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Abstract 

This paper presents a material requirements planning method that determines optimal safety stock levels 
using a heuristic optimization, based on a deterministic simulation of stock levels. Material requirements 
planning is a key competitiveness factor in a volatile, global market environment and is becoming 
increasingly complex due to the availability of more products, product variants and fluctuating demand. 
Digitalization offers significant potential benefits for this planning domain, however, tools ready for use in 
industry applications are still lacking, leading to untapped potential in companies. The approach presented 
herein investigates available safety stock calculation algorithms, develops a heuristic-based optimization 
method that determines the best fitting algorithm for each product and optimally parameterizes the algorithm. 
The method utilizes a deterministic simulation as an evaluation function. A case study for a company in the 
capital good industry is implemented to evaluate the application potential. The results reflect significantly 
improved service levels with a minor increase in cost. 
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1. Introduction

Data and information are sometimes referred to as WKH�³RLO�RI�WKH�GLJLWDO�DJH�. This increasingly applies to 
material requirements planning, which is confronted with increasing complexity in a volatile, global market 
environment and the associated increase in data volumes [1]. Disruptions due to digitalization, smaller batch 
sizes, fluctuating sales volumes, globalized supply chains and cost pressure are major complexity drivers in 
material requirements planning [2]. Material requirements planning refers to the coordination of the flow of 
materials into the company and the stock levels so that the required items are available on time and in the 
right quality, at the right place [3]. The aim of material requirements planning is to ensure that the company's 
material supply is economically secure in terms of type, quantity, time and quality [4]. The sub-disciplines 
of material requirements planning are divided into requirements planning, calculation of stock and purchase 
order calculation [3], see Figure 1. This paper focuses on the sub-discipline of calculation of stock, 
specifically on the application of safety stock algorithms in consumption-based material requirements 
planning. Although many companies view safety stock primarily as a cost driver, safety stocks are the key 
factor for maintaining a high service level [4]. Optimally defining safety stock levels help on the one hand 
to increase the service level for the customer, and on the other hand to minimize company-relevant inventory 
costs [5]. Digitalized, automated planning can achieve significant savings, ensure long-term customer loyalty 
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and improve competitiveness [6], and a variety of algorithms exist in consumption-based material 
requirements planning to improve its efficiency. However, only a very small proportion of mathematical 
models are applied in day-to-day operations [7]. 

 
Figure 1: Sub-disciplines of material requirements planning 

This paper presents the development of a digital planning tool for material requirements planning and 
operational purchasing that enables product-specific optimized calculation of stock. The objective is to 
guarantee the availability of consumption-controlled disposition, considering potential item-specific 
uncertainties in the supply chain, with the lowest possible safety stocks. For this purpose, a heuristic 
optimization based on a deterministic simulation is developed as an evaluation function. The potential 
benefits for optimized safety stock calculation are evaluated in a case study from the capital goods industry. 
Its relevance for the industry can be justified by the fact that capital goods are increasingly placed at shorter 
notice and for smaller volumes. Therefore, producers are being demanded short delivery times, a high degree 
of flexibility and of planning accuracy and this with an increasing variety of articles. 

The research hypothesis is that a digital planning method in consumption-based material requirements 
planning can significantly increase the service level compared to the safety stock determinations practiced 
today in companies in the capital goods industry. The Design Science Research Methodology according to 
Peffers et al. [8] was applied, supporting both the development of a solution and its communication into 
application. 

The paper is structured as follows: Following the introduction, section 2 provides relevant fundamentals for 
safety stock planning, while section 3 introduces simulation and optimization for safety stock planning. 
Section 4 presents the development of the planning method. In the concluding sections 5 and 6, the results 
are discussed, and an outlook is provided. 

2. Background: Safety stock planning 

A literature analysis provides an overview of available safety stock calculation algorithms (see Figure 2). 
Altogether, 16 different methods could be identified. None of the referenced literature considers all 
algorithms. Figure 3 categorizes the algorithms and outlines their relationships to each other. The algorithms 
were then characterized and the possible applications in the operational environment of the capital goods 
industry were evaluated. The procedures marked in dark grey were selected as the most common procedures 
though a prevalence analysis. Some of these 11 algorithms are already used in Enterprise resource planning 
(ERP) systems. However, decision-makers in companies lack a basis for deciding which of the safety stock 
algorithms are most suitable and how to parameterize them optimally and in a product-specific manner. 

In real-life settings there are numerous factors that can contribute to uncertainty in material requirements 
planning [9], such as delivery date deviations, delivery quantity deviations, consumption deviations, supplier 
quality problems and stock deviations. In order to counteract the occurrence of shortages in materials 
disposition, safety stocks are used as buffers in materials disposition. Planners have to decide between a high 
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level of service and the associated higher capital commitment and storage costs, and between low stocks and 
the associated risk of the occurrence of shortages [10]. 

Figure 2: Literature allocation to safety stock procedures 

Figure 3: Overview of safety stock algorithms 

3. Heuristic optimization, simulation and simulation-based optimization of safety stocks

Optimization is the process of finding the best possible solution for the objective ± in this case, maximum 
service level with minimum inventory ± with the help of mathematical operations. The optimization can 
either be implemented as a mathematical optimization program or as an algorithm that uses an evaluation 
function to achieve the objective. For complex real systems, some form of simulation is often useful for the 
evaluation function ± in this case, the stock is deterministically simulated over time for the different methods 
to analyze, how a chosen stock calculation method affects an objective function of stock costs and shortage 
costs. The static simulation is used to describe deterministic system behavior. In other cases, if the system 
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behavior cannot be predicted deterministically, the behavior results from events over time that influence one 
another - in such cases, discrete-event simulation is a commonly used [11]. 

Within optimization algorithms, there are exact procedures that determine an optimum, and optimization 
heuristics that can determine a good solution for complex practical problems in the practically available 
computing time [12]. Computation time is especially critical when simulation is used as an evaluation 
function, as simulation is usually computationally intensive. Metaheuristics are used for practical problems 
with complex search spaces in which there are many local optima, which are robust to local optima that 
simple local search procedures, such as hill-climbing procedures, cannot overcome. Rule based heuristics 
are less universally applicable and require a known optimization strategy, but they are computationally 
efficient. Kamhuber et al. [13] give an example of combining efficient rule-based heuristics, based on human 
planning expertise, with metaheuristics, in conjunction with discrete-event simulation in production 
planning. This example demonstrates that a combination or hybridization of the methods can prove to be 
more useful and advantageous to achieve efficient planning. 

In this paper, a heuristic with a static simulation is used as an evaluation function for the selection of the 
most suitable safety stock calculation. The safety calculation methods are themselves also usually heuristics, 
that have been established as standard methods in their specific planning domain. Table 1 gives an overview 
of literature on simulation, optimization and simulation optimization of safety stocks. 

Table 1: Literature research on simulation, optimization and simulation-based optimization of safety stocks 

Simulation of safety stocks Optimization of safety stocks Simulation-based optimization of 
safety stocks 

Schmidt et al., (2012) Gansterer et al., (2013) Mayer et al., (2020) 
Gansterer et al., (2013) Hernandez-Ruiz, (2016) Claus et al., (2018) 
Nenni et al., (2013) Albrecht, (2017) Bracht et al., (2018) 
Hernandez-Ruiz, (2016) Avci et al., (2017) Wenzel et al., (2017) 
Albrecht, (2017) Gruler et al., (2018) Gutenschwager et al., (2017) 
Avci et al., (2017) Ghadimi et al., (2020) Walmann et al., (2016) 
Gruler et al., (2018) Barrios et al., (2020) Hanschke, (2015) 
Ghadimi et al., (2020) Sourirajan et al., (2008) Witthaut et al., (2015) 
Barrios et al., (2020) Keskin et al., (2015)  
 Schuster-Puga et al., (2016)  
 Park, (2020)  

 

From the publications in Table 1, the authors highlighted in dark grey were identified as especially relevant 
publications for this work: Nenni et al. [14] evaluate the level of service for safety stocks calculated with 
different formulas and compare, whether the level of service determined by simulation corresponds to the 
target level of service of the safety stock level. Schmidt et al. [15] deal with the concept of virtual safety 
stock and evaluate its effectiveness by means of simulation. Freely selected values for lead times, 
consumption values and their standard deviations function as input data in both works. Schmidt et al. use 
250 days as the simulation period, which corresponds roughly to the total working days in a year. Nenni et 
al. simulate over 50.000 periods. Due to the uncertainties in demand and replenishment time contained in 
the models, a single simulation run is not meaningful. For this reason, the simulation results in the papers 
are arithmetically averaged after 10 or 15 simulation runs. Nenni et al. exclusively use the safety stock 
formula with uncertain lead time (Theory of Constraints), whereas Schmidt et al. provide a recommendation 
matrix for the selection among 9 safety stock algorithms. No real company data is used in each case. 

The Paper at hand utilizes 11 safety stock algorithms and provides an evaluation based on a company use-
case in the capital goods industry and a final total landed cost evaluation is carried out. 
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4. Development of the safety stock optimization method 

4.1 Characterization of the case study 

The case study was carried out with the disposition-relevant data of a company from the capital goods 
industry (production of fittings and valves). The company in the case study is embedded in a corporate group 
and has about 115 employees, an annual turnover of 22.3 million euro, 346 customers from 51 countries, an 
annual purchasing volume of 11.5 million Euros, 1.780 active suppliers from 61 countries, and uses an ERP 
as its central IT system. For the case study, the input files are available in a standardized form from the IT 
systems and are read in via an interface. The optimization method was implemented in a VBA-based MS 
Excel tool. The objective was to enable users (materials requirements planners, operational purchasers) to 
plan optimal safety stock levels independently, without requiring expert knowledge in the areas of 
optimization and simulation. 

4.2 Preliminary ranking of algorithms 

As the first step, a preliminary priority ranking of the 11 selected calculation methods was determined, 
independent of the concrete use case and data set. For this purpose, the capabilities of the safety stock 
algorithms are compared with the requirements from the uncertainty factors of Wiendahl [9] in the 
calculation of stock of material requirements planning. The result of the prioritization is shown in Table 2 
(the algorithms are listed with descending priority). At this stage, this prioritization can be used by 
application companies ± depending on the data availability, the best-ranked method can be chosen by the 
planner. In this paper, this ranking is only an additional orientation, with the final ranking determined via a 
simulation evaluation presented in section 4.5. 

Table 2: Safety stock procedures and operating principle 
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Uncertain lead time (Theory of Constraints) - - + + - + 
Safety stock dynamic with target service-level - - + + - + 
Safety stock with target service-level - + ~ + - + 
Safety stock with dynamic service-levels - - + + - + 
Calculation according to service-level - - ~ - ~ + 
Calculation by using the A-B-C/X-Y-Z method + - - + - - 
Dynamic safety stock method - - + ~ + - 
Calculation with a service-level of 100% - + ~ + - - 
Calculation by means of the rough estimate method - - - - - - 
Calculation by Lagrange method + - - - ~ ~ 
Calculation by Percent-Fill Method - - - - ~ ~ 

4.3 Data characterization and data preparation for the use case 

In the following section, the procedure of data collection as well as the data structure and results are 
described. As the first step, all data relevant for the application of the algorithms (stock levels, material, 
disposition master data, consumption data, etc.) are identified based on the 11 selected safety stock methods 
(see Figure 3) and obtained from the IT systems of the research partner from the capital goods industry. In 
the process, a total of seven different files in three different file formats (.xlsx, .csv and .pdf) are combined 
in the VBA-based MS Excel tool by means of an import logic, sorted by article number, and prepared for 
further use. 
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The following Figure 4 shows the data required for the heuristic optimization as well as for the subsequent 
simulation. In addition to the listed information, the article number is imported for each file for accurate 
sorting. 

 
Figure 4: Input data for safety stock calculation and simulation 

4.4 Calculation of logistical parameters 

After data preparation, relevant logistical parameters for the optimization are calculated from the existing 
historical and forecast-based input data for each article, as a calculation basis for the safety stock algorithms. 

Table 3: Logistical parameters for optimization 

Average daily consumption (historical) Standard deviation lead time (historical) 
Average monthly consumption (historical) Average lot size (historical) 

Standard deviation daily consumption (historical) Maximum monthly consumption (historical) 
Standard deviation monthly consumption (historical) Averaged forecast value (future) 
Average lead time (historical) Standard deviation of the forecast values (future) 

4.5 Ranking and selection of safety stock algorithms 

Using simulation, the safety stock algorithms are ranked: In the process, a subset of the data set is selected 
for which all 11 safety stock procedures can be applied for each article (if none or not a substantial share of 
the dataset is fit for all 11 algorithms, only the supported algorithms are selected and ranked). All algorithms 
are applied to all articles of the subset (products) and the resulting stock levels are simulated over time 
(material deliveries and material consumption calculated through a time series analysis) and the article-
specific service level is determined for each safety stock procedure. For the simulation, optimal purchase 
order lot sizes have to be defined ± this is achieved via a purchase order lot size optimization method, 
developed by the authors, which uses a total landed cost approach as the objective function of the 
optimization (all relevant costs are considered) and a deterministic simulation as the evaluation function 
[16]. 

Thus, mean lead time, mean consumption, and associated standard deviations of items are imported into the 
simulation and the warehouse inventory level is simulated for 300 days. The different safety stock levels of 
the individual algorithms are considered. The algorithms with a combination of the highest resulting service 
level and a low safety stock level are prioritized. As an example, Figure 5 shows a simulation over 300 days 
for an item with a mean lead time of 5 days and an associated standard deviation of 3 days. The mean 
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consumption of the example item is 1.000 units per day and the associated standard deviation is 750 units. 
Figure 5 shows that on days 47, 224 and 242, for example, the stock level would fall to 0 units, meaning that 
the item would not be available for delivery. The simulation calculates a service level of 96% for this article 
for a safety stock of 4.829 pieces. The optimal safety stock at a given service level of 98% would be approx. 
7.000 pieces, which would be delivered by the procedure with uncertain lead time (Theory of Constraints). 
Repeating these simulation runs with the subset of the data set plus variation of the items thus led to the 
decision to prioritize this algorithm. 

 
Figure 5: Simulation of the item-specific stock development 

The simulation results are translated into a case and data-set specific ranking of the algorithms. The 11 safety 
stock algorithms have different data requirements, therefore if the necessary data for certain algorithms is 
unavailable for an article, the next algorithm is tested. The algorithm with the highest available priority is 
then chosen for each article. 

4.6 Application of safety stock calculation 

For the sake of economic viability, safety stocks are not to be created for all articles, but only for those with 
a significant risk of a shortage, the simulation used in section 4.5 is used here again to assess the item-specific 
risk. All articles are simulated without setting safety stocks first. The simulation results are then evaluated 
and articles with risk of stock shortages are identified. Next, the optimal safety stock levels for these articles 
are calculated with the optimal algorithm chosen before for each article (Æ section 4.5). For these articles 
with safety stocks, the simulation is run anew, this time with the optimal safety stock values, to evaluate the 
successful avoidance of stock-out. 

4.7 Optimizing the heuristics based on the simulation results with optimized purchase order lot 
sizes and safety stocks 

In the evaluation, the items with stock shortages are identified and the optimal safety stock levels calculated 
in the previous safety stock optimization phase are applied to them - no safety stock is defined for items 
without shortages. It turned out that, despite optimized safety stocks, a safety stock level that was too low 
was set for some articles, because in some cases there were still understocking costs in the purchase order 
lot size simulation. Therefore, the heuristics were revised, and, as an example, the "Theory of Constraints" 
method was given priority over the "Dynamic service-levels" as the more optimal method. As a result, based 
on the defined heuristics, only items that are at risk of shortage are suggested or issued an optimal safety 
stock level. 

Lastly, another simulation is carried out for determining the total landed costs. After this second fine-tuning, 
optimized purchase order lot sizes and order times are defined for all articles, as well as optimized safety 
stocks according to demand. The entire procedure is illustrated in Figure 6. 
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Figure 6: Stochastic-heuristic optimization with subsequent simulation 

5. Results and discussion 

The results show that using the developed optimization method, different safety stock procedures are 
identified as optimal for the articles. In this case study, optimal safety stock procedures and safety stocks 
were determined for 595 articles for which there was a risk of stock shortage, according to the simulation. 
Of the 11 algorithms considered, 2 were selected by the optimization method. The "Uncertain lead time 
(Theory of Constraints)" method is used for 76% (452 articles) and the "Safety stock with target service-
level" method for 24% (143 articles). The other 9 algorithms have not been selected for this dataset. If the 
database were expanded from the 595 articles in the application example, other procedures would also be 
selected, based on the data availability of each article. However, since there is no danger of a stock shortage 
for these articles, no safety stock was suggested or determined according to the developed optimization 
method. 

The combined consideration of calculation of stock (safety stock method) and purchase order lot size 
calculation (purchase order calculation method) increases the service level (availability of goods). For all 
simulated 595 articles with understocking costs (out of 4.066 articles in total), a stock-out could be avoided 
for almost all articles (476 articles). For 119 articles, a stock-out could not be avoided due to the nature of 
the initial state at the beginning of the planning period: For those articles, errors in the material requirements 
planning in the period before the considered planning period have led to a stock level of zero at the start of 
the planning period, which led to unfulfilled demand right after the start. In principle, this phenomena cannot 
be avoided. 

It must be noted that the increase in the availability of goods through safety stocks is at the expense of 
warehouse and capital commitment costs, as shown in Table 4. Only costs represented through figures, data 
and facts in financial accounting records were able to be evaluated. For example, a possible customer 
fluctuation due to insufficient delivery capability could not be evaluated financially. Through this targeted 
and optimal application of safety stocks, it was possible to guarantee the service level and the associated 
availability of goods for those articles with understocking costs (apart from those 119 articles) with a 
minimal increase in costs of ~0.6 percentage points. 

After applying the last (2nd) phase of fine-tuning, the combined optimization of purchase order lot sizes and 
safety stocks, the total landed cost shows higher total costs for this combination compared to a procurement 
optimized only for purchase order lot sizes, without optimized safety stocks (see Table 4). From the point of 
view of the total landed cost objective function, the optimization result has thus even slightly deteriorated 
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due to the combined optimization, while it has improved from the point of view of the safety stock 
optimization objective function (service level 99,9% with the lowest possible safety stocks). Since the total 
landed cost approach only considers actual costs incurred and does not consider, for example, the negative 
effects of a stock-out on customers who could reorient themselves to other suppliers, it is reasonable to 
suggest refining the objective function from an overall optimization point of view - i.e., the entire material 
requirements planning. 

Table 4: Total landed cost (TLC) consideration before and after optimization of safety stocks 

TLC consideration before optimization 
of the safety stock level 

TLC consideration after optimization 
of the safety stock level 

Stock shortage costs 

Storage costs 

Capital commitment costs 

15.691 EUR 

60.855 EUR 

329.794 EUR 

6.811 EUR 

62.543 EUR 

339.317 EUR 

Total landed cost (TLC) 406.340 EUR 408.672 EUR 

6. Conclusion and outlook

The method was developed using an extensive case study and data set from the capital goods industry. It is 
based on established calculation methods for purchase orders and safety stocks. In principle, it is therefore 
suitable for most companies that operate complex material requirements planning. The benefits increase with 
an increasing number of articles as well as risk factors and other complexity drivers, all of which can be 
found in the capital goods industry ± this is where the digital (partial) automation of planning can prove to 
be most valuable. 

The results show that with the targeted use of digitalization in the calculation of stock of consumption-
controlled material requirements planning, the service levels can be significantly improved. In addition, the 
interaction and interdependence of the main disciplines of calculation of stock and purchase order lot size 
calculation in materials disposition is also presented. The relevance of data quality and structure in 
companies was also demonstrated while the study was underway. 

Further research work will be aimed at the development of an integrated material requirements planning 
method, comprising requirements planning, calculation of stock and purchase order lot size calculation. This 
will include investigating the hierarchy between planning goals and working towards a less sequential 
planning process in the interest of pursuing an aligned material requirements planning optimization. 
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