
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Clustering of Ethereum Smart
Contracts using the Graph

Database Neo4j

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschafts Informatik

eingereicht von

Milosh Davidovski

Matrikelnummer 01528513

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass.Prof. Monika di Angelo

Wien, 29. Juni 2020

Milosh Davidovski Monika di Angelo

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Clustering of Ethereum Smart
Contracts using the Graph

Database Neo4j

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Milosh Davidovski

Registration Number 01528513

to the Faculty of Informatics

at the TU Wien

Advisor: Ass.Prof. Monika di Angelo

Vienna, 29th June, 2020

Milosh Davidovski Monika di Angelo

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Milosh Davidovski

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. Juni 2020

Milosh Davidovski

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Im letzten Jahrzehnt hat der Begriff Blockchain aufgrund des Medienrummels um Bit-
coin, der ersten Kryptowährung, immense Popularität erlangt. Bald darauf wurde die
Blockchain-Technologie zu einer Inspiration für zusätzliche Anwendungen neben Kryp-
towährungen. Eine solche Anwendung sind Smart Contracts oder Programme mit dem
Ziel, die Vereinbarungen eines Vertrags automatisch und sicher ohne die Unterstützung ei-
ner zentralen Stelle auszuführen. Derzeit ist Ethereum die wichtigste Blockchain-Plattform
für Smart Contracts.

Smart Contracts im Ethereum-Netzwerk können Teil einer dezentralen Anwendung sein
oder als eigene Einheit existieren. Sie können durch eine externe Transaktion (User)
oder eine interne Transaktion (einen Smart Contract) ausgelöst werden. Angesichts
der Bedeutung und Sensibilität der Informationen und / oder Daten, mit denen Smart
Contracts täglich umgehen, ist es wichtig, ein besseres Verständnis dafür zu erlangen,
wie Smart Contracts tatsächlich funktionieren, welche Funktionen sie ausführen und wie
sie im Ethereum-Netzwerk miteinander verbunden sind.

In dieser Arbeit wird ein Ansatz für das Clustering von Smart Contracts auf Ethereum
hinsichtlich der gemeinsamen Funktionalität vorgeschlagen, das die Graphdatenbank
Neo4j und andere Visualisierungsmethoden und / oder –werkzeuge verwendet. Es werden
verschiedene Datensätze (Partitionen des kompletten Datensatzes an Smart Contracts
auf Ethereum), sowie zwei Clustering- Ansätze verwendet, um einen besseren Einblick in
die Funktionsweise von Smart Contracts zu erhalten und deren funktionale Ähnlichkeiten
zu verstehen.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

In the last decade, the term blockchain has gained immense popularity due to the media
hype surrounding Bitcoin, the first cryptocurrency. Soon after, blockchain technology
has become an inspiration for additional applications next to cryptocurrencies. One such
application is smart contracts, or programs with the aim to execute automatically and
securely the agreements of a contract without the support of a centralized authority.
Currently, the main blockchain platform for smart contracts is Ethereum.

Smart contracts in the Ethereum network may be a part of a decentralized application
or may exist as a single entity. They can be triggered by an external transaction (a user)
or an internal one (a smart contract). Considering the importance and sensitivity of the
information and/or data that smart contracts deal with on a daily basis, it is important
to gain a better understanding of how smart contracts actually work, what functions
they perform, and how they are connected in the Ethereum network.

In this thesis, an approach is proposed for clustering Ethereum smart contracts with
regard to the functionality they share by using the graph database Neo4j and other
visualization methods and/or tools. Different sets of data are used (partitions of the
total dataset of Ethereum smart contracts), as well as two clustering approaches, with
a goal of gaining a better insight into how smart contracts work and of understanding
their functional similarities.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 3
1.4 Methodology . 3
1.5 Structure of the Work . 8

2 Background 9

2.1 Blockchain Fundamentals . 9
2.2 Consensus algorithms . 10
2.3 Types of blockchains . 12
2.4 Properties of blockchains . 13
2.5 Ethereum and Smart Contracts . 14
2.6 Smart Contract Applications . 17

3 State of the Art 19

3.1 Graph analysis of blockchain platforms 19
3.2 Classification of smart contracts in the Ethereum network 22

4 Design 27

4.1 Challenges . 28
4.2 Architecture . 32

5 Implementation 41

5.1 Data Layer . 41
5.2 Business Logic Layer . 44
5.3 Presentation Layer . 52

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Results and Evaluation 55
6.1 Results . 55
6.2 Evaluation Setup . 59
6.3 Graph Analysis of Connected Components 63
6.4 Discussion . 78

7 Conclusion and Future Work 81
7.1 Summary and Contribution . 81
7.2 Discussion of Research Questions . 82
7.3 Limitations and Future Work . 83

Acronyms 85

List of Figures 87

List of Tables 89

Bibliography 91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

1.1 Motivation

Decentralized cryptocurrencies were first introduced by Satoshi Nakamoto (pseudonym)
in the paper: "A Peer-to-Peer Electronic Cash System" in 2008 [Nak08], with Bitcoin as
the first/original cryptocurrency. Nakamoto suggests a solution to the double-spending
problem without an intermediate centralized party, with the use of a public and distributed
ledger to store transactions. Although it is not clearly mentioned, this distributed ledger
will later be known as a blockchain, and this technology will find further usage outside of
cryptocurrencies.

Soon after, the idea of cryptocurrencies and blockchain technology went viral. The
beginning of the second generation blockchain technology was marked by the introduction
of Ethereum [But15a]. While Bitcoin can only support built-in cryptocurrency and
value transfer, Ethereum, is the first blockchain platform with a built-in Turing-complete
language, which allows users to write smart contracts and decentralized applications.

Smart contracts as a term were first used by Nick Szabo in 1996, in his paper [Sza96].
He describes smart contracts as "a set of promises, specified in digital form, including
protocols within which the parties perform on these promises". However, Szabos smart
contracts and the smart contracts introduced with the current development in the
blockcain technology, are not the same. The latter are not necessarily related to the
classical concept of a contract.

Cryptocurrency-based smart contract is a concept built on top of the blockchain technology.
They are computer programs that run on the network with the purpose of automating
the exchange of digital assets without the need for external trusted authority. That is
why another name of smart contracts is "self-executing contracts". The primary purpose
of smart contracts is to automate processes. Vitalik Buterin, the co-founder of Ethereum
describes smart contracts as "systems which automatically move digital assets according

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

to arbitrary pre-specified rules" [But15a]. However, the larger purpose of a blockchain
is to ensure immutability and decentralization. Immutability means that after a smart
contract is created, it cannot be changed or modified in any way. And decentralization
means that the nodes in the network are not dependent on a single master node, but
control is distributed among all nodes.

Currently, three main platforms exist for Smart Contracts, that have been applied on
top of the Blockchain, which include Bitcoin, NXT, and Ethereum [AH19]. Ethereum is
the major player among the smart contract platforms. So far, it has recorded more than
a billion of transactions, among them over 15 million of contract creations, and for that
reason, the Ethereum blockchain will be used for the purposes of this masters thesis.

Smart contracts deployed on the Ethereum blockchain may be part of a Decentralized
application (dApp). A dApp typically consists of a front-end that interacts with the
environment and a back-end that handles the business logic. Some dApps outsource
parts of the business logic to a smart contract.

1.2 Problem Statement

Although progress has been made, suitable information on how smart contracts are
actually used, which goals they achieve, and how contracts are connected and/or interact
with each other, in and out of the scope of a dApp, is scarce. Even when the blockchain
data is public, information on contract usage is not readily accessible, but rather has to
be extracted, distilled, and analyzed.

When the subject of smart contracts is addressed, Ethereum differentiates itself as the
leading platform for smart contracts, with billions of transactions recorded so far, among
them millions of contract creations [dAS19]. The blockchain itself, and the data it contains
is a far-reaching source of information, but the fact remains that it is not easily accessible,
and furthermore, it is growing continuously. It is safe to say that Ethereum and smart
contracts are still a fresh and actively researched topic [But15a]. Over the past few years,
numerous scientific publications have arisen, researching the topic. However, given the
complexity of the problem, it is not surprising that many questions, especially regarding
smart contracts, have remained open. This includes the usage of smart contracts in
the Ethereum environment with respect to the decentralized applications they help to
implement.

Many decentralized applications in the Ethereum ecosystem deal with sensitive infor-
mation on a daily bases. Areas that include such data are banking, insurance, health
care, real estate, legal services, notary services, tax records, digital identity management,
voting, authorship and intellectual property rights, and more. Considering the type of
data and information being passed around publicly on a decentralized network, and
the amount of trust a user needs to have in the security of the smart contracts, more
knowledge about the type of contracts and implementation is necessary.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Aim of the Work

In order to better understand the relationship between smart contracts and dApps,
a closer look at the functions that deployed contracts implement is needed. When
representing contracts as bipartite graphs where the contracts themselves are one group
of nodes with only connections to the second group of nodes, being the functions they
implement, graph algorithms can be leveraged in order to find structures in this particular
graph. The thesis aims at answering the following research questions:

• RQ1: Without prior knowledge about the contracts, which structures/ patterns
can be observed in the contract graph?

• RQ2: With prior knowledge about the contracts, which structures/ patterns can
be observed in the contract graph?

1.3 Aim of the Work

The overall aim of the work is to gain a better understanding of smart contracts in the
Ethereum ecosystem, regardless of whether they are a part of a decentralized application
or live as a single entity in the network. Furthermore, this thesis will be of service to the
continuous and ongoing work and research on the analysis of smart contracts and the
Ethereum blockchain.

In more detail, the expected results comprise the following two parts, corresponding to
the two research questions defined in the previous section:

• Without using prior knowledge, we expect to produce clusters of Ethereum smart
contracts with respect to the functionality they share. Depending on the clustering
approach chosen, clusters of different sizes and density are expected.

• When using prior knowledge, in the form of labeling known smart contracts, an
improvement regarding the quality of the clustering is expected. Smart contracts
that are known to be similar, or share some functionality are expected to gravitate
towards each other.

The two research questions, and their expected results, are similar. Meaning, that if
quality clustering is produced in the first part, when no knowledge is applied, clearer
and more concise results are expected for the second one.

1.4 Methodology

Given the complexity and sensitivity of the topic, two separate research methods will
be required to properly answer the research questions specified in section section 1.2, a
systematic literature review and a graph analysis of the smart contracts in the public
Ethereum network. In order to provide a better overview, the methodological approach
is split and listed below in several steps.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.4.1 Systematic Literature Review

The first step for a paper of this kind is to create a systematic literature review. Okoli in
[OS10] proposes a systematic literature method in information systems. This method is
comprised of four phases, which are explained in the following subchapters.

Planing

This phase includes specifying a purpose and designing a protocol of the review. The
first question that needs to be answered is why a literature review is needed, and what
is the purpose of conducting one [OS10]. The purpose also includes a draft of the
research questions the literature review will help answer. By protocol for the literature
the author of [OS10] means designing a roadmap towards the answers to the research
questions of a thesis. Creating a protocol is an imperative part of conducting a systematic
literature review and aims to minimize bias in the study by defining how the review will
be conducted [BKB+07].

In regards to this thesis, in this phase, the purpose of the systematic literature review
is two-fold. First, to gain more insight into the topic, as a relatively fresh and still
evolving area, as well as to provide the theoretical basis required for the completion
of this thesis. General literature research regarding smart contracts and blockchains is
needed to acquire more knowledge about the rather new fields of smart contracts and
blockchains, as well as literature research for topics outside of the area of cryptocurrency,
blockchain technology, and smart contracts, but still important for the completion of this
paper. Such topics include graph databases, clustering, and similarity algorithms. And
second, a more detailed approach is needed, in regards to smart contract analysis, analysis
of decentralized applications, and blockchain graph analysis. It is important to note
that the literature research will be primarily focussed on Ethereum, as the main smart
contract platform for this thesis. However, papers and readings on Bitcoin and other
blockchain platforms are also required, to further understand the blockchain technology
and smart contracts, and a comparison between the platforms. Hyperledger Fabric, Nem,
Stellar, and Waves are regarded as some of the best smart contract platforms [Dav20],
besides Ethereum, and present good candidates for this part of the research.

Selection

The selection phase includes the details of the literature review in regards to "applying
of practical screening" and "searching for literature" [OS10]. The former requires the
authors to be specific in which studies are to be included in the research and which are
to be disregarded without further examination. The later, however, need the authors to
be explicit in the details of the literature search.

In the second phase, in regards to this thesis, the selection process will be implemented
in the following manner:

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Methodology

• The database for the selection of academic articles and papers will be a combination
of ACM Digital Library, IEEE Xplore Digital Library, and Google Scholar.

• As a time frame for the selection of papers the years between 2013 and 2019 are
chosen because smart contracts as a technology on top of blockchain are a new
technology in the field of information systems.

• In the search for articles and papers, the following key words and phrases were
used: "Smart contracts", "Ethereum smart contracts", "Blockchain", "Smart con-
tracts in decentralized applications", "Smart contracts analysis", "Smart contracts
graph analysis", "Blockchain graph analysis", "Ethereum graph analysis", "Bitcoin
graph analysis", "Ethereum decentralized applications", "Decentralized applications",
"Blockchain decentralized applications", and further variations of these queries.

Extraction

This phase is comprised of data extraction, exclusion and inclusion criteria, and quality
of the selected literature. The specific material that is relevant to the thesis needs to
extracted from the selected literature in the previous phase and used as raw material.
Furthermore if in the previous phase the partial screening was subjective and based on
the relevance to the topic being researched, in this phase the quality of the papers plays
an important role.

In this phase papers and articles that are published outside the time frame of 2013 - 2019,
as well as papers that are not accessible or could not be downloaded, and books that
need to be bought, were excluded from the research. So were papers in which it is clear
to see that the content does not suit the purpose of the thesis. A prominent example is
the literature found for the search query "decentralized applications", which produces
many results centered on the business ideas without putting any focus on the technical
details.

Execution

In this phase, the papers have been screened, selected, and scored based on its quality,
they need to be combined in order to make a comprehensive sense out of their number,
which is often large [OS10]. The final step, in this phase and in the scientific literature
review method as well, is to write a review.

Regarding this final step in the thesis, as explained above, all relevant papers and articles
need to be combined, compared, and synthesized, for a better overview of the subject.
Due to the novelty of blockchain technology and especially smart contracts, the expected
number of papers that need to be synthesized is not enormous, which will make this step
easier. However, that also means that another research method is required to gain more
knowledge.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.4.2 Graph Analysis

In this part of the thesis, a systematic study on Ethereum will be conducted using a
graph analysis of smart contract in the public Ethereum network, similar to the methods
chosen by the authors of [CO17], [CZL+18], and [MF14]. In these papers the authors
use the following steps:

• Extract data from the public blockchain network of their choice. The data extracted
can be different, depending on the needs of the paper. In the chosen references
the authors use Ethereum/Bitcoin transaction, smart contract creatin, and smart
contract invocation.

• Persist the data extracted in a database, in order to easily use that data in a graph
view for better visualization.

• Additional knowledge can be applied, for a clearer and more insightful visualization
of the results. For example, Chan and Olmsted in [CO17], who in their paper
try to deanonymize the Ethereum blockchain, use addresses that are known to be
associated with hacks from Etherscan.

• Evaluation of results.

Similar as in the method outlined above, in regards to this thesis, the graph analysis will
be implemented in four separate steps:

• Aquisition of data.

First of all, Google provides a public data set for Ethereum smart contracts on
[clo].

Next, if the deployed smart contract bytecode was produced by the Solidity compiler
which implements the Application Binary Interface (ABI) specification [abi19],
function entry points can be reverse-engineered for known function signatures. Thus,
for each contract a list of contained ABI function entry points is reconstructed,
(4 bytes) that can be called by other addresses. The lists of 4 bytes are used to
characterize the deployed contracts. This ABI specification is further explained in
section 2.5.

Finally, the list of function signatures, along with the smart contract’s bytecode
represents the first data set used for the analysis, or the starting point for the
practical part of this thesis.

• Persisting smart contracts in the graph database Neo4j.

Extracted data from the Ethereum blockchain will be persisted in Neo4J database
[neo16a]. In blockchain analysis, a lot of knowledge and information comes not just

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Methodology

from the data itself, but also from the relationships and connections between the
data, and graph databases are designed to treat the relationships between data as
equally important as the data itself. Neo4J, being the most popular, scalable, and
easy to use graph database, was the choice for this research.

Bytecode and function signatures (as explained in the previous step) will be
represented as nodes, and the edges between them will exist if a function signature
is contained in the smart contract bytecode, or (bytecode) → (signature). Two
different sets of data will be used. First, no additional data will be used for
clustering. And in a second step, contracts with verified source code and known
information on their functionality will be labeled accordingly to improve clustering
results.

• Clustering using graph algorithms.

After the data set is persisted in Neo4j, similarity algorithms will be applied, in order
to create clusters of smart contracts in regards to the functions they share. The two
similarity algorithms that will be used are Jaccard similarity and Overlap similarity,
both of which are explained by Bollegala in [sim07], with the purpose of better
measuring the semantic similarity between clusters. Both similarity algorithms,
the reason why they were chosen, and how they are implemented in regards to this
research is further explained in section 5.2

• Analysis of results.

The final step is to analyze the different sets of clusters from the previous steps.
After measuring the semantic similarity of the smart contracts clusters with the
algorithms described above, it is necessary to make a comparison between the
results which will further prove the precision of the research.

1.4.3 Evaluation of results

The final step is to analyze the results of the different methods, and provide answers for
the research questions defined in section 1.2.

In regards to this thesis, the results from the systematic literature review will be of use
to gain a deeper understanding of Ethereum smart contracts, find and analyze related
research, and provide insight on known or labeled smart contracts, which will be especially
of use to reseach question 2. The graph analysis will be used to visualize and evaluate
the clusters of Ethereum smart contracts produced by the two different approaches.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.5 Structure of the Work

The rest of this thesis is organized in the following manner. Chapter 2 provides a general
introduction on blockchains and smart contracts. As a reference to how the blockchain
technology works, the Bitcoin and Ethereum platforms are used as examples, as the two
most prominent blockchain platforms. Particular emphasis is put on how the blockchain
works and its properties, Ethereum and smart contracts, and smart contract usage and
applications.

Chapter 3 gives an overview of the related work in two parts. The first part covers graph
analysis of blockchain platforms, for both Bitcoin and Ethereum. The second part focuses
on the topic of smart contract classification and understanding and/or labeling unknown
ones.

Chapters 4 and 5 cover the design and implementation of our model for clustering
Ethereum smart contracts in the graph database Neo4j. They include the used technolo-
gies, datasets, possible challenges and solution options, and an overview and implementa-
tion of the proposed project architecture.

In chapter 6, an evaluation of the results is provided. This chapter includes a combination
of quantitative and qualitative analysis in order to properly give answers to the predefined
research questions.

Finally, chapter 7 concludes the work with a summary, limitations of the research, a
discussion in regards to the research questions, and provides an outlook on future work.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Background

In this chapter, we introduce blockchain basics, smart contracts and especially Ethereum
smart contracts, and decentralized applications.

2.1 Blockchain Fundamentals

A Blockchain is a distributed ledger on a decentralized peer-to-peer network, used to
store published transactions in chronological order. First introduced with the arrival of
Bitcoin, the main idea of the technology was to present a solution for the double-spending
problem, which is a phenomenon where the same digital currency can be spent twice
(or more) before the system registers the transaction. Bitcoin, along with its blockchain
intended to be "an electronic payment system based on cryptographic proof instead of
trust, allowing any two willing parties to transact directly with each other without the
need for a trusted third party [Nak08]". Blockchains differ between platforms, and for
the purpose of this chapter, the blockchain of Bitcoin and Ethereum will be examined.
Bitcoin’s blockchain as the first example of one of the most simple ones, and Ethereums
as the most used blockchain platform for smart contracts and the topic of this thesis.

From a technical perspective, the blockchain can be seen as a state transition system,
where every state consist of the ownership status of the cryptocurrency and every
transaction causes a transition of the state [But15a]. In this context, transactions are
nothing more than a proposition to change the current state of the system. An example
of a transaction would be a transfer of cryptocurrencies supported by the platform or
tokens. Contract invocations are also examples of a transaction. A transaction must
be authorized by the account holder, via digital signature, and verified by all nodes in
the network. A digital signature implies that the transaction is authenticated with the
private key of the owner of the account [Her19].

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Transactions are grouped in blocks for efficiency, in a data structure called Merkle
tree [Mer80] (in Bitcoin and Ethereum at least), which contains the hashes of all valid
transactions in the block. In figure 2.1, the authors of [JCw+18] show a simple visual
representation of blockchain. As seen in the figure, a traditional blockchain contains a
header and a body. The header is comprised of metadata, like a timestamp, the Merkle
tree root, the hash from the previous block, and the nonce. The body contains the actual
data, which are the transactions. Furthermore, the figure shows visually how the Merkle
root is derived, representing the hash of all the hashes of all the transactions.

One of the key features of blockchain is cryptographic hash functions, which have the
purpose of mapping the data of a block to a smaller size and establishing links between
blocks. Each block is identified by a single cryptographic hash. When a new successful
block is added to the chain, the calculation for a hash of the current block also takes into
consideration the hash of the previous one.

Figure 2.1: A simple version of a blockchain [JCw+18]

2.2 Consensus algorithms

When dealing with a peer-to-peer decentralized network, where each node has it’s own
copy of the current state of the blockchain, and new blocks need to be appended constantly,
there is one question that must be asked. Which node gets to write the new block in the
chain, and how is that choice made?

The nodes in a blockchain network, called miners, collectively and repeatedly run a
protocol, called consensus, to select which block to append to the ledger [Her19]. There
are several algorithms to achieve consensus in a blockchain, and different platforms might
use different approaches.

One of the most common and widely used consensus approaches, implemented by both
Bitcoin and Ethereum is Proof of Work (PoW). Miners, or users participating in the

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Consensus algorithms

blockchain mining process have to solve complex puzzles to earn the right to write the
new block in the blockchain. This puzzle requires finding a secret value, below a certain
threshold, which is a hash starting with a predetermined number of zeros. In this process,
two variables are of importance, the nonce and the difficulty. The nonce is the variable
that changes until the correct value is found. All nodes change the value of the nonce
constantly until it is communicated in the network that the puzzle has been solved, and
validated by all nodes. That being said, there are some limitations to the PoW approach.
First, PoW is considered to be unfair. As mentioned before, the miners need to solve a
cryptographic puzzle, but the speed of finding a solution depends highly on the machine
of the user. Modern and expensive machine have a big advantage in this process, and
ones in poorer conditions have no or minimal chances in this “competition”. And second,
the mining process requires a lot of computational power and is very expensive. Even for
users with suitable machines it’s sometimes not worthwhile to participate. Considering
the limitations of Pow, in order to persuade users to participate in the mining process,
blockchain platforms introduce incentive mechanisms, where the miner that solves the
puzzle is rewarded with the crypto value of the platform. The benefits of this reward
mechanism are two-fold. First, it motivates users to participate in the mining process,
and second, the cryptocurrency gains value regarding its exchange rate to fiat money.

Considering the limitations of PoW, some blockchain platforms try a different approach,
or a Proof of Stake (PoS) algorithm. As the name suggests, the key role in the decision
of which user gets to write the new block is the current stake of the user in the platform.
The motive behind this approach is the assumption that the bigger a user’s stake in the
system, the less likely it is that the user is malicious. If a user with a significant stake in
the network is malicious, and their actions impact the system negatively by reducing the
value of the cryptocurrency, has the most to lose. An example of a public platform using
PoS is Nxtcoin [whi16]. If a miner owns a coins and the total amount of the remaining
coins is b, then the odds of mining the next block are exactly a/b. The disadvantage of
unfairness is an issue in this approach as well, due to the fact that miners that own a
large piece of the stake have better chances, or a “rich getting richer problem”.

Several authors in their respective papers ([KN12], [DFZ16], [BLMR14]) propose examples
of hybrid algorithms, which use both PoW and PoS. For example in [KN12], the authors
and creators of PPcoin introduce the concept of “coin age”, which is calculated by stake
multiplied by the time that the miner has owned it. Duong in [DFZ16] proposes a variation
of this hybrid approach as a solution to the 51 % attack. Betonov in [BLMR14] proposes
an approach called Proof of Activity, which also combines PoW and PoS. Other authors
propose different variations of this hybrid approach as well, but the implementation
behind their versions is always similar.

In figure 2.2, a comparison between these three approaches can be observed. There are
also other consensus algorithms that are used. An example is Proof of Authority
(PoA), in which new blocks are validated by “approved” accounts. PoA is a common
approach in private blockchains [Sun18].

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Figure 2.2: A comparison of consensus algorithms [NK18]

2.3 Types of blockchains

In the earliest stages, the concept behind the blockchain was to serve public transactions
and be accessible to anyone. That is why, with blockchain, commonly one first thinks
of the public type. Today there are three different types of blockchains, depending on
the need for the application, the public blockchains, the private blockchains and the
consortium blockchains [But15b].

As the name suggests, public blockchains are publicly accessible, which means that
they are non-restrictive and allow users to interact with the blockchain and read or
submit transactions. These types of blockchain are open and transparent, where everyone
can review anything and participate in the network. Cryptoeconomics is the combination
of cryptography and economic theory to create operating protocols for trust-less and
decentralized platforms, which in this type of blockchain will have the role of a substitute
for a centralized or quasi-centralized platform [But15c]. The principle is that the level
to which someone can influence the consensus process is proportional to the number of
economic resources that they can bring to bear.

There are cases, where there is a need for restriction in the network. Here the private
blockchains are required. Private blockchains are usually used within a centralized orga-
nization to store sensitive information about the organization, where all the transactions
are visible only to persons who are predefined and are part of the blockchain network.
No one outside of the network can access the blockchain and the users’ identity is known
to every user in the network, whereas the transactions are visible only to those with
adequate permissions. With this said, private blockchains are similar in use as public but
have a small and restrictive network.

The third type is the consortium blockchain where more than one organization is

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Properties of blockchains

managing a blockchain network, which is why it is semi-decentralized type, and this is
the main difference from a fully private blockchain network. A consortium blockchain
allows for a certain number of entities to approve and control transactions. Those entities
are called consortiums. Consortium blockchains are typically used by banks, government
organizations, etc. The consortium blockchain is partly public and partly private, since it
provides security which is inherited from the public blockchains, plus restrictions which
are inherited from the private blockchain.

2.4 Properties of blockchains

While conducting a scientific literature research on papers on blockchain technology, vari-
ous different definitions and explanations about the technology were found ([XWS+17],
[NH17], [Pil15], [Loo16], [Lem17], [JCw+18]). Some of them focus mostly on the cryp-
tocurrency and transaction side of blockchains, and others state the possibilities of the
technology outside of cryptocurrencies. However, in all of them, several properties, in
the form of keywords, keep repeating. Some examples are described below:

• Immutability

Immutability is regarded as one of blockchain technology’s most important prop-
erties and is omnipresent in every paper mentioned above. Immutability in the
network is achieved through the consensus protocol of the platform in question
and the cryptographic hashing functionality of the blockchain. Once a block is
deployed in the network and verified by all other nodes, it is nearly impossible to
be modified.

Jiang and Lemieux in [JCw+18] and [Lem17] respectively, stress the importance of
immutability of the blockchain as a means to prevent untrustworthy or malicious
modification on records, with Lemieux focussing on recordkeeping systems in general
and Jiang on healthcare systems.

Other authors, like Petersen and Xu in their papers [NH17] and [XWS+17], both
place immutability as one of the main property of blockchain. Furthermore, the
authors of [Pil15] go one step further, by stating immutability in the system is
probably the most essential feature of all.

• Decentralization

There does not exist a central authority or a centralized infrastructure that es-
tablishes trust. The network is run completely by its members [NH17]. A copy
of the current state of the blockchain is distributed on all machines. After a new
transaction is added to the blockchain, its new state is distributed almost instantly
to all nodes in the network. All nodes after a certain period must have the same
copy of the blockchain.

• Transparency

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

All transactions on the blockchain in a public blockchain platform, are public and
can be seen by all users. There are private blockchains, as seen in chapter 2.3),
but event there, the data is transparent to the users of that blockchain. Loop in
[Loo16] expresses the importance of transparency on retail supply chains, and the
possibilities using blockchain technology.

• Integrity

The data is supported by cryptographic techniques and algorithmic rules to check
transactions and ensure integrity in the system [XWS+17]. Users sign the transac-
tions/messages with a public-private key hash signature and only the owner can
initiate them, as explained in chapter 2.1). However, because keys are not linked
to real-world identities, the user in question can remain anonymous [NH17].

2.5 Ethereum and Smart Contracts

With the introduction of Bitcoin, a basic concept of smart contracts was already intro-
duced. In the Bitcoin eco-system, smart contracts are written in a simple stack-based
scripting language. The main goal of Bitcoin is to be a cryptocurrency platform, which
means the purpose of Bitcoin is the transfer of digital coins. The data a user needs to
provide to ensure a verified transaction needs to be implemented by a more complicated
script, including a basic public key ownership mechanism [But15a]. However, Bitcoin’s
smart contracts have several limitations, which include lack of Turing-completeness,
value-blindness, lack of state, blockchain-blindness, which Ethereum looks to solve. That
is why when using the term "smart contract" in blockchain technology, people usually
refer to Ethereum smart contracts.

Vitalik Buterin in [But15a] defines Ethereum as a blockchain that allows users to write
smart contracts and decentralized applications, where arbitrary rules for ownership can
be defined, as well as transaction formats and state transition functions, thanks to its
built-in Turing-complete programming language. Where Bitcoin’s smart contracts serve
the single purpose of cryptocurrency transfer, Ethereum extends that into much more,
by allowing a user to include business logic on the distributed ledger. Ethereum serves
as a platform for various decentralized applications built on top of blockchain technology.
These dApps typically connect users to the blockchain via a web-based application using
a known language like JavaScript or Python [com17].

In figure 2.3 a sample of the Ethereum blockchain is shown. When looking at the
blockchain as a data structure, many similarities between Ethereum’s and Bitcoin’s chain
can be observed. Every block comprises a timestamp of the block creation, a nonce
used for mining, the hash of the previous block, and a list of transactions. The main
difference in the blockchain of these two platforms comes from the transactions. While
Bitcoin supports only one type of transaction, currency transfers from one address to
another, Ethereum’s transactions are more complex. Sometimes a transaction is not
really a transaction by its general definition, and that is why a more common phrase in

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. Ethereum and Smart Contracts

the Ethereum eco-system is message, which describes the interactions between accounts
[But15a].

Figure 2.3: Ethreum blockchain example [But15a]

Smart contracts are a key feature in Ethereum. As already stated in section 1.1, smart
contracts are computer programs deployed on a blockchain, which when triggered by a
transaction or invocated by another smart contract, fulfill a certain purpose, which can
vary from a something simple, as a transfer of cryptocurrencies, to a more complicated
one. Smart contracts can have many different functions. They can be stand-alone smart
contracts, which live as single entities in the blockchain or be part of dApps.

Any users in the network can write smart contracts, by using special, high-level blockchain
programming languages like Solidity, Serpent, or Viper, and deploy them to the public
network. In figure 2.4 an example code snippet can be seen, with simple get and set
methods. This high-level code is later converted to a low-level, stack-based bytecode
language, or the Ethereum Virtual Machine (EVM) code, which consists of a series of
bytes, where each byte represents an operation [But15a]. Then finally, the smart contract
is deployed to the network. Once deployed, the smart contract code can no longer be
altered.

This Ethereum Virtual Machine is in the heart of Ethereum and is capable of executing
code of arbitrary algorithmic complexity [com17]. Like all other blockchain technologies,
Ethereum runs on a decentralized peer-to-peer network, where every node has a copy of
the current state of the blockchain. Furthermore, all nodes run the EVM and execute
the same instructions, and for this reason, Ethereum is sometimes referred to as a "world
computer" [com17].

Unlike Bitcoin’s blockchain, which is basically a list of transactions, Ethereum’s basic
unit is the account. Accounts play a central role in Ethereum and there are two types of
accounts [com17]:

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Figure 2.4: Example Solidity code [com]

• Externaly Owned Accounts (EOA)

EOAs are accounts owned by users. They resemble the only type of account
introduced with Bitcoin. EOAs are uniquely identified by addresses of 20 bytes.
An account can issue transactions, which in Ethereum are called messages, in order
to send Ether and/or data to another EOA or contract account. Also, a message
is needed when an invocation or the creation of a smart contract is needed. With
each transaction, an account pays a certain transaction fee. In this sense, EOAs
can be seen as digital wallets.

• Contract accounts

Contract accounts are basically smart contracts, and they do not belong to a
physical person. They are able to send messages between themselves and to EOAs.
Unlike EOAs, contract accounts cannot send messages by themselves. They are
pieces of code, that when triggered by an external or another contract account, will
run and fulfill their predefined purpose no matter what.

Just as Bitcoin, Ethereum has its own cryptocurrency, called Ether. Ether is stored in
accounts (both EOA and contract accounts) and can be spent or earned with transactions.
However, while Bitcoins are used exclusively for currency transfers, Ether is used also for
computational power. Ethereum introduced the concept of gas, where a user needs to pay
a certain amount of Ether to use the computational power of the network. An example
of this would be the deployment of a smart contract. Depending on the complexity, each
smart contract, deployed on the blockchain has its own gas price that the creator had to
pay. For every operation executed on the EVM, a certain amount of gas is consumed.
However, due to the fact that there are numerous smart contracts of different sizes and
complexity, and that information is hidden from the users, a single user cannot know
the computational power needed for executing a smart contract. In other words, a user
does not know how much Ether will a transaction cost. As a solution to this problem,
Ethereum introduced a variable called gas-limit. When making a transaction, users set

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.6. Smart Contract Applications

this gas-limit, and it represents the maximum amount of cryptocurrency a user is willing
to spend for a single transaction. If the execution of a smart contract requires more gas
than a user is willing to spend, the transaction is aborted, the EVM stops executing and
returns an error.

Apart from the native coin, Ethereum also has tokens, which are smart contracts built
on top of the native coin of the blockchain platform, and can act as currency themselves.
Unlike Ether, which represents a digital currency, tokens may represent a variety of
transferable and countable goods. Examples include digital and/or physical assets, shares
of a company, memberships, loyalty points, and more [VL19]. Any user on the network
can create these smart contracts where they can develop and specify their digital asset.
Most tokens on the Ethereum comply with the ERC20 standard [FV15], which is a set
of functions and events that must be implemented for a token contract to be considered
as compliant with this standard. This standard is not an enforced rule, but is highly
recommended to dApp developers so that their tokens can undergo interactions with
various wallets, exchanges, and smart contracts without any issues [Ros17].

Smart contracts are invoked, both by and external user and by other smart contracts,
by sending a message containing data and/or Ether to the address of the contract. The
standard way of interaction with smart contracts is through the Contract ABI [abi19].
For contracts adhering to this specification, the call data contains the called function.
This function is specified by its first four bytes, which are the four most significant bytes
of the Keccak-256 hash of the signature of the function. “The signature is defined as
the canonical expression of the basic prototype without data location specifier, i.e., the
function name with the parenthesized list of parameter types. Parameter types are split
by a single comma – no spaces are used.” [abi19]

In figure 2.5) a list of ERC20-compliant functions can be observed, with the functions
names on one side and the 4-byte signatures on the other.

2.6 Smart Contract Applications

What made Ethereum and the introduction of Turing-complete smart contracts different
than the rest of the blockchain platforms at that time, was that these technologies went
from coin transaction systems to sophisticated systems capable of much more. Over the
years, blockchain and smart contracts, because of their unique properties, have found their
way in diverse application areas. Examples include notary services, open government,
games, finance, law, medical, Internet of Things (IoT), Financial Technology (FinTech),
and more. Use cases where smart contracts prove their value are the following:

• When a trusted third party is required

This is the most common and basic use case for smart contracts. Legal contracts
may require an external authority to determine if the conditions of that same

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Figure 2.5: ERC20-compliant functions [VL19]

contracts have been fulfilled or not. In some cases when a lawyer or a notary is
required. Another exemplary use case is a bank for a cash transfer, where the
bank acts as an external authority. Or a lawyer and/or notary services in cases of
transfer of ownership rights.

• Initial Coin Offering (ICO)

This will be regarded as a separate use case because of how common it is. Initial
Coin Offerings is a type of token sale, commonly used by startups to get public
funding. By using ICOs startups can cut out third parties, like banks, and raise
funding themselves by offering company assets, like shares, in the form of tokens
[She19].

• Keeping records

As the blockchain can be seen as a distributed ledger, any case that involves keeping
track of records is a possible application. An example would be keeping medical
records.

• Cases when trust in the system is required

Due to the properties of blockchain, the risk of fraud is reduced, and users can have
more trust in the system, whether it is trust in a vendor (trust in the system) or
electronic voting.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
State of the Art

This chapter covers related work in the area blockchain and smart contracts analysis
and is divided into two separate sections. First, papers on blockchain graph analysis
will be examined. These papers focus on topics that use graph databases to persist and
analyze different aspects of the blockchain. Some focus primarily on transaction graphs
and put the main focus on the communication between accounts, while others focus more
on smart contract analysis. The second section comprises related work strictly on smart
contracts in the Ethereum network. More precisely, papers on smart contract clustering
and classification are examined, as a part of this thesis, especially in regards to research
question three.

3.1 Graph analysis of blockchain platforms

When it comes to a graph analysis of the Ethereum platform, two papers differentiate
themselves as the most relevant in regards to this thesis. Chan et al. [CO17] propose
a model to de-anonymize Ethereum, where anonymity is supposed to be guaranteed,
by persisting Ethereum transactions in the graph database Neo4j and running different
algorithms with Neo4js powerful scripting language Cypher. This paper has significant
potential relevance to this thesis and was the reason behind the decision to use Neo4j as
the graph database.

In the proposed model, both normal and internal messages were considered. Normal
meaning transactions between external accounts, which are part of the blockchain and are
signed by a public key, and internal meaning messages between smart contracts, which
are not included on the public blockchain, but a result of a contract being executed. The
two types have a certain amount of Ether assigned to them, and that makes both of
them important for better results.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

Using custom queries, two specific and known addresses were chosen as starting points.
They were the addresses of two famous hacks on blockchain systems. The first one was
the Gatecoin hack in May 2016 [gat16], and the second was the hack of Daschcoin in
July 2017 [coi17]. Starting from here, further addresses were loaded that were associated
with transactions. This process was repeated three steps down. Furthermore, some
additional logic was implemented. Addresses with a large number of in and out-degree
transactions were disregarded because there is a major possibility that those accounts
are associated with tumbler service, exchange or gambling smart contracts, which would
make the results harder to interpret. Also, ICOs and digital token transfers were ignored
and were not considered as part of the implementation. On figure 3.1, the resulting graph
can be observed, with the address of the Gatecoin hack selected as a root. The blue
circles represent accounts and the green transactions.

Figure 3.1: Neo4j output for the transactions from the Gatecoin Hack[CO17]

However, this research has some limitations and shortcomings. The main limitation of
this graph model was the size and memory needed in order to gain clearer insights. The
blockchain data is simply too large to be queried and manipulated in a simple manner.

Another limitation of this approach was that clustering of addresses in Ethereum was
not possible. Ethereum’s blockchain does not rely on an unspent transaction output to
be the input of the next one, which makes the heuristic of clustering accounts owned by
the same users impossible.

Chen et al. [CZL+18] have conducted the first systematic study of the Ethereum
blockchain using graph analysis, by examining both transactions and the smart contract
part of the blockchain. The goal of the authors was to gain more insight into the
Ethereum blockchain and a better understanding of the Ethereum ecosystem, as well
as propose solutions to existing security issues in Ethereum, like attack forensics and
anomaly detection.

The authors gathered all transactions that happened on the Ethereum network, up to the
date of the creation of the paper, and constructed three different graphs to be analyzed,

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Graph analysis of blockchain platforms

a Money Flow Graph (MFG), a Contract Creation Graph (CCG), and a Contract
Invocation Graph (CIG). The methodological approach for this analysis comprises the
following steps:

• Data collection

The dataset consists of all published transactions on the Ethereum network, from
its launch on 30.07.2015 to 10.06.2017. The total number of gathered transactions
in this time period was 19 759 821.

• Graph construction

Three different graphs were created for the purposes of this analysis, namely a
money flow graph (MFG), a smart contract creation graph (CCG), and a smart
contract invocation graph (CIG). To improve the quality of the data and obtain
more fine-grained results, in this second step, the authors also preprocessed the data.
Four different types of transactions were excluded from the calculations, namely
transactions from one EOA to another when the amount of Ether transferred is
zero, a transaction that self destructs a smart contract with no Ether remaining,
unsuccessful transactions between EOAs, and unsuccessful smart contract creations.
Below, in figure 3.2 the total number of nodes used to create the graphs can be
observed, for MFG, CCG, and CIG respectively.

Figure 3.2: Statistics of the three graphs [CZL+18]

• Graph analysis

When it comes to the analysis of the graphs, first three basic values were calculated
for every node, the degree, which is the total number of nodes a certain node
is connected to, in-degree, and out-degree, which are the number of ingoing and
outgoing nodes of a certain node. These metrics are used specifically in directed
graphs.

Next, as can be observed in the table in figure 3.3, seven metrics for the three different
graphs are calculated. These metrics include clustering coefficient, assortativity
coefficient, Pearson coefficient, number of strongly connected components (SCC),
size of largest SCC, number of weakly connected components (WCC), and size of
the largest WCC.

However, it is important to note that isolated nodes were not included in the
analysis part of the paper.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

Figure 3.3: Metrics of the three graphs [CZL+18]

The is paper covers more topics, including the security of the Ethereum network, but
they will not be further mentioned since they are not related to the contents of this
thesis.

For this section, papers on graph analysis in Bitcoin were also researched, where the
authors propose different models and approaches for graph analysis on Bitcoin’s blockchain.
For example, Fleder et al. [MF14] examine the anonymity of the Bitcoin blockchain, by
creating a transaction-graph-annotation system. This system was created in two separate
steps. In step number one a system for scraping Bitcoin addresses from public forums
was developed. Next, a mechanism for matching users to transactions using incomplete
transaction information was included. Bernhard et al.[BH16] propose GraphSense, which
is a solution that applies a graph-centric perspective on digital currency transaction. It
allows users to explore transactions and follow the money flow, facilitates analytics by
semantically enriching the transaction graph, supports path and graph pattern search,
and guides analysts to anomalous data points. Furthermore, the authors of [BH16] state
"The intended solution should be applicable for Bitcoin and any other form of digital
currency transactions (e.g. Ethereum)", which makes the paper of significant importance
to this thesis.

However, regardless of whether the blockchain of Ethereum or Bitcoin is being researched,
one aspect of this type of analysis is almost always the same. The primary focus of most
papers addressing this topic is the security and/or anonymity of the blockchain, and that
is the main difference from the content of this thesis.

3.2 Classification of smart contracts in the Ethereum

network

Papers on smart contract clustering and classification are also relevant to the topic of
this thesis. After the contracts have been persisted in the graph database and similarity
algorithms have been run, results can be compared with known smart contracts and the
clustering can be reaffirmed. Moreover, if the results prove to be reliable, known smart
contracts can be labeled and removed from further calculation in order to gain more
comprehensive results.

Di Angelo et al. [dAS19] examine the temporal and quantitative aspects of smart
contracts, with the goal of gaining a deeper understanding of the types of smart contracts
on the Ethereum network and their activities. The dataset for this research was comprised

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Classification of smart contracts in the Ethereum network

of all smart contracts deployed on the Ethereum blockchain up to block 6.9 million, or
from its launch to the end of 2018.

By investigating the lifespan and activity patterns, the following types of smart contracts
were differentiated in this paper:

• Loners

Loners are smart contracts deployed on the Ethereum network but have never been
called. The authors have noticed that these type of contracts comprises 63% of all
smart contracts deployed on the network. The total number of loners in the study
period is 5 156 658, or 46% of all smart contract creations.

• Destructed Contract

A destructed contract is considered any contract that has executed a self-destruct
operation at some point in time. In a single transaction, a smart contract can run
a self-destruct operation successfully multiple times. Consequently, the number of
self-destruct operations is around 10 times larger than the number of destructed
smart contracts. More precisely, there were 2 540 995 destructed contracts in the
time of the analysis, and 24 438 879 successfully executed self-destructs.

• Mayflies

Mayflies are smart contracts with an extremely short lifespan. They run a self-
destruct operation in the same transaction, in which they were created. The number
of recorded mayflies in the time period specified in the paper is 1 856 655. However,
it is important to mention that all of these smart contracts were created by only
8 992 distinct addresses, and most of them are smart contracts themselves.

• Sleepers

Sleepers are smart contracts with very long sleep time. By sleep time, the authors
refer to the time span between the creation of the smart contract and its first
invocation. Furthermore, they distinguish between three different types of sleeper
smart contracts. Short-sleepers wait for their first invocation up to 8 days, medium-
sleepers from 8 to 25 days, and long-sleepers for more than 25 days.

• Bonkers

Bonkers are defined as smart contracts deployed with useless code. Code is defined
as bonkers as the authors state it, whose execution leads to fail, revert, or returns
a constant value, without changing the state of the blockchain whatsoever. The
number of registered bonker smart contracts at the time of the study was 44 883.
However, the resulting number does not include empty non-contracts created by
mayflies.

• Breeders

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

Smart contrats in the Ethereum networks, whose only purpose and function are to
create other smart contracts, are designated as breeders. As a matter of fact, most
smart contracts on the Ethereum blockchain are created by other smart contracts.
Below, in figure 3.4 statistics on smart contract creations can be observed. Of all
accounts creating contracts, only 17% are smart contracts themselves, and yet they
are responsible for 81% of all contract creations.

The authors define breeders as smart contracts that are responsible for the creation
of at least 1 000 smart contracts. In the period of the study, the number of registered
breedes was only 276, and yet they were responsible for 8.76 million smart contract
creations.

• Active contracts

The authors define active contracts as smart contracts that have been called at least
one time in their lifetime. Two different types of active contracts are recognized in
the research.

The first one is busy bees. They are smart contracts that have had at least 1 000
interactions. An interaction is considered any sent or received message, from or to
the smart contract. At the time of the research, 27 000 smart contracts of this type
were recorded, which is a very small number, considering it “comprises” only 0.6%
of all smart contracts. However, these active contracts are responsible for around
505 million smart contract invocations. Moreover, 898 of them are even busier bees
with more than 100 000 interactions, and they are responsible for 392 million calls.

The other type of active contract is casual worker, which are smart contracts
with less than 1 000 interactions. As can be derived from above, this type of smart
contracts comprises more than 99% of all active smart contracts in the Ethereum
blockchain.

Figure 3.4: Statistics on smart contract creations [dAS19]

Norvill et al. [NFS+17] propose a framework to automatically label unknown smart
contracts in the Ethereum blockchain by implementing different clustering algorithms
on the smart contracts, and conduct both a quantitative and qualitative analysis on the
results.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Classification of smart contracts in the Ethereum network

The methodological approach for the completion of this paper was comprised of the
following three different steps:

• Data collection

The dataset for this experiment was comprised of all verified smart contracts
on the Ethereum blockchain available on etherscan.io, up to the time of the
experimental process of the research (exact time is not specified).

• Clustering of smart contracts

Two different clustering methods were implemented, namely Affinity Propaga-
tion [FD07] and K-medoids [KMN+02]. The authors applied different distance
measurements to determine the similarity of ssdeep hashes of the bytecode of each
contract and used the same measurements for both clustering approaches. Three
well-known similarity algorithms that were run smart contract bytecode to calculate
a distance measurement score that is as precise as possible, namely Levenshtein,
Jaccard and Sorenson.

• Labeling of smart contract clusters

In this step, a group of name words was generated for each cluster, which was later
used to find out the purpose of the smart contracts in the cluster. These name
words were acquired with an automated process by extracting the contract name
from the page for each smart contract on etherscan.io. Next, different naming
conventions, such as camel case and snake case, were accounted for. Finally, the
four most frequent smart contract names were left as the resulting name words to
describe each cluster. In figure 3.5 a word cloud can be observed with representing
all name words it the data set.

Figure 3.5: Word Cloud for all names in the dataset [NFS+17]

• Frequency Distribution

Finally, a frequency distribution score was given to each of the clusters to measure
the coherency and similarity of each cluster. If a is total number of unique name

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

words and b is the total number of name words, the frequency distribution score is
calculated as f(a, b) = 1 − a

b
.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Design

This chapter covers the design of the model for clustering smart contracts in the Ethereum
network. For that purpose, the chapter first goes over the idea behind the design, which
includes collectiing the dataset of Ethereum smart contracts and Neo4j basics. Next,
section 4.1 examines the possible challenges that might occur, along with possible solutions.
Finally, in section 4.2, the architecture of the model is displayed and described in detail.

The dataset used in for the analysis of the Ethereum smart contracts was collected from
Google Cloud [clo]. Until block 9 500 000, which was at the time of the research, there
were 21.8 million deployed smart contracts.

Due to the size of the dataset, certain preprocessing is necessary. First of all, duplicate
contracts are removed, because they do not bring any new knowledge to the research. The
removal of the duplicates is accomplished in a straight forward manner when we identify
smart contracts over the interface they provide. Contracts with identical interfaces
are considered to be the same for our purposes - according to the heuristic that they
implement the same functionality. The total number of deployed smart contracts then
corresponds to 235 770 unique bytecodes, and 74 975 distinct interfaces.

To extract the interface from the bytecode, we relied on the contained ABI function
signatures of the contracts, which are already explained in the section 2.5. Each method
a smart contract implements has a 4-byte signature, by which it is uniquely identified.
Smart contracts can share methods. That means that in the bytecode of two different
smart contracts the same function signature can be found, or both contracts implement
the same method. As was the scenario with the smart contract bytecodes, these signatures
can also be extracted and used in the clustering stage of the thesis. At the time of
this research, the number of distinct function signatures in the Ethereum network was
278 103.

It is important to note, that data extraction, compilation to bytecode level, and the
complete preprocessing is not part of this thesis, but a ready to be used dataset was

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

already provided.

This relationship (bytecode) → (function signature), is the main reason why a graph
database was chosen. A graph database is a type of database where the relationship
between entities is just as important as the entities themselves. By having different
types of entities, in the case of this research bytecodes and function signatures, and a
relationship between them, again, in this case, wether a bytecode contains a function
signature or not, just by persisting them in a graph database, a proper graph structure
can be observed.

Neo4j currently differentiates itself as the most frequently used graph database. It comes
with its powerful query language called Cypher. Below, an example snippet of Cypher
code can be observed which simply returns all nodes, limited to one hundred, so the
reader can obtain a more precise picture.

MATCH (n) RETURN n LIMIT 100 (4.1)

Cypher is, of course, capable of making more complicated queries for manipulating data,
and a more complicated examples will be shown later. Furthermore, Neo4j comes with
several "out of the box" algorithms which will prove useful for the next chapters.

4.1 Challenges

From the beginning, two main challenges can be recognized, and both of them are in
close relationship to the size of the dataset. One challenge is the amount of memory
Neo4j requires to run algorithms and procedures on such a large dataset and the other
one is visualization of results. Both are further explored in this section, and possible
solutions are proposed.

Memory

Running algorithms in Neo4j is very memory intensive, so working with such a large
dataset is impossible, even for a powerful machine. Neo4j has implementations for several
similarity algorithms [neo16b], which can be used to calculate clusters. The way these
algorithms work, depending on which one is used, is by comparing nodes to each other in
regards to certain relationships, or in this specific case, to the function signatures they
share.

Following this logic, the number of calculations required to run a similarity algorithm on
a dataset would be

Number Of Calculations =
N ∗ (N − 1)

2
, (4.2)

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Challenges

where N is the number of nodes on which the algorithm needs to be calculated. Further-
more, considering the number of smart contracts in the dataset after preprocessing is
235 770, this number would add up to 27 793 628 565.

There are several possible solutions to this issue, and some of them are listed below:

• Vertical or horizontal scaling

Vertical or horizontal scaling is probably the simplest method to deal with this
challenge. Vertical scaling means running Neo4j on a better machine with more
memory and Central Processing Unit (CPU) capacity. And horizontal scaling
means distributing the workload to several machines. Both options would solve the
lack of memory issue. However, getting more machines or a larger one with more
resources is expensive.

Another problem that might occur with horizontal scaling, is that when graph
databases are distributed to two or more machines, several read replicas and only
one write replica are created. What that implies, is that when running memory
consuming algorithms on the write replica, a bottleneck might still occur, which
would make the horizontal scaling futile. Furthermore, one needs to be aware
that when distributing graph databases (and NoSQL databases in general) there is
always a slight delay while the data synchronizes across all machines.

• Sharding

Sharding, or partitioning, was introduced in the latest version of Neo4j, or version
4.0. This new powerful feature allows user to horizontally scale Neo4j databases
limitlessly, in both read and write replicas, with the only constraint being the
budget, or the number of machines added [neo20].

However at the time when this thesis was written, Neo4j version 3.5.14 was used,
so this new feature was not experimented with.

• Integrating Apache Spark with Neo4j

Neo4j offers an integration with Apache Spark [neo16c] [apa14], which is a clustered,
in-memory data processing solution that scales processing of large datasets easily
across many machines.

When properly integrated into Neo4j, Spark knows how to distribute the workload
on multiple machines, which would solve the mentioned problem with horizontal
scaling when it comes to read and write replicas. However, access to multiple
machines is still necessary. Furthermore, another challenge for this approach
is having advanced knowledge of Apache Spark and Business Intelligence (BI)
principles.

• Reducing the size of the dataset and/or algorithm calculations

Removing functional duplicates from the unique bytecodes further reduces the data
set. This can be achieved by regarding bytecodes as duplicates when they provide

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

the same interface. This yields a reduction from 262 795 unique bytecodes to 74 966
distinct interfaces. A reduction in the number of relationships can be seen in table
4.1.

Another option that would help solve this challenge, is further reducing the dataset
or at least partitioning the data in different components and with that reducing the
number of similarity calculations. One example is community detection algorithms.
Neo4j offers three community detection algorithms, Louvain, Label Propagation,
and Weakly Connected Components [neo16d]. These algorithms, as the name
suggests, detect communities within the network and partition it accordingly.

Phase No. Bytecodes No. Relationships

Deployed Contracts 21 779 683 36 530 349
Unique Bytecodes 235 770 3 682 573
Distinct Interfaces 74 975 1 304 623

Table 4.1: Dataset Information

• Exporting part of the logic to a Java project

The last option proposed is exporting part of the logic to a Java project. If a user
is well acquainted with the software, he or she can create a JavaEE or Spring Boot
project, and run algorithms on parts of the dataset, while simultaneously combining
and exporting results. A prerequisite for this approach is, as was the case with
Apache Spark and BI, advanced knowledge of Java EE and/or Spring framework.

Visualisation

Even though Neo4j is powerful when querying the database and can find results relatively
fast, its visualization tool is not optimal. The Neo4j Browser and Desktop Graphical User
Interface (GUI) allow at most 300 nodes and their relationships to be seen on the screen
per result, which means that there is a need for a third party software/tool specially
designed for graph visualization.

In order to make the an educated choice, further literature review was conducted on
graph visualization, focusing on the following metrics for visualization tool comparison:

• Performance

Due to the size of the data and the purpose of the analysis, a tool is required that
is scalable and can handle a huge amount of data for as little memory as possible.
Also, performance includes the speed of the network visualization tool for both
loading data of different sizes and running algorithms and procedures on the same.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Challenges

• Usability

Another important aspect is for a tool to be user friendly. The data set will
be modified constantly and different cluster similarity and community detection
algorithms will be implemented. Because of that, the tool in question will be used
constantly with different data. Moreover, dynamically labeling and modifying the
data will be necessary.

• Visualisation

Once a graph is loaded and fully visualized, it can be hard for humans to understand
and interpret what they see on the screen. For that reason, there exist different
algorithms and metrics to make the representation as understandable as possible.

It is important to note that as contenders for graph visualization software were considered
only open-source, desktop tools. Several scientific papers have already comparative
analyses on different open-source, desktop tools [MSuR15], [PPEKI], [FA18], and the
four large network visualisation tools that keep repeating are the following:

• Cytoscape [ML12]

Cytoscape is an open-source network visualization tool primarily used for biological
networks and health sciences. Lately, though, it has also found usage as a generic
platform and is used for analysis and visualization of more complex networks.
Out of the four network visualization tools, Cytoscape has the largest library of
additional plugins (>250), and the richest and most efficient collection of algorithms
[PPEKI]. However, it does not rank great for large-scale network analysis, and
that is its biggest weakness, regarding this research. Also, as Cytoscape is a Java
application, it is subject to the memory limitations of Java.

• Pajek [HD03]

Pajek is a Microsoft Windows based network visualization and analysis tool and
is specifically designed for network analysis of huge datasets. When it comes to
scalability and performance, Pajek easily outperforms all other tools on the list and
can visualize a million nodes with billions of connections on an average computer.
However, Pajek has two main disadvantages. First, even though it is quite strong
on analytics, Pajek is relatively weak when it comes to visualization. And second,
Pajek is the least user-friendly platform on the list. When it comes to the file
formats it accepts, Pajek is very strict, and the best way to communicate to it is
trough .net files.

• Tulip [LA12]

Tulip is the easiest-to-use network visualization tool and is recommended for
beginners and non-experts. It is packed with a large set of graph-based operations
and it is a good choice for medium-sized networks. Tulip is the best option if a

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

dataset needs to be developed or customized dynamically. A user can build his/her
own plugins, and modify and visualize the data accordingly [MSuR15]. However,
when it comes to large-scale networks it does not perform well. As a matter of
fact, out of the four tools in this list Tulip proves to be the worst when it comes to
large-scale networks.

• Gephi [BHJ09]

Gephi is the last visualization tool on the list of options, and it is known for both
visualization and performing graph-based analysis on a network. Furthermore,
it also allows users to interact with the network through on-screen tools in the
visualization window. Also important, Gephi has proved to be working flawlessly on
averagely configured computers and was able to perform analyses of large datasets,
unlike the other tools which can crash sometimes due to low configurations. All
three papers have concluded that Gephi has been observed to be the highest overall
performer regarding good graphics and maximum functionality.

Figure 4.1: An empirical evaluation of the four network visualization tools [PPEKI]

4.2 Architecture

In this section, an architecture of a model for clustering Ethereum smart contracts in
Neo4j graph database is proposed, as a solution to the challenges covered in the previous
section. In figure 4.2 the proposed design can be observed. It comprises three main
components or layers:

• Data Layer

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Architecture

This layer consists of two Neo4j databases, one local and one remote. The dataset
loaded in graph databases comes from an external data source or a Comma-separated
values (CSV) file.

• Business Logic Layer

This layer handles the business logic of the model, more precisely the algorithms
run on the smart contract bytecodes and/or interfaces. To that purpose, a Spring
Boot project is created and connected with both Neo4j databases.

It is important to note that part of the business logic is handled by the Neo4j
browser/desktop application, or in this particular case, the data layer.

• Presentation Layer The presentation layer is completely covered by Gephi
[BHJ09], which was already mentioned in the previous chapter, and is further
covered in the next subsections, both as a separate tool and in the context of this
research.

The following subsections cover these components in more detail, as well as the workflow.

Figure 4.2: Architecture of a model for clustering Ethereum smart contracts using a
Neo4j graph database

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

4.2.1 Data Layer

Neo4j is regarded as the key technology for this thesis. As it was already mentioned
in chapter 3, this is not the first time Neo4j was chosen as a database when it comes
to Ethereum smart contract analysis, as Chan et al. [CO17] make use of its potential,
by storing addresses of outgoing and incoming smart contract invocations. However, in
the case of this thesis, it is used in a completely different manner. As can be observed
in figure 4.2 two different Neo4j databases are used, one local and one remote. The
remote database was added at a later point in time because the local machine is not
strong enough for more complicated operations. As stated before, even though Neo4j is
a powerful graph database, it is very expensive when it comes to memory consumption.

There are two main prerequisites for properly working with Neo4j. The first one is
understanding how graph databases work, their purpose, and use cases. To that end, a
scientific literature review approach was used. Papers on graph databases and graph
database comparison were analysed, such as [JV13] and [DSUBGV+10]. Furthermore,
Neo4j offers prominent and always up-to-date documentation [neo16e]. The second
prerequisite is a comprehensive theoretical and practical knowledge of the Cypher query
language. This second part requires not just basic reading, but technical practice and
experimentation with it. One advantage though, for a user that has prior experience
with relational databases, is that Cypher has some similarities with Structured Query
Language (SQL), which makes the learning process easier.

The simplest way to load data in a Neo4j database is with a CSV file [neo16f]. Cypher
offers a LOAD CSV command that loads small to medium-sized files to the database.
There are several things to know in order to properly load data from a CSV file with
this command. First of all, the CSV file has to have a maximum of 10 million records.
For a file with more records a different approach must be taken, which is more complex
and sometimes using external tools is required. Next, when persisting CSV data in a
Neo4j database, the data and import statements need to be handled with care. Labels,
property names, relationship-types, and variables are case-sensitive. Finally, when using
local files, the CSV files are recommended to be located in a specific import directory.
That is because local files are referenced with a file : /// prefix, which specifies the
default location of the CSV files.

Once a dataset is properly uploaded, Neo4j, for the most part, works like a normal
database, capable of performing all Create, Read, Update, and Delete (CRUD) operations.
However, it also implements algorithms and procedures specially designed for graph
database usage. For this thesis, two types of algorithms that Neo4j offers are of great
importance:

• Similarity algorithms

The goal of similarity algorithms in a graph database is calculating the similarity
index between each pair of nodes in regards to their relationships. Neo4j implements
six similarity algorithms [neo16b], all measuring the similarity index differently.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Architecture

These algorithms are used to create clusters of nodes that are similar to each other.
In the case of this thesis, similarity measures that are based on the number of shared
signatures are of interest. During the scientific literature research, and already
mentioned in more detail in chapter 3, Norvill et al. [NFS+17] used similarity
algorithms with an identical purpose.

• Community detection algorithms

The other type of algorithms that are of interest to this research is community
detection algorithms [neo16d]. When referring to a network or graph, a community
is considered a subset of nodes within the graph such that connections between
the nodes are denser than connections with the rest of the network [RCC+04]. In
Neo4j graph databases, nodes in one community will always have a larger number
of relationships between each other, than with noded in different communities.

Neo4j implements three different algorithms of this type, Louvain, Label Propaga-
tion, and WCC. Louvain and Label Propagation are non-deterministic by design,
and WCC is deterministic. Deterministic meaning that no matter how many times
an algorithm is run it will produce the same results, which is not the case with
non-deterministic algorithms.

The purpose of this type of algorithm is to partition the database concerning
its relationships. A typical use case for community detection algorithms is when
dealing with a huge dataset, which is the case of this research.

4.2.2 Business Logic Layer

The second main component of the proposed solution is the business logic layer of the
model and it is in the largest part covered by a Spring Boot project. This approach was
chosen for the following reasons:

• The experience of the team with Java EE and Spring Boot applications.

• Spring offers integration with Neo4j databases (Spring Data Neo4J), which is
very well documented [spra].

• A Java EE or Spring Boot project offers a lot more flexibility when it comes to
data manipulation, whether the resulting data is to be exported to another location
or kept in memory.

The phrase "in the largest part" is used because Neo4j itself handles some part of the
business logic. The Neo4j browser or desktop application is also capable of performing all
algorithms and procedures, as well as manipulation of the dataset with custom Cypher
queries. A sample query was already presented above on function 4.1. Further, and
more complicated queries, as well as usage of Neo4j specific algorithms, are presented
in the next chapter. However, all these calculations depend on the memory allocated

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

to Neo4j, and with that, the memory of the machine on which Neo4j runs. That is the
main purpose of an extra project or an explicit business logic layer in the architecture.

The main role of the Spring Boot project is to take away some of the memory consumption
from Neo4j and add it to Java Virtual Machine (JVM). A reasonable argument would be
that with this approach, the only thing that is done, is that the memory consumption is
transferred from a Neo4j server to the local JVM of the machine, which again depends
solely on the memory capacity of the machine. However, what Java and Spring offer, is
more configuration options that reduce memory consumption, as well as different ways of
database usage, with the cost being, of course, added complexity in the project.

The benefits of this approach are two-fold. First, with proper configuration and usage,
the memory usage of the system can be optimized. And second, by carefully selecting
algorithms, one can minimize the number of objects kept in memory at any given time.

This part of the architecture, even though it is considered an extra layer added to reduce
memory consumption, is the most difficult one to implement and add to the workflow of
the model. On one side Spring needs to connect to the two Neo4j graph databases, prepare
the resulting dataset, and export the results in the proper format to the presentation
layer on the other. As a consequence of this workflow, several challenges need to be
overcome for the proper usage of the component and for getting optimal results.

First, in order to connect to a Neo4j database, Spring uses a Neo4j developed protocol
called Bolt [neo15a], which is a lightweight client-server protocol designed for database
applications, originally authored by the creators of the Neo4j graph database. Using Bolt
and proper credentials, along with further configurations in Spring, a connection can be
established with Neo4j. These configurations are further explained in the next chapter.

Next, when working with such a large-scale dataset, the program needs to be able to work
continuously, looping over parts of the data and exporting results in a certain format.
This process can be done once and will loop through the whole data set. However, this
way the machine has to be left to work constantly for hours, maybe even days for some
more complicated procedures. A better approach would be to set up a project in a certain
way, that the current state is always remembered. Therefore, the program can be stoped
at any time for the machine to rest, and continue working at a later point in time without
losing the current state.

Finally, the resulting data must be exported in a proper format. Even in this step,
certain knowledge is necessary about the following, presentation layer. The formatted
and extracted data has to be readable to the graph visualization software of choice, which
in the case of this thesis is Gephi. More about Gephi and the presentation layer is further
explained in the next subsection.

Below, in table 4.2, the list of technologies used for this project are listed.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Architecture

Name Description

Intellij Integrated Development Environment (IDE)
Kotlin / Java Programming language

Neo4j Database
JUnit / Mokito Testing Framework

Simple Logging Facade for Java (SLF4J) Logging

Table 4.2: Technologies used

4.2.3 Presentation Layer

The last component in the proposed solution for the thesis is the presentation layer. As
in the be observed in figure 4.3, the complete presentation component is covered by a
large-scale visualization tool, which in the case of this research is Gephi [BHJ09].

Gephi, as well as three other large-scale network visualization tools, was already briefly
covered in section 4.1 as part of the network visualization tools comparisons, when taken
into account the memory capacity of the local machine, plus the size and density of the
dataset, is the best options.

Apart from the comparison of network visualization tools in the scientific literature
research, all four tools were downloaded and sample data was loaded in the to see how
they would react specifically with the dataset from this research.

Pajak was disregarded immediately because of its weak results in user-friendliness since
it is very specific in the data format it accepts would be a tiresome process. That, along
with its poor graph visualization, was the reason Pajak was not included for further
experimentation.

In the remaining tools, three sample datasets were loaded to observe their behavior. The
sizes of the datasets can be observed below on table 4.3.

Size Number of Nodes Number of Edges

Large 16 203 1 100 702
Medium 3 396 12 696

Small 1 024 45 384

Table 4.3: Sample datasets for visualization tool comparison

Once the datasets are loaded, a comparison between all three large-scale vizualisation
graph is cunducted, in regards to the tool comparison metrics defined in section 4.1.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

Performance

With all three datasets, Gephi performes the best, in both time and scalability. The
difference, of course, is most noticeable when the medium or large dataset is used.

Cytoscape performs well when the small and medium dataset is used. However, when
the large dataset is loaded on a local, averagely configurated machine, first of all, it
takes a long time for the data to load, and second, while running clustering and layout
algorithms, the program regularly crashes.

Tulip comes last when it comes to performance, in both time and scalability. The medium
dataset takes some time to be loaded in Tulip, and the large one cannot even load without
crashing.

Usability

All three graph visualization tools are similar when usability or user-friendliness is in
question, with Cytoscape differentiating itself as a little worse than Gephi and Tulip.
But only because it uses a lot of external plug-ins that need to be understood, which is
can be tedious and time-consuming.

Other than that, all three prove to be easy to use and understandable. Also very
important, they are flexible when it comes to the format of the data that can import.
The same format of CSV files was imported in all three tools.

Visualization

In figure 4.3, the resulting graphs can be observed of all three visualization tools with
the small dataset loaded. Even from a short glance, on the upper left image, which is
Gephi, several clusters can be observed, which are concise and separated by different
colors thanks to the modularity algorithm that Gephi implements.

Furthermore, Gpehi scores best in recognizing clusters. As it can be seen in the screenshot,
while Tulip and Cytoscape recognize only one large cluster and the reset of the data
scattered around, Gephi’s force layout algorithm can recognize three. These layout
algorithms are further explained in the next chapter.

Finally, it should be noted that because Gephi was chosen as a graph visualization tool
for this thesis, further experimentations were made to test its limits. On the machine
where the experimentation is being done, with the memory capacity available Gephi can
handle up to 20 000 nodes and 1 000 000 edges. When more are loaded the program is
unresponsive and might crash. Furthermore, when working with more than 10 000 nodes
Gephi slows down considerably and running algorithms on the network are difficult.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Architecture

(a) Gephi (b) Cyptscape

(c) Tulip

Figure 4.3: Result sample comparison for visualization tools

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Implementation

This chapter provides a comprehensive description of the implementation of the solution
with the chosen architecture and technologies. To that end, code snippets, result outputs,
and precise explanations are provided for each of the steps in the implementation process.
Similar to how the organization of the architecture section was designed, the following
chapters will go into further detail in all three distinct layers of the solution and the
workflow that connects them. First, section 5.1 covers the data layer, which includes
the set up of the two Neo4j databases, dataset selection and persistence, and initial
experimentation with Neo4j and Cypher. Next, in section 5.2, the implementation of the
business logic layer is explained in detail. This section covers the integration of a Spring
Boot project in the workflow of the model, usage of algorithms and procedures, challenges
and how they are overcome, formating and exporting data, and more. Finally, the last
section of this chapter, section 5.3, covers our implementation with Gephi, including
precise configurations, datasets, and algorithms used.

5.1 Data Layer

As already mentioned in the architecture section and can be observed in figure 4.2, the
data layer is comprised of two separate Neo4j databases, one on a local machine and the
other one on a remote machine. The remote Neo4j server was provided by TU Wien and
has greater resource capacity, to better manage the memory complexity issues of the
graph database. Neo4j provides good desktop and browser GUIs, and for this research,
the browser version was used and proved to be more than adequate.

Two main steps were taken to ensure proper set-up of the graph databases, with the
first being refactoring the data to the correct format, so it is understandable to Neo4j,
and the second properly configuring and persisting the data using Cypher. Both will be
covered in the following subchapters.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

5.1.1 Data Preparation

Neo4j, like any other graph database, recognizes two main entities, nodes and relationships.
For the purposes of this thesis, the entities are set up in the following manner:

• Nodes

The set-up of Neo4j, in regards to this research, consists of two different types of
nodes. The first type of node is bytecode, which represents the smart corntracts,
and the second is signature, which represents by the ABI function signatures.

Both nodes are persisted and configured with a single property id, on which a
unique constraint is added. That means that each node, no matter if it is from
type bytecode or signature, will have a property id, by which it can be uniquely
identified.

• Relationships

Only one type of relationship is configured in the current set-up of the graph
database, and that is the relationship has, which implies that for a smart contract
b and a function signature s

(b : bytecode) − [: has] → (s : signature), (5.1)

if s is contained in b’s bytecode.

When this relationship is set up, a directed graph representation is created, of all
smart contracts and the function signatures they contain.

As it can be observed in figure 4.2 the method chosen for persisting the data in Neo4j is
importing it from a CSV file [neo16f]. Both databases are loaded with the same data from
the same CSV file. As is recommended in the Neo4j documentation, the files are kept as
simple and concise as possible, with most of the configuration being left to Cypher. The
current CSV file imported has two columns, bytecodes and signatures. Below, in figure
5.1 a small sample of the data can be seen.

5.1.2 Loading the dataset in Neo4j

Once the CSV file is properly formatted and located in the correct directory(see section
4.2), the nodes and relationships can be set up using Cypher’s LOAD CSV function. In
the case of this research, the set-up is managed with the Cypher code in the listings:

CREATE CONSTRAINT ON (b:bytecode) ASSERT b.id IS UNIQUE

CREATE CONSTRAINT ON (s:signature) ASSERT s.id IS UNIQUE

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Data Layer

Figure 5.1: First 10 rows of the data loaded in Neo4j

These Cypher statements create the unique constraints on a property id for both bytecodes
and signatures, by which the smart contract bytecode and function signatures can be
identified.

USING PERIODIC COMMIT 500

LOAD CSV WITH HEADERS FROM "file:///data.csv" AS line

MERGE (:bytecode {id: toInteger(line.bytecode)})

MERGE (:signature {id: line.signature})

These set of statements import the bytecodes and signatures as nodes in the database
for a CSV file called "data.csv". The method MERGE is used instead of CREATE to
avoid node duplication.

USING PERIODIC COMMIT 500

LOAD CSV WITH HEADERS FROM "file:///data.csv" AS line

MATCH (b:bytecode {id: toInteger(line.bytecode)}), (s:signature {id: line.signature})

CREATE (b)-[r:has]->(s)

These last Cypher statements create the relationships between the nodes. It should be
noted that the CSV file needs to be imported separately for both node and relationship
creation.

On the second and third function the method USING PERIODIC COMMIT 500
is used, which is a method that instructs Neo4j to perform a commit after a certain
amount of rows, in this case, 500 rows. This method reduces the memory overhead of
the transaction state and is recommended when the CSV file in question contains a
significant number of rows.

As a final example in this section, below, in figure 5.2 a sample result from Neo4j can be
observed for the following query

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

MATCH (b:bytecode)-[:has]\rightarrow(s:signature)

RETURN b, s

LIMIT 100,

which simply returns all nodes for the current dataset loaded in the graph database,
limited to one hundred results for greater clarity.

Figure 5.2: Neo4j sample output, returning 94 nodes, more precisely 9 bytecodes (orange)
and 85 functon signatures (blue) with 100 relationships "has" between them

5.2 Business Logic Layer

The business logic layer is in the largest part covered by a Spring Boot project. However,
that was not the first idea, but came later as a solution to the resource challenges. What

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Business Logic Layer

started in the beginning as a single local Neo4j database, was later extended to one more
remote Neo4j server with more resources, and finally finished with exporting most of the
logic to the external Spring Boot project.

The goal of this project is to connect to the two Neo4j graph databases, get the data
in partitions, as to not overwhelm the JVM, transform the data and run similarity
algorithms, and ultimately export a readable CSV file to the presentation layer. This
complete process can be separated into three distinct steps:

• Setting up the project, which includes installing a maven project, adding required
dependencies, and connecting the project to Neo4j.

• Applying proper algorithms and procedures, some directly in the Neo4j Web-
application and some in the Spring Boot project, depending on the memory re-
quirements of the algorithms.

• Exporting results to a CSV file, in a format that is optimized and readable for
Gephi.

5.2.1 Project Set-Up

Creating a new Maven Spring Boot project is simple. The Spring team offers a project
initializer that handles the basics of setting up a Spring Boot project [spr13]. The only
additional dependency that is required is the Spring Data Neo4j maven dependency, and
it can be added directly through the initializer. Spring Data Neo4j is a project that offers
Spring Data support to Neo4j graph databases. It supports Object-Graph-Mapping of
annotated Plain old Java object (POJO) entities, Spring Data repositories, transaction
handling, and more.

Once the initial set-up of the project is created and the correct dependencies for testing
and logging are added, the next steps include connecting to the Neo4j databases and
creating the initial version of the repository and mapped entities. In order to connect
to a Neo4j database, a driver needs to be configured. Spring Data Neo4j offers three
possibilities, Embedded, HTTP, and Bolt. Bolt uses the official Neo4j Java driver and
using it requires no extra dependencies to be added, unlike with the other two options.
For those reasons and the fact that it is a recommended choice, the Bolt protocol was
chosen to connect to Neo4j. Below, in figure 5.3, a code snippet can be observed for a
configuration with a Bolt protocol to connect to a local Neo4j database.

Next, the nodes and relationships from Neo4j need to be mapped to entities in Kotlin.
To that end, the annotations @NodeEntity and @RelationshipEntity are required, for
mapping the nodes and relationships, and the annotation @Relationship for adding a
connection between them. All three annotations can be observed below in figure 5.4,
where snippets of the initial entities are shown.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

Figure 5.3: Neo4j configuration

(a) Smart contract entity (b) Function signature entity

(c) Relationship entity

Figure 5.4: Code snippets for Object-Graph Mapping (OGM)

Finally, the initial repository is created. Spring Data Neo4j offers two ways of querying
resutls in a Neo4j graph database. The first way is using custom queries written in
Cypher with a @Query annotation since Spring Data Neo4j understands the Cypher
query language. That means one can write Cypher queries in a Spring project in the same
way as in the Web-Application. As a second way, Spring supports a Domain Specific
Language (DSL), from which the framework can build a Cypher query from the method
name if it follows certain naming conventions, which are explained further in the Spring
Data Neo4j documentation [sprb].

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Business Logic Layer

With that, the project set-up is completed. In the following subsection, the actual
clustering algorithms and their usage are covered. Moreover, further details are given
regarding the timeline and reasons for the choices made.

5.2.2 Applying algortihms

As previously mentioned, similarity algorithms are used in this model to find and observe
clusters of smart contracts in the Ethereum ecosystem. To that end, two of the algorithms
Neo4j implements are used and experimented with:

• Jaccard Similarity

Jaccard similarity (or Jaccard coefficient), introduced as a term by Paul Jaccard
[Jac01], is defined as the size of the intersection divided by the size of the union of
two sets, or as

J(A, B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
(5.2)

for two sets A and B. The resulting similarity will always be a number between 0
and 1, with the sets of data being more similar when this number is closer to 1.

This algorithm works best when the similarity between two things needs to be
calculated, or in the case of this research, the similarity between each pair of two
smart contracts.

The clusters produced by this algorithm are expected to be from smart contracts
that are "similar" in a traditional sense. Meaning smart contract bytecodes that
share the most function signatures will be clustered together.

• Overlap Similarity

Overlap similarity (or Overlap coefficient) is the second algorithm used to create
clusters and is defined as the size of the intersection divided by the smaller of the
size of the two sets, or

O(A, B) =
|A ∩ B|

min(|A|, |B|)
(5.3)

for two sets A and B.

Similar to Jaccard, this coefficient is also best suited to measure the similarity
between two sets of data, and the resulting similarity will always be a number
between 0 and 1. However, the best use case for Overlap similarity is when figuring
out which things are subsets of others.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

That means when contract A contains all function signatures of contract B plus
some additional ones, then the results from the two algorithms will differ, or

O(A, B) = 1

but

J(A, B) < 1

(5.4)

for two sets A and B.

After initial experimentation with the similarity algorithms, especially with Jaccard
similarity, an interesting observation was made. A large number of smart contracts share
the same function signatures. These smart contracts are not equal on a bytecode level
since duplicates were already extracted in the preprocessing phase of the research but
implement the same interface. Since they are regarded as functionally equal and do not
offer any new knowledge to the research, they can be extracted from the dataset.

This procedure was successful since it reduced the number significantly. Afterward, when
the community detection algorithms are applied, the resulting subgraphs become of a
manageable size.

Phase No. Bytecodes No. Signatures No. Relationships

Before removal 235 770 278 103 3 682 573
After removal 74 975 278 103 1 304 623

Table 5.1: Status before and after identical smart contract are removed

This duplicates removal could not be done directly in Neo4j, because to find "identical"
smart contracts, Jaccard similarity still needs to be calculated on the whole dataset. Only
after, all but one duplicate can be omitted. However, using a Kotlin method takes away
a lot of this complexity, and calculating Jaccard is not even necessary. The following
steps were taken to remove all duplicates:

• The complete dataset is loaded in memory in objects that has two fields. One, the
id property of the smart contract bytecode, and the other a list of all id properties
of the function signatures owned by the same contract.

• Both equals and hash functions are overwritten is such a way that the comparison
of an object is based on the list of function signature ids. More specifically, when
two of these objects are compared, the system will deem them equal, only if the
sum of signatures’ hashcodes is equal. In figure 5.5 a code snippet can be observed
directly from the project. The annotation @QueryResult is added so that Sring
understands that the object will be a result of a Cypher query.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Business Logic Layer

• After the whole dataset is in memory, the only thing left is to get all distinct objects,
export them to an external CSV file, and load the new version of the dataset in
Neo4j in the same way as explained in the previous subsection.

Figure 5.5: equals and hashCode override

Community Detection

The next step in the implementation process is partitioning the dataset in segments
small enough that we can, first of all, work with and calculate the similarity, and second
visualize the results in Gephi. To that end, two out of the three community detection
algorithms provided by Neo4j were used to partition the graph.

The first algorithm is the Weakly Connected Components. WCC is the only deterministic
community detection algorithm that Neo4j implements. It works by finding all sets of
connected nodes in a graph and forming subgraphs of the data. When this algorithm
is run on the Ethereum dataset persisted in Neo4j, it will create graph partitions of
all bytecodes that share signatures. And because smart contracts that do not share
any function signatures will not produce clusters of any kind, and consequently are not
important to this research, WCC is the correct choice.

The WCC algorithm in Neo4j offers an option to calculate all sets of connected components
and assign an integer property to each node. This number represents the id of the
connected component to which the node belongs, and for that reason, we name it
"componentId".

Below in figure 5.6, a screenshot with information about the dataset in regards to the
WCC can be observed, directly taken from the Neo4j Web-Application. The result rows
are ordered by the number of smart contracts contained in a partition. The total number
of weakly connected components is 3 055.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

Figure 5.6: First five rows of the dataset in Neo4j ordered by number of smart contract
bytecodes per WCC

However, as can be clearly seen, the yielded results of the WCC algorithm are not good
enough. Apart from the one significant partition that contains 71 291 smart contract
bytecodes, the rest are not usable. That means, the noise around the largest connected
component can be filtered out as it does not produce any more knowledge.

The other community detection algorithm used is the Louvain algorithm, introduced
by Blondel et al. [BGLL08], which finds communities in large-scale networks in a non-
deterministic way. Its goal is to maximize a modularity score for each community, where
the modularity quantifies the quality of an assignment of nodes to communities [neo15b].

Similar to the Weakly Connected Components algorithm, Louvain offers the option to
assign a property to all nodes, as to which community they belong. The name chosen
for this property is "communityId". The information concerning the state of the data in
Neo4j after running this algorithm and the final state of the dataset in this research can
be observed below in figure 5.7, also ordered by the number of smart contracts contained
in a Louvain community. Furthermore, the total number of Louvain communities is 3 624.

Figure 5.7: First five rows of the dataset in Neo4j ordered by number of smart contract
bytecodes per Louvain community

This algorithm yields numerous communities with more than one hundred smart contracts,
and the largest community contains only 19 466, which makes these partitions manageable.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Business Logic Layer

Creating Clusters

Everything that has been done up to this point is the preparation for this final step in
the business logic layer, and that is implementing the algorithms that create the actual
clusters.

Both similarity algorithms are applied to the dataset, separately for each WCC and
Louvain community. For all but the largest WCC and Louvain community, the algorithms
can be run directly in Neo4j. For the two remaining partitions, additional logic is applied
in the Spring project.

Let us take a partition with an N number of smart contracts as an example. Next, sets
of W number smart contracts are taken from the partition, and the algorithm is run on
both on W against each other and the remaining bytecodes of N in iterations. With
every iteration, the results produced are appended and exported to a CSV file, and the
number of bytecodes in N is reduced by W . The state of N is decreased by W after
every iteration.

So, for a partition with N number of bytecodes and W number of bytecodes in a window,
the number of calculations is

W ∗ (W − 1)

2
+ W ∗ (N − W) (5.5)

for a single iteration. After each iteration, N becomes N − W .

Let us now take the larges WCC as an example with concrete numbers. It contains 71 291
smart contract bytecodes. By the calculation explained in function 4.2, the number of
calculations needed for a similarity algorithm to be applied is 2 541 167 695. However,
following the logic from above, if W is 100 bytecodes, the calculations for the first iteration
will be 7 123 950. Afterward, this number will constantly reduce and the method will
increase in speed.

Once the algorithms yield results for a community, the whole set is sent through a method
that filters and formats the results, and exports them to CSV files. To better manage
the resulting datasets in the presentation layer, results from the algorithms are exported
in separate CSV files according to their similarity. More precisely:

• Results with similarities from 0.9 to 1.

• Results with similarities from 0.8 to 0.9.

• Results with similarities from 0.7 to 0.8.

• Results with similarities from 0.6 to 0.7.

• Results with similarities from 0.5 to 0.6.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

• Results with similarities from 0.1 to 0.5.

This way, if a dataset for a certain partition is too large, and the local machine does not
have to resources to optimally manage it in Gephi, only the data with higher similarities
can be loaded. All resulting datasets are exported in separate CSV files.

5.3 Presentation Layer

This final section for this chapter covers this thesis’ implementation using the large-scale
network visualization tool Gephi. It includes the format of the exported CSV files and
the algorithms used for the graph partitions loaded and their configurations.

The file can be imported in different ways, and for this research, two import methods are
important.

• Import CSV file as a Nodes Table

When importing the file as a nodes table, Gephi gives all importance to the nodes
and their properties. By default, Gephi requires the usage of an id, by which the
node can be identified, and an optional label, which can later be used for better
visualization. If the imported file has no label column, it will automatically be set
as "null". However, its value can later be changed manually.

• Import CSV file as an Edges Table

This type of table, as the name suggests, is used to visualize the data as a network,
with nodes and edges connecting them. To that end, two distinct columns are
required to be present in the imported CSV file, and those are the "source" and a
"target" column. These two columns represent the nodes (or node ids), between
which a connection is present. Gephi differentiates a "source" and "target" because
it supports directed graphs, but in this thesis that is not important, as we are
working with undirected ones. Another feature that is important, is an optional
"weight" column can be added to transform the view into a weighted graph. That
means that a numerical value is assigned to the edges as "weight" that can be used
to measure the distance or strength between the nodes and create clusters for better
visualization.

We load data both as nodes and edges. The datasets loaded as a node table contains the
smart contract ids, the weakly connected component they belong to, and the Louvain
community. Afterward, labels of known contracts will be added for comparing and
improving results. For the second type, importing the file as an edges table, the source
and target columns represent the ids of the smart contracts, on which the similarity
algorithms are run, and the last column is the similarity results as weight.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Presentation Layer

For each dataset loaded in Gephi, two layout algorithms implemented by Gephi are
used for better visualization and evaluation of the clusters. Both algorithms are used to
create and visualize the clusters according to the similarities produced by Jaccard and
Overlap respectively, which are set as weights in on the edges between all similar nodes.
The choice regarding which layout algorithm is chosen depends on the dataset loaded in
Gephi, or more precisely on the size and density of the weighted graph.

ForceAtlas2

The first algorithm used to create and visualize the clusters is ForceAtlas2 [JVHB14].
ForceAtlas2 is a force-directed network layout algorithm created especially for Gephi,
which simulates a physical system in order to spatialize a network. It works by making
the nodes repulse each other and the edges attracting the connected nodes in proportion
to the weight, like springs.

Both algorithms are available in Gephi, however, the first version is deemed obsolete.
Gephi offers different configurations for the ForceAtlas2, depending on the size and
density of the dataset. Some of the more important to visualize better results are:

• Gravity

As the name suggests, the gravity configuration is used to prevent disconnected
components to drift too far from each other. This option is a numerical value, and
the higher it is, the stronger the gravity will be.

Gephi also offers another gravity option, called "Strong gravity", which is a check-
box option, and when selected, it creates a force that attracts all disconnected
components to the center.

• Scaling

This option is a numerical value that when set, configures the size of the view. The
larger the scaling value is, the large the graph will be. This option proves useful
for this thesis because the datasets loaded differ widely in size.

• Edge weight

This option allows the user to set a numerical value that defines the strength of
the weight property of the edges. This option is usually used to better visualize
datasets with different sizes.

Gephi’s ForceAtlas2 offers other configurations as well, like LinLog mode, Dissuade
Hubs, Prevent Overlapping, and more, which are further explained by Jacomy et al.
[JVHB14].

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

OpenOrd

The second layout algorithm used for better cluster visualization is Gephi’s OpenOrd
algorithm [MBKB11]. OpenOrd is a force-directed layout algorithm, designed especially
to handle very large graphs. This algorithm is based on the Frutcherman-Reingold
algorithm for force-directed layout [FR91].

OpenOrd supports the following configurations:

• Edge Cut

Edge cutting in OpenOrd is specified by a numerical value between 0 and 1. When
the edge cut is set to 0, it corresponds to the standard Frutcherman-Reingold layout
algorithm with no cutting. When this value is set to a larger number, it produces
more clustered results. The default value for edge cutting in OpenOrd is 0.8.

• Num Threads

One disadvantage of the Frutcherman-Reingold algorithm is that it does not scale
on large-scale networks. This disadvantage has been since fixed in OpenOrd by
allowing the algorithm to run in parallel to increase the speed of computation.
Gephi’s OpenOrd allows users to configure the number of threads, and each thread
will work on a subset of the nodes in the graph. The number of threads available
depends on the processing power and resources on the machine. For example, on a
quad-core computer, it is recommended to use 3 threads [ope].

• Num Iterations

OpenOrd is not a continuous algorithm like ForceAtlas2, but works with a limited
number of iterations set by the user. These iterations are controlled by a simulated
annealing type scheduling, and is comprised of the following 5 phases: liquid,
expansion, cool-down, crunch, and simmer. This process is explained further by
Martin et al. [MBKB11].

Similar to ForceAtlas2, this algorithm also supports more configurations, however, for
the purposes of this thesis, they were deemed unnecessary.

As previously stated, these two algorithms are used in this thesis for creating and
visualizing clusters of Ethereum smart contracts, and the choice depends on the size
of the dataset, for both nodes and edges. When dealing with a larger dataset, it is
recommended to use OpenOrd, which leaves the smaller ones to ForceAtlas2.

The utilization of Gephi concludes this chapter, and in the next results and analysis of
the datasets loaded follow that are expected to answer the research questions of this
thesis.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Results and Evaluation

This chapter covers a comprehensive graph evaluation and discussion for the datasets of
interfaces of Ethereum smart contracts clustered by the number of function signatures
they share, using the two different similarity algorithms, Jaccard and Overlap. The goal
of this chapter is to provide results from the model described in the previous two chapters
and their evaluation.

To that end, this chapter is organized in the following manner. First, section 6.1 gives an
overview of the resulting datasets in Gephi, with information about the clusters produced
by both Jaccard and Overlap similarity algorithms. Next, in section 6.2, the set-up of
the evaluation process is presented, including labels of known smart contract interfaces
taken from related work and used for the evaluation, and the evaluation metrics and
parameters, both for selecting exemplary datasets and evaluating the datasets themselves.
Afterward, in section 6.3, the actual evaluation and analysis of selected graphs, loaded in
Gephi, is conducted. This section is comprised of a qualitative and comparative analysis
of selected datasets using the workflow described in section 6.1. Following this, section
6.4 completes this chapter with a discussion about the knowledge gained regarding the
clusters created using the two different similarity algorithms and comparing them against
labeled interfaces.

It should be noted that a graph analysis is not carried out for the largest weakly connected
component, due to the size and density of the smart contract → function signature
relationships. However, this component has already been partitioned into multiple
Louvain communities that are more manageable, in both size and density.

6.1 Results

In table 6.2 and table 6.4 information about the produced datasets from our solution can
be observed. The tables contain side-by-side information for datasets produced by running

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

Jaccard and Overlap similarity algorithms on the 50 largest connected components. The
first table covers data produced with a cut-off of 0.5, and the second with 0.1.

Additional information about the structure of the resulting tables can be seen below:

• No. Nodes: Number of Nodes in a dataset.

• No. Edges: Number of Edges produced by the selected clustering algorithms for a
dataset.

• No. Clusters: Number of clusters observed for a dataset. The size of a structure
that is considered to be a cluster depends on the size of the dataset. All datasets
are visualized in Gephi, using the ForceAtlas2 algorithm with the configuration
observed in figure 6.1, as it proved to provide the best clusters (depending on the
size of the datasets we change the gravity and scale metric).

• Cluster Info: The cluster information is represented as nodes to edges ratios, as
comma-separated ratios for each of the observed clusters.

• "/": This sign means that the data loaded in Gephi is too large (too many nodes
and/or edges) for it to run layout algorithms without crashing.

• NO: This means that no clusters can be detected in the graph.

Figure 6.1: Gephi layout algorithm configuration

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Results

No.
Nodes

Jaccard Overlap

No. Edges No. Clus-
ters

Cluster Info No. Edges No. Clus-
ters

Cluster Info

19 466 / / / / / /

6 908 38 817 3 234/9238, 80/1627,
74/1466

752 264 2 447/31 343,
2 890/441 177

3 202 4 964 3 34/434, 22/212,
14/91

173 797 NO NO

2 645 22 678 3 170/9 944, 99/3 224,
41/757

364 303 NO NO

1 954 5 859 3 61/1 422, 72/1 535,
24/275

32 813 1 465/17 580

1 924 55 576 2 288/32 049,
259/22 508

186 456 2 364/54 499,
321/44 821

1 916 3 948 3 54/875, 42/422,
22/120

30 969 NO NO

1 534 8 012 3 99/2 679, 100/3 141,
78/1 056

48 097 2 430/30 206, 138/8 090

1 172 1 663 2 38/232, 28/247 10 077 2 207/4 044, 48/665

1 055 7 979 2 132/5 767, 87/1 121 22 446 2 159/12 276, 133/4 076

981 1 329 3 21/181, 15/68, 14/90, 10 202 2 206/3 913, 124/3 296

846 1 592 2 57/337, 46/458 14 308 1 183/8 299

820 1 278 3 27/181, 22/122,
11/55

21 932 1 28/7 108

805 1 209 3 38/208, 34/116,
20/173

6 604 1 80/417

705 1 914 2 59/1 162, 22/177 6 744 3 299/2 411 95/1 304,
74/2 309

692 14 035 2 184/11 773, 57/1 445 24 619 2 231/21 434, 68/1 708

689 2 420 3 44/946, 35/588,
29/406

6 255 3 43/803, 39/692,
29/404

670 2 066 2 71/1 225, 30/167 11 959 2 206/5 211, 71/2 306

646 873 2 30/99, 25/165 6 385 1 90/1 831

638 3 054 1 94/2 589 11 808 1 107/5 228

626 1 184 1 41/594 4 828 1 49/1 098

591 779 2 30/183, 22/142 4 637 1 27/299

552 936 1 53/492 3 746 1 394/3 628

487 530 3 27/116, 18/81, 12/44 3 399 2 77/1 720, 44/447

484 664 2 19/151, 17/69 3 391 1 361/3133

480 501 NO NO 2 123 1 103/1080

471 1 002 2 41/419, 28/103 4 993 1 175/4 231

456 392 NO NO 3 111 2 80/1 214, 76/1 160

448 391 NO NO 1 554 1 196/850

433 620 2 22/171, 16/79 1 809 2 36/243, 29/331

425 416 1 16/97 984 2 71/248, 26/144

403 7 516 3 119/6 719, 37/320,
24/135

10 179 2 124/7 352, 64/1 305

393 503 1 31/198 1 545 2 43/164, 32/352

380 414 NO NO 3 101 1 52/338

370 354 1 14/88 1 193 NO NO

366 218 NO NO 780 1 50/155

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

358 360 NO NO 2 897 1 243/2 788

357 229 NO NO 538 1 146/365

347 267 NO NO 1 433 1 38/443

337 364 1 52/159 1 600 2 82/789, 23/149

323 420 1 29/162 1 795 1 33/418

306 732 2 30/224, 23/250 1 840 2 89/739, 47/713

295 422 1 19/80 1 969 1 91/1 249

294 919 2 36/583, 17/121 2 156 2 41/731, 16/119

269 364 1 15/68 1 061 2 44/157, 36/378

267 168 NO NO 638 2 24/132, 17/80

258 129 NO NO 752 2 45/388, 26/177

256 314 1 18/79 1 324 1 182/1 252

251 419 1 20/96 1 228 2 46/468, 41/316

248 5 NO NO 13 907 NO NO

Table 6.2: Similarity cut-off 0.5

No.
B

Jaccard Overlap

No. S No.
C

Details No. S No.
C

Details

19 466 / / / / / /

6 908 3 779 084 / / 6 440 974 / /

3 202 344 717 NO / 1 237 830 / /

2 645 1 638 353 / / 1 422 272 NO NO

1 954 129 614 NO NO 329 737 NO NO

1 924 364 522 2 394/77 076, 274/37 279 907 788 NO NO

1 916 99 655 3 463/36 756, 156/6 919, 75/2 250 272 769 NO NO

1 534 211 862 2 590/1239 300, 219/20 608 506 738 NO NO

1 172 25 598 3 170/10 202, 50/1 017, 35/561 73 637 1 215/21 339

1 055 45 384 2 154/11 642, 101/4 815 145 147 1 469/78 014

981 20 799 3 122/5 582, 102/3 918, 58/1 380 71 414 2 371/45 631, 132/6 326

846 21 329 3 159/12 396, 137/3 884, 77/1 250 75 680 1 165/12 631

820 50 929 2 344/36 975, 96/4 175 152 235 NO NO

805 16 424 2 104/4 578, 83/2 386 62 078 NO NO

705 12 684 2 107/2 969, 69/2 337 37 635 2 66/2 080, 54/1 330

692 44 008 2 248/19 662, 66/ 2 127 96 390 1 273/35 872

689 12 017 3 47/985, 44/946, 35/595 70 403 NO NO

670 16 736 2 220/10 579, 71/2 485 69 019 2 36/630, 35/595

646 12 640 2 96/3 345, 52/1 265 46 602 NO NO

638 22 977 1 166/13 390 66 311 NO NO

626 9 504 3 69/2 153, 41/755, 21/224 47 909 1 67/2 175

591 9 733 3 62/1 497, 38/529, 28/351 41 248 NO NO

552 9 488 2 91/3 412, 49/909 33 818 NO NO

487 5 833 3 77/2 589, 43/722, 40/618 16 832 1 77/2 925

484 9 001 1 67/1 959 34 132 NO NO

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Setup

480 6 284 1 81/2 256 22 167 1 104/4 554

471 10 446 2 37/693, 18/153 39 671 NO NO

456 8 200 2 98/3 453, 73/1 824 30 945 NO NO

448 2 504 1 22/203 12 516 NO NO

433 4 363 2 37/379, 32/478 21 196 2 38/674, 20/180

425 2 712 3 32/434, 29/290, 26/307 9 379 1 30/399

403 11 518 3 124/7 626, 60/1 765, 24/274 31 841 2 124/7 381, 55/1 485

393 4 445 3 36/360, 30/320, 26/368 17 510 1 37/600

380 5 158 2 36/566, 22/214 17 356 1 45/941

370 2 413 2 33/214, 14/91 12 308 1 34/394

366 1 455 1 17/98 6 614 NO NO

358 4 635 1 60/1 212 20 302 NO NO

357 1 661 1 49/495 11 193 NO NO

347 2 027 2 35/587, 14/91 8 254 1 33/528

337 3 428 3 63/1 448, 22/172, 20/171 8 058 1 62/1 479

323 4 555 1 35/573 15 723 1 22/164

306 4 480 3 61/1 647, 33/528, 15/99 13 017 1 77/2 617

295 4 213 3 30/435, 17/136, 17/128 15 088 1 79/3 081

294 4 488 2 38/681, 24/255 13 463 1 23/253

269 3 532 3 61/1 342, 32/490, 26/281 8 778 1 51/949

267 1 856 1 18/161 9 139 NO NO

258 1 630 1 35/537, 21/195 7 275 1 50/1 026

256 4 244 1 21/210 9 471 NO NO

251 2 249 2 45/821 42/565 6 018 2 47/809, 42/680

248 30 384 NO NO 30 384 NO NO

Table 6.4: Similarity cut-off 0.1

6.2 Evaluation Setup

In order to properly conduct our evaluation, two steps are required. The first one is adding
knowledge to the datasets, in the form of labels for known smart contract interfaces, and
the second is defining the correct evaluation metrics. Both steps are described in the
following subsections.

6.2.1 Labels

This section covers the information concerning the labels of known smart contracts.
These labels are loaded in Gephi in the later stages of this thesis to accurately evaluate
the validity of the clusters produced by both similarity algorithms.

It is important to note that finding and extracting labels of know smart contracts are not
part of this thesis, but are provided by TU Wien, as explained in [dAS19]. These labels
were later mapped to our existing dataset by the set of ABI function signatures, which

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

at this phase of the research, are unique for each smart contract. Two sets of labels are
provided for the purposes of this thesis, the main label, and a sub-label. Each smart
contract in the dataset, that contains a label, also contains a sub-label.

Information about the current state of the dataset, regarding the labels and sub-labels,
can be observed in table 6.5, which contains the list of main labels, the number of smart
contract interfaces in which this label can be found, and the number of Neo4j connected
components containing a smart contract with that label.

Label No. Interfaces No. Communities

No Label 51 250 /
ercToken 19 345 141

Token 3 893 91
WalletFactory 216 65

Wallet 207 23
Mayfly2 30 20

Controller 20 1
Ambi2 8 3

dDoS2016 3 3
DefaultSweeper 2 1

Gastoken 1 1

Table 6.5: Information about labels of known smart contract interfaces

As can be seen, some of the labels appear in smart contracts that are located in a larger
number of communities. To reduce that number, we make use of the sub-labels. The list
of all sub-labels for each of the main ones can be observed below, in table 6.6.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Setup

Label List of sub-labels

ercToken erc20, erc1462, erc721, erc777, erc1155, erc1644
Token Token

WalletFactory WalletFactory

Wallet

multisig WalletSimple/BitGo, smart GnosisSafe, intermediatewallet, multi-
sig Christian Lundkvist, multisig Stefan George, consumer wallet, multisig
WalletSimple/BitGo forwarder, timelocked wallet, autowallet, basicwallet,
controlled, dapper, eidoo wallet, ether wallet 1, ether wallet 2, logicproxy-
wallet, multisig Gavin Wood/Ethereum/Parity, multisig Ivt, multisig Julien
Niset/Argent, multisig NiftyWallet, multisig Teambrella Wallet, multisig
Unchained Capital, simple wallet, simple wallet 2, simple wallet 3, smart
Julien Niset/Argent, smartwallet, spendable wallet, wallet1

Mayfly2 Mayfly2
Controller Controller

Ambi2 Ambi2
dDoS2016 dDoS2016

DefaultSweeper DefaultSweeper
Gastoken Gastoken

Table 6.6: List of sub-labels for each of the labels of known smart contract interfaces

For two main labels, "ectToken" and "Wallet", the sets of sub-labels produce results and
for the most part reduce the number of components, in which they can be found. This is
especially noticeable with the "Wallet" label. Out of this set of sub-labels, only three can
be found in smart contracts located in more than one community. "multisig WalletSim-
ple/BitGo" can be found in three, and "smart GnosisSafe" and "intermediatewallet" can
be found in two. All others only exist in smart contracts contained in a single community.

6.2.2 Evaluation Metrics and Parameters

This section consists of two separate evaluation parameters used for two different parts of
the evaluation process, and they are evaluation parameters for selecting a correct
dataset and evaluation parameters for the produced resuts.

Evaluation parameters for selecting a correct dataset

As it was already discussed, loading the whole dataset in the visualization tool is infeasible.
Even when the data is partitioned, and loaded separately, evaluation of all 3 000 plus
components would be too time and space consuming for this research. That is why
partitions that are believed to produce the best results should be selected. This choice
depends on the following parameters:

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

• Size of the dataset

The first parameter for dataset selection is the size of the dataset. The number
of smart contract interfaces of the chosen dataset should not be too large as to
overload Gephi, considering the resource capacity of the available machine, and at
the same time not too small, so it can produce reliable results. For that reason,
WCC and Louvain components with more than 2 000, and less than 1 000 smart
contracts are not considered as candidates for the evaluation phase.

• Number and size of clusters in the dataset

It is obvious that clusters play a significant role in this thesis. However, because
the algorithms that produce the clusters are run separately on all components, they
might not produce a cluster for a certain community. A dataset is considered as
a candidate for further evaluation if it contains at least one large visible cluster,
produced by at least one of the two similarity algorithms (Jaccard and Overlap).
Furthermore, a large cluster is considered any structure in the graph that contains
at least 50 nodes, 1 000 edges, and an average edge weight of 0.6 (the edge weight
is represented by the similarity between the source and target node).

• Number of known smart contracts in the dataset

It can be observed in the previous subsection that labeled smart contracts can
be found in numerous components, and they are of significant importance to the
evaluation phase. For that reason, datasets that contain a larger amount of known
smart contracts are considered as better candidates for evaluation. Preferably the
labeled interfaces are located in a cluster for better results.

• Diversity of known smart contracts across the datasets

Labels and sub-labels of the same type can be found in numerous connected
components, as can be seen in table 6.5. As candidate datasets for evaluation are
considered those, in which as much known smart contracts with a certain sub-label
as possible are contained. Meaning that, for example, if all known smart contracts
with a certain label or sub-label are located in a single component, that one is more
likely to be selected.

Evaluation parameters for the produced resuts

The other type of parameters is defined to evaluate the validity of the resulting graphs.
Once a dataset is loaded in Gephy and layout algorithms are run to visualize the clusters
of the weighted graph, the following metrics are implemented for evaluation:

• Cluster quality

The quality of a resulting cluster depends highly on the similarity between its nodes.
Depending on the dataset, clusters differ in regards to quality, even if they look
similar to the user. For example, a cluster with an average similarity of 0.4 between

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

edges can look similar to a one with 0.8. The higher the average similarity is
between the edges of a single cluster, the more the validity of the results increases.

Another metric to better evaluate the clusters is the density of the cluster or the
ratio of nodes to edges in a single cluster.

• Difference of results with different similarity algorithms

Since two different similarity algorithms are applied to each dataset, the resulting
clusters may differ, both in size and density. If the difference between the resulting
clusters remains small, it will increase the validity of the results.

• Evaluation using labels of known smart contracts

Since we have chosen datasets with a large number of labeled smart contract
interfaces, it is expected that those interfaces are contained within a cluster. To
that end, two different ratios are of interest to this research, in regards to the labels
of known smart contracts in a dataset, and they are defined by the following two
functions. The first one is the ratio of labeled to unlabeled smart contracts in a
single cluster, and the second is the ratio of labeled smart contracts inside a cluster
to labeled smart contracts outside one. For both evaluation parameters, a larger
ratio on the side on labeled smart contracts are expected for better results.

6.3 Graph Analysis of Connected Components

Following the evaluation metrics for dataset selection in the previous section, three
datasets that fit the criteria were chosen for the next phase, covered in the following
subsections.

• Basic information about the dataset.

• Evaluation of clusters for Jaccard similarity algorithm.

• Evaluation of clusters for Overlap similarity algorithm.

• Comparative analysis for the two different clustering methods.

All following datasets are visualized in Gephi, using the ForceAtlas2 algorithm with the
configuration observed in figure 6.1, with adjustments in the gravity and scale metrics,
depending on the size and density of the data.

6.3.1 Dataset One

Basic Information

Basic infromation about the first selected dataset can be observed in table 6.7.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

Name Value

Number of interfaces 1 055
Number of function signatures 5 361
Number of labeled interfaces 223

Labels occurring Wallet, WalletFactory, ercToken, Token, Mavfly2
Most frequent label Wallet

Most frequent sub-label multisig Stefan George

Table 6.7: Basic information for dataset one

The color chart for this dataset in regards to the labels (or sub-labels) of known smart
contracts can be observed in figure 6.2.

Figure 6.2: Color chart for dataset one

Evaluation of clusters for Jaccard similarity

In figure 6.3 the resulting graph can be observed for the first dataset produced by running
the ForceAtlas2 layout algorithm.

In the figure, two clusters of a reasonable size can be observed, and numerous small ones,
with a maximum of ten nodes. The first large cluster is the one in the center of the
figure, containing the majority of known smart contract interfaces with label "Wallet"
and sub-label "multisig Stefan George" (orange color according to the color chart defined
above). It contains a total of 132 nodes, and 5 767 edges, and the average edge weight of
all edges in the cluster are 0.67.

Out of all nodes in the cluster, 82 have the label "Wallet" and sub-label "multisig Stefan
George" (62.88%), 50 interfaces are unknown (35.61%), and 2 have the label "Token"
(1.52%). That means, that the ratio of "Wallet" interfaces to unknown interfaces inside a
cluster is 41 : 26.

Outside of the cluster, 38 nodes have the same label as the majority of the nodes inside,
which makes the ratio of "Wallet" interfaces inside a single cluster to those outside the
same 41 : 19. However, if we use the sub-labels for this equation, the ratio becomes
82 : 11.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

Figure 6.3: Graph produced by Jaccard similarity with cut-off 0.5, visualized in Gephi
using ForceAtlas2 for dataset one

Just by looking at the other large cluster, again containing nodes with the label "Wallet",
but sub-label "multisig Gavin Wood/Ethereum/Parity" (purple color), we can expect
worse results than the previous. This ratio of nodes to edges of the cluster is 87 : 1 121,
and the average edge weight of the cluster are 0.65. From the nodes, 19 have the label
"Wallet" and sub-label "multisig Gavin Wood/Ethereum/Parity" (21.84%), 1 has the label
"Wallet Factory" (1.15%), and 67 are unknown (77.01%). The ratio of "Wallet "interfaces
to the others inside the cluster is 19 : 68.

However, these 19 nodes represent the total number known interfaces with a sub-label
"multisig Gavin Wood/Ethereum/Parity", not just in this dataset, but in the whole
Ethereum dataset of distinct interfaces.

The rest of the small clusters, from 5 to 15 nodes, contain known interfaces with different
labels, such as "ercToken", "Token", and "Wallet", or green, dark gray, and brown
respectively. An interesting observation, according to the figure, is that known smart
contract interfaces with the label "ercToken" and sub-label "erc20" (green color), can be
found in several small clusters. However, when the similarity cut-off is reduced to 0.1,
they converge to one single cluster. Other observations are not made when the similarity

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

cut-off is changed.

Evaluation of clusters for Overlap similarity

For this dataset, Overlap similarity with a cut-off at 0.5, finds a lot more edges than
Jaccard, or 22 446 to Jaccard’s 7 979, as it can be obesrved in figure 6.4.

Figure 6.4: Graph produced by Overlap similarity with cut-off 0.5, visualized in Gephi
using ForceAtlas2 for dataset one

Similar to Jaccard, the Overlap algorithm also produces two large clusters (orange and
purple nodes), however as it can be observed in the figure, due to the larger amount of
edges, the data looks less organized. The larger one of the two clusters has a nodes to
edges ratio of 159 : 12 276, and an average edge weight of 0.8.

The number of unknown interfaces in the cluster is 60 (37.75%). From the labeled ones
3 have a label "ercToken" (1.89%), 2 "Token" (1.26%), and all other 94 have the label
"Wallet" and sub-label "multisig Stefan George" (59.12%). The ratio of "Wallet" interfaces
to the other in the cluster is 94 : 65, and all of them are contained in this cluster.

The other large cluster produced by the Overlap algorithm has a nodes to edges ratio
of 133 : 4 076, and an average edge weight of 0.69. The number of interfaces labeled

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

with "Wallet", "ercToken", "WalletFactiory", and "Token" are 19 (14.29%), 18 (13.53%), 1
(0.75%) and 1 (0.75%) respectively. The number of unknown interfaces is 96 (70.68%).
An interesting phenomenon in this cluster is that a similar number of known smart
contract interfaces of two different types can be found, interfaces with label "Wallet" and
sub-label "multisig Gavin Wood/Ethereum/Parity", and those with label "ercToken" and
sub-label "erc20". For that reason, ratios are calculated for both types of interfaces.

The ratios of known to unknown interfaces in a single cluster are 19 : 114 for "Wallet"
interfaces and 18 : 115 for "ercToken" interfaces. Finally, the ratios for known interfaces of
a certain type inside and outside a single cluster is 18 : 62 for "ercToken" interfaces, and
the interfaces with sub-label "multisig Gavin Wood/Ethereum/Parity" are all contained
within this cluster. As mentioned before, due to the nodes to edges ratio in the dataset
the graph is scattered, so finding other clusters is difficult.

Comparative analysis of clustering approaches

Several observations can be made when comparing the produced clusters using the two
different approaches. When comparing the two clustering algorithms for the dataset,
the first thing that can be noticed is the difference in the nodes to edges ratio for the
whole dataset. The dataset produced using Overlap similarity with a cut-off 0.5 (the
same cut-off is used for both algorithms) has a significantly larger number of edges, or
22 446 to Jaccard’s 7 979, which means that a lot of the smart contract interfaces in this
clusters are subsets of others when it comes to the function signatures they share.

In figure 6.5 side by side comparisons of the two largest clusters produced by both
similarity algorithms can be observed. It can be noticed from the figures that the clusters
produced by the Overlap algorithm are larger and denser. When looking at the clusters
without having any knowledge of labeled interfaces, overlap produces the better clusters,
with average edge weights of 0.8 for the first and 0.69 for the second cluster. However,
when labels and sub-labels are introduced, it can be noticed that Overlap finds similarities
between "Wallet" and "ercToken" smart contract interfaces, which is especially obvious in
the second cluster.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

(a) Jaccard cluster one (b) Overlap cluster one

(c) Jaccard cluster two (d) Overlap cluster two

Figure 6.5: Side by side comparison of clusters for dataset one

6.3.2 Dataset Two

Basic Information

Information for the next dataset evaluated in Gephi can be observed in table 6.8, and
below, on figure 6.6, the color chart of the dataset is presented. This dataset is the
largest one of those selected, in both the number of known smart contract interfaces and
in total. It represents the sixth-largest Louvain community.

Name Value

Number of interfaces 1 924
Number of function signatures 6 829
Number of labeled interfaces 791

Labels occurring Wallet, WalletFactory, ercToken, Token
Most frequent label ercToken

Most frequent sub-label erc20

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

Table 6.8: Basic information for dataset two

Figure 6.6: Color chart for dataset two

Evaluation of clusters for Jaccard similarity

In figure 6.7 the resulting graph can be observed for the first dataset produced by running
the ForceAtlas2 layout algorithm.

Figure 6.7: Graph produced by Jaccard similarity with cut-off 0.5, visualized in Gephi
using ForceAtlas2 for dataset two

Similar to the previous dataset loaded in Gephi, two large clusters can be observed in
the figure, as well as numerous small ones. However, while the clusters in the dataset
one were both comprised of "Wallet" interfaces, in this one the clusters contain known

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

interfaces of two different types, namely "Token" and "ercToken". Another "first glance"
observation from the figure is that these clusters are very pure, in a sense that hardly
any unknown interfaces can be found. Meaning, it is safe to say that the possibility of
belonging to the same type of smart contracts is high.

The first large cluster, containing the majority of "ercToken" interfaces (orange color
according to the coloring scheme defined above), is almost completely a pure cluster with
no unknown interfaces, 1 labeled with "Token", and 287 "ercToken", for a total of 288
nodes, which is 99.65%. The ratio of nodes to edges is 288 : 31 049 and the average edge
weight of the cluster is 0.66.

The ratio of "ercToken" interfaces inside the cluster to those outside is 287 : 161, which
means that a lot of smart contracts of this type are scattered outside the cluster, some
grouped in small clusters to 10 nodes, and some on their own.

On the other hand, the second cluster is comprised mostly of smart contract interfaces
that have the label "Token" (green color), or more precisely 243 "Token" interfaces, 8
"ercToken", and 8 unknown. The total size of this cluster is 259 nodes to 22 508 edges,
and its edge weight is 0.66.

The ratio of "Token" interfaces to others inside the cluster is 243 : 16, and the ratio of
these inside the cluster to that ouside is 243 : 38.

Evaluation of clusters for Overlap similarity

The graph produced by Overlap similarity with a cut-off at 0.5 can be obesrved in figure
6.8.

As was the case with the previous dataset, Overlap calculates more similarities, which
results in a graph with larger and denser clusters, but also not as clearly separated from
the rest of the data.

The first of the two large clusters, containing the majority of "ercToken" interfaces (orange
color), has a nodes to edges ratio 364 : 54 499, and an average edge weight of 0.75. From
the nodes, 334 are labeled "ercToken" (91.76%), 6 "Token" (1.65%), 5 "WalletFactory"
(1.37%), and 19 are unlabeled (5.22%), which makes the ratio of "ercToken" interfaces to
other in the cluster 334 : 20. However, the ratio of "ercToken" interfaces inside to those
outside of the cluster is 334 : 104 or 167 : 57.

The other large cluster, containing the majority of "Token" interfaces (green color), has a
total of 321 nodes, from which 263 are labeled "Token" (81.93%), 13 "ercToken" (4.05%),
and 45 are unlabeled (14.02%). The cluster also has 44 821 edges, and an average edge
weight of 0.76.

The ratio of "Token" interfaces to others in the cluster is 263 : 58 and the ratio of "Token"
interfaces inside to those outside the cluster is 263 : 18.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

Figure 6.8: Graph produced by Overlap similarity with cut-off 0.5, visualized in Gephi
using ForceAtlas2 for dataset two

Comparative analysis of clusters

Figure 6.9 shows a side-by-side comparison of the two large clusters produced by Jaccard
and Overlap similaritaty respectively.

As was the case with the previous dataset, Overlap again produces larger and denser
clusters with higher average edge weights for both, as well as a denser graph for the
whole dataset.

That means, that for this dataset, the Overlap algorithm finds more similarities than
Jaccard. For example, when observing the first set of clusters in figure 6.9 (a and b),
the one produced by the Overlap algorithm has more "ercToken" interfaces than the one
produced by the Jaccard algorithm, more precisely 334 and 241 for Overlap and Jaccard
respectively. Thus, a large number of "ercToken" interfaces, which are scattered in the
graph produced by running the Jaccard algorithm, are converging to a single cluster in
the one produced by Overlap. The situation is the same as the one with the other cluster,
c and d in the figure.

However, it should be stated that even though the clusters produced by Overlap similarity

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

(a) Jaccard cluster one (b) Overlap cluster one

(c) Jaccard cluster two (d) Overlap cluster two

Figure 6.9: Side by side comparison of clusters for dataset two

are larger in both nodes and edges, in Jaccard’s clusters a clear separation between
them can be observed. Both of Overlap’s clusters have a larger number of "false" nodes,
meaning that they contain known smart contract interfaces with different labels than
the majority, and that is especially noticeable with the cluster in figure 6.10 (b), which
has 5 "WalletFactory" interfaces and 6 "Token" interfaces, as well as more unknown ones
compared to the one produced by Jaccard.

This cluster separation can be especially observed when the cut-off for Jaccard and
Overlap is reduced to 0.1. In figure 6.10, the comparison between the two produced
datasets in Gephi can be observed. When looking at the graph produced by Jaccard, in
figure 6.10 (a), even though there are some similarities between "ercToken" and "Token"
can be observed as they are pulled close to each other, a clear separation between the two
types of known interfaces and the unknown ones can be seen. On the other hand, when
looking at the graph produced by Overlap in figure 6.10 (b), these separations cannot be
observed, which means that for this dataset, Jaccard distinguishes interfaces better when
based on their function signatures.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

(a) Jaccard (b) Overlap

Figure 6.10: Comparison of Jaccard and Overlap graphs when the cut-off is set to 0.1

6.3.3 Dataset Three

Basic Information

The basic information for the third and last dataset examined can be observed in table
6.9, and below, in figure 6.11, the color chart for the graph loaded in Gephi.

Name Value

Number of interfaces 1 534
Number of function signatures 11 910
Number of labeled interfaces 576

Labels occurring ercToken, Token, Mayfly2
Most frequent label Token

Most frequent sub-label Token

Table 6.9: Basic information for dataset three

Figure 6.11: Color chart for dataset three

Evaluation of clusters for Jaccard similarity

In figure 6.12 the Jaccard graph for dataset three loaded in Gephi can be observed. The
Jaccard similarity algorithm was run with 0.5 cut-off and the layout algorithm used to
visualize the graph was ForceAtlas2.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

Figure 6.12: Graph produced by Jaccard similarity with cut-off 0.5, visualized in Gephi
using ForceAtlas2 for dataset three

Three distinct large clusters can be observed in the figure. Unlike the graphs produced
from the two previous datasets, this one contains a clearly defined cluster without known
smart contract interfaces. This cluster is densely connected with a node to edges ratio of
99 : 2 679, and an average edge weight of 0.61.

The other two clusters are comprised almost exclusively of "Token" interfaces. The larger
of the two, the one located in the center of the figure, contains only "Token" interfaces, or
more precisely 100 "Token" interfaces and 3 141 edges between them. The average edge
weight of this cluster is 0.61.

The situation is similar to the other cluster as well, which contains nodes to edges ratio of
78 : 1 056, and an average edge weight of 0.61. From the nodes 74 are "Token" interfaces,
2 are "ercToken", and 2 are unlabeled.

Since these two clusters both have a majority of known smart contract interfaces of the
same type but are still evaluated as separate clusters, the ratio of "Token" interfaces
inside to those outside is effected negatively. Thus, this ratio for the larger cluster of
the two is 100 : 380, and for the other one 78 : 402. Other smaller clusters can also be

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

noticed in the figure, up to 20 nodes, by nodes labeled with "Token" and "ercToken",
however, due to their size, they will not be evaluated separately.

When the cut-off of the Jaccard similarity algorithm is reduced to 0.1 more insight can
be gained for this thesis, with the most significant one being that all nodes labeled as
"Token" and "ercToken" interfaces cluster together in one large cluster. This phenomenon
can be observed in figure 6.13, where we can notice that the data is separated into two
large partitions, one containing all "Token" and "ercToken" interfaces, and the other the
majority of unlabeled ones. This is further proof of the similarity between "Token" and
"ercToken" interfaces, which can also be observed in the Jaccard produced graph with
cut-off 0.1 on the previous dataset, in figure 6.10 (a). However, the average edge weight
of the labeled cluster is 0.2, which for an algorithm that calculates similarity based on
shared function signatures of smart contracts is very low.

Figure 6.13: Graph produced by Jaccard similarity with cut-off 0.1, visualized in Gephi
using ForceAtlas2 for dataset three

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

Evaluation of clusters for Overlap similarity

In figure 6.14, the resulting graph produced by Overlap similarity with a cut-off at 0.5
can be observed. Same as before, the used layout algorithm for cluster visualization is
ForceAtlas2.

Figure 6.14: Graph produced by Overlap similarity with cut-off 0.5, visualized in Gephi
using ForceAtlas2 for dataset three

As expected, the Overlap similarity algorithm produced a denser, more clustered graph,
and found more similarities than Jaccard. Two clusters are of interest in this graph. The
first one is the large partition of clustered data in the center of the figure, containing a
majority of "Token" interfaces. The node to edges ratio of this cluster is 430 : 30 206, and
its average edge weight are 0.62. From all nodes, 327 are "Token" interfaces (76.05%),
60 "ercToken", and 43 are unlabeled. Moreover, two different subtypes of "ercToken"
smart contract interfaces can be found in the cluster, more specifically 25 interfaces with
the sub-label "erc721" (4.19%) and 18 with the sub-label "erc20" (4.19%). They are
represented by the purple and green colored nodes respectively. The ratio of "Token"
interfaces in the cluster to other ones is 327 : 103, and the ratio of "Token" interfaces
inside the cluster to those outside the same one is 327 : 153.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Graph Analysis of Connected Components

(a) Jaccard cluster one (b) Overlap cluster one

(c) Jaccard cluster two (d) Overlap cluster two

Figure 6.15: Side by side comparison of clusters for dataset three

The other cluster selected for evaluation is the circular one found top-right in the figure,
which contains almost no known smart contract interfaces, apart from 4 "Token" interfaces.
The cluster has 137 nodes, 8 090 edges, and its average edge weight 0.68, which is the
highest for this dataset.

Comparative analysis of clusters

Figure 6.15 shows a side-by-side comparison of the clusters produced by Jaccard and
Overlap similarity respectively.

The first image, or figure 6.15 (a) is comprised of the two different clusters because all of
the interfaces contained in those two clusters are also contained in the large one produced
by Overlap with the same similarity cut-off.

Similar to the previous two datasets, both clusters produced by running the Overlap
algorithm are larger, denser, and have higher average edge weights, or 0.62 and 0.68,
whereas Jaccard’s clusters all have an average edge weight of 0.61. The difference is
not that large when only this parameter is observed. However, that changes when the

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results and Evaluation

density of the clusters is taken into consideration. Overlap’s clusters have nodes to edges
ratio of 430 : 30 206 and 137 : 8 090, while Jaccard’s have 99 : 2 679, 100 : 3 141, and
78 : 1 056. When these numbers are summarized, the ratio of clustered data for the graph
produced by Overlap is 567 : 38 296 and for the one produced by Jaccard is 277 : 6 876.
Furthermore, when comparing the second pair of clusters in the figure, we can notice
that the one produced by Overlap is able to find known interfaces, which give us a better
idea of the functionality of the cluster. The 4 known smart contract interfaces in these
clusters have the label "Token".

On the other hand, Jaccard similarity is able to produce clearer and more concise clusters,
containing highly homogeneous data. That means, that these clusters are more likely
to contain smart contract interfaces of the same type, or with the same labels and/or
sub-labels. Even when the similarity cut-off is reduced to 0.1, the "Token" interfaces tend
to move towards the same cluster, while the others move away from it, which is not the
case when Overlap similarity is implemented. Finally, when similarity cut-off is reduced
to 0.1 on the Overlap algorithm, no clusters can be observed, the same as the previous
dataset.

6.4 Discussion

This section covers insights that we deducted from the evaluation of the three distinct
datasets in regards to their produced clusters by using two different clustering approaches.
When Jaccard or Overlap similarities are implemented on distinct smart contract interfaces
in the Ethereum network, clusters of similar interfaces are produced. In each of the
selected datasets for evaluation, at least two large clusters can be noticed, with a minimum
average edge weight of 0.6. In regards to the parameters chosen for evaluating the quality
of the clusters, the following observations were made:

• Average edge weight of the clusters

The largest average edge weight in a cluster was detected in one of those produced
by the Overlap similarity algorithm, which stands at 0.8. This cluster can be
observed in Figure 6.5 (b).

On the other hand, the lowest average edge weight noticed throughout the exper-
iments, for a similarity cut-off of 0.5, was 0.61, and was found in three different
clusters. All of them are produced by running the Jaccard similarity for the third
dataset and can be observed in Figure 6.15 (a) and (c). Clusters with smaller
average weights were noticed as the similarity cut-off was lowered.

The situation is similar to the rest of the clusters. As expected, Overlap similarity
produces clusters with a higher average edge weight, as the value in its denominator
is smaller than the one for Jaccard.

• Size and Density of the clusters

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Discussion

Overlap similarity has an overall better performance in regards to the nodes to
edge ratio and usually produces denser clusters. The highest ratio found was in
one cluster produced by the Overlap algorithm, and stands at 364 : 54 499. This
cluster can be observed in Figure 6.9 (b).

As expected, the cluster with the lowest nodes to edges ratio was one of the three
clusters produced by Jaccard in the last evaluated dataset and has a value of
78 : 1056. This cluster can be observed in Figure 6.15 (a), left.

However, the density of the clusters can be changed by using lower similarity
cut-offs. This configuration works properly only for graphs produced by the Jaccard
similarity algorithm, which even with a low similarity cut-off can create clusters.
When this configuration is used on the Overlap algorithm, the whole dataset is
clustered together, and no knowledge can be gained. An example of such a graph,
created by using Jaccard can be observed in figure 6.13.

• Ratio of known smart contract interfaces of a certain type to others in
a single cluster

When it comes to detecting more concise and homogeneous clusters, Jaccard
similarity performs significantly better, for all three datasets. This algorithm was
able to detect 1 cluster that is 100% homogeneous, which can be observed in figure
6.15 (a), right, and 4 more which are more than 90% homogeneous.

One of the clusters from the first dataset produced by Overlap performed the
worst in regards to this evaluation metric and can be observed in figure 6.5 (d). In
this cluster, the Overlap algorithm finds similarities between two different types
of known smart contract interfaces. It contains 19 "Wallet" and 18 "ercToken"
interfaces. Wallet and token smart contracts are not "completely" different, as
the purpose of many wallets is to handle tokens. However, the overlap may be
considerably small (just 1 to a few signatures) and also depends on the size of the
wallet interface.

• Ratio of known smart contract interfaces of a certain type inside to
those outside a single cluster

In regards to this last evaluation metric, two observations can be made. First, when
the similarity cut-off is set to 0.5, Overlap performs better. An obvious example is
the clusters in the third dataset, for which Jaccards separates "Token" interfaces
into two large clusters while Overlap combines them into one. This difference in
clusters can be seen in figure 6.15 (a) and (b).

The second observation is that when the similarity cut-off is reduced to 0.1, Jaccard
is able to combine the majority of the same labeled interfaces into a single cluster,
while Overlap clusters the entire data into a single cluster. The difference between
these two algorithms for a low cut-off can be observed in figure 6.10. However, due
to size and density, these graphs do not produce clear images.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Conclusion and Future Work

In this final chapter and the next several sections, a summary and a conclusion are
provided, starting with the contribution of the thesis, a discussion regarding the research
questions presented in section 1.1, and finally concluding with limitations and challenges,
and possibilities for future work.

7.1 Summary and Contribution

This thesis represents one step towards the bigger picture understanding smart contracts
and how they work together in a blockchain network. Following this, two contributions
from this research can be recognized:

• Identify and understand smart contracts that share functionality

The first and most important contribution of this thesis is the research to understand
how Ethereum smart contracts that have the same or similar functionality are
connected in the network.

By creating clusters of Ethereum smart contracts using two different similarity
algorithms implemented by the graph database Neo4j, in regards to the function
they share, we were able to identify groups of smart contracts with the same or
similar functionality. These clusters were later loaded to a large-scale network
visualization tool, Gephi, for a better overview and comparison of the clusters
yielded from each of the similarity algorithms.

• Help identify and label smart contracts

Another contribution of this thesis is assisting in the ongoing research for identifying
and/or labeling unknown smart contracts, thus continuing the work of numerous
scientists and researchers in the area of understanding Ethereum smart contracts.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion and Future Work

Examples of such research include Di Angelo et al. [dAS19] and Norvill et al.
[NFS+17], that have already been covered in chapter 3.

To that end, labels of known smart contracts were loaded into the preexisting
dataset. There are several benefits to this approach. First, by loading labels of
known smart contracts to the already created clusters, we were able to better
evaluate the validity of our results. If a certain label (or type of label) is completely
contained in one cluster, we can be sure that the clustering algorithm has produced
valid results. Furthermore, it was also helpful in the comparative analysis of the
two different Neo4j similarity algorithms, Jaccard and Overlap. Finally, if a group
of labeled smart contracts is found in a cluster, it can be later used to identify new
ones.

7.2 Discussion of Research Questions

The two research questions, formulated in section 1.1, help to develop an understanding
of smart contracts in the Ethreum environment, and at the same time guided the course
of this thesis. This section provides answers to those questions.

• RQ1: Without prior knowledge about the contracts, which structures/
patterns can be observed in the contract graph?

Structures in the form of clusters can be detected in almost every connected
component in the dataset, with their size and density depending size of the dataset
and the selected clustering approach. Numerous distinct smart contract interfaces
share functionality and depending on the similarity algorithm chosen, and its
configurations, different types of clusters are created, as it can be observed in tables
6.2 and table 6.4. Generally, clusters produced by the Jaccard similarity algorithm
are clear and concise, with a clear separation from the rest of the dataset loaded in
Gephi, which is especially noticeable when a higher similarity cut-off is configured
for the algorithm. However, sometimes the structures are very small (from 5 to 10
nodes) and they are not considered as clusters in the information tables. When
this cut-off is reduced, the clusters increase in size, however, the line of separation
between pieces of clustered data becomes blurrier. When the size of the evaluated
dataset is larger Jaccard similarity with higher cut-off produces better results and
vice versa. On the other hand, the graphs produced by the Overlap similarity
algorithm, even with higher similarity cut-off detect larger and denser clusters,
in which the clustered and unclustered data is not clearly separated. When the
similarity cut-off is reduced, it is not uncommon for the whole dataset to cluster
together, and no structures can be noticed. Since Overlap is able to find a lot
more similarities between the data in a single connected component (enough to
cluster the entire datasets in some cases), it leads us to conclude that a lot of smart
contracts in the Ethereum ecosystem are subsets of others, in regards to the ABI
function signatures they share.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Limitations and Future Work

• RQ2: With prior knowledge about the contracts, which structures/ pat-
terns can be observed in the contract graph?

Once additional knowledge has been added to the entire Ethereum dataset in the
form of known/labeled smart contracts, a large portion of the structured data
gains more meaning. We can see if the known smart contract interfaces are pulled
together in clusters, how many of them gravitate towards a single cluster in the
dataset, what portion of unknown interfaces are closely clustered with them, if
different types of known interfaces can be found is a single cluster, and gain more
insight in the quality of clusters in regards to the chosen clustering approach. Both
clustering approaches produce reliable results for the three selected datasets, and it
can be concluded that usually known smart contract interfaces of the same type
are clustered together. However, when it comes to concise clusters with clear lines
of separation, Jaccard similarity produces better results, and this superiority is
proven by the high ratio of known interfaces to others inside a single cluster. On
the other hand, Overlap similarity produces denser clusters that attract a larger
number of nodes, which leads us to believe that a significant number of nodes are
subsets of others in regards to their functionality (as mentioned before, Overlap
similarity is usually used to work out which things are subsets of others).

7.3 Limitations and Future Work

This section covers first, the limitaions and challenges of this thesis that in one way or
another stopped us form getting more refined results, and second, the possibilites of
future work and research that could improve on what we have built so far.

The limitations encounterd during the course of this research are the following.

• Memory and resources

The challenges with resource allocation have already been mentioned during the
course of this thesis. In section 4.1 and section 4.2 several possible solution were
presented and explained. Some of those approaches were implemented, like using a
larger server (provided by TU Wien), exporting some of the logic to a Spring Boot
project, and partitions the data.

However, even with the steps taken to reduce the resource requirements, this
limitation has still proved to be the most significant one. The size of the data is
simply too large for a single machine with average settings and configurations to
handle.

• Lack of labeled smart contracts

One important approach in this research for gaining a deeper understanding of
smart contracts in the Etherem ecosystem was the comparison of clustered contracts
to already known and/or labeled ones. As already mentioned, this approach was

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion and Future Work

key for the comparative analysis of the different similarity algorithms that were
implemented.

However, in the current phase of blockchain and smart contract research, the
number and quality of labeled and known smart contracts are limited and not
reliable enough to make a big difference in the process of evaluating and comparing
results.

These limitations, noted above, offer opportunities for future research on the topic. First
of all, using some of the more expensive measures and approaches to tackle challenges of
resource allocation, explained in section 4.1, far better clusters of smart contracts that
share functionality can be produced. This applies both for the clustering algorithms
themselves, which on better and/or more machines can handle and manipulate large sets
of data (also faster), and for visualizing and manipulating clusters in network visualization
tools. The latter is especially significant because there is just so much data Gephi can
handle with average settings on a normal machine.

Finally, new research and studies for the Ethereum blockchain and Ethereum smart
contracts keep appearing, and considering the popularity of the topic, they will not stop
any time soon. Some of them, similar to this thesis, help in the work of understanding,
identifying, and labeling unknown smart contracts. Once a larger portion of all smart
contracts in the Ethereum network are identified and deemed as "known", this clustering
model will produce far better and more concise results. Once more known smart contracts
exist, different clustering approaches and algorithms can be used and compared, and
with that, an optimal approach can be found.

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acronyms

ABI Application Binary Interface. 6, 17, 27, 42, 59, 82

BI Business Intelligence. 29, 30

CCG Contract Creation Graph. 21

CIG Contract Invocation Graph. 21

CPU Central Processing Unit. 29

CRUD Create, Read, Update, and Delete. 34

CSV Comma-separated values. 33, 34, 38, 42, 45, 49, 51, 52

dApp Decentralized application. 2, 17

DSL Domain Specific Language. 46

EOA Externaly Owned Accounts. 16, 21

EVM Ethereum Virtual Machine. 15–17

FinTech Financial Technology. 17

GUI Graphical User Interface. 30, 41

ICO Initial Coin Offering. 18, 20

IDE Integrated Development Environment. 37

IoT Internet of Things. 17

JVM Java Virtual Machine. 36, 45

MFG Money Flow Graph. 21

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acronyms

OGM Object-Graph Mapping. 46, 89

PoA Proof of Authority. 11

POJO Plain old Java object. 45

PoS Proof of Stake. 11

PoW Proof of Work. 10

SCC strongly connected components. 21

SLF4J Simple Logging Facade for Java. 37

SQL Structured Query Language. 34

WCC weakly connected components. 21, 35, 49–51, 58, 59, 62, 89

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

2.1 A simple version of a blockchain [JCw+18] 10
2.2 A comparison of consensus algorithms [NK18] 12
2.3 Ethreum blockchain example [But15a] . 15
2.4 Example Solidity code [com] . 16
2.5 ERC20-compliant functions [VL19] . 18

3.1 Neo4j output for the transactions from the Gatecoin Hack[CO17] 20
3.2 Statistics of the three graphs [CZL+18] . 21
3.3 Metrics of the three graphs [CZL+18] . 22
3.4 Statistics on smart contract creations [dAS19] 24
3.5 Word Cloud for all names in the dataset [NFS+17] 25

4.1 An empirical evaluation of the four network visualization tools [PPEKI] . 32
4.2 Architecture of a model for clustering Ethereum smart contracts using a Neo4j

graph database . 33
4.3 Result sample comparison for visualization tools 39

5.1 First 10 rows of the data loaded in Neo4j 43
5.2 Neo4j sample output, returning 94 nodes, more precisely 9 bytecodes (orange)

and 85 functon signatures (blue) with 100 relationships "has" between them 44
5.3 Neo4j configuration . 46
5.4 Code snippets for OGM . 46
5.5 equals and hashCode override . 49
5.6 First five rows of the dataset in Neo4j ordered by number of smart contract

bytecodes per WCC . 50
5.7 First five rows of the dataset in Neo4j ordered by number of smart contract

bytecodes per Louvain community . 50

6.1 Gephi layout algorithm configuration . 56
6.2 Color chart for dataset one . 64
6.3 Graph produced by Jaccard similarity with cut-off 0.5, visualized in Gephi

using ForceAtlas2 for dataset one . 65
6.4 Graph produced by Overlap similarity with cut-off 0.5, visualized in Gephi

using ForceAtlas2 for dataset one . 66

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5 Side by side comparison of clusters for dataset one 68
6.6 Color chart for dataset two . 69
6.7 Graph produced by Jaccard similarity with cut-off 0.5, visualized in Gephi

using ForceAtlas2 for dataset two . 69
6.8 Graph produced by Overlap similarity with cut-off 0.5, visualized in Gephi

using ForceAtlas2 for dataset two . 71
6.9 Side by side comparison of clusters for dataset two 72
6.10 Comparison of Jaccard and Overlap graphs when the cut-off is set to 0.1 . 73
6.11 Color chart for dataset three . 73
6.12 Graph produced by Jaccard similarity with cut-off 0.5, visualized in Gephi

using ForceAtlas2 for dataset three . 74
6.13 Graph produced by Jaccard similarity with cut-off 0.1, visualized in Gephi

using ForceAtlas2 for dataset three . 75
6.14 Graph produced by Overlap similarity with cut-off 0.5, visualized in Gephi

using ForceAtlas2 for dataset three . 76
6.15 Side by side comparison of clusters for dataset three 77

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

4.1 Dataset Information . 30
4.2 Technologies used . 37
4.3 Sample datasets for visualization tool comparison 37

5.1 Status before and after identical smart contract are removed 48

6.2 Similarity cut-off 0.5 . 58
6.4 Similarity cut-off 0.1 . 59
6.5 Information about labels of known smart contract interfaces 60
6.6 List of sub-labels for each of the labels of known smart contract interfaces . 61
6.7 Basic information for dataset one . 64
6.8 Basic information for dataset two . 68
6.9 Basic information for dataset three . 73

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[abi19] Contract abi specification. https://solidity.readthedocs.io/
en/latest/abi-spec.html, 2019.

[AH19] Manar Abdelhamid and Ghada Hassan. Blockchain and smart contracts.
In Proceedings of the 2019 8th International Conference on Software and
Information Engineering, ICSIE ’19, pages 91–95, New York, NY, USA,
2019. ACM.

[apa14] http://spark.apache.org/, 2014.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, oct
2008.

[BH16] Erwin Filtz Bernhard Haslhofer, Roman Kar. O Bitcoin
Where Art Thou? Insight into Large-Scale Transaction
Graphs. https://pdfs.semanticscholar.org/96b9/

5da0ab88de23641014abff2a5c0b5fec00c9.pdf, 2016.

[BHJ09] Mathieu Bastian, Sébastien Heymann, and Mathieu Jacomy. Gephi: An
open source software for exploring and manipulating networks. ICWSM,
8:361–362, 01 2009.

[BKB+07] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. Lessons from applying the systematic literature
review process within the software engineering domain. Journal of
Systems and Software, 80(4):571 – 583, 2007. Software Performance.

[BLMR14] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of
activity: Extending bitcoin’s proof of work via proof of stake [extended
abstract]y. SIGMETRICS Perform. Eval. Rev., 42(3):34–37, December
2014.

[But15a] Vitalik Buterin. A next generation smart contract and decentralized ap-
plication platform. http://blockchainlab.com/pdf/Ethereum_

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://solidity.readthedocs.io/en/latest/abi-spec.html
https://solidity.readthedocs.io/en/latest/abi-spec.html
http://spark.apache.org/
https://pdfs.semanticscholar.org/96b9/5da0ab88de23641014abff2a5c0b5fec00c9.pdf
https://pdfs.semanticscholar.org/96b9/5da0ab88de23641014abff2a5c0b5fec00c9.pdf
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

white_paper-a_next_generation_smart_contract_and_

decentralized_application_platform-vitalik-buterin.

pdf, 2015.

[But15b] Vitalik Buterin. On Public and Private Blockchains.
https://blog.ethereum.org/2015/08/07/

on-public-and-private-blockchains/, 08 2015.

[But15c] Vitalik Buterin. On Public and Private Blockchains.
https://blog.ethereum.org/2015/08/07/

on-public-and-private-blockchains/?fbclid=

IwAR1sUIx9A7ad98tRJcWfJ9RvWEhWvUpeLAQr9gUss1IH2YO_

hygNDunJvxc, 08 2015.

[clo] https://console.cloud.google.com/marketplace/

details/ethereum/crypto-ethereum-blockchain.

[CO17] W. Chan and A. Olmsted. Ethereum transaction graph analysis. In
2017 12th International Conference for Internet Technology and Secured
Transactions (ICITST), pages 498–500, Dec 2017.

[coi17] $7 Million Lost in CoinDash ICO
Hack. https://www.coindesk.com/

7-million-ico-hack-results-coindash-refund-offer,
07 2017.

[com] Ethereum community. Introduction to Smart Con-
tracts. https://solidity.readthedocs.io/en/latest/

introduction-to-smart-contracts.html.

[com17] Ethereum community. Ethereum Homestead Documentation. https:
//www.readthedocs.org/projects/ethereum-homestead/

downloads/pdf/latest/, 2017.

[CZL+18] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange.
Understanding ethereum via graph analysis. In IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, pages 1484–1492, April
2018.

[dAS19] Monika di Angelo and Gernot Salzer. Mayflies, breeders, and busy bees
in ethereum: Smart contracts over time. In Proceedings of the Third
ACM Workshop on Blockchains, Cryptocurrencies and Contracts, BCC
’19, pages 1–10, New York, NY, USA, 2019. ACM.

[Dav20] Aran Davies. 5 Best Smart Contract Platforms for 2020. https://www.
devteam.space/blog/5-best-smart-contract-platforms,
2020.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/?fbclid=IwAR1sUIx9A7ad98tRJcWfJ9RvWEhWvUpeLAQr9gUss1IH2YO_hygNDunJvxc
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/?fbclid=IwAR1sUIx9A7ad98tRJcWfJ9RvWEhWvUpeLAQr9gUss1IH2YO_hygNDunJvxc
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/?fbclid=IwAR1sUIx9A7ad98tRJcWfJ9RvWEhWvUpeLAQr9gUss1IH2YO_hygNDunJvxc
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/?fbclid=IwAR1sUIx9A7ad98tRJcWfJ9RvWEhWvUpeLAQr9gUss1IH2YO_hygNDunJvxc
https://console.cloud.google.com/marketplace/details/ethereum/crypto-ethereum-blockchain
https://console.cloud.google.com/marketplace/details/ethereum/crypto-ethereum-blockchain
https://www.coindesk.com/7-million-ico-hack-results-coindash-refund-offer
https://www.coindesk.com/7-million-ico-hack-results-coindash-refund-offer
https://solidity.readthedocs.io/en/latest/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/latest/introduction-to-smart-contracts.html
https://www.readthedocs.org/projects/ethereum-homestead/downloads/pdf/latest/
https://www.readthedocs.org/projects/ethereum-homestead/downloads/pdf/latest/
https://www.readthedocs.org/projects/ethereum-homestead/downloads/pdf/latest/
https://www.devteam.space/blog/5-best-smart-contract-platforms
https://www.devteam.space/blog/5-best-smart-contract-platforms

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[DFZ16] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2-hop blockchain : Com-
bining proof-of-work and proof-of-stake securely. 2016.

[DSUBGV+10] David Dominguez-Sal, P. Urbón-Bayes, Aleix Giménez-Vañó, Sergio
Gómez-Villamor, Norbert Martínez-Bazan, Josep-Lluis Larriba-Pey,
Heng Shen, Jian Pei, M. Özsu, Lei Zou, Jiaheng Lu, Tok-Wang Ling,
Ge Yu, Yi Zhuang, and Jie Shao. Survey of graph database performance
on the hpc scalable graph analysis benchmark. pages 37–48, 07 2010.

[FA18] Md Abdul Motaleb Faysal and Shaikh Arifuzzaman. A comparative
analysis of large-scale network visualization tools. pages 4837–4843, 12
2018.

[FD07] Brendan J. Frey and Delbert Dueck. Clustering by passing messages
between data points. Science, 315 5814:972–6, 2007.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by
force-directed placement. Software: Practice and Experience, 21(11):1129–
1164, 1991.

[FV15] Vitalik Buterin Fabian Vogelsteller. ERC20 token standard. https://
github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md,
2015.

[gat16] Gatecoin Claims $2 Million in Bitcoins and Ethers Lost
in Security Breach. https://www.coindesk.com/

gatecoin-2-million-bitcoin-ether-security-breach,
05 2016.

[HD03] Mark Huisman and Marijtje Duijn. Stocnet: Software for the statistical
analysis of social networks. Connections, 25:7–26, 01 2003.

[Her19] Maurice Herlihy. Blockchains from a distributed computing perspective.
Communications of the ACM, 62(2):78–85, 2019.

[Jac01] Paul Jaccard. Distribution de la flore alpine dans le bassin des dranses
et dans quelques régions voisines. Bulletin de la Societe Vaudoise des
Sciences Naturelles, 37:241–72, 01 1901.

[JCw+18] Shan Jiang, Jiannong Cao, Hanqing wu, Yanni Yang, Mingyu Ma, and
Jianfei He. Blochie: a blockchain-based platform for healthcare informa-
tion exchange. 04 2018.

[JV13] S. Jouili and V. Vansteenberghe. An empirical comparison of graph
databases. In 2013 International Conference on Social Computing, pages
708–715, 2013.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.coindesk.com/gatecoin-2-million-bitcoin-ether-security-breach
https://www.coindesk.com/gatecoin-2-million-bitcoin-ether-security-breach

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[JVHB14] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu
Bastian. Forceatlas2, a continuous graph layout algorithm for handy
network visualization designed for the gephi software. PloS one, 9:e98679,
06 2014.

[KMN+02] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu. An efficient k-means clustering algorithm: analysis and
implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881–892, July 2002.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August, 19, 2012.

[LA12] Antoine Lambert and David Auber. Graph analysis and visualization
with tulip-python. 08 2012.

[Lem17] Victoria Lemieux. Blockchain and distributed ledgers as trusted record-
keeping systems: An archival theoretic evaluation framework. 11 2017.

[Loo16] Peter Loop. Blockchain: The Next Evolu-
tion of Supply Chains. https://www.mhlnews.

com/global-supply-chain/article/22052455/

blockchain-the-next-evolution-of-supply-chains, 2016.

[MBKB11] Shawn Martin, W. Brown, Richard Klavans, and Kevin Boyack. Openord:
An open-source toolbox for large graph layout. Proc SPIE, 7868:786806,
01 2011.

[Mer80] Ralph Merkle. Protocols for public key cryptosystems. pages 122–134,
04 1980.

[MF14] Sudeep Pillai Michael Fleder, Michael S. Kester. Bitcoin Transaction
Graph Analysis. https://people.csail.mit.edu/spillai/

data/papers/bitcoin-transaction-graph-analysis.pdf,
2014.

[ML12] Julian McAuley and Jure Leskovec. Discovering social circles in ego
networks. 8, 10 2012.

[MSuR15] Fariha Majeed and Dr Saif-ur Rahman. Graph visualization tools: A
comparative analysis. Journal of Independent Studies and Research -
Computing, 13, 01 2015.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, 2008.

[neo15a] https://boltprotocol.org/, 2015.

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.mhlnews.com/global-supply-chain/article/22052455/blockchain-the-next-evolution-of-supply-chains
https://www.mhlnews.com/global-supply-chain/article/22052455/blockchain-the-next-evolution-of-supply-chains
https://www.mhlnews.com/global-supply-chain/article/22052455/blockchain-the-next-evolution-of-supply-chains
https://people.csail.mit.edu/spillai/data/papers/bitcoin-transaction-graph-analysis.pdf
https://people.csail.mit.edu/spillai/data/papers/bitcoin-transaction-graph-analysis.pdf
https://bitcoin.org/bitcoin.pdf
https://boltprotocol.org/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[neo15b] https://neo4j.com/docs/graph-data-science/current/

algorithms/louvain/, 2015.

[neo16a] http://neo4j.com/, 2016.

[neo16b] https://neo4j.com/docs/graph-algorithms/current/

labs-algorithms/similarity/, 2016.

[neo16c] https://neo4j.com/developer/apache-spark/, 2016.

[neo16d] https://neo4j.com/docs/graph-algorithms/current/

algorithms/community/, 2016.

[neo16e] https://neo4j.com/docs/, 2016.

[neo16f] https://neo4j.com/developer/guide-import-csv/, 2016.

[neo20] https://techcrunch.com/2020/02/04/

neo4j-4-0-graph-database-platform-brings-unlimited-scaling/,
2020.

[NFS+17] R. Norvill, B. B. Fiz Pontiveros, R. State, I. Awan, and A. Cullen.
Automated labeling of unknown contracts in ethereum. In 2017 26th
International Conference on Computer Communication and Networks
(ICCCN), pages 1–6, July 2017.

[NH17] Moritz Petersen Niels Hackius. Blockchain in Logistics and Supply
Chain: Trick or Treat? https://pdfs.semanticscholar.org/

7752/f1275da69d208e5a76d7adc6b12b3b61699e.pdf, 2017.

[NK18] Giang-Truong Nguyen and Kyungbaek Kim. A survey about consensus
algorithms used in blockchain. Journal of Information processing systems,
14(1), 2018.

[ope] https://github.com/gephi/gephi/wiki/OpenOrd.

[OS10] Chitu Okoli and Kira Schabram. A guide to conducting a systematic
literature review of information systems research. SSRN Electronic
Journal, 10, 05 2010.

[Pil15] Marc Pilkington. Blockchain technology: Principles and applications.
2015.

[PPEKI] Georgios A. Pavlopoulos, David Paez-Espino, Nikos C. Kyrpides, and
Ioannis Iliopoulos. Empirical comparison of visualization tools for larger-
scale network analysis. Advances in Bioinformatics.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/
https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/
http://neo4j.com/
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/similarity/
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/similarity/
https://neo4j.com/developer/apache-spark/
https://neo4j.com/docs/graph-algorithms/current/algorithms/community/
https://neo4j.com/docs/graph-algorithms/current/algorithms/community/
https://neo4j.com/docs/
https://neo4j.com/developer/guide-import-csv/
https://techcrunch.com/2020/02/04/neo4j-4-0-graph-database-platform-brings-unlimited-scaling/
https://techcrunch.com/2020/02/04/neo4j-4-0-graph-database-platform-brings-unlimited-scaling/
https://pdfs.semanticscholar.org/7752/f1275da69d208e5a76d7adc6b12b3b61699e.pdf
https://pdfs.semanticscholar.org/7752/f1275da69d208e5a76d7adc6b12b3b61699e.pdf
https://github.com/gephi/gephi/wiki/OpenOrd

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[RCC+04] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto,
and Domenico Parisi. Defining and identifying communities in networks.
Proceedings of the National Academy of Sciences of the United States of
America, 101:2658–63, 04 2004.

[Ros17] Ameer Rosic. What is An Ethereum Token: The Ultimate Beginner’s
Guide. https://blockgeeks.com/guides/ethereum-token,
2017.

[She19] Benjamin Sherry. What Is an ICO? http://investopedia.com/

news/what-ico, 2019.

[sim07] Measuring semantic similarity between words using web search engines.
In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, page 757–766, New York, NY, USA, 2007. Association for
Computing Machinery.

[spra] https://spring.io/projects/spring-data-neo4j.

[sprb] https://docs.spring.io/spring-data/neo4j/docs/5.2.6.

RELEASE/reference/html/#repositories.core-concepts.

[spr13] https://start.spring.io/, 2013.

[Sun18] Flora Sun. A Survey of Consensus Algorithms
in Crypto. https://medium.com/@sunflora98/

a-survey-of-consensus-algorithms-in-crypto-e2e954dc9218,
04 2018.

[Sza96] Nick Szabo. Smart contracts: building blocks for digital markets. EX-
TROPY: The Journal of Transhumanist Thought,(16), 18:2, 1996.

[VL19] Friedhelm Victor and Bianca Katharina Lüders. Measuring ethereum-
based erc20 token networks. In International Conference on Financial
Cryptography and Data Security, 2019.

[whi16] Whitepaper:Nxt. https://nxtwiki.org/wiki/Whitepaper:Nxt,
2016.

[XWS+17] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass,
Cesare Pautasso, and Paul Rimba. A taxonomy of blockchain-based
systems for architecture design. 04 2017.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://blockgeeks.com/guides/ethereum-token
http://investopedia.com/news/what-ico
http://investopedia.com/news/what-ico
https://spring.io/projects/spring-data-neo4j
https://docs.spring.io/spring-data/neo4j/docs/5.2.6.RELEASE/reference/html/#repositories.core-concepts
https://docs.spring.io/spring-data/neo4j/docs/5.2.6.RELEASE/reference/html/#repositories.core-concepts
https://start.spring.io/
https://medium.com/@sunflora98/a-survey-of-consensus-algorithms-in-crypto-e2e954dc9218
https://medium.com/@sunflora98/a-survey-of-consensus-algorithms-in-crypto-e2e954dc9218
https://nxtwiki.org/wiki/Whitepaper:Nxt

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodology
	Structure of the Work

	Background
	Blockchain Fundamentals
	Consensus algorithms
	Types of blockchains
	Properties of blockchains
	Ethereum and Smart Contracts
	Smart Contract Applications

	State of the Art
	Graph analysis of blockchain platforms
	Classification of smart contracts in the Ethereum network

	Design
	Challenges
	Architecture

	Implementation
	Data Layer
	Business Logic Layer
	Presentation Layer

	Results and Evaluation
	Results
	Evaluation Setup
	Graph Analysis of Connected Components
	Discussion

	Conclusion and Future Work
	Summary and Contribution
	Discussion of Research Questions
	Limitations and Future Work

	Acronyms
	List of Figures
	List of Tables
	Bibliography

