
ww.sciencedirect.com

i n t e r n a t i o n a l j o u r n a l o f h y d r o g en en e r g y x x x ( x x x x ) x x x
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/he
Cost-optimal design and energy management
of fuel cell electric trucks
Alessandro Ferrara a,*, Stefan Jakubek a, Christoph Hametner b

a Institute of Mechanics and Mechatronics, Division of Process Control and Automation, TU Wien, 1060 Vienna,

Austria
b Christian Doppler Laboratory for Innovative Control and Monitoring of Automotive Powertrain Systems, TU Wien,

1060 Vienna, Austria
h i g h l i g h t s
* Corresponding author.
E-mail address: alessandro.ferrara@tuwie

https://doi.org/10.1016/j.ijhydene.2023.01.110

0360-3199/© 2023 The Author(s). Published by Else

license (http://creativecommons.org/licenses/by/4.0

Please cite this article as: Ferrara A et al., Co
of Hydrogen Energy, https://doi.org/10.1016
g r a p h i c a l a b s t r a c t
� Investigation on total cost of
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� Significant benefits of predictive

energy management in chal-
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a b s t r a c t

Road freight transport on hilly routes represents a significant challenge for the advance-

ment of fuel cell electric trucks because of the high-performance requirements for fuel

consumption, vehicle lifetime, and battery charge control. Therefore, it is essential to

optimize the vehicle design and energy management, which greatly influence the driving

performance and total cost of ownership. This paper focuses on the cost-optimal design

and energy management of fuel cell electric trucks, considering five key influencing fac-

tors: powertrain component sizing, driving cycle, vehicle weight, component degradation,

and market prices. The cost optimization relies on a novel predictive energy management

scheme based on dynamic programming and the systematic calibration of control pa-

rameters. The paper analyzes the simulation results to highlight three main findings for

fuel cell electric trucks: 1) cost-optimal energy management is essential to define the best

trade-off between fuel consumption and component degradation; 2) the total cost of

ownership is significantly influenced by component sizing, driving cycles, vehicle weight,
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Powertrain component sizing
Dynamic programming
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and market prices; 3) predictive energy management is highly beneficial in challenging

road topographies for substantial cost-saving and lower component size requirements.
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Introduction

The advancement and commercialization of fuel cell electric

vehicles are hindered by high manufacturing and operating

costs, limited battery and fuel cell life, and insufficient

hydrogen fueling infrastructure. Moreover, road freight

transport on hilly routes represents a significant challenge

because of the high-performance requirements for fuel con-

sumption, vehicle lifetime, and battery charge control. In

recent years, increasing research effort has been focused on

optimal powertrain design and control of hybrid electric ve-

hicles to reduce their total cost of ownership (TCO), which is

mainly influenced by the hydrogen operating cost and pur-

chase costs of the powertrain components. Particular interest

has been focused on energy management strategies due to

their high impact on fuel consumption and component life.

Indeed, this high-level control function performs the power-

split between the fuel cell and battery systems, determining

how the components are operated.

This paper studies the optimal design and energy man-

agement for minimum TCO, considering five key influencing

factors: powertrain component sizing, driving cycle, vehicle

weight, component degradation, and market prices (i.e.

hydrogen, fuel cell, and battery costs). The investigation is

focused on fuel cell electric trucks for road freight transport,

which hold the highest potential for fuel cell automotive ap-

plications due to the high power and range requirements [1e3].

Literature survey

Energy management has been largely investigated in the last

decade because of its high impact on vehicle performance.

Indeed, energy management strategies (EMSs) have been

designed using heuristic or optimal control methods for

several hybrid electric vehicle configurations. A literature re-

view on EMSs for engine-battery vehicles is proposed in

Ref. [4], for fuel cell-battery vehicles in Refs. [5e7], and for fuel

cell-ultracapacitor-battery vehicles in Ref. [8]. In general, one

of the most studied methods for optimal energy management

is dynamic programming (DP) because it allows finding the

global optimum solution using the complete and apriori

knowledge of the driving cycle [9]. Even though this method

cannot be directly implemented for on-board control, DP has

been widely used as a benchmark for the development of

EMSs [10]. Even though the research interest in optimal energy

management methods is generally stronger, a proper design

of rule-based strategies can also be effective in terms of fuel

consumption because the fuel cell system (FCS) efficiency

characteristic is relatively flat in its average operating range

[11]. However, ensuring high system efficiency and low

component degradation is challenging for heavy-duty fuel cell
st-optimal design and ene
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vehicles for freight transport on mountain roads. Health-

conscious energy management strategies have been investi-

gated considering component degradation within the opti-

mization targets [12e16]. Recently, increasing research effort

has been focused on predictive energymanagement strategies

to find a good trade-off between fuel consumption, state of

charge (SoC) control, and components degradation in heavy-

duty fuel cell vehicles. Ferrara et al. [17,18] propose model

predictive control concepts using short-term driving forecasts

to reduce fuel cell transients while retaining high system ef-

ficiency. Zendegan et al. [19] propose a dual-stage predictive

energy management scheme based on the offline optimiza-

tion of a predictive SoC reference, which is then used for the

on-board control. In particular, the energy management

problem is optimized using quadratic programming. The

method uses long-term driving forecasts of speed and eleva-

tion to ensure that the battery is operated within the desired

SoC range while retaining high system efficiency. Similar

studies using predictive references for energy management

can be found in Refs. [20e24]. Other works on optimal and

heuristic energy management strategies for fuel cell electric

vehicles can be found in Refs. [25e32].

The powertrain components sizing problemhas also been a

compelling topic in the research related to fuel cell electric

vehicles. In the literature, it is widely acknowledged that

components sizing must be coupled with optimal EMS design

because the power-split criteria change depending on the

powertrain configuration [33,34]. Jain et al. [35] use a genetic

algorithm to optimize the parameters related to component

sizing and load-follower charge sustaining EMS. The optimi-

zation considers a trade-off between fuel consumption and

powertrain cost. Tazelaar et al. [36] use different EMSs for the

optimal powertrain design showing that the minimum

component size requirements are highly affected by the con-

trol strategy choice. Hu et al. [37] use convex programming for

the combined optimization of energy management and

component sizing, examining the influence of driving cycles

on the optimization results. Xu et al. [34] investigate the

optimal components sizing problem to find the best trade-off

between consumption and degradation indicators, adopting

an EMS based on dynamic programming. As follow-up work,

Hu et al. [38] derive simplified EMSs from DP, showing that the

hydrogen consumption is near-optimal if the battery capacity

is large enough.Wu et al. [39] use convex programming for the

combined optimization of energy management and compo-

nent sizing of a plug-in fuel cell city bus, showing how the

economic assumptions on the hydrogen price affect the en-

ergy management strategy. Fletcher et al. [40] use stochastic

dynamic programming as EMSwithin their components sizing

investigation, showing the impact of fuel cell size on the in-

dividual causes of degradation. Feng et al. [41] define an

optimal components sizing problem to minimize the lifecycle
rgy management of fuel cell electric trucks, International Journal
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cost of a fuel cell mining truck, using simplified degradation

models to estimate the component lifetime and, based on that,

the total cost of ownership. Xu et al. [42] investigate the joint

component sizing and energy management for fuel cell elec-

tric trucks proposing to decompose the problem into two sub-

problems that are solved by sequential convex programming.

Someworks investigate the sizing problem on a higher system

level through techno-economic assessments, neglecting or

simplifying the role of energy management strategies [43e45].

Contribution

The present work focuses on the cost-optimal design and

energymanagement of fuel cell electric trucks for road freight

transport, investigating issues that have not been thoroughly

addressed yet. In particular, the literature survey revealed the

following research gaps.

C The cost-optimal design of fuel cell electric trucks has

not been investigated to meet the high-performance

requirements of road freight transport in challenging

topographies (e.g. hilly or mountain roads).

C The combined impact on TCO of powertrain component

sizing, driving cycle, vehicle weight, component degra-

dation, and market prices has not been investigated for

fuel cell electric trucks.

C The benefits of predictive energy management strate-

gies for fuel cell electric trucks have not been analyzed

in combination with powertrain component sizing.

To address the above-mentioned points, this paper pro-

poses a cost optimization that relies on a novel predictive

energymanagement scheme based on dynamic programming

and the systematic calibration of control parameters to find

the best trade-off between fuel consumption, components

degradation, and battery charge control. In particular, the

architecture of the predictive energy management system is

divided into two control stages: route-reference optimization

and on-board control, as proposed in Ref. [19]. However, an

improved formulation is presented using dynamic program-

ming for the multi-objective optimization of fuel consump-

tion, SoC control, and fuel cell high-power operation

prevention, which help reducing degradation.

The paper analyzes simulation results to highlight three

main findings for fuel cell electric trucks.

1. Cost-optimal energymanagement is essential to define the

best trade-off between fuel consumption and component

degradation. The simulation results show that the control

strategy significantly affects the TCO due to the high

impact on system efficiency and lifetime. The contrasting

behavior between fuel cell and battery life indicates that

the EMS should be carefully designed to ensure balanced

component degradation.

2. The total cost of ownership is significantly influenced by

component sizing, driving cycles, vehicle weight, and

market prices. In particular, the simulation results are

analyzed for three real-world driving cycles (on flat, hilly,

and mountain roads) and various truckload scenarios

(from 18 to 40 tons). Moreover, it is shown that the
Please cite this article as: Ferrara A et al., Cost-optimal design and ene
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hydrogen price has a dominant influence on the TCO

compared with the fuel cell and battery system prices.

3. Predictive energy management is highly beneficial in

challenging road topographies for substantial cost-saving

and lower component size requirements. In particular,

the results show that non-predictive EMSs cannot meet

high-performance requirements (for fuel consumption,

vehicle lifetime, and battery charge control) on hilly or

mountain roads.

The remainder of the paper is structured as follows. Section

Total cost of ownership of fuel cell electric trucks outlines the

simulation framework adopted to estimate the TCO of fuel cell

electric trucks in realistic driving scenarios. Section Cost-

optimal energy management describes the proposed predic-

tive energy management system, detailing the methods

adopted for the TCO optimization. Section Results of cost-

optimal design and energy management analyzes the simu-

lation results of the cost-optimal design and energy manage-

ment. Section Conclusions concludes this work and outlines

potential research directions.
Total cost of ownership of fuel cell electric trucks

The total cost of ownership assesses the long-term value of

fuel cell electric trucks, considering the fixed and operating

costs over their lifespan. A detailed TCO analysis includes

direct and indirect costs of purchase, fuel, maintenance, in-

surance, downtime, repairs, fees, and taxes. However, this

study only considers the purchase cost of the fuel cell and

battery systems and the hydrogen cost, assuming that the

impact of energy management and components sizing on the

other costs is negligible.

Framework for TCO estimation

The total cost of ownership is estimated based on realistic

simulations of fuel consumption and expected components

life in fuel cell electric trucks for road freight transport. In

particular, the TCO per unit distance ($/km) is calculated as:

TCO ¼ cH2
SFCþ cbat Ebat;nom þ cfcs Pfcs;nom

Lveh
; (1)

where cH2
is the hydrogen price, SFC the specific fuel con-

sumption per unit distance, cbat the battery system price,

Ebat,nom the nominal battery capacity, cfcs the FCS price, Pfcs,nom
the nominal fuel cell power, and Lveh the vehicle life. It is

assumed that the current market prices are 6 $/kg for

hydrogen [46], 40 $/kW for fuel cell systems [47], and 160

$/kWh for battery systems [48].

The specific fuel consumption, SFC, of the vehicle is

calculated considering the total hydrogen consumption over

the driving cycle and the equivalent battery consumption due

to the SoC change compared to the initial charge:

SFC ¼

Z
dc

_mH2
dtþ �mH2

Ebat;nom DSoC

Ldc
; (2)
rgy management of fuel cell electric trucks, International Journal
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where _mH2
is the hydrogen consumption rate, m

̄
H2

is the fuel

conversion factor (as in Ref. [17]), and Ldc is the distance

traveled in the driving cycle.

The expected vehicle life is calculated assuming that the

components cannot be replaced individually. Therefore, the

vehicle life is over when one of the two power sources reaches

the end-of-life conditions. Under this assumption, the vehicle

life is calculated as:

Lveh ¼ minðLfcs; LbatÞ ; (3)

where Lfcs is the fuel cell system life and Lbat the battery system

life, expressed in km. The component degradation over one

driving cycle is projected to estimate the expected component

life, assuming that the vehicle always repeats the same

driving cycle with the same degradation. In particular, the fuel

cell end-of-life occurs when the voltage degradation reaches

10%. Therefore, the fuel cell system life is estimated as:

Lfcs ¼
DVfcs;EoL

DVfcs
Ldc ; (4)

where DVfcs,EoL ¼ 10%, and DVfcs is the fuel cell voltage degra-

dation over the driving cycle, which is significantly affected by

the energy management strategy. Similarly, the battery end-

of-life life is estimated considering the number of equivalent

full charge/discharge cycles (EFC), which are a measure of the

battery current throughput over its lifespan. Therefore, the

battery life is estimated as:

Lbat ¼ EFCEoL

EFC
Ldc ; (5)

where EFCEoL ¼ 5000, assuming that the battery life can reach

up to 5000 equivalent full cycles if the system is operated

avoiding high C-rates and depth-of-discharge [49e53].

The vehicle simulation framework adopted in this work for

obtaining realistic hydrogen consumption, fuel cell voltage

degradation, and battery equivalent full cycles is described in.
Fig. 1 e Speed, elevation, and power at wheels (at full

truckload: 40 tons) profiles of the three real-world driving

cycles under investigation: a) hilly road, b) mountain road,

and c) flat road.
Vehicle performance requirements

This study considers fuel cell electric trucks with high-

performance requirements for fuel consumption, compo-

nent degradation, and battery charge control. In particular,

the vehicle performances are evaluated on driving cycles

deriving from the real-world operation of conventional trucks

in Europe. Indeed, it is essential that fuel cell electric trucks

perform the same as conventional vehicles, especially at full

truckload (i.e. 40 tons). Another critical requirement is

imposed on the battery SoC, assuming that the following

constraint must be met to ensure high vehicle performance:

0:45 � SoC � 0:85 : (6)

The values are defined to avoid accelerated degradation

due to battery overcharging and critical discharging, which

would weaken the assumption of 5000 EF C until end-of-life.

Moreover, the SoC constraints are also essential to ensure

that the battery always has enough charge to sustain the

driving requirements (e.g. fast accelerations or route changes)

but is never fully charged to perform regenerative braking

consistently. For simplicity, it is assumed that the desired SoC
Please cite this article as: Ferrara A et al., Cost-optimal design and ene
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operating range in (6) does not change with the nominal bat-

tery capacity.

Three real-world driving cycles are selected to represent

the diverse scenarios of flat, hilly, and mountain roads. The

speed, elevation, and power at wheels (at full truckload: 40

tons) profiles of the three cycles are shown in Fig. 1. The speed

profiles show that the first two cycles are motorway drives,

whereas the third one is rural and includes traffic jams. The

main characteristics of the real-world driving cycles under

investigation are listed in Table 1. The rural drive on the flat
rgy management of fuel cell electric trucks, International Journal
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Table 1 e Characteristics of the real-world driving cycles
under investigation.

Route topography hilly mountain flat

Elevation peak (m) 467 1530 158

Driving time (min) 262 333 100

Traveled distance (km) 316 385 100

Average speed (km/h) 72 69 60

RPA (m2/s) 0.016 0.012 0.049

Average traction power (kW)a 118 112 110

Total traction energy (kWh)a 516 620 184

Specific traction energy (kWh/km)a 1.63 1.61 1.84

a at full truckload (i.e. 40 tons).

i n t e r n a t i o n a l j o u r n a l o f h y d r o g en en e r g y x x x ( x x x x ) x x x 5
route shows the highest relative positive acceleration (RPA)

and specific traction energy due to frequent vehicle accelera-

tion/deceleration maneuvers.
Cost-optimal energy management

The TCO optimization relies on a novel predictive energy

management scheme based on dynamic programming and

the systematic calibration of control parameters to find the

best trade-off between fuel consumption, components

degradation, and battery charge control. The predictive en-

ergy management system adopted in this work is divided into

two control stages, as depicted in Fig. 2. In the route-

references optimization stage, the electric load demand over

the entire route is estimated based on the speed and elevation

forecasts coming from the navigation system. Then, dynamic

programming is used to calculate the optimal power split of

the electric load between the fuel cell and battery systems to

minimize the hydrogen consumption. The DP optimization

results are distance-based maps of predictive SoC and FCS

power references over the entire route. A rule-based energy

management strategy then uses these references for the on-

board control. The parameters of the rule-based strategy are

calibrated to yield the cost-optimal trade-off between

hydrogen consumption and expected vehicle life.
Fig. 2 e The predictive energy management architecture is divi

and on-board control.

Please cite this article as: Ferrara A et al., Cost-optimal design and ene
of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2023.01.110
Dynamic programming for route-references optimization

The predictive energy management optimization problem is

solved using dynamic programming. The implementation of

DP requires discretization of the time, state, and input vari-

ables. However, one main difference from literature imple-

mentations is that the optimization problem under

investigation is formulated over the traveled distance s

instead of time t. Here, the distance is discretized in N ele-

ments with a uniform grid spacing: Ds ¼ 500 m, which yields a

good trade-off between accuracy and computational speed.

The time interval to travel the distance Ds changes depending

on the vehicle speed. Thus, the time interval for the k-th

element is calculated as:

Dtk ¼ Ds=vk : (7)

For clarity, the problem is formulated using the notation of

optimal control theory [54]. In (8), x represents the state vari-

able, u the input, and z the disturbance.

x ¼ SoC; u ¼ Pfcs; z ¼ Pel (8)

Due to the discretization requirements, the electric load in

the k-th element is the average over the time interval Dtk.

Considering (A.5), the state dynamics are a function of x, u,

and z as follows:

_x ¼ fðx;u; zÞ ¼ �
VocðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

ocðxÞ � 4 ðz� uÞ RintðxÞ
q

2 Qnom RintðxÞ : (9)

In general, it is not straightforward to implement the ex-

pected TCO as the objective function of dynamic program-

ming as it is a highly complex problem. Moreover, the

component degradation is highly sensitive to load fluctua-

tions, which cannot be accurately forecasted. Therefore, this

work optimizes the predictive energy management refer-

ences, considering fuel consumption as the main target. In

particular, the hydrogen consumption rate is defined in (10) as

the stage cost L in the objective function. Under this

assumption, the cost function depends only on the input

variable.
ded into two control stages: route-references optimization

rgy management of fuel cell electric trucks, International Journal
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Table 2 e DoE variation range for Latin hypercube
sampling of EMS parameters.

r1 r2 r3 r4 r5 r6

[0, 1] [5e3, 1e5] [0.03, 0.10] {0, 0.1} {0, 1} {0, 1}

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x6
LðuÞ ¼ _mH2
(10)

Soft constraints on the battery state of charge and fuel cell

power are included in the objective function through the

penalty 4 defined in (11), where Lmax ¼ L(umax). In particular,

the battery operation outside the 50e80% SoC range is highly

penalized. Moreover, a penalty is active above 80% of the

nominal power to avoid the fuel cell high power operation.

4ðx;uÞ ¼
8<
:

10$Lmax if x<0:50 or x>0:80
Lmax if u>0:80 Pfcs;max

0 otherwise
(11)

Eventually, the optimization problem is defined in (12). The

objective function J is the sum of the stage cost L and the

penalty function 4 over the entire trip.

min
fu1 ;u2 ;…uNg

J ¼
XN
k¼1

½LðukÞ þ 4ðxk;ukÞ� Dtk (12a)

subject to:
xkþ1 ¼ xk þ fðxk;uk; zkÞ Dtk (12b)

x1 ¼ xN ¼ 0:65 (12c)

0:45 � xk � 0:85 (12d)

Pfcs;min � uk � Pfcs;max (12e)

Pbat;min � zk � uk � Pbat;max (12f)

The initial and terminal SoC are set equal in (12c) to ensure

the battery charge sustaining. Hard constraints are imple-

mented in (12d) for the SoC, in (12e) for the fuel cell power, and

in (12f) for the battery power. The DP solution is found by

setting the number of grid elements for the state and input

variable discretization to 900 and 100, respectively, which

yield a good trade-off between accuracy and computational

speed (i.e. a few seconds). The resulting predictive SoC and

FCS power references are stored as distance-based maps over

the entire route. The references are denoted with SoCref and

Pfcs,ref, respectively.

It should be mentioned that this work neglects prediction

uncertainties and assumes that the speed forecast of the

navigation system is exact. This assumption is reasonable,

considering that the scope of the investigation is to analyze

the potential benefits of predictive energymanagement based

on system-level simulation results. Moreover, the results in

Ref. [19] show a low sensitivity of uncertain predictions for

fuel consumption optimization.

Rule-based EMS for on-board control

The electric load request coming from the driver, P*el, is split

between the fuel cell and battery systems by a rule-based

energy management strategy. The fuel cell power setpoint,

P*fcs, is defined following the rules in (13).

P*
fcs ¼ P0 þ r1 ðP*

el � P0Þ þ r2 ðSoCref � SoCÞ Ebat;nom (13a)
Please cite this article as: Ferrara A et al., Cost-optimal design and ene
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subject to:

P*
el � P*

fcs � Pbat;max
(13b)

j _P*

fcsj � r3 Pfcs;nom (13c)

r4 Pfcs;nom � P*
fcs � Pfcs;nom (13d)

if r5 ¼ 0; then : P*
el � P*

fcs � Pbat;min (13e)

P0 ¼
(

Pfcs;ref if r6 ¼ 1

Pfcs;opt if r6 ¼ 0
(13f)

In (13b), the setpoint is constrained to consider the battery

maximum power limit. Whereas in (13c), the rate of change of

the setpoint is limited. Equation (13d) defines the lower limit

for the setpoint. In (13e), the fuel cell power is constrained to

consider the battery minimum power limit. However, this

constraint is active only if r5 is zero. Lastly, depending on the

value of r6, the EMS considers in (13f) the predictive FCS

reference or the optimal fuel cell operating point. The first

case generally yields closer tracking of the predictive SoC

reference, whereas the second results in lower hydrogen

consumption and poorer SoC control. The battery setpoint,

P*
bat, is defined as:

P*
bat ¼ P*

el � Pfcs hdc=dcðPfcsÞ (14)

Here, the battery acts as a buffer between the fuel cell system

and the electric loads. Details about the efficiency of the fuel

cell DC/DC converter, hdc/dc, are provided in Appendix A.

The EMS parameters in (13) have a significant impact on

the overall vehicle performance and total cost of ownership.

Eventually, for cost-optimal energy management, it is neces-

sary to find the set of parameters that yields the minimum

TCO, which generally changes depending on the powertrain

configuration and driving cycle. Therefore, it is essential to

establish a method to properly tune the control strategy and

find the cost-optimal EMS for each powertrain configuration

and driving cycle. To this end, using a design of experiment

(DoE) strategy is a practical method to calibrate the EMS pa-

rameters systematically. In particular, this work uses Latin

hypercube sampling [55] to generate 2000 combinations of the

six parameters and explore the entire calibration design

space. Eventually, the expected TCO is evaluated for the 2000

parameter combinations to find the cost-optimal EMS for each

driving cycle and powertrain configuration. Besides the TCO,

this work also considers the SFC, Lfcs, Lbat, Lveh, SoCmin, and

SoCmax as key performance indicators (KPIs). The variation

ranges of the individual parameters are defined in Table 2.
rgy management of fuel cell electric trucks, International Journal
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Results of cost-optimal design and energy
management

This section examines the results of cost-optimal design and

energy management, and the impact of the key influencing

factors on the total cost of ownership. The investigation

considers powertrain configurations with fuel cell nominal

power ranging between 200 kW and 400 kW, and nominal

battery capacity between 40 kWh and 160 kWh. The higher

limits of this design space are defined considering the prac-

tical packaging of the components in the vehicle, whereas the

lower limits are defined to meet the driving performance re-

quirements. The tuning yielding the minimum TCO is found

as described in Section Cost-optimal energy management for

each powertrain configuration and driving cycle.

Analysis of energy management results

Fig. 3 collects the results of the cost-optimal energy manage-

ment proposed in Section Cost-optimal energy management
(a) DP results for route-references optimization.

(b) On-board control results for minimum TCO.

Fig. 3 e Results of cost-optimal energy management for a fixed

Ebat,nom ¼ 100 kWh), considering the hilly road driving cycle.
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for a fixed powertrain configuration, the hilly road driving

cycle, and 40-tons base vehicle weight.

C Fig. 3a shows the DP optimization results in terms of the

optimal SoC trajectory and the cost-to-go J (12), which is

the cost from any point of the distance-SoC space to

reach the terminal SoC target. Notably, the SoC stays

within the desired range thanks to the soft-constraints

in the penalty function (11). The white spaces in the

cost-to-go map are the infeasible areas that would

determine violations of the SoC constraints (6).

C Fig. 3b shows the on-board control results using the

rule-based EMS to follow the optimal references created

with DP. The close tracking of the predictive references

demonstrates the benefits for SoC control and avoiding

high FCS power operation. In particular, before the long

uphills, the predictive EMS ensures that the battery is

fully charged (i.e. to the desired maximum SoC).

C Fig. 3c shows the simulation results for the 2000 EMS

tuning variations explored in the calibration process.

The figure highlights the contrasting relationship
(c) Impact of EMS parameters calibration on KPIs.

powertrain configuration (Pfcs,nom ¼ 300 kW and
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Fig. 4 e Comparison of fuel cell and battery operation for

different powertrain configurations.
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between the main KPIs and indicates the tunings cor-

responding to the minimum TCO and SFC. First, the

minimum and maximum SoC provide meaningful in-

formation on the battery operation and charge control.

The second tile shows the contrast between the fuel cell

and battery life expectations, indicating that it is not

possible to maximize the life of both components at the

same time. The third tile shows the trade-off between

fuel consumption and vehicle life. The extreme cases of

high battery life (in blue) and fuel cell life (in red) can

only be achievedwith a significant increase in hydrogen

consumption. On the other hand, the vehicle life can be

significantly extended with a tiny increase ð� 0:2%Þ of
fuel consumption compared to the minimum value.

Lastly, the bottom tile shows that energy management

significantly impacts the TCO. Moreover, the tuning for

minimum SFC determines a 2.6% higher TCO compared

to the optimal value. Therefore, it is essential to

consider the suitable trade-off between vehicle life and

fuel consumption to obtain a cost-optimal EMS design.

Fig. 4 compares the cost-optimal EMS for some extreme

cases of powertrain configurations to show examples of how

the optimal control strategy changes depending on the

component sizes. In particular, Fig. 4a compares two config-

urations with the same battery capacity but different nominal

fuel cell power: i.e. 400 kW and 200 kW. There are two main

differences. Firstly, even if the fuel cell power is similar, the

fuel cell efficiency is significantly higher for the 400 kW sys-

tem. Secondly, the cost-optimal EMS operates the smaller fuel

cell system in a stationary way to minimize the fuel cell

voltage degradation due to dynamic loading. Such operation is

obtained when the constraint (13d) is not active (i.e. r5 ¼ 0). In

this case, the fuel cell power is not reduced during regenera-

tive braking, leading to energy waste in mechanical brakes.

Therefore, the vehicle with the larger FCS has a significantly

lower fuel consumption (see Fig. 4c) because of higher effi-

ciency and braking energy regeneration. Moreover, the vehicle

with smaller FCS shows unbalanced component degradation

because the cost-optimal EMS corresponds to the one that

maximizes the fuel cell life. Instead, the other configuration

uses the fuel cellmore dynamically to balance the degradation

with the battery system.

On the other hand, Fig. 4b compares two configurations

with the same nominal fuel cell power but different nominal

battery capacity: i.e. 160 kWh and 40 kWh. In the second

configuration, where there is a slight degree of freedom due to

the low battery capacity, the EMS must operate in a broader

fuel cell power range to meet the battery SoC constraints.

Such an operating strategy results in lower FCS efficiency and

life. Eventually, the comparison of the key performance in-

dicators in Fig. 4c shows that the powertrain with larger fuel

cell and battery systems has an 8% lower TCO than the other

two cases.

Impact on TCO of driving cycles and component sizing

Fig. 5 shows the impact on TCO of fuel cell and battery sizes

for the three driving cycles under investigation, with a base

vehicle weight of 40 tons. The contour lines delimit a 2%
Please cite this article as: Ferrara A et al., Cost-optimal design and ene
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increment compared to the minimum TCO (blue cross

marker), showing a large impact of component sizing on the

total cost of ownership. The minimum TCO is at 160 kWh of

nominal battery capacity in all cycles. On the other hand, the

optimal nominal FCS power is 400 kW in Fig. 5a and 350 kW in

Fig. 5b, and 300 kW in Fig. 5c, indicating that the FCS efficiency

and life improvement do not compensate for the higher

component weight and cost. The figure also shows the pow-

ertrain requirements to avoid SoC constraint (6) violations,

indicating why it is critical to consider hilly and mountain

driving cycles for the design of fuel cell electric trucks. In

particular, the lower the FCS size, the higher the battery

requirement is. In Fig. 5c, the TCO is higher than the others

because of the frequent accelerations of the flat road driving

cycle (see Fig. 1c), resulting in higher specific traction energy

(see Fig. 1c) and, thus, SFC.
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https://doi.org/10.1016/j.ijhydene.2023.01.110


Fig. 5 e Impact of powertrain component sizing on TCO for different driving cycles and 40 tons base vehicle weight. The

contour lines delimit a 2% increment compared to the minimum value (blue cross marker). (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)
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Impact on TCO of truckload and component sizing

Fig. 6 shows the impact on TCO of different truckloads and

component sizing, considering the hilly road driving cycle.

The contour lines delimit a 1% increment compared to the

minimum TCO. Fig. 6a shows a low TCO sensitivity to the

powertrain configuration for a base vehicle weight of 18 tons

(i.e. no truckload). Moreover, the minimum TCO is at the

configuration: 300 kW/80 kWh. The other sub-figures indicate

that the higher truckload, the higher the powertrain re-

quirements and the TCO sensitivity to the configuration.

Fig. 6f shows the TCO for a combined driving cycle, which is

obtained by averaging the fuel consumption and degradation
Fig. 6 e Impact of powertrain component sizing on TCO for differ

contour lines delimit a 1% increment compared to the minimum

references to color in this figure legend, the reader is referred t
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of the five truckloads. In this case, the minimum TCO is at a

lower battery size compared to the full truckload case. How-

ever, Fig. 6f also shows that several configurations determine

a TCO that is within a 1% deviation from the minimum value.

Two powertrain configurations are selected for a quanti-

tative comparison of the TCO, SFC, and vehicle life. Configu-

ration A is 400 kW/130 kWh, which corresponds to the

minimum TCO in Fig. 6f. Configuration B is 300 kW/100 kWh,

which is within a 1% deviation from the minimum TCO in

Fig. 6f. Table 3 lists the results for all the cases considered in

Figs. 5 and 6. Overall, configuration A shows lower TCO than B,

with the largest deviations for the cycles with 40 tons of

vehicle weight. The table shows the significant truckload
ent base vehicle weights on the hilly road driving cycle. The

value (blue cross marker). (For interpretation of the

o the Web version of this article.)
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Table 3 e Impact of truckload and driving cycles on TCO,
SFC, and vehicle life for two selected powertrain
configurations.

Cycle/weight TCO ($/km) SFC (kg/100 km) Lveh ( � 105 km)

A B A B A B

hilly combined 0.502 0.507 7.86 7.98 12.8 10.2

18 t 0.395 0.391 6.18 6.18 15.5 13.8

25 t 0.458 0.457 7.18 7.21 13.5 11.4

30 t 0.503 0.508 7.89 7.99 12.5 9.99

35 t 0.552 0.560 8.63 8.83 11.0 9.13

40 t 0.601 0.616 9.41 9.70 9.97 8.09

mountain/40 t 0.546 0.571 8.45 8.90 9.52 7.59

flat/40 t 0.685 0.716 10.20 10.95 4.92 4.74

Powertrain configuration A: 400 kW/130 kWh

Powertrain configuration B: 300 kW/100 kWh
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impact on the SFC and vehicle life, and configuration A always

has better results for these KPIs. Lastly, the expected vehicle

life for the driving cycle on the flat road is lower because of the
Table 4 e Impact of market prices on TCO and optimal configu

Market prices Optim

cH2 cfcs cbat Pfcs,nom

($/kg) ($/kW) ($/kWh) (kW)

2 20 80 400

2 40 160 350

2 80 320 300

6 20 80 400

6 40 160 400

6 80 320 350

10 20 80 400

10 40 160 400

10 80 320 400

2 0 0 400

6 0 0 400

10 0 0 400

0 20 80 250

0 40 160 250

0 80 320 250

Powertrain configuration A: 400 kW/130 kWh

Powertrain configuration B: 300 kW/100 kWh

Fig. 7 e TCO reduction using the predictive EMS compared to th

component sizes and driving cycles.
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shorter traveled distance (see Table 1). Indeed, if the truck

always repeats this driving cycle, there will be a much higher

voltage degradation due to the start-up/shut-down cycles.

Impact on TCO of market prices

The market prices of hydrogen, fuel cell, and battery systems

significantly affect the TCO. Table 4 shows the results for the

combined driving cycle (see Fig. 6f) for different combinations

of market prices, showing the optimal TCO and powertrain

configuration, and the TCO deviation of configurations A and

B from the optimal one. The market prices adopted so far are

reported in bold characters. The table indicates that the

hydrogen price has amuch higher impact on the TCO than the

fuel cell and battery prices. In most cases, configuration A is

optimal and the highest deviation (i.e. 1.3%) results from the

scenario in which the hydrogen is rather cheap and the

powertrain expensive.

The second half of Table 4 shows the extreme scenarios in

which either the powertrain or hydrogen price is zero. In the
ration.

al configuration TCO dev. (%)

Ebat,nom TCO A B

(kWh) ($/km)

120 0.172 0.0 0.8

140 0.187 0.3 0.3

120 0.214 1.3 0.1

130 0.486 e 1.2

130 0.502 e 1.0

140 0.531 0.1 0.6

130 0.800 e 1.4

130 0.816 e 1.2

130 0.846 e 0.9

130 0.157 e 1.6

130 0.471 e 1.6

130 0.785 e 1.6

130 0.013 13.3 3.7

130 0.026 13.3 3.7

130 0.053 13.3 3.7

e non-predictive, considering different powertrain
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first case, the optimal configuration is the one that minimizes

the SFC, whereas, in the second one, it is the one that maxi-

mizes the vehicle life.

Benefits of predictive energy management

This paper also investigates the benefits of predictive EMSs

compared to non-predictive ones regarding TCO improve-

ment and reduction of powertrain component size re-

quirements. The rule-based control strategy described in

Section Rule-based EMS for on-board control is adopted for

non-predictive energy management using a constant SoC

reference of 65% and r6 ¼ 0. For a fair comparison, the tuning

yielding the minimum TCO is found for each powertrain

configuration using the same calibration procedure described

in Section Rule-based EMS for on-board control. Fig. 7 shows

the TCO reduction using predictive EMSs instead of non-

predictive ones for the three driving cycles with mo ¼ 40 t.

The TCO reduction is significant for the hilly and mountain

driving cycles, whereas much lower for the flat one. The light

blue area indicates valid configurations with predictive EMSs

and invalid with non-predictive ones because they cannot

meet the SoC constraints. Therefore, the component size re-

quirements are significantly reduced using predictive energy

management to improve the SoC control.
Conclusions

This paper investigated the cost-optimal design and energy

management of fuel cell electric trucks for road freight

transport. A novel predictive energy management system

based on dynamic programming was proposed for the multi-

objective optimization of SoC control, fuel consumption, and

expected components life. The significant impact of energy

management on the total cost of ownership and the other key

performance indicators highlights the critical role of this su-

pervisory control function. It is shown that the cost-optimal

EMS is essential to define the best trade-off between fuel

consumption and component degradation, leading to signifi-

cantly lower TCO than the fuel-optimal EMS.

The paper highlights that component sizing, driving cycles,

truckload, and market prices significantly influence the cost-

optimal design and energy management. The powertrain

component size requirements were defined in challenging

driving cycles considering hilly and mountain roads at full

truckload. Some selected configurations are analyzed in detail

to show that the fuel cell and battery sizes significantly affect

the power-split strategy and the vehicle performance. More-

over, it is shown that the hydrogen price has a dominant

impact on the TCO compared to the fuel cell and battery pri-

ces. However, the optimal powertrain configuration shows

low sensitivity to the market prices.

The study also demonstrated the benefits of predictive

energy management for TCO improvement and reduction of

powertrain component size requirements. The benefits are

particularly evident in challenging driving cycles (due to road

topographies and full truckload), both for cost-saving and

lower component size requirements.
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A potential research direction for future investigations is to

formulate the expected TCO as the objective function of dy-

namic programming. Additionally, it will be essential to in-

crease the robustness of the vehicle design by including more

driving cycles and truckload scenarios, and speed un-

certainties within the electric load forecasting system. More-

over, a limiting assumption of the presentwork is that the fuel

cell and battery degradation over one driving cycle is projected

to estimate the component life, assuming that its character-

istics do not change with degradation. Overcoming these

limitations opens an additional research direction: a health-

conscious EMS to maintain a balanced degradation between

the fuel cell and battery systems.
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Appendix A. Vehicle simulation framework

This section describes the vehicle simulation framework

adopted for a realistic estimation of fuel consumption and

component degradation in fuel cell electric trucks. The ar-

chitecture of the electric powertrain is equivalent to the one

shown in Ref. [17]. The simulation models are scalable to

analyze the vehicle performance for powertrain configura-

tions with nominal fuel cell power ranging between 200 kW

and 400 kW, and nominal battery capacity between 40 kWh

and 160 kWh. The simulation framework is implemented in

MATLAB/Simulinkwith a structure similar to the one reported

in Ref. [56].

Appendix A.1. Fuel cell vehicle modeling

The vehicle modeling approach is forward-facing, including a

driver model that generates a load request based on the de-

viation from the target speed depicted in Fig. 1. According to

this modeling approach, the vehicle slows down if the pow-

ertrain does not provide the requested power. The vehicle

acceleration _v is calculated as in depending on the vehicle

speed v, road slope a, fuel cell system power Pfcs, and battery

power Pbat.

mv _v ¼ Pw=v� Fres (A.1a)
rgy management of fuel cell electric trucks, International Journal
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Table A.5: Vehicle model parameters.

Parameter Symbol Value

Friction coefficient at 0 km/h cr 0.0055

Friction coefficient at 100 km/h cr 0.0081

Vehicle frontal area Av 9.6 m2

Drag coefficient cx 0.58

Auxiliary loads Paux 11.5 kW

Total efficiency hT 0.87

Base vehicle mass mo 40 t

Specific FCS weight mfcs 1.27 kg/kW

Specific battery weight mbat 6.35 kg/kWh

Hydrogen lower heating value LHVH2 120 MJ/kg

Nominal cell charge Qnom, cell 2.7 Ah

Nominal cell capacity Enom, cell 9.72 Wh

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x12
Fres ¼ v2Av cx rair
�
2þmv g ðcrcos aþ sin aÞ (A.1b)

Pw ¼ Pm h
sgnðPmÞ
T � Pbr (A.1c)

Pm ¼ Pel � Paux (A.1d)

Pel ¼ Pfcs hdc=dcðPfcsÞ þ Pbat (A.1e)

The mechanical braking power, Pbr, compensates for the

power request that cannot be absorbed as regenerative

braking energy. The vehicle dynamics parameters are re-

ported in. In particular, the rolling friction coefficient cr in

(A.1b) changes linearly with the vehicle speed. Moreover, the

vehicle mass is calculated depending on the powertrain

components size as:

mv ¼ mo þ mfcs Pfcs;nom þ mbat Ebat;nom : (A.2)

The converter efficiency in (A.1e) depends on the FCS

power as depicted in Figure A.8. The hydrogen consumption

rate is calculated as:

_mH2
¼ Pfcs

�ðhfcs LHVH2
Þ ; (A.3)

where hfcs is the FCS efficiencywith the characteristic depicted

in Figure A.8 as a function of the normalized fuel cell power. In

general, it is not possible to directly scale the characteristics of

fuel cell systems to a different size because increasing the

number of cells can cause the non-uniform distribution of

reactants and might determine changes in the auxiliary

component requirements. However, this work assumes for

simplicity that the efficiency curve can be scaled only based

on the nominal fuel cell power. The hydrogen consumption

rate is used in (2) to calculate the specific fuel consumption.

Figure A.8 e Characteristics of DC/DC converter, fuel cell

system, and battery cell.
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The open-circuit voltage, internal resistance, nominal

charge, and nominal capacity of the battery cell are scaled to

the whole battery pack as in (A.4), where Np is the number of

parallel branches, each of which has Ns cells connected in

series.

Voc ¼ Voc;cell Ns (A.4a)

Rint ¼ Rint;cell Ns

�
Np (A.4b)

Qnom ¼ Qnom;cell Np (A.4c)

Ebat;nom ¼ Enom;cell Ns Np (A.4d)

The battery cell open-circuit voltage and internal resis-

tance depend on the SoC as depicted in Figure A.8, whereas

the impact of the temperature is neglected. The cell nominal

charge and capacity are reported in Table A.5. The SoC rate of

change is calculated as a function of the battery power:

d
dt

SoC ¼ �
Voc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

oc � 4 Pbat Rint

q
2 Qnom Rint

; (A.5)

adopting the equivalent circuitmodel described in Ref. [17].

The fuel cell system is subject to the power constraints:

0 � Pfcs � Pfcs;nom (A.6a)

j _Pfcsj � 0:10 Pfcs;nom (A.6b)

where the rate of change is limited to the 10% of the nominal

power per second. The battery power is constrained to meet

the cell voltage and C-rate limits:

2:6 � Vcell � 4:2 (A.7a)

�2 � C� rate � 8 (A.7b)

which ensure a battery operation without accelerated

degradation.
Appendix A.2. Fuel cell and battery degradation models

The quick evaluating method for fuel cell voltage degrada-

tion developed by Pei et al. [57] has been used in several
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works to assess the impact of energy management strategies

on fuel cell life [58e61]. This method derives from acceler-

ated aging tests and offers adequate precision for a system-

level analysis. In particular, the voltage degradation of the

fuel cell system is estimated using the formula in (A.8),

considering start-up/shut-down cycles (ss), low-power

operation time (lp), high-power operation time (hp), and dy-

namic loading (dl).

DVfcs ¼ DVfcs;ss þ DVfcs;lp þ DVfcs;hp þ DVfcs;dl (A.8a)

DVfcs;ss ¼ 0:00196,Nstarts (A.8b)

DVfcs;lp ¼ 0:00126,tlp (A.8c)

DVfcs;hp ¼ 0:00147,thp (A.8d)

DVfcs;dl ¼ 0:0000593,
Z
dc
j _Pfcs

�
Pfcs;nom

�
2j dt (A.8e)

The thresholds for low and high-power operation are

assumed as 10% and 80% of the fuel cell nominal power, as in

Ref. [58]. The total voltage degradation DVfcs over each driving

cycle (dc) is expressed in percentage compared to the begin-of-

life conditions. The voltage degradation is used in (4) to

calculate the fuel cell system life.

Battery degradation mechanisms are highly specific to the

cell type, making it challenging to generalize degradation

models. However, an important indicator for battery life is the

number of equivalent full charge/discharge cycles:

EFC ¼

Z
dc

jIbatj dt
2 Qbat;nom

: (A.9)

This work assumes that the battery pack load is equally

distributed among its cells. Eventually, the EFC is used in (5) to

calculate the battery system life.
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