

International Conference on mobility challenges 2022

Antonia Golab, Sebastian Zwickl-Bernhard, Theresia Perger & Hans Auer

Paris, 09.12.2022

MINIMUM-COST FAST CHARGING INFRASTRUCTURE

PLANNING FOR ELECTRIC PASSENGER CARS ALONG HIGHWAYS

Antonia Golab, Sebastian Zwickl-Bernhard, Theresia Perger, Marcus Otti & Hans Auer

OVERVIEW ON AUSTRIA'S TRANSPORT DECARBONIZATION GOALS

FAST-CHARGING ALONG HIGHWAYS

- Dense fast-charging infrastructure network is **motivating** large-scale adoption of electric vehicles
- Allocation of fast-charging infrastructure *along high-level* road networks
- "Fit for 55": densification of fast-charging infrastructure along TEN-T network

https://op.europa.eu/webpub/eca/special-reports/core-road-network-9-2020/en/, last access: September 12th, 2022

FAST CHARGING CAPACITIES ALONG THE AUSTRIAN HIGHWAY NETWORK

	Existing infrastructure
Nb. charging stations	31
Nb. charging points with $\hat{P}_{CP} = 44kW$ (AC)	8
Nb. charging points with $\hat{P}_{CP} = 50kW$ (DC)	72
Nb. charging points with $\hat{P}_{CP} = 75kW$ (DC)	4
Nb. charging points with $\hat{P}_{CP} = 150kW$ (DC)	22
Nb. charging points with $\hat{P}_{CP} = 350kW$ (DC)	40
Total capacity (MW)	20.1

Status: January 2022

Data on current fast-charging infrastructure along Austrian highway network: <u>https://www.asfinag.at/en/parking-resting/looking-for-resting-places/</u>

RESEARCH QUESTIONS

- What are the **future requirements** for the expansion of the existing fastcharging infrastructure?
- How are these requirements affected by **share of BEVs** in the passenger car fleet, **future modal split** and **technological developments**?
- Development of **allocation** model with consideration of traffic flow
- Quantification of future fast-charging infrastructure expansion
- Observance of effects by different input parameters by the means of sensitivity analysis

CHARGING STATION ALLOCATION MODEL

RESULTS: REQUIRED EXPANSION FOR 2030

Projections for 2030:

share share of today's of BEVs traffic load dr	BEV iving range cha	BEV rging power	charging pole peak power	costs of charging pole
27 - 33% 69 - 100% 45	50 - 800 km 20	0 - 315 kW	350kW	€ 120,000
Results: + Installed charging capacity + Charging stations Specific costs per <i>kW</i>	146 – 270 <i>MW</i> 24 – 27 €/kW 370	Austrian h Expansion Expansion Newly inst Newly inst No expans	ighway network n of existing CS by 350 - 4900 kW n of existing CS by 4900 - 9800 kW talled CS with 350 - 4900 kW talled CS with 4900 - 9800 kW sion of existing CS	
Specific costs per BEV Costs of expansion	€/BEV 39 - 72 € 54 - 100 Mio.			

8

RESULTS: COST-REDUCTION POTENTIALS

THERE'S A VARIETY OF PLANNING TOOLS ...

SPATIO-TEMPORAL CHARGING MODEL

SPATIO-TEMPORAL CHARGING MODEL II

Two information layers:

- \rightarrow Number of vehicles n
- ightarrow Accumulated state of charge Q

$$Q_{f,c}^{*,t} \ge n_{f,c}^{*,t} * SOC^{min} * Cap_f^{BEV}$$
$$Q_{f,c}^{*,t} \le n_{f,c}^{*,t} * SOC^{max} * Cap_f^{BEV}$$

t timestep	SOC ^{min} minimum SOC (%)
c highway section	<i>SOC</i> ^{<i>max</i>} maximum SOC (%)
<i>f</i> fleet	Cap_{f}^{BEV} battery capacity (kWh)

REPRESENTATIVE DAYS

Representative day	Description
Workday in winter	— Travels prominently for the purpose of commuting and business
Workday in whiter	— Cold temperature
Workday in summer	— Travels prominently for the purpose of commuting and business
	- Warm temperature
Holiday in winter	— Travels prominently for the purpose of leisure, increased transit traffic
	— Increased amount of transit traffic
	— Cold temperature
	— Travels prominently for the purpose of leisure, increased transit traffic
Holiday in summer	— Increased amount of transit traffic
÷	— Warm temperature

TEST-BED: AUSTRIAN HIGHWAY NETWORK 2030

Test-bed

for electric vehicles along the austrian high-level road network. Energies, 15(6), 2022. ISSN 1996-1073.

BOTTLENECKS AND OVERCAPACITIES

VARIATIONS IN CHARGING INFRASTRUCTURE UTILIZATION

WHAT HAPPENS IN THE CASE OF A CHARGING STATION OUTAGE?

- Load curve of adjacent charging stations is not changing significantly
- Charging demand is covered elsewhere within the network
- → Implications for **overestimated charging** capacities within the network
- → Hint at cost-saving potential of application of **coordinated charging** along highway

SUMMARY & CONCLUSION

- **Cost reduction potentials** in investments in future charging infrastructure:
 - investments in technological development (improving efficiency in charging)
 - Reduction in charging demand through reduction in road traffic load
- Essential features of planning tools for highway charging infrastructure
 - O-D nodes: Where do they come from? Where do they go?
 - Temporal distribution of charging activity throughout the day
 - Coverage of peak demand
 - Utilization factor
- Future work: introducing **randomness of user choices** (**no** coordinated charging)

APPENDIX

RESULT SUMMARY

	Representative Days			
Metric	Workday in winter	Workday in summer	Holiday in winter	Holiday in summer
Total number of long-distance trips	294,924	294,924	208,222	208,222
Total energy consumed (GWh)	8.7	6.5	6.2	4.6
Total energy charged by all BEVs (GWh)	3.3	2.8	2.7	2.3
Avg. state of charge at arrival (%)	33%	35%	33%	35%
Avg. utility rate UR	0.52	0.48	0.47	0.43
Avg. difference between peak power and installed capacity	874 (2 – 3)	1579 (4-5)	1672(4-5)	2687 (7 – 8)
ΔP_c in kW (nb. of not used poles) Objective value $\sum_{t,f,c} n_{f,c}^{queue,t}$	0.0	0.0	0.0	0.0

ASSUMPTIONS

Model parameter	Value
Temporal resolution Δt	0.25h
Driving speed v	110 km/h
BEV share ϵ	30%
BEV battery capacity Cap^{batt}	100 kWh
BEV charging power $\overline{P}^{charge, BEV}$	250kW
BEV specific energy consumption at low temperatures $\overline{d}^{spec,winter}$ BEV specific energy consumption at high temperatures $\overline{d}^{spec,summer}$	0.2kWh/km 0.15kWh/km

ASSUMPTIONS MADE IN THE PLANNING TOOL I

• Charging demand is defined at each rest stop and is **assumed to be the result of the energy consumption of long-distance BEV drivers** traveling along the highway network. Here, annual peaks in traffic load and increased energy consumption due to cold temperatures are taken into account. The algorithm determines where charging capacity should be allocated to meet this demand.

• This is done while **considering the limited range of BEVs** and the geographic distribution of traffic load along the highway network.

• The allocations of origin and destination points of BEVs traveling along the highway network are ignored.

WHAT NOW? CONCLUSION & FUTURE WORK

Conclusio:

- Minor seasonal differences in utilization of charging infrastructure detected
- Results hint at the importance of traffic flow rather than the local traffic counts

→ Where do they come from? Where do they go?

- Further studies on the trade-offs of this approach (linear program) in contrast to agent-based
- Introduction of constraints reflecting the human decision-making more realisticly

