting a model to text conversion. The JavaParser was used for generating the Java page
objects. Each previously mentioned merged master is transformed into one page object containing
all required Java class elements like package name, class name and imports along with WebEle-
ments including the locators for the element, transaction methods for each transaction between the
page objects, actions for data submitting forms and getter for string values on the page.

3.1.2 Tool evaluation

APOGEN approaches the page object generation very well by crawling the whole application and
generating all necessary variables and methods for the tester. As a benefit of this approach, the high
customization abilities can be seen which expect the program to work in different environments,
along with a very good approach for converting the web application to page objects. However,
the maintainability approach is not taken into account by APOGEN, as all page objects need to
be regenerated at each execution of the tool and existing code or changes are not considered.
As the names of variables and methods are also auto-generated, this also means that test cases
are required to adapt in certain cases. The biggest downside of this approach, which also stands
in contradiction to the expected behavior of a maintainable approach, is the regeneration of an
immense number of variables and methods which are not all required by the tester. As the tool is
not aware of the test cases and therefore not aware of the used variables and methods a lot of dead
code is regenerated on every execution of the tool which also needs to be maintained by the tester.
All the mentioned problems are in contradiction to the expected behavior of model-based testing
and a maintainable approach to it.

3.2 Page Modeller

The Page Modeller is a browser extension supporting major web browsers like Chromium-based
browsers, Firefox and Opera. The extensions code can be found on GitHub [53]. It is an actively
maintained tool in version 1.5.4 at the time of writing. As of this version, the tool supports code
generation for Java, C#, the Robot Framework and Puppeteer.

The tool is installed via the extension store of the browser and can then be used in the developer
console. It is opened next to the page which is expected to be modeled and the target language
selected. After that, elements can be added to the page object by clicking on the select button

Enhancing Page Object Maintainability 30/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 3. State of the Art 3.3. Selenium Page Object Generator

and clicking on an element on the webpage, which adds the element to the Page Modeller. In the
window of the Page Modeller, every added element can be changed regarding the name and chosen
locator. Furthermore, the user can show the selected element on the webpage. After all elements
have been selected, the user can export the code by copying the generated code to existing or new
page objects.

A big benefit of this tool is the easy-to-use approach, allowing everyone with a supported browser
to easily install the tool and generate WebElements for page objects automatically. The tool also
does not require the user to know about XPaths or any identification of WebElements as the user
can simply click on the element and gets it converted to a WebElement. As another benefit of
this selective approach the reduced number of variables can be seen, only including those really
required by the tester. However, this approach also has some downsides. Pages, for instance, need
to be modeled each time a page object needs to be generated — or at least those parts which should
be generated. Furthermore, the tool only provides the generated code segment in the browser,
which then needs to be copied by the user and pasted in the either newly generated or existing
page object file in the project. This again does not provide a lot of benefit in contrast to manually
finding the paths and entering them to the code manually, as most XPath support tools also allow
the user to simply select an element and get the correct path for it instantly. Additionally the
tool does not provide information on which paths are invalid or need to be adapted by the user.
While this approach allows for reusing existing page objects and only adapting required paths,
which enhances the maintainability aspect of page objects, a lot of manual interaction by the user
is required to do so.

3.3 Selenium Page Object Generator

When searching on the Chrome Web Store for extensions, the Selenium Page Object Generator
[67] can be found, which also has a GitHub page providing insides to the code [68]. It is marked
to be in a beta state currently, however, the extension did not get an update on the Chrome web
store or a commit on the repository since early 2018. The tool currently supports an export to Java,
C# and the Robot framework.

For generating a page object, the user navigates to the desired page in their browser and opens the
extension. After that, the target language can be chosen along with the page object name and an
optional destination object name representing a page object where the user gets redirected when
clicking on the page. The generated page object looks as expected, providing constructors, each
WebElement as a variable and convenience methods for each element, like method to execute a
click on WebElements representing links. Each method is provided with documentation.

A big advantage of the tool is the easy to use chrome extension which allows even non-developers
to create page objects easily. Another benefit of the tool is the multi-language support along with
the possibility to adapt the template of the exported page objects in the options. By doing so,
individual preferences can be taken into account when exporting the page object. A downside
of this approach is again that page objects need to be generated all at once, potentially requiring
adaptions of the methods every time generating the file. The provided files also contain each
element displayed on the page along with methods for them which can be a big boilerplate if not
needed by the tester. A big disadvantage for medium- and large-sized web applications is that in
order to generate page objects, each sub-page of the web application needs to be accessed manually
and the generate-task executed by a tester. This not only requires a lot of time to do so, but also
requires the exported file to be adapted to the projects needs. Furthermore, each generation of a
page object regenerates the whole file again. Therefore the generator is expected to be used only
for applications with a small number of pages. For bigger web applications the generation process

Enhancing Page Object Maintainability 31/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 3. State of the Art 3.4. SWET - Selenium WebDriver Elementor Toolkit

Target I

Settings M

Page Name: BugStore2

Destination
Page Name: BugStorelLogin

Share

Figure 3.2: Screenshot of Selenium Page Object Generator

time is reduced, but a considerable amount of additional time is required in order to adapt the page
objects to the projects needs.

3.4 SWET - Selenium WebDriver Elementor Toolkit

The Selenium WebDriver Elementor Toolkit, which can be found on GitHub [70], is a tool for
generating page objects. At the time of writing, the repository is actively maintained, with the last
commit only days before the time of writing. The tool is said to be running on all major platforms
like Windows, Mac or Linux. As a template engine Jtwig is used for generating Java page objects,
which is said to support PHP Twig as well [70].

To generate page objects, the user first launches a browser window from the tool and navigates to
the website which should be tested. Then, the user injects a search script to the opened web page
through the tool. After that, the user can simply click any element on the page while holding the
control button (CTRL) to add it to the page object. When doing so, the injected script is triggered
which allows the user to define a variable name and select the way the element should be accessed.
In the end, the code can be generated by clicking on the corresponding button in the tool, allowing
the user to copy the code to new or existing page objects.

Using this tool for page object maintenance provides the benefit that only variables are defined
which are required in the page object. Existing page objects are adapted by the user manually, leav-
ing tests and other dependencies working as well as only relevant parts of page objects changed.
On the other hand, each variable has to be reselected if a page object needs to be adapted or regen-
erated. Furthermore, as only parts of page objects are generated, no real page object generation is
done, leaving the user with as much or more work on maintaining page objects as done manually.

Enhancing Page Object Maintainability 32/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 3. State of the Art 3.5. Further findings

3.5 Further findings

During research, several other tools have been found in addition to the ones described above.
Three of them will be described shortly in this section. However, these tools are not seen to be
relevant when defining requirements, as they are either unmaintained for several years or can only
be used with a lot of additional effort.

3.5.1 WTF PageObject Utility Chrome Extension

Besides different tools usable in combination with Selenium, the Web Test Framework (WTF) in
their GitHub repository [85] also provides a Chrome extension which can be used to automatically
generate page objects. The extension must be installed manually through the developer options
of the chrome extensions instead of using the usual way of the Chrome store. Furthermore, the
project’s last commit was in November 2014 and the extension is not working with the current
versions of Chrome, resulting in an error when trying to execute page object generation.

3.5.2 PageObject-10

The page object generator from pageObject.io [54] can also generate page objects based on HTML
templates of Angular. However, the website only mentioned Angular 1 and 2 explicitly whereas
as of the time of writing version 9 of Angular is used in production, which might result in wrong
page objects. The last commit on GitHub for this project was in 2017. Furthermore, the user has
to manually copy and paste the code to their web page in order to generate a page objects’ code
which then again needs to be copied back to the project. This results in an immense workload even
for smaller projects. Lastly, Vue.js and React — two commonly used frameworks in development
— are not supported by the tool but mentioned to be available soon.

3.5.3 Selenium Code Generator

The Selenium Code Generator [62] can be used to generate page objects, methods and links auto-
matically. For generating the page objects, not the page itself is used but rather elements provided
in a configuration file. While this allows the user to maintain all XPaths in one place, it requires
manual interaction to get the XPaths and to find invalid ones, once the page object needs to be
updated. Furthermore, using this approach, the configuration file also needs to be maintained in
addition to the page objects.

Enhancing Page Object Maintainability 33/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 4. Motivation and requirements

4 Motivation and requirements

This chapter focuses on the requirements for an approach that enhances the maintenance of page
objects in the development life cycle. Before the requirements are defined, quality characteristics
like maintainability and traceability and their relevance for the testing life cycle are described in
section 4.1, along with a discussion of problems current implementations face in contrast to the
intended behavior. Based on this, section 4.2 will then define the requirements for an approach
enhancing the current situation. These requirements are defined based on features of existing tools
as well as best practices in order to enhance the current situation in the field of maintainability.

4.1 Quality characteristics and their relevance for page objects

Non-functional requirements are defined in software projects to increase quality aspects of the
software [43]. The ISO 9126 standard defines six quality characteristics as non-functional re-
quirements: functionality, reliability, usability, efficiency, maintainability and portability [36]. As
page objects need to be adapted once the user interface changes, maintainability can be seen as the
most relevant quality characteristic for them. The IEEE standard glossary of software engineering
terminology (610.12-1990) [34] defines the term maintainability as follows: "The ease with which
a software system or component can be modified to correct faults, improve performance or other
attributes, or adapt to a changed environment". Further characteristics belonging to maintainabil-
ity according to [34] are extendability - how easily "a system or component can be modified to
increase its [...] functional capacity" - and flexibility - how easily "a system or component can
be modified for use in applications or environments other than those for which it was specifically
designed". Wallerstorfer also mentions that "maintainability indicates how complicated it is to
modify the code to

e correct faults,
e improve quality attributes (e.g. performance),
e add functionality,

e and conform to changing requirements. " [81]

Due to the often and reappearing changes to the user interface, page objects need to be updated
very frequently - depending on the quantity of the changes. Hence a good maintainability and
extendability is required in the software testing process to reduce the resources required for it.

Besides quality characteristics focusing on the maintenance of the page objects, there is also the
non-functional requirement of tracability which is relevant in software testing, especially when
using page objects. Traceability is defined in the mentioned IEEE document as follows: "The de-
gree to which a relationship can be established between two or more products of the development
process, especially products having a predecessor-successor or master-subordinate relationship to
one another" [34]. When using page objects, traceability comes into effect when version control
systems (VCS), like Git, are used in development for them. They allow for easily tracing changes
made in the project on file-level in a very granular way. VCS allow for seeing which lines of code
have been changed, providing a reviewer an overview of changed paths and variables in case of

Enhancing Page Object Maintainability 34/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 4. Motivation and requirements 4.2. Requirements

page objects. However, good and understandable traceability is often not available due to unneces-
sary changes in the files, especially in case of automatically generated files. In this case the whole
file is marked as changed on each regeneration, rendering it useless for a reviewer.

Another non-functional requirement, which is mentioned in the requirements below, but not di-
rectly relevant for software testing, is usability. Even though not needed for page objects in
general, certain requirements also enhance the usability of the page object maintenance process,
therefore a definition should be mentioned here. Usability is described in [34] as follows "The
ease with which a user can learn to operate, prepare inputs for, and interpret outputs of a system
or component".

4.2 Requirements

In the following, requirements for an approach shall be defined, which ought to solve the problems
testers encounter when using page objects in context of maintaining them as described in chapter
1. Each requirement was either taken fully or partly from existing state of the art projects as de-
scribed in chapter 3 or newly defined based on best practices in software development or software
testing. For better understanding of each requirement, the order of the requirement list does not
reflect whether they are newly created, adapted or taken fully taken from existing projects. Each
requirement describes their origin and figure 4.1 in the end of this chapter summarizes them for a
better overview.

e R1: Reuse of existing page objects

As a key feature of maintainability, existing page objects shall be reused as much as possi-
ble. Reuse of existing page objects means that characteristics belonging to the object like
the package name, the imports, other classes or interfaces the object extends or methods
are preserved during the whole process and do not change afterwards. This prevents a lot
of manual interaction needed to bring the object back into the existing project and further
results in a better traceability of changes.

Reuse of page objects also includes importing and exporting in the desired programming
language. For doing so, functionality in parsing objects is needed as well as functionality for
writing objects in the chosen programming language. As the focus lies in the maintenance of
page objects, it is sufficient to export the page object in the same programming language as
it was imported. However, language-specific characteristics need to be taken into account,
like using the correct syntax in order to minimize the effort needed after replacing the old
page object in the project.

This requirement focuses on the maintainability and traceability of the page objects’ code

and is newly defined, as no tool found currently supports the import or export of page ob-
jects.

e R2: Maintaining only relevant page objects

In order to preserve a good overview of the git history and the changes of each commit,
only a selected subset of page objects shall be maintained and generated. Therefore, it
should be possible to select the desired page objects manually and check, and potentially,
update only the selected ones.

This requirement on the one hand enhances the usability for users, as they only have to deal
with a subset of page objects and further enhances the traceability, as only page objects with

Enhancing Page Object Maintainability 35/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 4. Motivation and requirements 4.2. Requirements

changes are added or modified in the VCS. This requirement implicitly exists in some tools,
which allow for copying and pasting the generated code to the file, hence only maintaining
page objects which really change. However, as non of the tools provide the functionality of
R1, the approach needs to take care of the requirement to only maintain a subset of page
objects.

R3: Overview of multiple page objects

When maintaining page objects, the user shall also be able to handle multiple page objects
at the same time. By doing so, the user benefits from a better overview on the maintained
page objects and further gets the opportunity to easily switch between them to think about
possible enhancements and rearrangements of variables. This also allows changes after one
page object has been exported and does not come with the overhead of starting over again
once proceeding to another one.

Current tools do not support this kind of overview. Discussed tools either do not provide
an overview at all or just for one page object at a time. Once the user proceeds to another
page object, one has to start all over again when the previous page objects needs additional
changes. Therefore this requirement was newly defined to better support the user with their
page object maintenance. The user benefits from a better usability when provided with this
kind of overview, which also allows for reduction of the time spent maintaining page objects.

R4: Maintaining only relevant variables

Similar to requirement R2 described before, an adaption of a page object shall only change
the code of the adapted variables. This subset includes those variables which are changed by
the user, preserving all unchanged variable data. For instance, if the user only changes the
path of the variable, the variable type and name should not be changed. In conjunction with
requirement R2, this means that a change on the page object only changes the necessary
parts of the code. This also allows external users to review the required code changes with-
out a lot of unnecessary code changes around them, enhancing the tracability of the changes
and hence a better traceable VCS history. Another benefit of maintaining only the relevant
variables is that no boilerplate or even dead code needs to be maintained by developers who
do not know which variables are really required by tests.

This functionality of the requirement can already be found in other implementations, which
allow maintaining only a subset of variables on the page. Similar to R2 this requirement
mainly focuses on the traceabilty aspect of page objects.

R5: DOM identification

The most important part of page objects are the access paths of the variables. A key fea-
ture for enhancing the maintenance of page objects therefore is their simple selection on the
DOM. In order to support the developer, it should be possible to automatically define these
paths after user interaction without requiring the user to define them manually. This shall
be achieved by simply clicking on the element for which the path shall be added to the vari-
able. Providing visual support for the selected element can be seen as a sub-requirement.
However, it should still be possible to manually adapt these paths if needed.

There are tools which already support this behavior described in chapter 3. As this approach
is seen to be the easiest way for detecting and adding the path to a variable, this requirement

Enhancing Page Object Maintainability 36/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 4. Motivation and requirements

4.2. Requirements

allows for reducing a considerable amount of time needed to find correct and robust paths
and hence eases the maintainability of page objects.

e R6: Adding and modifying variables of page objects

While previous requirements R1, R2 and R4 focus on the general maintenance of the page
objects and their variables, this requirement lies its focus on the general CRUD (Create,
Update and Delete) methods of the variables. It should be possible for the user to add new
variables to the page object, edit and also delete them. While the name shall only be changed
by user manually, the path should be added or modified as described in RS.

This requirement can be found in some tools as well but was extended to support more ac-
tions on the given variable. This requirement also tries to reduces the time a tester has to
spend on the maintenance process by providing a better interface for changing characteris-
tics of a variable.

e R7: Overview of variables and their paths’ validity

In order to give the user an overview of all variables on the chosen page object, the user
shall be provided with a listing with all variables and their parameters. Furthermore, the va-
lidity of each variable’s path shall be verified after user interaction and their status displayed.
This allows the user to easily detect invalid variables and change the path accordingly.

Some of the previously mentioned tools also include this functionality, based on which this
requirement is chosen. This requirement reduces the time needed for a tester to verify mul-
tiple paths of the page object and therefore accelerates the maintenance process.

e R8: Display page object variables on page

While the previous requirement gives an overview of the validity of each single field, the
user shall also gain an overview of the elements which are covered on the web page in order
to determine if all expected elements are covered, or if there are any new elements which
need to be taken into account and added to the page object. Therefore, the user should be
able to select either one or multiple variables of the page object and visually see the element
on the web page.

This requirement is currently only supported by one tool, which also allows for displaying
the chosen element on the page as described in section 3.2. However, this requirement
extends it by additionally allowing the user to display all available paths of the defined
variables on the page object. When using a feature based on this requirement the user saves
a considerable amount of time when analyzing their variables as they can directly see where
the element is located or which elements are covered by the page object.

RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8

NEW ADAPTED NEW EXISTING | EXISTING | ADAPTED | EXISTING | ADAPTED

Figure 4.1: Overview of the requirements’ origin

Enhancing Page Object Maintainability 37/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 5. Prototype concept

5 Prototype concept

The following chapter will discuss the conception phase of the prototype developed to evaluate the
requirements defined in chapter 4. Section 5.1 will discuss the process of finding the most suitable
application type, further characteristics for the prototype and will present the result of it. Based on
the requirements, section 5.2 will then present the planned user interface as mock-ups along with
the expected usage behavior and its features.

5.1 Prototype characteristics

While a list of specific requirements for an application used for page object maintenance has
been defined, several characteristics of an application are free to be chosen when implementing
it. Characteristics not yet defined are for example the application type — where and how the
application is executed —, the programming language the tool is written in or the programming
languages the tool supports. This also includes external frameworks which shall be supported in
the exported file.

5.1.1 Application type

The most important question when starting an application in this context is the selection of the
application type. A wide range of possible types is available, however, not all are suitable for the
development. For instance, a command-line interface (CLI) tool can not, due to the missing user
interface, be seen as a possible type for the application. The following three options have been
chosen to be the most appropriate for a prototype on which the evaluation shall be conducted and
will be discussed more deeply in their advantages and disadvantages:

Browser extension

Most of the discussed state of the art tools are provided via a browser extension. One big advantage
of browser extensions is the close proximity to the browser itself, consequently the easy access to
the DOM tree and its elements. Furthermore, the foundation of the application is already laid by
the browser, only requiring the developer to develop the application for the browser and gain broad
support of devices and operating systems.

Downsides on the chosen approach are on the other hand the more complex interaction to and from
the application regarding the file-system. As the browser acts as a layer between the system and
the extension, for example, file modifications have to be done via a download and then manually
handled by the user. Furthermore, this approach heavily depends on the functionalities of the
browser and the options provided.

Stand-alone application

A stand-alone application in contrast to the browser extensions allows much more access to system
functionalities. Local files could be changed easily via this application type as the tool would
have access to the element. Modifying the file using this approach is most certainly the most
convenient way for the end-user as in best case, no interaction is needed for it. Another benefit for
the developer is the free choice of programming language the application shall be written in.

Enhancing Page Object Maintainability 38/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 5. Prototype concept 5.1. Prototype characteristics

Tool scope

Project

scope Page object scope

]

Figure 5.1: Basic user interface parts

However, there are also downsides using this approach. The main downside is the missing con-
nection to the browser and its APIs. The tool would have to provide a connection to the browser,
which can be different in different browsers and operating systems. Operating systems can also
pose a problem as different operating systems could handle same things differently and might
require an implementation for each of them.

IDE plugin

Another method for implementing the prototype would be to build it as an Integrated Development
Environment (IDE) plugin. By doing so, the user would have the toolset directly in the same
environment as the tests and page objects, which would result in the best user behavior possible.
Furthermore, the IDE would provide further functionality supporting the development process,
which could also ease the creation of page objects. Additionally, the plugin would work on every
system the developer uses the IDE on, leaving nobody without support.

There are, again, also some downsides on this approach. First, the developed prototype would have
a lock on the vendor the plugin is developed for. The main parts of the prototype could be adapted
to different IDEs, however, this requires additional effort. Second, the programming language
would be given due to the required language for plugins depending on the IDE. Third, like the
stand-alone application, this approach would have to find a way to communicate with a browser
to gain access to the DOM tree and the functionality of the page, which requires additional effort.

Based on these advantages and disadvantages, the decision fell to a browser extension due to the
easy connection to a web browser, which is an essential part of a tool like this. The browser
connection from a stand-alone application or an IDE plugin might also be possible, however, most
likely harder to accomplish and harder to fit in the time frame of this thesis. Moving to an IDE
plugin can be seen as future work, as the advantages regarding code modification directly in the
IDE are also convincing. Furthermore, it should be noted that the focus of a browser extension
was put on building an extension for Chrome as the market share of it was at about 68 percent in
April 2020 [19].

Choosing a browser extension as the way to go, this also answered the question regarding the
programming language the tool shall be written in, as browser extensions are commonly written
in JavaScript.

Enhancing Page Object Maintainability 39/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 5. Prototype concept 5.2. Expected usage behavior and mock-ups

i ® By |

Figure 5.2: Mock-up of the toolbar on top of the application

The last decision has been taken regarding programming languages the prototype shall support.
As the prototype shall only reflect the general use of a tool with the given requirements, a single
programming language was decided to be sufficient. The chosen programming language for the
process of page object import and export was Java, as Java is, at the time of writing, the most used
one according to TIOBE [76]. Furthermore, as the exported page objects also depend on external
frameworks as well, Selenium and their WebDriver has been chosen as a requirement of the project
when using the prototype. This is relevant for the correct internal behavior of the generated page
object — e.g. import statements and objects used for the variables.

5.2 Expected usage behavior and mock-ups

Using the list of requirements from section 4.2 and taking the decisions of section 5.1 into account,
mock-ups were created based on which the user interface shall be implemented. Furthermore, the
expected usage behavior will be shortly described as considered while designing it.

When designing the user interface of the prototype it was decided that the basic structure of an
IDE user interface shall also exist in the tool. Therefore, it was decided to build a single page
application and split this window into three parts as it can be seen in figure 5.1. The top part
(green) is expected to be a tool specific area where general actions are located. The left element
(red) reflects project-related actions whereas the right element (yellow) reflects page object-related
actions. For better feedback during the usage of the application, pop-ups have been chosen as a
companion to the single page application.

In the following, each part of the split window will be explained further:

5.2.1 Toolbar

The top area can also be seen as a general toolbar to the application and contains tool-specific
functionality. The main content of this toolbar are three buttons:

e Open browser button: In order to fulfill requirements which target the web page, like dis-
playing an element on the page, a browser window is required. By clicking on this button a
new browser window should be opened with which the tool can interact with for selecting
elements or evaluating their existence.

e Load page object button: This button is required for the import requirement. When clicking
on this button, the file chooser of the browser shall be opened such that the user can select
a page object file to be used. This file then should be imported and processed by the tool to
display its content.

e Download page object button: For fulfilling the requirement of downloading only relevant
page objects, this button shall provide a download chooser provided by the browser for
exporting page objects in the desired programming language. As the project can consist of
multiple page objects, the export shall be done via a zip-archive.

The toolbar as described can also be seen in figure 5.2, which shows how the toolbar is expected
to look like in the prototype.

Enhancing Page Object Maintainability 40/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 5. Prototype concept 5.2. Expected usage behavior and mock-ups

T

Page Object 1

Page Object 2

Rename

Delete

Export only
this file
Copy to
clipboard

Figure 5.3: Mock-up of the project-related view on the left of the application with an opened
drop-down menu for further actions

5.2.2 Project area

The left area of the application is dedicated to the project the user is currently working on. It
mainly contains a list of all page objects currently processed by the tool and allows for performing
actions on them. Page objects opened and imported via the import option will be added to that list
as well as page objects which are created by using the button in the small toolbar above the list.

Actions which can be performed on the page object can be accessed through the three dots on the
right side of the entry and are planned to be the following:

e Rename: Using this option the user shall be able to rename the page object.

e Delete: By selecting this option, the page object is removed from the project and is no
longer included in the project list or export.

e Download only this file: As the download option in the toolbar exports all page objects at
once, this option shall allow the user to download only the single desired page object.

e Copy to clipboard: This option provides the user with even more convenience by copying
the page object to the clipboard instead of writing it to a file. While both download options
require the user to navigate to the file in the file-system and then move it to the correct
position, this option allows a fast and easy interaction with the opened IDE and the files
there. Furthermore, some IDEs, like IntelliJ, provide the option to compare the file with
the clipboard, allowing the user to easily identify changes and merge the changes with the
existing file [35].

The expected view for the project area as a mock-up can be found in figure 5.3. By clicking on a
row in the provided list, the page object area shall be updated to reflect the chosen page object and
its content.

Enhancing Page Object Maintainability 41/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 5. Prototype concept 5.2. Expected usage behavior and mock-ups

+v Q

Variable Name Target

Variable 1 text_id

Variable 2 button_id H
r Delete

Variable Name l

Target

1 +Q

Figure 5.4: Mock-up of the page object view allowing modification and verification with an
opened drop-down menu for further actions

5.2.3 Page object area

The right area is the main interaction view for the user, as here actions on the page object itself
are performed. Therefore this part can also be seen as the page object area. This view again is
split into three parts to keep different information and actions on the page object separated. The
top of the page object area is a toolbar where actions on the chosen page object can be executed.
The middle part of the area provides a table view of all variables which can be found on the page
object. The bottom part allows modifying the values of the selected element in the table.

In the toolbar, the following actions can be executed using the provided buttons. Each action shall
be executed in the browser which was opened and provided by the tool.

o Add new variable: This action allows adding a new variable to the selected page object.
When clicking this option, the user shall be able to select an element on the web page
currently displayed. After clicking on the element the variable shall be added to the list
using the provided target and a random variable name.

e Verify page object: By clicking on this button, the displayed page object shall be verified
against the web page displayed in the browser. After verifying each variable, the row shall
either be green for elements found or red for elements not found.

e View all elements: This button highlights all elements of the page object which can be
found in the DOM tree of the current web page.

The table view in the middle of the area lists all variables of the page object. Each row also
provides the option to access a menu using the dotted button on the right. The function which can
be accessed through this menu is the following:

e Delete variable: When clicking on this option, the variable is deleted from the page object
and no longer considered for validation or export.

Enhancing Page Object Maintainability 42/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

Chapter 5. Prototype concept 5.2. Expected usage behavior and mock-ups

& R
@)
- ® M
+| | +vQ
i Variable Name Target
Page Object 1
Variable 1 text_id
Page Object 2
Variable 2 button_id
Variable Name l J
Target I I + Q
|

Figure 5.5: The full user interface as planned

When selecting a variable on the table, the lowest part of this area should contain the information
of it and allow modification of the data. This shall be done by providing two text fields for editing
the variable name and target for the page. Furthermore, two supporting actions are provided for
the target, one being the Select target in page option allowing for simply clicking on an element
on the page to receive the target, and the second option Show variable on page for displaying
this single variable on the page. Both actions shall again be executed using the browser window
opened through the tool.

The planned user interface of this area can be found in figure 5.4, displaying all three parts of the
page object area in the mock-up.

Based on the discussed parts, the full user interface as mock-up can be seen in figure 5.5. It should
be noted that these mock-ups only represent the basic concepts of the user interface as planned to
be implemented. The user interface of the implemented tool can be found in the following chapter,
which discusses the implementation process and provides screenshots of the application used for
evaluation.

Enhancing Page Object Maintainability 43/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 6. Implementation

6 Implementation

This chapter will focus on the implementation of a prototype called POGito, which is used for the
evaluation of the requirements defined in chapter 4. In contrast to the concept discussed in chapter
5, this chapter has a more technical focus and provides code samples for better understanding.
Section 6.1 will provide basic knowledge on how a Google Chrome extension is built and provides
background on two external frameworks used in development. Section 6.2 will then focus on
the prototype implementation itself, providing general information as well as information on the
internal structure, screenshots and insights into chosen code parts describing how features work.

6.1 Implementation basics

In this section, the basics of the developed prototype will be explained. Subsection 6.1.1 describes
how a Chrome extension is built and discusses several special characteristics along with some
relevant code samples. In order to easily use the extension in both Chromium-based browsers
and Firefox, a framework called WebExtensions API Polyfill [83] was used, which will be further
described in subsection 6.1.2. The last subsection, subsection 6.1.3, will then extend the discussion
on Selenium and their Web-Driver framework started in section 2.1.6 to its usage in the extension
for an easy to use connection to the browser.

6.1.1 Chrome extension basics

In the following, the basic structure of a Chrome extension is discussed. It should be noted that
while the discussed topic might also be valid for other Chromium-based browsers, and even to a
certain extend for other browsers, the discussion is made only for the Chrome browser by Google
due to the high popularity with a market share of about 68 percent as of April 2020 [19]. The
following subsection will discuss precautions made to support more browsers.

The base of every Chrome extension is a manifest file in a JSON file-format. This file contains
basic mandatory information like the name, the version of the extension and the version of the
manifest - which at the time of writing is version 2. Furthermore, additional extension specific
information can be found in there like the extension’s icon, permissions the extension requires or
scripts which shall be executed. These scripts are written in JavaScript and can either be back-
ground scripts or content scripts. Listing 6.1 shows a shortened version of POGito’s manifest
file.

As the user needs to interact with the Chrome extension, a user interface is also required. These
can either be small pop-ups, like in most of the browser extensions, allowing the user to trigger a
small set of actions, or bigger ones like POGito which provide a rich user interface experience like
a native application. Pop-ups can be declared in the manifest directly using the page_action
entry — which is not shown in the example because it was not used in POGito —, while windows
need to be declared in the background scripts and opened from there. The differences between
background scripts and their counterpart content scripts are the following:

Enhancing Page Object Maintainability 44/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation 6.1. Implementation basics

1 { "description": "POGito helps you creating and maintaining your
— page objects",

2 "manifest_version": 2,

3 '"name": "POGito",

4 "version": "1.0",

5 .

6 "icons": {

7 "16": "icons/iconl6.png",

8 Ce

9 }r

10 "browser_action": {

11 "default_icon": {

12 "16": "icons/icon_menul6.png",

13

14 },

15 "default_title": "POGito"

16 1},

17 "permissions": [

18 "tabs",

19 .

20 1,

21 .

22 "content_scripts": [

23 {

24 "matches": [

25 "<all urls>"

26 1,

27 "gs": [

28 e

29 "assets/record. js"

30 1,

31

32 }

33 1,

34 "background": {

35 "scripts": [

36 "assets/background. js"

37]

38 }

39 }

Listing 6.1: Excerpt of POGito’s manifest file

Background scripts

Background scripts provide the connection to and from the browser. Like all scripts used in the
extension, background scripts need to be declared in the manifest file. JavaScript files declared
as a background script can then trigger actions to the browser or provide endpoints for listeners,
which are notified by the browser in case a specific event happens. The code fragment in listing
6.2 consists of both a receiving and a sending part and was taken out of the tutorial for Chrome ex-
tensions [24]. This code gets triggered by Chrome when the extension is installed on the browser.
It then saves the color green to the storage of Chrome and displays the log "The color is green"
in the console. The variable chrome is provided by the Chrome browser itself, which allows for
accessing all browser APIs like runtime or storage. This variable is globally available to all scripts

Enhancing Page Object Maintainability 45/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 6. Implementation 6.1. Implementation basics

running in the Chrome extension by default. An overview of all possible Chrome APIs can be
found online [12].

1 chrome.runtime.onInstalled.addListener (function () {

2 chrome.storage.sync.set ({color: ’"#3aa757’}, function() {
3 console.log("The color is green.");

4 1)

51);

Listing 6.2: Sample background script method [24]

Content scripts

In contrast to background scripts, content scripts are run in the context of the web page, allowing to
read and modify the DOM [17]. As content scripts are run in a different context than background
scripts, they can not be called directly from a background script or vice versa. Furthermore, only a
small subset of Chrome APIs — i18n, storage and a subset of runt ime — can be used by content
scripts directly. All other communication to the extension needs to be handled through messages.
A simple message conversation is shown in listing 6.3, which was also taken from Chrome’s
tutorial for extensions [49]. The first code part shows how the extension sends a message to the
content script. As the content script is located at a tab, the id of the tab needs to be specified. In
case a content script would send a message to the extension, this id can be left out. The message to
be send is then specified along with the callback function handling the response. The second code
part shows how the receiver handles the messages - in this case it does not matter weather it is the
extension or the content script. The example then simply prints the data and returns a "goodbye"
to the sender [49].

1 //Sender (background-script)
2 chrome.tabs.query ({active: true, currentWindow: true},
— function(tabs) {
3 chrome.tabs.sendMessage (tabs[0].id, {greeting: "hello"},
— function (response) {

4 console.log(response.farewell);

5 1)

6 1);

7

8 //Reciever (content-script)

9 chrome.runtime.onMessage.addListener (

10 function (request, sender, sendResponse) {
11 console.log(sender.tab ?

12 "from a content script:" + sender.tab.url
13 "from the extension");

14 if (request.greeting == "hello")

15 sendResponse ({farewell: "goodbye"});
16 });

Listing 6.3: Sample messaging between extension and content script [49]

Using messages to pass data to content scripts, they can execute tasks on the DOM like injecting
new code or change existing one. Listing 6.4 shows how the background color of the page can
be changed to orange once a message with content "changeColor" is recieved in the background

Enhancing Page Object Maintainability 46/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 6. Implementation 6.1. Implementation basics

script. The API provided by Chrome allows for calling tabs.executeScript where the code
can be specified as shown in line 6. For bigger changes, or just for the decoupeling of code, this

code can also be loaded from a file as shown in line 8 [17].

1 chrome.runtime.onMessage.addListener (

2 function (message, callback) {

3 if (message == "changeColor") {

4 chrome.tabs.executeScript ({

5 //EITHER

6 code: ’'document.body.style.backgroundColor="orange"’
7 //OR

8 file: ’"contentScript.js’

9 P
10 }

1 });

Listing 6.4: Usage of content scripts as shown in [17]

The functionality described in this subsection only provides a basic overview of a Chrome ex-
tension and Chrome’s API. For further reading and more information on Chrome extensions, the

official developer website from Google is recommended [13].

6.1.2 WebExtension API Polyfill

Besides the Chrome browser extensions discussed in the previous subsection, several other ven-
dors and browsers exist. While many of the commonly used browsers are based on Chromium,
an open-source browser project, which is, besides others, also the base for Google Chrome, Mi-
crosoft Edge and Opera with a combined market share of about 75 percent [19], and therefore
have the same fundamentals when it comes to developing extensions, some vendors implement
their browser completely on their own. Even though the basic structure of extensions and the API
of the browser is quite similar to the one from Chrome as discussed above, some differences can
be found which require adaptions for providing support for multiple browsers. A W3C Commu-
nity Group was founded several years ago in order "to facilitate discussions between Web Browser
vendors", however due to missing participation the community group has become dormant [10].

The WebExtensions API as used by Firefox is "to a large extent compatible with the extension API
supported by Chromium-based browsers such as Google Chrome, Microsoft Edge, and Opera"
[11]. There are, however, some differences which were pointed out by Mozilla in their documen-
tation [14] regarding the manifest or their API. One key difference is that while in Chrome the
API can be found in the chrome namespace as described above, the WebExtensions API uses the
browser namespace. Another difference is that while Chrome uses callbacks for asynchronous

calls, the WebExtensions API uses a promise-based approach.

In order to provide a compatible approach for extensions to work both on Firefox and on Chromium-
based browsers, Mozilla provides a polyfill framework on GitHub which overcomes this problem
[83]. It allows for using the WebExtensions API in Chrome "with minimal or no changes" [83],
however does not provide functionality of the API provided by Firefox but not yet implemented
in Chrome. Listing 6.5 shows the code how a content script sends a message to a background
script using the WebExtensions polyfill framework, similar to the message conversation shown in
6.3. When using the WebExtensions polyfill framework, the shown code can be executed both in
Firefox as well as in Chromium-based browsers like Chrome or Microsoft Edge, which means a

market share of browser of about 85 percent as of April 2020 [19].

Enhancing Page Object Maintainability

47/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation 6.1. Implementation basics

1 //Sender (content-script)

2 function handleResponse (message) {

3 console.log(‘Message from the background script:
— ${message.response});

4}

5

6 function handleError (error) {

7 console.log(‘Error: S${error}‘);

8}

9

10 function notifyBackgroundPage (e) {

11 var sending = browser.runtime.sendMessage ({

12 greeting: "Greeting from the content script"

13 1),

14 sending.then (handleResponse, handleError);

15 }

16

17 window.addEventListener ("click", notifyBackgroundPage);
18

19 //Reciever (background-script)

20 function handleMessage (request, sender, sendResponse) {

21 console.log("Message from the content script: " +

22 request.greeting);

23 sendResponse ({response: "Response from background script"});
24 }

25

26 browser.runtime.onMessage.addListener (handleMessage) ;

Listing 6.5: Sample messaging between content script and extension [84]

As the base system used for POGito, SeleniumIDE, which will be discussed in the upcoming
section, already uses the WebExtensions API Polyfill framework, and to provide Firefox support
in later stages, this framework was retained for developing the extension.

6.1.3 Selenium

To ease the communication with the browser in content scripts Selenium can be used, which was
already discussed in section 2.1.6. Selenium provides an abstraction layer between the browser and
the content script such that a developer only needs to call a method without the need of handling
browser specifics. The SeleniumIDE, which was used for the base of the prototype, already uses a
wide range of these methods and therefore includes all required dependencies to use it in a browser
extension. These files are either included in the project as files or loaded into the project during
the project setup. One of the most relevant files in the extension is the Selenium BrowserBot,
which allows for executing the calls independent of the browser. The BrowserBot allows for
easily calling functions like findElement to get a web element for the requested locator directly
in the code. Furthermore, the SeleniumIDE already includes implementations which abstract the
BrowserBot even further, like doverifyElementPresent which either succeeds or throws an
error with the corresponding message and is implemented in a file called Selenium-API. While
this implementation also calls the BrowserBot, it allows for reduction of the required code for
handling repeating calls and their results.

When it comes to the usage of the BrowserBot in the tool, the developer creates a new instance of
the Selenium-API with a window which should be used for the execution of the function. Using

Enhancing Page Object Maintainability 48/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Chapter 6. Implementation 6.2. POGito

Settings ~

King Kong Dracula King Kong Dracula

Kina Kona is a 1933 American... Dracula is a 1931 American Pr... Kina Kona is a 1933 American... Draculais a 1931 American Pr...

Figure 6.1: Screenshot of a web page in normal state (left) and during the highlighting of an
element in the top right corner (right)

this instance, either the BrowserBot can be accessed directly to call the functions or the function
provided of the Selenium-API used. Listing 6.6 displays a basic implementation of how the Se-
leniumIDE shows a single WebElement on the page. The listener for messages to this function
is set in line 16. Once a message with content showElement is received, the Selenium-API is
called on dosShowElement with the specified target of the message. The result of this call is then
the content of a resolved Promise, a concept of asynchronous calls generally used in JavaScript.
The function of doShowElement is shown partly starting in line 18. This function mainly loads
a CSS file, injects it into the current page, and calculates the area of the element which shall be
highlighted. After scrolling to the location where the element can be found, the injected border
around the element is shown for a few seconds (as defined in the CSS file) and fades away after
this timeframe. In the end, this injected element is removed from the page as well. Figure 6.1
shows how a web page is shown to the user when highlighting an element (right) — in this case the
menu in the top right corner of the page — in contrast to the normal web page (left).

6.2 POGito

This section describes POGito, the prototype developed for an evaluation of the defined require-
ments, more deeply. Subsection 6.2.1 provides an overview of the tool with general information
on the tool, containing information how it was developed and what was taken into account during
development. Furthermore, a screenshot will be provided and discussed, enabling the reader to
receive a better picture of the prototype as presented to the experts in the evaluation. Following
that, subsection 6.2.2 gives a more detailed and technical insight into the tool by describing how
the application is structured internally. Subsection 6.2.3 then presents two selected features and
how they are implemented throughout the prototype.

6.2.1 POGito in general

As decided before, POGito was developed as a browser extension written in JavaScript. The main
focus was laid on running in the Google Chrome browser. Other Chromium-based browsers and
Firefox might also be supported but have not been evaluated. Furthermore, the extension has only

Enhancing Page Object Maintainability 49/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation 6.2. POGito

been developed and used on Google Chrome on MacOS 10.15 and might not work as expected on
other platforms.

1 //commands—api.js
2 function startShowElement (message) {

D-T-CHEE S B N N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

if (message.showElement) ({

try {
const result = selenium[’doShowElement’] (message.targetValue)
return Promise.resolve ({ result: result })
} catch (e) {
}
}
}
if (!window._listener) {

browser.runtime.onMessage.addListener (startShowElement)

}

//selenium-api. js
Selenium.prototype.doShowElement = function (locator) {

const elementForInjectingStyle = document.createElement (' 1ink’)
elementForInjectingStyle.rel = 'stylesheet’
elementForInjectingStyle.href = browser.runtime.getURL (
" Jassets/highlight.css’
)
(document .head || document.documentElement) .appendChild(
elementForInjectingStyle
)
const highlightElement = document.createElement ('div’)
highlightElement.id = ’selenium-highlight’
document .body.appendChild (highlightElement)
if (locator.x) {
highlightElement.style.left = parselnt (locator.x) + 'px’
highlightElement.style.top = parselnt (locator.y) + ’px’
highlightElement.style.width = parselnt (locator.width) + ’px’
highlightElement.style.height = parselInt (locator.height) + ’px’
} else {

}
scrollIntoViewIfNeeded (highlightElement, { centerIfNeeded: true })
highlightElement.className = ’"active-selenium-highlight’

setTimeout (() => {
document .body.removeChild (highlightElement)

elementForInjectingStyle.parentNode.removeChild(elementForInjectingStyle)

}, 500)
return 'element found’

Listing 6.6: Sample code of the highlighting of an element as used in POGito

The prototype was build based on a fork of the widely known browser extension called Selenium
IDE, which is openly available on GitHub [65]. However, many parts of the extension have been
rewritten or adapted to fit the prototype’s needs along with newly developed features required
for the page object aspect. Selenium IDE provides a Capture & Replay approach for testing

Enhancing Page Object Maintainability 50/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 6. Implementation 6.2. POGito

user interfaces on the web along with a GUI allowing to manipulate these tests or export them
as unit tests to a project. Yet, this tool does not provide support for using page objects in the
exported files and writes the corresponding paths directly into the tests. At the time of writing,
Selenium IDE is ported to be a standalone application, however, the browser extension is still
maintained. This browser extension has been chosen as it already provides a wide spectrum of
functionality which could be reused for the prototype as well. This includes especially the base
setup of browser communication, allowing for reuse of functionality to select or evaluate paths in
the DOM. Furthermore, the user interface could be widely reused, allowing saving of time only
developing new components as well as providing users with an already familiar Ul to facilitate
getting started.

The user interface of POGito was developed in React [58], which was already used in the Selenium
IDE as well. Further dependencies the tool used contained quality-assuring ones like es1int and
stylelint or build-related ones like lerna or babel. While some dependencies were removed
from the project, as they were not seen to be relevant for the prototype, the ones mentioned along
with some others were kept as they provide a good maintainability approach to the prototype as
well. In addition to dependencies already included in Selenium IDE, two new ones were added to
the project: handlebars for an easy and maintainable export of the page objects and jszip for
exporting the project’s files using a zip archive. In addition to these dependencies, the Selenium
IDE also loads several Selenium projects in order to provide the functionality in the browser. Even
though only a part of the dependencies are used in POGito, they have been fully integrated for a
better and easier update process.

Figure 6.2 shows a screenshot of POGito after the tool validated the paths of the page objects.
Variables with a valid path are shown in green, while the ones which could not be found on the
page are displayed in red. The structure of the user interface is widely as planned in chapter
5, but is extended by some additional elements. The reason for this was that the SeleniumIDE
already provided those elements which are seen to be useful and supportive to the user. Therefore,
for example, the search bar in the page object list was kept to provide this functionality as well.
Another element not planned in the final user interface was the Log-View on the bottom of the
screen. This view provides a good overview while validating the variables and provides additional
information like its status in textual form, supporting the user for an additional status in a readable
form as well, and is therefore kept.

All features discussed in chapter 5 have been implemented in the prototype, which implies that all
defined requirements are fulfilled as well. Hence, this prototype can be seen to be sufficient for
the evaluation of the requirements.

6.2.2 Code structure

To better understand how the application is structured and to understand the differences between
the files in the upcoming subsection, this subsection provides insights into the project structure
used by POGito. Listing 6.7 shows an overview of the structure but does not include every file and
directory. As one can see, the project groups together the content scripts, and provides packages
for the background script, the user interface (ui), the service layer and the models used throughout
the project.

The background package contains only one file: the background. js file. This file can be seen as
the previously discussed background script and includes methods triggered, for example when the
extension is started. As this file is the main entry point for the tool, the user interface is also loaded
here. Hence, every file in the ui and service package can also be seen as a background script.

The ui package contains user interface related files used in the React application. Its further struc-
ture of components and containers is used in the same way as in the SeleniumIDE and follows

Enhancing Page Object Maintainability 51/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation 6.2. POGito

D B
Page Objects + +/ G)O\
Variable Name Target
1 menu xpath=//h5[contains(.,'SomeMenuitem’)]
Z profileOptions xpath=//ul[@class='menu vertical submenu is-
dropdown-submenu first-sub'}//li{1]
3 arizonaBound xpath=//h5[contains(.,'Arizona Bound')]
4 kingKong xpath=//h5[contains(.,'King Kong')]
Variable Name menu i
Target xpath=//h5[contains(.,SomeMenultem')] [__y‘ Q
Log N
1. Testing variable menu on path xpath=//h5[contains(.,'SomeMenultem’)] Failed 08:17:08
2. Testing variable profileOptions on path xpath=//ul[@class="menu vertical submenu is-dropdown-submenu first-sub']//li[1] OK 08:17:08
3. Testing variable arizonaBound on path xpath=//h5[contains(.,/Arizona Bound')] OK 08:17:08
4. Testing variable kingKong on path xpath=//h5[contains(.,King Kong')] OK 08:17:08
‘LoggedinMainPage’ succeeded partly with 1 failed and 3 successful variables 08:17:08

Figure 6.2: Screenshot of POGito after verification of the paths, resulting in three valid and one
invalid variables

best practices to break down the user interface into small components. The containers package
consists of different general components like the root component as the starting point of the appli-
cation, the panel component which includes every other component and the navigation component
representing the view on the left side of the screen. The components package groups together
the smaller components used in the container or in other components. These small parts are, for
example, buttons with a specific design, row entries for the page object list and the page object
list itself. Each component and container also consists of a style file with specific styling for the
corresponding element. General style sheets can be found in the styles package within the ui pack-
age. Actions taken by the user in the user interface trigger functions in the service package, which
includes, besides others, the file handling for import and export, the find and select functionality
or the verification logic of variables. These actions are executed on instances of files which can be
found in the model package. This package, for instance, contains the description of a page object
in the file PageObject . js. Using these files in the package, the whole state of the extension is
stored and handled throughout the whole life cycle. Further files in the models package are, for
example, the PlaybackState. js which stores the temporary and final results of a verification
or the Uistate. js file, which allows receiving user interface related information throughout all
components.

While some of the files in the service package only require the context of the application — like
importing or exporting — some trigger actions on the web page itself. Content script files can be
found in the content packages and are triggered through messaging through background scripts as
already mentioned. The commands—api . js file is the main entry point and receives every mes-
sage send to the content script from the tool and handles the corresponding action before answering

Enhancing Page Object Maintainability 52/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 6. Implementation 6.2. POGito

the result back through messages to the tool. Files in this package also contain functionality for
displaying the element on the page or for selecting an element and receiving its targets.

1 |-—— background |——— ui

2 | | - background. js | | ——— components

3 |-—— content | | |—-—— ActionButtons
4 | | - commands—-api.js | | |-—— PageObjectList
5 | |- locatorBuilders. js | | | |- index.js

6 | |- targetSelector.js | | | |- style.css

7 |-—— model | | |-—— PageObjectRow
8 | | ———= Command | | ——— containers

9 | | |- index. s | | |-—— Editor

10 | | - PageObject. s | | | |- index.js

11 | |- PlaybackState. js | | | |- style.css

12 | |- ProjectStore. js | | |-—— Panel

13 | |- UiState.js | | |-—— Root

14 |——— service | |-—— styles

15 | | -——— import-Export

16 | | |-—— languages

17 | [| -——— Java

18 | (- \ |- handlebarsHelper. js

19 | [\ | - javaExporter.js

20 | [|- javalImporter. s

21 | | |- filesystem. js

22 | | -—— IO

23 | | |- find-select.js

24 | | |- recorder.js

Listing 6.7: Package structure of POGito (not complete)

6.2.3 Selected implementations

This subsection will describe two selected features and how they are implemented in a more de-
tailed way. The first feature is about the export process and describes how POGito creates Java
page object files out of its internal structure. The second feature shows how a single element on
the DOM tree is highlighted if requested by the user.

Java Export

One major feature when supporting the maintenance of page objects was the import from and the
export to Java files. As POGito internally holds an object representation, as already discussed
in 6.2.3, this representation needs to be converted to a file in Java format. While the generation
of these files could have been done manually, a more maintainable and language-exchangeable
approach was chosen by using Handlebars. Handlebars is a library for JavaScript but was also
ported to other platforms. It compiles semantic templates into JavaScript functions such that only
these functions need to be called for creating the file content [31]. This file content then only
needs to be written to a file to receive a valid Java page object. Handlebars is based on mustache,
an open-source framework with support for more programming languages than JavaScript [50]. In
the following, the process of exporting a file will be described in more detail:

When selecting a single file export in POGito — or when only one page object is maintained in
the tool — the method exportPageObject as shown in listing 6.8 is called. By allowing for pro-
viding the parameter fileType, these methods can easily be extended for further programming

Enhancing Page Object Maintainability 53/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation 6.2. POGito

languages, while Java is currently set to be the default. Furthermore, this method requires the se-
lected page object as parameter, which allows a loose coupling between the services. This method
then calls the method exportJavaAsSingleFile function, which is also shown in listing 6.8.
This function is responsible for handling of the creation of the necessary files and triggering the
download function. It also handles the creation of the valid Java class name which should by
definition start with a capital letter and not contain spaces.

export function exportPageObject (pageObject, fileType = ’java’) {
if (fileType === '’ java’') {

exportJavaAsSingleFile (pageObject)
}

export function exportJavaAsSingleFile (pageObject) {
let exportPageObjectName = pageObject.name

1
2
3
4
5}
6
7
8
9 let exportPageObject = createPageObject (pageObject)

10

11 downloadUniqueFile (

12 createValidJavaName (exportPageObjectName, false) + ’.Jjava’,
13 exportPageObject,

14 "text/x—-java-source, java’

15)

16 }

17

18 function createPageObject (pageObject) {

19 let templateScript = Handlebars.compile (getJavaObjectTemplate())
20

21 Handlebars.registerHelper ('escape’, function(variable) {

22 return variable.replace(/(['"]1)/g, "\\$17)

23 })

24

25 let context = {

26 packageName: pageObject.packageName,

27 classExtensions: pageObject.classExtensions,

28 importStatements: pageObject.importStatements,
29 className: createValidJavaName (pageObject.name),
30 variables: createVariables (pageObject.commands),
31}

32

33 return templateScript (context)

34 }

Listing 6.8: Sample code of the export function as used in POGito

The main creation of the file content happens in the function createPageObject which takes a
page object for generation. Listing 6.8 shows the function which compiles the Handlebars tem-
plate shown in listing 6.9 and triggers it with a context containing all relevant data for the page
object, like the variables — with name and path — along with import statements and other related
information. It should be noted that the content is provided as a JSON, which is than parsed by
Handlebars. By using Handlebars, different paths can be displayed or repeated without much need
of logic, depending on the context provided and the statement in the template itself. Furthermore,
this allows for an easy exchange of the template to other file styles, potentially even by the user.
In the current implementation, POGito only supports the described annotation approach.

Enhancing Page Object Maintainability 54789

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Chapter 6. Implementation 6.2. POGito

Finally, the downloadUniqueFile function is called, a function already provided by Seleniu-
mIDE, which handles the creation and download of the file with the given name, the given content
and the mime-type of a java file. The user is presented with a download dialog as commonly
known in a web browser and can then download the file as from every other web page.

1 "{{#1if packageName}}’ +

2 " {{packageName} }\n\n’ +

3 T{{/1if}} o+

4 "{{#if importStatements}}’ +

5 " {{#each importStatements}}’ +

6 "{{this}}\n" +

7 "{{/each}}’ +

8 "{{else}}’ +

9 "import org.openga.selenium.WebDriver;\n’ +

10 "import org.openga.selenium.WebElement; \n’ +

11 "import org.openga.selenium.support.FindBy;\n’ +
12 T{{/1if}}" +

13 "\n\n’ +

14 "public class {{className}} ' +

15 "{{#1f classExtensions}}’ +

16 "{{classExtensions}}’ +

17 "{{else}}’" +

18 "extends PageObject’ +

19 T{{/if}}" o+

20 " {\n’ +

21 "{{#each variables}}’ +

22 "{{#with this}}’ +

23 "\n’ +

24 ’ {{comment}}QRFindBy ({{prefix}} = "{{{target}}}")\n’ +
25 ’ {{comment}}private WebElement {{variableName}};\n’ +
26 "{{/with}}’ +

27 "{{/each}}’ +

28 "\n’ +

29 " public {{className}} (WebDriver driver) {\n’ +
30 ! super (driver);\n’ +

31 ’ \n’ +

32 "\n’ +

33 " //Insert your methods here\n’ +

34 T}

Listing 6.9: Handlebars template used for Java export

The result of the export, which was triggered in a state of POGito as shown in figure 6.3, can be
seen in listing 6.10. As one can see, all variables are exported to a Java page object based on the
defined annotation structure of the handlebars template in listing 6.9. The variable arizonaBound
was exported as commented out to display this functionality as well. The package path and the
imports have been reused from the imported page object and only the methods have been removed
to provide a valid page object.

Enhancing Page Object Maintainability 55/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation

6.2. POGito

o X AN N ER W N =

e
=]

11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27

Page Objects

Search Page Objects.

LoggedinMainPage

Log

D B
/@
Variable Name Target
1 menu xpath=//li{@class="top-bar-settings is-dropdo
wn-submenu-parent opens-left']//a[@href="#']
2 profileOptions xpath=//ul[@class='menu vertical submenu is-
dropdown-submenu first-sub')//li[1]
3 /| arizonaBound xpath=//h5[contains(.,'Arizona Bound')]
4 kingKong xpath=//h5[contains(.,'King Kong')]

Variable Name | //arizonaBound ‘

5[]

Target xpath=//h5[contains(.,'Arizona Bound')] L_y\'

Figure 6.3: Page object in POGito before the export

package at.ac.tuwien.inso.swtesten.lab.pages;

import at.ac.tuwien.inso.swtesten.util.PageObject;
import org.openga.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openga.selenium.support.FindBy;

public class LoggedInMainPage extends PageObject {

@FindBy (xpath

= "//1li[Q@class='top-bar-settings

< is-dropdown-submenu-parent opens-left’]//a[@href="#"1")
private WebElement menu;

@FindBy (xpath

= "//ul[@Rclass="menu vertical submenu

< is—dropdown—-submenu first—-sub’]//1i[1]")
private WebElement profileOptions;

//@FindBy (xpath = "//h5[contains (.,’Arizona Bound’)]")
//private WebElement arizonaBound;

@FindBy (xpath

= "//h5[contains(.,’King Kong’)1")

private WebElement kingKong;

public LoggedInMainPage (WebDriver driver) ({
super (driver) ;

//Insert your

}

methods here

Listing 6.10: Exported page object of POGito

Enhancing Page Object Maintainability

56/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Chapter 6. Implementation 6.2. POGito

- /&
o 9
Variable Name Target Add new variable ») = A & Bo ° *
1 menu xpath=//li{@class="top-bar-settings is-d
age* ropdown-submenu-parent opens-left']//
= a[@href="#]
profileOptions xpath=//ul[@class='menu vertical subm
enu is-dropdown-submenu first-sub’]//li
]
kingKong xpath=//h5[contains(.,'King Kong')]
variable4 css=#bugstore-item-100 .text-truncate:
nth-child(2)
Variable Name variable4 "
— -
Target css=#bugstore-item-100 .text-truncate:nth-c| ¥ Q
S Arizona Bounde King Kong
Arizona Bound is a lost 1927... King Kong is a 1933 America...

Figure 6.4: Screenshot of POGito (left) and the browser (right) during adding a new variable

Adding a new element to the page object

One defined requirement mentions that it should be easy to add new variables to page objects.
As SeleniumIDE is a capture and replay tool, the capture function already provides the basic
functionality for recording the user’s clicks on a web page. This functionality was adapted to only
record click events on elements on the page instead of every interaction. Furthermore, the process
was adapted to only prompt the user for exactly one click, add this element as a variable to the
page and stop the recording process. In the SeleniumIDE, the process records every action until
the user stops the recording process manually. The functionality of highlighting the element which
would be selected was kept in order to provide better feedback to the user. Figure 6.4 shows how
the user sees the web page while adding a new variable and furthermore the steps taken to add the
element to the page object. First the user clicks on the "Add new variable" button in POGito as
shown at step 1, which focuses the browser window and highlights elements the user hovers over.
The right image of figure 6.4 shows that the variable "Arizona Bound" is highlighted at step 2.
Once the user clicks on that element, POGito is focused again and the variable is added using a
auto-generated name, which is shown at step 3.

When the button for adding a new variable is clicked in the extension, first the recorder defined in
recorder. js is started to record on the current window. The recorder uses different listeners for
events in the browser, like adding or removing tabs to handle changes correctly. These listeners
use the API of the WebExtension polyfill to be triggered by the browser. The recorder has been
adapted to stop recording once the first click was recorded. After the recorder was started, the
browser window is focused and a message send to the content script in find-select. js to
start the selection process. Relevant parts of the select function are shown in listing 6.11 along
with the doCommands function of the content script (commands—api . js) which received these
messages and handles the further selection process.

When the content script is called, a new Target Selector instance is instantiated. This instance
takes a callback function as well as a cleanup callback function and then injects a script to the
page which handles the recording. The main part of this script consists of two listeners which
are added to the page and triggered through mouse moves and clicks on the page. These listeners
then trigger the handleEvent function as shown in 6.12. While the mousemove listener requests
the element of the given coordinates from the DOM, as shown in the highlight function be-

Enhancing Page Object Maintainability 57789

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation 6.2. POGito

low, and highlights it by adding a CSS background to it, the click listener is triggered once the
highlighted element is clicked and calls the defined callback function with this element. The last
action taken by the content script is building the targets using the LocaltorBuilders. The call-
back function calls the bui1dall () function in line 25 in listing 6.11 with the provided element.
The buildall () is included in the SeleniumIDE and builds all the possible targets for the given
element. This array of targets is then reported back to the background script.

1 //In background script

2 export async function select (createCommand = false) ({
3 e

await browser.windows.update (tab.windowId, {

4
5 focused: true,

6 })

7 await browser.tabs.sendMessage (tab.id, {
8 selectMode: true,

9 selecting: true,

10 element: true,

11 selectNext: false,

12 1)

13

14 }

15

16 //In content script

17 function doCommands (request, _sender, sendResponse) {
18 ...

19 if (request.selectMode) {

20 sendResponse (true)

21 if (request.selecting && request.element) {
22 targetSelector = new TargetSelector (

23 function (element, win) {

24 if (element && win) {

25 const target = locatorBuilders.buildAll (element)
26 e

27 browser.runtime.sendMessage ({

28 selectTarget: true,

29 target: target,

30 selectNext: request.selectNext,
31 1)

32 }

33 targetSelector = null

34 },

35

36)

37 }

38 ...

39 }

40 browser.runtime.onMessage.addListener (doCommands)

Listing 6.11: Sample code of the select process for a new varibale

While the previous code and process is taken directly from SeleniumIDE — except for recorder. js
—the process has been changed from the point when the result of the content script is received in the
background script (find-select. js). Depending on whether the select was called for adding
a new variable or as support for changing the targets from an existing one, the targets are added

Enhancing Page Object Maintainability 58789

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6. Implementation

6.2. POGito

to a new instance of a variable or an existing one. In case the variable is newly added, a default
name is set to better differentiate the variables in the user interface. As the target is provided as an
array, the first target is chosen to be the target for this variable, however, the array is saved as well
to provide the user with additional targets if required. Once the variable is saved to the project, a

message is sent to the content script for cleanup and the process of recording is stopped.

1

2 handleEvent (evt) {

3 switch (evt.type) {

4 case ’'mousemove’ :

5 this.highlight (evt.target.ownerDocument,
— evt.clientY)

6 break

7 case ’'click’:

8 if (evt.button == 0 && this.e && this.callback)

9 this.callback (this.e, this.win)

10 }

11

12 break

13 }

14 }

15

16 highlight (doc, x, y) {

17 if (doc) {

18 const e = doc.elementFromPoint (x, V)

19 if (e && e !'= this.e) {

20 this.highlightElement (e)

21 }

22 }

23}

evt.clientX,

{

Listing 6.12: Excerp of the TargetSelector (in targetSelector.js)

Enhancing Page Object Maintainability

59/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation

7/ Evaluation

This chapter has its focus on the evaluation of the requirements to an approach supporting the page
object maintenance defined in chapter 4. This evaluation was conducted as an expert evaluation
based on the developed prototype called POGito described before. For this evaluation, testers
with several years of experience in the field of software testing have been chosen as experts to
answer a questionnaire. Section 7.1 will describe the conducted evaluation process containing a
questionnaire, participant description and general factors of the environment. Following on that
section 7.2 will describe the threats to validity, which should be taken into account when reading
the evaluation results which are presented and discussed in section 7.3.

7.1 Evaluation process

In the following section, the evaluation process is explained. This includes all relevant informa-
tion on the expected goal as well as the steps taken and the environment used to achieve this goal.
For describing the steps used, this section also describes the scenarios demonstrated in the inter-
view and their relation to the requirements defined before as well as the questionnaire used in the
interview based on which the results in the following section are discussed.

7.1.1 Goal

The goal of the conducted interviews lies in the evaluation of the requirements defined in 4.2 and
the classification of them to either be useful or not in the eyes of the asked experts. Furthermore,
additional requirements shall be gathered in order to enhance the maintainability approach to page
objects further. By doing so, research question 3 as defined in section 1.2 is answered.

It should be noted that the goal was to evaluate the requirements without the direct effect of the
usability of the prototype. Therefore, each interaction with the prototype was done by the inter-
viewer to receive answers based on the functionality. If the user could have done the interaction
on its own, requirements could have been rated lower due to potential bad implementation of the
prototype or higher due to a unintended behavior.

7.1.2 Participant characterization

The participants of this evaluation have been chosen and were provided by the research group for
Industrial Systems (INSO) and consisted of five experts working on different projects. All of the
participants have a multi-year experience in software engineering in general as well as a multi-year
experience in the field of software testing and especially using the page object pattern in multiple
projects.

7.1.3 Evaluation environment

Due to the exceptional situation during writing this thesis — having a lockdown of all public rela-
tions due to COVID-19 —, the evaluation was conducted via video calls. All interactions with the
prototype were done by the interviewer on a MacBook Pro using Chrome for the prototype and
IntelliJ for simulating the production environment. The screen of the interviewer was broadcasted
to the interviewee using the screen sharing option during the whole interview.

Enhancing Page Object Maintainability 60/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Chapter 7. Evaluation 7.1. Evaluation process

= All Categories 8 Computers R Books © Software X Games ™ DVDs & Blu-ray i Impressum

Arizona Bound King Kong Dracula Creature from the B...

Arizona Bound is a lost 1927 Am... King Kong is a 1933 American p... Dracula is a 1931 American Pre-... Creature from the Black Lagoon ...

Figure 7.1: Screenshot of the bugstore

The web application used for evaluation — a small online store called bugstore — can be seen in a
screenshot in figure 7.1. The application was chosen for the evaluation as it is representative for
web applications used in production environments concerning features, behavior and how it can
be tested on a system level. Furthermore, as the bugstore is a custom build web application for
university purposes and controlled by INSO, an expected state of the application could be easily
established for demonstration purposes.

Based on the web application, a small sample test case was implemented which ought to reflect
the real-life scenarios tester face in their daily routines. The steps of the test case were simple,
including just navigations through the pages with entering some information, but sufficient to
demonstrate each scenario of the prototype. The test was intentionally created having some down-
sides in the implementation, in order to demonstrate the problem solving using POGito during the
scenarios. As already mentioned, the test case was executed in IntelliJ during the interview.

7.1.4 Methodology

In order to receive comparable feedback by the experts, every interview was done equally and
as described in this subsection. However, it should be noted that the experts were allowed to
disrupt the demonstration of the scenarios at any time and comment or ask a question, resulting
in slightly different results during that phase. There was no fixed duration of the interview given
as discussions throughout the interview were welcomed, but would have interfered with the time
schedule. On average, an interview lasted about one hour. As the structure of the interviews were
all the same they could be divided into the following main parts:

Enhancing Page Object Maintainability 61/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation 7.1. Evaluation process

Joining and general introduction

Pre-demonstration questionnaire

Goals and topic introduction

Scenario demonstration

Post-demonstration questionnaire

In the following, each part will be described more deeply.

Joining and general introduction

First, a video meeting was set up and provided by INSO where both the interviewer and inter-
viewee joined. As already mentioned, the screen was shared by the interviewer throughout the
session, providing the interviewee with the following applications during the interview:

e POGito, the prototype as Chrome extension, developed in this thesis and used for evaluation.

o IntelliJ, an IDE (Integrated Development Environment) used for displaying the source code
and executing the test.

e Chrome, a web browser serving several purposes:

— As a starting point for POGito
— For the introduction to the web application bugstore

— To display the questionnaire to the interviewee during the questioning phases

The application shown on the screen depended on the current situation and changed throughout
the interview frequently.

Additionally, some short clarifications of formalities like the language of the demonstration and
the consent to the recording were discussed. This also formed the base of conversation for both
parties to get to know each other.

Pre-demonstration questionnaire

The interview began by asking the pre-demonstration questionnaire. The questions asked were
shown to the expert through screen sharing and were asked by the interviewer as well. The goal
of the questions was to evaluate the position and knowledge of the expert as well as their current
opinion on page objects, including downsides they see or encounter in their daily work routines.
Answers were either expected as a number between 1 and 4 (quantitative), where 1 was seen as the
most negative option and 4 as the most positive one throughout all questions, or as an open answer
without limitations (qualitative). During the pre-demonstration phase, the following questions
were asked by the interviewer:

1. Please give an overview of your daily work. What is your job position? Which test-types
are most used by you? How are you dealing with page objects in your tests? Which devel-
opment process (agile, waterfall. . .) is most used when you are testing?

2. On a scale from 1 to 4, how would you rate your experience with page objects?

3. Did you encounter any problems using page objects yet? If yes, which?

Enhancing Page Object Maintainability 62/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation 7.1. Evaluation process

4. How are you currently maintaining your page objects?
5. Do you currently use any tools for maintaining page objects? If yes, which?
6. On an average project you are working on, how often do you have to ...

6.1. ... maintain (update) a small subset of your page objects?
6.2. ... maintain (update) almost every page object of the project?

6.3. ... replace page objects completely?

The whole questionnaire as used by the interviewer and shown to the experts on the screen can be
found in the appendix A.1.

Goals and topic introduction

After all questions of the pre-questionnaire were asked, the expert was provided with an introduc-
tion to the topic which included a general overview on the goal of the thesis as well as a description
of POGito and the problems which it should solve.

Furthermore, the expert was provided with an overview of the current state of the test case along
with a short introduction in the bugstore application as system under test. This introduction was
done interactively and the expert was allowed to ask questions on both objects to make themselves
familiar with the application and the test. The interviewer acted as instructed by the interviewee
in this stage by showing the requested elements on his screen.

As the last part of this stage, the general situation of the demo was described. This included the
background story from the interviewer’s viewpoint as follows:

I am a developer new to the team. I was given a test case that navigates to the address site in
bugstore and changes it there. The test case is implemented using JUnit and uses page objects
for modeling each page in the application. However, this test case is currently not working due to
problems in the page object implementation.

Before the demonstration started, a PDF outlining the scenarios was provided to the expert, which
included the scenarios’ pre- and post-condition along with every step executed during the demon-
stration. This scenario outline could be used by the expert to reflect each step taken, ask questions
if a step was not fully understood or to later refer to certain steps in the questioning phase after-
wards. The PDF file as sent to the experts can also be found in the appendix A.2.

Scenario demonstration

Following the introduction, the demonstration of the prototype started. The walkthrough was
based on five scenarios which covered the whole functionality POGito provides and was self-
contained.

As already described, each scenario was based on a test case which evaluated a demo web appli-
cation. In each scenario, a problem of the test case was supposed to be fixed such that after all
scenarios the test succeeded. A further description of each scenario, its pre- and post-condition,
its steps taken, as well as its relation to the requirements can be found in the following subsection.

During this phase, the main goal was for the interviewer to solve the problems of the demonstration
project using the prototype, presenting the general use of it along with every step taken to achieve
the expected result. The interviewee was allowed to ask questions and for the interviewer to repeat
one or multiple steps to gain a better understanding of the usage. In case the question would be
answered in a later scenario, the interviewee was informed that this question will be covered in a
later scenario and asked to postpone the discussion.

Enhancing Page Object Maintainability 63/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 7. Evaluation 7.1. Evaluation process

Post-demonstration questionnaire

After all scenarios were presented to the expert, questions about the prototype were asked. They
were again designed to include both quantitative and qualitative questions in order to receive com-
parable values but also the thoughts and expectations of the experts along with general feedback.

The following enumeration lists all questions asked. Again, answers ranging from 1 to 4 reflect
1 as the lowest and lest preferred selection and 4 the highest and most preferred selection. The
detailed questionnaire as presented and used for the evaluation can be found in the appendix A.1.
In case a question focuses on the evaluation of a requirement defined before in section 4.2, the
requirement is added in braces before the question is asked.

7. Based on the demonstration, do you think the provided prototype can enhance your daily
work using page objects? If no, why not?

8. (Only asked if answered yes on question 3) Based on the demonstration, do you think the
provided prototype can solve the problems you mentioned? If no, why not?

9. Based on the demonstration, do you expect that POGito can handle all your page objects of
a project and their variables in a convenient and clear way? If no, why not?

10. On a scale from 1 to 4, how intuitive did you find POGito?

11. On ascale from 1 to 4, how much time of your daily routine when working with page objects
could be saved when working with POGito instead of your current approaches.

12. On a scale from 1 to 4, how much would you like to use POGito in your daily work with
page objects?

13. On a scale from 1 to 4, how likely would you recommend POGito to your colleagues?
14. Please rate the usefulness of the given feature from 1 to 4:

14.1. (R1, R2) Import/Export of page objects

14.2. (RS, R6) Adding new variables through a GUI based approach

14.3. (R4, RS, R6) Changing or removing variables through a GUI based approach

14.4. (R8) Displaying a single variable on the page, or giving information about its existence
14.5. (R8) Displaying all found variables on the page

14.6. (R7) Verifying all variables of a page object for their existence

14.7. (R3) Support for maintaining multiple page objects at the same time
15. Which feature of POGito did you find the most appealing?

16. Are there any shortcomings in the implementation which you expect to be included in a
maintenance tool? If yes, which?

17. Is there anything you would like to add?

Especially the last question was supposed to start a discussion about further required features and
general thoughts the interviewee has. Due to the openly asked questions and the way the interview
was handled, a lot of additional information could be gathered to understand the needs of experts
better and discover a way the tool should proceed.

Enhancing Page Object Maintainability 64/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 7. Evaluation 7.1. Evaluation process

7.1.5 Scenarios

In the following, each scenario will be described deeply. For better understandability, the scenario
will also outline which requirement (as described in chapter 4) and which feature (as described
in chapter 5) are covered by the given scenario. As already mentioned, the PDF containing all
relevant information as provided to the experts can be found in the appendix A.2. This description,
however, will extend the information which can be found there.

Scenario 1

Short description: I want to add a missing element to the existing page
object

Requirements covered: R1, R2, R4, R5, R6, R7 (partly), RS

Current situation (Pre condition): - The test stops on the start page as an element is miss-
ing

Expected outcome (Post condition): | - I have added the required variable to the page object
- The test runs and navigates to the login page

Steps definition: 1) I open POGito

2) On the startup page, I select “Using an existing
page object” and select the malfunctional page object
in the file chooser

3) I open a browser session in POGito and navigate to
the page

4) I click on ‘Show all variables’ on the page

5) I find out that the login button is not covered by the
page object

6) I add the menu button to the page object and name
it loginButton

7) I export the page objects and fix their methods in
Git

8) I run the test to make sure the test navigates to the
login page

In this scenario, the expert is introduced to POGito for the first time. The focus of this sce-
nario lies in the update process of a page object as one variable is missing on it. With the help of
the inspection feature of POGito providing an overview of all variables on the page, the missing
element could be found easily and added through the "Add element" feature of the prototype. In
this scenario, the expert also experiences the usage of the functions to import and export a single
file.

Enhancing Page Object Maintainability 65/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation

7.1. Evaluation process

Scenario 2

Short description:

I want to create a page object for the login page with
variables for the username-field, password-field and
for the login button

Requirements covered:

R2, R3, RS, R6, R7 (partly), R8

Current situation (Pre condition):

- The test stops on the login page
- I do not have a login page modeled as page object

Expected outcome (Post condition):

- I do have a login page modeled containing the re-
quired fields

- The test proceeds and navigates to the start page in
the logged-in state

Steps definition:

1) I create a new page object and name it ‘LoginPage’
2) I navigate to the login page in the browser

3) I add a variable for username via select of the ele-
ment and rename it username

4) I add a variable for password via select of the ele-
ment and rename it password

5) I add a variable for login-button manually by en-
tering the information and name it loginButton

6) I export both files to the test-suite and fix their
methods in Git

7) I run the tests and check that it is not failing on the
login page anymore

The focus of the second scenario lies in the creation of page objects through POGito. While
the process of adding new variables is similar to the previous scenario, one variable is also added
manually to demonstrate the option as well. For the manually added variable, the feature for show-
ing a single variable on the page was also demonstrated to verify if the entered target is correct.
Furthermore, in contrast to scenario 1, the export was now presented as a zip file containing all
page objects, as here multiple files are required.

Enhancing Page Object Maintainability

66/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 7. Evaluation

7.1. Evaluation process

Scenario 3

Short description:

I want to check if there are any invalid paths on the
page and adapt them

Requirements covered:

R1, R2, R3, R4, R5, R6, R7

Current situation (Pre condition):

- The test fails on the start page in the logged-in state
- I do not know, if and which of the given paths on the
page object are invalid

Expected outcome (Post condition):

- The invalid path of the page object is corrected
- The test runs and succeeds

Steps definition:

1) In POGito I open the page object file for the start
page in the logged-in stage

2) I log myself in to the application in the browser
and navigate to the start page

3) I click on verify variables

4) I can see one entry marked as invalid

5) I click on the invalid entry, us the button “Select
target” and choose the correct target on the page

6) I export the given page object back to the original
place

7) I adapt the page objects methods via Git

8) I run the test and check that it succeeds

The focus of this scenario lies in the evaluation of invalid variables. Therefore, the feature of
POGito providing an overview of the states the variables are in (found/not found) is used to iden-
tify invalid variables. After finding the invalid variable, it was also shown how the variable can be
updated through the tool either by selecting it or by manually entering the new value. Lastly, the
"Copy to clipboard" feature was presented, which the page object could be easily copied back to

the IDE with.

Enhancing Page Object Maintainability

67/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation

7.1. Evaluation process

Scenario 4

Short description:

I want to adapt a path on the start page

Requirements covered:

R1, R2, R4, R6, R7 (partly)

Current situation (Pre condition):

- The test runs successfully
- I am not satisfied with the selected path of the menu
item

Expected outcome (Post condition):

- I have adapted the path of the menu item
- The test still runs

Steps definition:

1) I check that I am still on the main page in logged-in
state in POGito as well as in the browser

2a) I change the path by using the dropdown menu
OR

2b) I change the path manually

3) I check if the path is valid by finding the element
on the page

4) I export the page objects and fix their methods in
Git

5) I run the test to make sure the test still succeeds

As the tests are now succeeding, this scenario deals with modifying the page object to the users’
needs. During this scenario, the expert was presented with the options to change the target of an
element using either the text field to manually enter the new target or to use predefined values from
POGito to select from through the dropdown menu.

Enhancing Page Object Maintainability

68/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation

7.1. Evaluation process

Scenario 5

Short description:

I want to check if all variables are required on the start
page

Requirements covered:

R1, R2, R4, R6, R7 (partly), R8

Current situation (Pre condition):

- The test runs

- Sonar gives me a message that two variables are un-
used

- I am not sure if I still need these variables

Expected outcome (Post condition):

- I have found out that I do not need both variables in
my test

- I have removed the first variable from the page ob-
ject

- I have commented the second variable on the page
object

- The test still succeeds

Steps definition:

1) I check that I am still on the main page in a logged-
in state in POGito as well as in the browser

2) I click on ‘Show all variables’ on the page

3) I find out that two variables are not needed by my
tests

4) I remove one variable via POGito, as will not use
it in the near future

5) I comment one variable out via POGito, as I expect
to use it in the near future

6) I export the page objects and fix their methods in
Git

7) I run the test to make sure the test still succeeds

The last scenario also focused on the modification of variables on a given page object. In this
case, the variables were either deleted or commented out to not include them in the evaluation of
POGito or in the exported page object in case of the deleted variable.

Combining all scenarios, each requirement described in section 4.2 was covered at least once in
order to evaluate them in the questionnaire. Figure 7.2 provides an overview of which scenario
covered which requirement. A green cell means that the requirement was covered in this scenario,
a red cell shows that the requirement was not covered in the scenario, a yellow cell means that a
requirement is partly covered in this scenario.

Enhancing Page Object Maintainability

69/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

Chapter 7. Evaluation 7.2. Threats to validity

R1: Reuse of existing page objects

R2: Maintaining only relevant page objects

R3: Overview of multiple page objects

R4: Maintaining only relevant variables

R5: DOM identification

R6: Adding and modifying variables of page objects

R7: Overview of variables and their paths validity

R8: Display page object variables on page

Figure 7.2: Scenarios and the defined requirements they address

7.2 Threats to validity

This section deals with the treads to validity of this evaluation which should be taken into account
when reading about the results.

Number of participants

For the given evaluation, only five experts were asked to provide feedback to the prototype due to
time limitations of a master thesis. While this allows for answering the questions, evaluating the
chosen requirements and gathering further requirements, it does not allow for providing a wider
overview of different needs software testers have to an application as described.

No expert interaction

As already described before, the goal of the evaluation was to verify the requirements without the
interaction of a user to prevent usability problems having an effect on the results. This results in
a missing personal opinion of the experts relating to the usage of the tool, which might have an
impact on the result or extend it further.

Predefined web application

The provided web application served well for the demonstration purposes and was chosen as it
included all relevant elements of a general web application. However, due to the wide variety of
web application frameworks and implementation styles, the prototype might or might not work on
these applications. The results of the evaluation can only be seen in the context of this specific
application and need further evaluation on different other pages.

Predefined test suite and scenarios

Even though the test suite has been designed to be representative for common test automation
cases, the scenarios were held general and chosen on a common base. Experts might have test
suites or page objects which do not work as shown in the evaluation. While this is should not
have an impact on the results regarding the requirements, testers might have further, more project-
specific, requirements to add.

Enhancing Page Object Maintainability 70/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation 7.3. Evaluation results

7.3 Evaluation results

Based on the interviews with the experts as described in subsection 7.1.4, this section will now
give an overview of the results received. Before discussing the feedback on the prototype, the
results of the questionnaire asked before the demonstration will be discussed in order to provide
an overview on the experts.

7.3.1 Results of the pre-demonstration questionnaire

The goal of the first question in the questionnaire was to gain a general overview on the interviewee
and to decide whether or not the person can be called an expert in the field. The experts provided
insights into their daily work life, the projects they are currently working on and projects which
have been already finished. While two of the five experts are full-time software testers, the other
three are also software developers but with a strong relation to testing. This relation is shown as
even though they are developers in their project, they also play major roles in the project’s testing
part. Furthermore, it should be noted that interviewees mentioned a very broad usage of page
objects. The systems tested by the experts ranged from Java and Selenium tests over Angular web
applications to a strong mobile background using Appium for tests. Based on that, not every expert
could use the prototype in their current project, however, the requirements could be evaluated as
the general concept could easily be adapted. On average, the experts rated their experience with
page objects with 3,4. Based on that rating and the fact that the interviewees have multiple years of
experience in the topic of software testing with page objects, all of them could be seen as experts
in the field and therefore relevant for the evaluation.

When talking about the way page objects are currently maintained and tools used for the main-
tenance, the most common answer was the manual interaction by the tester or developer. Most
adaptions are made using the browsers integrated developer tools by inspecting the DOM tree,
picking the correct target and modifying the page object manually. One expert, whose develop-
ers are also maintaining the page objects due to the size of the team, also mentioned that as the
developer writes the code on the web page, the correct target can be easily chosen without the
need of much inspection. However, some tools are also used, especially for enhancing the targets
to be more robust. One mentioned tool is the ChroPath browser extension which automatically
generated paths for the user. Another expert mentioned an adapted reporting tool which generates
reports in a way that invalid paths can easily be detected by the testers in case a test fails.

The experts were also asked to define problems they currently face when using the page object
pattern. The answers can be split into two main categories: social and knowledge problems on
the one hand and technical problems on the other. When talking about the social and knowledge
aspect, one interviewee mentioned a missing convention for designing page objects. Therefore
the expert often encounters different page object styles, making it hard to understand the structure
and maintain it further. The same expert also mentioned that page objects are often implemented
more than once due to missing communication which also leads to problems when maintaining
them, as all classes of the page need to be found in the project. Too much logic in the page
object is also a problem encountered in the daily routine. On the technical side, the problems
mentioned were similar to the ones already discussed in the problem description and experts often
named the dynamism of web pages — sometimes in a relation to specific web frameworks — as the
main problem when designing them. A not yet discussed problem experts face are complex web
pages which also need to be designed in the page objects. These design process includes either
inheritance of the objects or defining sub-components of the web page as single page object such
that the test uses multiple ones. While this allows for easily covering complex web pages, this also
makes the maintenance of page objects harder.

Enhancing Page Object Maintainability 71/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation 7.3. Evaluation results

The last question asked before the demonstration had its focus on how often the page objects need
to be maintained and how often they are completely rewritten. For simplicity, the interviewee
talked about their current project and its characteristics, which resulted in two different groups of
answers as some projects were in the initial development phase and some already in the mainte-
nance or enhancement phase. For those in the initial development phase, experts mentioned that
the maintenance of their page object consists of adding functionality to them such that a small
subset is maintained very often, but almost no recreation of them is needed. For those in later
phases of development, again two groups could be identified. One group mainly maintained their
page objects by updating their files and targets once they change and only recreated them after
major changes while the other group of experts mainly recreated their page objects from scratch
once some of the paths in it became invalid. One reason for this behavior as mentioned by an
expert is the long interval between the updates — this expert talked about maintaining them mostly
once a year — requiring a lot of adaptions.

7.3.2 Requirement relevance

This subsection focuses on the defined requirements and their relevance to the experts. Question
14 of the questionnaire asked for the usefulness of the given features in POGito, which were based
on the defined requirements. Each bar in figure 7.3 represents the mean of the results for the
mentioned question. They can also be found above the bar in textual form. For each question, a
number between 1 (not useful) and 4 (very useful) was requested from the interviewee. It should
be noted that even though the prototype might not support the programming language or page
objects of the experts, the interviewee was asked to answer the questions based on the relevance
for them in general.

As visualized in figure 7.3, almost all features — and therefore also the defined requirements — are
considered relevant for a tool supporting the page object maintenance. Except one question every
other one was rated in their relevance with at least 3 out of 4 points on average.

Question 14.5, which focused on the requirement R8 "Displaying all found variables on a page",
was rated to be the least relevant one with a mean of 2,2. One expert, for example, mentioned
the missing relation from the variable to the highlighted element on the web page. Having many
elements in a page object, this would result in a massive amount of highlighted elements, which
would give no information to the user anymore. However, the experts saw a potential in the feature
when adapted, e.g. when providing an additional textual information to the object.

The second lowest-rated question was Q14.7 — with requirement R3 as base — which focused on
the usage of multiple page objects at the same time in the tool. The mean rating of this question
was 3 out of 4. Even though this represents a good result in the rating scale, it is low in contrast to
the other ratings. One comment on this requirement was the missing link between the page object
and the browser state — requiring to know which page object expects which web page. Based on
this problem, switching page objects in the tool also requires the effort of knowing which state is
required and how to get there. The expert suggested putting the URL or state in the page object so
that the tool can interpret it in order to switch the web page in the browser to the given state.

When asked for the most appealing feature of POGito — which was done in question 15 — the
opinion of the experts split. There was only one feature, the verification of variables, which
was chosen twice. The other features chosen were import/export, easy selection of a path and
displaying of all variables on the page. It should be noted, that even though two experts chose the
same feature, this can also be seen as a coincidence. To receive a more accurate result for this
question, more experts would be needed.

Overall, all defined requirements were mentioned to be relevant and important to the experts,
hence they can be seen as confirmed.

Enhancing Page Object Maintainability 72189

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation 7.3. Evaluation results

3.8
3.6 3.6
3.5 |

Relevance
w0

b
B

wodxgniodwy 1410 |

JOI ® ym so[qertes Suppy:g 10 |

1ND ur sa[qerrea Jurduey) €410

J[qerrea o3urs Aefdsiq H 10 |
so[qeLreA [e Aerdsiq :Sv10 |_J

So[qeLIeA AJLIOA 19'H [0 |

s100[qo oSed ordnN £ 10

Figure 7.3: Relevance for the given feature between 1 (not relevant) and 4 (very relevant)

7.3.3 Feedback on the prototype and its functionality

In contrast to the previous section where features were rated based on a scale, this section will
discuss the general opinion of the experts on the prototype, its benefits and drawbacks and whether
or not the tool for page object maintenance would help in their daily work.

One main goal of this thesis is to enhance the current situation testers face when using page objects.
When the experts were asked whether or not the prototype would enhance their daily routines, 4
out of 5 experts answered "yes". The one expert answering "no" on this question pointed out that
the current concept how the tool is handling page objects is not yet ready for use in their project,
however, the general idea is interesting. This expert further mentioned that the chosen approach
of POGito to export the paths using the annotations is too static and would cause problems in their
project. On the other side, one expert mentioned that every tool which supports the maintenance is
a great help in contrast to manually editing files. Finally, it should be mentioned that, when some
experts answered yes, they referred to the general concept of the tool and not to the support for
their current project.

Even though the experts found the prototype helpful in their daily routines, only 2 experts would
see the prototype as solving their problems mentioned before. The main reasons for this are
missing features essential for them in order to replace current approaches. The feature missed
most is explicit support for object inheritance or page objects defining only a subset of a page.
Further missing features are the lack of support in programming languages, other page object
styles and mobile page objects for experts working on mobile applications. The tool was seen as
a good starting point for new projects or new developers without much knowledge in the field, but

Enhancing Page Object Maintainability 73/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 7. Evaluation 7.3. Evaluation results

4
4 [— -
w 3.5 3.4 3.4 N
q) — —
2
S
a1
= 3| *
=
2.5 -
2.2
[D\ [[
Q10: Intuitiveness Q11: Timesaving Q12: Interest Q13: Recommendation

Figure 7.4: The mean value of the answers given by the experts on the defined question from 1
(most negative option) to 4 (most positive option) when asked about POGito

to have too little functionality to support advanced projects. Some experts also did not like the
many steps required to interact with the application when using the import and export features or
validation and would prefer a more automated, integrated solution for their project either via the
IDE or via source code management. When asked if the tool could handle the experts’ project
regarding the size and complexity of their page objects, another downside mentioned was the
manual navigation in the page. One expert, for example, mentioned that they often do not know
which page objects are used for this specific page and state and that a manual interaction in the
browser would be very hard. Consequently, an automatic state change when changing between
page objects would be preferred. The last question regarding the enhancement for the experts was
question 11, which asked on a scale from 1 (no time saved) to 4 (much time saved), how much
time the expert would save in their daily work using the prototype instead of current approaches.
As shown in the second bar from the left in figure 7.4, the mean was 2.2, meaning that not much
time would be saved. This low number resulted from the previously mentioned fact that for most
experts the tool would not be usable in their current setting due to the prototypical state. However,
the number also shows that, though little, some time can be saved with the chosen approach even
in the current state and that an adaption to the project’s requirement would enhance it even further.

Question 10 tried to evaluate the user interface and concept of POGito in order to also find down-
sides in the developed prototype itself without the background of requirements. This question,
therefore, asked the experts how intuitive POGito is seen by them on a scale from 1 (not intu-
itive) to 4 (very intuitive). The mean of the result can again be seen in figure 7.4. The mean of 4
clearly shows that all experts found the tool very intuitive and liked the way the user interface was
designed and how the user could interact with it.

In order to evaluate the general interest on a tool like the one developed in this thesis, the intervie-
wees were asked for that in question Q12 and their likelihood for endorsements of the prototype to
other colleagues in the field in question Q13. The means of these two questions can also be found
in figure 7.4 and are for both answers 3,4. However, these means might imply to both be equally
answered. While the first question, asking for the interest in integrating the prototype in their daily
routines, only contained answers with 3 and 4, the second question, asking for a recommendation
to other colleagues, also included a rating of 2. This rating of 2 originated due to the fact that the
prototype is for the expert not yet ready for further usage.

Enhancing Page Object Maintainability 74789

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Chapter 7. Evaluation 7.3. Evaluation results

Overall, the presented prototype went down very well on all experts and received positive feed-
back. As the prototype was built based on the defined requirements, those can be seen as approved
and relevant for the experts, whereas some might be more relevant in their daily work than others.
Especially for young software testers, the prototype would be a benefit. However, the prototype
is not yet considered ready for production. Adaptions required on the prototype as mentioned by
the experts are a better integration to the project, wider support of programming languages and
page object styles. These mentioned key factors for the experts can be seen as future work on this
topic.

Enhancing Page Object Maintainability 75/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 8. Conclusion

8 Conclusion

This chapter concludes this thesis by giving a short summary of each chapter along with a recap of
the answered research questions in section 8.1. Following on that, section 8.2 will then recommend
future work topics based on the conducted evaluation.

8.1 Recap

The thesis started with an introduction to a problem software testers face when using the page
object pattern in their system level tests. The main drawback of the page object pattern is that even
though page objects should enhance the maintainability of software tests by providing a layer
between test and the system under test, it often requires a lot of additional effort to maintain them
due to very static element identification. In order to solve this problem, chapter 1 defined three
research questions, which were answered throughout this thesis and based on which the current
situation should be enhanced.

Chapter 2 emphasized the relevance for software testing and the automation of it and provided
further information on the field. This information included different test levels and test types along
with general knowledge required to understand the chapters following on that. The chapter ended
by explaining user interface testing, identification methods for elements in the user interface and
by describing the page object pattern, a pattern commonly used in model-based integration testing.

The first research question was answered in chapter 3 when different available solutions were
discussed. While many solutions could be found during the research, none of the tools provided
a maintainability aspect like reusing existing page objects. However, some of the tools already
included functionality enhancing the general workflow of a software tester.

Based on this functionality, chapter 4 then answered the second research question by defining
requirements to a tool which enhances the current situation of software testers with respect to
maintainability. Before these requirements were defined, the term maintainability and its relevance
for a software developer was also discussed in this chapter.

Using this list of requirements and further relevant functionality from the state of the art tools,
a prototype was developed. The development was described both in chapter 5, where the basic
concept of the tool was defined along with user interface mock-ups and in chapter 6, where the
implementation process of the prototype called POGito was described and code-samples provided
for better understanding. As a result, a browser extension for Chrome was developed, which tester
could import and export their page objects, validate their paths and modify their variables with.

Chapter 7 then answered the third research question by conducting an expert interview with soft-
ware testers. The process of the expert interview was explained in this chapter along with infor-
mation about the conducted evaluation and the threats to validity which might have an effect on
the result of it. Finally, the results of the evaluation were presented. These results were overall
very positive and all of the experts liked the idea of the tool. A general benefit of the prototype
was seen especially in a reduction of time resources while increasing the maintenance aspects of
page objects. The prototype was regarded to heavily support testers with little experience in the
field, but also to support experienced testers in certain tasks. However, also some drawbacks and
wishes were mentioned by the interviewee which can be seen as future work, either on the defined
requirements or the implemented prototype.

Enhancing Page Object Maintainability 76/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 8. Conclusion 8.2. Future work

8.2 Future work

The following subsections describe and propose future work on the implemented prototype based
on the experts’ feedback during the interview or found to be relevant while writing this thesis.
It should be noted that some future work proposals might stand in conflict with other ones, as
different project structures might have different additional requirements to the tool.

8.2.1 Better source code integration

One drawback for the experts was the manual interaction between POGito and the source code
when maintaining it. Future work on the tool should focus on a better integration with the page
object files. This could be done, for example, by moving the browser extension to an IDE plugin,
as already discussed in chapter 5 but discarded due to time reasons. This integration to the IDE
could also include a functionality mentioned by an expert: continuous evaluation. When working
on the project and using the plugin, the paths of the page objects could be evaluated in the IDE
throughout the process automatically. This would allow for easily detecting wrong paths while
working on or executing tests.

Another approach which could support a better integration would be to use a project file and
provide additional information — like URL or comments to the page object — in POGito. This
project file could be synced via a version control system and reused by every developer in the team,
allowing additional convenience when using the tool. By doing so, the browser could navigate to
the correct page automatically, removing or at least reducing manual interaction with the web
browser.

8.2.2 Wider range of programming languages

The current prototype only supports Java as a language for import and export. While Selenium
is widely seen as the de-facto standard by the experts, different programming languages are used
in production and required in daily life. Especially JavaScript, due to frameworks like Angular or
React, should be supported by the tool.

8.2.3 Method maintenance

In the current implementation of POGito, methods are not part of the import and export of page
objects. This support, in addition to validation or adaption of the variables in the methods, or even
method support in the tool would be a massive improvement for experts, as mistakes can happen
when merging the old page object with the new, maintained, one.

8.2.4 Support for different page object formats

A driving factor for a tool supporting the maintenance process of page objects is that the page
object can be parsed by the tool. As the interview has shown, different page object styles are used
in projects, resulting in a no-go for the tool when the project’s page object style is not supported.
Some of the most important style cases which are currently not supported by POGito but relevant
based on the answers of the experts are the following:

e Page object inheritance: Even though POGito implicitly supports the inheritance of page
objects — the user simply imports both files and only works on a subset of it — better support
for object inheritance can be seen as future work.

Enhancing Page Object Maintainability 77189

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Chapter 8. Conclusion 8.2. Future work

e In-line and dynamic paths: Some experts talked about their page objects mainly using
in-line paths due to various reasons. Therefore, support for page objects using in-line or
even dynamic paths should be evaluated for the tool.

e Annotations: One expert mentioned custom annotations used in his page objects as well. In
order to preserve the content of page objects, the tool should at least reuse these annotations
in the export.

e Comments: Similar to annotations, custom comments in page objects should also be in-
cluded in the export after modification or supported to be maintained by the tool as well.

Taking the different programming languages into account, the style might also need to be evalu-
ated and adapted to these programming languages, which might describe page objects completely
differently.

8.2.5 Mobile support

Some experts mentioned page objects not only in different programming languages but also in
other contexts like mobile applications. While hybrid apps could potentially be evaluated in the
prototype, the aspect of native mobile applications has not been taken into account when designing
the tool. Future work on this topic can also focus on the mobile part of page objects and should
evaluate how these can best be supported by a tool like POGito.

Enhancing Page Object Maintainability 78/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 8. Conclusion

Bibliography

References

[6]

[7]

[9]

[15]

[16]

[21]

[22]

[23]

[26]

[27]

(28]

[29]

[30]

[32]

David Arthur and Sergei Vassilvitskii. ,,K-Means++: The Advantages of Careful Seeding*.
In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA ’07. New Orleans, Louisiana: Society for Industrial and Applied Mathematics, 2007,
1027-1035. 1SBN: 9780898716245.

Paul Baker et al. Model-Driven Testing: Using the UML Testing Profile. Berlin, Heidelberg:
Springer-Verlag, 2007. ISBN: 3540725628.

International Software Testing Qualifications Board. Certified Tester - Foundation Level
Syllabus. 2018.

J. Collofello and K. Vehathiri. ,,An environment for training computer science students on
software testing®. In: Proceedings Frontiers in Education 35th Annual Conference. 2005,
T3E-6. pot: 10.1109/FIE.2005.1611937.

A. Contan, C. Dehelean, and L. Miclea. ,, Test automation pyramid from theory to practice®.
In: 2018 IEEE International Conference on Automation, Quality and Testing, Robotics
(AQTR). Los Alamitos, CA, USA: IEEE Computer Society, 2018, pp. 1-5. DOI: 10.1109/
AQTR.2018.8402699. URL: https://doi.ieeecomputersociety.org/10.1109/AQTR.2018.
8402699.

Elfriede Dustin, Jeff Rashka, and John Paul. Automated Software Testing: Introduction,
Management, and Performance. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1999. 1SBN: 0-201-43287-0.

Michael Felderer et al. ,,Model-Based Security Testing: A Taxonomy and Systematic Clas-
sification®. In: Softw. Test. Verif. Reliab. 26.2 (Mar. 2016), 119-148. 1SSN: 0960-0833. DOTI:
10.1002/stvr.1580. URL: https://doi.org/10.1002/stvr.1580.

Boni Garcia. Mastering Software Testing with JUnit 5: Comprehensive Guide to Develop
High Quality Java Applications. Packt Publishing, 2017. ISBN: 1787285731.

Boris Gloger. ,,Scrum®. In: Informatik-Spektrum 33.2 (2010), pp. 195-200. 1SSN: 1432-
122X. poI1: 10.1007/s00287-010-0426-6. URL: https://doi.org/10.1007/s00287-010-0426-
6.

Dorothy Graham and Mark Fewster. Experiences of Test Automation: Case Studies of Soft-

ware Test Automation. 1st. Addison-Wesley Professional, 2012. ISBN: 0321754069, 9780321754066.

Dorothy Graham et al. Foundations of Software Testing: ISTQB Certification. Intl Thomson
Business Pr, 2008. 1SBN: 9781844803552, 9781844809899.

Thomas Grechenig. Softwaretechnik: mit Fallbeispielen aus realen Entwicklungsprojekten.
Pearson Studium, 2010.

Maxim Gromov et al. ,,Model Based JUnit Testing“. In: June 2019, pp. 139-142. DOI:
10.1109/EDM.2019.8823472.

Dirk W. Hoffmann. Software-Qualitdit. 2nd ed. eXamen.press. Springer Vieweg, 2013. ISBN:
978-3-642-35699-5. pOI: 10.1007/978-3-642-35700-8.

Enhancing Page Object Maintainability 79/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1109/FIE.2005.1611937
https://doi.org/10.1109/AQTR.2018.8402699
https://doi.org/10.1109/AQTR.2018.8402699
https://doi.ieeecomputersociety.org/10.1109/AQTR.2018.8402699
https://doi.ieeecomputersociety.org/10.1109/AQTR.2018.8402699
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1007/s00287-010-0426-6
https://doi.org/10.1007/s00287-010-0426-6
https://doi.org/10.1007/s00287-010-0426-6
https://doi.org/10.1109/EDM.2019.8823472
https://doi.org/10.1007/978-3-642-35700-8

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 8. Conclusion

[33]

[34]

(36]
[37]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[51]

[55]

[56]

[57]

[59]

[60]

[71]

,IEEE Standard for Automatic Test Markup Language (ATML) Unit Under Test (UUT)
Description®. In: IEEE Std 1671.3-2017 (Revision of IEEE Std 1671.3-2007) (2018), pp. 1-
104. 1sSN: null. bo1: 10.1109/IEEESTD.2018.8337144.

,IEEE Standard Glossary of Software Engineering Terminology®. In: IEEE Std 610.12-
1990 (1990), pp. 1-84. por: 10.1109/IEEESTD.1990.101064.

ISO/IEC. ISO/IEC 9126. Software engineering — Product quality. ISO/IEC, 2001.

D. Janzen and H. Saiedian. ,,Test-driven development concepts, taxonomy, and future di-
rection®. In: Computer 38.9 (2005), pp. 43-50. bor: 10.1109/MC.2005.314.

Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley, 1990. 1SBN: 978-0-47031680-1.

Barbara A. Kitchenham. ,,Systematic Review in Software Engineering: Where We Are and
Where We Should Be Going®. In: Proceedings of the 2nd International Workshop on Ev-
idential Assessment of Software Technologies. EAST °12. Lund, Sweden: Association for
Computing Machinery, 2012, 1-2. 1SBN: 9781450315098. DOTI: 10.1145/2372233.2372235.
URL: https://doi.org/10.1145/2372233.2372235.

R. Lagerstedt. ,,Using automated tests for communicating and verifying non-functional re-
quirements®. In: 2014 IEEFE st International Workshop on Requirements Engineering and
Testing (RET). 2014, pp. 26-28.

M. Leotta et al. ,,Improving Test Suites Maintainability with the Page Object Pattern: An
Industrial Case Study*. In: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops. 2013, pp. 108-113. por: 10.1109/ICSTW.2013.19.

Peter Liggesmeyer. Software-Qualitit - Testen, Analysieren und Verifizieren von Software
(2. Aufl.) Spektrum Akademischer Verlag, 2009. 1SBN: 978-3-8274-2056-5. DOT1: 10.1007/
978-3-8274-2203-3. URL: https://doi.org/10.1007/978-3-8274-2203-3.

Johannes Link. Softwaretests mit JUnit: Techniken der testgetriebenen Entwicklung. 2nd ed.
Heidelberg: dpunkt, 2005. ISBN: 978-3-89864-325-2.

John J. Marciniak. Encyclopedia of Software Engineering. 2nd. USA: John Wiley &
Sons, Inc., 2002. ISBN: 0471210080.

Steve McConnell. Code Complete, Second Edition. Redmond, WA, USA: Microsoft Press,
2004. 1SBN: 0735619670, 9780735619678.

Glenford J. Myers and Corey Sandler. The Art of Software Testing. USA: John Wiley &
Sons, Inc., 2004. 1SBN: 0471469122.

M. Pezze and M. Young. Software testen und analysieren: Prozesse, Prinzipien und Tech-
niken. Oldenbourg, 2009. ISBN: 9783486585216.

B. Potter and G. McGraw. ,,Software security testing®. In: IEEE Security Privacy 2.5 (2004),
pp- 81-85. DOI: 10.1109/MSP.2004.84.

Rudolf Ramler and Klaus Wolfmaier. ,,Economic Perspectives in Test Automation: Balanc-
ing Automated and Manual Testing with Opportunity Cost.* In: Jan. 2006, pp. 85-91. DOIL:
10.1145/1138929.1138946.

T. RoBner. Basiswissen modellbasierter Test. dpunkt-Verlag, 2010. ISBN: 9783898645898.

Alexander Schatten et al. Best Practice Software-Engineering. Heidelberg, Germany: Spek-
trum Akademischer Verlag Heidelberg, 2010. ISBN: 978-3-8274-2486-0.

K. Sneha and G. M. Malle. ,,Research on software testing techniques and software automa-
tion testing tools“. In: 2017 International Conference on Energy, Communication, Data
Analytics and Soft Computing (ICECDS). 2017, pp. 77-81. po1: 10.1109/ICECDS.2017.
8389562.

Enhancing Page Object Maintainability 80/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1109/IEEESTD.2018.8337144
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/MC.2005.314
https://doi.org/10.1145/2372233.2372235
https://doi.org/10.1145/2372233.2372235
https://doi.org/10.1109/ICSTW.2013.19
https://doi.org/10.1007/978-3-8274-2203-3
https://doi.org/10.1007/978-3-8274-2203-3
https://doi.org/10.1007/978-3-8274-2203-3
https://doi.org/10.1109/MSP.2004.84
https://doi.org/10.1145/1138929.1138946
https://doi.org/10.1109/ICECDS.2017.8389562
https://doi.org/10.1109/ICECDS.2017.8389562

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 8. Conclusion

[72]

[73]

[74]

[77]

[80]

[81]

[82]

[89]

[90]

[91]

Andreas Spillner and Tilo Linz. Basiswissen Softwaretest: Aus- und Weiterbildung zum Cer-
tified Tester — Foundation Level nach ISTQB-Standard. dpunkt, 2019. 1SBN: 978-3-86490-
583-4.

Andrea Stocco et al. ,, APOGEN: automatic page object generator for web testing*. In: Soft-
ware Quality Journal (Aug. 2016). DOI: 10.1007/s11219-016-9331-9.

Andrea Stocco et al. ,,Clustering-Aided Page Object Generation for Web Testing®. In: June
2016. port: 10.1007/978-3-319-38791-8_8.

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2006. 1SBN: 0123725011.

M. Wahid and A. Almalaise. ,,JUnit framework: An interactive approach for basic unit test-

ing learning in Software Engineering®. In: 2011 3rd International Congress on Engineering
Education (ICEED). 2011, pp. 159-164. por1: 10.1109/ICEED.2011.6235381.

Dirk Wallerstorfer. ,,Improving maintainability with Scrum®. MA thesis. Austria: TU Vi-
enna, 2011.

Y. Wang, J. Yao, and X. Yu. ,,Information Security Protection in Software Testing®. In: 2018
14th International Conference on Computational Intelligence and Security (CIS). 2018,
pp. 449—452. port: 10.1109/CIS2018.2018.00106.

Dr. Pankaj Yadav, Umesh K. Yadav, and Surbhi Verma. ,,Software Testing : Approach to
Identify Software Bugs **. In: 2012.

B. Yu, L. Ma, and C. Zhang. , Incremental Web Application Testing Using Page Object*.
In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb).
2015, pp. 1-6. por: 10.1109/HotWeb.2015.14.

Markus Zoffi. ,,Entwurf und Implementierung eines GUI basierten RCP Frameworks zur
Spezifikation und Modellierung von Testfillen zur Optimierung der White-Box-Komplexitit
bei hoher Software-Volatilitit. MA thesis. Austria: TU Vienna, 2014.

Online References

[1]

(2]

(3]
[4]
[5]
[8]
[10]

[11]

[12]
[13]
[14]

Android Espresso. URL: https://developer.android.com/training/testing/espresso (visited on
01/26/2020).

Annotations in Java Documentation. URL: https://docs.oracle.com/javase/tutorial/java/
annotations/index.html (visited on 04/01/2020).

APOGEN. URL: http://sepl.dibris.unige.it/ APOGEN.php (visited on 01/26/2020).
APOGEN GitHub. URL: https://github.com/tsigalko18/apogen (visited on 01/26/2020).
Appium. URL: http://appium.io/ (visited on 11/29/2019).

Bamboo. URL: https://www.atlassian.com/software/bamboo (visited on 11/29/2019).

Browser Extension Community Group. URL: https://browserext. github.io/ (visited on
05/02/2020).

Browser Extensions Mozilla. URL: https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions (visited on 05/02/2020).

Chrome APIs. URL: https://developer.chrome.com/apps/api_index (visited on 05/02/2020).
Chrome extensions. URL: https://developer.chrome.com/extensions (visited on 05/02/2020).

Chrome incompatibilities Mozilla. URL: https://developer.mozilla.org/en-US/docs/Mozilla/
Add-ons/WebExtensions/Chrome_incompatibilities (visited on 05/02/2020).

Enhancing Page Object Maintainability 81/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1007/s11219-016-9331-9
https://doi.org/10.1007/978-3-319-38791-8_8
https://doi.org/10.1109/ICEED.2011.6235381
https://doi.org/10.1109/CIS2018.2018.00106
https://doi.org/10.1109/HotWeb.2015.14
https://developer.android.com/training/testing/espresso
https://docs.oracle.com/javase/tutorial/java/annotations/index.html
https://docs.oracle.com/javase/tutorial/java/annotations/index.html
http://sepl.dibris.unige.it/APOGEN.php
https://github.com/tsigalko18/apogen
http://appium.io/
https://www.atlassian.com/software/bamboo
https://browserext.github.io/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.chrome.com/apps/api_index
https://developer.chrome.com/extensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 8. Conclusion

[17]

[18]

[19]

[20]

[24]

[25]

[31]
[35]

[38]
[39]
[40]

[49]

[50]
[52]

[53]
[54]
[58]
[61]
[62]

[63]
[64]
[65]

[66]

[67]

[68]

[69]

Content Scripts Chrome extensions. URL: https ://developer. chrome . com/extensions /
content_scripts (visited on 05/02/2020).

CSS Selectors. URL: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS _Selectors
(visited on 03/28/2020).

Desktop Browser Market Share April 2020. URL: https://netmarketshare .com/browser-
market-share.aspx (visited on 05/30/2020).

Quick Miriam Doughty-White Pearl. Million Lines of Code. URL: https://informationisbeautiful.
net/visualizations/million-lines-of-code/ (visited on 11/29/2019).

Getting Started Tutorial Chrome extension. URL: https://developer.chrome.com/extensions/
getstarted (visited on 05/02/2020).

GitLab CI. URL: https://about. gitlab.com/product/continuous - integration/ (visited on
11/29/2019).

Handlebars. URL: https://handlebarsjs.com/ (visited on 05/12/2020).

IntelliJ Compare with clipboard. URL: https://blog.jetbrains.com/phpstorm/2013/02/
comparing-files-and-folders-within-your-ide/ (visited on 04/26/2020).

Jenkins. URL: https://jenkins.io/ (visited on 11/29/2019).
JjUnit. URL: https://junit.org/ (visited on 11/29/2019).

JjUnit Assertions. URL: https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/
Assertions.html (visited on 11/29/2019).

Message Passing Chrome extensions. URL: https://developer. chrome.com/extensions/
messaging (visited on 05/02/2020).

Mustache. URL: https://mustache.github.io/ (visited on 05/12/2020).

New flaw discovered on Boeing 737 Max, sources say. URL: https://edition.cnn.com/2019/
06/26/politics/boeing-737-max-flaw/index.html (visited on 11/29/2019).

Page Modeller. URL: https://github.com/danhumphrey/page-modeller (visited on 01/30/2020).
PageObject-10. URL: http://pageobject.io/ (visited on 01/26/2020).

React. URL: https://reactjs.org/ (visited on 05/12/2020).

Selenium. URL: https://selenium.dev/ (visited on 11/29/2019).

Selenium Code Generator. URL: https://github.com/naukri-engineering/SeleniumCodeGenerator
(visited on 01/26/2020).

Selenium Grid. URL: https://selenium.dev/documentation/en/grid/ (visited on 11/29/2019).
Selenium IDE. URL: https://github.com/SeleniumHQ/selenium-ide (visited on 11/29/2019).

Selenium IDE Github. URL: https://github.com/SeleniumHQ/selenium- ide (visited on
05/12/2020).

Selenium JavaDoc WebElement. URL: https://www.selenium.dev/selenium/docs/api/java/
org/openqga/selenium/WebElement.html (visited on 03/31/2020).

Selenium Page Object Generator. URL: https://chrome . google . com/webstore / detail /
selenium-page-object-gene/epgmnmcjdhapiojbohkkemlfkegmbebb (visited on 01/26/2020).

Selenium Page Object Generator GitHub. URL: https://github.com/rickypc/selenium-page-
object-generator (visited on 01/26/2020).

Selenium WebDriver. URL: https://selenium.dev/documentation/en/webdriver/ (visited on
02/07/2020).

Enhancing Page Object Maintainability 82/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://developer.chrome.com/extensions/getstarted
https://developer.chrome.com/extensions/getstarted
https://about.gitlab.com/product/continuous-integration/
https://handlebarsjs.com/
https://blog.jetbrains.com/phpstorm/2013/02/comparing-files-and-folders-within-your-ide/
https://blog.jetbrains.com/phpstorm/2013/02/comparing-files-and-folders-within-your-ide/
https://jenkins.io/
https://junit.org/
https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html
https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/extensions/messaging
https://mustache.github.io/
https://edition.cnn.com/2019/06/26/politics/boeing-737-max-flaw/index.html
https://edition.cnn.com/2019/06/26/politics/boeing-737-max-flaw/index.html
https://github.com/danhumphrey/page-modeller
http://pageobject.io/
https://reactjs.org/
https://selenium.dev/
https://github.com/naukri-engineering/SeleniumCodeGenerator
https://selenium.dev/documentation/en/grid/
https://github.com/SeleniumHQ/selenium-ide
https://github.com/SeleniumHQ/selenium-ide
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/WebElement.html
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/WebElement.html
https://chrome.google.com/webstore/detail/selenium-page-object-gene/epgmnmcjdhapiojbohkkemlfkegmbebb
https://chrome.google.com/webstore/detail/selenium-page-object-gene/epgmnmcjdhapiojbohkkemlfkegmbebb
https://github.com/rickypc/selenium-page-object-generator
https://github.com/rickypc/selenium-page-object-generator
https://selenium.dev/documentation/en/webdriver/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 8. Conclusion

[70]

[75]
[76]
(78]
[79]

[83]

[84]

[85]

[86]

[87]

[88]

Selenium WebDriver Elementor Toolkit. URL: https://github.com/sergueik/SWET (visited
on 01/26/2020).

TestNG. URL: https://github.com/cbeust/testng (visited on 11/29/2019).
TIOBE. URL: https://www.tiobe.com/tiobe-index/ (visited on 04/07/2020).
W3. URL: https://www.w3.0rg/TR/2015/REC-dom-20151119/ (visited on 01/26/2020).

W3Schools XPath Nodes. URL: https://www.w3schools.com/xml/xpath_nodes.asp (visited
on 10/28/2019).

WebExtension browser API Polyfill. URL: https://github.com/mozilla/webextension-polyfill
(visited on 05/02/2020).

WebExtension browser polyfill sendMessage. URL: https://developer.mozilla.org/en- US/
docs/Mozilla/Add-ons/WebExtensions/APl/runtime/sendMessage (visited on 05/02/2020).

WTF PageObject Utility. URL: https://github.com/wiredrive / wtframework (visited on
01/26/2020).

XML Path Language (XPath) 3.0. URL: https://www.w3.org/TR/xpath- 30/ (visited on
10/28/2019).

XPath and CSS selector comparison. URL: https://johnresig.com/blog/xpath-css-selectors/
(visited on 03/28/2020).

Xpath cheatsheet. URL: https://devhints.io/xpath (visited on 10/28/2019).

Enhancing Page Object Maintainability 83/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/sergueik/SWET
https://github.com/cbeust/testng
https://www.tiobe.com/tiobe-index/
https://www.w3.org/TR/2015/REC-dom-20151119/
https://www.w3schools.com/xml/xpath_nodes.asp
https://github.com/mozilla/webextension-polyfill
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/runtime/sendMessage
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/runtime/sendMessage
https://github.com/wiredrive/wtframework
https://www.w3.org/TR/xpath-30/
https://johnresig.com/blog/xpath-css-selectors/
https://devhints.io/xpath

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Appendix A. Appendix

A Appendix

A.1 Interview

Interview #__ Name:

Internal Notes:

Before the demonstration:

1) Please give an overview of your daily work. What is your job position? Which
test-types are most used by you? How are you dealing with page objects in your
tests? Which development process (agile, waterfall...) is most used when you are
testing?

2) On ascale from 1 to 4 - where 1 is no experience and 4 is expert level-, how would
you rate your experience with page objects?

1 2 3 4

3) Did you encounter any problems using page objects yet?
o No
o Yes — 3.1) Which problems did you encounter?

4) How are you currently maintaining your page objects?

5) Do you currently use any tools for maintaining page objects?
o No
o Yes — 3.1) Which?

6) On an average project you are working on, how often do you have to...
6.1) ... maintain (update) a small subset of your page objects?
6.2) ... maintain (update) almost every page object of the project?
6.3) ... replace page objects completely?

Page 1/3

Enhancing Page Object Maintainability

84/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Appendix A. Appendix A.l. Interview

Interview # Name:

After the demonstration:

7) Based on the demonstration, do you think the provided prototype can enhance your
daily work using page objects?
o Yes
o No — 7.1) Why not?

8) (If Yes on question 3): Based on the demonstration, do you think the provided
prototype can solve the problems you mentioned?
o Yes

o No — 8.1) Why not?

9) Based on the demonstration, do you expect that POGito can handle all your page
objects of a project and their variables in a convenient and clear way?
o Yes
o No — 9.1) Why not?

10) On a scale from 1 to 4 - where 1 is very hard and 4 is very easy-, how intuitive did
you find POGito?

1 2 3 4
11) On a scale from 1 to 4 - where 1 is no time saving and 4 is full-time saved -, how
much time of your daily routine when working with page objects could be saved when
working with POGito instead of your current approaches.

1 2 3 4

12) On a scale from 1 to 4 - where 1 is no interest and 4 is total interest -, how much
would you like to use POGito in your daily work with page objects?

1 2 3 4

13) On a scale from 1 to 4 - where 1 is no suggestion and 4 very likely recommendation-,
how likely would you recommend POGito to your colleagues?

1 2 3 4

14) Please rate the usefulness of the given feature from 1 to 4 (1 means not useful, 4
extremely useful):

o 14.1) Import/Export of page objects

1 2 3 4

Page 2/3

Enhancing Page Object Maintainability

85/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Appendix A. Appendix A.l. Interview

Interview # Name:

o 14.2) Adding new variables through a GUI based approach

1 2 3 4
o 14.3) Changing or removing variables through a GUI based approach

1 2 3 4

o 14.4) Displaying a single variable on the page, or giving information about its
existence

o 14.5) Displaying all found variables on the page

1 2 3 4
o 14.6) Verifying all variables of a page object for their existence

1 2 3 4
o 14.7) Support for maintaining multiple page objects at the same time

1 2 3 4

15) Which feature of POGito did you find the most appealing?

16) Are there any shortcomings in the implementation which you expect to be included in
a maintenance tool?
o No
o Yes — 16.1) Which?

17) Is there anything you would like to add?

o No
o Yes->17.1) What?

Page 3/3

Enhancing Page Object Maintainability

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Appendix A. Appendix

A.2. Scenario-Outline

A.2 Scenario-Outline

Background: | am a Developer new to the team. | was given a test case that navigates to the
address site in bugstore and changes it there. The test case is implemented using JUnit and

uses page objects for modeling each page in the application. However, this test case is
currently not working due to problems in the page object implementation.

Before | start with my task | make myself familiar with the Bug Store application.

POGito Use scenarios:

Scenario Number

1

Short Description

| want to add a missing element to the existing page object

Current situation

The test stops on the start page as an element is missing

Expected Outcome

| have added the required variable to the page object
The test runs and navigates to the login page

Step definition

| open POGito

On the startup page, | select “Using an existing page
object” and select the malfunctional page object in the file
chooser

| open a browser session in POGito and navigate to the
page

| click on ‘Show all variables’ on the page

| find out that the login button is not covered by the page
object

| add the menu button to the page object and name it
loginButton

| export the page objects and fix their methods in GIT

I run the test to make sure the test navigates to the login

page

Enhancing Page Object Maintainability

87/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Appendix A. Appendix

A.2. Scenario-Outline

Scenario Number

2

Short Description

| want to create a page object for the login page with variables for
the username-field, password-field and for the login button

Current situation

The test stops on the login page
| do not have a login page modeled as page object

Expected Outcome

| do have a login page modeled containing the required
fields

The test proceeds and navigates to the start page in the
logged-in state

Step definition

| create a new page object and name it ‘LoginPage’

| navigate to the login page in the browser

| add a variable for username via select of the element and
rename it username

| add a variable for password via select of the element and
rename it password

| add a variable for login-button manually by entering the
information and name it loginButton

| export both files to the test-suite and fix their methods in
GIT

I run the tests and check that it is not failing on the login
page anymore

Scenario Number

3

Short Description

I want to check if there are any invalid paths on the page and adapt

them

Current situation

The test fails on the start page in the logged-in state
I do not know, if and which of the given paths on the page
object are invalid

Expected Outcome

The invalid path of the page object is corrected
The test runs and succeeds

Step definition

)
)
)

@ N O

In POGito | open the page object file for the start page in
the logged-in stage

I log myself in to the application in the browser and navigate
to the start page

| click on verify variables

| can see one entry marked as invalid

| click on the invalid entry, us the button “Select target” and
choose the correct target on the page

| export the given page object back to the original place

| adapt the page objects methods via GIT

I run the test and check that it succeeds

Enhancing Page Object Maintainability

88/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Appendix A. Appendix

A.2. Scenario-Outline

Scenario Number

4

Short Description

| want to adapt a path on the start page

Current situation

e The test runs successfully
e | am not satisfied with the selected path of the menu item

Expected Outcome

e | have adapted the path of the menu item
e The test still runs

Step definition

1) | check that | am still on the main page in logged-in state in
POGito as well as in the browser

2a) | change the path by using the dropdown menu

OR

2b) | change the path manually

3) | check if the path is valid by finding the element on the
page

4) | export the page objects and fix their methods in GIT

5) Irun the test to make sure the test still succeeds

Scenario Number

5

Short Description

| want to check if all variables are required on the start page

Current situation

o The testruns
e Sonar gives me a message that two variables are unused
e | am not sure if | still need these variables

Expected Outcome

e | have found out that | do not need both variables in my test
e | have removed the variable from the page object
e The test still succeeds

Step definition

1) | check that | am still on the main page in a logged-in state
in POGito as well as in the browser

2) Iclick on ‘Show all variables’ on the page

3) | find out that two variables are not needed by my tests

4) | remove one variable via POGito, as will not use it in the
near future

5) | comment one variable out via POGito, as | expect to use it
in the near future

6) | export the page objects and fix their methods in GIT

7) | run the test to make sure the test still succeeds

Enhancing Page Object Maintainability

89/89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Contents
	Introduction
	Problem description
	Aim of work
	Methodological approach
	Structure of the thesis

	Fundamentals
	Software testing
	Relevance of software testing
	Definition
	Test levels
	Test types
	Implementation approaches
	Frameworks

	Test automation
	User interface testing
	Fundamentals of user interface testing
	User interface element identification
	The page object pattern

	State of the Art
	APOGEN
	APOGEN's steps
	Tool evaluation

	Page Modeller
	Selenium Page Object Generator
	SWET - Selenium WebDriver Elementor Toolkit
	Further findings
	WTF PageObject Utility Chrome Extension
	PageObject-IO
	Selenium Code Generator

	Motivation and requirements
	Quality characteristics and their relevance for page objects
	Requirements

	Prototype concept
	Prototype characteristics
	Application type

	Expected usage behavior and mock-ups
	Toolbar
	Project area
	Page object area

	Implementation
	Implementation basics
	Chrome extension basics
	WebExtension API Polyfill
	Selenium

	POGito
	POGito in general
	Code structure
	Selected implementations

	Evaluation
	Evaluation process
	Goal
	Participant characterization
	Evaluation environment
	Methodology
	Scenarios

	Threats to validity
	Evaluation results
	Results of the pre-demonstration questionnaire
	Requirement relevance
	Feedback on the prototype and its functionality

	Conclusion
	Recap
	Future work
	Better source code integration
	Wider range of programming languages
	Method maintenance
	Support for different page object formats
	Mobile support

	Bibliography
	References
	Online References

	Appendix
	Interview
	Scenario-Outline

