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Abstract
As an underlying theory, functional analysis is central to many fields in mathematics and
theoretical physics, such as variational calculus or quantum mechanics, and (bounded)
linear operators often play a major role. For example in quantum theory, the states can be
described as elements of a suitable Hilbert Space, with hermitian linear operators taking
the role of measurements. Similarly, linear differential equations can often be understood
as operator equations with a linear differential operator, and solutions can be found by
applying functional analysis. This means there is a large benefit in better understanding
such operators, and maybe even classifying them.

Unfortunately, a unifying theory for general linear operators on Banach spaces has yet
to be discovered. However, for the reduced problem of normal bounded linear operators
on separable Hilbert spaces this is actually possible. The so called Multiplicity Theory
gives a complete classification of such operators according to their spectra and spectral
multiplicity, as it extends the finite-dimensional idea of classifying normal matrices by
their spectra and spectral multiplicity.

This thesis aims to give a (relatively) self-contained introduction to Multiplicity Theory
for an interested reader with a basic university education in mathematics. As a capstone,
the proof of the multiplicity theorem will be presented, which describes the aforementioned
classification of normal bounded linear operators on separable Hilbert spaces.



Kurzfassung
Funktionalanalysis ist ein wichtiges Fundament für viele Gebiete der Mathematik und
theoretischen Physik, wobei (beschränkte) lineare Operatoren oft eine zentrale Rolle
spielen. Beispielsweise werden in der Quantentheorie die Quantenzustände als Elemente
eines geeigneten Hilbertraumes interpretiert, während Messungen durch hermitesche
Operatoren dargestellt werden. Weiters werden lineare Differentialgleichungen oft als
Operatorgleichungen mit einem linearen Differentialoperator verstanden, und Lösungen
können mit Hilfe der Funktionalanalysis ermittelt werden. Aufgrund dieser Tatsachen ist
ein tieferes Verständnis von solchen Operatoren von großem Nutzen.

Leider gibt es bis dato keine allgemeine Theorie, die sämtliche linearen Operatoren auf
Banachräumen klassifiziert. Das reduzierte Problem für normale, beschränkte lineare Ope-
ratoren auf separablen Hilberträumen hat jedoch in der Tat eine derartige Klassifizierung.
Die sogenannte Multiplizitätstheorie beschreibt sämtliche solche Operatoren eindeutig
mit Hilfe ihres Spektrums und ihrer spektralen Vielfachheit. Dabei ist die Theorie eine
Erweiterung der endlich-dimensionalen Klassifizierung von normalen Matrizen nach ihrem
Spektrum und der spektralen Vielfachheit.

Das Ziel dieser Arbeit ist es, eine (soweit möglich) in sich geschlossene Einführung in
das Gebiet der Multiplizitätstheorie zu geben, wobei am Ende der Beweis des Satzes über
Multiplizitätstheorie steht. Dabei richtet sich diese Arbeit an interessierte Leser_innen
mit einer Grundausbildung in Hochschulmathematik.
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Chapter 1

Introduction
The goal of this thesis is to provide the reader with an understandable and focused
introduction to multiplicity theory on separable Hilbert spaces. To this end, it provides a
reworked form of [2] with many proofs added and the structure rearranged to provide a
more concise experience. This text is suited for students who have just completed their
BSc. in mathematics, as it goes through all relevant steps without requiring in depth
knowledge of topics such as functional analysis or measure theory. Of course, it will
hopefully be appealing to people further down their educational path as well, if they desire
to familiarize themselves with the topic. The text states all used lemmata, propositions
and theorems clearly, so it is possible to skip parts and only go back when something is
unclear.

This thesis consists of four chapters, with the first chapter (evidently) being the intro-
duction. Afterwards, the second chapter concerns itself with the notation used in this
work. The third chapter contains the core of this thesis, and it consists of the development
of multiplicity theory on separable Hilbert spaces. It is divided into several sections, each
containing a coherent step in developing the theory. Finally, the fourth chapter holds the
appendix, where all prerequisite theorems and propositions are collected for reference, in
addition to sources.

For ease of writing and reading in the subsequent text, the author has chosen to employ
the pronoun "we" and written the thesis in first person plural.

1.1 Understanding Multiplicity Theory
The idea of multiplicity theory is to classify all normal operators on separable Hilbert
spaces according to the multiplicity of their spectrum. To understand how this might
work, we first look at the finite-dimensional case. We know that each normal matrix M is
diagonalizable with the form

M = U−1DU = U−1

�����
λ1 0 . . . 0
0 λ2

...
... . . .
0 . . . λn

����� U .

Since U is unitary we know that D and M are the same modulo a Hilbert space homo-
morphism, and we denote M ! D. If we reorder the eigenvalues to obtain a new diagonal
matrix D̃, we can still find a unitary Ũ so that M ! D̃. Therefore it only matters which
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eigenvalues appear and how often they appear, and we can classify all normal matrices in
Rn×n up to a unitary transformation just by their eigenvalues.

The Central Multiplicity Theorem We now want to generalize this result, and during
the course of this thesis we will prove that this is indeed possible for separable Hilbert
spaces! According to Theorem 3.10.7, a normal operator N on a separable Hilbert space
is (up to a unitary transformation) uniquely defined by the following objects:

• A measure µ with supp(µ) = σ(N).

• A multiplicity function # : C �→ {0, 1, 2, ..., ∞} for which we find # ≥ 1 µ-almost
everywhere.

There are of course some differences to the finite-dimensional case, since we now deal with
infinitely large vector spaces. First, the discrete spectrum of eigenvalues is replaced by the
possibly continuous spectrum σ(N). Second, we can find that certain sets of the spectrum
"appear" and infinite number of times, hence the possibility for # to take on the value ∞.
Further, we can understand the measure µ as the weight of our continuous "eigenvalues",
and the concept should be familiar from measure theory and L2 spaces. Taking this all
into account, we still get a function that counts the "number of appearances" for our
"eigenvalues" and which (together with µ) uniquely defines N .

1.2 A Short Overview of our Approach
The insights we discussed above will only be the end point of our foray into multiplicity
theory in Section 3.10, and on our way there we will actually prove a set of such theorems.
The reason for this is that they build on each other, so we have to start with a slightly
different classification. Therefore we will give here a quick overlook of the three theorems
that will occupy our attention in Sections 3.8 and 3.9.

First Multiplicity Theorem To understand the first theorem, we go back to the finite-
dimensional case and inspect a normal matrix M ! D. As an example, we set D =
diag(1, −3, 1, 5, 2, 2, −3, 2). We can now rearrange the eigenvalues to get

M ! D̃ = diag(5, −3, 1, 2, −3, 1, 2, 2) . (1.1)

Although it might not be obvious at first, we have just ordered the eigenvalues into the
sets (5, −3, 1, 2), (−3, 1, 2) and (2). In this way, each set contains a certain eigenvalue only
once. We can now deconstruct

R8 = R4 ⊕ R3 ⊕ R .

The matrix D̃ also lends itself to such a deconstruction, and we see

M ! D̃ =

���
5 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 2

��� ⊕
�−3 0 0

0 1 0
0 0 2

� ⊕ (2) . (1.2)
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Again, the normal matrix M can be (up to a unitary transformation) uniquely defined by
this form, and we will see in Theorem 3.8.8 that a similar fact holds for a normal operator
N on a separable Hilbert space.The theorem gices us a sequence of measures (µn)n∈N so
that supp(µ1) = σ(N), µn+1 � µn for all n ∈ N and

N !
∞	

n=1
Nµn .

Here, the operators Nµn are operators on L2(µn) that mirror the diagonal matrices above.
On the other hand, the fact that µn+1 � µn for all n ∈ N is similar to how we ordered the
diagonal matrices by decreasing size, with each set being a subset of the previous set.

Second Multiplicity Theorem The second Theorem 3.9.2 will have a very similar form
to the first. The key difference is that we will replace the measures (µn)n∈N by a single
measure µ and a sequence of Borel sets (Δn)n∈N with Δ1 = σ(N), Δn+1 ⊆ Δn for all
n ∈ N and

N !
∞	

n=1
Nµ|Δn

.

When compared to our matrix, this corresponds to Equation 1.2 as well.

Third Multiplicity Theorem For the third theorem, we will go back to the matrix
M ! D in Equation 1.1. This time, we rearrange the eigenvalues in another way to obtain

M ! D� = diag(5, −3, −3, 1, 1, 2, 2, 2) .

Further, we divide R8 differently this time and get

R8 = R ⊕ R2 ⊕ R2 ⊕ R3 .

Similarly as above, we can now deconstruct

M ! D̃ = (5) ⊕
�−3 0

0 −3

�
⊕

�
1 0
0 1

�
⊕

�2 0 0
0 2 0
0 0 2

� . (1.3)

In this case, we have taken all similar eigenvalues together and "put them" into separate
subspaces. Again, we find a corresponding generalization for a normal operator N on a
separable Hilbert space in the form of Theorem 3.9.5. The theorem tells us that there are
measures µ∞ and (µn)n∈N so that all of them are mutually singular and

N ! (Nµ∞)∞ ⊕
∞	

n=1
(Nµn)n .

We see that the measure µn corresponds to (Nµn)n, that is the direct so of n times Nµn ,
which is similar to the diagonal matrices in Equation 1.3 consisting of n-times the same
value. Further, the fact that µ∞ and the (µn)n∈N are mutually singular is akin to the
property that the matrices don’t share any eigenvalues between them. The big difference
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to the finite-dimensional case here is the addition of (Nµ∞)∞ to account for all parts of
the spectrum that "appear" infinitely often.

Now this last theorem already has a striking similarity to our initial considerations.
This is especially apparent for the finite-dimensional case in Equation 1.3, where we
basically have already ordered the eigenvalues by their multiplicity. Similarly for the
infinite-dimensional case, we can understand supp(µn) as the set of spectral values with
multiplicity n and supp(µ∞) as the set of spectral values with multiplicity ∞. Although
the actual proof is unfortunately a bit more complex, this will be our guiding idea in
Section 3.10 when we prove the central multiplicity Theorem 3.10.7.

Before we head off, it is important to note that we have just named these four theorems
(First -, Second -, Third -, Central Multiplicity Theorem) here to emphasize their role and
order within this thesis. Outside of this work, they bear no special label.



Chapter 2

Notation
In this chapter we will introduce the notation used throughout the thesis, along with some
preliminary definitions. Each conceptual group is listed separately, so that we have a
better overview.

2.1 Analysis
• Let (X, T ) be a topological space, and let A ⊆ X. Then we denote the closure of A

by cl(A) and the interior of A by int(A).

• We denote nets with (xi)i∈I indexed by I. If the net converges to x, we write xi → x.
As long as no explicit topology is stated, we always take this convergence with
respect to the norm topology.

• Let f : X �→ Y be a function and let Xs ⊂ X. Then we denote the restriction of f
to Xs as f |Xs : Xs �→ Y .

• Let x, y ∈ R. We denote the open interval between them by (x, y) and the closed
interval by [x, y]. In this vein we also denote the half-open intervals (x, y] and [x, y).

• We denote the complex conjugate of z ∈ C by z, with a similar notation for functions.

2.2 Hilbert Spaces
• Unless explicitly stated otherwise, H is always a Hilbert space.

• We denote the scalar product of x, y ∈ H as �x, y�H . If the base Hilbert space is
obvious, we may omit the subscript and write �x, y� = �x, y�H .

• We denote the topological dual space of H by H ∗.

• We denote orthogonal vectors x, y by x ⊥ y. A similar notation applies for orthogonal
subspaces.

• For a set K ⊆ H we denote the orthogonal complement of K by K ⊥.

• We denote the specific Hilbert space of all absolute square summable sequences in C
as l2.
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• If there exists a unitary operator U : H �→ K , then we call H and K unitarily
equivalent and write H ! K .

2.3 Linear Bounded Operators
Let H and K be Hilbert spaces.

• We write B(H , K ) for the set of all bounded linear functions that map H to K .
If K = H , we simplify the notation to B(H ).

• Let A ∈ B(H , K ). Then we denote the kernel by kerA and the range by ranA.

• Let A ∈ B(H , K ). Then we denote by A∗ ∈ B(K , H ) the adjoint operator of A.

• Let λ ∈ C. Then we denote by λH ∈ B(H ) the multiplication by λ on H .

• Let A ⊆ B(H ) and h ∈ H . Then we denote A h for the set {Ah : A ∈ A }.

• For A ∈ B(H ) and Hs ⊆ H , we have similar notations for AHs and A Hs.

• Let A ∈ B(H ) and B ∈ B(H ). If there exists a unitary operator U : H �→ K
and we have UAU−1 = B, then we call A and B unitarily equivalent and we write
A ! B.

In addition, we recall the following definitions:

Definition 2.3.1. Let A ⊆ B(H ). Then we call A an algebra if for all λ ∈ C and
A, B ∈ A we find

(a) λA ∈ A .
(b) A + B ∈ A .
(c) AB ∈ A .

Definition 2.3.2. Let A ⊆ B(H ). Then we call A a C∗-algebra if and only if A is an
algebra, closed and for all A ∈ A we find A∗ ∈ A .

• Let A ⊆ B(H ). Then we denote the smallest C∗-algebra containing A as C∗(A ).

2.4 Direct Sum
• We denote the direct sum of two Hilbert spaces, vectors or operators by ⊕, e.g.

H ⊕ K .

• If H1, H2 ⊆ H and H1 ⊥ H2, we will identify H1 ⊕ H2 = H1 + H2. The same
holds true for vectors h1 ∈ H1 and h2 ∈ H2 with h1 ⊕ h2 = h1 + h2.

• We denote the direct sum of a sequence of vectors, operators or Hilbert spaces by
N
n=1, with N ∈ N, e.g. 
N

n=1 Hn. To denote countable direct sums, we replace N
by ∞, e.g. 
∞

n=1 Hn.
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• We denote H N = 
N
n=1 H , and for A ∈ B(H ) we denote AN = 
N

n=1 A. Again
we denote countable powers by replacing N by ∞, that is H ∞ and A∞.

• Let A ⊆ B(H ). Similarly as above we denote A N = {AN : A ∈ A } and
A ∞ = {A∞ : A ∈ A }.

2.5 Measure Theory
Let (X, Ω) be a measurable space, let µ, ν be measures on (X, Ω) and let Δ ∈ Ω.

• We denote by BΩ(X,C) the set of complex-valued, bounded functions X �→ C which
are measurable with respect to Ω. If X is a subset of C and Ω is the Borel algebra,
we abbreviate the notation to B(X).

• We denote the complement of Δ as Δc = X \ Δ.

• We denote the indicator function of Δ by χΔ : X �→ {0, 1}, that is χΔ(x) = 1 for
x ∈ Δ and χΔ(x) = 0 else.

• If µ is absolutely continuous with respect to ν we write µ � ν. If ν � µ holds as
well, we write [µ] = [ν].

• We denote the restriction of µ to Δ as µ|Δ. That means for ω ∈ Ω we have
µ|Δ(ω) = µ(Δ ∩ ω).

In addition, we remember the following definitions:
Definition 2.5.1. The measures µ and ν are mutually singular if and only if there exists
a set ω ∈ Ω so that µ(ωc) = 0 and ν(ω) = 0.
Definition 2.5.2. A Radon measure µ is a Borel measure on C with the following
properties

(a) µ is locally finite. That means for every z ∈ C there exists a neighbourhood Uz so
that µ(Uz) < ∞.

(b) µ is inner regular. That means for every open set U we find that µ(U) = sup{µ(K) :
K ⊆ U and K compact}.

Remark. Radon measures can be defined generally for topological spaces, but in this thesis
we restrict ourselves to C.

2.6 Spectral Measures
• Let A ∈ B(H ). Then we denote by σ(A) the spectrum of A and ρ(A) = C \ σ(A)

as the resolvent of A.
The last piece of notation requires an understanding of spectral measures and the

spectral Theorem, which we find in the Appendix under Definition 4.6.1, Theorem 4.6.4
and Theorem 4.6.3.

• Let N ∈ B(H ) be a normal operator, let E be the spectral measure and let
φ ∈ B(σ(N)). Then we denote the spectral integral of φ by φ(N) =

�
φ(z)dE(z).
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Multiplicity Theory

3.1 Topologies on B(H )
We start by investigating two topologies on B(H ), namely the weak operator topology

(WOT) and the strong operator topology (SOT). On a first glance, they don’t have much
to do with normal operators or multiplicity theory, but we need certain properties for
Sections 3.2 and 3.4 when we will be grappling with specific subalgebras of B(H ). Our
crowning achievements in this section are Corollary 3.1.5 and Proposition 3.1.6, which will
help us formulate Theorem 3.2.6 later on. We start now by defining WOT and SOT and
proving some straightforward propositions.

Definition 3.1.1. Let H be a Hilbert space. We take the weak operator topology
(WOT) on B(H ) as the locally convex topology defined by the family of seminorms
{ph,k : h, k ∈ H }, where ph,k(A) := |�Ah, k�| for all A ∈ B(H ). Similarly, we take the
strong operator topology (SOT) on B(H ) as the locally convex topology defined by the
family of seminorms {ph : h ∈ H }, where ph(A) := ||Ah|| for all A ∈ B(H ).

Proposition 3.1.1. Let (Ai)i∈I be a net in B(H ). We have Ai
WOT−−−→ A if and only if

Aih
weak−−→ Ah for all h, k ∈ H . Similarly, we also have Ai

SOT−−→ A if and only if Aih → Ah
for all h ∈ H .

Proof. The proposition follows directly from Theorem 4.3.2.

Proposition 3.1.2. Let H be a separable Hilbert space. Then the WOT and SOT are
metrizable on bounded subsets of B(H )

Proof. We will show the proposition for WOT. The proof for SOT is almost identical, only
changing the expressions |�(A − B)bm, bn�| to ||(A − B)bn|| and just summing over n.

Let (bn)n∈N be a dense, countable subset of the unit ball of H , which exists since H is
separable. For A, B ∈ B(H ), we define

dW (A, B) :=
∞�

m,n=1
2−(m+n)|�(A − B)bm, bn�| .

Since ||bn|| ≤ 1, the sum can be estimated by 2−(m+n)||A − B|| and thus converges. By
using the triangle inequality for norms, we get dW (A, B) ≤ dW (A, C) + dW (C, B). Further,
if dW (A, B) = 0, we have A − B = 0 on a dense subset of of the unit ball of H . Because
A − B is continuous, this means A − B = 0 on the unit ball and thus on H . Therefore
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dW is a metric on B(H ). Let us now consider a bounded net (Ai)i∈I in B(H ) with
||Ai|| < C. First we assume that Ai → A with respect to dW , that is dW (Ai, A) → 0.
Since (bn)n∈N is dense in the unit ball of H , for any h, k ∈ H we find subsequences
bnh

→ eh := h/||h|| and bnk
→ ek := k/||k||. We remember that ||bn|| ≤ 1 and now look at

the term �(Ai − A)h, k� to get

|�(Ai − A)eh, ek�| =

|�Ai(eh−bnh
), ek�+�Aibnh

, (ek−bnk
)�+�(Ai−A)bnh

, bnk
�−�Abnh

, (ek−bnk
)�−�A(eh−bnh

), ek�|
≤ (C + ||A||)(||eh − bnh

|| + ||ek − bnk
||) + |�(Ai − A)bnh

, bnk
�| .

For a given � > 0, we can choose bnh
and bnk

such that the first term becomes < �
2 . Because

of dW (Ai, A) → 0, we also find

|�(Ai − A)bnh
, bnk

�| ≤ 2nh+nkdW (Ai, A) → 0 .

This means �Aieh, ek� → �Aeh, ek� and therefore also �Aih, k� → �Ah, k� for any h, k ∈ H .
Conversely, assume that Ai → A with respect to the WOT. Since |�(Ai − A)bm, bn�| ≤

C + ||A||, for a given � > 0, we can choose m0, n0 such that

dW (Ai, A) <
�

m≤m0,n≤n0

2−(m+n)|�(Ai − A)bm, bn�| + �

2 .

Ai → A in WOT implies that �Aibm, bn� → �Abm, bn� for all m, n. Because the sum
consists of a finite amount of terms, we have dW (Ai, A) → 0.

Together this means that the bounded net (Ai)i∈I converges with respect to dW if and
only if it converges in the WOT. Thus, restricted to a bounded subset of B(H ), the
closed sets of both topologies are the same and therefore the topologies are identical.

Lemma 3.1.3. Let X be the locally convex topological vector space generated by the family
of seminorms M , and let f : X �→ C be a continuous linear functional. Then there are
p1, ..., pn ∈ M and α ∈ R such that |f(x)| ≤ α

�n
k=1 pk(x) for all x ∈ X.

Proof. Let us assume the contraposition, that is that for every α ∈ R and for every finite
P ⊆ M there is an xα,P ∈ X such that we have

|f(xα,P )| > α
�
p∈P

p(xα,P ) .

We then rescale x̃α,P := xα,P /|f(xα,P )|, which gives us for any p ∈ P the inequality

1
α

>
�
p∈P

p(x̃α,P ) ≥ p(x̃α,P ) .

We make x̃α,P into a net by defining (α, P ) � (α̃, P̃ ) if α ≤ α̃ and P ⊆ P̃ . Because of
the previous inequality, we have that p(x̃α,P ) → 0 for all p ∈ M . According to Theorem
4.3.2, this means that x̃α,P → 0. However, we also find that |f(x̃α,P )| ≡ 1. This is a
contradiction to the fact that f is linear and continuous.
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Proposition 3.1.4. Let H be a Hilbert space. If L : B(H ) → C is a linear functional,
then the following statements are equivalent:

(a) L is SOT continuous
(b) L is WOT continuous
(c) There are vectors g1, ..., gn and h1, ..., hn in H such that for every A ∈ B(H ) we

have L(A) = �n
k=1�Agk, hk�

Proof. We will proove the proposition by showing (c) ⇒ (b) ⇒ (a) ⇒ (c).
(c) ⇒ (b) Since the terms �Agk, hk� are explicitly WOT continuous, so is their sum.
(b) ⇒ (a) From Proposition 3.1.2 we see that Ai

SOT−−→ A implies Ai
WOT−−−→ A, and thus

WOT is coarser than SOT. This means that WOT continuity implies SOT continuity.
(a) ⇒ (c) By Lemma 3.1.3 and the fact that the SOT is generated by the seminorms

ph(A) = ||Ah||, there exist vectors g1, ..., gn ∈ H such that

|L(A)| ≤
n�

k=1
||Agk|| ≤ √

n

�
n�

k=1
||Agk||

� 1
2

.

We rescale g̃k :=
√

ngk and take a look at K := {Ag̃1 ⊕ ... ⊕ Ag̃n : A ∈ B(H )} as a
subset of H n. F (Ag̃1 ⊕ ... ⊕ Ag̃n) := L(A) is then a linear functional on K with

F (Ag̃1 ⊕ ... ⊕ Ag̃n) ≤
�

n�
k=1

||Ag̃k||
� 1

2

= ||Ag̃1 ⊕ ... ⊕ Ag̃n|| .

Using Theorem 4.3.3 and setting ||.|| as the required seminorm, we can extend F to a
continuous linear functional F̃ on H n. Theorem 4.4.1 now gives us a vector h1 ⊕ ... ⊕ hn ∈
H n such that for all f1 ⊕ ... ⊕ fn ∈ H n we have

F̃ (f1 ⊕ ... ⊕ fn) = �f1 ⊕ ... ⊕ fn, h1 ⊕ ... ⊕ hn� =
n�

k=1
�fk, hk� .

The fact that F̃ (Ag̃1 ⊕ ... ⊕ Ag̃n) = L(A) concludes the proof.

Proposition 3.1.4 tells us that sets defined as the SOT-closure with an SOT-continuous
functional are automatically also WOT-closed. If we apply the Hahn-Banach Theorem
4.3.4 to the SOT-Topology, we get exactly such a case, and we can leverage this in the
following Corollary.

Corollary 3.1.5. If C is a convex subset of B(H ), the WOT closure of C equals the
SOT closure of C .

Proof. Proposition 3.1.2 shows that WOT is coarser than SOT and thus SOT-cl(C ) ⊆
WOT-cl(C ). Take now an A /∈ SOT-cl(C ). Because of Theorem 4.3.4, we find a SOT-
continuous linear functional L and γ ∈ R such that Re L(A) > γ and

C ⊆ K := {B ∈ B(H ) : Re L(B) ≤ γ} .
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Because of Proposition 3.1.4, L is also WOT continuous and therefore WOT-cl(C ) ⊆
WOT-cl(K) = K. Therefore we have A /∈ WOT-cl(C ), which gives us WOT-cl(C ) ⊆
SOT-cl(C ) and thus WOT-cl(C ) = SOT-cl(C ).

Finally, we want to find another formulation for the SOT-closure of subalgebras of
B(H ). To this end we need the notion of invariant subspaces.

Definition 3.1.2. Let H be a Hilbert space and let A ∈ B(H ). We define an invariant
subspace M ⊆ H for A as a closed linear subspace such that AM ⊆ M , and we call
the collection of all such invariant subspaces LatA. For a set S ⊆ B(H ) we denote
LatS := �

S∈S LatS.

Proposition 3.1.6. If A is a subalgebra of B(H ) containing 1, then we have

SOT-cl(A ) = {B ∈ B(H ) : LatA n ⊆ LatBn for all n ∈ N} .

Proof. Let us denote the set on the right hand side by K . First we show that SOT-cl(A ) ⊆
K . Assume that Ai

SOT−−→ A and (Ai)i∈I ⊆ A . Take n ∈ N and we get (An
i )i∈I ⊆ A n.

Now for any h = h1 ⊕ ... ⊕ hn ∈ H n, we find that

An
i h = Aih1 ⊕ ... ⊕ Aihn → Ah1 ⊕ ... ⊕ Ahn = Anh .

This means we also have An
i

SOT−−→ An. Now take Mn ∈ LatA n. As an invariant subspace
for all operators in A n, it satisfies An

i Mn ⊆ Mn. We then look at Anh for h ∈ Mn, and
we saw earlier that An

i h → Anh. But (An
i h)i∈I ∈ Mn, and Mn is closed, so Anh ∈ Mn

and thus AnMn ⊆ Mn. Taken for all n ∈ N, this means that A ∈ K .
Now we show that K ⊆ SOT-cl(A ). For B ∈ K , we will construct a net (Ai)i∈I ⊆ A

so that Ai
SOT−−→ B. As indices, we take (�, H), where � > 0 and H = {h1, ..., hn} is a

finite set of vectors in H , and we define (�, H) � (�̃, H̃) if � > �̃ and H ⊆ H̃. We now
want to find A�,H ∈ A so that for any finite set H and any vector h ∈ H, we have
ph(A�,H − B) = ||(A�,H − B)h|| < �. Since the ph are just the generating seminorms of
SOT, we have by Theorem 4.3.2 that A�,H

SOT−−→ B and thus B ∈ SOT-cl(A ).
Let H = {h1, ..., hn} and � > 0 be fixed. Now let us inspect SH := {Ah1 ⊕ ... ⊕ Ahn :

A ∈ A }. Because A is an algebra, SH is a linear subspace invariant for all An ∈ A n

and thus cl(SH) ∈ LatA n ⊆ LatBn. This means for all x ∈ cl(SH) we have Bnx ∈ cl(SH).
Since 1 ∈ A , we have 1 ∈ A n, which leads to h1 ⊕ ... ⊕ hn ∈ SH and therefore to
Bn(h1 ⊕ ... ⊕ hn) = Bh1 ⊕ ... ⊕ Bhn ∈ cl(SH). Since SH is dense in cl(SH), we can
choose an A ∈ A , so that ||(An − Bn)(h1 ⊕ ... ⊕ hn)|| < �. This means in particular that
||(A − B)hj|| < � for all hj ∈ H, and we can take the chosen A as A�,H .

3.2 The Commutant
In this section, we concern ourselves with the commutant of subsets of B(H ). We will

need this theory for the definition of von Neumann algebras in Section 3.4. The big star
this time will be the Double Commutant Theorem 3.2.6, which links the properties of the
double commutant to the topologies we discussed in the last section. In addition, we will
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discuss the commutant of algebras of the type Aµ ⊆ B(L2(µ)) in Theorem 3.2.8. We will
see in Section 3.5 that we can represent certain subspaces of H with L2(µ) with specific
measures µ, and thus Aµ will become important later on. We once more start with a
definition, and afterwards we will obtain some fundamental properties of the commutant.

Definition 3.2.1. If S ⊆ B(H ), we define

S � := {A ∈ B(H ) : AS = SA ∀S ∈ S } .

We call the set S � the commutant of S . In a similar fashion, we define S �� := (S �)� as
the double commutant.

Proposition 3.2.1. Let S , S̃ ⊆ B(H ), and let S ⊆ S̃ . Then we have S̃ � ⊆ S �.

Proof. We can express S � and S̃ � differently by taking

S � =


A∈S

{B ∈ B(H ) : AB = BA}

S̃ � =


A∈S̃

{B ∈ B(H ) : AB = BA} .

Since S ⊆ S̃ , we see that S̃ � ⊆ S �.

Proposition 3.2.2. Let S ⊆ B(H ). Then we have (S ��)� = S �.

Proof. For A ∈ S , we have for all B ∈ S � that AB = BA and thus A ∈ S �� and
S ⊆ S ��. Similarly, we have S � ⊆ (S ��)�. On the other hand, because S ⊆ S ��, we can
use Proposition 3.2.1 to get (S ��)� ⊆ S �.

Proposition 3.2.3. Let S ⊆ B(H ). Then S � is WOT closed.

Proof. We take A ∈ S and the net (Bi)i∈I ⊆ S � with Bi
WOT−−−→ B. This means we have

BiA = ABi for all i ∈ I. For any h, k ∈ H , we find

|�(ABi − AB)h, k�| = |�(Bi − B)h, A∗k�| = |�(Bi − B)h, k̃�| → 0

|�(BiA − BA)h, k�| = |�(Bi − B)(Ah), k�| = |�(Bi − B)h̃, k�| → 0 .

Because of Theorem 4.3.2, this means that BiA
WOT−−−→ BA and ABi

WOT−−−→ AB. So
altogether we ca take the WOT limit of BiA = ABi on both sides to get BA = AB and
thus find that S � is WOT-closed.

Proposition 3.2.4. Let H be a Hilbert space and H ⊆ H be a closed linear subspace.
Let further PH be the projection onto H and S ⊆ B(H ). Then PH ∈ S � if and only if
AH ⊆ H and A∗H ⊆ H for every A ∈ S .

Proof. Let h, h� ∈ H , take A ∈ S and assume that AH ⊆ H and A∗H ⊆ H. We then
have

�APHh, h�� = �PHAPHh, h�� = �PHh, A∗PHh��
= �h, PHA∗PHh�� = �h, A∗PHh�� = �PHAh, h�� .
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This means that PH ∈ S �.
Now let us consider the reverse implication and assume PH ∈ S �. This means that also

(1 − PH) ∈ S �. We take A ∈ S , h ∈ H and k ∈ H⊥ and get

�Ah, k� = �APHh, k� = �PHAh, k� = �Ah, PHk� = 0

�A∗h, k� = �h, A(1 − PH)k� = �h, (1 − PH)Ak� = �(1 − PH)h, Ak� = 0 .

This means that AH ⊆ (H⊥)⊥ = H and A∗H ⊆ (H⊥)⊥ = H for all A ∈ S .

Next, we will prove another short proposition and then fuse our previous insights with
the properties about the SOT and WOT we have derived in Section 3.1 to obtain the
Double Commutant Theorem.

Proposition 3.2.5. Let An ∈ B(Hn) for n ∈ N, and let us define A := 
∞
n=1 An. Then

we have
A∗ =

∞	
n=1

A∗
n .

Remark. This means especially that A is normal if all (An)n∈N are normal.

Proof. Let us designate H := 
∞
n=1 Hn and take x, y ∈ H . We can write both as

x = 
∞
n=1 xn and y = 
∞

n=1 yn with xn, xn ∈ Hn for all n ∈ N. Now we calculate �Ax, y�H

to see
�Ax, y�H =

∞�
n=1

�Anxn, yn�Hn =
∞�

n=1
�xn, A∗

nyn�Hn = �x, A∗y�H .

This concludes the proof.

Theorem 3.2.6 (Double Commutant). Let A be a C∗-subalgebra of B(H ) and 1 ∈ A .
Then A �� is the SOT (and also the WOT) closure of A .

Proof. By Proposition 3.2.3 we see that A �� = (A �)� is WOT-closed. Further, we see
that A �� is convex, and also A ⊆ A ��. With Corollary 3.1.5, we can now deduce that
SOT-clA = WOT-clA ⊆ A ��.

For the other inclusion, we use Proposition 3.1.6 to show that A �� ⊆ SOT-clA . For
C ∈ A �� and n ∈ N, we take M ∈ LatA n and must show that CnM ⊆ M . Because
M ∈ LatA n, we get AnM ⊆ M . Additionally, we have for every A ∈ A that A∗ ∈ A
and because of Proposition 3.2.5 we have (A∗)n = (An)∗ and thus find (An)∗M ⊆ M .
Now let PM be the projection onto M . Proposition 3.2.4 tells us that PM ∈ (A n)�. This
means that CnPM = PM Cn, which implies CnM ⊆ M . Thus we have Cn ∈ SOT-clA ,
which means A �� ⊆ SOT-clA = WOT-clA . Together with our first calculations we find
A �� = SOT-clA = WOT-clA

The Double Commutant Theorem is a powerful theorem that lets us calculate the
commutant without actually investigating commuting properties, just by using the SOT-
or WOT-closure. This will help us immensely in Section 3.4 when we get to actually
calculating specific commutants.
Now we redirect our attention to the functions L∞(µ) ⊆ B(L2(µ)) and show the properties
of (L∞(µ))�.
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Definition 3.2.2. Let (X, Ω, µ) be a measure space and φ ∈ L∞(µ). We define Mφ ∈
B(L2(µ)) by Mφf = φf as the multiplication operator of φ. Further, we denote the set of
all such operators by Aµ := {Mφ : φ ∈ L∞(µ)}.

Proposition 3.2.7. Let (X, Ω, µ) be a σ-finite measure space Mφ ∈ Aµ. Then ||Mφ|| =
||φ||∞.

Proof. For any f ∈ L2(µ), we have the inequality

||Mφ(f)||2 =
�

X
|φ|2|f |2dµ ≤ ||φ||2∞||f ||2 .

This means that ||Mφ|| ≤ ||φ||∞.
To prove ||φ||∞ ≤ ||Mφ||, we consider that (X, Ω, µ) is σ-finite. Therefore we can take

a sequence {Δn} ⊆ Ω so that 0 < µ(Δn) < ∞, �∞
n=1 Δn = X and for i �= j we have

Δi ∩ Δj = ∅. Now for α ∈ R+ we define the set ωα := {x ∈ X : |φ(x)| ≥ α}. If µ(ωα) = ∞,
because of ωα = �∞

n=1(Δn ∩ ωα) and µ(Δn) < ∞, we see that there is at least one n so
that 0 < µ(Δn ∩ ωα) < ∞. Therefore if 0 < µ(ωα), we can always find a ω̃α ⊆ ωα with
0 < µ(ω̃α) < ∞. Now for an α < ||φ||∞, we see that 0 < µ(ωα) and therefore we have

||Mφ(χω̃α)||2 =
�

ω̃α

|φ|2dµ ≥ αµ(ω̃α) = α||χω̃α ||2 .

Therefore ||Mφ|| ≥ α for all α < ||φ||∞ and thus ||Mφ|| ≥ ||φ||∞.

Theorem 3.2.8. Let (X, Ω, µ) be a finite measure space. Then Aµ = A �
µ = A ��

µ .

Proof. Since the multiplication of functions in L∞(µ) is abelian, Aµ is also abelian and
so Aµ ⊆ A �

µ. We now prove the other inclusion A �
µ ⊆ Aµ. Since µ(X) < ∞, we

have 1 ∈ L2(µ). We take A ∈ A �
µ ⊆ B(L2(µ)) and we can set φ := A(1) and get

φ ∈ L2(µ). Let ψ ∈ L∞(µ), then because of µ(X) < ∞ we have L∞(µ) ⊆ L2(µ) and
A(ψ) = AMψ(1) = MψA(1) = Mψφ = ψφ. We now define ωn := {x ∈ X : |φ(x)| ≥ n}.
Since χωn ∈ L∞(µ), we can set ψ = χωn and get the inequality

||A||2µ(ωn) = ||A||2||χωn ||2 ≥ ||A(χωn)||2 = ||φχωn ||2 =
�

ωn

|φ|2dµ ≥ n2µ(ωn) .

The inequality tells us that if µ(ωn) > 0, we have ||A|| ≥ n. Because A is a bounded
operator, there has to be an ñ so that µ(ωñ) = 0 and therefore ||φ||∞ ≤ ñ, which gives
φ ∈ L∞(µ). The equality A(ψ) = ψφ tells us that we have A|L∞(µ) = Mφ. According to
Theorem 4.7.7, L∞(µ) ∩ L2(µ) = L∞(µ) is dense in L2(µ) and therefore A = Mφ, which
means that A �

µ ⊆ Aµ.

Remark. We can generalize Theorem 3.2.8 for σ-finite measures (see [2] chapter IX.6
Theorem 6.6), but we will not prove it since it is not required for the remainder of this
work.

Without knowing it yet, we have just proven that Aµ is a maximal abelian von Neumann
algebra. This might not impress us much at the moment, but we will use the very convenient
property Aµ = A �

µ = A ��
µ in Section 3.6 to show that Aµ is the double commutant of
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{Mz}, that is the multiplication operator by z which we will call Nµ. By then, we will
have established the importance of this double commutant {Nµ}��, and we will be well on
the way to prove our first multiplicity theorem.

3.3 Pseudo-Commuting Normal Operators
In this section we will look at normal operators that "commute" with maps from one

Hilbert space to another, that is NX = XM with X ∈ B(H1, H2). We will investigate
the relationship between them in two parts, of which the Fuglede-Putnam Theorem 3.3.2
is the first major conclusion, and the the equivalence relation in Proposition 3.3.5 is the
second major conclusion. This section is a bit of a tangent to our larger goal, but we will
need to use Theorem 3.3.2 and Proposition 3.3.5 at key points in this thesis to progress.
To this end, we start right away with a lemma and then directly the Fuglede-Putnam
Theorem.

Lemma 3.3.1. Let A ∈ B(H ) be a herimitian operator, that is A∗ = A. Then exp(iA)
is a unitary operator.

Proof. We use Proposition 4.5.1 to show that (exp(iA))∗ exp(iA) = 1. First, we know that
(exp(iA))∗ = exp(−iA∗). Second, because of A = A∗ and thus A∗A = AA∗, we know that
exp(−iA∗) exp(iA) = exp(i(A − A∗)) = exp(0) = 1.

Theorem 3.3.2 (Fuglede-Putnam). Let N ∈ B(H1) and M ∈ B(H2) be normal op-
erators, and let X ∈ B(H2, H1). If NX = XM holds, then N∗X = XM∗ holds as
well.

Remark. We can, in particular, set H1 = H2 and also N = M to obtain that NX = XN
implies N∗X = XN∗ for a normal operator N and any X ∈ B(H1).

Proof. We can deduce immediately from NX = XM that for k ∈ N we have NkX = XMk

and thus for any polynomial p(N) we have p(N)X = Xp(M). For any bounded linear
operator X, Definition 4.5.1 tells us that the exponential exp(X) is the limit of polynomials.
Thus we can fix a z ∈ C and see that

exp(izN)X = lim
n→∞ pn(N)X = lim

n→∞ pn(M)X = X exp(izM) .

We then see with Proposition 4.5.1 that X = exp(−izN)X exp(izM). We can now define
the operator valued function f(z) : H2 �→ H1 in the following way

f(z) := e−izN∗
XeizM∗ = e−izN∗

e−iz̄NXeiz̄MeizM∗
.

Again with Proposition and the fact that N, M are normal operators, we get

f(z) = e−izN∗−iz̄NXeiz̄M+izM∗
.

Now zN∗ + z̄N and zM∗ + z̄M are both herimitian operators, so by Lemma 3.3.1,
exp(−izN∗ − iz̄N) and exp(izM∗ + iz̄M) are unitary. This means that || exp(−iz̄N∗ −
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izN)|| = 1 and || exp(izM∗ + iz̄N)|| = 1, which means that ||f(z)|| ≤ ||X||. On the other
hand, by Proposition 4.5.2 we get that f(z) is differentiable with the first derivative

f �(z) = −iN∗f(z) + f(z)iM∗ .

Since ||f(z)|| is bounded by ||X||, we can use Theorem 4.5.3 to see that f(z) is constant and
thus f �(z) = 0. We remind ourselves that f(0) = X and get 0 = f �(0) = i(−N∗X + XM∗),
which leads to the theorem.

The Fuglede-Putnam Theorem is a very powerful tool, since it automatically gives us
properties of the adjoints N∗, M∗ from an equation containg just N and M . As mentioned
in the remark, we also get N∗X = XN∗ from NX = XN and thus also NX∗ = X∗N . This
means that the commutant of a set consisting of normal operators also contains all adjoints.
We will use this property especially when investigating the double commutant {N}�� of a
normal operator in Proposition 3.4.4. First, however, we will focus on X ∈ B(H1, H2)
and show that that on certain subspaces we actually get N ! M . To this end we will show
a generalized Polar Decomposition Theorem 3.3.4, which we will use for the subsequent
proof of N ! M .

Definition 3.3.1. Let X ∈ B(H1, H2). Then we define the absolute operator of X as

|X| :=
� √

zdE(z) .

Here, E is the spectral measure for X∗X.

Proposition 3.3.3. For X ∈ B(H1, H2) the operator |X| ∈ B(H1) is well defined and
the following properties hold

(a) |X|∗ = |X|.
(b) For h, k ∈ H1 we find �Xh, Xk�H2 = �|X|h, |X|k�H1.
(c) ker |X| = ker X and cl(ran|X|) = (ker X)⊥.

Proof. We see that X∗X ∈ B(H1) is a self-adjoint operator, and thus according to
Theorem 4.6.4 it has a spectral measure E with�

zdE(z) = X∗X .

Further, we see that
�X∗Xh, h�H1 = ||Xh||2H1 .

Since X∗X is self-adjoint, we therefore know by Proposition 4.6.2 that σ(X∗X) ≥ 0. Since
supp(E) = σ(X∗X), we see that

√
z ∈ B(σ(X∗X)), so |X| =

� √
zdE(z) is well defined.

Theorem 4.6.3 then tells us that

|X|∗ =
� √

zdE(z) =
� √

zdE(z) = |X| .
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Now we consider h, k ∈ H1 and see

�|X|h, |X|k�H1 = �|X|2h, k�H1 =
�

zdEh,k(z) = �X∗Xh, k�H2 = �Xh, Xk�H2 .

To show the last statement, we remember the second statement and see for h ∈ H1

||Xh||H2 = ||(|X|h)||H1 .

Thus we find ker |X| = ker X. Now we take f ∈ ker |X| and h ∈ ran|X|, which means
h = |X|k for some k ∈ H1, and we calculate

�h, f�H1 = �|X|k, f�H1 = �k, |X|f�H1 = 0 .

Since f ∈ ker |X| = ker X, we find that h ∈ (ker X)⊥ and thus ran|X| ⊆ (ker X)⊥. Since
(ker X)⊥ is closed, this automatically implies cl(ran|X|) ⊆ (ker X)⊥. On the other hand,
we inspect g ∈ (ran|X|)⊥ and see

�|X|g, |X|g�H1 = �|X|(|X|g), g�H1 = 0 .

This means |X|g = 0 and so we have (ran|X|)⊥ ⊆ ker |X|. We can then form the orthogonal
complement and get

(ker X)⊥ = (ker |X|)⊥ ⊆ ((ran|X|)⊥)⊥ = cl(ran|X|) .

Ultimately we therefore find cl(ran|X|) = (ker X)⊥.

Theorem 3.3.4 (Polar Decomposition). For X ∈ B(H1, H2) we have X = W |X| with
W ∈ B(H1, H2), and W |(ker X)⊥ is unitary with

ranW |(ker X)⊥ = cl(ranX) .

Proof. Proposition 3.3.3 tells us that for any h ∈ H1 and k ∈ H2 we have �Xh, Xk�H2 =
�|X|h, |X|k�H1 . This means angle and norm are the same under X and |X|, so we can
define the unitary operator W̃ : ran|X| �→ ranX via W̃ (|X|h) = Xh. Since W̃ is an
isometry, we can extend it to W̃ : cl(ran|X|) �→ cl(ranX). Now we remember that
H1 = ker X ⊕ (ker X)⊥. Proposition 3.3.3 states that cl(ran|X|) = (ker X)⊥, so we can
define W ∈ B(H1, H2) as W = 0 ⊕ W̃ and see that by definition W |(ker X)⊥ = W̃ is
unitary, and that

ranW |(ker X)⊥ = cl(ranX) .

Now it remains to be shown that X = W |X|. We take h ∈ H1, remember the definition
of W̃ and calculate

W |X|h = W (|X|h) = W̃ (|X|h) = Xh .

This proves the theorem.

Proposition 3.3.5. Let N ∈ B(H1) and M ∈ B(H2) be normal operators, and let
X ∈ B(H1, H2) so that XN = MX. Let us further denote H̃1 := (ker X)⊥ and
H̃2 := cl(ran X). Then N |H̃1

∈ B(H̃1) and M |H̃2
∈ B(H̃2), and we have N |H̃1

! M |H̃2
.
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Proof. First we will prove M |H̃2
∈ B(H̃2). For any h ∈ ranX, we have h = Xk for some

k ∈ H1. We can now calculate

Mh = MXk = XNk .

Therefore Mh ∈ ranX. Since M is continuous, we see that also MH̃2 ⊆ H̃2. To show
N |H̃1

∈ B(H̃1), we consider Theorem 3.3.2 and get XN∗ = M∗X. Now we take h ∈ ker X
and see

XN∗h = M∗Xh = 0 .

Therefore we have N∗ ker X ⊆ ker X. We can then inspect k ∈ (ker X)⊥ and again
h ∈ ker X and get

�Nk, h�H1 = �k, N∗h�H1 = 0 .

The last equation is due to the fact that N∗h ∈ ker X. Therefore Nk ∈ (ker X)⊥ and so
we have N |H̃1

∈ B(H̃1).
Now we want to show N |H̃1

! M |H̃2
. We take the adjoint of XN∗ = M∗X and get

NX∗ = X∗M .

Together with the initial equation XN = MX this gives

X∗XN = X∗MX = NX∗X .

Therefore we see that X∗X ∈ {N}�. Theorem 4.6.3 and Theorem 4.6.4 now tell us
that φ(X∗X) ∈ {N}� for all φ ∈ B(σ(X∗X)), and from Proposition 3.3.3 we see that
|X| = φ√

.(X∗X) with φ√
. ∈ B(σ(X∗X)). Altogether this means that |X| ∈ {N}�. We

now use Theorem 3.3.4 to get X = W |X| and calculate

MW |X| = MX = XN = W |X|N = WN |X| .

This means on cl(ran|X|) the following equation holds

MW |cl(ran|X|) = WN |cl(ran|X|) .

Now we remember from Proposition 3.3.3 that cl(ran|X|) = (ker X)⊥ = H̃1, and from
Theorem 3.3.4 that ranW |(ker X)⊥ = cl(ranX) = H̃2. Thus we can deduce

M |H̃2
W |H̃1

= W |H̃1
N |H̃1

.

Since Theorem 3.3.4 also states that W |H̃1
is a unitary operator, we therefore get M |H̃2

!
N |H̃1

.

3.4 Abelian von Neumann Algebras
In this section we will focus on a certain type of subalgebras of B(H ), namely the

titular von Neumann algebras. Especially the von Neumann algebra W ∗(N) generated
by the normal operator N is important, as it will serve as one of the foundations of
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multiplicity theory. In conjunction, we will introduce separating and cyclic vectors, which
help describe sets of operators by their action on a (separating or cyclic) vector, and they
will appear hand in hand with W ∗(N) later on.

We go medias in res and define von Neumann algebras and generated von Neumann
algebras first, and we will prove a few lemmata that will help us calculate with them.
Our final goal in this section will be Corollary 3.4.9, which tells us for separable Hilbert
spaces that every abelian C∗ algebra (and thus also every abelian von Neumann algebra,
especially W ∗(N)) has a separating vector.

Definition 3.4.1. We define a von Neumann algebra A as a C∗-subalgebra of B(H )
with the property A = A ��.

Definition 3.4.2. Let A ⊆ B(H ). We define W ∗(A ) as the smallest von Neumann
algebra containing A and call it the von Neumann algebra generated by A . For A = {A},
we write W ∗({A}) = W ∗(A).

Lemma 3.4.1. Let A ⊆ B(H ) be an algebra closed under the ∗-operation. Then we
have clA = C∗(A ). Additionally, if A is abelian, then C∗(A ) is also abelian.

Proof. First we consider A, B ∈ clA and λ ∈ C with nets (Ai)i∈I , (Bi)i∈I ⊆ A so that
Ai → A and Bi → B. Since addition and multiplication are continuous with respect to
the operator norm, we have (Ai + λBi) ∈ clA and thus (A + λB) ∈ clA . We also know
for a fixed k ∈ I that

||AkB − AkBi|| ≤ ||Ak|| · ||B − Bi|| → 0 .

This means that AkBi → AkB ∈ clA . Now we take the other limit and similarly get
AkB → AB ∈ clA . Finally we consider that for any C ∈ B(H ) we have ||C|| = ||C∗||.
Thus we see

||A∗ − A∗
i || = ||A − Ai|| → 0 .

This means that A∗
i → A∗ ∈ clA . Altogether we can deduce that clA is an algebra closed

under the ∗-operation. Because it is also norm-closed, clA is a C∗-algebra.
Since A ⊆ clA and clA is a C∗-algebra, we have C∗(A ) ⊆ clA . Conversely, because

A ⊆ C∗(A ), and C∗(A ) is closed, we have clA ⊆ C∗(A ). Together this means clA =
C∗(A ).

Now assume that A is abelian and take A, B ∈ clA with (Ai)i∈I , (Bi)i∈I ⊆ A so that
Ai → A and Bi → B. For any fixed k ∈ I we then have

||AkB − BAk|| ≤ ||Ak|| · ||B − Bi|| + ||AkBi − BiAk|| + ||B − Bi|| · ||Ak||

= 2||Ak|| · ||B − Bi|| → 0 .

That means {AkB − BAk} = 0 for all k ∈ I. As discussed, multiplication and addition
are continuous and therefore we can take the limit and obtain AB = BA.

Lemma 3.4.2. Let A ⊆ B(H ) be an abelian C∗-algebra and let B ∈ A � be a normal
operator. Then C∗(A ∪ {B}) is also an abelian C∗-algebra.
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Proof. According to Lemma 3.4.1, a good start is to find a minimal algebra closed under
the ∗-operation that contains A ∪ {B}. We start by defining

P := {
m,n�

j,k=0
(Aj,k + λj,k)Bj(B∗)k : m, n ∈ N , λj,k ∈ C , λ0,0 = 0 and Aj,k ∈ A } .

The λ0,0 = 0 is needed so that 1 ∈ P if and only if 1 ∈ A .
We first prove that P is an abelian algebra closed under the ∗-operation. For A ∈ A ,

we have A∗ ∈ A and thus A∗B = BA∗. We can take the adjoint of this equation to get
B∗A = AB∗, which means B∗ ∈ A �. Since A itself commutes, we can directly calculate
that P is an algebra. Further, P is symmetric in B and B∗, and since A was closed
under the ∗-operation, we find that for C ∈ P we have C∗ ∈ P. Thus P is an abelian
algebra closed with respect to the ∗-operation.

Because A ∪{B} ⊆ P , we have C∗(A ∪{B}) ⊆ C∗(P). Conversely, since C∗(A ∪{B})
is an algebra containing A , B and B∗, we see that P ⊆ C∗(A ∪ {B}) and therefore
C∗(P) ⊆ C∗(A ∪ {B}) and thus C∗(P) = C∗(A ∪ {B}). Lemma 3.4.1 now tells us that
C∗(A ∪ {B}) = C∗(P) is equal to clP and that clP is abelian.

Lemma 3.4.3. Let A ⊆ B(H ) be a C∗-algebra with 1 ∈ A . Then we find

(SOT) cl(A ) = (WOT) cl(A ) = A �� = W ∗(A ) .

Additionally, if A is abelian, then A �� is also abelian.

Proof. We start by showing that A �� is a von Neumann algebra. For S ∈ A �, A, B ∈ A ��

and λ ∈ C we see that
(A + λB)S = S(A + λB) .

Therefore A �� is an algebra. Further, we know that for A ∈ A we have A∗ ∈ A , and
thus for S ∈ A � we find A∗S = SA∗ and thus S∗ ∈ A �. Similarly we can see that for
B ∈ A �� we have B∗ ∈ A ��. Finally,since 1 ∈ A we can use Theorem 3.2.6 to see that
A �� = SOT-cl(A ) = WOT-cl(A ), and thus A �� is especially norm closed. Altogether we
find that A �� is a C∗-algebra, and by Proposition 3.2.2 we see that (A ��)�� = A ��. Therefore
A �� is a von Neumann algebra.

Since A ⊆ SOT-clA = A ��, we find that W ∗(A ) ⊆ A ��. On the other hand, Proposition
3.2.1 tells us that (W ∗(A ))� ⊆ A �. This in turn gives us A �� ⊆ (W ∗(A ))�� = W ∗(A ),
since W ∗(A ) is a von Neumann algebra. Therefore we get A �� = W ∗(A ).

Finally, we assume that A is abelian and take again A, B ∈ A �� with (Ai), (Bi) ⊆ A

and Ai
SOT−−→ A and Bi

SOT−−→ B. For a h ∈ H and a fixed k, we have

||(AkB − BAk)h|| ≤ ||(AkB − AkBi)h|| + ||(AkBi − BiAk)h|| + ||(BAk − BiAk)h||

= ||(AkB − AkBi)h|| + ||(BAk − BiAk)h|| → 0 .

This means AiB − BAi = 0 for all i. Similarly as before, we can now take the limit and
get AB = BA, which means that A �� is abelian.
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Now that we have a certain grip on how to calculate C∗(A ) and W ∗(A ), we can move on
to investigate W ∗(N) specifically for a normal operator N . We will find a close connection
to the set of all polynomials in N and N∗, so we first make the following definition.

Definition 3.4.3. Let N ∈ B(H ) be a normal operator. Then we define PN as the
algebra of all polynomials in N, N∗, that is

PN := {
m,n�

j,k=0
λj,kN j(N∗)k : m, n ∈ N , λj,k ∈ C} .

Proposition 3.4.4. Let N ∈ B(H ) be a normal operator. Then W ∗(N) = {N}�� =
SOT-cl(PN) = WOT-cl(PN), and W ∗(N) is abelian.

Proof. First we acknowledge that by {N} ⊆ W ∗(N), and thus by Proposition 3.2.1 we
have W ∗(N)� ⊆ {N}� and further {N}�� ⊆ W ∗(N)��. Since W ∗(N) is a von Neumann
algebra, we have W ∗(N)�� = W ∗(N) and thus {N}�� ⊆ W ∗(N).

To prove W ∗(N) ⊆ {N}��, we start by taking B ∈ {N}�. Theorem 3.3.2 tells us that,
because N is normal, we have BN∗ = N∗B and thus N∗ ∈ {N}��. Also, for λ ∈ C we
find Bλ = λB, and thus C ⊆ {N}��. Since all λ ∈ C and N, N∗ are in {N}��, we find
that PN ⊆ {N}��. Now we take S ∈ {N}� and A ∈ WOT-cl({N}��) with (Ai)i∈I so that
Ai

W OT−−−→ A. We see that AiS = SAi implies AS = SA and thus A ∈ {N}�� and {N}��

is WOT-closed. Therefore it is especially norm closed, and we find cl(PN) ⊆ {N}��.
By Lemma 3.4.1 we see that cl(PN) is an abelian C∗-algebra. Further, we know that
1 ∈ PN ⊆ cl(PN), and we remember that the WOT-closure of the norm closure is just
the WOT closure. Now we can use Lemma 3.4.3 to get

W ∗(cl(PN)) = WOT-cl(cl(PN)) = WOT-cl(PN) ⊆ WOT-cl({N}��) = {N}�� .

Since we have especially N ∈ PN , this means W ∗(N) ⊆ {N}��, and together with our initial
insight we find W ∗(N) = {N}��. This inclusion chain also tells us {N}�� = WOT-cl(PN),
and from Lemma 3.4.3 we get that WOT-cl(PN ) = SOT-cl(PN ) and that {N}�� = W ∗(N)
is abelian.

Next we define cyclic and separating vectors. Both concepts will accompany us through-
out the rest of this thesis.

Definition 3.4.4. Let A ⊆ B(H ) and ec, es ∈ H . We call the vector ec a cyclic vector
for A if {Aec : A ∈ A } is dense in H , and the vector es a separating vector for A if for
all A ∈ A it holds that Aes = 0 ⇔ A = 0.

The importance of cyclic vectors comes from the fact that they describe (in a way)
whether A is dense in H , as they let us map A densely into H . This is especially useful
if vectors of the type {Aec : A ∈ A } have some special property, or if we want to leverage
certain special properties of A . On the other hand, if A is an algebra, a separating vector
allows for the inverse mapping. We can see that then, each element in {Aes : A ∈ A }
uniquely corresponds to an element in A . This allows us to leverage our knowledge about
H when making calculations with A . For the moment, we keep these insights in the
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back of our head as we continue on towards Theorem 3.4.6 and our considerations about
maximal abelian von Neumann algebras. To this end, we first need the definition of a
maximal abelian von Neumann algebra.

Definition 3.4.5. Let Am ⊆ B(H ) be an abelian von Neumann algebra. We call Am

a maximal abelian von Neumann algebra if there is no abelian von Neumann algebra
A ⊆ B(H ) so that Am � A .

Lemma 3.4.5. Let H be a separable Hilbert space and let A ⊆ B(H ) be a von Neumann
algebra. Then there exists a normed sequence (en)n∈N ⊆ H so that for i �= j it holds
cl{Aei : A ∈ A } ⊥ cl{Aej : A ∈ A } and H = 
∞

n=1 cl{Aen : A ∈ A }.

Proof. Since H is separable, it admits a countable orthonormal basis (en)n∈N. For each n
define En := cl{Aen : A ∈ A }, and let Pn be the projection onto En. Now we inductively
create a new (possibly finite) normed sequence (ẽn)n∈N by starting with ẽ1 := e1 and thus
n1 = 1, and then setting ẽj+1 = 1

α

�j
k=1(1 − Pnk

)enj+1 .Here, nj+1 > nj is the next index
so that enj+1 /∈ 
j

k=1 Enk
and α is a constant so that ẽj+1 is normed. Now we define

Ẽn := cl{Aẽn : A ∈ A } and take h ∈ Ẽn and n < n�. From the construction of ẽn� , we
see that ẽn� ⊥ Ẽn and thus �ẽn� , h� = 0. Now for any A ∈ A , we know that A∗ ∈ A and
thus A∗h ∈ Ẽn. Therefore we have �Aẽn� , h� = �ẽn� , A∗h� = 0, which means Ẽn� ⊥ Ẽn,
and therefore we can also look at 
N

n=1 Ẽn. But first, we remember that 1 commutes
with every operator, so 1 ∈ A �� = A , and thus en ∈ Ẽn. The construction of Ẽn shows
that 
N

n=1 Ẽn = cl(span(�nN
n=1 En)) ⊇ 
nN

n=1 span({en}). The (en)n∈N form an orthonormal
basis of H , so we can conclude H = 
∞

n=1 span({en}) = 
∞
n=1 Ẽn.

Theorem 3.4.6. Let A be an abelian C∗-subalgebra of B(H ). Then the following
statements are equivalent:

(a) A is a maximal abelian von Neumann algebra
(b) A = A �

If H is separable, then these statements also imply:

(c) A has a cyclic vector, contains 1 and is SOT closed

Proof. (a) ⇒ (b) Since 1 commutes with every element in B(H ), we have 1 ∈ A . Assume
A �= A � and take B ∈ A � \ A . If BB∗ �= B∗B, we have B(B + B∗) �= (B + B∗)B and
because B ∈ A �, it follows that (B + B∗) /∈ A . We also have (B + B∗) normal and as
discussed in the proof of Lemma 3.4.2 that B∗ ∈ A �, and thus (B + B∗) ∈ A �. Therefore
we can always choose B ∈ A � \ A to be normal. Now we consider Ã := C∗(A ∪ {B}),
and we have A � Ã ⊆ Ã ��. Lemma 3.4.2 tells us that Ã is abelian, and therefore
Lemma 3.4.3 then tells us that Ã �� is an abelian von Neumann algebra. This, however, is
a contradiction to the maximality of A .

(b) ⇒ (a) Assume for B /∈ A that W ∗(A ∪ {B}) is abelian. Since it is abelian, we
have B ∈ A � and thus B ∈ A , which is a contradiction.

(b) ⇒ (c) By Lemma 3.4.5, we have a normed sequence (en)n∈N so that if we define
En := cl{Aen : A ∈ A }, we have H = 
∞

n=1 En and Ei ⊥ Ej for i �= j. Now look at the
projection Pn : H → En. A is a C∗-algebra, so for all A ∈ A it holds that AEn ⊆ En,
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A∗ ∈ A and therefore also A∗En ⊆ En. Proposition 3.2.4 thus tells us that Pn ∈ A � = A .
We construct the vector e0 := �∞

n=1
en√
2n and define E0 := cl{Ae0 : A ∈ A }. We see

that A Pn ⊆ A and so En = cl{APne0 : A ∈ A } ⊆ cl{Ae0 : A ∈ A } = E0. We can
deduce from the previous inclusion that H = 
∞

n=1 En⊆ E0 and thus e0 is a cyclic vector.
Further we have 1 ∈ A � = A and because of Theorem 3.2.6 we know that A = A �� is
SOT-closed.

Remark. For separable Hilbert spaces, statement (c) actually also implies (a) and (b).
Since the proof requires Gelfand Theory, we will omit it and instead only do a special
case later on with Corollary 3.7.10. The full proof can be found in [2] chapter IX.7 under
Theorem 7.8.

Although this insight into maximal abelian von Neumann algebras is highly interesting,
we will only use it to prove the following Corollary 3.4.9. However, under the surface, a
certain maximal abelian von Neumann algebra will accompany us for some time, namely Aµ

for Radon measures µ with compact support. We have already proven that Aµ = A �
µ = A ��

µ ,
so we know that it is a maximal abelian von Neumann algebra, and in Section 3.6 we will
find out that Aµ = W (Nµ). Further, since L2(µ) ∩ L∞(µ) is dense in L2(µ) (see Theorem
4.7.7), we can infer that the cyclic vector given by Theorem 3.4.6 is just the constant 1
function. But before we delve too deep into this, we focus again on our subject of abelian
von Neumann algebras, and we will prove the final corollary of this section.

Lemma 3.4.7. Let A ⊆ B(H ) be an abelian von Neumann algebra. Then there exists a
maximal abelian von Neumann algebra Am ⊆ B(H ) so that A ⊆ Am.

Proof. Let NA be the set of all abelian von Neumann algebras in B(H ) containing A .
The set NA is partially ordered by the inclusion relation ⊆. Now let (Ni)i∈I ⊆ NA be a
chain, and we define N := �

i Ni. For A, B ∈ N , there are iA and iB so that A ∈ NiA
and

B ∈ NiB
. Since (Ni)i∈I is a chain, we can assume without loss of generality iA ≤ iB and

thus A, B ∈ NiB
. Because NiB

is an abelian algebra, we have AB ∈ NiB
, (A + λB) ∈ NiB

,
A∗, B∗ ∈ NiB

and AB = BA. We have NiB
⊆ N , so N is an abelian algebra closed with

respect to the ∗-operation. Lemma 3.4.1 now tells us that C∗(N) is an abelian C∗-algebra,
Lemma 3.4.2 tells us that C∗(C∗(N)∪{1}) is also an abelian C∗-algebra and finally Lemma
3.4.3 tells us that Ñ := C∗(C∗(N) ∪ {1})�� is an abelian von Neuman algebra. For all i we
have:

Ni ⊆ N ⊆ C∗(N) ⊆ C∗(C∗(N) ∪ {1}) ⊆ Ñ .

Since Ñ is an abelian von Neumann algebra, we also have Ñ ∈ NA and therefore the
chain (Ni)i∈I has an upper bound. According to Theorem 4.2.1 this means that NA has a
maximal element, which is a maximal abelian von Neumann algebra.

Lemma 3.4.8. Let ec ∈ H be a cyclic vector for A ⊆ B(H ). Then ec is a separating
vector for A �.

Proof. Take S ∈ A � and assume that Sec = 0. For A ∈ A , we see that SAec = ASec = 0.
But since cl{Aec : A ∈ A } = H and S continuous, this means that SH = {0} and thus
S = 0.
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Corollary 3.4.9. Let H be a separable Hilbert space and let A be an abelian C∗-subalgebra
of B(H ). Then we find that A has a separating vector.

Remark. Since every abelian von Neumann algebra is by definition also an abelian C∗-
algebra, this corollary holds for abelian von Neumann algebra as well.

Proof. Lemma 3.4.2 tells us that Ã := C∗(A ∪ {1}) is an abelian C∗-algebra and Lemma
3.4.3 tells us that Ã �� is an abelian von Neumann algebra. Because of Lemma 3.4.7, there
is a maximal abelian von Neumann algebra Ãm ⊆ B(H ) so that Ã �� ⊆ Ãm. Because of
Theorem 3.4.6, there exists a cyclic vector ec ∈ H for Ãm. Because Ã �

m = Ãm, Lemma
3.4.8 tells us that ec is also a separating vector for Ãm, and because of A ⊆ Ã �� ⊆ Ãm,
we see that ec is also a separating vector for A .

3.5 Vector-Associated Measures
In this section we will look at the connection between W ∗(N) and certain measures

associated with vectors from H . Our main goal is to show Theorem 3.5.8, which will tell
us that certain subspaces Hh, generated by a vector h and W ∗(N), are unitarily equivalent
to L2(µh) with vector-associated measures µh. Even more, we get a unitary equivalence
for N and functions φ(N) of the operator N . This connection is the fundamental reason
how the von Neumann algebras W ∗(N) tie into multiplicity theory, as we hinted at earlier.
To understand this, we imagine that we fully separate (a separable) H into a direct sum
of orthogonal subspaces created by W ∗(N), as we have done in Lemma 3.4.5. We can
then identify this partition via Theorem 3.5.8 to get

H =
∞	

n=1
Hn !

∞	
n=1

L2(µn) .

With this unitary equivalence, we will have achieved the first step of the first multiplicity
theorem. However, before we can get there, we first need to prove Theorem 3.5.8.

Definition 3.5.1. Let µ be a Radon measure with compact support. Then we define the
canonical multiplication operator Nµ ∈ B(L2(µ)) by Nµ : f(z) �→ zf(z).

We will use the operator Nµ throughout the rest of this thesis, as the fundamental
idea of multiplicity theory is to reduce any normal operator to a direct sum of canonical
multiplication operators for different measure spaces. Now we will prove some of its
properties.

Proposition 3.5.1. Let µ be a Radon measure with compact support. Then Nµ is a
normal operator.

Proof. Because N∗
µ is just multiplication by z̄, and since z and z̄ commute multiplicatively,

we see that NµN∗
µ = N∗

µNµ.

Proposition 3.5.2. The spectrum of Nµ is then given by σ(Nµ) = supp(µ).
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Proof. Let us denote S = supp(µ) for the rest of this proof. First we show that σ(Nµ) ⊆ S
by picking a λ /∈ S and showing λ /∈ σ(Nµ). By Definition 3.5.1 µ is a Radon measure, so
we find that µ(C \ S) = 0 and thus the function (z − λ)−1 is defined µ-almost everywhere.
In addition S is compact, so (z − λ)−1 is bounded on S and thus (z − λ)−1 ∈ L∞(µ). We
can now define the multiplication operator ψλ : f �→ (z − λ)−1f with ψλ ∈ B(L2(µ)). By
definition of Nµ, we then have (Nµ − λ)ψλ(f) = (z − λ)(z − λ)−1f = f , and thus Nµ − λ
is invertible and λ /∈ σ(Nµ).

Now let us prove that S ⊆ σ(Nµ). We choose λ ∈ S and denote by D� the open circle
around λ with radius � > 0. Since S is the support of µ and D� is a neighbourhood of
λ, we find that µ(D�) > 0 for all � > 0. S is also compact, so µ(D�) < µ(S) < ∞ and
therefore χD� ∈ L2(µ). We look at the function (z − λ)χD� = (Nµ − λ)χD� and assume
that ψλ ∈ B(L2(µ)) is the inverse of Nµ − λ. By definition we have |z − λ| < � for z ∈ D�

and thus ||(Nµ − λ)χD� || < �||χD� ||. Further, we find that ||χD� ||2 = µ(D�) > 0, and so
χD� �= 0. Since ψλ(N − λ)(χD�) = χD� , this also implies that (N − λ)(χD�) �= 0. Therefore
we have

||ψλ|| = sup
� ||ψλ(f)||

||f || : f ∈ L2(µ) , f �= 0
�

≥ ||ψλ(N − λ)(χD�)||
||(N − λ)(χD�)||

= ||χD� ||
�||χD� ||

= 1
�

.

Taking the limit � → 0 gives us a contradiction, because ψλ ∈ B(L2(µ)) implies that
||ψλ|| < ∞. Thus we find that no such ψλ can exist and therefore λ ∈ σ(Nµ).

Proposition 3.5.3. For two Radon measures µ1 and µ2 with compact support on C, we
have Nµ1 ! Nµ2 if and only if [µ1] = [µ2].

Proof. First we assume [µ1] = [µ2] and put φ := dµ1
dµ2

. According to Theorem 4.7.3, φ ≥ 0
and we can take

√
φ. Now we consider f ∈ L2(µ1) and see with Proposition 4.7.4 that�

|f |2dµ1 =
�

|f |2φdµ2 =
�

|f
�

φ|2dµ2 .

This means that f
√

φ ∈ L2(µ2) and also that the mapping U : L2(µ1) �→ L2(µ2) defined
by U : f �→ √

φf is an isometry. Now let us denote ψ := dµ2
dµ1

, and we can go through the
same steps to get an isometry Ũ : L2(µ2) �→ L2(µ1). Proposition 4.7.4 also tells us that
ψ = φ−1 and thus Ũ = U−1, which means L2(µ1) ! L2(µ2). Additionally we have for any
g ∈ L2(µ2)

UNµ1U−1(g) = UNµ2(φ−1g) = U(φ−1zf) = UU−1(zf) = zf = Nµ2f .

Thus we find that Nµ1 ! Nµ2 .
Now let us assume that V : L2(µ1) �→ L2(µ2) is unitary with the property V Nµ1V −1 =

Nµ2 . This implies that σ(Nµ1) = σ(Nµ2), which together with Proposition 3.5.2 means
that we can define S := supp(µ1) = supp(µ2), and we restrict our proof to the space S.
Now we inspect Nn

µ1 and we see that

V Nn
µ1V −1 = Nn

µ2 .
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Further, we have proven in Proposition 3.5.1 that Nµ1 and Nµ2 are normal, so we get from
Theorem 3.3.2 that

V N∗
µ1V −1 = N∗

µ2 .

Since V, V −1 are linear, we can extend this argumentation to any polynomial p(Nµ1 , N∗
µ1)

so that we find
V p(Nµ1 , N∗

µ1)V −1 = p(Nµ2 , N∗
µ2) .

We now remember that Nµ1 = Mz on L2(µ1). Theorem 4.1.1 tells us that the polyno-
mials in z and z̄ are dense in C(S) endowed with the ||.||∞ norm. Further, Proposition
3.2.7 gives ||M i

g|| = ||g||∞ for g ∈ L∞(µi). This means that for any u ∈ C(S), if a
sequence of polynomials (pu,n)n∈N converges to u with respect to the ||.||∞ norm, we
have pu,n(Nµ1 , N∗

µ1) → Mu with respect to the operator norm, and we have the same for
pu,n(Nµ2 , N∗

µ2) → Mu on L2(µ2). Since V is bounded, we find

V Mu = lim
n→∞ V pu,n(Nµ1 , N∗

µ1) = lim
n→∞ pu,n(Nµ2 , N∗

µ2)V = MuV .

This means we have V MuV −1 = Mu for all u ∈ C(S). We also know that C(S) ⊆ L2(µ1),
because µ1 is a Radon measure and S is compact, and therefore according to Proposition
4.7.6 we have µ1(S) < ∞. This means we can define φ := V (1), and for u ∈ C(S) we have

V (u) = V M1
u(1) = V M1

uV −1(φ) = M2
u(φ) = φu .

Our goal is now to prove that φ is related to dµ1
dµ2

via Theorem 4.7.9. Therefore we choose
any non-negative function u+ ∈ C(S) with u+ ≥ 0 and see that also √

u+ ∈ C(S). Now
we remember that V is an isometry and get�

u+dµ1 = ||√u+||2L2(µ1) = ||V (√u+)||2L2(µ2) = ||φ√
u+||2L2(µ2) =

�
|φ|2u+dµ2 .

We can split any u ∈ C(S) into the sum of four non-negative functions with pre-factors
1, −1, i, −i. By the additivity of the integral, we therefore see that the previous equality
can be expanded to

�
udµ1 =

� |φ|2udµ2. We can now interpret the previous integral
as a linear functional ζ(u) :=

�
udµ1 acting on u ∈ C(S). Theorem 4.7.9 then tells us

that there is a unique Radon measure µ so that ζ(u) =
�

udµ, and thus µ = µ1. On
the other hand, we can define the measure ν(A) :=

�
A |φ|2dµ2. Since µ2 is a Radon

measure, we see by Proposition 4.7.6 that ν is also a Radon measure. Further, we have
ζ(u) =

�
udµ1 =

� |φ|2udµ2 and can thus again use Theorem 4.7.9 to get ν = µ1 = µ. We
have dµ1 = dν = |φ|2dµ2, so we see that µ1 � µ2 and also dµ1

dµ2
= |φ|2. Repeating the

previous steps with µ1 and µ2 switched gives us µ2 � µ1.

Next, we define the subspace Hh. They will be the main method of how we investigate
H from now on.

Definition 3.5.2. Let N ∈ B(H ) be a normal operator, let A ∈ W ∗(N) and let h ∈ H .
We now define Hh := cl(W ∗(N)h), and we further define Ah := A|Hh, that is Ahx �→ Ax
for all x ∈ Hh.
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Proposition 3.5.4. Let Ah and Hh be as in Definition 3.5.2. Then we find that Hh is a
closed subspace, and that AhHh ⊆ Hh and A∗

hHh ⊆ Hh.

Proof. Let x, y ∈ W ∗(N)h so that Txh = x and Tyh = y. Since W ∗(N) is an algebra, we
see for λ ∈ C that also Tx + λTy ∈ W ∗(N) and thus we have

x + λy = Txh + λTyh = (Tx + λTy)h ∈ W ∗(N)h .

Therefore W ∗(N)h is a linear subspace and thus Hh = cl(W ∗(N)h) is a closed linear
subspace. Now we take A ∈ W ∗(N) and x ∈ Hh and want to show that Ax ∈ Hh. Let
therefore (Tx,i)i∈I ⊆ W ∗(N) be a net so that Tx,ih → x. Since A ∈ B(H ), we see that
ATx,ih → Ax, but we also know that ATx,i ∈ W ∗(N) because W ∗(N) is an algebra. This
means ATx,ih ∈ Hh, and since Hh is closed also Ax ∈ Hh. The same holds for A∗, since
W ∗(N) is closed with respect to the ∗-operation and thus A∗ ∈ W ∗(N).

Lemma 3.5.5. Let N ∈ B(H ) be a normal operator and let h ∈ H . Then we have
cl(PNh) = Hh.

Proof. Proposition 3.4.4 tells us that PN ⊆ W ∗(N) and thus we have cl(PNh) ⊆
cl(W ∗(N)h) = Hh.

For the other inclusion, we again refer to Proposition 3.4.4 to see that W ∗(N) =
SOT-clPN , with PN being the algebra of polynomials in N, N∗. Thus, for any T ∈
W ∗(N), we have a net of polynomials (pi(N, N∗))i∈I ⊆ PN so that pi(N, N∗) SOT−−→ T
and thus pi(N, N∗)h → Th. Therefore we find that W ∗(N)h ⊆ cl(PNh), which implies
Hh = cl(W ∗(N)h) ⊆ cl(PNh).

Next, we define vector-associated measures for a normal operator N . As discussed
above, we will see that Hh ! L2(µh) and N |Hh

! Nµh
. Therefore we can imagine such

a vector-associated measure µh as capturing all relevant information about N (and in a
wider sense W ∗(N)) on the subspace Hh.

Definition 3.5.3. Let N ∈ B(H ) be a normal operator with spectral measure E
and let h ∈ H . Then we define the associated measure of h with respect to N as
µh(Δ) := ||E(Δ)h||2 = Eh,h(Δ).

Proposition 3.5.6. µh is a Radon measure with compact support.

Proof. This is a direct consequence of Proposition 4.7.6 and the fact that µh = Eh,h.

Finally, we come close to proving Theorem 3.5.8, where we will use the concepts
introduced so far in this section. Before that, however, we will show a quick Proposition.

Proposition 3.5.7. For a normal operator N ∈ B(H ) we find {φ(N) : φ ∈ B(σ(N))} ⊆
W ∗(N).

Remark. We will actually see in Theorem 3.7.7 that {φ(N) : φ ∈ B(σ(N))} = W ∗(N).
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Proof. We start by showing {φ(N) : φ ∈ B(σ(N))} ⊆ {N}��. For any T ∈ {N}�, we have
TN = NT and thus by Theorem 3.3.2 also TN∗ = N∗T . We take E as the spectral measure
for N , and Theorem 4.6.4 then tells us that for any Borel set Δ we have TE(Δ) = E(Δ)T .
Now for any φ(N) and h, g ∈ H , we see that

�Tφ(N)h, g� = �φ(N)h, T ∗g� =
�

φ(z)dEh,T ∗g(z) .

Now we can use TE(Δ) = E(Δ)T to see

�E(Δ)h, T ∗g� = �TE(Δ)h, g� = �E(Δ)Th, g� .

Thus we can continue the previous equation�
φ(z)dEh,T ∗g(z) =

�
φ(z)dET h,g(z) = �φ(N)Th, g� .

Since h, g were arbitrary, we find that Tφ(N) = φ(N)T for all T ∈ {N}� and thus
φ(N) ∈ {N}��. By Proposition 3.4.4, we have {N}�� = W ∗(N) and so the lemma follows.

Theorem 3.5.8. Let N ∈ B(H ) be a normal operator, let µ be some Radon measure
with bounded support and let K ⊆ H be a closed subspace with the properties NK ⊆ K
and N∗K ⊆ K . Then N |K ! Nµ if and only if K = Hh and µ = µh for some h ∈ H .
In this case, there exists a unique unitary operator V : Hh �→ L2(µh) with the following
properties:

(a) V NhV −1 = Nµh
.

(b) V h = 1.

These properties further imply that for φ ∈ B(σ(N)) we have V φ(N)|Hh
V −1 = Mφ.

Proof "⇒". First, we consider the case N |K ! Nµ via the unitary operator V : K �→
L2(µ), and we start by showing K = Hh for some h ∈ H . By Proposition 3.4.4,
we see that the polynomials PNµ in Nµ, N∗

µ are a subset of W ∗(Nµ). Since Nµ is the
multiplication operator by z, the operator p(Nµ, N∗

µ) is just the multiplication operator by
p(z, z̄). Proposition 4.7.6 tells us that µ is finite, so we can consider 1 ∈ L2(µ). Because
we have p(z, z̄) = p(Nµ, N∗

µ)1, we see that PNµ1 ⊆ L2(µ) is the set of all polynomials.
Theorem 4.1.1 tells us that PNµ1 is dense in C(supp(µ)) with respect to the ||.||∞ norm.
Since µ(C) < ∞, we see that convergence with respect to ||.||∞ implies convergence with
respect to ||.||2. This means that PNµ1 is dense in C(X) with respect to the ||.||2 norm.
Together with Theorem 4.7.8 we see that PNµ1 is dense in L2(µ), that is clPNµ1 = L2(µ).

We now remind ourselves that N |K x = Nx and N∗|K x = N∗x for x ∈ K , so from now
on we will omit the subscript |K . Similarly to the proof of Proposition 3.5.3, we can see
that for any polynomial p(N, N∗) we have

V p(N, N∗)V −1 = p(Nµ, N∗
µ) .

This implies in turn that PN(V −11) = V −1(PNµ1), and thus

cl(PN(V −11)) = V −1(cl(PNµ1)) = V −1(L2(µ)) .
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We can set V −11 = h and we get with Lemma 3.5.5 that

V −1(L2(µ)) = cl(PNh) = Hh .

Since V −1L2(µ) = K , we have K = Hh.
Now it remains for us to show that µ = µh. We have already proven that for any

polynomial p we have V p(N, N∗)V −1 = p(Nµ, N∗
µ) = Mp. In addition, we see that

p∗(N, N∗) = p(N∗, N). Together with the fact that V is unitary we thus get�
|p|2dµh =

�
|p|2dEh,h = �p(N, N∗)p∗(N, N∗)h, h� = ||p(N, N∗)p∗(N, N∗)h||2Hh

= ||V −1V p(N, N∗)V −1V p∗(N, N∗)V −1V h||2Hh
= ||p(z, z̄)p̄(z, z̄)1||2L2(µ) =

�
|p|2dµ .

Now let K = supp(µ) ∪ supp(µh). We know that both supports are compact, so K is
compact as well. Theorem 4.1.1 tells us that P is dense in C(K) with respect to the ||.||∞
norm. This means that for any f ∈ C(K) there is a net (pi)i∈I ⊆ P so that pi

||.||∞−−−→ f .
We thus get����� |pi|2dµ −

�
|f |2dµ

���� ≤
� ���|pi|2 − |f |2

��� dµ ≤ ||(|f |2 − |pi|2)||∞ · µ(K) → 0 .

The last step is due to the fact that µ is a Radon measure and K is compact, so µ(K) < ∞.
The same limit holds for µh. Therefore, for any positive function g ∈ C(K) we have�

g2dµ = lim
i∈I

�
|pi|2dµ = lim

i∈I

�
|pi|2dµh =

�
g2dµh

We can now proceed in the same way as for Proposition 3.5.3 and we obtain µ = µh.

Proof "⇐". Now we assume that K = Hh and µ = µh and show that N |K = Nh ! Nµh
.

First, let us remark that Proposition 3.5.6 tells us that µh is indeed a Radon measure with
bounded support. We start by taking φ ∈ B(σ(N)) and see

||φ(N)h||2 = �φ(N)h, φ(N)h� = �φ(N)φ(N)∗h, h� =
�

φφdEh,h =
�

|φ|2dµh .

Now we consider B(σ(N)) ⊆ L2(µh), which is possible since σ(N) is compact and thus
µh(σ(N)) < ∞ according to Proposition 4.7.6. We know from Proposition 3.5.7 that
φ(N) ∈ W ∗(N) and thus φ(N)h ∈ Hh. Therefore we can define U : B(σ(N)) �→ Hh

by Uφ = φ(N)h. The previous calculation shows that U is an isometry. Since σ(N) is
bounded, we find that all polynomials in z, z̄ lie in B(σ(N)). Now for any polynomial
p(z, z̄) we have Up(z, z̄) = [

�
p(z, z̄)dE(z)]h. To evaluate

�
p(z, z̄)dE(z), we first remind

ourselves that Theorem 4.6.4 gives
�

zdE(z) = N , and further that for λ ∈ C we have�
λdE(z) = λ. Theorem 4.6.3 tells us that the mapping φ �→ �

φdE is linear and compatible
with multiplication and the ∗-operation, so we find that

�
p(z, z̄)dE(z) = p(N, N∗) and

thus p(N, N∗)h ∈ U(B(σ(N))). Altogether this means that PNh ⊆ U(B(σ(N))). By
Lemma 3.5.5 we now see that Hh = cl(PNh) ⊆ cl(U(B(σ(N)))). Further, since Hh is
closed and U(B(σ(N))) ⊆ Hh, we have cl(U(B(σ(N)))) ⊆ Hh. On the other hand we can
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identify B(σ(N)) with L∞(µh) by taking a bounded representative from the equivalence
classes in L∞(µh). Theorem 4.7.7 now tells us that cl(B(σ(N))) = cl(L∞(µh)) = L2(µh)
with respect to the ||.||2 norm. Since U is an isometry, we can extend it to an isometry
Ũ : cl(B(σ(N))) �→ cl(U(B(σ(N)))). With the previous insight, this becomes Ũ : L2(µh) �→
Hh. Clearly Ũ is also linear, so it is an isomorphism, and we can take V := Ũ−1. We see
that V is linear and unitary. Further, by definition of Ũ we have V −11 = Ũ1 = h, and
thus V h = 1. We now show that V φ(N)|Hh

V −1 = Mφ for φ ∈ B(σ(N)). Since we only
investigate elements x ∈ Hh, we remind ourselves that φ(N)x = φ(N)|Hh

x and omit the
subscript from hereon. We take ψ ∈ B(σ(N)) and look at

V −1MφV ψ(N)h = V −1Mφψ(z) = V −1[φψ](z)

= [
�

φ(z)ψ(z)dE(z)]h = [
�

φ(z)dE(z)][
�

ψ(z)dE(z)]h = φ(N)ψ(N)h .

Here we used Theorem 4.6.3 for the multiplicativity of the spectral integral, the fact
φψ ∈ B(σ(N)) and the explicit definition of V −1 = U on the subset B(σ(N)). So
V φ(N)V −1 = Mφ holds on B(σ(N)) ⊂ L2(µh). However, as we discussed before B(σ(N))
is dense in L2(µh), so V φ(N)V −1 = Mφ holds everywhere. Since Mz = Nµh

, this means
especially Nh ! Nµh

.

Proof of Uniqueness. To conclude the proof of Theorem 3.5.8, we show the uniqueness of V ,
which requires only V NhV −1 = Nµh

and V h = 1. Let us assume that the unitary operator
I fulfils Ih = 1 and INI−1 = Nµh

. We can again extend this relation to polynomials and
see

Ip(N, N∗)I−1 = p(Nµ, N∗
µ) = V p(N, N∗)V −1 .

Since I−11 = h = V −11, we see that for all p(N, N∗)h we have V = I. Now Lemma 3.5.5
tells us that cl(PNh) = Hh, so I = V on a dense subset and thus I = V everywhere.

3.6 The von Neumann algebra W ∗(Nµ)
One of our intermediate goals is to fully classify W ∗(N) in Section 3.7, as this will help

us with handling not only the von Neumann algebra itself but also objects like Hh. In
this section, we will talk about the special case W ∗(Nµ), and we will finally prove that
W ∗(Nµ) = Aµ. Further, we will show some extra properties of the spectral integral for Nµ

which provide a well rounded picture of how spectral integration works for Nµ, and which
we need for proofs later on.

Lemma 3.6.1. Let µ be a Radon measure with compact support on C. Then we find
WOT-cl(PNµ) = Aµ.

Proof. First, we remember that Nµf = zf for f ∈ L2(µ), and therefore we find for any
p(Nµ, N∗

µ) ∈ PNµ that p(Nµ, N∗
µ)f = p(z, z̄)f which means p(Nµ, N∗

µ) = Mp. We further
remark that µ has compact support and thus for every continuous function c ∈ C(C) we
have ||c||∞ < ∞ and therefore c ∈ L∞- This especially means that the polynomials are



38 3 Multiplicity Theory

bounded and thus PNµ ⊆ Aµ. Now let us rephrase the lemma by taking f, g ∈ L2(µ) and
φ ∈ L∞(µ). Our goal is to prove that there exists a net of polynomials (pi)i∈I so that

�pi(Nµ, N∗
µ)f, g� = �Mpi

f, g� =
�

pifḡdµ →
�

φfḡdµ = �Mφf, g� .

We will first reduce our proof to φ = c ∈ C(C). Theorem 4.1.1 tells us that the polynomials
are dense in C(supp(µ)) with respect to the ||.||∞ norm. Since µ is a Radon measure, we
know that µ(C\supp(µ)) = 0 and therefore the polynomials are dense in C(C) with respect
to the ||.||∞ norm. This means we find a net of polynomials (pi)i∈I so that pi

||.||∞−−−→ c,
which leads to�����

C
pifḡdµ −

�
C

cf ḡdµ
���� =

����� (pi − c)fḡdµ
���� ≤ ||pi − c||∞

����� fḡdµ
���� → 0 .

Therefore PNµ is WOT dense in the subset of multiplication operators for continuous
functions, that is {Mc : c ∈ C(C)} ⊆ WOT-cl(PNµ). Therefore our goal is now to show
that Aµ ⊆ WOT-cl({Mc : c ∈ C(C)}). To this end, for f, g ∈ L2(µ) and φ ∈ L∞(µ) we
have to find a net (ci)i∈I ⊆ C(C) so that�

cifḡdµ →
�

φfḡdµ .

We will now do this using Theorem 4.7.10. Since µ is a Radon measure and it has
compact support, we know by Proposition 4.7.6 that µ(C) < ∞. Let us now denote
D := {z : |φ(z)| ≤ ||φ||∞}. We know that µ(D) = µ(C) < ∞. According to Theorem
4.7.10, there exists a compact set Kn so that µ(D \ Kn) < 1

n
and φ|Kn is continuous.

Further we know that C is topologically normal, and so according to Theorem 4.1.2 there
exists a continuous extension cn : C �→ C so that cn|Kn = φ|Kn and sup{|cn(z)| : z ∈ C} =
sup{|φ(z)| : z ∈ Kn} ≤ ||φ||∞. We remember µ(D) = µ(C) and thus we have

�����
C

cnf ḡdµ −
�
C

φfḡdµ
���� =

�����
D

(cn − φ)f ḡdµ
���� =

�����
�

D\Kn

(cn − φ)fḡdµ

�����
≤ (||cn||∞ + ||φ||∞)

�����
�

D\Kn

f ḡdµ

����� ≤ 2||φ||∞
�����
�

D\Kn

fḡdµ

����� → 0 .

The limit at the end is due to the fact that µ(D \ Kn) < 1
n

→ 0. Therefore we know
Aµ ⊆ WOT-cl({Mc : c ∈ C(C)}), and by the previous calculations we know WOT-cl({Mc :
c ∈ C(C)}) ⊆ WOT-cl(PNµ). In addition we have PNµ ⊆ Aµ and we know by Theorem
3.2.8 together with Theorem 3.2.6 that Aµ is WOT-closed. Thus we obtain in the end
Aµ = WOT-cl(PNµ).

Theorem 3.6.2. Let µ be a Radon measure with compact support on C. Then {Nµ}� =
Aµ = W ∗(Nµ).

Proof. By Proposition 3.4.4, we have W ∗(Nµ) = {Nµ}�� = WOT-clPNµ , and now Lemma
3.6.1 gives us that WOT-clPNµ = Aµ. Theorem 3.2.8 then shows that Aµ = (Aµ)�, which
concludes the proof.
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The next theorem and corollary can be deduced without the technical apparatus we
have gathered so far. By simply supposing the intuitive fact that the spectral measure
E(Δ) for Nµ is given by multiplication with χΔ, we could go through the check-list in
Theorem 4.6.4 and prove that this is true. However, this would be a very lengthy process,
and by using our previous calculations we can not only abridge the proofs but also gain
the chance to see our insights at work.

Theorem 3.6.3. Let µ be a Radon measure with bounded support, and let φ ∈ B(supp(µ)).
Then φ(Nµ) = Mφ.

Proof. We obviously have Nµ ! Nµ via the identity, and thus we can use Theorem 3.5.8
to get h ∈ L2(µ) so that L2(µ) = Hh and µ = µh. Further, we have a unique unitary
operator V : Hh �→ L2(µ) with V NhV −1 = Nµ and V h = 1. Since L2(µ) = Hh we see that
V ∈ B(L2(µ)), and we also find that Nh = Nµ. Together we obtain that V Nµ = NµV and
thus V ∈ {Nµ}�, and we can see the same for V −1. According to Theorem 3.6.2 this means
that there exist ψ, ψ̃ ∈ L∞(µ) so that V = Mψ and V −1 = Mψ̃. Further, we know from
Theorem 3.5.8 that for φ ∈ B(σ(Nµ)) we have V φ(Nµ)|Hh

V −1 = Mφ and, using again
Hh = L2(µ), we thus find V φ(Nµ)V −1 = Mφ. We can now insert our previous insights to
get

φ(Nµ) = V −1MφV = Mψ̃MφMψ = Mψ̃MψMφ = Mφ .

The second to last equality is due to the fact that the multiplication operators commute
and it gives us the theorem.

Corollary 3.6.4. Let µ be a Radon measure with bounded support and let E be the spectral
measure for Nµ. Then for a Borel set Δ we find that E(Δ) = MχΔ. In particular, this
means for h ∈ L2(µ) that

µh(Δ) =
�

Δ
|h(z)|2dµ(z) .

Remark. This means especially that µh = µ if we take h = 1 ∈ L2(µ).

Proof. We know from Theorem 4.6.3 that for a Borel set Δ and the function φΔ := χΔ we
have φΔ(N) = E(Δ). Together with Theorem 3.6.3 this gives us now

E(Δ) = φΔ(N) = MφΔ = MχΔ .

The second statement now follows easily by inserting into the definition of µh. We see

µh(Δ) = �E(Δ)h, h� = �χΔh, h� =
�

Δ
|h(z)|2dµ(z) .

This proves the corollary.

3.7 Scalar-Valued Measures and W ∗(N)
In this last section before we tackle multiplicity theory proper, we introduce the final

important concept in the form of scalar-valued measures, and we will round out our
knowledge about the more general von Neumann algebra W ∗(N). Unfortunately, insights
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from both areas feed into each other, which is why we combine them into one section. One
big goal in this section will be Theorem 3.7.7 and the subsequent corollaries. There, we
will derive an easier description of W ∗(N), and understand the changes of W ∗(N) between
different spaces and subspaces (there won’t be a significant change as W ∗(N) stays the
same under restrictions and unitary transformations). The other goal is the classification of
scalar-valued measures in Theorem 3.7.11, where we will show that scalar-valued measures
and separating vectors are two sides of the same coin.

Definition 3.7.1. Let N ∈ B(H ) be a normal operator with spectral measure E, and
let µ be a Radon measure. We call µ a scalar-valued spectral measure for N if for all Borel
sets Δ we have µ(Δ) = 0 if and only if E(Δ) = 0.

Proposition 3.7.1. Let N ∈ B(H ) be a normal operator, and let µ be a scalar-valued
spectral measure for N . Then we have

• [µ] = [ν], if ν is another scalar-valued measure for N .

• µh � µ for h ∈ H .

• supp(µ) = σ(N).

Proof. Let E be the spectral measure for N . First, we take a Borel set Δ so that µ(Δ) = 0.
By the definition of scalar-valued measures, this means E(Δ) = 0, which in turn means
ν(Δ) = 0. Therefore we find ν � µ. The same calculation works the other way around, so
we find [µ] = [ν].

Now we continue to the second part and take again a Borel set Δ so that µ(Δ) = 0. We
therefore have E(Δ) = 0 and thus

µh(Δ) = ||E(Δ)h||2 = 0 .

For the third part, we remember that according to Theorem 4.6.4 we have supp(E) =
σ(N). On the other hand, for a point z ∈ supp(E) we find for every neighbourhood Uz that
E(Uz) �= 0. However, µ is a scalar-valued measure for N and thus E(Δ) = 0 is equivalent
to µ(Δ) = 0 for any Borel set Δ. Therefore we get µ(Uz) �= 0 and thus z ∈ supp(µ). The
same argumentation works the other way round and we get supp(µ) = supp(E). Together
with our previous insight this means

supp(µ) = supp(E) = σ(N) .

This concludes the proof.

Lemma 3.7.2. Let N ∈ B(H ) be a normal operator, and let h ∈ H be a separating
vector for W ∗(N). Then we find that µh is a scalar-valued measure for N .

Remark. We will prove further down in Theorem 3.7.11 that the inverse is also true, that
is for every scalar-valued spectral measure µ for N there is a h ∈ H so that µ = µh and
h is a separating vector for W ∗(N).
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Proof. Let E be the spectral measure of N . We have already shown in Proposition 3.7.1
that µh � E. To see the inverse, we take a Borel set Δ with µh(Δ) = 0. This means that
E(Δ)h = 0. However, we know that E(Δ) =

�
χΔ(z)dE(z), which means by Proposition

3.5.7 that E(Δ) ∈ W ∗(N). Since h is a separating vector for W ∗(N), we can thus infer
that E(Δ) = 0.

After establishing scalar-valued measures and some facts about them, we now turn our
attention back towards W ∗(N). The following lemmata are partly very technical, but they
all lead up to Theorem 3.7.7, where we fully describe W ∗(N).

Lemma 3.7.3. Let T ∈ B(H ) be an operator, and let K ⊆ H be a closed subspace. If
we have TK ⊆ K and T ∗K ⊆ K , then (T |K )∗ = T ∗|K . In this case, T |K is normal if
T is normal.

Proof. First, because TK ⊆ K , we remark that T |K ∈ B(K ). For x, y ∈ K we see

�(T |K )∗x, y�K = �x, T |K y�K = �x, Ty�H = �T ∗x, y�H = �T ∗|K x, y�K .

Therefore we have (T |K )∗ = T ∗|K . In addition, we see for a normal T that

T |K (T |K )∗x = T |K T ∗|K x = TT ∗x = T ∗Tx = ... = (T |K )∗T |K x .

This means that T |K is normal.

Lemma 3.7.4. Let N ∈ B(H ) be normal, and let K ⊆ H be a closed subspace so
that TK ⊆ K for all T ∈ W ∗(N). We define ρK on W ∗(N) by ρK (T ) = T |K . Then
ρK (W ∗(N)) = W ∗(N |K ), it is WOT-continuous and a ∗-epimorphism (that is surjective,
linear and compatible with multiplication and the ∗-operation).

Proof. First we remind ourselves that because TK ⊆ K for all T ∈ W ∗(N) and N ∈
W ∗(N), we know N |K ∈ B(K ). Further we find by N∗ ∈ W ∗(N) and Lemma 3.7.3 that
N |K is normal and thus W ∗(N |K ) is well defined. Now we prove that ρK is linear and
compatible with multiplication and the ∗-operation. We inspect A, B ∈ W ∗(N), λ ∈ C
and x, y ∈ K . The linearity comes straightforward by taking

ρK (A + λB)x = (A + λB)x = Ax + λBx = (ρK (A) + λρK (B))x .

Therefore ρK (A + λB) = ρK (A) + λρK (B). Now for the multiplication, we remind
ourselves that Bx ∈ K and see

ρK (AB)x = ABx = ρK (A)Bx = ρK (A)ρK (B)x .

Thus we have ρK (AB) = ρK (A)ρK (B). Finally for the adjoint, we remember that
A∗ ∈ W ∗(N) and thus also A∗K ⊆ K . Now we again take Lemma 3.7.3 and see that

ρK (A∗) = A∗|K = (A|K )∗ = ρK (A)∗ .
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Now we show that ρK is WOT-continuous. We take a net (Ai)i∈I ⊆ W ∗(N) with
Ai

WOT−−−→ A and A ∈ W ∗(N). Now let x, y ∈ K . By looking at the definitions for ρK , we
see that

�ρK (Ai)x, y� = �Aix, y� → �Ax, y� = �ρK (A)x, y� .

Thus we get that ρK (Ai) WOT−−−→ ρK (A) and therefore ρK is WOT continuous.
In the next step, we prove that ρK maps W ∗(N) surjectively to W ∗(N |K ). We consider

that ρK (N) = N |K , ρK (N∗) = N∗|K and for λ ∈ C that ρK (λ) = λ. Further, because ρK

is linear and compatible with multiplication, we find that for any polynomial p(N, N∗) ∈
PN we have ρK (p(N, N∗)) = p(N |K , N∗|K ). This means that ρK (PN) = PN |K . Now
Proposition 3.4.4 tells us that W ∗(N) = WOT-clPN and W ∗(N |K ) = WOT-clPN |K ,
and therefore the equation becomes

ρK (W ∗(N)) = ρK (WOT-clPN) = WOT-clPN |K = W ∗(N |K ) .

This means ρK is surjective.

Lemma 3.7.5. Let N ∈ B(H ) be normal. Then the spectral measure Ẽ for Nh is just
Eh, that is Ẽ(Δ) = E(Δ)|Hh.

Proof. Theorem 4.6.4 tells us that Ẽ is unique, and thus we only have to show that Eh

is a well defined spectral measure and that Nh =
�

zdEh(z). Proposition 3.5.7 tells us
that E(Δ) = χΔ(N) ∈ W ∗(N), and therefore according to Proposition 3.5.4 we have
Eh(Δ)Hh ⊆ Hh for all Borel sets Δ. Further, for x ∈ Hh we have Eh(Δ)x = E(Δ)x and
thus Eh is σ-additive, Eh is a projection and E(C) = 1, which all means that Eh is a
spectral measure. Further, we see that for x, y ∈ Hh we have �Eh(Δ)x, y� = �E(Δ)x, y�,
and therefore

�Nhx, y� = �Nx, y� =
�

zdEx,y(z) =
�

zd(Eh)x,y(z) .

Thus we find Nh =
�

zdEh(z). Theorem 4.6.4 now gives us the uniqueness of the spectral
measure for a normal operator, which means that Eh is the spectral measure for Nh.

Lemma 3.7.6. We define ρh = ρHh
as in Lemma 3.7.4. Then for any φ ∈ B(σ(N)), we

find that ρh(φ(N)) = φ(Nh), and for all A ∈ W ∗(N) there exists a φA ∈ B(σ(Nh)) so that
ρh(A) = φA(Nh).

Proof. Let E be the spectral measure for N , then Lemma 3.7.5 tells us that the spectral
measure for Nh is just given by Eh. We take x, y ∈ Hh and remind ourselves that
�E(Δ)x, y� = �Eh(Δ)x, y�. This gives us

�ρh(φ(N))x, y� = �φ(N)x, y� =
�

φ(z)dEx,y(z) =
�

φ(z)d(Eh)x,y(z) = �φ(Nh)x, y� .

Therefore we have ρh(φ(N)) = φ(Nh).
For the second part, we take A ∈ W ∗(N) and want to show that there exists a

φA ∈ B(σ(Nh)) so that ρh(A) = φA(Nh). Theorem 3.5.8 tells us that Nh ! Nµ for some
Borel measure µ. Now let V : Hh �→ L2(µ) be the isomorphism so that V NhV −1 = Nµ
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and V h = 1, and we define Aµ := V ρh(A)V −1 ∈ B(L2(µ)). Because of Proposition 3.4.4,
we know that W ∗(N) is abelian, so we see

AµNµ = V ρh(A)NhV −1 = V ρh(A)ρh(N)V −1 = V ρh(AN)V −1

= V ρh(NA)V −1 = ... = NµAµ .

Therefore Aµ ∈ {Nµ}�, and Theorem 3.6.2 tells us {Nµ}� = Aµ, so there is a function
φA ∈ B(σ(Nh)) so that Aµ = MφA

. Now we remind ourselves that cl(W ∗(Nh)h) = Hh,
and by Lemma 3.5.5 we have cl(PNh

h) = cl(W ∗(Nh)h) = Hh. Therefore it suffices to
show that ρh(A) =

�
φAdEh = φA(Nh) on the dense set PNh

h. Theorem 3.5.8 shows that
for φ ∈ B(σ(Nh)) we have φ(Nh)h = V −1Mφ1. This means for p(Nh, N∗

h) ∈ PNh
we get

ρh(A)p(Nh, N∗
h)h = V −1V ρh(A)V −1V p(Nh, N∗

h)h = V −1AµMp1

= V −1MφA
Mp1 = V −1MφAp1 = (φAp)(Nh)h = φA(Nh)p(Nh, N∗

h)h .

The last equality is due to the fact that the spectral integral is multiplicative, as shown
by Theorem 4.6.3. We can now wrap up and remind ourselves that ρh(A) = φA(Nh) on
PNh

h which is dense in Hh, so we have ρh(A) = φA(Nh) on Hh.

Theorem 3.7.7. Let H be a separable Hilbert space and let N ∈ B(H ) be a normal
operator. Then we have {φ(N) : φ ∈ B(σ(N))} = W ∗(N).

Proof. Let us denote A = {φ(N) : φ ∈ B(σ(N))}. Proposition 3.5.7 gives us A ⊆
{N}�� = W ∗(N). Thus we need only to show that W ∗(N) ⊆ A . We have already
elaborated further up that p(N, N∗) =

�
p(z, z̄)dE(z) for any p ∈ PN , which means that

PN ⊆ A . If we now show that A = WOT-clA , we can use Proposition 3.4.4 to get
W ∗(N) = WOT-clPN ⊆ WOT-clA = A .

To show that A is indeed WOT-closed, we consider a net (φi)i∈I ⊆ B(σ(N)) so
that φi(N) WOT−−−→ T . Proposition 3.4.4 tells us that W ∗(N) is WOT-closed, and since
A ⊆ W ∗(N), we know that T ∈ W ∗(N). Now for any h ∈ H , we know by Lemma 3.7.6
that φi(Nh) = ρh(φi(N)) → ρh(T ) = Th, and also that there is a φT,h ∈ B(σ(Nh)) so
that Th = φT,h(Nh). Further, Theorem 3.5.8 tells us that there exists a unitary operator
V : Hh �→ L2(µh) with V φ(N)|Hh

V −1 = Mφ, and Lemma 3.7.6 tells us φ(N)|Hh
= φ(Nh).

Now we take any f, g ∈ L2(µh) and find�
φifgdµh = �φi(Nh)V −1h, V −1g� → �φT,h(Nh)V −1h, V −1g� =

�
φT,hf, gdµh .

Therefore we see that φi
WOT−−−→ φT,h in B(L2(µh)). Now we remember Corollary 3.4.9, and

since H is separable we can take a separating vector es for W ∗(N), and we can prove in a
similar vein that φi

WOT−−−→ φT,es in B(L2(µes)). Our goal is now to show that φT,es = φT,h

µh-almost everywhere. Lemma 3.7.2 tells us that µes is a scalar-valued measure, and
Proposition 3.7.1 gives µh � µes . Further, we obtain by Theorem 4.7.3 a positive function
ψ = dµh

dµes
. Now for any Borel set Δ we see

�
Δ

dµh =
�

χΔψdµes =
�

(χΔψ)
1
2 (χΔψ)

1
2 dµes .
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We know that µh is a Radon measure with compact support, and thus according to
Proposition 4.7.6 it is finite. Therefore we see that (χΔψ) 1

2 ∈ L2(µes) and we have�
Δ

φidµh =
�

φi (χΔψ)
1
2 (χΔψ)

1
2 dµes →

�
φT,es (χΔψ)

1
2 (χΔψ)

1
2 dµes =

�
φT,esdµh .

On the other hand, we have χΔ ∈ L2(µh) and thus�
Δ

φidµh =
�

φi(χΔ) 1
2 (χΔ) 1

2 dµh →
�

φT,h(χΔ) 1
2 (χΔ) 1

2 dµh =
�

Δ
φT,hdµh .

Therefore we see that φT,es = φT,h µh-almost everywhere. Going back and using again the
unitary operator from Theorem 3.5.8, we see

Th = φT,h(N)|Hh
h = V −1MφT,h

V h = V −1MφT,es
V h = φT,es(N)|Hh

h = φT,es(N)h .

Since h was arbitrary, we have shown that T = φT,es(N) and thus T ∈ A which means
W ∗(N) ⊆ A .

From Theorem 3.7.7 we can derive a set of corollaries, since we now have an expression
for W ∗(N) that is rather easy to deal with. Corollaries 3.7.8 and 3.7.9 tell us how
W ∗(N) behaves on subspaces and under unitary transformations respectively, which will
be important for multiplicity theory when we deal a lot with unitary equivalences and
partitions into subspaces. Lastly, Corollary 3.7.10 completes Theorem 3.4.6 for the special
case of W ∗(N), which is why we feature it more prominently rather than relegating it to
some lemma when we need it.

Corollary 3.7.8. Let N ∈ B(H ) be a normal operator, and let K ⊆ H be a closed
subspace with NK ⊆ K and N∗K ⊆ K . Then we have φ(N |K ) = φ(N)|K for
φ ∈ B(σ(N)). In particular if H is separable this means W ∗(N |K ) = W ∗(N)|K .

Proof. Since N is normal, we know according to Lemma 3.7.3 that N |K is also normal.
Now we take E as the spectral measure for N and EK as the spectral measure for N |K .
First, we define the function Ẽ(Δ) := E(Δ)|K . We can now show that EK = Ẽ in a
similar way as we did in Lemma 3.7.5.

Let now φ ∈ B(σ(N)). Since σ(N |K ) ⊆ σ(N), we know that φ ∈ B(σ(N |K )). We
inspect k1, k2 ∈ K and get

�φ(N |K )k1, k2�K =
�

φ(z)dẼk1,k2(z) =
�

φ(z)dEk1,k2(z)

= �φ(N)k1, k2�H = �φ(N)|K k1, k2�K .

This proves the first part φ(N |K ) = φ(N)|K of the theorem.
It remains for us to show that for every T ∈ W ∗(N |K ) we find a T̃ ∈ W ∗(N) so that

T = T̃ |K . Due to Theorem 3.7.7 we know that W ∗(N) = {φ(N) : φ ∈ B(σ(N))} and a
similar equality for W ∗(N |K ). Thus we have T = φ(N |K ). We know that σ(N |K ) ⊆ σ(N).
We define a function φ̃ ∈ B(σ(N)) so that φ̃(z) = φ(z) for z ∈ σ(N |K ) and φ̃ = 0 else. Now
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know that φ̃(N)|K = φ̃(N |K ). Further, Theorem 4.6.4 tells us that supp(EK ) = σ(N |K )
and therefore φ̃(N |K ) = φ(N |K ). Now we pick T̃ = φ̃(N) and see

T̃ |K = φ̃(N)|K = φ̃(N |K ) = φ(N |K ) = T .

Since T ∈ W ∗(N |K ) was arbitrary we see that W ∗(N |K ) = W ∗(N)|K .

Corollary 3.7.9. Let H and K be Hilbert spaces, and let N ∈ B(H ) and M ∈ B(K )
be normal operators. Let further V : H �→ K be an unitary operator with the property
V NV −1 = M . Then we have V φ(N)V −1 = φ(M) for φ ∈ B(σ(N)). This means in
particular for separable H and K that V W ∗(N)V −1 = W ∗(M).

Remark. The proof of Corollary 3.7.9 is very similar to the proof of Corollary 3.7.8, with
the difference being that K now is not a subspace but an isomorphic Hilbert space.

Proof. Let EN be the spectral measure associated with N and let EM be the spectral
measure associated with M . Because N ! M , we know that σ(N) = σ(M), and therefore
supp(EN) = σ(N) = σ(M) = supp(EM). In our first step, we now want to show that
V ENV −1 = EM . We begin by proving that Ẽ = V ENV −1 is indeed a spectral measure.
For k1, k2 ∈ K we find that

Ẽk1,k2 = �Ẽk1, k2�K = �ENV −1k1, V −1k2�H = EN,V −1k1,V −1k2 .

Since EN is a spectral measure, we know that EN,V −1k1,V −1k2 is a complex measure and
thus so is Ẽk1,k2 . Further, since V −1 is an isometry, we have

�Ẽ(σ(M))k1, k2�K = �EN(σ(N))V −1k1, V −1k2�H = �V −1k1, V −1k2�H = �k1, k2�K .

Therefore Ẽ(σ(M)) is the identity. Finally, because EN(Δ) is a projection we have

Ẽ(Δ)2 = V EN(Δ)V −1V EN(Δ)V −1 = V EN(Δ)V −1 = Ẽ(Δ) .

Together, this means that according to Definition 4.6.1 we see that Ẽ is indeed a spectral
measure.

Now we want to show M =
�

zdẼ(z), which by the uniqueness statement of Theorem
4.6.4 means Ẽ = EM . We see for k1, k2 ∈ K that

�
��

zdẼ(z)
�

k1, k2� =
�

zdẼk1,k2(z) =
�

zdEN,V −1k1,V −1k2(z)

= �NV −1k1, V −1k2�H = �V NV −1k1, k2�K = �Mk1, k2�K .

Here we used the facts that EN is the spectral measure associated with N , that V is an
isometry and that V NV −1 = M . Therefore we have M =

�
zdẼ(z) which by Theorem

4.6.4 means Ẽ = EM .
To finally prove the Corollary, we turn to φ ∈ B(σ(N)). We now have for k1, k2 ∈ K

�V φ(N)V −1k1, k2�K = �φ(N)V −1k1, V −1k2�H =
�

φ(z)dEN,V −1k1,V −1k2(z)



46 3 Multiplicity Theory

=
�

φ(z)dẼk1,k2(z) =
�

φ(z)dEM,k1,k2(z) = �φ(M)k1, k2�K .

This proves V φ(N)V −1 = φ(M). Now we have proven in Theorem 3.7.7 that W ∗(N) =
{φ(N) : φ ∈ B(σ(N))}, and a similar equality holds for W ∗(M). Thus we have the
previous equation for all elements of W ∗(N) and W ∗(M), that is we can write in a sense
that V W ∗(N)V −1 = W ∗(M).

Corollary 3.7.10. Let H be separable and let N ∈ B(H ) be a normal operator. If there
exists a cyclic vector h ∈ H for W ∗(N), then {N}� = W ∗(N)� = W ∗(N), that is W ∗(N)
is a maximal abelian von Neumann algebra.

Remark. The fact that W ∗(N) has a cyclic vector implies that H is separable. Further,
1 ∈ W ∗(N) and W ∗(N) is SOT-closed according to Proposition 3.4.4. Therefore we can
see Corollary 3.7.10 as a special case for the inverse implication in Theorem 3.4.6.

Proof. First, we see that Nh = N since Hh = H , and therefore Theorem 3.5.8 gives us
a unitary operator V : H �→ L2(µh) so that N ! Nµh

. For ease of writing, we will also
substitute µ = µh. Now we take K ∈ {N}� and denote Kµ = V KV −1

KµNµ = V KNV −1 = V NKV −1 = NµKµ .

Thus we see that Kµ ∈ {Nµ}� and therefore according to Theorem 3.6.2 we have Kµ ∈
W ∗(Nµ). Here we can use Corollary 3.7.9 to see that V −1W ∗(Nµ)V = W ∗(N), and
therefore V −1KµV ∈ W ∗(N), and since K = V −1KµV we have {N}� ⊆ W ∗(N). Now we
remember that W ∗(N) is abelian, so we have W ∗(N) ⊆ W ∗(N)�. Finally we combine our
previous insights with Proposition 3.2.1 and {N} ⊆ W ∗(N) to get

W ∗(N) ⊆ W ∗(N)� ⊆ {N}� ⊆ W ∗(N) .

This implies that {N}� = W ∗(N)� = W ∗(N), and thus by Theorem 3.4.6 we get that
W ∗(N) is a maximal abelian von Neumann algebra.

Now we come to the final step before we plunge into the actual first multiplicity theorem
in the next section. This theorem consolidates our knowledge about scalar-valued measures
and we will show their correspondence to separating vectors.

Theorem 3.7.11. Let H be separable and let N ∈ B(H ) be a normal operator. Then
we find

(a) There exists a scalar-valued measure µ for N .
(b) For every h ∈ H with h being a separating vector for W ∗(N), the measure µh is a

scalar-valued measure for N .
(c) For every scalar-valued measure µ for N , there exists a h ∈ H so that h is a

separating vector for W ∗(N) and µ = µh.

Proof. First, we prove (a) and (b). Lemma 3.7.2 gives us (b), and by Corollary 3.4.9 we
find that W ∗(N) has a separating vector h and thus µh is also a scalar-valued measure for
N .
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Now we move on to (c). We take the vector h from our previous considerations and see
that µh is a scalar-valued measure. Proposition 3.7.1 thus gives us [µ] = [µh]. Proposition
3.5.3 then tells us that Nµ ! Nµh

and Theorem 3.5.8 tells us that Nµh
! Nh, so altogether

we get Nh ! Nµ. Theorem 3.5.8 now tells us that there exists a vector k ∈ Hh so that
Hk = Hh and µk = µ. Further we get a unitary operator V : Hh �→ L2(µ) so that V k = 1
and for any φ(N) it holds V φ(N)V −1 = Mφ. Let now φ(N) ∈ W ∗(N). Corollary 3.7.8
tells us that φ(N)|Hk

= φ(Nk), so we get

||φ(N)k||2H = ||V φ(N)V −1V k||2H = ||φ · 1||2L2(µ) =
�

|φ(z)|2dµ(z) .

Thus if we have φ(N)k = 0 if and only if φ(z) = 0 µ-almost everywhere. Since Nh ! Nµh
,

we can do the same calculation for h and see that φ(N)h = 0 if and only if φ(z) = 0 µh-
almost everywhere. Further, we have that [µ] = [µh] and so φ(z) = 0 µ-almost everywhere
is equivalent to φ(z) = 0 µh-almost everywhere. Therefore, if φ(N)k = 0, we get that also
φ(N)h = 0. However, since h is a separating vector for W ∗(N), this means that φ(N) = 0.
We know from Theorem 3.7.7 that {φ(N) : φ ∈ B(σ(N))} = W ∗(N), and so we have
proven that k is a separating vector for W ∗(N). Finally we remember that µ = µk, which
concludes the theorem.

3.8 Multiplicity Theory on Seperable Hilbert Spaces
In the last sections, we have diligently laid out the groundwork for this section. Now it

is finally time to reap the rewards and prove the First Multiplicity Theorem 3.8.8. The
basic idea is rather straightforward. Theorem 3.5.8 tells us that for every h ∈ H we have
Hh ! L2(µh) and N |Hh

! Nµh
, and we remember from way back in Lemma 3.4.5 that

each separable Hilbert space H has a partition H = 
∞
n=1 Hen . We can combine both

facts and after a quick calculation we get

H !
∞	

n=1
L2(µen) , N !

∞	
n=1

Nµen
.

However, if we remember our initial goals for our Multiplicity Theorem, we did not only
want to deconstruct our operator into a direct sum of more simple operators. We also
required that the spectra of these simple operators to form a decreasing sequence, which is
roughly equivalent to µen+1 � µen . This is where our theory about scalar-valued measures
comes into play. As we remember from Proposition 3.7.1, for a scalar valued measure
µ we have µh � µ for all h ∈ H . On the other hand, Theorem 3.7.11 tells us that
scalar-valued measures are equivalent to separating vectors for W ∗(N). Thus the solution
is to inductively choose the (en)n∈N so that en+1 is a separating vector on the orthogonal
complement of the space spanned by the Hi with 1 ≤ i ≤ n. We will now show some
lemmata that formalize what we have just discussed, before we plunge into the proof of
Theorem 3.8.8 at the end of this section.
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Lemma 3.8.1. Let (Hn)n∈N and (Kn)n∈N be sequences of Hilbert spaces, and let further
(Vn)n∈N be a sequence of unitary operators with Vn : Hn �→ Kn for all n ∈ N. Then there
exists a unique unitary operator with

V :
	
n∈N

Hn �→ 	
n∈N

Kn ; V |Hn = Vn .

Further, let Nn ∈ B(Hn) and Mn ∈ B(Kn) for n ∈ N. If VnNnV −1
n = Mn holds for all

n ∈ N, then we find
V

∞	
n=1

NnV −1 =
∞	

n=1
Mn .

Proof. This Lemma follows immediately from setting V : H �→ K as

V :=
∞	

n=1
Vn .

For uniqueness, we take h ∈ 
∞
n=1 Hn and see that h = 
∞

n=1 hn, with hn ∈ Hn for n ∈ N.
Let now I be an operator that fulfils the same conditions as V . Then we see

V h − Ih =
∞	

n=1
Vnhn −

∞	
n=1

Vnhn = 0 .

Thus we get V = I.

Lemma 3.8.2. Let µ be a Radon measure, and let Δ be a Borel set. Then µ|Δ is also a
Radon measure, and we find supp(µ|Δ) ⊆ supp(µ) ∩ cl(Δ).

Proof. First we have to show that µ|Δ is both inner regular and locally finite. We take
z ∈ C. Since µ is a Radon measure, we know that there exists a neighbourhood Uz so that
µ(Uz) < ∞. This in turn means that

µ|Δ(Uz) = µ(Uz ∩ Δ) ≤ µ(Uz) < ∞ .

Thus we see that µ|Δ is also locally finite. Now to show inner regularity, let U be an open
set. We know that µ is inner regular, so

µ(U) = sup{µ(K) : K is compact and K ⊆ U} .

Let (Kn)n∈N be a sequence so that all Kn ⊆ U and µ(Kn) → µ(U). This means especially
that

µ(U \ Kn) = µ(U) − µ(Kn) → 0 .

We can intersect the sets on the left hand side with Δ and get

µ|Δ(U) − µ|Δ(Kn) = µ(U ∩ Δ) − µ(Kn ∩ Δ)

= µ((U ∩ Δ) \ (Kn ∩ Δ)) ≤ µ(U \ Kn) → 0 .
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Since all (Kn)n∈N were compact subsets of U , we see

µ|Δ(U) = sup{µ|Δ(K) : K is compact and K ⊆ U} .

This means µ|Δ is inner regular, and thus a Radon measure.
Now we proceed to show the second part of the lemma and take z ∈ supp(µ|Δ). This

means that for each neighbourhood Uz of z, we have µ|Δ(Uz) > 0. Since µ|Δ(Uz) ≤ µ(Uz),
this means that z ∈ supp(µ). Now we assume that z ∈ cl(Δ)c. Then there exists a
neighbourhood UΔ

z of z so that UΔ
z ∩ Δ = ∅. This leads to µ|Δ(UΔ

z ) = 0, which is a
contradiction to the fact that z ∈ supp(µ|Δ). Altogether we get

supp(µ|Δ) ⊆ supp(µ) ∩ cl(Δ) .

This proves the lemma.

Lemma 3.8.3. Let µ, ν be two finite measures on the measurable space (X, Ω), and let
ν � µ. Then there exists a Δ ∈ Ω so that the measure µ|Δ is mutually absolutely
continuous with ν, that is [ν] = [µ|Δ].

Proof. We denote by Nν ⊆ Ω the set of sets with ν measure zero, that is Nν := {A ∈
Ω : ν(A) = 0}. Now we consider µ : Nν �→ R+, and since µ is a finite measure, we
know that µ(Ω) is bounded and thus µ|Nν is also bounded. Therefore we can define
t := sup{µ(A) : A ∈ Nν} and get a sequence (An)n∈N ⊆ Nν so that µ(An) → t. We now
define Ãn := �

i≤n Ai and Ã := �∞
n=1 An. Since ν is a measure and thus σ-additive, we

have ν(Ãn) = 0 for all n ∈ N and also ν(Ã) = 0, and therefore Ãn, Ã ∈ Nν . In addition,
we note that (Ãn)n∈N is a monotone series of sets and thus, due to σ-additivity of µ, we
have µ(Ãn) → µ(A). Therefore we get µ(Ã) = t.

We now define Δ := Ãc. Since ν(Ã) = 0, we know that for any B ∈ Ω we have

ν(B) = ν(B ∩ Ã) + ν(B ∩ Δ) = ν(B ∩ Δ) .

Let us now assume that µ|Δ(B) = µ(B ∩ Δ) = 0. Because ν � µ, this means that
ν(B ∩ Δ) = 0 and thus also ν(B) = 0. Therefore we find that ν � µ|Δ. On the other
hand, let us assume ν(B) = 0. If µ|Δ(B) > 0, then we have µ(B ∩ Δ) > 0 and therefore
find

µ((Ã) ∪ (B ∩ Δ)) = µ((Ã) ∪ (B ∩ Ãc)) = µ(Ã) + µ(B ∩ Ãc) = t + µ|Δ(B) > t .

However, ν((Ã)∪(B∩Δ)) = 0 and so this is in contradiction to the fact that t = sup µ(Nν).
Therefore we find that µ|Δ(B) > 0 and thus µ|Δ � ν.

Lemma 3.8.4. Let h1, h2 ∈ H and h2 ⊥ Hh1. Then we find that Hh1 ⊥ Hh2. Further
let h = h1 + h2. Then we find that Hh ⊆ Hh1 ⊕ Hh2.

Proof. We assume N ∈ B(H ) so that Hh = cl(W ∗(N)h), and the same goes for Hh1 and
Hh2 . First we will prove Hh1 ⊥ Hh2 , and for this we take x1 ∈ Hh1 and x2 ∈ Hh2 . We
know that there exists a sequence (Ax2,n)n∈N ⊆ W ∗(N) so that Ax2,nh2 → x2. Further, we
remind ourselves that by Proposition 3.5.4 we know that Hh1 is closed under action from
W ∗(N). We also know that W ∗(N) contains all adjoints, so we have A∗

x2,nx1 ∈ Hh1 for all
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n ∈ N. Together with the facts that h2 ⊥ Hh1 and that the scalar product is continuous,
this gives us

�x1, x2� = lim
n→∞�x1, Ax2,nh2� = lim

n→∞�A∗
x2,nx1, h2� = 0 .

Thus we find that Hh1 ⊥ Hh2 .
Now we move on to show that Hh ⊆ Hh1 ⊕ Hh2 . Let us take x ∈ Hh with xn := Ax,nh

and xn → x in a similar notation as above. We see for all n ∈ N that

xn = Ax,nh = Ax,nh1 + Ax,nh2 ∈ Hh1 ⊕ Hh2 .

As the direct sum of two closed subspaces, Hh1 ⊕ Hh2 is again closed and therefore we
have x ∈ Hh1 ⊕ Hh2 . Thus we find that Hh ⊆ Hh1 ⊕ Hh2 .

Lemma 3.8.5. Let N ∈ B(H ) be a normal operator and let h ∈ H . Then we find a
separating vector eh ∈ H for W ∗(N) so that h ∈ Heh

.

Proof. This proof will consist of three steps. First we want to reduce the Hilbert space
for our problem to the direct sum Hred ! L2(µ) ⊕ L2(µ|Δ), and we will show that for
φ(N) ∈ W ∗(N) we have

φ(N)|Hred
! Mφ ⊕ Mφ ∈ B(L2(µ) ⊕ L2(µ|Δ)) .

Afterwards we will construct a vector in L2(µ) ⊕ L2(µ|Δ) that will become our candidate
for eh. In the second step, we then show that eh is indeed separating, and in the third
step we will show h ∈ Heh

.
To commence with the first step, we remember that Corollary 3.4.9 tells us that the

C∗-algebra W ∗(N) has a separating vector es, which will be a good starting point of our
investigation. We can then split h = h� + h⊥ where h� ∈ Hes and h⊥ ∈ H ⊥

es
. According

to Lemma 3.8.4, we know that Hes ⊥ Hh⊥ , so we can consider h ∈ Hes ⊕ Hh⊥ and reduce
our calculations to this subspace. By Theorem 3.5.8 and Lemma 3.8.1 we know that

Hes ⊕ Hh⊥ ! L2(µes) ⊕ L2(µh⊥)

Nes ⊕ Nh⊥ ! Nµes
⊕ Nµh⊥

.

Since es is a separating vector for W ∗(N) we know by Theorem 3.7.11 that µes is a scalar-
valued spectral measure for N and thus by Proposition 3.7.1 we know that µh⊥ � µes . We
now designate µ := µes , and Lemma 3.8.3 tells us that there exists a Borel set Δ so that
[µ|Δ] = [µh⊥ ]. With Proposition 3.5.3 this means Nµ|Δ ! Nµh⊥

and so we get

Hes ⊕ Hh⊥ ! L2(µ) ⊕ L2(µ|Δ)

Nes ⊕ Nh⊥ ! Nµ ⊕ Nµ|Δ .

Since µ = µes , Theorem 3.7.11 now tells us that there exists a unique unitary V1 : Hes �→
L2(µ) so that V es = 1 and V1φ(Nes)V −1

1 = Mφ for all φ ∈ B(σ(N)). When it comes to
Nµ|Δ ! Nh⊥ , we get a similar relation, however we have to remember that µ|Δ �= µh⊥ .
Thus Theorem 3.7.11 only tells us that there exists a vector x⊥ ∈ Hh⊥ so that Hx⊥ = Hh⊥
and µ|Δ = µx⊥ . Additionally we get a unique unitary V2 : Hes �→ L2(µ|Δ) so that V2x⊥ = 1



3.8 Multiplicity Theory on Seperable Hilbert Spaces 51

and V2φ(Nx⊥)V −1
2 = Mφ for all φ ∈ B(σ(N)). Restating our previous equations with this

new insight we now see
Hes ⊕ Hx⊥ ! L2(µ) ⊕ L2(µ|Δ)

Nes ⊕ Nx⊥ ! Nµ ⊕ Nµ|Δ .

By Theorem 3.7.7 we have W ∗(N) = {φ(N) : φ ∈ B(σ(N))}. According to Corollary 3.7.8
for φ ∈ B(σ(N)) this gives

φ(N)|Hes ⊕Hx⊥ = φ(Nes) ⊕ φ(Nx⊥) .

We now label V := V1 ⊕ V2, and by Lemma 3.8.1 we see that V : Hes ⊕ Hx⊥ �→
L2(µ) ⊕ L2(µ|Δ) is a unitary operator with V −1 = V −1

1 ⊕ V −1
2 . By combining this with

our previous considerations and taking φ ∈ B(σ(N)) we get

V φ(N)|Hes ⊕Hx⊥ V −1

= V1φ(Nes)V −1
1 ⊕ V2φ(Nx⊥)V −1

2

= Mφ ⊕ Mφ .

We now remember that h = h� + h⊥ with h� ∈ Hes and h⊥ ∈ Hx⊥ , so we can denote

g1 ⊕ g2 := V h = V1h� ⊕ V2h⊥ .

This helps us define

f1(z) :=
�

1 if z ∈ Δc

g1(z) if z ∈ Δ
f2(z) := g2(z) .

With this definition in hand, we take eh := V −1(f1 ⊕ f2). This definition might seem
arbitrary at first, but the subsequent calculations will prove that eh is the separating
vector required by this lemma. It is important to remember that eh ∈ Hes ⊕ Hx⊥ ⊆ H .

We now proceed to the second part of this proof, where we want to show that eh is
separating for W ∗(N). Let us now assume Mφf1 ⊕ Mφf2 = 0. This means especially
that Mφf1 = 0 µ-almost everywhere on Δc. Since f1 = 1 on Δc, we can conclude that
Mφ1 = φ(z) = 0 µ-almost everywhere on Δc. On the other hand, let us look at Mφf2 = 0.
We remember that f2(z) = V2h⊥, and we now want to show that |f2(z)| > 0 µ-almost
everywhere on Δ. Let now E be the spectral measure for N and ω be a Borel set. According
to Theorem 4.6.3 we have φω(N) = E(ω) with φω(z) = χω(z). This means we get

µh⊥(ω) = �E(ω)h⊥, h⊥�H = �E(ω)|Hx⊥ h⊥, h⊥�Hx⊥

= �χωf2, f2�L2(µ|Δ) =
�

Δ
χω|f2(z)|2dµ(z) .

In the last equality we used the fact that dµ|Δ
dµ

= χΔ, as given by Proposition 4.7.5.
Further we see that according to Corollary 3.6.4 the last expression is precisely µf2 , and
so altogether we obtain µf2 = µh⊥ . Since by definition of Δ we had [µ|Δ] = [µh⊥ ], this
means that also [µ|Δ] = [µf2 ]. However, since µf2(ω) =

�
Δ χω|f2(z)|2dµ(z), this is only
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possible if |f2| > 0 µ-almost everywhere on Δ. Therefore we see that Mφf2 = 0 only if
φ(z) = 0 µ-almost everywhere on Δ. Together we have found that Mφf1 ⊕ Mφf2 = 0
implies both φ(z) = 0 µ-almost everywhere on Δc and φ(z) = 0 µ-almost everywhere on
Δ, which means that φ(z) = 0 µ-almost everywhere. Now we remember that µ = µes and
es is a separating vector for W ∗(N), so according to Theorem 3.7.11 we know that µ is a
scalar-valued measure for N . This means that φ(z) = 0 E-almost everywhere as well, and
so φ(N) = 0. Therefore we have φ(N) = 0 if and only if

φ(N)V −1(f1 ⊕ f2) = V −1(Mφf1 ⊕ Mφf2) = 0 .

We remind ourselves that by Theorem 3.7.7 we have W ∗(N) = {φ(N) : φ ∈ B(σ(N))}, so
we have shown altogether that V −1(f1 ⊕ f2) is a separating vector for W ∗(N). Thus we
can set eh := V −1(f1 ⊕ f2).

In the third part of the proof, we will show that h ∈ Heh
. To this end, we will split h

differently into h = E(Δ)h + E(Δc)h. We immediately see that

V E(Δ)h = χΔg1 ⊕ χΔg2 .

On the other hand, since χΔf1 = χΔg1 and f2 = g2, we also get

V E(Δ)eh = V E(Δ)V −1f1 ⊕ f2 = χΔg1 ⊕ χΔg2 .

Because V is unitary, we find E(Δ)h = E(Δ)eh. The other half is a bit more complicated.
Since µ|Δ(Δc) = 0, we see that χΔc = 0 µ|Δ-almost everywhere and so we have

V E(Δc)h = χΔcg1 ⊕ χΔcg2 = χΔcg1 ⊕ 0 .

Theorem 4.7.7 tells us that L∞(µ) ∩ L2(µ) is dense in L2(µ), so there exists a sequence
(φn)n∈N with φn → χΔcg1 in L2(µ). We can now find representatives (φ̃n)n∈N so that
sup |φ̃n(z)| ≤ ||φn||L∞(µ), and thus (φ̃n)n∈N ⊆ B(σ(N)). Before we make the computation
for E(Δc)h, we remind ourselves that f1 = 1 on Δc, so we get

V E(Δc)eh = V E(Δc)V −1f1 ⊕ f2 = χΔc ⊕ 0 .

Now we can apply our recent insights to see

V φ̃n(N)E(Δc)eh = V φ̃n(N)V −1V E(Δc)V −1(f1 ⊕ f2)

= V φ̃n(N)V −1(χΔc ⊕ 0) = χΔcφ̃n ⊕ 0 .

Since φ̃n → χΔcg1, we see that

χΔcφ̃n → χ2
Δcg1 = χΔcg1 .

Again using the fact that V is unitary, we find that φ̃n(N)E(Δc)eh → E(Δc)h. We now
tie everything together to define xn := (E(Δ) + φ̃n(N)E(Δc))eh for n ∈ N and we see

xn = (E(Δ) + φ̃n(N)E(Δc))eh = E(Δ)h + φ̃n(N)E(Δc)eh
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→ E(Δ)h + E(Δc)h = h .

To conclude our proof, we now remind ourselves that E(Δ), E(Δc) ∈ W ∗(N). Since W ∗(N)
is an algebra, we also have E(Δ) + φ̃n(N)E(Δc) for all n ∈ N. Thus we get xn ∈ Heh

, and
since xn → h and Heh

is closed, we also have h ∈ Heh
. We have already proven that eh is

separating for W ∗(N), so this concludes the lemma.

Lemma 3.8.6. Let An ∈ B(Hn) with n ∈ N and let A ! 
∞
n=1 An. Then we have

cl (�
n∈N σ(An)) = σ(A).

Proof. First let us denote H so that A ∈ B(H ), H⊕ = 
∞
n=1 Hn and A⊕ = 
∞

n=1 An.
We want to show that σ(A⊕) = σ(A). We know that there exists a unitary operator
V : H⊕ �→ H with

V −1AV = A⊕ .

Next, we take λ ∈ ρ(A), and we define Bλ = (A − λH )−1. Further, we remark that
V −1λH V = λH⊕ . Altogether, we can show

V −1BλV (A⊕ − λH⊕) = V −1BλV V −1(A − λH )V = V −11H V = 1H⊕ .

The exact same calculation holds for

(A⊕ − λH⊕)V −1BλV = ... = 1H⊕ .

This means we have λ ∈ ρ(A⊕) and thus ρ(A⊕) ⊆ ρ(A). We can now just swap out A
and A⊕ in the previous calculation to also get ρ(A) ⊆ ρ(A⊕). Since ρ(A) = C \ σ(A) and
ρ(A⊕) = C \ σ(A⊕), this gives us σ(A⊕) = σ(A). This means we can now move on to show
cl (�

n∈N σ(An)) = σ(A⊕).
First, we want to prove cl (�

n∈N σ(An)) ⊆ σ(A⊕) by seeing that ρ(A⊕) ⊆ ρ(An) for all
n ∈ N. We take λ ∈ ρ(A⊕) and know that Bλ⊕ := (A⊕ − λH⊕)−1 exists. Now let PHn be
the projection from H⊕ onto Hn for n ∈ N. Since A⊕ is a direct sum and λH⊕ commutes
with every other linear operator, we get

PHn(A⊕ − λH⊕) = (A⊕ − λH⊕)PHn = PHn(A⊕ − λH⊕)PHn .

This knowledge now helps us to make the following calculation

PHn = PHn1H⊕PHn = PHn(A⊕ − λH⊕)Bλ⊕PHn

=
�
PHn(A⊕ − λH⊕)PHn

� �
PHnBλ⊕PHn

�
.

We can now interpret both sides as operators on Hn. From the definition of A⊕ we get�
PHn(A⊕ − λH⊕)PHn

�
|Hn = An − λHn .

Further, we have PHn |Hn = 1Hn . We denote
�
PHnBλ⊕PHn

�
|Hn = Bλn , and if we combine

this with our previous insight, we get

1Hn = (An − λHn)Bλn .
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We can similarly show that Bλn is the left-inverse, and thus An − λHn is invertible. Thich
means that λ ∈ ρ(An) and therefore ρ(A⊕) ⊆ ρ(An). Similar as before, this gives us
σ(An) ⊆ σ(A⊕) for all n ∈ N. We now remember that σ(A⊕) is closed to get

cl
 �

n∈N
σ(An)

 ⊆ σ(A⊕) .

This proves the first inclusion.
Now we proceed to show cl (�

n∈N σ(An)) ⊇ σ(A⊕). To this end we take λ ∈ int(�
n∈N ρ(An)),

which means we find an � > 0 so that the open ball of size � centered around λ is contained
within all ρ(An). This especially implies that dist(σ(An), λ) ≥ � and thus we find by
Proposition 4.6.1 that

||(An − λHn)−1|| ≤ 1
�

.

Therefore, the family ((An − λHn)−1)n∈N has bounded norm and thus we can define the
linear operator

Bλ⊕ :=
∞	

n=1
(An − λHn)−1 .

The calculations above tell us that ||Bλ⊕ || ≤ 1
�
, and so Bλ⊕ ∈ B(H⊕). Now find

Bλ⊕(A⊕ − λH⊕) = Bλ⊕

� ∞	
n=1

(An − λHn)
�

=
∞	

n=1
1Hn = 1H⊕ .

In a similar manner we get (A⊕ − λH⊕)Bλ⊕ = 1H⊕ , and we see that λ ∈ ρ(A⊕). This
means we get

int
 

n∈N
ρ(An)

 ⊆ ρ(A⊕) .

We remember that ρ(An) = C \ σ(An), and by taking the complement on both sides we
find

cl
 �

n∈N
σ(An)

 ⊇ σ(A⊕)

This proves the second inclusion and thus the lemma.

Note. For the next lemma we need some additional notation to facilitate our calculations.
If we split a Hilbert space H into H = H1 ⊕ H2, we can introduce a matrix notation for
all vectors and operators. For example with h ∈ H and A ∈ B(H ), we have h = h1 ⊕ h2
and we can make the following identification

Ah ∼
�

A11 A21
A12 A22

� �
h1
h2

�
=

�
A11h1 + A12h2
A21h1 + A22h2

�
.

Further, for B ∈ B(H ) we can represent AB as

AB ∼
�

A11 A21
A12 A22

� �
B11 B21
B12 B22

�
=

�
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

�
.
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Additionally, with some quick calculation, we can get matrix rules for the adjoint of A.
This means

A∗ ∼
�

A∗
11 A∗

12
A∗

21 A∗
22

�
=

�
(A11)∗ (A21)∗

(A12)∗ (A22)∗

�
=

�
A11 A21
A12 A22

�∗
.

It is important to remember that here A∗
12 is the H2 �→ H1 component the adjoint of A,

while (A12)∗ is the adjoint of the H2 �→ H1 component of A. The previous equality tells
us especially that A∗

12 = (A21)∗.

Lemma 3.8.7. Let N1 ∈ B(H1), A ∈ B(H2), N2 ∈ B(K1) and B ∈ B(K2) be normal
operators. Further, let h ∈ H1 so that h is cyclic for W ∗(N1). Then if N1 ! N2 and
N1 ⊕ A ! N2 ⊕ B we have A ! B.

Proof. The core issue here is that we have a unitary map giving us N1 ⊕ A ! N2 ⊕ B, but
that doesn’t mean this unitary map preserves N1 ! N2 and A ! B. Therefore we want to
use the additional information of N1 ! N2 and the cyclic vector h ∈ H1 to obtain A ! B.

To do this, we first simplify by taking N1 = N and H1 = H and removing N2 from
the problem. Since N = N1 ! N2, we can take a unitary operator I : H �→ K1 so that
INI−1 = N2. Now we define the operator Ĩ : H ⊕ K2 �→ K1 ⊕ K2 by setting Ĩ = I ⊕ 1K2 .
Lemma 3.8.1 tells us that Ĩ is unitary and that Ĩ−1 = I−1 ⊕ 1K2 . Now we can derive

Ĩ(N ⊕ B)Ĩ−1 = (I ⊕ 1K2)(N ⊕ B)(I−1 ⊕ 1K2) = INI−1 ⊕ B = N2 ⊕ B .

This means we have N2 ⊕ B ! N ⊕ B, and because of N1 ⊕ A ! N2 ⊕ B and N1 = N we
get N ⊕ A ! N ⊕ B. This reduces the complexity of the problem a bit, since we can now
just focus on A, B,N on the Hilbert spaces H2, K2,H respectively.

Now we turn to the actual proof. We take U : H ⊕ H2 �→ H ⊕ K2 to be the unitary
operator with the property

U(N ⊕ A)U−1 = N ⊕ B .

We want to proceed in two steps, where first we establish the core matrix equations for
U, N, A, B, which will make our subsequent calculations easier. In the second step, we use
these equations, in conjunction with Proposition 3.3.5, to obtain A ! B.

We see by Proposition 3.2.5 that (X ⊕ Y )∗ = X∗ ⊕ Y ∗ for any bounded linear operators
X, Y . Further, since U is unitary, we have U−1 = U∗, and thus we get

U(N∗ ⊕ A∗)U−1 =

= U(N ⊕ A)∗U∗ = (U(N ⊕ A)U∗)∗ = (N ⊕ B)∗ =
= N∗ ⊕ B∗ .

We can then rewrite these equations to obtain

U(N ⊕ A) = (N ⊕ B)U

U(N∗ ⊕ A∗) = (N∗ ⊕ B∗)U . (3.1)
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To better understand their interactions, we now want to split the operators U , N ⊕ A and
N ⊕ B into 2 × 2 matrices like discussed above. First, we see

N ⊕ A ∼
�

N 0
0 A

�
N ⊕ B ∼

�
N 0
0 B

�
.

Further, although it is not an automorphism, we can obtain a similar matrix representation
for U and see1

U ∼
�

U11 U12
U21 U22

�
.

Now we translate equations (3.1) intro matrix form and get�
U11N U12A
U21N U22A

�
=

�
NU11 NU12
BU21 BU22

�
�

U11N
∗ U12A

∗

U21N
∗ U22A

∗

�
=

�
N∗U11 N∗U12
B∗U21 B∗U22

�
. (3.2)

From now on, we will refer to the respective equations by either (3.2)ij or (3.2)∗
ij .2 Further,

we get from 1H ⊕H2 = U∗U and 1H ⊕K2 = UU∗ the following two matrix equations�
1H 0
0 1H2

�
=

�
(U11)∗U11 + (U21)∗U21 (U11)∗U12 + (U21)∗U22
(U12)∗U11 + (U22)∗U21 (U12)∗U12 + (U22)∗U22

�
(3.3)

�
1H 0
0 1K2

�
=

�
U11(U11)∗ + U12(U12)∗ U11(U21)∗ + U12(U22)∗

U21(U11)∗ + U22(U12)∗ U21(U21)∗ + U22(U22)∗

�
. (3.4)

Here, we apply the same enumeration scheme as with Equations 3.2.
Now we remember that our main goal is to show A ! B. Equations (3.2)22 and

(3.2)∗
22 are a good start, although the problem is that U22 is not necessarily unitary or an

isomorphism. Our approach will therefore be to separate H2 into ker U22 and (ker U22)⊥,
and to show A ! B for both subspaces separately.

We remember that A, B are normal operators and start by using Proposition 3.3.5
together with U22A = BU22, that is Equation (3.2)22, to get A|(ker U22)⊥ ! B|cl(ranU22).
Propositions 4.4.4 and 4.4.2 now tell us

cl(ranU22) = ((ranU22)⊥)⊥ = (ker(U22)∗)⊥ .

Combining this with our previous insight, we get

A|(ker U22)⊥ ! B|(ker(U22)∗)⊥ .

Now we turn our attention to A|ker U22 . Our next goal will be to use Proposition 3.3.5
again to get

A|ker U22 ! N |U12(ker U22)

1It is important for us to keep in mind that here we have U11 : H �→ H , U12 : H2 �→ H , U21 : H �→ K2
and U22 : H2 �→ K2.

2For example, Equation (3.2)∗
21 designates U12N∗ = B∗U12.
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B|ker(U22)∗ ! N |(U21)∗(ker(U22)∗) .

Then, we will show that U12(ker U22) = (U21)∗(ker(U22)∗), which will give us A|ker U22 !
B|ker(U22)∗ . To this end we take U12A = NU12, that is Equation (3.2)12. However, before
using Proposition 3.3.5, we want to reduce the domain to ker U22, which means we want
to show that A|ker U22 ∈ B(ker U22). Using U22A

∗ = B∗U22, that is Equation (3.2)∗
22, and

the exact same line of reasoning as before, we get A∗|(ker U22)⊥ ! B∗|(ker(U22)∗)⊥ and thus
A∗|(ker U22)⊥ ∈ B((ker U22)⊥). This means A∗(ker U22)⊥ ⊆ (ker U22)⊥, so for x ∈ ker U22
and y ∈ (ker U22)⊥ we find

�Ax, y� = �x, A∗y� = 0 .

Therefore we have Ax ∈ ((ker U22)⊥)⊥ = ker U22 and so we get A ∈ B(ker U22). Now we
are ready to use Equation (3.2)12 with a reduced domain which yields

NU12|ker U22 = U12|ker U22A|ker U22 .

Using Proposition 3.3.5 now gives us the rather clumsy equation

N |cl(ranU12|ker U22 ) ! (A|ker U22)|(ker U12|ker U22 )⊥ .

However, this will get substantially simpler as we now show that

cl(ranU12|ker U22) = U12 ker U22

(ker U12|ker U22)⊥ = ker U22 .

We take h ∈ ker U22 and we see that

Uh ∼
�

U11 U12
U21 U22

� �
0
h

�
=

�
U12h

0

�

Since U is unitary, the previous equation shows us that U12|ker U22 preserves the norm on
ker U22 and thus U12|ker U22 is also unitary in the sense that U12|ker U22 : ker U22 �→ U12 ker U22.
Therefore U12|ker U22h = 0 if and only if h = 0 and thus we find ker U12|ker U22 = {0}, which
in turn means

(ker U12|ker U22)⊥ = ker U22 .

Further, we know that ker U22 as a kernel is closed, and since U12|ker U22 is unitary and thus
isometric, we see that U12|ker U22 ker U22 is also closed. Therefore we find

cl(ranU12|ker U22) = cl(U12 ker U22) = cl(U12|ker U22 ker U22)

= U12|ker U22 ker U22 = U12 ker U22 .

These two insights now enable us to rewrite the clumsy equation above into

N |U12 ker U22 ! A|ker U22 .
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Now we want to show the remaining unitary similarity for B∗|ker U∗
22

. We take the adjoint
of Equations (3.2)∗ and see3

�
(U11)∗N (U21)∗B
(U12)∗N (U22)∗B

�
=

�
N(U11)∗ N(U21)∗

A(U12)∗ A(U22)∗

�
.

Because U is unitary, U∗ is also unitary and we can perform the same steps as before to
get

N |(U21)∗(ker(U22)∗) ! B|ker(U22)∗ .

This leaves us to prove U12 ker U22 = (U21)∗(ker(U22)∗) so that we get A|ker U22 ! B|ker(U22)∗ .
Let us now denote M1 = U12(ker U22) and M2 = (U21)∗(ker(U22)∗). We start by

showing the intermediate step of M1 = ker(U11)∗. For this we take h ∈ ker U22 and use
0 = (U11)∗U12 + (U21)∗U22, that is Equation (3.3)12, to see that

0 = (U11)∗U12h + (U21)∗U22h = (U11)∗U12h .

Therefore U12h ∈ ker(U11)∗, so we can deduce that

M1 = U12(ker U22) ⊆ ker(U11)∗ .

Now on the other hand, for h� ∈ ker(U11)∗ we see by 0 = U21(U11)∗ + U22(U12)∗ (Equation
(3.4)21) that

0 = U21(U11)∗h� + U22(U12)∗h� = U22(U12)∗h� .

We can now deduce (U12)∗(ker(U11)∗) ⊆ ker(U22). Further, we use 1H = U11(U11)∗ +
U12(U12)∗, that is Equation (3.4)11, to get

h� = U11(U11)∗h� + U12(U12)∗h� = U12(U12)∗h� .

This means we have ker(U11)∗ = U12(U12)∗ ker(U11)∗, and we can write the chain of inclusion

ker(U11)∗ = U12(U12)∗(ker(U11)∗) ⊆ U12 ker(U22) = M1 .

Altogether we have shown
M1 = ker(U11)∗ .

By replacing U with U∗, we can also show that

M2 = ker U11 .

For the last step towards M1 = M2, we now want to show ker U11 = ker(U11)∗, and for
this, we will finally use the fact that W ∗(N) has a cyclic vector. We know U11N = NU11
(Equation (3.2)11), so we have U11 ∈ {N}�. Corollary 3.7.10 then implies U11 ∈ W ∗(N),
which in turn means (U11)∗ ∈ W ∗(N). Since W ∗(N) is abelian, we thus get that U11
is normal and together with Proposition 4.4.3 this implies ker U11 = ker(U11)∗ and thus
M1 = M2.

3This calculation is just the matrix adjoint of Equations (3.2)∗.
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To tie everything so far together, we remind ourselves that at the start, we proved

A|(ker U22)⊥ ! B|(ker(U22)∗)⊥ .

Next, we have shown that
A|ker U22 ! N |U12 ker U22

B|ker(U22)∗ ! N |(U21)∗(ker(U22)∗) .

Further, we found that

U12 ker U22 = ker(U11)∗ = ker U11 = (U21)∗(ker(U22)∗) .

This means we have
A|ker U22 ! N |ker U11 ! B|ker(U22)∗ .

For the last step we consider

H2 = ker U22 ⊕ (ker U22)⊥ , K2 = ker(U22)∗ ⊕ (ker(U22)∗)⊥ .

Additionally we can also separate A and B into

A = A|ker U22 ⊕ A|(ker U22)⊥ , B = B|ker(U22)∗ ⊕ B|(ker(U22)∗)⊥

Together with the equivalences A|ker U22 ! B|ker(U22)∗ and A|(ker U22)⊥ ! B|(ker(U22)∗)⊥ , we
can use Lemma 3.8.1 to see that indeed A ! B.

Theorem 3.8.8 (First Multiplicity Theorem). Let H be a separable Hilbert space and
N ∈ B(H ), be a normal operator.
(a) There is a (possibly finite) sequence of Radon measures (µn)n∈N on C with compact
support such that µn+1 � µn for all n ∈ N and

N !
∞	

n=1
Nµn .

(b) For each such representation as given in (a) we find that µ1 is a scalar-valued measure
for N .
(c) Let further M ∈ B(K ) be a normal operator with respective measures (νn)n∈N as given
in (a). Then we find that N ! M if and only if [µn] = [νn] for all n.

Proof of Theorem 3.8.8 (a). We remind ourselves that W ∗(N) is a von Neumann algebra
and H is separable, so we can use Lemma 3.4.5 to obtain a sequence (en)n∈N ⊆ H so
that

H =
∞	

n=1
cl(W ∗(N)en) =

∞	
n=1

Hen .

Further, we know according to Theorem 3.5.8 that N |Hen
! Nµen

and thus we get

N !
∞	

n=1
Nµen

.
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As mentioned before, this is a good starting point, however we do not have any control about
the various µen and their behaviour. To capture the "maximum amount of information"
about N with each subspace, we don’t want the en to be arbitrary, but instead we need
them to be separating for W ∗(N) (or some subset of it), since then W ∗(N)en has a bijection
to W ∗(N). For this endeavour we will use Lemma 3.8.5. This way we can assure that
actually µn+1 � µn for all n ∈ N.

For a start, we label s1 the separating vector with e1 ∈ Hs1 , which is given to us
by Lemma 3.8.5. We will now inductively define the (sn)n∈N as follows. Let us assume
that Kn = 
n

k=1 Hsk
is well defined with Hsi

⊥ Hsj
for i �= j. Then we will choose

sn+1 ∈ K ⊥
n , which ensures via Lemma 3.8.4 that Hsn+1 ⊥ Hsk

for all k ≤ n and thus
Kn+1 = 
n+1

k=1 Hsk
is well defined. However, we will not take any vector as sn+1 but want

to make sure that it is a separating vector for W ∗(N |K ⊥
n

) and that Hen+1 ⊆ Kn+1. To this
end we now want to show that N |K ⊥

n
∈ B(K ⊥

n ) and that N |K ⊥
n

is normal, and afterwards
we will use Lemma 3.8.5 to find a suitable sn+1.

First, we see from Proposition 3.5.4 that for all T ∈ W ∗(N) we have THsk
⊆ Hsk

,
and thus TKn ⊆ Kn. Since T ∗ ∈ W ∗(N), we can take x ∈ Kn and y ∈ K ⊥

n and
see T ∗x ∈ Kn and thus 0 = �T ∗x, y� = �x, Ty�. This means TK ⊥

n ⊆ K ⊥
n . Since

both N, N∗ ∈ W ∗(N), we can use Corollary 3.7.8 to see that W ∗(N |K ⊥
n

) = W ∗(N)|K ⊥
n

,
which especially implies that N |K ⊥

n
∈ B(K ⊥

n ) and that N |K ⊥
n

is a normal operator with
(N |K ⊥

n
)∗ = N∗|K ⊥

n
. Similarly, we see that W ∗(N |Kn) = W ∗(N)|Kn . Now we return to the

partition H = 
∞
n=1 Hen (from Lemma 3.4.5) and separate en+1 = e

�
n+1 + e⊥

n+1, where
e

�
n+1 ∈ Kn and e⊥

n+1 ∈ K ⊥
n . Next, we invoke Lemma 3.8.5 to find a separating vector

sn+1 ∈ K ⊥
n for W ∗(N |K ⊥

n
) so that

cl
�
W ∗(N |K ⊥

n
)e⊥

n+1

�
⊆ cl

�
W ∗(N |K ⊥

n
)sn+1

�
.

Since W ∗(N |K ⊥
n

) = W ∗(N)|K ⊥
n

we have for k ∈ K ⊥
n that

cl
�
W ∗(N |K ⊥

n
)k

�
= cl

�
W ∗(N)|K ⊥

n
k

�
= cl (W ∗(N)k) = Hk .

Thus we can rewrite the above equation to He⊥
n+1

⊆ Hsn+1 . On the other hand we know
that e

�
n+1 ∈ Kn and W ∗(N |Kn) = W ∗(N)|Kn , which means especially that

H
e

�
n+1

= cl
�
W ∗(N)|Kne

�
n+1

�
= cl

�
W ∗(N |Kn)e�

n+1

�
⊆ Kn .

This means that H
e

�
n+1

⊆ Kn. On another note, we see that Hsn+1 ⊆ K ⊥
n , and so

Kn+1 = Kn ⊕ Hsn+1 is a well defined subspace of H . Because en+1 = e
�
n+1 + e⊥

n+1 with
e

�
n+1 ⊥ e⊥

n+1, we can use Lemma 3.8.4 to get Hen+1 ⊆ H
e

�
n+1

⊕ He⊥
n+1

. Combining this
with the insights that H

e
�
n+1

⊆ Kn, that He⊥
n+1

⊆ Hsn+1 and Kn+1 = Kn ⊕ Hsn+1 , we
finally get Hen+1 ⊆ Kn+1. This construction ensures the following inclusion

N	
n=1

Hen ⊆ KN =
N	

n=1
Hsn .
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This means we get
H =

∞	
n=1

Hen ⊆
∞	

n=1
Hsn ⊆ H .

Therefore we have H = 
∞
n=1 Hsn and also

N =
∞	

n=1
N |Hsn

.

As discussed above, Theorem 3.5.8 tells us that N |Hsn
! Nµsn

and thus together with
Lemma 3.8.1 we get

N !
∞	

n=1
Nµsn

.

The previous construction would have been possible with just Lemma 3.4.5, that is
with a simple deconstruction H = 
∞

n=1 Hen and no special requirements for (en)n∈N. In
this case however, there would be no special relation between the µen . Thus, to prove
that µsn+1 � µsn , we want to use Theorem 3.7.11 in conjunction with Proposition 3.7.1,
which tells us that if x ∈ H is separating for W ∗(N), then µx is a scalar-valued measure
and thus for any h ∈ H we have µh � µx. We now remember that s1 is separating for
W ∗(N) and sn+1 is separating for W ∗(N |K ⊥

n
) with Kn = 
n

k=1 Hsk
. We therefore obtain

right away that µs2 � µs1 . Further, we see that Kn−1 ⊆ Kn and since sn+1 ∈ K ⊥
n we

therefore have sn+1 ∈ K ⊥
n−1. However, sn is separating for W ∗(N |K ⊥

n−1
) and thus we find

µsn+1 � µsn .
One important caveat here is that we defined µsn with respect to H and N . This means

for the spectral measure E for N and a Borel set Δ that

µsn(Δ) = �E(Δ)sn, sn�H .

There might be a problem for us as we now take µsn with K ⊥
n as underlying vector space

and N |K ⊥
n

as normal operator. However, we have already shown during the proof of
Corollary 3.7.8 that E|K ⊥

n
is the spectral measure for N |K ⊥

n
, and thus we get for a Borel

set Δ that
µsn(Δ) = �E(Δ)sn, sn�H = �E(Δ)|K ⊥

n
sn, sn�K ⊥

n
.

Therefore we can take µsn with respect to either H or K ⊥
n .

For the last step we have to define the actual Radon measures µn. We just set µsn = µn

and we remember Proposition 3.5.6, which states that µsn is a Radon measure with
compact support. We now combine this with our previous insights to arrive at statement
(a) of our Theorem.

Proof of Theorem 3.8.8 (b). Let us denote N⊕ := 
∞
n=1 Nµn and H⊕ := 
∞

n=1 L2(µn).
Since µn � µ1 for n ∈ N, we have supp(µn) ⊆ supp(µ1), which is equivalent to σ(Nµn) ⊆
σ(Nµ1) according to Proposition 3.5.2. Together with Lemma 3.8.6 and the fact that
spectra are always closed this gives us

σ(N⊕) = cl
� ∞�

n=1
σ(Nµn)

�
= cl(σ(Nµ1)) = σ(Nµ1) = supp(µ1) .
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Now we remember that the (Nµn)n∈N are normal and thus by Proposition 3.2.5 N⊕ is
normal and N∗

⊕ := 
∞
n=1 N∗

µn
. For any n ∈ N we understand that L2(µn) ⊆ H⊕ is a closed

subspace4 with
N⊕L2(µn) = NµnL2(µn) ⊆ L2(µn) .

We can produce the same equation for N∗
⊕, and since N⊕ is normal we can use Corollary

3.7.8 to get φ(N⊕)|L2(µn) = φ(Nµn) for any φ ∈ B(σ(N⊕)). Now we see from Theorem
3.6.3 that φ(Nµn) = Mφ on L2(µn). Since µn � µ1, we see that Mφ = 0 on L2(µ1) implies
Mφ = 0 on L2(µn). Thus φ(N⊕)|L2(µ1) = 0 implies φ(N⊕)|L2(µn) = 0 for all n ∈ N and
therefore φ(N⊕) = 0. Now we take h⊕ := 1 ∈ L2(µ1) ⊆ H⊕ and see that Mφh = φ, and
thus Mφh⊕ = 0 if and only if φ = 0 with respect to L2(µ1). This is equivalent to Mφ = 0
on L2(µ1), which we have shown to be equivalent to φ(N⊕) = 0. Now Theorem 3.7.7 tells
us that all elements of W ∗(N⊕) can be written as some φ(N⊕), which means we have just
proven that h⊕ is a separating vector for W ∗(N⊕).

Now we take V : H �→ H⊕ as the unitary operator with V NV −1 = N⊕ and define
h = V −1h⊕. Because of Corollary 3.7.9, we see that V W ∗(N)V −1 = W ∗(N⊕) and thus h
is also a separating vector for W ∗(N). We can therefore use Theorem 3.7.11 to see that
µh is a scalar-valued spectral measure for N .

Our final goal is to show that µh = µ1. We remember that for a Borel set Δ we have
E(Δ) = φΔ(N) with E being the spectral measure for N and φΔ = χΔ. Collecting all our
previous knowledge, we can now obtain the following equality

µh(Δ) = �E(Δ)h, h�H = �φΔ(N)h, h�H

= �V φΔ(N)V −1h⊕, h⊕�H⊕ = �φΔ(N⊕)h⊕, h⊕�H⊕

= �φΔ(N⊕)|L2(µ1)1, 1�L2(µ1) = �MφΔ1, 1�L2(µ1)

=
�

φΔ(z)dµ1(z) =
�

χΔ(z)dµ1(z) = µ1(Δ) .

Therefore we have µh = µ1, and since µh is a scalar-valued spectral measure for N so is
µ1.

Proof of Theorem 3.8.8 (c). First we examine the case where [µn] = [νn] for all n ∈ N.
Proposition 3.5.3 then tells us that Nµn ! Nνn , which, together with Lemma 3.8.1 gives

N !
∞	

n=1
Nµn !

∞	
n=1

Nνn ! M .

For the other implication, we take a look at the case where N ! M , and will produce our
proof in two steps. As a start, we will show that [µ1] = [ν1]. Next, we inductively reduce
the problem for the measures (µi)i≥n+1 and (µi)i≥n+1 to the initial case and subsequently
obtain [µn+1] = [νn+1].

Let V : H �→ K be a unitary operator so that V NV −1 = M , and let EN , EM be
the spectral measures for N and M respectively. We know by Theorem 4.6.3 that for a

4We write this inclusion to emphasize that we don’t consider L2(µn) on its own but rather as a subspace
of H⊕.
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Borel set Δ and the function φΔ(z) := χΔ(z) we have φΔ(N) = EN(Δ), and similarly
φΔ(M) = EM(Δ). Since φΔ ∈ B(σ(N)), we know by Corollary 3.7.9 that

V EN(Δ)V −1 = V φΔ(N)V −1 = φΔ(M) = EM(Δ) .

However, V is unitary, so we see that EN (Δ) = 0 if and only if EM (Δ) = 0. Now, according
to part (b) of this theorem, µ1 and ν1 are scalar-valued spectral measures for N and M
respectively. Therefore we see that

µ1(Δ) = 0 ⇔ EN(Δ) = 0 ⇔ EM(Δ) = 0 ⇔ ν1(Δ) = 0 .

Altogether we can conclude [µ1] = [ν1].
For the next step, we want to prove [µn+1] = [νn+1] by induction. Our induction

assumptions are twofold. First, we assume [µn] = [νn]. For the second, we define
Nn := 
∞

i=n Nµi
and Mn := 
∞

i=n Nνi
, and we assume that

Nn ! Mn .

As the induction start we have just proven [µ1] = [ν1], and from N ! M together with
our assumptions about (µn)n∈N and (νn)n∈N we know that

N1 =
∞	

i=1
Nµi

! N ! M !
∞	

i=1
Nνi

= M1 .

Now we consider the assumptions true for n and want to deduce them for n + 1. We get
from our second assumption that

Nµn ⊕ Nn+1 = Nn ! Mn = Nνn ⊕ Mn+1 .

Now we want to use Lemma 3.8.7 to obtain Nn+1 ! Mn+1, but first we have to show that
all involved operators are normal and that W ∗(Nµn) and W ∗(Nνn) have a cyclic vector.
For the first fact, we know for a Radon measure µ with compact support by Proposition
3.5.1 that Nµ is normal. Further, Proposition 3.2.5 gives us that a direct sum of normal
operators is normal again. The second fact follows from the proof of Theorem 3.5.8 There
we have shown that for a Radon measure µ with compact support, we find 1 ∈ L2(µ) and
cl(PNµ1) = L2(µ), and finally PNµ ⊆ W ∗(Nµ). This means cl(W ∗(Nµ)1) = L2(µ) and
thus we can do the same for µn and νn to see that W ∗(Nµn) and W ∗(Nνn) both have a
cyclic vector. Altogether we can use Lemma 3.8.7 to obtain

∞	
i=n+1

Nµi
= Nn+1 ! Mn+1 =

∞	
i=n+1

Nνi
.

We now have normal operators Nn+1 ! Mn+1 with partitions (µi)i≥n+1 and (νi)i≥n+1
respectively, where the measures fulfil all properties given in part (a) of this theorem.
Therefore we can use our reasoning from earlier to obtain [µn+1] = [νn+1], which concludes
our induction.
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3.9 Alternative Formulations of Multiplicity Theory
After having proven the First Multiplicity Theorem, we can now investigate further.

We will restate Theorem 3.8.8 in two different ways in Theorems 3.9.2 and 3.9.5, with
each theorem building upon the previous one. For the Second Multiplicity Theorem, we
simply want to switch the measures (µn)n∈N with just one scalar-valued measure µ and a
decreasing sequence of Borel sets (Δn)n∈N with Δn+1 ⊆ Δn so that

N !
∞	

n=1
Nµ|Δn

.

Therefore, we want to construct the sets so that [µn] = [µ|Δn ] for all n ∈ N. The reason
why we want to prefer this restatement is that we can extract the multiplicities much
easier from the sets (Δn)n∈N, since we see that the set Δn \ Δn+1 "appears" exactly n times
in the sum above. We will use this fact when further developing multiplicity theory, but
before we get ahead of ourselves, let us prove two small lemmata, after which we will come
to the Second Multiplicity Theorem.

Lemma 3.9.1. Let µ be a Radon measure, and let Δ be a Borel set so that µ(Δc) = 0.
Then we have µ = µ|Δ. In particular this means µ = µ|supp(µ).

Proof. For a Borel set A we find

µ(A) = µ(A ∩ Δ) + µ(A ∩ Δc) = µ(A ∩ Δ) = µ|Δ(A) .

Thus we get µ = µ|Δ. For the second point, we remember that by Proposition 4.7.6 we
have µ((supp(µ))c) = 0.

Theorem 3.9.2 (Second Multiplicity Theorem). Let H be a separable Hilbert space and
let N ∈ B(H ) be a normal operator.
(a) Let µ be a scalar-valued measure for N . Then we find a decreasing sequence (Δn)n∈N
of Borel subsets of σ(N) so that Δ1 = σ(N) and

N !
∞	

n=1
Nµ|Δn

.

(b) Let K be a separable Hilbert space and let M ∈ B(K ) be normal with a scalar-valued
measure ν. Let further (Σn)n∈N be the corresponding sequence of Borel sets for M , as
detailed in (a). Then N ! M if and only if [µ] = [ν] and µ(Δn \ Σn) = 0 = µ(Σn \ Δn).

Proof of Theorem 3.9.2 (a). We will prove this by using the partition of N as given by
(a) in Theorem 3.8.8, that is

N !
∞	

n=1
Nµ̃n .

Our goal is to define the Δn in such a way that [µ|Δn ] = [µ̃n] for all n ∈ N. Proposition
3.5.3 then tells us that Nµ̃n ! Nµ|Δn

, which means we can get the proof by using Lemma
3.8.1.
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To this end, we will first define Δ1 := σ(N) and show that [µ|Δ1 ] = [µ̃1]. Part (b) of
Theorem 3.8.8 tells us that µ̃1 is a scalar-valued spectral measure for N , and so Proposition
3.7.1 gives us [µ] = [µ̃1]. By Lemma 3.9.1 we further get that µ = µ|σ(N), and so we see
that

[µ|Δ1 ] = [µ] = [µ̃1] .

Now we move on to inductively define Δn+1. We assume that we already have a decreasing
sequence (Δi)i≤n with [µ|Δi

] = [µ̃i] for all i ≤ n. Part (a) of Theorem 3.8.8 now tells us
that µ̃n+1 � µ̃n, and so we have µ̃n+1 � µ|Δn . This means we can use Lemma 3.8.3 to
obtain a Borel set Δ̃n+1 so that [µ̃n+1] = [(µ|Δn)|Δ̃n+1

]. By the definition of restricted
measures, we see for a Borel set ω that

(µ|Δn)|Δ̃n+1
(ω) = µ|Δn(ω ∩ Δ̃n+1) = µ(ω ∩ Δ̃n+1 ∩ Δn) = µ|Δ̃n+1∩Δn

(ω) .

We now define Δn+1 := Δ̃n+1 ∩ Δn and see that Δn+1 ⊆ Δn and [µ|Δn+1 ] = [µ̃n+1]. This
means our induction is successful and we get a decreasing sequence of Borel sets (Δn)n∈N
with [µ|Δn ] = [µ̃n] for all n ∈ N.

Finally, we can return to our initial quest. As discussed, Proposition 3.5.3 tells us that
Nµ̃n ! Nµ|Δn

for all n ∈ N and thus we get by Lemma 3.8.1 that

N !
∞	

n=1
Nµ̃n !

∞	
n=1

Nµ|Δn
.

This concludes the proof.

Proof of Theorem 3.9.2 (b). We will prove part (b) in two steps. First we show that
N ! M if and only if [µ|Δn ] = [ν|Σn ] for all n ∈ N by making use of part (c) of Theorem
3.8.8. Then we will show that [µ|Δn ] = [ν|Σn ] for all n ∈ N is equivalent to [µ] = [ν] and
µ(Δn \ Σn) = 0 = µ(Σn \ Δn) for all n ∈ N.

For the first part, we want to use the uniqueness given in part (c) of Theorem 3.8.8.
We know that

N !
∞	

n=1
Nµ|Δn

, M !
∞	

n=1
Nν|Σn

.

This means we have to show that the µ|Δn are Radon measures with compact support
and that µ|Δn+1 � µ|Δn for all n ∈ N. We remember that µ is a scalar-valued spectral
measure for N , and so by Theorem 3.7.11 there exists a vector h ∈ H so that µ = µh.
Proposition 4.6.5 then tells us that µh is a Radon measure with compact support, and
we get from Lemma 3.8.2 that µ|Δn is also a Radon measure with compact support for
all n ∈ N. Because for n ∈ N we have Δn+1 ⊆ Δn, we see that µ|Δn+1 � µ|Δn . This
means our partition N ! 
∞

n=1 Nµ|Δn
is exactly as described in Theorem 3.8.8, and we can

deduce the same for M ! 
∞
n=1 Nν|Σn

. This means N ! M if and only if [µ|Δn ] = [ν|Σn ]
for all n ∈ N.

We will now turn to show that this is equivalent to [µ] = [ν] and µ(Δn \ Σn) = 0 =
µ(Σn \ Δn) for all n ∈ N. First, we assume that we have [µ|Δn ] = [ν|Σn ] for all n ∈ N.
Since µ is a scalar-valued spectral measure for N , we know by Proposition 3.7.1 that
supp(µ) = σ(N) and thus Lemma 3.9.1 tells us that µ = µ|σ(N). On the other hand, we
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have by definition that Δ1 = σ(N) and so we see µ = µ|Δ1 , and can show the same for
ν = ν|Σ1 . By our assumption, we also know that [µ|Δ1 ] = [ν|Σ1 ], which altogether gives us

[µ] = [µ|Δ1 ] = [ν|Σ1 ] = [ν] .

Next, we take n ∈ N and inspect the following

ν|Σn(Δn \ Σn) = ν(Σn ∩ (Δn \ Σn)) = ν(∅) = 0 .

Since we know from our assumption that [µ|Δn ] = [ν|Σn ], we see that

0 = µ|Δn(Δn \ Σn) = µ(Δn ∩ (Δn \ Σn)) = µ(Δn \ Σn) .

In a similar fashion we see ν(Σn \ Δn) = 0, and since we have shown that [µ] = [ν] we get
µ(Σn \ Δn) = 0. Altogether we see that [µ|Δn ] = [ν|Σn ] for all n ∈ N implies [µ] = [ν] and
µ(Δn \ Σn) = 0 = µ(Σn \ Δn) for all n ∈ N.

Now we will prove the other implication and assume [µ] = [ν] and µ(Δn \ Σn) = 0 =
µ(Σn \ Δn) for all n ∈ N. Let n ∈ N and ω be a Borel set so that µ|Δn(ω) = 0. We use
the additivity of measures and our assumption to see

0 = µ|Δn(ω) = µ(Δn ∩ ω)

= µ((Δn \ Σn) ∩ ω) + µ(Σn ∩ ω) − µ((Σn \ Δn) ∩ ω)
= 0 + µ(Σn ∩ ω) − 0 .

Since [µ] = [ν], we thus know that

0 = ν(Σn ∩ ω) = ν|Σn(ω) .

This means ν|Σn � µ|Δn , and similarly we can show that µ|Δn � ν|Σn . Therefore we see
that [µ] = [ν] and µ(Δn \ Σn) = 0 = µ(Σn \ Δn) for all n ∈ N implies [µ|Δn ] = [ν|Σn ] for
all n ∈ N.

Finally, we have shown that N ! M if and only if [µ|Δn ] = [ν|Σn ] for all n ∈ N, which
is in turn equivalent to [µ] = [ν] and µ(Δn \ Σn) = 0 = µ(Σn \ Δn) for all n ∈ N. This
proves the theorem.

Now we can set our sights towards the Third Multiplicity Theorem 3.9.5. As discussed
above, we will use the sets (Δn)n∈N from Theorem 3.9.2 to define ωn := Δn \ Δn+1 and
ω∞ := �∞

i=1 Δi. Each ωn will be "contained" in the direct sum in Theorem 3.9.2 exactly n
times, so with a bit of clever rearranging we find

N !
∞	

n=1
Nµ|Δn

! (Nµ|ω∞)∞ ⊕
∞	

n=1
(Nµ|ωn

)n .

We also notice that µ|ω∞ and the (µ|ωn)n∈N are mutually singular, and we have already
arrived at Theorem 3.9.5. Again, we will quickly prove two lemmatas and then flesh out
the thoughts above for the proof of the Third Multiplicity Theorem.
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Lemma 3.9.3. Let µ be Radon measure with compact support and let (Δn)n∈N be a
sequence of Borel sets so that µ(Δi ∩ Δj) = 0 for all i �= j and µ((�∞

n=1 Δn)c) = 0. Then
we find:
(a)

µ =
∞�

n=1
µ|Δn .

(b)

Nµ !
∞	

n=1
Nµ|Δn

.

Proof. The proof of (a) is rather easy. We define Δ := �∞
n=1 Δn and find µ(Δc) = 0, so

Lemma 3.9.1 tells us that µ = µ|Δ. Now we take a Borel set ω and see

µ(ω) = µ|Δ(ω) = µ

�
ω ∩

∞�
n=1

Δn

�
= µ

� ∞�
n=1

(Δn ∩ ω)
�

.

Since we have µ(Δi ∩ Δj) = 0 for all i �= j, we can split this expression into a sum and get

µ(ω) = µ

� ∞�
n=1

(Δn ∩ ω)
�

=
∞�

n=1
µ(Δn ∩ ω) =

∞�
n=1

µ|Δn(ω) .

This means we find µ = �∞
n=1 µ|Δn .

Now we turn to show (b). First we remark that according to Proposition 4.7.5 we have
for n ∈ N that dµ|Δn

dµ
= χΔn . Thus, for f ∈ L2(µ) according to Proposition 4.7.6 we find

||f ||2L2(µ|Δn ) =
�

χΔn |f |2dµ ≤ ||f ||2L2(µ) < ∞ .

This means that f ∈ L2(µ|Δn). Therefore we can define the function

V : L2(µ) �→
∞	

n=1
L2(µ|Δn) , V (f) =

∞	
n=1

f .

This function is linear, and we can show that it is also an isometry. For this, we remember
Δ = �∞

n=1 Δn and µ(Δi ∩ Δj) = 0 for all i �= j. Therefore there is at most one χΔn with
non-zero value µ-almost everywhere. This means we have

χΔ =
∞�

n=1
χΔn .

We now take f ∈ L2(µ), label L2
⊕ := 
∞

n=1 L2(µ|Δn) and see

||V f ||2L2
⊕

=
∞�

n=1

�
|f |2dµ|Δn =

∞�
n=1

�
χΔn |f |2dµ =

�
χΔ|f |2dµ .
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The fact that µ = µ|Δ means we can use Proposition 4.7.5 to get dµ = χΔdµ, and we
obtain

||V f ||2L2
⊕

=
�

χΔ|f |2dµ =
�

|f |2dµ = ||f ||2L2(µ) .

Thus, V is an isometry and thus injective. We now want to prove that V is also surjective,
which gives us altogether that V is unitary. Let thus f̃ ∈ L2

⊕ with f̃ = 
∞
i=1 fi. Further we

define f = �∞
i=1 χΔi

fi. We want to show that V f = f̃ , but we don’t yet know if f ∈ L2(µ).
Since µ|Δi

(Δc
i) = 0 for all i ∈ N, we see that fi and χΔi

fi are the same µ|Δi
-almost

everywhere, and thus
f̃ =

∞	
i=1

χΔi
fi .

We can now reverse the calculations above and see that f ∈ L2(µ) and V f = f̃ . Thus V
is surjective and therefore unitary.

Now we turn to canonical multiplication operators and their equivalence. According
to Lemma 3.8.2 we see that µ|Δn is again a Radon measure with supp(µ|Δn) ⊆ supp(µ).
Since µ has compact support and supp(µ|Δn) is closed we see that it is also compact.
Therefore Nµ|Δn

is well defined for all n ∈ N. We take f ∈ L2(µ) and see

V Nµf = V zf =
∞	

i=1
zf =

∞	
i=1

Nµ|Δi
f =

� ∞	
i=1

Nµ|Δi

� ∞	
i=1

f =
� ∞	

i=1
Nµ|Δi

�
V f .

First, this means that 
∞
i=1 Nµ|Δi

is a continuous linear operator, and further that V Nµ =
∞
i=1 Nµ|Δi

V . Since V is unitary, we find Nµ ! 
∞
i=1 Nµ|Δi

.

Lemma 3.9.4. Let (µn)n∈N be a sequence of measures. Then the (µn)n∈N are mutually
singular if and only if there exists a sequence of sets (ωn)n∈N so that

µi = µi|ωi
, ωi ∩ ωj = ∅

i, j ∈ N , i �= j .

Proof. We start by reminding ourselves that two measures µ and ν are mutually singular
if there exists a Borel set Δ so that µ(Δ) = 0 and ν(Δ) = 0. Let us now assume that we
have a sequence of sets (ωn)n∈N so that

µi = µi|ωi
, ωi ∩ ωj = ∅

i, j ∈ N , i �= j .

Thus for i, j ∈ N and i �= j we find

µi(ωc
i ) = µi|ωi

(ωc
i ) = µi(ωc

i ∩ ωi) = 0

µj(ωi) = µj|ωj
(ωi) = µj(ωi ∩ ωj) = 0 .

Therefore we find that µi and µj are mutually singular. Since i, j were chosen arbitrarily,
this means the (µn)n∈N are mutually singular.
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Next we assume that the (µn)n∈N are mutually singular and we want to construct the
sets (ωn)n∈N to fulfil the conditions stated in the lemma. We know for i, j ∈ N and i �= j
that there exists a set Δij so that

µi(Δc
ij) = 0 , µj(Δij) = 0 .

We now take i ∈ N and define ωi := �
j �=i Δij, and we see that

µi(ωc
i ) = µi

�
j �=i

Δc
ij

 ≤ �
j �=i

µi(Δc
ij) = 0 .

Therefore we can use Lemma 3.9.1 to obtain µi = µi|ωi
. On the other hand, we see for

j �= i that ωi ⊆ Δij, which means

µj(ωi) ≤ µj(Δij) = 0 .

This means we have found suitable sets (µn)n∈N so that the conditions of the lemma are
fulfilled.
Theorem 3.9.5 (Third Multiplicity Theorem). Let H be a separable Hilbert space and
let N ∈ B(H ) be a normal operator.
(a) Let µ be a scalar-valued spectral measure for N . Then we find mutually singular Radon
measures µ∞ and µ1, µ2, ... with compact support so that µ = µ∞ + �∞

n=1 µn and

N ! (Nµ∞)∞ ⊕
∞	

n=1
(Nµn)n .

(b) If K is a separable Hilbert space and M ∈ B(K ) is normal with corresponding
measures ν∞, ν1, ν2, ..., then we have N ! M if and only if [µi] = [νi] for all i ∈ N and
[µ∞] = [ν∞].
Remark. It is actually not necessary to assume that µ is a scalar-valued measure, or that
µ∞ + �∞

n=1 µn is a measure at all. The proof for this is based on (b) from Theorem 3.8.8,
but we won’t need it in this thesis.

Proof of Theorem 3.9.5 (a). For this proof, we start with the deconstruction of N given
by Theorem 3.9.2, that is the decreasing sequence (Δn)n∈N of Borel sets, with the property

N !
∞	

n=1
Nµ|Δn

.

We now want to partition the sets (Δn)n∈N further into disjoint sets ω∞ and (ωn)n∈N.
Afterwards, we will use Lemma 3.9.3 to get

µ|Δn = µ|ω∞ +
∞�

i=n

µ|ωi

Nµ|Δn
! Nµ|ω∞ ⊕

∞	
i=n

Nµωi
.
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We can then insert this in our first decomposition obtained by Theorem 3.9.2 and rearrange
the terms to obtain the desired expression. Finally we will show that µ = µ|ω∞ + �∞

i=1 µ|ωi
,

and that µ|ω∞ and the (µ|ωn)n∈N are mutually singular.
As discussed we start with the deconstruction of N given by Theorem 3.9.2 and define

the sets
ωn := Δn \ Δn+1 , ω∞ :=

∞
n=1

Δn .

From this definition we see that Δn = ω∞ ∪ �∞
i=n ωi. This means we have

µ|Δn

��
ω∞ ∪

∞�
i=n

ωi

�c�
= µ|Δn(Δc

n) = 0 .

Further we find for i �= j that ωi ∩ ωj = ∅ and ωi ∩ ω∞ = ∅, and therefore we get

µ|Δn(ωi ∩ ωj) = 0 , µ|Δn(ωi ∩ ω∞) = 0 .

This means the preconditions for Lemma 3.9.3 are fulfilled and we get

µ|Δn = (µ|Δn)|ω∞ +
∞�

i=n

(µ|Δn)|ωi

Nµ|Δn
! N(µ|Δn )|ω∞ ⊕

∞	
i=n

N(µ|Δn )|ωi
.

However, since ωi ⊆ Δi ⊆ Δn for i ≥ n, we get that (µ|Δn)|ωi
= µ|ωi

for i ≥ n. Similarly
we have ω∞ ⊆ Δn and thus (µ|Δn)|ω∞ = µ|ω∞ . Altogether we get

µ|Δn = µ|ω∞ +
∞�

i=n

µ|ωi

Nµ|Δn
! Nµ|ω∞ ⊕

∞	
i=n

Nµωi
.

We can insert this into the deconstruction of N given by Theorem 3.9.2 and get

N !
∞	

n=1

Nµ|ω∞ ⊕ 	
k≥n

Nµ|ωk

 =
∞	

n=1

�
Nµ|ω∞ ⊕ Nµ|ωn

⊕ Nµωn+1
⊕ ...

�
.

When taking the direct sum of vector spaces, their ordering is irrelevant up to a unitary
transformation, so we can rearrange the terms above and get

N ! (Nµ|ω∞ )∞ ⊕
∞	

n=1
(Nµ|ωn

)n .

This is already the form required by the theorem, so we only have to prove that the
measures fulfil all necessary properties.

It remains to be shown that µ = µ|ω∞ + �∞
n=1 µ|ωn and that µ|ω∞ and the (µ|ωn)n∈N

are mutually singular. For one, we have seen that µ|Δ1 = µ|ω∞ + �∞
i=1 µ|ωi

, and we know
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from Theorem 3.9.2 that Δ1 = σ(N) and that µ is a scalar-valued spectral measure.
By Proposition 3.7.1 we further get σ(N) = supp(µ), and Lemma 3.9.1 tells us that
µ = µ|supp(µ). Altogether we find

µ = µ|supp(µ) = µ|σ(N) = µ|Δ1 = µ|ω∞ +
∞�

i=1
µ|ωi

.

Now let us inspect whether the measures are mutually singular. For i �= j we know that
ωj ∩ ωi = ∅ and also ω∞ ∩ ωi = ∅. Therefore we can use Lemma 3.9.4 and see that the
measures are mutually singular. We now label µi := µ|ωi

for i ∈ N and µ∞ := µ|ω∞ and
obtain the theorem.

Proof of Theorem 3.9.5 (b). We will prove the statement by inspecting both directions of
the implication. First we assume that [µ∞] = [ν∞] and [µi] = [νi] for all i ∈ N. We now
want to show that this implies N ! M . By Proposition 3.5.3 we know that Nµi

! Nνi
for

all i ∈ N and Nµ∞ ! Nν∞ . Using Lemma 3.8.1 we therefore get

N ! (Nµ∞)∞ ⊕
∞	

n=1
(Nµn)n ! (Nν∞)∞ ⊕

∞	
n=1

(Nνn)n ! M .

This proves one implication.
Now we turn to the other implication and assume N ! M , and we want to obtain

[µ∞] = [ν∞] and [µi] = [νi] for all i ∈ N from this assumption. This implication is
unfortunately much harder to show, and we will go at it in several steps. First we will
reverse-engineer the proof of (a) to get measures µ and ν together with decreasing sequences
of sets (Δn)n∈N and (Σn)n∈N so that we can use part (b) of Theorem 3.9.2. From this we
will obtain that [µ] = [ν] and µ(Δn \ Σn) = 0 = µ(Σn \ Δn) for all n ∈ N. In the second
step, we will show that this in turn implies [µi] = [νi] for all i ∈ N and finally [µ∞] = [ν∞].

For the first step we take the well defined scalar-valued spectral measure

µ := µ∞ +
∞�

n=1
µn .

According to Theorem 3.7.11 there exists a vector h ∈ H so that µ = µh, and Proposition
4.6.5 then tells us that µh is a Radon measure with compact support. Our goal is to use µ
as a springboard to apply Theorem 3.9.2. We know that the (µi)i∈N and µ∞ are mutually
singular, so we can use Lemma 3.9.4 to get sets (ωi)i∈N and ω∞ with the properties

µi = µi|ωi
, ωi ∩ ωj = ∅

µ∞ = µ∞|ω∞ , ω∞ ∩ ωj = ∅
i, j ∈ N , i �= j .

We can now reverse-engineer (Δn)n∈N by defining n ≥ 2 the sets

Δ1 := σ(N) , Δn := ω∞ ∪
∞�

i=n

ωi .
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Before we get into the meat of it all, we will prove some properties relating µ to the (µi)i∈N.
We start by showing that µ|Δn = µ∞ + �∞

i=n µi. First, we deal with the general case and
afterwards we will turn towards the special case n = 1. Let n ∈ N with n ≥ 2 and let i < n.
We remember that the (ωi)i∈N and ω∞ are disjoint and that µj(ωi) = µj(ωj ∩ ωi) = 0 for
i �= j. Similarly we see µ∞(ωi) = 0. This means we get

µi(Δn) = µi

ω∞ ∪
∞�

j=n

ωj

 = µi(ω∞) +
∞�

j=n

µi(ωj) = 0 .

Therefore we find that for any Borel set Δ we have µi(Δ ∩ Δn) = 0. On the other hand
we take i ≥ n and see that ωi ⊆ Δn. We remember that µi = µi|ωi

and we calculate

µi(Δ ∩ Δn) = µi|ωi
(Δ ∩ Δn) = µi(Δ ∩ Δn ∩ ωi)

= µi(Δ ∩ ωi) = µi|ωi
(Δ) = µi(Δ) .

Taken together, this means we have µi(Δ ∩ Δn) = µi(Δ) if i ≥ n and µi(Δ ∩ Δn) = 0 if
i < n. Since ω∞ ⊆ Δn, we can show similarly that µ∞(Δ ∩ Δn) = µ∞(Δ). Therefore we
can now calculate

µ|Δn(Δ) = µ(Δ ∩ Δn) = µ∞(Δ ∩ Δn) +
∞�

i=1
µi(Δ ∩ Δn) = µ∞(Δ) +

∞�
i=n

µi(Δ) .

This means we get for n ≥ 2 that

µ|Δn = µ∞ +
∞�

i=n

µi .

For the case n = 1, we know that µ is a scalar-valued spectral measure and Proposition
3.7.1 tells us that supp(µ) = σ(N). Further, we have Δ1 = σ(N) and Lemma 3.9.1 tells
us that µ = µ|supp(µ), so altogether we get

µ|Δ1 = µ = µ∞ +
∞�

n=1
µn .

Now we move on to inspect (µ|Δn)|ωi
for n, i ∈ N. We remember that µi(ωj) = 0 for i �= j

and µ∞(ωi) = µi(ω∞) = 0, and we can use a similar argumentation as above to obtain

(µ|Δn)|ωi
=

�
µi if i ≥ n

0 if i < n
, (µ|Δn)|ω∞ = µ∞

Now we want to use these insights together with Lemma 3.9.3 and show

Nµ|Δn
! N(µ|Δn )|ω∞ ⊕

∞	
i=n

N(µ|Δn )|ωi
= Nµ∞ ⊕

∞	
i=n

Nµi
. (3.5)

To use the lemma we have to prove for n ∈ N that µ|Δn is a Radon measure with compact
support, that µ|Δn(ωi ∩ωj) = 0 and µ|Δn(ωi ∩ω∞) = 0 for i �= j and i ≥ n. Finally, we also
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have to prove that µ|Δn((ω∞∪�∞
i=n ωi)c) = 0. For the first condition, we have already stated

that µ is a Radon measure with compact support, so according to Lemma 3.8.2 we know
that µ|Δn is also a Radon measure with compact support. Coming to the second condition,
we know that the (ωi)i∈N and ω∞ are disjoint, so we get µ|Δn(ωi ∩ ωj) = µ|Δn(ωi ∩ ω∞) = 0
with i ≥ n and i �= j. Now for the third condition we see

µ|Δn

��
ω∞ ∪

∞�
i=n

ωi

�c�
= µ|Δn(Δc

n) = µ(Δc
n ∩ Δn) = µ(∅) = 0 .

This means we can use Lemma 3.9.3 and obtain Equation 3.5. Now we take Lemma 3.8.1
to form the direct sum and then rearrange the terms, so we get

∞	
n=1

Nµ|Δn
!

∞	
n=1

�
Nµ∞

∞	
i=n

Nµi

�
! N∞

µ∞ ⊕
∞	

n=1
Nn

µn
! N .

Therefore we have found a scalar-valued spectral measure µ and a sequence of Borel sets
(Δn)n∈N with Δ1 = σ(N) so that 
∞

n=1 Nµ|Δn
! N , which are the exact conditions for

Theorem 3.9.2.
Next we turn our attention to M , ν∞ and (νi)i∈N. We know that we have the scalar-valued

spectral measure
ν := ν∞ +

∞�
n=1

νn .

We can now define in the same manner as before the sets (γi)i∈N with

νi = νi|γi
, γi ∩ γj = ∅

ν∞ = ν∞|γ∞ , γ∞ ∩ γj = ∅
i, j ∈ N , i �= j .

We further define for n ≥ 2 the sets

Σ1 := σ(M) , Σn := γ∞ ∪
∞�

i=n

γi .

As we have shown before, we get 
∞
n=1 Nν|Σn

! M with the same conditions as given in
Theorem 3.9.2. To tie everything up, we remember that our assumption was N ! M , and
so part (b) of Theorem 3.9.2 tells us that [µ] = [ν] and µ(Δn \ Σn) = 0 = µ(Σn \ Δn) for
all n ∈ N. This concludes the first step of our proof.

In the second step of this proof we show that this leads to [µ∞] = [ν∞] and [µi] = [νi]
for all i ∈ N. We start with i ∈ N and want to prove [µi] = [νi]. To this end we will show
some equalities that will help us along the way. First we see that

µ|Δi
− µ|Δi+1 = µ∞ +

∞�
j=i

µj − µ∞ −
∞�

j=i+1
µj = µi .
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We then remember that µ(Δi \ Σi) = 0 = µ(Σi \ Δi) and get for a Borel set Δ that

µ|Δi
(Δ) = µ(Δ ∩ Δi)

= µ(Δ ∩ Σi) − µ(Δ ∩ (Σi \ Δi)) + µ(Δ ∩ (Δi \ Σi)) = µ(Δ ∩ Σi) .

Similarly we get µ|Δi+1(Δ) = µ(Δ ∩ Σi+1). Finally, we know that Σi+1 ⊆ Σi, so we get

µ(Δ ∩ Σi) − µ(Δ ∩ Σi+1) = µ(Δ ∩ (Σi \ Σi+1)) .

Next we take Δ so that µi(Δ) = 0 and see

0 = µi(Δ) = µ|Δi
(Δ) − µ|Δi+1(Δ) = µ(Δ ∩ Δi) − µ(Δ ∩ Δi+1)

= µ(Δ ∩ Σi) − µ(Δ ∩ Σi+1) = µ(Δ ∩ (Σi \ Σi+1)) .

Now we use the fact that [µ] = [ν] and a chain of similar equalities as above to get

0 = ν(Δ ∩ (Σi \ Σi+1)) = ν|Σi
(Δ) − ν|Σi+1(Δ) = νi(Δ) .

This means we have found that νi � µi. We can show µi � νi by switching µi with νi

and Δi with Σi, so altogether we obtain [µi] = [νi].
Unfortunately the deductions above don’t hold true for [µ∞] = [ν∞], so we need some

additional considerations. To this end, we will now define for i ∈ N the sets

ηi := ωi ∩ γi , Ξ∞ :=
� ∞�

i=1
ηi

�c

We will now show that µi(Ξ∞) = 0 for i ∈ N and µ∞(Ξc
∞) = 0 to obtain µ|Ξ∞ = µ∞. To

this end we take i ∈ N and consider [µi] = [νi]. Since we know νi(γc
i ) = νi(γi ∩ γc

i ) = 0, we
get µi(γc

i ) = 0. Further we similarly have µi(ωc
i ) = 0, so together we find

µi(ηc
i ) = µi(ωc

i ∪ γc
i ) ≤ µi(ωc

i ) + µi(γc
i ) = 0 .

Because Ξ∞ ⊆ ηc
i , we see that µi(Ξ∞) ≤ µi(ηc

i ) = 0. On the other hand we remember that
µ∞(ωi) = µ∞(ω∞ ∩ ωi) = 0 for i ∈ N, so we get

µ∞(Ξc
∞) = µ∞

� ∞�
i=1

ηi

�
≤

∞�
i=1

µ∞(ωi ∩ γi) = 0 .

According to Lemma 3.9.1 this means µ∞|Ξ∞ = µ∞. Now we take a Borel set Δ and
calculate

µ|Ξ∞(Δ) = µ∞(Δ ∩ Ξ∞) +
∞�

i=1
µi(Δ ∩ Ξ∞) = µ∞(Δ ∩ Ξ∞) = µ∞|Ξ∞(Δ) = µ∞(Δ) .
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Thus we get µ|Ξ∞ = µ∞. Since the (ηi)i∈N are defined symmetrically in ω and γ, we can
show ν|Ξ∞ = ν∞ in the same way. Now we take a Borel set Δ so that µ∞(Δ) = 0, which
means

0 = µ∞(Δ) = µ|Ξ∞(Δ) = µ(Δ ∩ Ξ∞) .

Since [µ] = [ν], this means we also get

0 = ν(Δ ∩ Ξ∞) = ν|Ξ∞(Δ) = ν∞(Δ) .

Therefore we have ν∞ � µ∞, and we can similarly show ν∞ � µ∞. This means we have
[µ∞] = [ν∞], which concludes the proof.

3.10 Multiplicity Functions
We have finally reached the crowning section of this thesis, in which we will state our

Central Multiplicity Theorem and obtain the multiplicity function # for N . Before we
can do that however, we must introduce some definitions to understand where and how
the multiplicity function operates, and how we can construct a relevant operator N# so
that we actually find N ! N#.
Definition 3.10.1. Let H be a Hilbert space, let (X, Ω, µ) be a measure space, and
let f : X �→ H . Then we call f measurable if the function fg : X �→ C defined by
fg(x) := �f(x), g� is measurable for each g ∈ H .
Proposition 3.10.1. Let H be a separable Hilbert space, let (X, Ω, µ) be a measure space,
and let f : X �→ H be a measurable function. Then the function ||f ||H : X �→ C defined
by ||f ||H (x) = ||f(x)||H is a measurable function.
Proof. Since H is separable, we can find a countable orthonormal basis (en)n∈N of H .
We know that fen is measurable for n ∈ N, and we know that we have the point-wise
convergence

lim
N→∞

N�
n=1

|fen(x)|2 = lim
N→∞

N�
n=1

|�f(x), en�|2 = ||f(x)||2H .

Therefore ||f(x)||2H is also a measurable function, and because √
. : C �→ C is measurable

we see that ||f(x)||H is measurable as well.
Definition 3.10.2. Let H be a separable Hilbert space, and let (X, Ω, µ) be a measure
space. We define the set

L 2(µ, H ) := {f : f is measurable and
�

||f(x)||2H dµ(x) < ∞} .

Further we define the inner product on L 2(µ, H ) as

�f, g�L 2(µ,H ) :=
�

�f(x), g(x)�H dµ(x) .

Proposition 3.10.2. The set L 2(µ, H ) with the pointwise vector space operations of H
is a vector space. Further, the inner product from Definition 3.10.2 is well defined, and
the equivalence classes L2(µ, H ) of L 2(µ, H ) form a Hilbert space.
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Proof. First we will investigate whether L 2(µ, H ) is a vector space. For f ∈ L 2(µ, H )
λ ∈ C we find �

||λf(x)||2H dµ(x) =
�

|λ|2||f(x)||2H dµ(x) < ∞ .

Now we remember that for a, b ∈ R we have (a + b)2 ≤ 2(a2 + b2). Therefore we see for
g ∈ L 2(µ, H ) that�

||f(x) + g(x)||2H dµ(x) ≤
�

2(||f ||2H + ||g||2H )dµ(x) < ∞ .

Altogether we find that summation and multiplication maps to L 2(µ, H ) again, so it is
indeed a vector space.

Now we proceed to discuss the inner product. By similar considerations as above, we see
that it is sesquilinear. Now we take f, g ∈ L 2(µ, H ) and see that ||f ||H , ||g||H ∈ L2(µ).
This leads us to calculate����� �f(x), g(x)�H dµ(x)

���� ≤
�

||f(x)||H ||g(x)||H dµ(x)

≤ ||(||f ||H )||L2(µ)||(||g||H )||L2(µ) < ∞ .

Therefore the scalar product is well defined.
Finally we want to show that the equivalence classes of L 2(µ, H ) form a Hilbert space.

For f ∈ L 2(µ, H ) we find

||f ||2L 2(µ,H ) = �f, f�L 2(µ,H ) =
�

||f(x)||2H dµ(x) .

It now suffices to show that L 2(µ, H ) is closed with respect to ||.||2L 2(µ,H ). To this end
we take a Cauchy sequence (fk)k∈N ⊆ L 2(µ, H ) and we want to show that there exists a
f ∈ L 2(µ, H ) so that ||fk − f ||L 2(µ,H ) → 0. Since H is separable, we can further find an
orthonormal base (en)n∈N. Further, for g ∈ L 2(µ, H ) we have a monotonously increasing
convergence

N�
n=1

|gen(x)|2 →
∞�

n=1
|gen(x)|2 = ||g(x)||2H .

Therefore we can use Theorem 4.7.1 to take the limit out of the integral and see

||g||2L 2(µ,H ) =
� ∞�

n=1
|gen(x)|2dµ(x) =

∞�
n=1

�
|gen(x)|2dµ(x) =

∞�
n=1

||gen ||2L2(µ) .

This means especially that (fk,en)k∈N is a Cauchy sequence in L2(µ) for n ∈ N, and therefore
there exists a sequence of limit functions (hn)n∈N ⊆ L2(µ) with ||fk,en − hn||L2(µ) → 0 for
n ∈ N. Without concerning ourselves about the convergence, we now define

f =
∞�

n=1
hnen .

One issue is whether f ∈ L 2(µ, H ), but the (hn)n∈N are measurable, so we have only
to think about ||f ||L 2(µ,H ) < ∞. Since the (fn)n form a Cauchy sequence, this follows



3.10 Multiplicity Functions 77

automatically if we manage to show ||fn − f ||L 2(µ,H ) → 0. To this end we choose � > 0
and k ∈ N so that ||fk − fj||L 2(µ,H ) < � for all j ≥ k. Now we can take N ∈ N and
calculate

N�
n=1

||hn − fk,en ||2L2(µ) ≤ 2
N�

n=1
(||hn − fj,en ||2L2(µ) + ||fj,en − fk,en ||2L2(µ))

≤ 2||fj − fk||L 2(µ,H ) + 2
N�

n=1
||hn − fj,en ||2L2(µ) < 2� + 2

N�
n=1

||hn − fj,en ||2L2(µ) .

We know that ||fj,en −hn||L2(µ) → 0, and since we have a finite sum and the only requirement
for j was j ≥ k, we can take the limit j → ∞ to get �N

n=1 ||hn − fk,en ||2L2(µ) ≤ 2�. Now we
do the same thing for N → ∞ to obtain

||f − fk||2L 2(µ,H ) =
∞�

n=1
||hn − fk,en ||2L2(µ) ≤ 2� .

Additionally, for j ≥ k we find

||f − fj||2L 2(µ,H ) ≤ 2(||f − fk||2L 2(µ,H ) + ||fk − fj||2L 2(µ,H )) ≤ 6� .

Therefore we find that ||f − fn||2L 2(µ,H ) → 0, which means that (fn)n∈N has a limit value
in L 2(µ, H ). Finally, the proof that L2(µ, H ) is a Hilbert space is almost the same proof
as for the fact that the equivalence classes of square-integrable functions over µ called
L2(µ) is a Hilbert space.

We now take l2 to be the Hilbert space of all absolute square summable complex
sequences, and we will turn our attention to L2(µ, l2). This space is essentially the space
of sequences in L2(µ) with the added condition that their L2-norms are square-summable.
The following two propositions elaborate on this.

Proposition 3.10.3. Let µ be a measure, and let (fn)n∈N be a sequence of functions in
L2(µ) so that

∞�
n=1

||fn||2L2(µ) < ∞ .

Then we define f(z) := (fn(z))n∈N and see that f ∈ L2(µ, l2). Additionally, every element
of L2(µ, l2) has the aforementioned form.

Proof. Since there might be some z ∈ C where (fn(z))n∈N is not in l2, we first have to find
representatives of (fn)n∈N so that f(z) ∈ l2 for all z ∈ C. We define the set

A := {z : ||f(z)||l2 < ∞} .

We will prove that µ(Ac) = 0 and thus we can just set f(z) = (0)n∈N for z ∈ Ac. To this
end we calculate ∞�

n=1

�
|fn(z)|2dµ(z) =

∞�
n=1

||fn||2L2(µ) < ∞ .
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We can now use Theorem 4.7.1 to switch the integral with the summation and obtain
�

||f(z)||2l2dµ(z) =
� ∞�

n=1
|fn(z)|2dµ(z) < ∞ .

Thus we find ||f(z)||2l2 < ∞ µ-almost everywhere, and we find a sequence of representatives
so that f(z) = (fn(z))n∈N on A and f(z) = (0)n∈N for z ∈ Ac. Since (0)n∈N ∈ l2, this
means f(z) ∈ l2 for all z ∈ C.

Now we want to show that f is measurable according to Definition 3.10.1. We take
g = (gn)n∈N ∈ l2 and see that

|�f(z), g�l2 | ≤ ||f(z)||2l2 ||g||l2 .

On the other hand we also have

�f(z), g�l2 ≤
∞�

n=1
fn(z)gn .

Since the sum converges, fn is measurable and gn is just a constant for n ∈ N, we see that
the sum is measurable again. Thus we find that f is measurable.

Now we discuss whether ||f ||2L2(µ,l2) < ∞. We have seen that �∞
n=1

� |fn(z)|2dµ(z) < ∞,
and since all functions are positive, we can use Theorem 4.7.1 to swap integral and sum to
get �

||f(z)||l2dµ(z) =
� ∞�

n=1
|fn(z)|2dµ(z) =

∞�
n=1

�
|fn(z)|2dµ(z) < ∞ .

By Definition 3.10.2 the left hand side is exactly ||f ||L2(µ,l2) and therefore we find
||f ||L2(µ,l2) < ∞. This means f ∈ L2(µ, l2).

Now let f ∈ L2(µ, l2). This means f(z) ∈ l2 for all z ∈ C and we can write f(z) =
(fn(z))n∈C. We then reverse the steps above and see

∞�
n=1

||fn||2L2(µ) =
∞�

n=1

�
|fn(z)|2dµ(z)

=
� ∞�

n=1
|fn(z)|2dµ(z) =

�
||f(z)||2l2dµ(z) = ||f ||2L2(µ,l2) < ∞ .

This means especially fn ∈ L2(µ) for n ∈ N, and we have proven that f is indeed of the
form described above.

Proposition 3.10.4. Let f ∈ L2(µ, l2) with f = (fn)n∈N. Then we find

||f ||2L2(µ,l2) =
∞�

n=1
||fn||2L2(µ) .
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Proof. We have shown a more general version of this during the proof of Proposition 3.10.2,
where we have shown for g ∈ L2(µ, H ) and an orthonormal base (en)n∈N ⊆ H that

||g||2L2(µ,H ) =
∞�

n=1
|�g, en�H |2 .

We now take the orthonormal base of l2 that is formed by the (δn,i)n∈N with is δn,i = 1 if
n = i and δn,i = 0 otherwise. This leads directly to

||f ||2l2 =
∞�

n=1
|�f, (δn,i)n∈N�l2 |2 =

∞�
n=1

||fn||2L2(µ) .

Now we are ready to define the multiplicity function #, together with the canonical
multiplication operator N# associated with a certain multiplicity function and the Hilbert
space it operates on.

Definition 3.10.3. Let µ be a Radon measure with compact support. The we define a
multiplicity function for µ as a function # : C �→ {0, 1, 2, ..., ∞} so that #(z) ≥ 1 µ-almost
everywhere.

Definition 3.10.4. We define for n ∈ N the subspace l2
n ⊆ l2 as

l2
n := {(ak)k∈N : (ak)k∈N ∈ l2 and ak = 0 for k > n}

We further define l2
∞ := l2.

Definition 3.10.5. Let µ be a Radon measure with compact support, and let # be a
multiplicity function for µ. Then we define the subspace D# of L2(µ, l2) as

D# := {f : f ∈ L2(µ, l2) and f(z) ∈ l2
#(z) µ-almost everywhere}

Further we define the canonical multiplication operator N# : D# �→ D# as the operator

N#f(z) := zf(z) .

Proposition 3.10.5. Let µ be a Radon measure with compact support and let # be a
multiplicity function for µ. Then the space D# is a closed subspace of L2(µ, l2) and thus a
Hilbert space. Further we find that N# ∈ B(D#).

Proof. By Proposition 3.10.2 we already know that L2(µ, l2) is a Hilbert space, so it suffices
to show that D# is closed. Now let (gk)k∈N ⊆ D# be a sequence so that ||gk −f ||L2(µ,l2) → 0
for some f ∈ L2(µ, l2). By Proposition 3.10.4 this means especially for n ∈ N that
||(gk)n − fn||L2(µ) → 0. Now we define the set An := {z : #(z) < n}. Since (gk)n ∈ D#,
we know that (gk)n = 0 µ-almost everywhere on An for k ∈ N. Thus we find�

An

|fn(z)|2dµ(z) =
�

An

|fn(z) − (gk)n(z)|2dµ(z) ≤
�

|fn − (gk)n|2dµ(z)
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= ||fn − (gk)n||L2(µ) → 0 .

This means fn = 0 µ-almost everywhere on An, which in turn implies f(z) ∈ l2
#(z) µ-almost

everywhere and thus we find f ∈ D#.
Now we turn towards showing that N# ∈ B(D#). We can see by the definition that

N# is linear, so it remains to prove that it is bounded and N#D# ⊆ D#. We start
with the latter fact and take n ∈ N and f ∈ D#, and we know that for n ∈ N we have
fn(z) = 0 µ-almost everywhere on An. Since N#f(z) = zf(z), we know that also µ-almost
everywhere on An we have

(N#f)n(z) = zfn(z) = 0 .

This holds for all n ∈ N, so we get N#f ∈ D# and thus N#D# ⊆ D#. For the boundedness
of N#f we consider rµ := sup{|z| : z ∈ supp(µ)}. Since supp(µ) is compact, this
supremum is finite. Further, we remind ourselves that according to Proposition 4.7.6 we
have µ(supp(µ)c) = 0. Thus for n ∈ N and f ∈ D# we have µ-almost everywhere that

|(N#f)n(z)| = |zfn(z)| ≤ rµ|fn(z)| .

This holds for all n ∈ N, so we can calculate

||N#f ||2D#
=

� ∞�
n=1

|fn(z)|2dµ(z) ≤ r2
µ

� ∞�
n=1

|fn(z)|2dµ(z) = r2
µ||f ||2D#

.

Therefore we find that ||N#|| ≤ rµ and thus N# ∈ B(D#).

Now all the pieces are set up and we are ready to tackle the Central Multiplicity Theorem.
Hopefully we can already see the similarity bewteen D# and (L2(µ∞))∞ ⊕ 
∞

n=1(L2(µn))n,
so from here on we basically just have to work through the technical details to show their
unitary equivalence and subsequently

N# ! (Nµ∞)∞ ⊕
∞	

n=1
(Nµn)n ! N .

We start our final push with a lemma, after which we prove Theorem 3.10.7.

Lemma 3.10.6. Let µ be a Radon measure with compact support and let # be a multiplicity
function for µ. We denote for i ∈ N the sets ωi := #−1(i) and ω∞ := #−1(∞). Then we
find µ = µ|ω∞ + �∞

i=1 µ|ωi
and

N# ! (Nµ|ω∞ )∞ ⊕
∞	

i=1
(Nµ|ωi

)i .

Proof. To facilitate our notation, we first set

L2
⊕ := L2(µ|ω∞) ⊕

∞	
i=1

L2(µ|ωi
) .
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Although we need to go through a lot of technical detail to prove it, this lemma is relatively
intuitive. First, we will quickly show that µ = µ|ω∞ + �∞

i=1 µ|ωi
. Next, we will try to

rearrange the spaces L2(µ|ωi
) and L2(µ|ω∞) so that

L2
⊕ !

∞	
k=1

L2(µ|Δk
) .

Here, the (Δk)k∈N will be akin to the sets given in Theorem 3.9.2 so that Δk+1 ⊆ Δk for
all k ∈ N. For f ∈ 
∞

k=1 L2(µ|Δk
) we can then write f = 
∞

k=1 χΔk
fk, and we see that e.g.

on Δ1 only χΔ1f1 is potentially non-zero. Therefore (χΔk
fk)k∈N ∈ l2

j on Δc
j , which already

looks a lot like D# (and we will confirm in our derivation that (χΔk
fk)k∈N ∈ D#). With

these considerations as a basis, we will define an operator

V : L2
⊕ �→ D# .

We can then show that V is unitary, and that

N# = V

�
(Nµ|ω∞ )∞ ⊕

∞	
i=1

(Nµ|ωi
)i

�
V −1 .

It is important to note, however, that we will not directly use the aforementioned sets
(Δk)k∈N, and we just mentioned them to gain a better understanding of the proof. Instead,
we will define functions (fk)k∈N with the relevant properties directly.

First we see that ωi ∩ ωj = ∅ for i �= j and ωi ∩ ω∞ = ∅ for i ∈ N. Further we define

Ω := ω∞ ∪
∞�

i=1
ωi = #−1({1, 2, ..., ∞}) .

This means we find Ωc = #−1(0). Since # is a multiplicity function for µ, we know that
µ(#−1(0)) = 0, and thus we have µ(Ωc) = 0. Therefore we can use Lemma 3.9.3 to get
µ = µ|ω∞ + �∞

i=1 µ|ωi
. To facilitate the future notation, we further relabel µi := µ|ωi

for
i ∈ N and µ∞ := µ|ω∞ .

Now we proceed to take f ∈ L2
⊕ and we want to construct a sequence of functions

(fk)k∈N as discussed in the introduction. We start by labelling the components of f in the
following way

f =
� ∞	

k=1
f∞,k

�
⊕

� ∞	
i=1

i	
k=1

fi,k

�
.

Here we have f∞,k ∈ L2(µ∞) for all k ∈ N and fi,k ∈ L2(µi) for all k ≤ i and i ∈ N. Now
we can we define for k ∈ N the function

fk := χω∞f∞,k +
∞�

i=k

χωi
fi,k .
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At the moment this definition is just pointwise, but we will show in the following that
fk ∈ L2(µ). We know that

||f ||2L2
⊕

=
� ∞�

k=1

�
|f∞,k(z)|2dµ∞(z)

�
+

� ∞�
i=1

i�
k=1

�
|fi,k(z)|2dµi(z)

�
.

All terms in the second sum are positive, so we can rearrange it. In addition, Proposition
4.7.5 tells us that dµ∞

dµ
= χω∞ and for i ∈ N that dµi

dµ
= χωi

. Together we find

||f ||2L2
⊕

=
� ∞�

k=1

�
χω∞(z)|f∞,k(z)|2dµ(z)

�
+

� ∞�
k=1

∞�
i=k

�
χω∞(z)|fi,k(z)|2dµ(z)

�
.

For i ∈ N and i �= j we know that ωi ∩ ωj = ∅ and ωi ∩ ω∞ = ∅, so we find

χωi
χωj

= 0 , χωi
χω∞ = 0 .

This means we get
|fk|2 = χω∞ |f∞,k|2 +

∞�
i=k

χωi
|fi,k|2 .

Because all entries in the following integral are positive, we can use Theorem 4.7.1 to
obtain �

|fk(z)|2dµ(z) =
�

χω∞(z)|f∞,k(z)|2dµ(z) +
∞�

i=k

�
χωi

(z)|fi,k(z)|2dµ(z) .

This means we find that
∞�

k=1
||fk||2L2(µ) =

∞�
k=1

�
|fk(z)|2dµ(z) = ||f ||2L2

⊕
< ∞ .

Therefore we especially get fk ∈ L2(µ).
Our next goal is to show that (fk)k∈N ∈ D#. We have just shown that �∞

k=1 ||fk||2L2(µ) <

∞, and so Proposition 3.10.3 tells us that (fk)k∈N ∈ L2(µ, l2). Now we remember again
for i ∈ N and i �= j that we have ωi ∩ ωj = ∅ and ωi ∩ ω∞ = ∅. Next we take i < k ≤ j
and see that for z ∈ ωi we get χωj

(z) = 0 and χω∞(z) = 0. This means we also get

fk(z) = χω∞(z)f∞,k(z) +
∞�

j=k

χωi
(z)fj,k(z) = 0 .

Since ωi = #−1(i), this means we have (fk(z))k∈N ∈ l2
i for z ∈ #−1(i) and therefore

(fk)k∈N ∈ D#.
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Altogether we can now take our whole previous calculation and define the operator
V : L2

⊕ �→ D# as V f := (fk)k∈N. Our next step is to prove that V is unitary. Previously
we have shown that �∞

k=1 ||fk||2L2(µ) = ||f ||2L2
⊕

, and Proposition 3.10.4 tells us

||f ||2L2
⊕

=
∞�

k=1
||fk||2L2(µ) = ||V f ||2L2(µ,l2) = ||V f ||2D#

.

Therefore we know that V is unitary as a function onto its image.
This means we have to prove that V L2

⊕ = D#. To this end, let (fk)k∈N ∈ D#, and
we now want to find f ∈ L2

⊕ so that V f = (fk)k∈N. We will reverse our previous
deduction and define fi,k := χωi

fk for i ≥ k and i, k ∈ N and f∞,k := χω∞fk. First we set
Ωk := ω∞ ∪ �∞

i=k ωi. Since (fk)k∈N ∈ D#, we know that fk(z) = 0 µ-almost everywhere
for {z : #(z) < k}. Further, we remember that ωi = #−1(i) for i ∈ N and ω∞ = #−1(∞).
Together we find that {z : #(z) < k} = Ωc

k and thus µ(Ωc
k) = 0. Additionally we have

ωi ∩ ωj = ∅ and ωi ∩ ω∞ = ∅ for i �= j and i, j ∈ N. If we combine these insights, we get

f∞,k +
∞�

i=k

fi,k = fkχω∞ +
∞�

i=k

fkχωi
= fkχΩk

= fk µ-almost everywhere.

By squaring the previous equation and using the fact that χωi
χωj

= 0 and χωi
χω∞ = 0 for

i �= j and i, j ∈ N, we then get

|f∞,k|2 +
∞�

i=k

|fi,k|2 =
�����f∞,k +

∞�
i=k

fi,k

�����
2

= |fk|2 µ-almost everywhere.

This means we have�
|f∞,k(z)|2dµ(z) +

� ∞�
i=k

|fi,k(z)|2dµ(z) =
�

|fk(z)|2dµ(z) = ||fk||2L2(µ) .

Since all entries in the sum are positive, we can use Theorem 4.7.1 to switch sum and
integral. Further, we know that for i ∈ N we have dµi

dµ
= χωi

and fi,kχωi
= fi,k, and the

same goes for dµ∞
dµ

= χω∞ and f∞,kχωi
= f∞,k. This means altogether we get

||f∞,k||2L2(µ∞) +
∞�

i=k

||fi,k||2L2(µi) =
�

|f∞,k(z)|2dµ∞(z) +
∞�

i=k

�
|fi,k(z)|2dµi(z)

=
�

χω∞(z)|f∞,k(z)|2dµ(z) +
∞�

i=k

�
χωi

(z)|fi,k(z)|2dµ(z)

=
�

|f∞,k(z)|2dµ(z) +
� ∞�

i=k

|fi,k(z)|2dµ(z) = ||fk||2L2(µ) .



84 3 Multiplicity Theory

Therefore we especially have ||fi,k||2L2(µi) < ∞ and thus fi,k ∈ L2(µi) for i ∈ N, and
similarly we find f∞,k ∈ L2(µ∞). We can now sum over all k and obtain� ∞�

k=1
||f∞,k||2L2(µ∞)

�
+

� ∞�
k=1

∞�
i=k

||fi,k||2L2(µi)

�
=

∞�
k=1

||fk||2L2(µ) .

Proposition 3.10.4 tells us that the right hand side is exactly ||(fk)k∈N||2D#
, and since all

elements of the sums on the left hand side are positive, we can rearrange them to get� ∞�
k=1

||f∞,k||2L2(µ∞)

�
+

� ∞�
i=1

i�
k=1

||fi,k||2L2(µi)

�
= ||(fk)k∈N||2D#

.

This means we can define

f :=
� ∞	

k=1
f∞,k

�
⊕

� ∞	
i=1

i	
k=1

fi,k

�
.

The equation above has shown us that ||f ||L2(⊕) = ||(fk)k∈N||D# , so f ∈ L2
⊕.

Now we only need to confirm that V f = (fk)k∈N. For k ∈ N we have defined (V f)k =
f∞,k + �∞

i=k fi,k, and we have shown that f∞,k + �∞
i=k fi,k = fk µ-almost everywhere. By

using Proposition 3.10.4 again to express the norm on D#, we see

||V f − (fk)k∈N||2D#
= ||V f − (fk)k∈N||2L2(µ,l2) =

∞�
k=1

||(V f)k − fk||2L2(µ) = 0 .

This means we have found an f ∈ L2
⊕ so that V f = (fk)k∈N and thus V L2

⊕ = D#.
For the final part, we inspect the unitary equivalence. We remember that Nµ is just

the multiplication by z on L2(µ) and N# is just the multiplication by z on D#. We take
f ∈ L2

⊕, use the same notation as before and get

(Nµ|ω∞ )∞ ⊕
∞	

i=1
(Nµ|ωi

)if =
� ∞	

k=1
zf∞,k

�
⊕

� ∞	
i=1

i	
k=1

zfi,k

�

= V −1(zfk)k∈N = V −1N#(fk)k∈N = V −1N#V f .

Since V is unitary, this means we have N# ! (Nµ|ω∞ )∞ ⊕ 
∞
i=1(Nµ|ωi

)i.

Theorem 3.10.7 (Final Multiplicity Theorem). Let H be a separable Hilbert space and
let N ∈ B(H ) be a normal operator.
(a) Let µ be a scalar-valued measure for N . Then we find a multiplicity function #N for µ
so that

N ! N#N
.

(b) Let K be a separable Hilbert space and let M ∈ B(K ) be normal with corresponding
scalar-valued measure ν and multiplicity function #M . Then we find that N ! M if and
only if [µ] = [ν] and #N = #M µ-almost everywhere.
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Remark. We remind ourselves that according to Corollary 3.4.9 we can always find a
separating vector h ∈ H for W ∗(N) and thus by Theorem 3.7.11 we have that µh is a
scalar-valued measure for N . Therefore the representation above is always valid.

Proof of Theorem 3.10.7 (a). We start by taking the partition from Theorem 3.9.5 to get
measures µ∞ and (µi)i∈N so that µ = µ∞ + �∞

i=1 µi and

N ! (Nµ∞)∞ ⊕
∞	

i=1
(Nµi

)i . (3.6)

From these measures we will construct a multiplicity function #N for µ by using the fact
that they are all mutually singular. Then we will prove that it is indeed a multiplicity
function, and further that N#N

! (Nµ∞)∞ ⊕ 
∞
i=1 N i

µi
.

Since µ∞ and the (µi)i∈N are mutually singular, we can use Lemma 3.9.4 to get sets ω∞
and (ωi)i∈N so that

µi = µi|ωi
, ωi ∩ ωj = ∅

µ∞ = µ∞|ω∞ , ω∞ ∩ ωj = ∅
i, j ∈ N , i �= j .

We now take Ω := ω∞ ∪ �∞
i=1 ωi. This lets us define the function #N : C �→ {0, 1, ..., ∞} as

#N(z) :=

����
i if z ∈ ωi

∞ if z ∈ ω∞
0 if z ∈ Ωc

.

To check whether #N is a multiplicity function for µ, we need to verify that µ(Ωc) = 0,
and that µ is a Radon measure with compact support. For the first condition, we take
i ∈ N. We remark that Ωc = ωc

∞ ∩ �∞
j=1 ωc

j and thus Ωc ⊆ ωc
∞ and Ωc ⊆ ωc

i . In addition,
we remember that µi = µi|ωi

, so we have

µi(Ωc) = µi|ωi
(Ωc) = µi(Ωc ∩ ωi) ≤ µi(ωc

i ∩ ωi) = 0 .

Similarly we obtain µ∞(Ωc) = 0. Taking this together, we find that

µ(Ωc) = µ∞(Ωc) +
∞�

i=1
µi(Ωc) = 0 .

For the second condition, we know that µ is a scalar-valued measure for µ. Theorem 3.7.11
then tells us that there is a h ∈ H so that µ = µh and Proposition 4.6.5 ensures that
µh = µ is a Radon measure with compact support. Therefore #N is a multiplicity function
for µ and we can use Lemma 3.10.6 to obtain

N#N
! (Nµ|ω∞ )∞ ⊕

∞	
i=1

(Nµ|ωi
)i . (3.7)
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Now we want to show that µ|ωi
= µi for i ∈ N and µ|ω∞ = µ∞. We remember that

ωi ∩ ωj = ∅ and ωi ∩ ω∞ = ∅ for i �= j. We further remember that µi|ωi
= µi for i ∈ N and

µ∞ = µ∞|ω∞ . Together, this means we can take a Borel set Δ and calculate

µ|ωi
(Δ) = µ(Δ ∩ ωi) = µ∞|ω∞(Δ ∩ ωi) +

∞�
j=1

µj|ωj
(Δ ∩ ωi)

= µ∞(Δ ∩ ωi ∩ ω∞) +
∞�

j=1
µj(Δ ∩ ωi ∩ ωj) = µi(Δ ∩ ωi) = µi|ωi

(Δ) = µi(Δ) .

Thus we have µ|ωi
= µi for i ∈ N, and in a similar way we get µ|∞ = µ∞. Taken together

with equations 3.6 and 3.7 we obtain

N#N
! (Nµ|ω∞ )∞ ⊕

∞	
i=1

(Nµ|ωi
)i = (Nµ∞)∞ ⊕

∞	
i=1

(Nµi
)i ! N .

This concludes the proof.

Proof of Theorem 3.10.7 (b). We will conduct the proof in two steps. First, we reverse-
engineer the proof of part (a) to obtain a representation of N and M as given in Theorem
3.9.5, that is

N ! (Nµ∞)∞ ⊕
∞	

i=1
(Nµi

)i , M ! (Nν∞)∞ ⊕
∞	

i=1
(Nνi

)i

The theorem then tells us that N ! M is equivalent to [µ∞] = [ν∞] and [µi] = [νi] for all
i ∈ N. In the second step we will show that this is, in turn, equivalent to [µ] = [ν] and
#N = #M µ-almost everywhere.

To start the first step, we use Lemma 3.10.6 to see that

N#N
! (Nµ|ω∞ )∞ ⊕

∞	
i=1

(Nµ|ωi
)i .

Here we have ωi = #−1
N (i) for i ∈ N and ω∞ = #−1

N (∞). We know that ωi ∩ ωj = ∅ for
i �= j and ωi ∩ ω∞ = ∅ for i ∈ N. Additionally, we define Ω := ω∞ ∪ �∞

i=1 ωi and we see
that Ωc = #−1

N (0). Since #N is a multiplicity function for µ, this means that µ(Ωc) = 0,
and therefore we can apply Lemma 3.9.3 to obtain

µ = µω∞ +
∞�

i=1
µωi

.

Now we remind ourselves that µ is a scalar-valued spectral measure and thus we can
use Theorem 3.7.11 together with Proposition 4.6.5 to see that µ is a Radon measure
with compact support. This means according to Lemma 3.8.2 that µ|ω∞ and the (µ|ωi

)i∈N
are Radon measures with compact support as well. Further, since ωi ∩ ωj = ∅ for i �= j
and ωi ∩ ω∞ = ∅ for i ∈ N we can use Lemma 3.9.4 to see that the (µ|ωi

)i∈N and µ|ω∞
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are mutually singular. We then relabel µi := µ|ωi
for i ∈ N and µ∞ := µ|ω∞ . Because

N ! N#N
, we have

N ! N#N
! (Nµ∞)∞ ⊕

∞	
i=1

(Nµi
)i .

Our previous insights show that this representation is of the form given in Theorem 3.9.5.
We can do the same for M ! N#M

and get

M ! N#M
! (Nν∞)∞ ⊕

∞	
i=1

(Nνi
)i .

Here we have νi = ν|γi
with γi = #−1

M (i) for i ∈ N, and ν∞ = ν|γ∞ with γ∞ = #−1
M (∞).

To cap off this part of the proof, Theorem 3.9.5 now tells us that N ! M if and only if
[µ∞] = [ν∞] and [µi] = [νi] for all i ∈ N.

Now we will prove that this condition is equivalent to [µ] = [ν] and #N = #M µ-almost
everywhere. We start by assuming that [µ] = [ν] and #N = #M µ-almost everywhere, and
we take i ∈ N. Since ωi = #−1

N (i) and that γi = #−1
M (i), this means that

µ(ωi \ γi) = 0 , µ(γi \ ωi) = 0 .

Let now Δ be a Borel set so that µi(Δ) = 0. We know that µi = µ|ωi
, so we get

0 = µi(Δ) = µ(Δ ∩ ωi)

= µ(Δ ∩ γi) + µ(Δ ∩ (ωi \ γi)) − µ(Δ ∩ (γi \ ωi)) = µ(Δ ∩ γi) .

Since [µ] = [ν] and νi = ν|γi
, we therefore see

0 = ν(Δ ∩ γi) = ν|γi
(Δ) = νi(Δ) .

Thus we obtain νi � µi, and by switching µi and νi in the previous calculations we can
also get µi � νi. This means [µi] = [νi] for all i ∈ N, and we can show similarly that
[µ∞] = [ν∞]. This concludes one implication.

For the other implication, we assume that [µi] = [νi] for all i ∈ N and [µ∞] = [ν∞], and
we want to show this leads to [µ] = [ν] and #N = #M µ-almost everywhere. First, we
take a Borel set Δ so that µ(Δ) = 0. This means

0 = µ(Δ) = µ∞(Δ) +
∞�

i=1
µi(Δ) .

Therefore we can deduce µ∞(Δ) = 0 and µi(Δ) = 0 for all i ∈ N. With our assumption,
this means we also find ν∞(Δ) = 0 and νi(Δ) = 0 for all i ∈ N. Thus we can calculate

0 = ν∞(Δ) +
∞�

i=1
νi(Δ) = ν(Δ) .
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Therefore we have shown ν � µ, and similarly we can show µ � ν to obtain [µ] = [ν].
Now turn towards #N and #M and define the sets

Si := {z : #N(z) = #M(z) = i} for i ∈ N , S∞ := {z : #N(z) = #M(z) = ∞}

S := {z : #N(z) = #M(z)} = S∞ ∪
∞�

i=1
Si .

Next, we remember that ωi = #−1
N (i) and γi = #−1

M (i) for i ∈ N and that ω∞ = #−1
N (∞)

and γ∞ = #−1
M (∞). This means we get

Si = ωi ∩ γi for i ∈ N , S∞ = ω∞ ∩ γ∞ .

We now consider i ∈ N and find

µi(ωc
i ) = µ|ωi

(ωc
i ) = µ(ωi ∩ ωc

i ) = 0 .

Similarly, we get νi(γc
i ) = 0, and since [µi] = [νi] this means µi(γc

i ) = 0 Together we find

µi(Sc
i ) = µi(ωc

i ∪ γc
i ) ≤ µi(ωc

i ) + µi(γc
i ) = 0 .

Since Sc = Sc
∞ ∩ �∞

i=1 Sc
i , we find that Sc ⊆ Sc

i . Therefore we get µi(Sc) ≤ µi(Sc
i ) = 0,

and we can deduce µ∞(Sc) = 0 in the same way. Thus we have

µ(Sc) = µ∞(Sc) +
∞�

i=1
µi(Sc) = 0 .

We now remember that S = {z : #N(z) = #M(z)}, and thus we find that #N = #M

µ-almost everywhere. This concludes the second implication and thus the proof.



Chapter 4

Appendix
In this appendix, we provide definitions, propositions and theorems that are required for
the main text which we won’t prove. Many of them should be familiar to maths students
with at least a bachelor’s degree, and we will provide references for further details on them.
They are divided into conceptual groups so that we might have a better overview.

4.1 Analysis & Topology
Theorem 4.1.1 (Stone-Weierstrass). Let X ⊆ C be a compact space and let C(X) be
the algebra of continuous functions on X endowed with the ||.||∞ norm. Now let A be a
subalgebra of C(X) with the following properties

(a) For f ∈ A we also find f ∈ A .
(b) For every z ∈ C there exists a fz ∈ A so that fz(z) �= 0.
(c) For every pair z1 �= z2 there exists a function fz1,z2 ∈ A so that fz1,z2(z1) �= fz1,z2(z2).

Then we find that A is dense in C(X).

Note. See Corollary 12.18.9 in [5].

Theorem 4.1.2 (Tietze). Let X be a normal space, A ⊆ X be a closed subset and
f : A �→ C be a continuous function. Then there exists a continuous function F : X �→ C
so that F |A = f and sup{|f(x)| : a ∈ A} = sup{F (x) : x ∈ X}.

Note. See page 83 in [9].

4.2 Zorn’s Lemma
Theorem 4.2.1 (Zorn’s lemma). Let P be a partially ordered set. If every chain in P
has an upper bound in P , then P contains a maximal element.

Note. See Theorem 13.0.7 in [6].
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4.3 Locally Convex Vector Spaces
Lemma 4.3.1. Let X be a vector space and p be a seminorm on X. Then Np := {x ∈
X : p(x) = 0} is a subspace and the function [x + Np] �→ p(x) is a norm on the vector
space Xp := X/Np.

Definition 4.3.1. Let X be a vector space and M be a family of seminorms on X. We
call M separating if �

p∈M Np = {0}.

Theorem 4.3.2. Let X be a vector space and M a separating family of seminorms on X.
Further for all p ∈ M let Xp be defined as in Lemma 4.3.1 and let πp : X �→ Xp be the
canonical projection. Then the initial topology TM generated by the projections πp, p ∈ M
makes (X, TM) into a locally convex topological vector space. In addition, a net (xi)i∈I in
X converges to x if and only if p(xj − x) → 0 for all p ∈ M .

Note. See Theorem 5.1.4 in [1].

Theorem 4.3.3 (Hahn-Banach). Let X be a vector space, M be a linear subspace of X
and f : M → C be linear. Further, let p be a seminorm on X with |f(x)| ≤ p(x) for all
x ∈ M . Then there exists a linear F : X → C with F |M = f and |F (x)| ≤ p(x) for all
x ∈ X.

Note. See Theorem 5.2.3 in [1] or Corollary III.6.4 in [2].

Theorem 4.3.4 (Hahn-Banach Separation Theorem). Let X be a locally convex topological
vector space, and let A, B ⊆ X be disjoint, nonempty and convex subsets of X. In addition,
let A be compact and B be closed. Then there exist γ1, γ2 ∈ R and f ∈ X∗ such that for
all x ∈ A and y ∈ B it holds

Ref(x) ≤ γ1 < γ2 ≤ Ref(y) .

Note. See Theorem 5.2.5 in [1].

4.4 Hilbert Spaces
Theorem 4.4.1 (Riesz-Fischer). The mapping Ψ : H �→ H ∗ with Ψ(y)(x) = �x, y� is an
isometric and conjugate linear bijection.

Note. See Proposition 3.2.5 in [1] or Theorem I.3.4 in [2].

Proposition 4.4.2. Let A ∈ B(H , K ). Then we find (ranA)⊥ = kerA∗.

Note. See Proposition 6.6.2 in [1].

Proposition 4.4.3. Let A ∈ B(H ) be a normal operator. Then ker A = ker A∗.

Note. See Proposition 6.1(b) in [7].

Proposition 4.4.4. Let K ⊆ H be a subspace. Then we have (K ⊥)⊥ = cl(K ).

Note. See Corollary 3.2.4 in [1].
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4.5 Operator-Valued Functions
Definition 4.5.1. Let S be a Banach space, and let B ∈ B(S ). Then the exponential
of B is defined as exp(B) := �∞

n=1
1
n!B

n. Sometimes we will also write exp(B) = eB.

Proposition 4.5.1. Let S be a Banach space, and let B, B̃ ∈ B(S ). Then, the following
two rules for calculation apply:

1. (exp(B))∗ = exp(B∗)
2. If BB̃ = B̃B then we have exp(B) exp(B̃) = exp(B + B̃).

Note. Follows from Definition 4.5.1.

Proposition 4.5.2. Let B be defined as in Definition 4.5.1, and let z ∈ C. The function
f : z �→ exp(zB) is differentiable for all z ∈ C and the first derivative is given by
f �(z) = B exp(zB).

Note. Similar to Example 9.3.20 in [6], we just replace Rp×p with B(H ).

Theorem 4.5.3 (Liouvilles Theorem for Operators). Let H be a Hilbert space and let
f : C �→ B(H ) be differentiable for all z ∈ C. If there exists a K ∈ R+ such that
||f(z)|| < K for all z ∈ C, then f is constant.

Note. See Problem V.2.2 in [10].

4.6 Spectrum & Spectral Theorem
Proposition 4.6.1. Let A ∈ B(H ) and let λ ∈ ρ(A). Then we find

||(A − λH )−1|| ≤ 1
dist(σ(A), λ) .

Note. See Lemma 6.4.10 in [1].

Proposition 4.6.2. A self adjoint operator A ∈ B(H ) has spectrum σ(A) ⊆ R. Further,
we find σ(A) ≥ 0 if and only if �Ah, h� ≥ 0 for all h ∈ H .

Note. See Corollary 6.6.13 in [1].

Definition 4.6.1. Let (X, Ω) be a measurable space, let H be a Hilbert space and let
E : Ω �→ B(H ) be a Hilbert space. The function E is called a spectral measure if it fulfils
the following three properties

1. For all h1, h2 ∈ H the function Eh1,h2 : Ω �→ C defined by Eh1,h2(Δ) = �E(Δ)h1, h2�
is a complex measure.

2. E(X) is the identity.
3. For all Δ ∈ Ω we have that E(Δ) is a projection.
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Theorem 4.6.3. Let E be a spectral measure on the measurable space (X, Ω) for the Hilbert
space H . We consider the mapping ΦE : BΩ(X,C) �→ B(H ) defined by ΦE : φ �→ �

φdE.
Then ΦE has the following properties:

1. For all Δ ∈ Ω we have ΦE(χΔ) = E(Δ).
2. ΦE is an algebra-homeomorphism compatible with the ∗-operation.
3. Let now A ∈ B(H ) and f ∈ BΩ(X,C). Then we have the implication

∀ Δ ∈ Ω AE(Δ) = E(Δ)A ⇒ AΦE(f) = ΦE(f)A

Note. Follows from the definition of a spectral measure and Proposition IX.1.12 in [2].

Theorem 4.6.4 (Spectral Theorem). Let N ∈ B(H ) be a normal operator. Then there
exists a unique spectral measure E on σ(N) such that

T =
�

zdE(z) .

Let A ∈ B(H ) and let S(σ(N)) be the Borel sets of σ(N). Then, the following additional
properties hold for E and T :

1. supp E = σ(T )
2. ∀ Δ ∈ S(σ(N)) AE(Δ) = E(Δ)A ⇔ AN = NA and A∗N = NA∗

Note. See Theorem IX.2.2 in [2].

Proposition 4.6.5. Let N ∈ B(H ) be a normal operator and E be the associated spectral
measure. Then the complex measure Eg,h is a Radon measure with compact support.

Note. See Theorem 2.18 in [8].

4.7 Measure Theory
Theorem 4.7.1. Let (X, Ω, µ) be a measure space and let (fn)n∈N be a series of functions
fn : X �→ [0, ∞]. Let further fn → be monotonically increasing and convergent µ-almost
everywhere. Then we find

lim
n→∞

�
fndµ =

�
fdµ .

Note. See Theorem IV.2.7 in [3].

Theorem 4.7.2. Let (X, Ω, µ) be a measure space and let (fn)n∈N be a series of functions
fn : X �→ R. Let further fn → f µ-almost everywhere. If there exists a function g : X �→ R
so that |fn| ≤ g µ-almost everywhere for all n ∈ N and

�
gdµ < ∞, then we find

lim
n→∞

�
fndµ =

�
fdµ .

Note. See Theorem IV.5.2 in [3].
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Theorem 4.7.3 (Radon-Nikodym). Let (X, Ω) be a measurable space and let µ, ν be two
σ-finite measures on this measurable space. If ν � µ, then there exists a Ω-measurable
function f : X �→ [0, ∞) so that for A ∈ Ω we have

ν(A) =
�

A
fdµ .

This function f is also denoted by dν
dµ

.

Note. See Theorem VII.2.3 in [3].

Proposition 4.7.4. Let (X, Ω) and µ, ν be as in Theorem 4.7.3 with ν � µ, and let f be
a ν-integrable function. Then the following statements are true:

1.
�

fdν =
�

f dν
dµ

dµ.

2. If also µ � ν, then we have dν
dµ

=
�

dµ
dµ

�−1
.

Note. A combination of Theorem IV.2.12, Theorem VII.2.3 and Exercise VII.2.4 in [3].

Proposition 4.7.5. Let (X, Ω, µ) be a measure space and let Δ ∈ Ω. Then the measure
µ|Δ � µ and we have

dµ|Δ
dµ

= χΔ .

Note. Follows from Theorem 4.7.3.

Proposition 4.7.6. Let µ be a Radon measure, let K := supp(µ) and let f ∈ L1(µ).
Then the following statements hold:

1. Kc is measurable and µ(Kc) = 0.
2. If K is compact, then µ is finite.
3. The measure ν defined by ν(Δ) =

�
Δ |f |dµ is also a Radon measure.

Note. See §256 in [4].

Theorem 4.7.7. Let µ be a σ-finite measure. Then we have that L∞(µ) ∩ L2(µ) is dense
in L2(µ) with respect to the ||.||L2 norm.

Note. Is a corollary to Theorem VI.2.28 in [3].

Theorem 4.7.8. Let µ be a Radon measure with compact support X. Then C(X) is dense
in L2(µ) with respect to the ||.||L2 norm.

Note. Follows from Theorem VI.2.31 in [3] if we substitute R2 with C.

Theorem 4.7.9 (Riesz Representation Theorem). Let X be a locally compact Hausdorff
space, and let Cc(X) be the space of continuous functions with compact support on X.
Then for any positive linear functional ψ on Cc(X), there is a unique Radon measure µ
on X such that for all f ∈ Cc(X) we have

ψ(f) =
�

fdµ
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Remark. This means especially that for a Radon measure µ the functional ζ(f) =
�

fdµ is
uniquely defined by µ.
Note. See Theorem VIII.2.5 in [3].

Theorem 4.7.10 (Lusin). Let X be a Hausdorff space and (X, Ω, µ) be a measure space
with µ a Radon measure. Let further f : X �→ C be a Ω-measurable function. Then for
every A ∈ Ω with µ(A) < ∞ and � > 0, we find a compact set K with µ(A \ K) < � so
that f |K is continuous.

Note. See Theorem VIII.1.18 in [3].
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