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Abstract

As an underlying theory, functional analysis is central to many fields in mathematics and
theoretical physics, such as variational calculus or quantum mechanics, and (bounded)
linear operators often play a major role. For example in quantum theory, the states can be
described as elements of a suitable Hilbert Space, with hermitian linear operators taking
the role of measurements. Similarly, linear differential equations can often be understood
as operator equations with a linear differential operator, and solutions can be found by
applying functional analysis. This means there is a large benefit in better understanding
such operators, and maybe even classifying them.

Unfortunately, a unifying theory for general linear operators on Banach spaces has yet
to be discovered. However, for the reduced problem of normal bounded linear operators
on separable Hilbert spaces this is actually possible. The so called Multiplicity Theory
gives a complete classification of such operators according to their spectra and spectral
multiplicity, as it extends the finite-dimensional idea of classifying normal matrices by
their spectra and spectral multiplicity.

This thesis aims to give a (relatively) self-contained introduction to Multiplicity Theory
for an interested reader with a basic university education in mathematics. As a capstone,
the proof of the multiplicity theorem will be presented, which describes the aforementioned
classification of normal bounded linear operators on separable Hilbert spaces.
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Kurzfassung

Funktionalanalysis ist ein wichtiges Fundament fiir viele Gebiete der Mathematik und
theoretischen Physik, wobei (beschrankte) lineare Operatoren oft eine zentrale Rolle
spielen. Beispielsweise werden in der Quantentheorie die Quantenzustédnde als Elemente
eines geeigneten Hilbertraumes interpretiert, wahrend Messungen durch hermitesche
Operatoren dargestellt werden. Weiters werden lineare Differentialgleichungen oft als
Operatorgleichungen mit einem linearen Differentialoperator verstanden, und Losungen
konnen mit Hilfe der Funktionalanalysis ermittelt werden. Aufgrund dieser Tatsachen ist
ein tieferes Verstédndnis von solchen Operatoren von groflem Nutzen.

Leider gibt es bis dato keine allgemeine Theorie, die sémtliche linearen Operatoren auf
Banachrdumen klassifiziert. Das reduzierte Problem fiir normale, beschrankte lineare Ope-
ratoren auf separablen Hilbertraumen hat jedoch in der Tat eine derartige Klassifizierung.
Die sogenannte Multiplizitatstheorie beschreibt samtliche solche Operatoren eindeutig
mit Hilfe ihres Spektrums und ihrer spektralen Vielfachheit. Dabei ist die Theorie eine
Erweiterung der endlich-dimensionalen Klassifizierung von normalen Matrizen nach ihrem
Spektrum und der spektralen Vielfachheit.

Das Ziel dieser Arbeit ist es, eine (soweit moglich) in sich geschlossene Einfithrung in
das Gebiet der Multiplizitdtstheorie zu geben, wobei am Ende der Beweis des Satzes iiber
Multiplizitdtstheorie steht. Dabei richtet sich diese Arbeit an interessierte Leser innen
mit einer Grundausbildung in Hochschulmathematik.
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Chapter 1

Introduction

The goal of this thesis is to provide the reader with an understandable and focused
introduction to multiplicity theory on separable Hilbert spaces. To this end, it provides a
reworked form of [2] with many proofs added and the structure rearranged to provide a
more concise experience. This text is suited for students who have just completed their
BSc. in mathematics, as it goes through all relevant steps without requiring in depth
knowledge of topics such as functional analysis or measure theory. Of course, it will
hopefully be appealing to people further down their educational path as well, if they desire
to familiarize themselves with the topic. The text states all used lemmata, propositions
and theorems clearly, so it is possible to skip parts and only go back when something is
unclear.

This thesis consists of four chapters, with the first chapter (evidently) being the intro-
duction. Afterwards, the second chapter concerns itself with the notation used in this
work. The third chapter contains the core of this thesis, and it consists of the development
of multiplicity theory on separable Hilbert spaces. It is divided into several sections, each
containing a coherent step in developing the theory. Finally, the fourth chapter holds the
appendix, where all prerequisite theorems and propositions are collected for reference, in
addition to sources.

For ease of writing and reading in the subsequent text, the author has chosen to employ
the pronoun "we" and written the thesis in first person plural.

1.1 Understanding Multiplicity Theory

The idea of multiplicity theory is to classify all normal operators on separable Hilbert
spaces according to the multiplicity of their spectrum. To understand how this might
work, we first look at the finite-dimensional case. We know that each normal matrix M is
diagonalizable with the form

A0 0
M=U"'DU=U" 0 Ao U
0 ... A

Since U is unitary we know that D and M are the same modulo a Hilbert space homo-
morphism, and we denote M ~ D. If we reorder the eigenvalues to obtain a new diagonal
matrix D, we can still find a unitary U so that M ~ D. Therefore it only matters which
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1.2 A Short Overview of our Approach 9

eigenvalues appear and how often they appear, and we can classify all normal matrices in
R™™ up to a unitary transformation just by their eigenvalues.

The Central Multiplicity Theorem We now want to generalize this result, and during
the course of this thesis we will prove that this is indeed possible for separable Hilbert
spaces! According to Theorem 3.10.7, a normal operator N on a separable Hilbert space
is (up to a unitary transformation) uniquely defined by the following objects:

o A measure p with supp(p) = o(NV).

o A multiplicity function # : C — {0, 1,2, ...,00} for which we find # > 1 p-almost
everywhere.

There are of course some differences to the finite-dimensional case, since we now deal with
infinitely large vector spaces. First, the discrete spectrum of eigenvalues is replaced by the
possibly continuous spectrum o(N). Second, we can find that certain sets of the spectrum
"appear’ and infinite number of times, hence the possibility for # to take on the value oco.
Further, we can understand the measure p as the weight of our continuous "eigenvalues",
and the concept should be familiar from measure theory and L? spaces. Taking this all
into account, we still get a function that counts the "number of appearances" for our
"eigenvalues" and which (together with p) uniquely defines V.

1.2 A Short Overview of our Approach

The insights we discussed above will only be the end point of our foray into multiplicity
theory in Section 3.10, and on our way there we will actually prove a set of such theorems.
The reason for this is that they build on each other, so we have to start with a slightly
different classification. Therefore we will give here a quick overlook of the three theorems
that will occupy our attention in Sections 3.8 and 3.9.

First Multiplicity Theorem To understand the first theorem, we go back to the finite-
dimensional case and inspect a normal matrix M ~ D. As an example, we set D =
diag(1,—-3,1,5,2,2,—3,2). We can now rearrange the eigenvalues to get

M ~ D = diag(5,-3,1,2,-3,1,2,2) . (1.1)

Although it might not be obvious at first, we have just ordered the eigenvalues into the
sets (5,—3,1,2), (—=3,1,2) and (2). In this way, each set contains a certain eigenvalue only
once. We can now deconstruct

RE=R'@oR*PpR

The matrix D also lends itself to such a deconstruction, and we see

- 8-%88 50l
M~D= @alo 10|la@ . (1.2)
0 0 10 0 0 9
0 0 0 2
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10 1 Introduction

Again, the normal matrix M can be (up to a unitary transformation) uniquely defined by
this form, and we will see in Theorem 3.8.8 that a similar fact holds for a normal operator
N on a separable Hilbert space.The theorem gices us a sequence of measures (f, )nen SO
that supp(p1) = o(N), pins1 < py, for all n € N and

N ~ @ Ny,
n=1

Here, the operators N, are operators on L?(p,) that mirror the diagonal matrices above.
On the other hand, the fact that p,,+; < u, for all n € N is similar to how we ordered the
diagonal matrices by decreasing size, with each set being a subset of the previous set.

Second Multiplicity Theorem The second Theorem 3.9.2 will have a very similar form
to the first. The key difference is that we will replace the measures (i, )nen by a single
measure 1 and a sequence of Borel sets (A, ),eny with Ay = o(N), A1 € A, for all

n € N and
o0
N~ @ N Blay
n=1
When compared to our matrix, this corresponds to Equation 1.2 as well.

Third Multiplicity Theorem For the third theorem, we will go back to the matrix
M =~ D in Equation 1.1. This time, we rearrange the eigenvalues in another way to obtain

M ~ D' = diag(5, —3,-3,1,1,2,2,2)
Further, we divide R® differently this time and get
RE=RoR*aR*a R

Similarly as above, we can now deconstruct

o

2 0
M~D=(5& =S W e (P Yelo 2 o] | (1.3)
0 -3 01 00 2

In this case, we have taken all similar eigenvalues together and "put them" into separate
subspaces. Again, we find a corresponding generalization for a normal operator N on a
separable Hilbert space in the form of Theorem 3.9.5. The theorem tells us that there are
measures fio, and (i, )nen so that all of them are mutually singular and

N ()% e BV

We see that the measure p, corresponds to (IN,,)", that is the direct so of n times N, ,
which is similar to the diagonal matrices in Equation 1.3 consisting of n-times the same
value. Further, the fact that p., and the (u,),en are mutually singular is akin to the
property that the matrices don’t share any eigenvalues between them. The big difference
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1.2 A Short Overview of our Approach 11

to the finite-dimensional case here is the addition of (N, )* to account for all parts of
the spectrum that "appear” infinitely often.

Now this last theorem already has a striking similarity to our initial considerations.
This is especially apparent for the finite-dimensional case in Equation 1.3, where we
basically have already ordered the eigenvalues by their multiplicity. Similarly for the
infinite-dimensional case, we can understand supp(u,,) as the set of spectral values with
multiplicity n and supp(ue) as the set of spectral values with multiplicity oco. Although
the actual proof is unfortunately a bit more complex, this will be our guiding idea in
Section 3.10 when we prove the central multiplicity Theorem 3.10.7.

Before we head off, it is important to note that we have just named these four theorems
(First -, Second -, Third -, Central Multiplicity Theorem) here to emphasize their role and
order within this thesis. Outside of this work, they bear no special label.
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Chapter 2

Notation

In this chapter we will introduce the notation used throughout the thesis, along with some
preliminary definitions. Each conceptual group is listed separately, so that we have a
better overview.

2.1 Analysis

Let (X, 7) be a topological space, and let A C X. Then we denote the closure of A
by cl(A) and the interior of A by int(A).

We denote nets with (z;);c; indexed by I. If the net converges to z, we write z; — .
As long as no explicit topology is stated, we always take this convergence with
respect to the norm topology.

Let f: X — Y be a function and let Xy C X. Then we denote the restriction of f
to Xs as flx, : Xs — Y.

Let z,y € R. We denote the open interval between them by (z,y) and the closed
interval by [z, y]. In this vein we also denote the half-open intervals (z,y] and [z, y).

We denote the complex conjugate of z € C by Z, with a similar notation for functions.

2.2 Hilbert Spaces

Unless explicitly stated otherwise, 77 is always a Hilbert space.

We denote the scalar product of z,y € 7 as (x,y)». If the base Hilbert space is
obvious, we may omit the subscript and write (z,y) = (z,y) .

We denote the topological dual space of ¢ by .

We denote orthogonal vectors z,y by x L y. A similar notation applies for orthogonal
subspaces.

For a set # C s we denote the orthogonal complement of ¢ by ¢ *.

We denote the specific Hilbert space of all absolute square summable sequences in C
as [2.
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2.3 Linear Bounded Operators 13

o If there exists a unitary operator U : 7 — %, then we call 7 and ¢ unitarily
equivalent and write ¢ ~ % .

2.3 Linear Bounded Operators

Let 57 and % be Hilbert spaces.

o We write B(, %) for the set of all bounded linear functions that map % to J¢".
If # = 7, we simplify the notation to B(.).

o Let A€ B(H, % ). Then we denote the kernel by kerA and the range by ranA.

o Let Ae B(A, ). Then we denote by A* € B(# , ) the adjoint operator of A.
« Let A € C. Then we denote by A € #(H) the multiplication by A on .72

o Let of C A(H) and h € . Then we denote o h for the set {Ah: A € o/},

o For A € B(H) and H#, C 7, we have similar notations for A, and &7 ;.

o Let Ae B(H) and B € B(H). If there exists a unitary operator U : H — K
and we have UAU ! = B, then we call A and B unitarily equivalent and we write
A~ B.

In addition, we recall the following definitions:

Definition 2.3.1. Let &/ C HA(°). Then we call & an algebra if for all A € C and
A, B € o/ we find

(a) NA € .
(b) A+ Be .
(c) ABe .

Definition 2.3.2. Let &7 C #(J). Then we call o/ a C*-algebra if and only if o is an
algebra, closed and for all A € &/ we find A* € 7.

o Let o C A(H°). Then we denote the smallest C*-algebra containing &7 as C*(<).

2.4 Direct Sum

o We denote the direct sum of two Hilbert spaces, vectors or operators by &, e.g.

H D

o If JA, 65 C 2 and 76 1 7, we will identify 74 & 76 = 74 + 5. The same
holds true for vectors hy € 74 and hy € 4 with hy ® he = hy + hs.

o We denote the direct sum of a sequence of vectors, operators or Hilbert spaces by
692[:1, with N € N| e.g. @;V:l ¢,. To denote countable direct sums, we replace N
by 00, e.g. @y, I,



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

14 2 Notation

o We denote N = @) | 7, and for A € () we denote AN = @I A. Again
we denote countable powers by replacing N by oo, that is 27 and A.

o Let @ C A(H). Similarly as above we denote &V = {AY : A € &/} and
g ={A®: Ac d}.

2.5 Measure Theory

Let (X, Q) be a measurable space, let u, v be measures on (X, 2) and let A € Q.

« We denote by B(X, C) the set of complex-valued, bounded functions X + C which
are measurable with respect to €2. If X is a subset of C and (2 is the Borel algebra,
we abbreviate the notation to B(X).

« We denote the complement of A as A° = X \ A.

« We denote the indicator function of A by ya : X +— {0,1}, that is xa(z) = 1 for
z € A and ya(z) =0 else.

o If i is absolutely continuous with respect to v we write u < v. If v < p holds as
well, we write [u] = [v].

o We denote the restriction of g to A as u|a. That means for w € Q we have
plaw) = p(ANw).
In addition, we remember the following definitions:

Definition 2.5.1. The measures p and v are mutually singular if and only if there exists
a set w € Q so that p(w®) =0 and v(w) = 0.

Definition 2.5.2. A Radon measure i is a Borel measure on C with the following
properties

(a) w is locally finite. That means for every z € C there exists a neighbourhood U, so
that p(U,) < oo.

(b) p is inner regular. That means for every open set U we find that p(U) = sup{u(K) :
K C U and K compact}.

Remark. Radon measures can be defined generally for topological spaces, but in this thesis
we restrict ourselves to C.

2.6 Spectral Measures

o Let A€ A(H). Then we denote by o(A) the spectrum of A and p(A) = C\ o(A)
as the resolvent of A.

The last piece of notation requires an understanding of spectral measures and the
spectral Theorem, which we find in the Appendix under Definition 4.6.1, Theorem 4.6.4
and Theorem 4.6.3.

o Let N € #A(H) be a normal operator, let E be the spectral measure and let
¢ € B(og(N)). Then we denote the spectral integral of ¢ by ¢(N) = [ ¢(2)dE(z).
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Chapter 3
Multiplicity Theory

3.1 Topologies on A(.)

We start by investigating two topologies on Z (), namely the weak operator topology
(WOT) and the strong operator topology (SOT). On a first glance, they don’t have much
to do with normal operators or multiplicity theory, but we need certain properties for
Sections 3.2 and 3.4 when we will be grappling with specific subalgebras of #(.7). Our
crowning achievements in this section are Corollary 3.1.5 and Proposition 3.1.6, which will
help us formulate Theorem 3.2.6 later on. We start now by defining WOT and SOT and
proving some straightforward propositions.

Definition 3.1.1. Let 77 be a Hilbert space. We take the weak operator topology
(WOT) on AB(H) as the locally convex topology defined by the family of seminorms
{pni : b,k € S}, where py i (A) == |(Ah, k)| for all A € Z(H). Similarly, we take the
strong operator topology (SOT) on AB(H) as the locally convex topology defined by the
family of seminorms {p, : h € S}, where p,(A) := ||Ah|| for all A € B(H).

Proposition 3.1.1. Let (A;)icr be a net in B(H). We have A; WOL, A if and only if

Ah 225 Ap forall hyk € €. Similarly, we also have A; SOT, 4 if and only if A;h — Ah
for all h € 7.

Proof. The proposition follows directly from Theorem 4.3.2. [

Proposition 3.1.2. Let ¢ be a separable Hilbert space. Then the WOT and SOT are
metrizable on bounded subsets of B(.H)

Proof. We will show the proposition for WOT. The proof for SOT is almost identical, only
changing the expressions [((A — B)by,, b,)| to |[(A — B)b,|| and just summing over n.

Let (b,)nen be a dense, countable subset of the unit ball of J#, which exists since S is
separable. For A, B € #(), we define

dw (A, B) == i 2= (A — B)by,, by,)|

m,n=1

Since ||b,|| < 1, the sum can be estimated by 2-("*")||A — B|| and thus converges. By
using the triangle inequality for norms, we get dy (A, B) < dw (A, C)+dw(C, B). Further,
if dyw (A, B) =0, we have A — B =0 on a dense subset of of the unit ball of 7#. Because
A — B is continuous, this means A — B = 0 on the unit ball and thus on . Therefore
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16 3 Multiplicity Theory

dw is a metric on A(H). Let us now consider a bounded net (A;);e; in AB(H) with
||4;]| < C. First we assume that A; — A with respect to dy, that is dy (A;, A) — 0.
Since (b, )nen is dense in the unit ball of 77, for any h,k € ¢ we find subsequences
by, — en = h/||h|| and b,, — e == k/||k||. We remember that ||b,|| < 1 and now look at
the term ((A; — A)h, k) to get

[((As = Aen, ex)| =

‘(Ai<eh_bnh)7 ek>+<Aibnh7 (ek—bnk)>+<<Ai_A)bnh7 bnk>_<Abnh7 (ek—bnk)>_<A(eh_bnh>7 ek>|
< (C+ [[AINUlen = bn, || + [lex = bn, |) + [((Ai = A)ba,,; b, )|

For a given € > 0, we can choose b, and b,, such that the first term becomes < 5. Because
of dw (A;, A) — 0, we also find

[((As = A)bny,, boy )| < 27 dyy (Aj, A) = 0

This means (A;en, ex) — (Aep, e) and therefore also (A;h, k) — (Ah, k) for any h, k € .
Conversely, assume that A; — A with respect to the WOT. Since [((A; — A)by,, bn)| <
C + ||A]|, for a given € > 0, we can choose mg, ng such that

dw(A A) < 30 2 = A bl

m<mo,n<ng

A; — A in WOT implies that (A;b,,,b,) — (Ab,,b,) for all m,n. Because the sum
consists of a finite amount of terms, we have dy (A4;, A) — 0.

Together this means that the bounded net (A;);c; converges with respect to dy if and
only if it converges in the WOT. Thus, restricted to a bounded subset of Z(J), the
closed sets of both topologies are the same and therefore the topologies are identical. [

Lemma 3.1.3. Let X be the locally convex topological vector space generated by the family
of seminorms M, and let f : X — C be a continuous linear functional. Then there are
Py ey Do € M and oo € R such that |f(x)| < a X j_, pe(x) for all z € X.

Proof. Let us assume the contraposition, that is that for every a € R and for every finite
P C M there is an 2, p € X such that we have

|f (za,p)| > @D p(za,p)

peEP
We then rescale &, p := xo.p/|f(2a.p)|, which gives us for any p € P the inequality

1 . -
- > Zp<xa,P) Z p(xa,P)
peEP

We make Z, p into a net by defining (a, P) < (&, P) if a < & and P C P. Because of
the previous inequality, we have that p(Z, p) — 0 for all p € M. According to Theorem
4.3.2, this means that Z, p — 0. However, we also find that |f(Z,p)| = 1. This is a
contradiction to the fact that f is linear and continuous. O
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3.1 Topologies on B(H) 17

Proposition 3.1.4. Let 7 be a Hilbert space. If L : B(#) — C is a linear functional,
then the following statements are equivalent:

(a) L is SOT continuous
(b) L is WOT continuous

(c) There are vectors gy, ..., gn and hy, ..., h, in J€ such that for every A € B(H) we
have L(A) = >3 (Agg, hi)

Proof. We will proove the proposition by showing (¢) = (b) = (a) = (c).

(¢) = (b) Since the terms (Agy, hy) are explicitly WOT continuous, so is their sum.

(b) = (a) From Proposition 3.1.2 we see that A; °>% A implies 4; — A, and thus

WOT is coarser than SOT. This means that WOT continuity implies SOT continuity.
(a) = (¢) By Lemma 3.1.3 and the fact that the SOT is generated by the seminorms
pn(A) = ||Ah||, there exist vectors g1, ..., g, € F such that

L(4)] < z 1Agdll < 7 (Z ||Agk||)2

We rescale g, := \/ngx and take a look at # := {Ag1 & ... ® Ag, : A € B(A)} as a
subset of . F(A§ & ... ® Agyn) := L(A) is then a linear functional on %" with

[N

F(Ag @ ... Ag,) < (Z HAng) = ||Ag1 @ ... D AGy||
k=1

Using Theorem 4.3.3 and setting [|.|| as the required seminorm, we can extend F' to a
continuous linear functional F' on 7Z”". Theorem 4.4.1 now gives us a vector h; @& ...® h,, €
™ such that for all fi & ... & f, € "™ we have

F(id. . @)=L ®fuhh®..®h,) = ﬁ:(fk,hw
k=1

The fact that F(Ag @ ... ® Ag,) = L(A) concludes the proof. O

Proposition 3.1.4 tells us that sets defined as the SOT-closure with an SOT-continuous
functional are automatically also WOT-closed. If we apply the Hahn-Banach Theorem
4.3.4 to the SOT-Topology, we get exactly such a case, and we can leverage this in the
following Corollary.

Corollary 3.1.5. If € is a convex subset of B(H), the WOT closure of € equals the
SOT closure of €.

Proof. Proposition 3.1.2 shows that WOT is coarser than SOT and thus SOT-cl(%) C
WOT-cl(¢). Take now an A ¢ SOT-cl(¥). Because of Theorem 4.3.4, we find a SOT-
continuous linear functional L and v € R such that Re L(A) > v and

¢ CK:={BecB(H):Re L(B) <~}
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18 3 Multiplicity Theory

Because of Proposition 3.1.4, L is also WOT continuous and therefore WOT-cl(%)
WOT-cl(K) = K. Therefore we have A ¢ WOT-cl(%), which gives us WOT-cl(%)
SOT-cl(¢) and thus WOT-cl(¥) = SOT-cl(%).

NN

Finally, we want to find another formulation for the SOT-closure of subalgebras of
PB(°). To this end we need the notion of invariant subspaces.

Definition 3.1.2. Let J# be a Hilbert space and let A € B(°). We define an invariant
subspace .M C H for A as a closed linear subspace such that A.#Z C .#, and we call
the collection of all such invariant subspaces LatA. For a set . C ZA(J) we denote
Lat.? := Nge» Lats.

Proposition 3.1.6. If </ is a subalgebra of B(H) containing 1, then we have
SOT-cl(«) = {B € B(H) : Latey™ C LatB" for all n € N}

Proof. Let us denote the set on the right hand side by .#". First we show that SOT-cl(«7) C

. Assume that A; 59T, A and (A))ier € . Take n € N and we get (A');er C ™.
Now for any h = hy & ... ® h, € ", we find that

This means we also have A} SO, Am. Now take .#, € Lata/™. As an invariant subspace
for all operators in o/™, it satisfies A #,, C #,. We then look at A"h for h € .#,, and
we saw earlier that ATh — A™h. But (Alh)e; € A, and A, is closed, so A"h € A,
and thus A".#, C .#,. Taken for all n € N, this means that A € J¢".

Now we show that % C SOT-cl(«). For B € ¢, we will construct a net (4;);e; C &

so that A; 290 B. As indices, we take (¢, H), where ¢ > 0 and H = {hy,...,h,} is a
finite set of vectors in ., and we define (e, H) < (¢, H) if ¢ > ¢ and H C H. We now
want to find A,y € &/ so that for any finite set H and any vector h € H, we have

ph(Aew — B) = ||(Ae.y — B)h|| < e. Since the pj, are just the generating seminorms of

SOT, we have by Theorem 4.3.2 that A g S9L, B and thus B € SOT-cl(«7).

Let H = {hy,...,h,} and € > 0 be fixed. Now let us inspect Sy := {Ah; & ... ® Ah,, :
A € o/}. Because & is an algebra, Sy is a linear subspace invariant for all A" € &/
and thus cl(Sy) € Late/™ C Lat B". This means for all x € cl(Sy) we have B"x € cl(Sg).
Since 1 € &/, we have 1 € &™, which leads to hy ® ... ® h,, € Sy and therefore to
B"(hy @ ... ® h,) = Bhy & ... ® Bh,, € cl(Sy). Since Sg is dense in cl(Sy), we can
choose an A € &7, so that |[(A" — B")(h1 & ... & hy,)|| < e. This means in particular that
[|(A— B)h;|| < eforall h; € H, and we can take the chosen A as A, p. O

3.2 The Commutant

In this section, we concern ourselves with the commutant of subsets of #(.77). We will
need this theory for the definition of von Neumann algebras in Section 3.4. The big star
this time will be the Double Commutant Theorem 3.2.6, which links the properties of the
double commutant to the topologies we discussed in the last section. In addition, we will
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3.2 The Commutant 19

discuss the commutant of algebras of the type <7, C %(L?(u)) in Theorem 3.2.8. We will
see in Section 3.5 that we can represent certain subspaces of ## with L?(u) with specific
measures g, and thus &7, will become important later on. We once more start with a
definition, and afterwards we will obtain some fundamental properties of the commutant.

Definition 3.2.1. If .¥ C B(5), we define
S ={Ae B(H): AS=SA VSe S}

We call the set .7’ the commutant of .. In a similar fashion, we define . := (.¢)" as
the double commutant.

Proposition 3.2.1. Let .7,.% C B(H), and let ¥ C .#. Then we have &' C ..
Proof. We can express . and .#" differently by taking

S'= ({BeB(H): AB=BA}
Aes

S = ({B€B(H): AB=BA}
Aes

Since . C .¥, we see that .%' C .. O
Proposition 3.2.2. Let .¥ C B(°). Then we have (") = ..

Proof. For A € ., we have for all B € .’ that AB = BA and thus A € %" and
& C ", Similarly, we have ./ C (”)". On the other hand, because . C ." we can
use Proposition 3.2.1 to get (") C .7 O

Proposition 3.2.3. Let .¥ C A(H). Then &' is WOT closed.

Proof. We take A € . and the net (B;);c; C .’ with B; WOL, B. This means we have

B;A = AB; for all i € I. For any h,k € 7, we find
{(AB: — ABYh, k)| = [{(B; — B)h, A"8)| = [{(B; — B)h, F)| 0

[((BiA — BA)h, k)| = |{(B; — B)(Ah), k)| = [((B; — B)h, k)| — 0

Because of Theorem 4.3.2, this means that B;A WOT, BA and AB; WOT, AB. So

altogether we ca take the WOT limit of B;A = AB; on both sides to get BA = AB and
thus find that . is WOT-closed. O

Proposition 3.2.4. Let ¢ be a Hilbert space and H C € be a closed linear subspace.
Let further Py be the projection onto H and . C B(H). Then Py € " if and only if
AH C H and A*H C H for every A € ..

Proof. Let h,h' € A, take A € .¥ and assume that AH C H and A*H C H. We then
have
(APyh, 'y = (PuAPyh, I) = (Pyh, A* Pyl

— (h, PgA*Pyh’) = (h, A*Pyh!) = (PyAh, 1)
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20 3 Multiplicity Theory

This means that Py € .&".
Now let us consider the reverse implication and assume Py € .. This means that also
(1—Py) €. Wetake A€ ., he Hand ke H' and get

(AR, k) = (APyh, k) = (PyAh, k) = (Ah, Pyk) = 0

(Ah, k) = (h, A(1 — Py)k) = (h, (1 — Pg)Ak) = ((1 — Py)h, Ak) =0
This means that AH C (H+)t = H and A*H C (H')* = H for all A € .. O

Next, we will prove another short proposition and then fuse our previous insights with
the properties about the SOT and WOT we have derived in Section 3.1 to obtain the
Double Commutant Theorem.

Proposition 3.2.5. Let A, € B(;,) forn € N, and let us define A = P>, A,. Then
we have -
v -
n=1

Remark. This means especially that A is normal if all (A,),en are normal.

Proof. Let us designate ¢ := @,°, .7, and take x,y € . We can write both as
T =@, r, and y = P2, y, with z,,, x, € J, for all n € N. Now we calculate (Ax, y) »
to see

<Axuy>.)f = Z<Anxnayn>}fn = Z<$n7z42yn>%; = <x7A*y>}f
n=1 n=1
This concludes the proof. O]

Theorem 3.2.6 (Double Commutant). Let o/ be a C*-subalgebra of B(H) and 1 € <.
Then <" is the SOT (and also the WOT) closure of <7 .

Proof. By Proposition 3.2.3 we see that &/” = (&7’) is WOT-closed. Further, we see
that 7" is convex, and also .«/ C &/”. With Corollary 3.1.5, we can now deduce that
SOT-cl¥ = WOT-cle? C &7

For the other inclusion, we use Proposition 3.1.6 to show that «/” C SOT-cleZ. For
C € " and n € N, we take .# € Lata/™ and must show that C".# C .#. Because
M € Latd™, we get A" C /. Additionally, we have for every A € o/ that A* € &
and because of Proposition 3.2.5 we have (A*)" = (A™)* and thus find (A")*.# C A .
Now let P, be the projection onto .#. Proposition 3.2.4 tells us that P, € (/™). This
means that C"P , = P ,C", which implies C".# C .# . Thus we have C" € SOT-cle,
which means 7" C SOT-cleZ = WOT-cleZ. Together with our first calculations we find
" = SOT-cleZ = WOT-cley O

The Double Commutant Theorem is a powerful theorem that lets us calculate the
commutant without actually investigating commuting properties, just by using the SOT-
or WOT-closure. This will help us immensely in Section 3.4 when we get to actually
calculating specific commutants.

Now we redirect our attention to the functions L>(u) C %(L*(11)) and show the properties

of (L>(p))".
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3.2 The Commutant 21

Definition 3.2.2. Let (X, 1) be a measure space and ¢ € L>(u). We define M, €
B(L* (1)) by Myf = ¢f as the multiplication operator of ¢. Further, we denote the set of
all such operators by o7, := {My : ¢ € L>(u)}.

Proposition 3.2.7. Let (X,Q, i) be a o-finite measure space My € <,. Then ||My|| =
[191]o-

Proof. For any f € L*(u), we have the inequality

IO = [ 1615 < Nlgl 2 I

This means that ||M|| < ||¢|]c-

To prove ||¢||s < ||My||, we consider that (X, €, u) is o-finite. Therefore we can take
a sequence {A,} € Q so that 0 < pu(A,) < oo, Us2; A, = X and for i # j we have
A;NA; =0. Now for @ € Ry we define the set w, := {x € X : |¢(2)] > a}. If p(w,) = o0,
because of w, = Up? (A, Nwy) and p(4,) < oo, we see that there is at least one n so
that 0 < u(A, Nw,) < 0o. Therefore if 0 < pu(w,), we can always find a @, C w, with
0 < u(@y) < 00. Now for an o < |||, We see that 0 < u(w,) and therefore we have

MO = [ 16 > ap(@a) = ol e, |

Therefore ||My|| > « for all o < ||¢|| and thus ||My|| > ||}]|c- O
Theorem 3.2.8. Let (X,Q, ) be a finite measure space. Then o, = o, = .

Proof. Since the multiplication of functions in L>(x) is abelian, 7, is also abelian and
so 7, C o, We now prove the other inclusion &7, C 7,. Since u(X) < oo, we
have 1 € L?(u). We take A € &, C #(L*(p)) and we can set ¢ := A(1) and get
¢ € L*(p). Let v € L*(u), then because of u(X) < oo we have L>(u) € L?(u) and
A(Y) = AMy(1) = MyA(1) = Myp = 1¢. We now define w,, := {x € X : |¢p(z)| > n}.
Since x,,, € L™(u), we can set 1) = x,,, and get the inequality

AN p(wn) = NAIPIXwnl I = AN = o, |[* = /w |02 dp = n® pu(wn)

The inequality tells us that if p(w,) > 0, we have ||A|| > n. Because A is a bounded
operator, there has to be an 7 so that p(ws) = 0 and therefore ||¢|| < 7, which gives
¢ € L>®(u). The equality A(y)) = ¢ tells us that we have A|p~(,) = My. According to
Theorem 4.7.7, L>(u) N L*(p) = L>(p) is dense in L?(x) and therefore A = My, which
means that % C ,. O

Remark. We can generalize Theorem 3.2.8 for o-finite measures (see [2] chapter IX.6
Theorem 6.6), but we will not prove it since it is not required for the remainder of this
work.

Without knowing it yet, we have just proven that .27, is a maximal abelian von Neumann
algebra. This might not impress us much at the moment, but we will use the very convenient
property &, = @, = &/, in Section 3.6 to show that <7, is the double commutant of
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22 3 Multiplicity Theory

{M.}, that is the multiplication operator by z which we will call N,,. By then, we will
have established the importance of this double commutant {N,}”, and we will be well on
the way to prove our first multiplicity theorem.

3.3 Pseudo-Commuting Normal Operators

In this section we will look at normal operators that "commute" with maps from one
Hilbert space to another, that is NX = XM with X € B(74, 74). We will investigate
the relationship between them in two parts, of which the Fuglede-Putnam Theorem 3.3.2
is the first major conclusion, and the the equivalence relation in Proposition 3.3.5 is the
second major conclusion. This section is a bit of a tangent to our larger goal, but we will
need to use Theorem 3.3.2 and Proposition 3.3.5 at key points in this thesis to progress.
To this end, we start right away with a lemma and then directly the Fuglede-Putnam
Theorem.

Lemma 3.3.1. Let A € B(H°) be a herimitian operator, that is A* = A. Then exp(iA)
1S a unitary operator.

Proof. We use Proposition 4.5.1 to show that (exp(iA))* exp(iA) = 1. First, we know that
(exp(iA))* = exp(—iA*). Second, because of A = A* and thus A*A = AA*, we know that
exp(—iA*) exp(iA) = exp(i(A — A*)) = exp(0) = 1. O

Theorem 3.3.2 (Fuglede-Putnam). Let N € B(74) and M € HB(#) be normal op-
erators, and let X € B(H#5,74). If NX = XM holds, then N*X = XM* holds as
well.

Remark. We can, in particular, set ¢ = % and also N = M to obtain that NX = XN
implies N*X = X N* for a normal operator N and any X € A(.74).

Proof. We can deduce immediately from NX = X M that for k € N we have N¥X = X M*
and thus for any polynomial p(N) we have p(N)X = Xp(M). For any bounded linear
operator X, Definition 4.5.1 tells us that the exponential exp(X) is the limit of polynomials.
Thus we can fix a z € C and see that

exp(izN)X = JLrgopn(N)X = T}Lr&pn(M)X = X exp(izM)

We then see with Proposition 4.5.1 that X = exp(—izN)X exp(izM). We can now define
the operator valued function f(z) : 5% — 74 in the following way

f(Z) — 6—izN*X€izM* — 6—izN*€—i2NX€i2M€izM*
Again with Proposition and the fact that /N, M are normal operators, we get
F(z) = e~ NN x gisM+izM*

Now zN* 4+ ZN and zM* + zZM are both herimitian operators, so by Lemma 3.3.1,
exp(—izN* —izZN) and exp(izM* + izM) are unitary. This means that || exp(—izN* —
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3.3 Pseudo-Commuting Normal Operators 23

izN)|| =1 and || exp(izM* +izN)|| = 1, which means that ||f(2)|] < ||X]|. On the other
hand, by Proposition 4.5.2 we get that f(z) is differentiable with the first derivative

f(z) = —iN*f(2) + f(2)iM*

Since || f(2)]] is bounded by || X ||, we can use Theorem 4.5.3 to see that f(z) is constant and
thus f'(z) = 0. We remind ourselves that f(0) = X and get 0 = f/(0) = i(—N*X + X M*),
which leads to the theorem. O

The Fuglede-Putnam Theorem is a very powerful tool, since it automatically gives us
properties of the adjoints N*, M* from an equation containg just N and M. As mentioned
in the remark, we also get N*X = X N* from NX = XN and thus also NX* = X*N. This
means that the commutant of a set consisting of normal operators also contains all adjoints.
We will use this property especially when investigating the double commutant { N}" of a
normal operator in Proposition 3.4.4. First, however, we will focus on X € Z(J4, 7)
and show that that on certain subspaces we actually get N ~ M. To this end we will show
a generalized Polar Decomposition Theorem 3.3.4, which we will use for the subsequent
proof of N ~ M.

Definition 3.3.1. Let X € B(s74, 7). Then we define the absolute operator of X as

X| = [ VEE(2)
Here, F is the spectral measure for X*X.

Proposition 3.3.3. For X € #B(74, 74) the operator | X| € B(FA) is well defined and
the following properties hold

(a) |X]" = [X].

(b) For h,k € 54 we find (Xh, Xk) . = (| X|h, | X|k) 4.

(c) ker | X| = ker X and cl(ran|X|) = (ker X )= .

Proof. We see that X*X € Z(J4) is a self-adjoint operator, and thus according to
Theorem 4.6.4 it has a spectral measure E with

/ 2dE(2) = X*X
Further, we see that
(X*Xh, h)m = || XA

Since X*X is self-adjoint, we therefore know by Proposition 4.6.2 that o(X*X) > 0. Since
supp(E) = o(X*X), we see that \/z € B(c(X*X)), so |X| = [+/zdE(z) is well defined.
Theorem 4.6.3 then tells us that

X[ = [ VR () = [ VEE(2) = |X]
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24 3 Multiplicity Theory

Now we consider h, k € 74 and see
IXIR, X Ky n = {IX P Kos = [ 2dBni(z) = (X XD, K)o = (Xh, XK
To show the last statement, we remember the second statement and see for h € 74

XAl = [I(1XTR) 2

Thus we find ker | X| = ker X. Now we take f € ker |X| and h € ran|X|, which means
h = | Xk for some k € 7, and we calculate

(h, [lon = (I Xk, flon = (k| X|f)os =0

Since f € ker | X| = ker X, we find that h € (ker X)* and thus ran|X| C (ker X)*. Since
(ker X ) is closed, this automatically implies cl(ran|X|) C (ker X)*. On the other hand,
we inspect g € (ran|X|)* and see

(|X1g, [X|9)m = (| X|(1X]9), 9)s =0

This means | X |g = 0 and so we have (ran|X|)* C ker | X|. We can then form the orthogonal
complement and get

(ker X)* = (ker | X|)* C ((ran|X])*)* = cl(ran|X|)
Ultimately we therefore find cl(ran|X|) = (ker X)*. O

Theorem 3.3.4 (Polar Decomposition). For X € B(s4,.75) we have X = W|X| with
W e B(A, 75), and W|ex x)2 is unitary with

ranW | ger x)» = cl(ranX)

Proof. Proposition 3.3.3 tells us that for any h € 54 and k € 4 we have (Xh, Xk) 5 =
(| X|h,|X|k) . This means angle and norm are the same under X and |X|, so we can
define the unitary operator W : ran|X| — ranX via W(|X|h) = Xh. Since W is an
isometry, we can extend it to W : cl(ran|X|) ~ cl(ranX). Now we remember that
H = ker X @ (ker X)*. Proposition 3.3.3 states that cl(ran|X|) = (ker X)*, so we can
define W € B(H,, ) as W = 0@ W and see that by definition Wl (ker )+ = W is
unitary, and that
ranW | er x)r = cl(ranX)

Now it remains to be shown that X = W|X|. We take h € 7, remember the definition
of W and calculate )
WIX|h=W(X|h)=W(X|h)=Xh

This proves the theorem. O

Proposition 3.3.5. Let N € #(J) and M € HB(H3) be normal operators, and let
X € B(A, ) so that XN = MX. Let us further denote 7, := (ker X)*= and
3 = cl(ran X). Then N| ; € B(H) and M| ,; € B(H3), and we have N| z ~ M| 4.
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3.4 Abelian von Neumann Algebras 25

Proof. First we will prove M|, € PB(). For any h € ranX, we have h = Xk for some
k € 4. We can now calculate

Mh=MXk=XNEk

Therefore M fL € ranX. Since M is continuous, we see that also M %% - ji;é To show
N| 7 € #(H), we consider Theorem 3.3.2 and get X N* = M*X. Now we take h € ker X

and see
XNh=MXh=0

Therefore we have N*ker X C ker X. We can then inspect k € (ker X)* and again
h € ker X and get
(Nk,h)ss = (k,N*h) s =0

The last equation is due to the fact that N*h € ker X. Therefore Nk € (ker X )+ and so
we have N| ;. € B(JA).
Now we want to show N|,z ~ M| ;. We take the adjoint of X N* = M*X and get

NX*=X"M
Together with the initial equation X N = M X this gives
X*XN=X"MX=NX"X

Therefore we see that X*X € {N}'. Theorem 4.6.3 and Theorem 4.6.4 now tell us
that ¢(X*X) € {N} for all ¢ € B(o(X*X)), and from Proposition 3.3.3 we see that
| X| = ¢ (X*X) with ¢ , € B(c(X*X)). Altogether this means that |[X| € {N}'. We
now use Theorem 3.3.4 to get X = W|X| and calculate

MW|X|=MX = XN = W|X|N = WN|X|
This means on cl(ran|X|) the following equation holds

MW|cl(ran|X\) = WN|cl(ran|X|)

Now we remember from Proposition 3.3.3 that cl(ran|X|) = (ker X)* = A, and from
Theorem 3.3.4 that ranW| e, xy1 = cl(ranX) = 3. Thus we can deduce

M|,zWla =Wz Nz
Since Theorem 3.3.4 also states that W/| z is a unitary operator, we therefore get M|, ~
N| 7. O
3.4 Abelian von Neumann Algebras

In this section we will focus on a certain type of subalgebras of Z(7), namely the
titular von Neumann algebras. Especially the von Neumann algebra W*(N) generated
by the normal operator N is important, as it will serve as one of the foundations of
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26 3 Multiplicity Theory

multiplicity theory. In conjunction, we will introduce separating and cyclic vectors, which
help describe sets of operators by their action on a (separating or cyclic) vector, and they
will appear hand in hand with W*(N) later on.

We go medias in res and define von Neumann algebras and generated von Neumann
algebras first, and we will prove a few lemmata that will help us calculate with them.
Our final goal in this section will be Corollary 3.4.9, which tells us for separable Hilbert
spaces that every abelian C* algebra (and thus also every abelian von Neumann algebra,
especially W*(IV)) has a separating vector.

Definition 3.4.1. We define a von Neumann algebra </ as a C*-subalgebra of % ()
with the property &/ = .o7”.

Definition 3.4.2. Let &/ C ZA(). We define W*(</) as the smallest von Neumann
algebra containing <7 and call it the von Neumann algebra generated by <f . For of = {A},
we write W*({A}) = W*(A).

Lemma 3.4.1. Let of C B(I) be an algebra closed under the x-operation. Then we
have cle? = C*(<f). Additionally, if <7 is abelian, then C*(<7) is also abelian.

Proof. First we consider A, B € cle/ and A € C with nets (A;)ier, (Bi)ier € & so that
A; — A and B; — B. Since addition and multiplication are continuous with respect to
the operator norm, we have (A4; + AB;) € cle/ and thus (A + AB) € cleZ. We also know
for a fixed k € I that

1Ak B — A Bi|| < [|Ak]| - |[B = Bi|| = 0

This means that AyB; — AyB € cle/. Now we take the other limit and similarly get
ArB — AB € cl&Z. Finally we consider that for any C' € Z() we have ||C|| = ||C*||.

Thus we see
[[A" = Afl| = [][A = Ai|]| = 0

This means that A7 — A* € cleZ. Altogether we can deduce that cle/ is an algebra closed
under the x-operation. Because it is also norm-closed, cle? is a C*-algebra.

Since &7 C cle/ and cle/ is a C*-algebra, we have C*(«7) C cleZ. Conversely, because
o C C*(), and C* () is closed, we have clef C C*(«7). Together this means claZ =
C*().

Now assume that <7 is abelian and take A, B € cle/ with (A;)icr, (Bi)icr € &7 so that
A; — A and B; — B. For any fixed k € I we then have

1Ak B — BAL|| < [|Akll - |[B = Bill + |[ArBi — BiAw[| + || B = Bil| - [|Akl|

= 2[|Ak[| - [[B = Bil]| = 0

That means {AyB — BA,} = 0 for all k € I. As discussed, multiplication and addition
are continuous and therefore we can take the limit and obtain AB = BA. O]

Lemma 3.4.2. Let of C B(H) be an abelian C*-algebra and let B € &/’ be a normal
operator. Then C*(o/ U{B}) is also an abelian C*-algebra.
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Proof. According to Lemma 3.4.1, a good start is to find a minimal algebra closed under
the *-operation that contains &/ U {B}. We start by defining

@ = { Z (Aj,k —+ )\Jvk)BJ(B*)k m,n I~ N s )\j,k € C y )\070 = 0 and Aj,k € JZ%}

J,k=0

The A\ = 0 is needed so that 1 € & if and only if 1 € 7.

We first prove that & is an abelian algebra closed under the x-operation. For A € &7,
we have A* € &/ and thus A*B = BA*. We can take the adjoint of this equation to get
B*A = AB*, which means B* € &/’. Since & itself commutes, we can directly calculate
that &2 is an algebra. Further, & is symmetric in B and B*, and since &/ was closed
under the x-operation, we find that for C' € & we have C* € &. Thus & is an abelian
algebra closed with respect to the x-operation.

Because &7 U{B} C &, we have C*(&/U{B}) C C*(Z?). Conversely, since C*(o/ U{B})
is an algebra containing </, B and B*, we see that & C C*(«/ U {B}) and therefore
C*(Z) C C*(«/ U{B}) and thus C*(Z) = C*(«/ U{B}). Lemma 3.4.1 now tells us that
C*(o/ U{B}) = C*(2) is equal to clZ and that clZ is abelian. O

Lemma 3.4.3. Let o C B(H) be a C*-algebra with 1 € o7. Then we find
(SOT) cl(&) = (WOT) (&) = " = W* ()
Additionally, if <7 is abelian, then <" is also abelian.

Proof. We start by showing that 7" is a von Neumann algebra. For S € &', A, B € &/"
and A € C we see that
(A+AB)S = S(A+ AB)

Therefore o7 is an algebra. Further, we know that for A € &/ we have A* € &/, and
thus for S € /" we find A*S = SA* and thus S* € &/’. Similarly we can see that for
B € /" we have B* € &/”. Finally,since 1 € &/ we can use Theorem 3.2.6 to see that
" = SOT-cl(e/) = WOT-cl(</), and thus 7" is especially norm closed. Altogether we
find that 7" is a C*-algebra, and by Proposition 3.2.2 we see that (/") = &7”. Therefore
/" is a von Neumann algebra.

Since A C SOT-cle/ = 7", we find that W*(«7) C &/”. On the other hand, Proposition
3.2.1 tells us that (W*(«7))" C &7’. This in turn gives us &/” C (W*(&/))" = W*(«),
since W*(.«7) is a von Neumann algebra. Therefore we get &7” = W*(</).

Finally, we assume that o is abelian and take again A, B € /" with (4;), (B;) C &

and A; 59T, 4 and B; 89T, B For a h € # and a fixed k, we have

[(AxB — BAp)h|| < [|(AxB — AxBi)h|| + [[(AxB; — BiAg)h|| + [[(BAk — BiAp)hl|

This means A;B — BA; = 0 for all 7. Similarly as before, we can now take the limit and
get AB = BA, which means that &7 is abelian. O
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Now that we have a certain grip on how to calculate C* (/) and W*(</), we can move on
to investigate W*(IV) specifically for a normal operator N. We will find a close connection
to the set of all polynomials in N and N*, so we first make the following definition.

Definition 3.4.3. Let N € #() be a normal operator. Then we define Zy as the
algebra of all polynomials in N, N*, that is

Py ={> NpN(N*) :mneN, \j; € C}

7,k=0

Proposition 3.4.4. Let N € B() be a normal operator. Then W*(N) = {N}" =
SOT-cl(Zy) = WOT-cl(Py), and W*(N) is abelian.

Proof. First we acknowledge that by {N} C W*(N), and thus by Proposition 3.2.1 we
have W*(N) C {N} and further {N}" C W*(N)"”. Since W*(N) is a von Neumann
algebra, we have W*(N)” = W*(N) and thus {N}’ C W*(N).

To prove W*(N) C {N}", we start by taking B € {N}'. Theorem 3.3.2 tells us that,
because N is normal, we have BN* = N*B and thus N* € {N}". Also, for A € C we
find BA = AB, and thus C C {N}". Since all A\ € C and N, N* are in {N}", we find
that Zy C {N}". Now we take S € {N}' and A € WOT-cl({N}") with (A;);es so that
A; 9T A We see that A;S = SA; implies AS = SA and thus A € {N}” and {N}"
is WOT-closed. Therefore it is especially norm closed, and we find cl(Zy) C {N}".
By Lemma 3.4.1 we see that cl(Zy) is an abelian Cx-algebra. Further, we know that
1 e Py Ccl(Py), and we remember that the WOT-closure of the norm closure is just
the WOT closure. Now we can use Lemma 3.4.3 to get

W*(cl(Py)) = WOT-cl(cl(Py)) = WOT-cl(Py) € WOT-cl({N}") = {N}"

Since we have especially N € Py, this means W*(N) C {N}", and together with our initial
insight we find W*(N) = {N}”. This inclusion chain also tells us {N}" = WOT-cl(Zy),
and from Lemma 3.4.3 we get that WOT-cl(Zy) = SOT-cl(Xy) and that {N}" = W*(N)

is abelian. n

Next we define cyclic and separating vectors. Both concepts will accompany us through-
out the rest of this thesis.

Definition 3.4.4. Let &7 C B() and e., e, € . We call the vector e. a cyclic vector
for o7 if {Ae.: A € o/} is dense in S, and the vector eg a separating vector for of if for
all A € &7 it holds that Ae, =0« A =0.

The importance of cyclic vectors comes from the fact that they describe (in a way)
whether &7 is dense in 7, as they let us map &7 densely into 7. This is especially useful
if vectors of the type {Ae. : A € o/} have some special property, or if we want to leverage
certain special properties of &7. On the other hand, if .o/ is an algebra, a separating vector
allows for the inverse mapping. We can see that then, each element in {Ae; : A € &/}
uniquely corresponds to an element in .o7. This allows us to leverage our knowledge about
2 when making calculations with 7. For the moment, we keep these insights in the
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back of our head as we continue on towards Theorem 3.4.6 and our considerations about
maximal abelian von Neumann algebras. To this end, we first need the definition of a
maximal abelian von Neumann algebra.

Definition 3.4.5. Let <7, C () be an abelian von Neumann algebra. We call 7,
a mazimal abelian von Neumann algebra if there is no abelian von Neumann algebra

o C B(IH) so that o7, C .

Lemma 3.4.5. Let 7 be a separable Hilbert space and let o7 C B(H) be a von Neumann
algebra. Then there exists a normed sequence (e,)nen C € so that for i # j it holds
cl{Ae; - Ae o} L cl{Ae;: Aec '} and 7€ = @, cl{Ae, : A€ }.

Proof. Since s is separable, it admits a countable orthonormal basis (e,,)nen. For each n
define E,, :=cl{Ae, : A € &/}, and let P, be the projection onto FE,. Now we inductively
create a new (possibly finite) normed sequence (€, ),en by starting with é, := e; and thus
n1 = 1, and then setting é;,; = iZizl(l — P, )en,.,-Here, nj 1 > n; is the next index
so that ey, ¢ P, E,, and « is a constant so that €;;, is normed. Now we define
E, := cl{A4é, : A € &/} and take h € E, and n < n'. From the construction of &,/, we
see that é,, L E, and thus (€, h) = 0. Now for any A € &7, we know that A* € &/ and
thus A*h € E,. Therefore we have (Aé,/, h) = (&,, A*h) = 0, which means E,, L E,,,
and therefore we can also look at @Y_, E,. But first, we remember that 1 commutes
with every operator, so 1 € &/ = 7, and thus e, € E,. The construction of E, shows
that @Y_, E, = cl(span(U'Y, E,)) 2 @Y, span({e,}). The (e,)nen form an orthonormal
basis of .7, so we can conclude 5 = @;° | span({e,}) = P, E,. O

Theorem 3.4.6. Let o/ be an abelian C*-subalgebra of (7). Then the following
statements are equivalent:

(a) < is a mazimal abelian von Neumann algebra
(b) o =o'
If € is separable, then these statements also imply:

(c) < has a cyclic vector, contains 1 and is SOT closed

Proof. (a) = (b) Since 1 commutes with every element in #(.7), we have 1 € &7. Assume
of # of" and take B € &'\ &/. If BB* # B*B, we have B(B + B*) # (B + B*)B and
because B € 7', it follows that (B + B*) ¢ «/. We also have (B 4+ B*) normal and as
discussed in the proof of Lemma 3.4.2 that B* € &7/, and thus (B + B*) € &/’. Therefore
we can always choose B € 7' \ &/ to be normal. Now we consider &/ := C*(/ U {B}),
and we have o/ C o C &/". Lemma 3.4.2 tells us that &7 is abelian, and therefore
Lemma 3.4.3 then tells us that 7" is an abelian von Neumann algebra. This, however, is
a contradiction to the maximality of 7.

(b) = (a) Assume for B ¢ &/ that W*(«/ U {B}) is abelian. Since it is abelian, we
have B € &/’ and thus B € &/, which is a contradiction.

(b) = (c¢) By Lemma 3.4.5, we have a normed sequence (e,),en so that if we define
E, :=cl{Ae, : A€ o}, we have ' = @, E, and E; L E; for i # j. Now look at the
projection P, : 7 — FE,. < is a C*-algebra, so for all A € o it holds that AE, C F,,,
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A* € & and therefore also A*E,, C E,,. Proposition 3.2.4 thus tells us that P, € &' = o/
We construct the vector eg := 3372, 72 and define Ey := cl{Aeg : A € o/}, We see
that &/ P, C o/ and so E, = cl{AP,ey : A € &/} C cl{Aey : A € &/} = Ey. We can
deduce from the previous inclusion that ¢ = @, I,C E, and thus e, is a cyclic vector.
Further we have 1 € &’ = &/ and because of Theorem 3.2.6 we know that &/ = &" is

SOT-closed. O

Remark. For separable Hilbert spaces, statement (c) actually also implies (a) and (b).
Since the proof requires Gelfand Theory, we will omit it and instead only do a special
case later on with Corollary 3.7.10. The full proof can be found in [2] chapter IX.7 under
Theorem 7.8.

Although this insight into maximal abelian von Neumann algebras is highly interesting,
we will only use it to prove the following Corollary 3.4.9. However, under the surface, a
certain maximal abelian von Neumann algebra will accompany us for some time, namely .7,
for Radon measures y with compact support. We have already proven that &, = & = &/,
so we know that it is a maximal abelian von Neumann algebra, and in Section 3.6 we will
find out that <7, = W(N,). Further, since L*(p) N L>(u) is dense in L*(p) (see Theorem
4.7.7), we can infer that the cyclic vector given by Theorem 3.4.6 is just the constant 1
function. But before we delve too deep into this, we focus again on our subject of abelian
von Neumann algebras, and we will prove the final corollary of this section.

Lemma 3.4.7. Let o7 C B(I) be an abelian von Neumann algebra. Then there exists a
mazximal abelian von Neumann algebra <, C B(H) so that of C o,,.

Proof. Let 47, be the set of all abelian von Neumann algebras in #(s¢) containing o7
The set 47, is partially ordered by the inclusion relation C. Now let (N;);e; € A%, be a
chain, and we define N :=J; N;. For A, B € N, there are i4 and ip so that A € NV;, and
B € N;,. Since (N;);es is a chain, we can assume without loss of generality i4 < ip and
thus A, B € N,;,. Because N, is an abelian algebra, we have AB € N;,, (A+ AB) € N,
A*,B* € N;, and AB = BA. We have N;, C N, so N is an abelian algebra closed with
respect to the x-operation. Lemma 3.4.1 now tells us that C*(V) is an abelian C*-algebra,
Lemma 3.4.2 tells us that C*(C*(N)U{1}) is also an abelian C*-algebra and finally Lemma
3.4.3 tells us that N := C*(C*(N) U {1})" is an abelian von Neuman algebra. For all i we
have:

N;C N CC*(N)C C(C*(N)u{1}) C N

Since N is an abelian von Neumann algebra, we also have N e Ay and therefore the
chain (N;);e; has an upper bound. According to Theorem 4.2.1 this means that .47, has a
maximal element, which is a maximal abelian von Neumann algebra. O]

Lemma 3.4.8. Let e. € F be a cyclic vector for of C B(H). Then e. is a separating
vector for o'.

Proof. Take S € &' and assume that Se, = 0. For A € &7, we see that SAe. = ASe. = 0.
But since cl{Ae.: A € &/} = 7 and S continuous, this means that S = {0} and thus
S =0. O
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Corollary 3.4.9. Let ¢ be a separable Hilbert space and let o be an abelian C*-subalgebra
of B(H). Then we find that </ has a separating vector.

Remark. Since every abelian von Neumann algebra is by definition also an abelian C*-
algebra, this corollary holds for abelian von Neumann algebra as well.

Proof. Lemma 3.4.2 tells us that &/ := C*(&/ U {1}) is an abelian C*-algebra and Lemma
3.4.3 tells us that /" is an abelian von Neumann algebra. Because of Lemma 3.4.7, there
is a maximal abelian von Neumann algebra o, C PB(H) so that " C o, . Because of
Theorem 3.4.6, there exists a cyclic vector e, € 7 for ,,Q;m Because ,@7;; = mfm, Lemma
3.4.8 tells us that e. is also a separating vector for szm, and because of & C /" C szm,
we see that e, is also a separating vector for .. O

3.5 Vector-Associated Measures

In this section we will look at the connection between W*(NN) and certain measures
associated with vectors from 7. Our main goal is to show Theorem 3.5.8, which will tell
us that certain subspaces 4, generated by a vector h and W*(INV), are unitarily equivalent
to L?(up,) with vector-associated measures u,. Even more, we get a unitary equivalence
for N and functions ¢(N) of the operator N. This connection is the fundamental reason
how the von Neumann algebras W*(N) tie into multiplicity theory, as we hinted at earlier.
To understand this, we imagine that we fully separate (a separable) . into a direct sum
of orthogonal subspaces created by W*(N), as we have done in Lemma 3.4.5. We can
then identify this partition via Theorem 3.5.8 to get

A= @ Ao~ @D L)

n=1 n=1

With this unitary equivalence, we will have achieved the first step of the first multiplicity
theorem. However, before we can get there, we first need to prove Theorem 3.5.8.

Definition 3.5.1. Let p be a Radon measure with compact support. Then we define the
canonical multiplication operator N, € B(L*(u)) by N, : f(z) — zf(2).

We will use the operator N, throughout the rest of this thesis, as the fundamental
idea of multiplicity theory is to reduce any normal operator to a direct sum of canonical
multiplication operators for different measure spaces. Now we will prove some of its
properties.

Proposition 3.5.1. Let i be a Radon measure with compact support. Then N, is a
normal operator.

Proof. Because N is just multiplication by z, and since z and z commute multiplicatively,
we see that N,N; = N;N,. O

Proposition 3.5.2. The spectrum of N, is then given by o(N,) = supp(u).
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Proof. Let us denote S = supp(p) for the rest of this proof. First we show that o(N,) C S
by picking a A ¢ S and showing A ¢ o(N,). By Definition 3.5.1 4 is a Radon measure, so
we find that p(C\ S) = 0 and thus the function (z — \)~! is defined p-almost everywhere.
In addition S is compact, so (z — A\)~! is bounded on S and thus (z — A\)~' € L>®(u). We
can now define the multiplication operator ¢y : f — (z — X\) 71 f with ¢, € Z(L*(u)). By
definition of N,, we then have (N, — ANy (f) = (z = A)(z = A) 7' f = f, and thus N, — A
is invertible and A ¢ o(N,).

Now let us prove that S C o(NV,). We choose A € S and denote by D, the open circle
around A with radius ¢ > 0. Since S is the support of p and D, is a neighbourhood of
A, we find that u(D.) > 0 for all e > 0. S is also compact, so u(D.) < u(S) < oo and
therefore xp. € L*(1). We look at the function (z — A\)xp, = (N, — A\)xp. and assume
that ¢, € B(L*(p)) is the inverse of N, — A. By definition we have |z — \| < € for z € D,
and thus [[(N, — M xp.|| < €||xp.||. Further, we find that ||xp_||> = u(D.) > 0, and so
Xp. # 0. Since ¥\(N — N)(xp.) = Xp., this also implies that (N — X\)(xp,) # 0. Therefore
we have

oA ()] 2 oA (N = NIl lxp 1
ot =sup { P g € 220y 1 20} > I _ ol 1
1nal (N =N xp)ll ellxndl e
Taking the limit ¢ — 0 gives us a contradiction, because ¥, € Z(L*(;1)) implies that
||| < co. Thus we find that no such ¢, can exist and therefore A € o(N,,). O

Proposition 3.5.3. For two Radon measures j1; and o with compact support on C, we
have N,, ~ N,, if and only if [j11] = [pa].

Proof. First we assume [p;] = [po] and put ¢ := %. According to Theorem 4.7.3, ¢ > 0
and we can take v/¢. Now we consider f € L?(;) and see with Proposition 4.7.4 that

J 1P = [150dus = [ 170 dpe

This means that fv/¢ € L?(us) and also that the mapping U : L?(u;) — L?*(us) defined
by U : f + \/¢f is an isometry. Now let us denote 9 := 3%, and we can go through the
same steps to get an isometry U : L?(uy) — L?(p1). Proposition 4.7.4 also tells us that

¢ = ¢~ " and thus U = U™, which means L?(j1;) ~ L*(p12). Additionally we have for any
9 € L*(pa)

UN, U (9) =UN, (¢ g)=U(¢'2f) =UU2f) = 2f = N, f

Thus we find that N, ~ N,,.

Now let us assume that V' : L?(u;) — L?(p2) is unitary with the property VN, V! =
N,,,. This implies that o(N,,) = 0(NNV,,), which together with Proposition 3.5.2 means
that we can define S := supp(u1) = supp(pz), and we restrict our proof to the space S.

Now we inspect N and we see that

n -1 n
VN,V =N,
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Further, we have proven in Proposition 3.5.1 that N,, and N,, are normal, so we get from
Theorem 3.3.2 that
* —1 *
VN,V =N,

Since V, V1 are linear, we can extend this argumentation to any polynomial p(N,,, N ;1)
so that we find
Vp(Ny,, ]\7;‘1)‘/'*1 = p(Npy» N;Q)

We now remember that N, = M, on L?*(u;). Theorem 4.1.1 tells us that the polyno-
mials in z and z are dense in C'(S) endowed with the ||.||oc norm. Further, Proposition
3.2.7 gives [|M}|| = ||g|l for g € L>®(p;). This means that for any v € C(S), if a
sequence of polynomials (p,n)neny converges to u with respect to the ||.||oc norm, we
have pyn(Ny,, N ;1) — M, with respect to the operator norm, and we have the same for

Pun(Npsa sz) — M, on L2(M2)- Since V' is bounded, we find
VM, = nh—>n<>10 Vpu’n(N‘“’ Nzl) - nh—g)lop“v"(N#w N;:Q)V =M,V

This means we have VM,V = M, for all u € C(S). We also know that C(S) C L*(u),
because p1 is a Radon measure and S is compact, and therefore according to Proposition
4.7.6 we have p(S) < co. This means we can define ¢ := V (1), and for v € C(S) we have

V(u) = VM, (1) = VMV (¢) = My(¢) = pu

Our goal is now to prove that ¢ is related to Z—Z; via Theorem 4.7.9. Therefore we choose

any non-negative function vy € C'(S) with u, > 0 and see that also \/u; € C(S). Now
we remember that V' is an isometry and get

[ wsdir = 1T oy = IV VT By = 108/ Ny = [ 16105

We can split any v € C(S) into the sum of four non-negative functions with pre-factors
1, —1,4, —i. By the additivity of the integral, we therefore see that the previous equality
can be expanded to [udu; = [ |¢|?udus. We can now interpret the previous integral
as a linear functional ((u) := [udp, acting on u € C(S). Theorem 4.7.9 then tells us
that there is a unique Radon measure p so that ((u) = [wudu, and thus p = py. On
the other hand, we can define the measure v(A) = [, |p|*dus. Since s is a Radon
measure, we see by Proposition 4.7.6 that v is also a Radon measure. Further, we have
C(u) = [uduy = [ |¢|*udus and can thus again use Theorem 4.7.9 to get v = u; = p. We
have duy, = dv = |¢|?dps, so we see that j; < pp and also %2 = |¢|2. Repeating the

dp2
previous steps with pq and s switched gives us po << puy. O

Next, we define the subspace 7¢,. They will be the main method of how we investigate
¢ from now on.

Definition 3.5.2. Let N € #(s) be a normal operator, let A € W*(N) and let h € J7.
We now define 74, := cl(W*(N)h), and we further define Ay, := A|54,, that is A,z — Ax
for all x € 77,.
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Proposition 3.5.4. Let Ay, and 74, be as in Definition 3.5.2. Then we find that 74, is a
closed subspace, and that Ap76, C 76, and A; .76, C 56,.

Proof. Let z,y € W*(N)h so that T,h = x and T,h = y. Since W*(N) is an algebra, we
see for A € C that also T, + AT, € W*(N) and thus we have

4+ Ay =T,h + \Tyh = (T, + XTI, )h € W*(N)h

Therefore W*(N)h is a linear subspace and thus ¢, = cl(W*(N)h) is a closed linear
subspace. Now we take A € W*(N) and = € 74, and want to show that Az € J4,. Let
therefore (7},,)ic;r € W*(IN) be a net so that T, ;h — x. Since A € HA(IH), we see that
AT, ;h — Az, but we also know that AT, ; € W*(N) because W*(N) is an algebra. This
means AT, ;h € 4, and since J4, is closed also Ax € J%,. The same holds for A*, since
W*(N) is closed with respect to the s-operation and thus A* € W*(N). O

Lemma 3.5.5. Let N € B() be a normal operator and let h € . Then we have

Proof. Proposition 3.4.4 tells us that &y C W*(N) and thus we have cl(Zyh) C
cd(W*(N)h) = A,

For the other inclusion, we again refer to Proposition 3.4.4 to see that W*(N) =
SOT-clPy, with &y being the algebra of polynomials in N, N*. Thus, for any T €
W*(N), we have a net of polynomials (p;(N, N*));e; € Py so that p;(N, N*) LREN
and thus p;(N, N*)h — Th. Therefore we find that W*(N)h C cl(Zyh), which implies
6, = cl(W*(N)h) C cl(Pnh). O

Next, we define vector-associated measures for a normal operator N. As discussed
above, we will see that 7%, ~ L*(uy,) and N|,, ~ N,,. Therefore we can imagine such
a vector-associated measure py, as capturing all relevant information about N (and in a
wider sense W*(INV)) on the subspace .74;,.

Definition 3.5.3. Let N € #A(5) be a normal operator with spectral measure E
and let h € . Then we define the associated measure of h with respect to N as
pn(A) = [[E(A)A|* = Epn(A).

Proposition 3.5.6. uy, s a Radon measure with compact support.

Proof. This is a direct consequence of Proposition 4.7.6 and the fact that py, = Ej, ;. O

Finally, we come close to proving Theorem 3.5.8, where we will use the concepts
introduced so far in this section. Before that, however, we will show a quick Proposition.

Proposition 3.5.7. For a normal operator N € HB(°) we find {p(N): ¢ € B(o(N))} C
W*(N).

Remark. We will actually see in Theorem 3.7.7 that {¢(N) : ¢ € B(o(N))} = W*(N).
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Proof. We start by showing {¢(N) : ¢ € B(c(N))} C {N}". For any T' € {N}', we have
TN = NT and thus by Theorem 3.3.2 also TN* = N*T'. We take E as the spectral measure
for N, and Theorem 4.6.4 then tells us that for any Borel set A we have TE(A) = E(A)T.
Now for any ¢(N) and h, g € 7, we see that

(To(N)h, g) = (SN, T*g) = [ 6()dBn-y(2)
Now we can use TE(A) = E(A)T to see
(E(A)h, T?g) = (TE(A)h, g) = (E(A)Th, g)

Thus we can continue the previous equation

[ 0(2)ABr4(2) = [ 6(2)dEx,(2) = (9(N)Th, g)

Since h,g were arbitrary, we find that To(N) = ¢(N)T for all T € {N}' and thus
¢(N) € {N}". By Proposition 3.4.4, we have { N} = W*(N) and so the lemma follows. [

Theorem 3.5.8. Let N € B(#) be a normal operator, let u be some Radon measure
with bounded support and let # C 7 be a closed subspace with the properties NJ& C &
and N*# C . Then N|y ~ N, if and only if & = 56, and . = pu, for some h € .
In this case, there exists a unique unitary operator V : 3, — L*(uy) with the following
properties:

(a) VNV = N, .
(b) Vih=1.
These properties further imply that for ¢ € B(a(N)) we have VH(N)|5V ' = My.

Proof '=". First, we consider the case N|, ~ N, via the unitary operator V : J#
L*(u), and we start by showing # = 4, for some h € . By Proposition 3.4.4,
we see that the polynomials &y, in N,, N are a subset of W*(N,,). Since N, is the
multiplication operator by z, the operator p(N,,, N;;) is just the multiplication operator by
p(z, ). Proposition 4.7.6 tells us that p is finite, so we can consider 1 € L?(u). Because
we have p(z, z) = p(N,, N;)1, we see that Py, 1 C L?(p) is the set of all polynomials.
Theorem 4.1.1 tells us that &y, 1 is dense in C(supp(u)) with respect to the ||.|[o norm.
Since p(C) < oo, we see that convergence with respect to ||.||» implies convergence with
respect to ||.|[2. This means that &y 1 is dense in C'(X) with respect to the |[|.||; norm.
Together with Theorem 4.7.8 we see that &y, 1 is dense in L?(p), that is 1Py, 1 = L*(u).

We now remind ourselves that N| 2 = Nz and N*| o = N*x for x € ', so from now
on we will omit the subscript | . Similarly to the proof of Proposition 3.5.3, we can see
that for any polynomial p(/N, N*) we have

Vp(N, N )V~ = p(N,, Nyy)
This implies in turn that 2y (V"'1) = V~1(Py, 1), and thus

(Zn(V)) =V cl(Py, 1)) = VT HLA (1))
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We can set V711 = h and we get with Lemma 3.5.5 that
VUL (w) = c(Pwh) = A,

Since V'L (n) = #, we have ¥ = I,

Now it remains for us to show that pu = p,. We have already proven that for any
polynomial p we have Vp(N, N*)V~! = p(Nu, Ni) = M,. In addition, we see that
p*(N,N*) = p(N*, N). Together with the fact that V' is unitary we thus get

[ Pdi = [ 1P B = (N, N (N, N, ) = [lp(N, N*)p' (N, Nl [y,

= [[VVp(N, N )VVp* (N, N )WV VR = [lp(z,2)p(z, 2)1] 72 I/Ip\zdu

Now let K = supp(p) U supp(uy). We know that both supports are compact, so K is
compact as well. Theorem 4.1.1 tells us that & is dense in C'(K') with respect to the ||.]|x

norm. This means that for any f € C(K) there is a net (p;)ier € & so that p; oo, f.
We thus get

i = 1P| < [l = 12| dis < OS2 = Pl - () = 0

The last step is due to the fact that p is a Radon measure and K is compact, so p(K) < oo.
The same limit holds for yy,. Therefore, for any positive function g € C'(K) we have

27 1 127, — T 12 - 2
/gdu—lileflll/|pz’ dp lz,lgl/!pzl dpin, /gduh

We can now proceed in the same way as for Proposition 3.5.3 and we obtain u = py.

Proof "«<=". Now we assume that % = ¢, and p = i, and show that N|, = N, ~ N,,.
First, let us remark that Proposition 3.5.6 tells us that puy, is indeed a Radon measure with
bounded support. We start by taking ¢ € B(c(V)) and see

ONAIE = (SN, G(N)R) = (6(NVO(N)* B ) = [ 60dEn = [ lodyn

Now we consider B(a(N)) C L*(un), which is possible since o(NN) is compact and thus
pn(o(N)) < oo according to Proposition 4.7.6. We know from Proposition 3.5.7 that
¢(N) € W*(N) and thus ¢(N)h € 5,. Therefore we can define U : B(o(N)) — 54,
by Up = ¢(N)h. The previous calculation shows that U is an isometry. Since o(N) is
bounded, we find that all polynomials in z, z lie in B(c(N)). Now for any polynomial
p(z,z) we have Up(z, z) = [[ p(z, 2)dE(z)]h. To evaluate [p(z,Zz)dE(z), we first remind
ourselves that Theorem 4.6.4 gives [2dE(z) = N, and further that for A € C we have
[ AE(z) = A. Theorem 4.6.3 tells us that the mapping ¢ — [ ¢dFE is linear and compatible
with multiplication and the *-operation, so we find that [p(z, 2)dE(z) = p(N, N*) and
thus p(N, N*)h € U(B(0(N))). Altogether this means that #yh C U(B(c(N))). By
Lemma 3.5.5 we now see that J#, = cl(Zyh) C cl(U(B(a(N)))). Further, since /2, is
closed and U(B(o(N))) C 4, we have cl(U(B(c(N)))) C #4,. On the other hand we can
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3.6 The von Neumann algebra W*(N,,) 37

identify B(o(N)) with L*(uy) by taking a bounded representative from the equivalence
classes in L>(uy,). Theorem 4.7.7 now tells us that cl(B(a(N))) = cl(L*>(up)) = L*(un)
with respect to the ||.||2 norm. Since U is an isometry, we can extend it to an isometry
U : cl(B(o(N))) = cl(U(B(c(N)))). With the previous insight, this becomes U : L?(up,)
0;,. Clearly U is also linear, so it is an isomorphism, and we can take V := U~!. We see
that V is linear and unitary. Further, by definition of U we have V~'1 = Ul = h, and
thus Vh = 1. We now show that Vo(N) |5V~ = My for ¢ € B(o(N)). Since we only
investigate elements x € %, we remind ourselves that ¢(NN)x = ¢(N)| 4+ and omit the
subscript from hereon. We take ¢ € B(c(N)) and look at

VMG = VM0 = V)

= [ 6()0()E )]0 = | [ (2)aB()][ w(2)aB(=)]h = o(N)e(N)h

Here we used Theorem 4.6.3 for the multiplicativity of the spectral integral, the fact
¢ € B(o(N)) and the explicit definition of V=! = U on the subset B(c(N)). So
Vo(N)V—1 = M, holds on B(c(N)) C L*(u). However, as we discussed before B(o(N))
is dense in L?(uy), so Vo(N)V 1 = M, holds everywhere. Since M, = N,,, this means
especially N, ~ N, .

Proof of Uniqueness. To conclude the proof of Theorem 3.5.8, we show the uniqueness of V/,
which requires only VN,V = N, and Vh = 1. Let us assume that the unitary operator
I fulfils Th =1 and INI' = N,,. We can again extend this relation to polynomials and
see

Ip(N,N*)I~" = p(N,,N;;) = Vp(N,N* )V~

Since I7'1 = h = V1, we see that for all p(N, N*)h we have V = I. Now Lemma 3.5.5
tells us that cl(Zyh) = 4, so I =V on a dense subset and thus I =V everywhere. [

3.6 The von Neumann algebra W*(N,,)

One of our intermediate goals is to fully classify W*(V) in Section 3.7, as this will help
us with handling not only the von Neumann algebra itself but also objects like .74,. In
this section, we will talk about the special case W*(N,), and we will finally prove that
W*(N,) = <,. Further, we will show some extra properties of the spectral integral for N,
which provide a well rounded picture of how spectral integration works for N, and which
we need for proofs later on.

Lemma 3.6.1. Let u be a Radon measure with compact support on C. Then we find
WOT-c(Py,) = <.

Proof. First, we remember that N,f = zf for f € L*(u), and therefore we find for any
p(Ny, Nj) € Py, that p(Ny, Ni)f = p(z, ) f which means p(N,, N;) = M,. We further
remark that p has compact support and thus for every continuous function ¢ € C'(C) we
have ||¢||o < 00 and therefore ¢ € L*- This especially means that the polynomials are
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38 3 Multiplicity Theory

bounded and thus Zy, C 7,. Now let us rephrase the lemma by taking f,g € L*(u) and
¢ € L*>®(u). Our goal is to prove that there exists a net of polynomials (p;);es so that

BN N 9) = My fo9) = [ wifadi = [ ofgdn = (Myf,g)

We will first reduce our proof to ¢ = ¢ € C(C). Theorem 4.1.1 tells us that the polynomials
are dense in C'(supp(u)) with respect to the ||.||oc norm. Since p is a Radon measure, we

know that p(C\supp(u)) = 0 and therefore the polynomials are dense in C'(C) with respect

to the ||.||cc norm. This means we find a net of polynomials (p;)ic; so that p; LIEN ¢,

which leads to
’/ pifgdp — Cfgdu‘ ’/(pi - C)fédu’ < Ipi — ¢l ‘/fgdu‘ — 0

Therefore Py, is WOT dense in the subset of multiplication operators for continuous
functions, that is {M. : c € C(C)} € WOT-cl(Zy, ). Therefore our goal is now to show
that o7, C WOT-cl({M, : ¢ € C(C)}). To this end, for f,g € L*(u) and ¢ € L*>(u) we
have to find a net (¢;);e;r € C(C) so that

[ tgdn— [ o5gdn

We will now do this using Theorem 4.7.10. Since p is a Radon measure and it has
compact support, we know by Proposition 4.7.6 that u(C) < oco. Let us now denote
D = {z:|p(2)] <||¢|l} We know that u(D) = u(C) < co. According to Theorem
4.7.10, there exists a compact set K, so that u(D \ K,) < 1 and ¢|, is continuous.
Further we know that C is topologically normal, and so according to Theorem 4.1.2 there
exists a continuous extension ¢, : C — C so that ¢,|x, = ¢|k, and sup{|c,(2)|: z € C} =

sup{|p(2)| : z € K.} < ||¢||co- We remember (D) = p(C) and thus we have

’/cnfgdu /¢fgdu’ ‘/ fgdu ‘/ fgd/w‘

< el + 01| 7900 <200l [ sa0] 0

The limit at the end is due to the fact that pu(D \ K,,) < % — 0. Therefore we know
<, C WOT-cl({M, : c € C(C)}), and by the previous calculations we know WOT-cl({ M. :
ce C(C)}) € WOT-cl(Py,). In addition we have &y, C o7, and we know by Theorem
3.2.8 together with Theorem 3.2.6 that .7, is WOT-closed. Thus we obtain in the end
oy, = WOT-cl(Py,). O

Theorem 3.6.2. Let pu be a Radon measure with compact support on C. Then {N,} =
Ay = W*(Ny).

Proof. By Proposition 3.4.4, we have W*(N,) = {N,}" = WOT-cl#y,, and now Lemma
3.6.1 gives us that WOT-cl?y, = «7,. Theorem 3.2.8 then shows that <7, = (.%7,)", which
concludes the proof. n
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3.7 Scalar-Valued Measures and W*(N) 39

The next theorem and corollary can be deduced without the technical apparatus we
have gathered so far. By simply supposing the intuitive fact that the spectral measure
E(A) for N, is given by multiplication with ya, we could go through the check-list in
Theorem 4.6.4 and prove that this is true. However, this would be a very lengthy process,
and by using our previous calculations we can not only abridge the proofs but also gain
the chance to see our insights at work.

Theorem 3.6.3. Let p be a Radon measure with bounded support, and let ¢ € B(supp(u)).
Then ¢(N,) = M,.

Proof. We obviously have N, ~ N, via the identity, and thus we can use Theorem 3.5.8
to get h € L?(u) so that L*(u) = 24, and pu = . Further, we have a unique unitary
operator V' : 5, — L*(u) with VN, V™1 = N, and Vh = 1. Since L?*(u) = 74, we see that
V € B(L*(pn)), and we also find that Nj, = N,,. Together we obtain that VN, = N,V and
thus V € {N,}', and we can see the same for V~!. According to Theorem 3.6.2 this means
that there exist 1, ¢ € L®(u) so that V = M, and V! = M. Fuarther, we know from
Theorem 3.5.8 that for ¢ € B(o(N,)) we have Vo(N,)|4V 1 = M, and, using again
b, = L*(u), we thus find Vo(N,)V~t = M,. We can now insert our previous insights to
get
O(N,) =V IMgV = MgMyMy, = MyMyMy = M,

The second to last equality is due to the fact that the multiplication operators commute
and it gives us the theorem. O

Corollary 3.6.4. Let p be a Radon measure with bounded support and let E be the spectral
measure for N,. Then for a Borel set A we find that E(A) = M, . In particular, this
means for h € L*(p) that

pn(8) = [ 1h(=)Pdu(z)
Remark. This means especially that u;, = u if we take h =1 € L*(u).

Proof. We know from Theorem 4.6.3 that for a Borel set A and the function ¢a := xa we
have ¢a(N) = E(A). Together with Theorem 3.6.3 this gives us now

E(A) = ¢a(N) = My, = My,
The second statement now follows easily by inserting into the definition of ;. We see
pun(A) = (E(A)h, h) = (xah, h) = /A [h(2)[Pdpu(2)

This proves the corollary. O

3.7 Scalar-Valued Measures and W*(N)

In this last section before we tackle multiplicity theory proper, we introduce the final
important concept in the form of scalar-valued measures, and we will round out our
knowledge about the more general von Neumann algebra W*(N). Unfortunately, insights
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40 3 Multiplicity Theory

from both areas feed into each other, which is why we combine them into one section. One
big goal in this section will be Theorem 3.7.7 and the subsequent corollaries. There, we
will derive an easier description of W*(NV), and understand the changes of W*(IV) between
different spaces and subspaces (there won’t be a significant change as W*(N) stays the
same under restrictions and unitary transformations). The other goal is the classification of
scalar-valued measures in Theorem 3.7.11, where we will show that scalar-valued measures
and separating vectors are two sides of the same coin.

Definition 3.7.1. Let N € #() be a normal operator with spectral measure E, and
let u be a Radon measure. We call p a scalar-valued spectral measure for N if for all Borel
sets A we have p(A) =0 if and only if E(A) = 0.

Proposition 3.7.1. Let N € B(H) be a normal operator, and let pu be a scalar-valued
spectral measure for N. Then we have

e [u] =[], if v is another scalar-valued measure for N.

e pp K p for h e 7.

e supp(p) = o(N).

Proof. Let E be the spectral measure for N. First, we take a Borel set A so that p(A) = 0.
By the definition of scalar-valued measures, this means E(A) = 0, which in turn means
v(A) = 0. Therefore we find v < p. The same calculation works the other way around, so
we find [u] = [V].

Now we continue to the second part and take again a Borel set A so that u(A) =0. We
therefore have E(A) = 0 and thus

pn(A) = [ E(A)h][* =0

For the third part, we remember that according to Theorem 4.6.4 we have supp(E) =
o(N). On the other hand, for a point z € supp(F) we find for every neighbourhood U, that
E(U,) # 0. However, u is a scalar-valued measure for N and thus E(A) = 0 is equivalent
to u(A) = 0 for any Borel set A. Therefore we get p(U,) # 0 and thus z € supp(p). The
same argumentation works the other way round and we get supp(u) = supp(E). Together
with our previous insight this means

supp(u) = supp(E) = o(N)
This concludes the proof. O

Lemma 3.7.2. Let N € () be a normal operator, and let h € F be a separating
vector for W*(N). Then we find that uy, is a scalar-valued measure for N.

Remark. We will prove further down in Theorem 3.7.11 that the inverse is also true, that
is for every scalar-valued spectral measure i for N there is a h € 7 so that yu = py, and
h is a separating vector for W*(NV).
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Proof. Let E be the spectral measure of N. We have already shown in Proposition 3.7.1
that u, < E. To see the inverse, we take a Borel set A with u;(A) = 0. This means that
E(A)h = 0. However, we know that E(A) = [ xa(z)dE(z), which means by Proposition
3.5.7 that F(A) € W*(N). Since h is a separating vector for W*(N), we can thus infer
that E(A) = 0. O

After establishing scalar-valued measures and some facts about them, we now turn our
attention back towards W*(NN). The following lemmata are partly very technical, but they
all lead up to Theorem 3.7.7, where we fully describe W*(N).

Lemma 3.7.3. Let T € B(I) be an operator, and let # C H be a closed subspace. If
we have T C # and T*# C A, then (T|»)* = T*|x. In this case, T| is normal if
T is normal.

Proof. First, because T # C J , we remark that T'|» € B(A"). For x,y € H we see
((Tlw)wy) e = @, Txy)w = @ Ty)w = T2,y)0 = (T xw,y) x
Therefore we have (T'| 4 )* = T*| ». In addition, we see for a normal 7" that
Tlw(T|lw)x=T|,T |y =TT ' =TTz = ... = (T|x)"T| sz
This means that T'| » is normal. O

Lemma 3.7.4. Let N € B(H) be normal, and let & C F be a closed subspace so
that T C # for all T € W*(N). We define py on W*(N) by py(T) =T|x. Then
px(W*(N)) = W*(N|y), it is WOT-continuous and a *-epimorphism (that is surjective,
linear and compatible with multiplication and the x-operation).

Proof. First we remind ourselves that because T.% C ¥ for all T' € W*(N) and N €
W*(N), we know N|,, € B(* ). Further we find by N* € W*(N) and Lemma 3.7.3 that
N| is normal and thus W*(N| ) is well defined. Now we prove that p_ is linear and
compatible with multiplication and the x-operation. We inspect A, B € W*(N), A € C
and x,y € J . The linearity comes straightforward by taking

p(A+AB)x = (A+ AB)z = Av + \Bx = (px(A) + Ao (B))a

Therefore py (A + AB) = px(A) + Apy(B). Now for the multiplication, we remind
ourselves that Bx € % and see

px(AB)x = ABx = py(A) Bz = py (A)py (B)x

Thus we have py(AB) = py(A)py(B). Finally for the adjoint, we remember that
A* € W*(N) and thus also A*# C . Now we again take Lemma 3.7.3 and see that

pa(A%) = A v = (Al )" = pu(A)
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42 3 Multiplicity Theory

Now we show that p, is WOT-continuous. We take a net (A;)icr € W*(N) with
A; WOT, A and A € W*(N). Now let x,y € # . By looking at the definitions for p_, we
see that

(o (Ai)z,y) = (Air, y) = (Az,y) = {pa (A)z,y)

Thus we get that p (A;) USEN px (A) and therefore py is WOT continuous.

In the next step, we prove that p maps W*(N) surjectively to W*(N|). We consider
that py (N) = N|.¢, psy(N*) = N*| » and for A € C that p(\) = A. Further, because p_
is linear and compatible with multiplication, we find that for any polynomial p(N, N*) €
Py we have py (p(N,N*)) = p(N|x, N*|»). This means that py(Zn) = Pn|,, . Now
Proposition 3.4.4 tells us that W*(N) = WOT-clZy and W*(N| ) = WOT-clPy/,,
and therefore the equation becomes

px(WH(N)) = pyr(WOT-clPy) = WOT-cl Py, = W*(N|x)
This means p_ is surjective. O]

Lemma 3.7.5. Let N € PB(H) be normal. Then the spectral measure E for Ny, is just
Ey, that is E(A) = E(A)|7,.

Proof. Theorem 4.6.4 tells us that E is unique, and thus we only have to show that Ej,
is a well defined spectral measure and that N, = [ zdFEj(z). Proposition 3.5.7 tells us
that E(A) = xa(N) € W*(N), and therefore according to Proposition 3.5.4 we have
En(A) A, C A, for all Borel sets A. Further, for x € 4%, we have Ej(A)z = E(A)x and
thus Ej, is o-additive, E}, is a projection and E(C) = 1, which all means that E}, is a
spectral measure. Further, we see that for x,y € 74, we have (E,(A)zx,y) = (E(A)x,y),
and therefore

(N y) = (Na,y) = [ 2dBuy(2) = [ 2d(Ep)uy(2)

Thus we find Ny, = [ 2zdEp(z). Theorem 4.6.4 now gives us the uniqueness of the spectral
measure for a normal operator, which means that E), is the spectral measure for N,. [

Lemma 3.7.6. We define p, = ps as in Lemma 3.7.4. Then for any ¢ € B(o(N)), we
find that pp(@p(N)) = ¢(Ny), and for all A € W*(N) there exists a g4 € B(o(Ny)) so that

pr(A) = da(Np).

Proof. Let E be the spectral measure for N, then Lemma 3.7.5 tells us that the spectral
measure for Ny is just given by Ej,. We take x,y € 54, and remind ourselves that
(E(A)z,y) = (ER(A)zx,y). This gives us

(o (B(N)z,9) = ((N)2,y) = [ G()AEuy(2) = [ G()d(En)ay(2) = (6N}, 1)

Therefore we have p,(¢(N)) = ¢(Ny,).

For the second part, we take A € W*(N) and want to show that there exists a
¢4 € B(o(Np)) so that pp(A) = ¢a(Np). Theorem 3.5.8 tells us that N, ~ N, for some
Borel measure p. Now let V : 7, — L?(u) be the isomorphism so that VN,V = N,
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and Vh =1, and we define A, := Vp,(A)V =" € B(L?*(n)). Because of Proposition 3.4.4,
we know that W*(N) is abelian, so we see

AN, = V(AN =V (A)pp(N)V =V (AN)V !

=V (NA)V ' =..=N,A,

Therefore A, € {N,}', and Theorem 3.6.2 tells us {N,}' = 7, so there is a function
¢4 € B(o(Ny)) so that A, = M,,. Now we remind ourselves that cl(W*(Ny)h) = 4,
and by Lemma 3.5.5 we have cl(Pn, h) = cl(W*(Ny)h) = 54, Therefore it suffices to
show that p,(A) = [ ¢adE), = ¢a(Ny) on the dense set Py, h. Theorem 3.5.8 shows that
for ¢ € B(o(Ny,)) we have ¢(Ny)h = V1 M,1. This means for p(Ny,, Nj) € Py, we get

pr(A)p(Ni, Ny )b = V=V pp(A)V = Vp(Ny, Ny )b = VA, M, 1

= VI My, M1 =V My 1 = (64p) (Nn)h = da(Nu)p(Np, Ny )h

The last equality is due to the fact that the spectral integral is multiplicative, as shown
by Theorem 4.6.3. We can now wrap up and remind ourselves that p,(A) = ¢4(Np) on
P, h which is dense in 7, so we have pp(A) = ¢pa(N,) on J,. O

Theorem 3.7.7. Let 5 be a separable Hilbert space and let N € B(H) be a normal
operator. Then we have {¢(N) : ¢ € B(a(N))} = W*(N).

Proof. Let us denote &/ = {¢(N) : ¢ € B(o(N))}. Proposition 3.5.7 gives us o/ C
{N}" = W*(N). Thus we need only to show that W*(N) C «/. We have already
elaborated further up that p(N, N*) = [ p(z, 2)dE(z) for any p € &£y, which means that
Py C . If we now show that &/ = WOT-cle/, we can use Proposition 3.4.4 to get
W*(N) = WOT-clZy C WOT-cleZ = .

To show that &7 is indeed WOT-closed, we consider a net (¢;)ic;r € B(c(NV)) so

that ¢;(NV) WO, 7. Proposition 3.4.4 tells us that W*(N) is WOT-closed, and since

o/ CWH*(N), we know that "€ W*(N). Now for any h € .7, we know by Lemma 3.7.6
that ¢;(Nyn) = pr(¢i(N)) — pu(T) = T}, and also that there is a ¢r), € B(a(Ny)) so
that T}, = ¢rn(Ny). Further, Theorem 3.5.8 tells us that there exists a unitary operator
VG, L () with VO(N)| 5V = My, and Lemma 3.7.6 tells us ¢(N)| 5 = &(Ny,).
Now we take any f,g € L?(uy) and find

[ ifadnn = 6NV BV g) = {ora(NV 0V g) = [ brf gdan

Therefore we see that ¢; ——r drp in B(L*(1s)). Now we remember Corollary 3.4.9, and

since 7 is separable we can take a separating vector es for W*(N), and we can prove in a

similar vein that ¢; WoT, b1, in B(L*(j1e,)). Our goal is now to show that ¢r.. = ¢rp

pp-almost everywhere. Lemma 3.7.2 tells us that p., is a scalar-valued measure, and
Proposition 3.7.1 gives uy, < pt,. Further, we obtain by Theorem 4.7.3 a positive function

Y= (Zf—i. Now for any Borel set A we see

Jodm = [xavdpe, = [ (xa¥)* (xav)? dp,
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We know that pu, is a Radon measure with compact support, and thus according to
1
Proposition 4.7.6 it is finite. Therefore we see that (xa1)? € L?(u.,) and we have

[ oudin = [ 6 00a)? (a) i, = [ b1, (o) (xa¥)? dbe, = [ Grc.dpn

On the other hand, we have xa € L*(u15) and thus

NI

1 1
/ Pidpn, = /¢z Xa)? (xa)Zdun — /¢Th Xa)2(xa)2duy, = /Ach,hth
Therefore we see that ¢r., = ¢rp pr-almost everywhere. Going back and using again the
unitary operator from Theorem 3.5.8, we see

Th = ¢rn(N)swmh =V "My, ,Vh=V"' My, Vh =1, (N)mh=¢re,(N)h

Since h was arbitrary, we have shown that 7" = ¢7. (N) and thus 7" € &/ which means
W*(N) C . O

From Theorem 3.7.7 we can derive a set of corollaries, since we now have an expression
for W*(N) that is rather easy to deal with. Corollaries 3.7.8 and 3.7.9 tell us how
W*(N) behaves on subspaces and under unitary transformations respectively, which will
be important for multiplicity theory when we deal a lot with unitary equivalences and
partitions into subspaces. Lastly, Corollary 3.7.10 completes Theorem 3.4.6 for the special
case of W*(N), which is why we feature it more prominently rather than relegating it to
some lemma when we need it.

Corollary 3.7.8. Let N € B(H) be a normal operator, and let & C A be a closed
subspace with N C & and N*# C . Then we have ¢(N|y) = ¢(N)|x for
¢ € B(a(N)). In particular if 7 is separable this means W*(N | ) = W*(N)| .

Proof. Since N is normal, we know according to Lemma 3.7.3 that N|, is also normal.
Now we take E as the spectral measure for N and E as the spectral measure for N| .
First, we define the function E(A) := E(A)|,,. We can now show that £, = E in a
similar way as we did in Lemma 3.7.5.

Let now ¢ € B(o(N)). Since o(N|x) C o(N), we know that ¢ € B(o(N|x)). We
inspect ky, ko € # and get

(BN Yo, ke = [ $(2)dBin(2) = [ 6(2)dBw s (2)

= <¢(N)k1, k2>% = <¢<N)\%k17 k2>,)g

This proves the first part ¢(N| ) = ¢(N)|» of the theorem.

It remains for us to show that for every T € W*(N|, ) we find a T' € W*(N) so that
T = T|,. Due to Theorem 3.7.7 we know that W*(N) = {¢(N) : ¢ € B(o(N))} and a
similar equality for W*(N| ). Thus we have T' = ¢(N|.»). We know that o(N|») C o(N).
We define a function ¢ € B(a(N)) so that ¢(z) = ¢(z) for z € o(N|x) and ¢ = 0 else. Now
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know that ¢(N)|» = #(N|,). Further, Theorem 4.6.4 tells us that supp(E) = o(N|)

and therefore ¢(N| ) = ¢(N|»). Now we pick T = 4(N) and see
Tlw = 6(N)lw = 6(N|x) = ¢(N|x) =T
Since T' € W*(N|.») was arbitrary we see that W*(N| ) = W*(N)| . O

Corollary 3.7.9. Let 5 and . be Hilbert spaces, and let N € B(H) and M € B(A)
be normal operators. Let further V : 7€ — & be an unitary operator with the property
VNV~ = M. Then we have VO(N)V—! = ¢(M) for ¢ € B(o(N)). This means in
particular for separable S and # that VW*(N)V 1 = W*(M).

Remark. The proof of Corollary 3.7.9 is very similar to the proof of Corollary 3.7.8, with
the difference being that £ now is not a subspace but an isomorphic Hilbert space.

Proof. Let En be the spectral measure associated with N and let Ej; be the spectral
measure associated with M. Because N ~ M, we know that o(N) = o(M), and therefore
supp(Ey) = 0(N) = o(M) = supp(Fy). In our first step, we now want to show that
VENV ™t = Ey. We begin by proving that £ = VEyV ! is indeed a spectral measure.
For ki, ke € % we find that

Ekl,kg = <Ek1, ko) v = (ENV 'k, V ko) op = Enyv—1k v-1k

Since Fy is a spectral measure, we know that Fy -1y, y-15, is a complex measure and
thus so is Fj, 1,. Further, since V™! is an isometry, we have

<E(0'(M))k’1, k‘2>y = <EN<O'(N))V71]€1, V71k2><;f = <V71k1, V71k2>;f = <k1, kz);g/
Therefore E(o(M)) is the identity. Finally, because Ey(A) is a projection we have
E(A)? = VEN(A)VTIWEN(A)V L = VENA)V L = E(A)

Together, this means that according to Definition 4.6.1 we see that E is indeed a spectral
measure.

Now we want to show M = [ zdE (z), which by the uniqueness statement of Theorem
4.6.4 means E = F,;. We see for ki, ko € & that

<[ / sz(z)} ki, k) = / By 5 (2) = / 2dEn vty -5, (2)

— <NV71]{51, V71k2>=;f — <VNV71]€1, ]ﬂg);{/ — <M]€1, k2>[

Here we used the facts that Fy is the spectral measure associated with N, that V is an
isometry and that VNV~ = M. Therefore we have M = [ zdE(z) which by Theorem
4.6.4 means E = FEy.

To finally prove the Corollary, we turn to ¢ € B(c(N)). We now have for ky, ko €

(VO(N)WV k1, ko) e = (O(N)V e,V k) o = /QS(Z)dEN,V*lth*lkz(z)
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= [ 6B a(2) = [ G()ABr k1 1(=) = (GO, K)o

This proves Vo(N)V 1 = ¢(M). Now we have proven in Theorem 3.7.7 that W*(N) =
{#(N) : ¢ € B(c(N))}, and a similar equality holds for W*(M). Thus we have the
previous equation for all elements of W*(N) and W*(M), that is we can write in a sense
that VIV*(N)V -1 = W*(M). O

Corollary 3.7.10. Let 5 be separable and let N € () be a normal operator. If there
exists a cyclic vector h € A for W*(N), then {N} = W*(N) = W*(N), that is W*(N)
s a maximal abelian von Neumann algebra.

Remark. The fact that W*(N) has a cyclic vector implies that # is separable. Further,
1 € W*(N) and W*(N) is SOT-closed according to Proposition 3.4.4. Therefore we can
see Corollary 3.7.10 as a special case for the inverse implication in Theorem 3.4.6.

Proof. First, we see that Nj, = N since ¢, = ¢, and therefore Theorem 3.5.8 gives us
a unitary operator V : 5 + L*(py,) so that N ~ N, . For ease of writing, we will also
substitute g = up. Now we take K € {N}’ and denote K, = VKV !

K,N,=VKNV'=VNKV~' = N,K,

Thus we see that K, € {N,}’ and therefore according to Theorem 3.6.2 we have K, €
W*(N,). Here we can use Corollary 3.7.9 to see that V~'W*(N,)V = W*(N), and
therefore V'K,V € W*(N), and since K = V'K,V we have {N} C W*(N). Now we
remember that W*(NV) is abelian, so we have W*(N) C W*(N)'. Finally we combine our
previous insights with Proposition 3.2.1 and {N} C W*(N) to get

WH(N) € WHN) C{N} € W*(N)

This implies that {N}' = W*(N)" = W*(N), and thus by Theorem 3.4.6 we get that
W*(N) is a maximal abelian von Neumann algebra. O

Now we come to the final step before we plunge into the actual first multiplicity theorem
in the next section. This theorem consolidates our knowledge about scalar-valued measures
and we will show their correspondence to separating vectors.

Theorem 3.7.11. Let 5 be separable and let N € HB(H) be a normal operator. Then
we find

(a) There exists a scalar-valued measure p for N.

(b) For every h € S with h being a separating vector for W*(N), the measure py, s a
scalar-valued measure for N.

(c) For every scalar-valued measure o for N, there exists a h € € so that h is a
separating vector for W*(N) and p = .

Proof. First, we prove (a) and (b). Lemma 3.7.2 gives us (b), and by Corollary 3.4.9 we
find that W*(N) has a separating vector h and thus py, is also a scalar-valued measure for
N.
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Now we move on to (¢). We take the vector h from our previous considerations and see
that uy, is a scalar-valued measure. Proposition 3.7.1 thus gives us [u| = [up]. Proposition
3.5.3 then tells us that N, ~ N, and Theorem 3.5.8 tells us that N,, ~ Nj, so altogether
we get N, >~ N,,. Theorem 3.5.8 now tells us that there exists a vector k € 74, so that
S, = A6, and py, = p. Further we get a unitary operator V' : J4, — L?(u) so that Vk =1
and for any ¢(N) it holds Vo(N)V =t = M,. Let now ¢(N) € W*(N). Corollary 3.7.8
tells us that ¢(N)|» = &(Nk), so we get

BV, = VNIV VRIE, = (16 sy, = [ [6(z)Pdu(2)

Thus if we have ¢(N)k = 0 if and only if ¢(z) = 0 p-almost everywhere. Since N, ~ N,,, ,
we can do the same calculation for h and see that ¢(N)h = 0 if and only if ¢(2) = 0 pp-
almost everywhere. Further, we have that [u] = [uy,] and so ¢(z) = 0 p-almost everywhere
is equivalent to ¢(z) = 0 pp-almost everywhere. Therefore, if ¢(N)k = 0, we get that also
®(N)h = 0. However, since h is a separating vector for W*(N), this means that ¢(N) = 0.
We know from Theorem 3.7.7 that {¢(NV) : ¢ € B(o(N))} = W*(N), and so we have
proven that k is a separating vector for W*(N). Finally we remember that p = u, which
concludes the theorem. O

3.8 Multiplicity Theory on Seperable Hilbert Spaces

In the last sections, we have diligently laid out the groundwork for this section. Now it
is finally time to reap the rewards and prove the First Multiplicity Theorem 3.8.8. The
basic idea is rather straightforward. Theorem 3.5.8 tells us that for every h € 5 we have
G, ~ L*(up) and Ny ~ N, , and we remember from way back in Lemma 3.4.5 that
each separable Hilbert space .7 has a partition 5 = @, | 7, . We can combine both
facts and after a quick calculation we get

T ~ @LQ(N%) , N~ @Nﬂen
n=1

n=1

However, if we remember our initial goals for our Multiplicity Theorem, we did not only
want to deconstruct our operator into a direct sum of more simple operators. We also
required that the spectra of these simple operators to form a decreasing sequence, which is
roughly equivalent to i, ., < jie,. This is where our theory about scalar-valued measures
comes into play. As we remember from Proposition 3.7.1, for a scalar valued measure
1 we have p, < p for all h € 2. On the other hand, Theorem 3.7.11 tells us that
scalar-valued measures are equivalent to separating vectors for W*(N). Thus the solution
is to inductively choose the (e, ),en so that e, 1 is a separating vector on the orthogonal
complement of the space spanned by the 77 with 1 < i < n. We will now show some
lemmata that formalize what we have just discussed, before we plunge into the proof of
Theorem 3.8.8 at the end of this section.
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48 3 Multiplicity Theory

Lemma 3.8.1. Let () nen and (J£;,)nen be sequences of Hilbert spaces, and let further
(Vi)nen be a sequence of unitary operators with V,, : 7, — &, for alln € N. Then there
exists a unique unitary operator with

V@A~ DA V=V

neN neN

Further, let N,, € B(H,) and M, € B(*,) forn € N. If V,N, V.=t = M, holds for all
n € N, then we find

VPNV =P M,
n=1

n=1

Proof. This Lemma follows immediately from setting V' : 5 — £ as

V::@Vn )
n=1

For uniqueness, we take h € @, 7, and see that h = @, h,,, with h,, € 7, for n € N.
Let now I be an operator that fulfils the same conditions as V. Then we see

Vh—TIh =& V,h, — P Vi, =0

n=1 n=1
Thus we get V = I. O]

Lemma 3.8.2. Let p be a Radon measure, and let A be a Borel set. Then p|a is also a
Radon measure, and we find supp(p|a) C supp(p) Ncl(A).

Proof. First we have to show that p|a is both inner regular and locally finite. We take
z € C. Since p is a Radon measure, we know that there exists a neighbourhood U, so that
w(U,) < oo. This in turn means that

pla(Uz) = pU.NA) < p(U:) < 00

Thus we see that u|a is also locally finite. Now to show inner regularity, let U be an open
set. We know that y is inner regular, so

pu(U) = sup{u(K) : K is compact and K C U}

Let (K, )nen be a sequence so that all K, C U and p(K,) — p(U). This means especially
that
pUN\ Ky) = p(U) = p(Kn) = 0
We can intersect the sets on the left hand side with A and get
ula(U) = pla(Kn) = p(UNA) = p(K, NA)

=u(UNA)\ (KnNA)) < p(UN\ Kn) =0
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Since all (K,,)nen were compact subsets of U, we see
p|a(U) = sup{p|a(K) : K is compact and K C U}

This means p|a is inner regular, and thus a Radon measure.

Now we proceed to show the second part of the lemma and take z € supp(p|a). This
means that for each neighbourhood U, of z, we have u|A(U,) > 0. Since p|a(U.) < u(U,),
this means that z € supp(p). Now we assume that z € cl(A)°. Then there exists a
neighbourhood U? of z so that U2 N A = (). This leads to u|a(U?) = 0, which is a

contradiction to the fact that z € supp(u|a). Altogether we get

supp(|a) C supp(p) Ncl(A)

This proves the lemma. O

Lemma 3.8.3. Let u, v be two finite measures on the measurable space (X, ), and let
v < p. Then there exists a A € § so that the measure p|a is mutually absolutely
continuous with v, that is [v] = [u|a].

Proof. We denote by .4, C Q the set of sets with v measure zero, that is .4, := {A €
Q:v(A) = 0}. Now we consider p : A, — Ry, and since p is a finite measure, we
know that p(Q2) is bounded and thus p| 4, is also bounded. Therefore we can define
t:=sup{pu(A) : A€ A} and get a sequence (A, )nen C A, so that u(A,) — t. We now
define A,, := Ui<n Ai and A= U>2, A,. Since v is a measure and thus o-additive, we
have v(A,) = 0 for all n € N and also v(A) = 0, and therefore A,, A € .4;. In addition,

we note that (A, ),en is a monotone series of sets and thus, due to g-additivity of u, we

have 11(A,) — pu(A). Therefore we get u(A) = t.
We now define A := A°. Since v(A) = 0, we know that for any B € Q we have

v(B)=v(BNA)+v(BNA)=v(BNA)

Let us now assume that p|a(B) = (B N A) = 0. Because v < p, this means that
v(BNA) =0 and thus also v¥(B) = 0. Therefore we find that ¥ < p|a. On the other
hand, let us assume v(B) = 0. If pu|a(B) > 0, then we have u(B N A) > 0 and therefore
find

p(A)U(BNA)) = u((A) U (BNAY)) = p(A) + p(BNA%) =t + pla(B) > t

However, v((A)U(BNA)) = 0 and so this is in contradiction to the fact that ¢ = sup p(.4;).
Therefore we find that p|a(B) > 0 and thus p|a < v. O

Lemma 3.8.4. Let hy,hy € J and hy L 5,,. Then we find that 7, L ,. Further
let h = hy + hy. Then we find that 76, C 7, & 76, .

Proof. We assume N € A(.) so that .7, = cl(W*(N)h), and the same goes for .7, and
. First we will prove J¢,, L J4,,, and for this we take x; € J¢,, and zo € J4,,. We
know that there exists a sequence (Ay, »)neny € W*(N) so that Ay, ,he — 2. Further, we
remind ourselves that by Proposition 3.5.4 we know that .7, is closed under action from
W*(N). We also know that WW*(NN) contains all adjoints, so we have A} 1z € J%;, for all
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n € N. Together with the facts that hy L 77, and that the scalar product is continuous,
this gives us
<(L’1, IE2> = T}grlgo(xl, Ax27nh2> = hm <A* Z1, h2> = 0

n—oo ' F2,7
Thus we find that J#,, L J4,.
Now we move on to show that J&, C J&,, © J4,,. Let us take z € 74, with z,, := A, ,h
and z,, — x in a similar notation as above. We see for all n € N that

Tp = A:r,nh' = Am,nhl + Ax,nh2 € jﬁn S¥ ’%LQ

As the direct sum of two closed subspaces, J%,, © 74, is again closed and therefore we
have x € 74, ® ;,. Thus we find that s, C 74, & 74,. O

Lemma 3.8.5. Let N € B(H) be a normal operator and let h € €. Then we find a
separating vector e, € A for W*(N) so that h € 2, .

Proof. This proof will consist of three steps. First we want to reduce the Hilbert space
for our problem to the direct sum g ~ L?(1) ® L*(u|a), and we will show that for
¢(N) € W*(N) we have

O(N)|trea = My ® My € B(L* (1) © L*(pt|a))

Afterwards we will construct a vector in L?(u) @ L*(uu|a) that will become our candidate
for ej,. In the second step, we then show that e;, is indeed separating, and in the third
step we will show h € JZ,.

To commence with the first step, we remember that Corollary 3.4.9 tells us that the
C*-algebra W*(N) has a separating vector eg, which will be a good starting point of our
investigation. We can then split & = h + hy where h € 2 and h, € ff} According
to Lemma 3.8.4, we know that J#, L 74, , so we can consider h € JZ, & ¢, and reduce
our calculations to this subspace. By Theorem 3.5.8 and Lemma 3.8.1 we know that

A, D A, ~ L*(pe,) & L* ()

N, ®N,, ~ N, &N,

Hh

Since e is a separating vector for W*(N) we know by Theorem 3.7.11 that p., is a scalar-
valued spectral measure for N and thus by Proposition 3.7.1 we know that p;,, < . We
now designate p := .., and Lemma 3.8.3 tells us that there exists a Borel set A so that
[1la] = [pn,]. With Proposition 3.5.3 this means N, ~ N, and so we get

He, ® A, = L*(n) © L2 (p|a)

N.,® Ny, ~N, &N,

la

Since pt = fte,, Theorem 3.7.11 now tells us that there exists a unique unitary V; : 5, —
L?(p) so that Ve, = 1 and Vi¢(N,,)V; ' = My for all ¢ € B(o(N)). When it comes to
Ny, =~ Ni,, we get a similar relation, however we have to remember that p|a # pup, -
Thus Theorem 3.7.11 only tells us that there exists a vector x, € 74, so that JZ, = .74,

and ji|a = ., . Additionally we get a unique unitary Vs : S~ L*(u|a) so that Vox; =1
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and Voop(N, )V5 ' = M, for all ¢ € B(o(N)). Restating our previous equations with this
new insight we now see

He, @ Hy, = L (1) & L*(pla)
Ney @ Npy ~ N, @ Ny,
By Theorem 3.7.7 we have W*(N) = {¢(N) : ¢ € B(c(N))}. According to Corollary 3.7.8
for ¢ € B(o(N)) this gives
O(N)| 00, = ¢(Ne,) ® d(Ny, )

We now label V := V; @ V,, and by Lemma 3.8.1 we see that V : J& & J4, —
L%(u) @ L*(uu|a) is a unitary operator with V~' = V' @ V5 '. By combining this with
our previous considerations and taking ¢ € B(a(N)) we get

V(N am V!

= Vig(Ne, )V @ Vap(N,, ) Vy !
= My © My
We now remember that h = h + hy with hy € %, and h, € JZ, , so we can denote

91D g2 :=Vh=Vih @ Voh,

This helps us define
1 if z € A°

hiz) = {gl(z) if z€ A

f2(2) = ga(2)

With this definition in hand, we take e; := V71(f; @ fo). This definition might seem
arbitrary at first, but the subsequent calculations will prove that e, is the separating
vector required by this lemma. It is important to remember that e, € J, ® J¢,, C .

We now proceed to the second part of this proof, where we want to show that ej, is
separating for W*(N). Let us now assume Myf; @& Myf, = 0. This means especially
that My fi = 0 p-almost everywhere on A°. Since f; = 1 on A€, we can conclude that
M1 = ¢(2) = 0 p-almost everywhere on A°. On the other hand, let us look at M, f, = 0.
We remember that fy(z) = Voh,, and we now want to show that |f2(z)| > 0 p-almost
everywhere on A. Let now E be the spectral measure for N and w be a Borel set. According
to Theorem 4.6.3 we have ¢,(N) = E(w) with ¢,(z) = xu(2). This means we get

pin, (w) = (Ew)hi, hi)w = (EW)ls, ho hi)os,

= (ol P = [ Xol£a(2) Pdp(2)

In the last equality we used the fact that % = Xa, as given by Proposition 4.7.5.

Further we see that according to Corollary 3.6.4 the last expression is precisely piy,, and
so altogether we obtain pif, = . Since by definition of A we had [p|a] = [pn, ], this
means that also [u|a] = [us,]. However, since pip,(w) = [a Xw|/f2(2)|?du(2), this is only
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possible if |fa| > 0 p-almost everywhere on A. Therefore we see that M, f; = 0 only if
¢(z) = 0 p-almost everywhere on A. Together we have found that M,f; & Myfa = 0
implies both ¢(z) = 0 p-almost everywhere on A€ and ¢(z) = 0 p-almost everywhere on
A, which means that ¢(z) = 0 p-almost everywhere. Now we remember that u = p., and
es is a separating vector for W*(N), so according to Theorem 3.7.11 we know that u is a
scalar-valued measure for N. This means that ¢(z) = 0 E-almost everywhere as well, and
so ¢(N) = 0. Therefore we have ¢(N) = 0 if and only if

PNV Hf18 fo) =V H My f1 & Myfo) =0

We remind ourselves that by Theorem 3.7.7 we have W*(N) = {¢(N) : ¢ € B(c(N))}, so
we have shown altogether that V=1(f; @ f3) is a separating vector for W*(N). Thus we
can set e, .= V71 f1 D fo).

In the third part of the proof, we will show that h € 7, . To this end, we will split A
differently into h = E(A)h + E(A°)h. We immediately see that

VE(A)h = xag1 © Xxag2
On the other hand, since yafi = xag1 and fo = go, we also get
VE(A)er, = VEAWV T 1 & fo = xag1 ® Xa92

Because V' is unitary, we find E(A)h = E(A)e,. The other half is a bit more complicated.
Since p|a(A€) = 0, we see that xac = 0 pu|a-almost everywhere and so we have

VE(AC)h = Xacg1 D Xacg2 = Xacg1 0

Theorem 4.7.7 tells us that L°°(u) N L?(p) is dense in L?*(p), so there exists a sequence
(n)nen With ¢, — xacgr in L2(j). We can now find representatives (¢, )nen S0 that
SUp |9 (2)| < ||énl] Loy, and thus (,)nen € B(o(N)). Before we make the computation
for E(A)h, we remind ourselves that f; =1 on A, so we get

VE(A%en, = VE(A )W /L@ fo = xac ©0
Now we can apply our recent insights to see
Vu(N)E(A)en = Vo (N)V'VEAYW ' (fy @ f)
= Vou(N)V " (xae ©0) = xachn &0
Since ¢, — Yacg1, we see that
Xaehn = Xacd1 = Xac0n

Again using the fact that V' is unitary, we find that dn(N)E(A%)e, — E(A°)h. We now
tie everything together to define z,, := (E(A) + ¢, (N)E(A°))ey, for n € N and we see

Tn = (E(A) + on(N)E(A))en = E(A)h + ¢n(N)E(A%ey,
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— E(A)h+ E(A%)h = h

To conclude our proof, we now remind ourselves that E(A), E(A¢) € W*(N). Since W*(N)
is an algebra, we also have E(A) + ¢,(N)E(A) for all n € N. Thus we get z,, € ./, , and
since x,, — h and 2, is closed, we also have h € ., . We have already proven that e, is
separating for W*(N), so this concludes the lemma. O

Lemma 3.8.6. Let A, € AB(,) withn € N and let A ~ P;°, A,. Then we have
cl (Upen 0(An)) = a(A).

Proof. First let us denote .7 so that A € B(H), 7 = P>, 7, and Ag = @, As.
We want to show that 0(Ag) = 0(A). We know that there exists a unitary operator
V A — FC with

VﬁlAV = A@

Next, we take A € p(A), and we define By = (A — Ay)~'. Further, we remark that
VINwV = Ay Altogether, we can show

VIBW(Ag — M) = VIIBAWVV HA = Ap)V =V 11,V =14,
The exact same calculation holds for
(Ap = A )VT'ByV = .. = 1,

This means we have A € p(Ag) and thus p(Ag) € p(A). We can now just swap out A
and Ag in the previous calculation to also get p(A) C p(Ag). Since p(A) = C\ o(A) and
p(Ag) = C\ o(Ag), this gives us 0(Ag) = o(A). This means we can now move on to show

L (Unen 0(4n)) = o(Ag).

First, we want to prove cl (U,en0(A4,)) C 0(Ag) by seeing that p(Ag) C p(A,) for all
n € N. We take A € p(Ag) and know that By, := (Ag — Ay ) " exists. Now let Py, be
the projection from J#; onto J#, for n € N. Since Ag is a direct sum and Ay, commutes
with every other linear operator, we get

P, (As — Agy) = (Ag — A ) P, = P, (Ag — Ay ) Por,
This knowledge now helps us to make the following calculation
Py, = Pu, 10, Pw, = P, (Ag — A, ) Brg P,

- (P%(AEB - )‘%"@>an) (P‘%BA@P%”)

We can now interpret both sides as operators on 77,. From the definition of Ay we get
(P%(A@ - )\yf@)P,%ﬂn) e, = An — A,

Further, we have Py | = 1. We denote (P%”nB/\@ ijn) |z, = B,,, and if we combine
this with our previous insight, we get

]_]fn = (An — )\(}fn)B)\n
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We can similarly show that B), is the left-inverse, and thus A,, — A, is invertible. Thich
means that A\ € p(A,) and therefore p(Ag) C p(A,). Similar as before, this gives us
0(A,) Co(Ag) for all n € N. We now remember that o(Ag) is closed to get

cl (U U(An)> Co(Ag)

neN

This proves the first inclusion.

Now we proceed to show ¢l (Upen 0(An)) 2 0(Ag). To this end we take A € int(N,,en p(Ar)),
which means we find an € > 0 so that the open ball of size € centered around A is contained
within all p(A,). This especially implies that dist(c(A,),\) > € and thus we find by

Proposition 4.6.1 that

1
[1(An = X)) Ml < =

€

Therefore, the family ((A, — Ax,)™'), cy has bounded norm and thus we can define the

linear operator
o0

B)\® = @(An — )\jfn)_l

n=1

The calculations above tell us that || By, || < 1, and so By, € (7). Now find

By (Ag — Aw,) = Ba, (@(An - A%‘;)) = @ 1y, = 1p,

n=1 n=1

In a similar manner we get (Ag — Ay )Bi, = 1, and we see that A € p(Ag). This
means we get

int (m p(An>) C p(As)

We remember that p(A,) = C\ o(A,), and by taking the complement on both sides we
find

l (U U(An)> > o(As)

neN

This proves the second inclusion and thus the lemma. O

Note. For the next lemma we need some additional notation to facilitate our calculations.
If we split a Hilbert space ¢ into ¢ = 5 ¢ 545, we can introduce a matrix notation for
all vectors and operators. For example with h € 7 and A € #(), we have h = hy & hy
and we can make the following identification

Al ~ A Ax hy _ A11hy + Apohs
Ag A ) \ho Ag1hy + Agghy
Further, for B € #() we can represent AB as

AB ~ Ay Ao\ (B Ba _ AnBi + AeBar Ay Big 4+ A19Bas
A1y Aga) \ Bz B Ao1Byy + AgaBay A1 Big + A Bao
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Additionally, with some quick calculation, we can get matrix rules for the adjoint of A.

This means
A (AT AR _ (AT (Aa)7) _ (An An)
Ay A% (A12)* (Ag)” Az Ax
It is important to remember that here Aj, is the % — .7 component the adjoint of A,

while (A12)* is the adjoint of the % — 7 component of A. The previous equality tells
us especially that A}, = (Aa1)*.

Lemma 3.8.7. Let Ny € B(H), A € B(#), Na € B(Hy) and B € B(H3) be normal
operators. Further, let h € J4 so that h is cyclic for W*(Ny). Then if Ny ~ Ny and
N, @A~ Ny, DB we have A ~ B.

Proof. The core issue here is that we have a unitary map giving us Ny & A ~ N, @ B, but
that doesn’t mean this unitary map preserves Ny >~ Ny and A ~ B. Therefore we want to
use the additional information of N; >~ N5 and the cyclic vector h € ¢ to obtain A ~ B.
To do this, we first simplify by taking Ny = N and 4 = 7 and removing N, from
the problem. Since N = N; ~ N,, we can take a unitary operator I : 7 — J#] so that
INI~' = N,. Now we define the operator [:0® K DA by setting I=1® 1.
Lemma 3.8.1 tells us that [ is unitary and that I-' = I-' @ 14,. Now we can derive

INeBI'=(I®1y)(N®B){I '®1,)=INI"'®B=N,®B

This means we have No & B ~ N & B, and because of Ny & A~ Ny & B and N; = N we
get N ® A~ N @& B. This reduces the complexity of the problem a bit, since we can now
just focus on A, B,N on the Hilbert spaces 73, %5, 7¢ respectively.

Now we turn to the actual proof. We take U : € & 56 — € & ;5 to be the unitary
operator with the property

UNpAU'=NaB

We want to proceed in two steps, where first we establish the core matrix equations for
U, N, A, B, which will make our subsequent calculations easier. In the second step, we use
these equations, in conjunction with Proposition 3.3.5, to obtain A ~ B.

We see by Proposition 3.2.5 that (X @ Y)* = X* @ Y™ for any bounded linear operators
X, Y. Further, since U is unitary, we have U~ = U*, and thus we get

UN* @ AU =
=UNa®A)'U"=UNaAU")" =(Na&B) =
=N"® B*
We can then rewrite these equations to obtain
UN@A)=(NaB)U

U(N*@® A*) = (N* @ BYU . (3.1)
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To better understand their interactions, we now want to split the operators U, N & A and
N & B into 2 x 2 matrices like discussed above. First, we see

N 0 N 0
voun (¥ 0) won~ (Y1)

Further, although it is not an automorphism, we can obtain a similar matrix representation
for U and see!
Upn Ui
U ~
<U21 Uz
Now we translate equations (3.1) intro matrix form and get

UnN UppA\  [(NU; NUp
UnN UxpA)  \BUy BUs

U N* U A* _ (N*Un N'Up (3.2)
Uy N* UypA* B*Uy; B*Usjs ’ '

From now on, we will refer to the respective equations by either (3.2);; or (3.2);;.%> Further,
we get from 1 pq.4 = U*U and 106, = UU™ the following two matrix equations

]_Jf 0 _ (Ull)*Ull —|' (UQl)*U21 (Ull)*U12 + (UQ]_)*UQQ (3 3)
0 1x (U12)*Usr + (Us2)*Usy  (Ur2)*Urz + (Uaa)*Use '

1, 0 _ Ui (Unn)* 4 Uia(Ur2)* Uy (Ua)* + Ur2(Us2)*
0 14 U21(U11)* + Usa(Ur2)* Uzi(Uay)* + Usa(Us2)*

Here, we apply the same enumeration scheme as with Equations 3.2.

Now we remember that our main goal is to show A ~ B. Equations (3.2)s and
(3.2)5, are a good start, although the problem is that Us, is not necessarily unitary or an
isomorphism. Our approach will therefore be to separate 7% into ker Uy and (ker UQZ)J—,
and to show A ~ B for both subspaces separately.

We remember that A, B are normal operators and start by using Proposition 3.3.5
together with UypA = BUy, that is Equation (3.2)22, to get Alwervs)t =~ Blagants)-
Propositions 4.4.4 and 4.4.2 now tell us

(3.4)

Cl(I‘&IlUQQ) = ((1"811(]22)L)L = (keI‘((]22>>k>L
Combining this with our previous insight, we get

A|(kerU22)J‘ = B|(ker(U22)*)J‘

Now we turn our attention to Alxerr,,. Our next goal will be to use Proposition 3.3.5
again to get
Alkertzs 2 Nv3s (ker Uns)

Tt is important for us to keep in mind that here we have Uyq : S+ S, Uy : 56 — H, Ugy : S +— Hs
and UQQ : % — %
2For example, Equation (3.2)3; designates UjaN* = B*Uss.
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B|ker(U22)* =~ N‘(Ugl)*(ker(Ugg)*)

Then, we will show that Ujs(ker Uyg) = (Uz)*(ker(Us2)*), which will give us Alker,, =
Blxer(s)+- To this end we take UjpA = NU,, that is Equation (3.2),,. However, before
using Proposition 3.3.5, we want to reduce the domain to ker Usy, which means we want
to show that Alxerr,, € B(ker Ugy). Using Usp A* = B*Uss, that is Equation (3.2)3,, and
the exact same line of reasoning as before, we get A*|er1,5)L >~ B*| (ker(U55))+ and thus
A*|(kervag) - € B((ker Uyz)t). This means A*(ker Uyp)™ C (ker Uy)™, so for & € ker Up,
and y € (ker Uy)* we find
(Az,y) = (z,A%y) =0

Therefore we have Az € ((ker Uy)t)t = ker Usy and so we get A € B(ker Uyy). Now we
are ready to use Equation (3.2)12 with a reduced domain which yields

NU12|kerU22 = U12|ker U22A‘kerU22

Using Proposition 3.3.5 now gives us the rather clumsy equation

N|c1(ranU12\kerU22) = (A’kerUm)|(k€rU12|kerU22)J'

However, this will get substantially simpler as we now show that
cl(ranUss |ker Uy, ) = Urz ker Ussg

(ker Usa|ker Ugg)l = ker Usy

We take h € ker Uy and we see that

U U (0) _ (Uh
o (i) () = (%)

Since U is unitary, the previous equation shows us that Ujs|ker 1, preserves the norm on
ker Uy and thus Uys|ker 1y, 18 also unitary in the sense that Uys|ker v, : ker Usg +— Ujg ker Uss.
Therefore Uya|ker v, = 0 if and only if A = 0 and thus we find ker Uys|ker1,, = {0}, which
in turn means

(ker Usaker gy )~ = ker Uso

Further, we know that ker Usy as a kernel is closed, and since Uys|ier 1, 1S unitary and thus
isometric, we see that Ujs|ker 1y, ker Uss is also closed. Therefore we find

cl(ranU12|kerU22) = Cl(Ulg ker UQQ) = CI(U12|ker Uso ker UQQ)

= Usa|ker vy, Ker Usy = Ujg ker Uy

These two insights now enable us to rewrite the clumsy equation above into

N\Uu ker Uy == A’ker U
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Now we want to show the remaining unitary similarity for B*|ie vz, We take the adjoint
of Equations (3.2)* and see®

(wern (omr5) = (aioer )

Because U is unitary, U* is also unitary and we can perform the same steps as before to
get
N (1) (ker (Ua2)*) == Blxer(Uas)*

This leaves us to prove Uys ker Uy = (Usp)*(ker(Usz)*) so that we get Alwer vy = Blier(Uze)*-

Let us now denote .#; = Uja(kerUy) and A5 = (Us)*(ker(Usx)*). We start by
showing the intermediate step of .#; = ker(U;;)*. For this we take h € ker Uy and use
0 = (U11)*Uia + (Uz1)*Usz, that is Equation (3.3)12, to see that

0 = (U11)"Usgh + (U1)*Useh = (U11)"Us2h
Therefore Uyoh € ker(Uyp)*, so we can deduce that
,//1 = U12<keI' Ugg) g ker(Ull)*

Now on the other hand, for A" € ker(Uy1)* we see by 0 = Us1(Uyq)* + Usa(Us2)* (Equation
(34)21) that
0 = Ua(Un1)*h + Usa(Ur2)*h' = Usa(Ur2)*H

We can now deduce (Ujp)*(ker(Uyp)*) C ker(Usp). Further, we use 1, = Uy (Unp)* +
Ui2(Uy2)*, that is Equation (3.4)q1, to get
h' = Uy (U)W + Ura(Ura)"h' = Ura(Ur2) R
This means we have ker(Uy;)* = Uy2(Uy2)* ker(Uyp)*, and we can write the chain of inclusion
ker(UH)* = Ulg(Ulg)*(keI'<U11)*) g Ulg ker(Ugg) = %1
Altogether we have shown
My = ker(Upq)*
By replacing U with U*, we can also show that

«%2 = ker U11

For the last step towards .#, = .#5, we now want to show ker U;; = ker(U;)*, and for
this, we will finally use the fact that W*(N) has a cyclic vector. We know Uy N = NUyy
(Equation (3.2)11), so we have Uy; € {N}'. Corollary 3.7.10 then implies Uy; € W*(N),
which in turn means (Uy;)* € W*(N). Since W*(N) is abelian, we thus get that Uy,
is normal and together with Proposition 4.4.3 this implies ker Uy; = ker(U;;)* and thus
M = M.

3This calculation is just the matrix adjoint of Equations (3.2)*.
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To tie everything so far together, we remind ourselves that at the start, we proved

Al (ker Una)~ = B (kex(U20)7) -
Next, we have shown that
A|kerU22 ~ N|U12 ker Uao
B|ker(U22)* = N|(U21)*(ker(U22)*)

Further, we found that
Uya ker Ugy = ker(Uyy)* = ker Uyy = (U )™ (ker(Usg)™)

This means we have
A‘keI‘UQQ ~ N‘kerUll =~ B‘ker(UQQ)*

For the last step we consider

M = ker Upy @ (ker Upy)™ o = ker(Usy)* @ (ker(Usy)*)*t
Additionally we can also separate A and B into

A= Alkervay ® Alker o)t 5 B = Blier(Uan)* © Bliker(Usn)) -

Together with the equivalences Alwertry, ~ Blker(Un)* a0 Al (er tg0)L > Bl(ker(Upn)*)L> We
can use Lemma 3.8.1 to see that indeed A ~ B. [l

Theorem 3.8.8 (First Multiplicity Theorem). Let 5 be a separable Hilbert space and
N € B(H), be a normal operator.

(a) There is a (possibly finite) sequence of Radon measures (fi,)nen on C with compact
support such that pi,+1 << i, for alln € N and

N~N,,
n=1

(b) For each such representation as given in (a) we find that py is a scalar-valued measure
for N.

(¢) Let further M € B(# ") be a normal operator with respective measures (Vy)nen as given
in (a). Then we find that N ~ M if and only if [u,] = [vn] for all n.

Proof of Theorem 3.8.8 (a). We remind ourselves that W*(NV) is a von Neumann algebra
and 7 is separable, so we can use Lemma 3.4.5 to obtain a sequence (e,),eny C 2 S0
that

o =@ (N)er) = D A,

n=1

Further, we know according to Theorem 3.5.8 that N|,, ~ N,  and thus we get

N ~ @ Ny,
n=1
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As mentioned before, this is a good starting point, however we do not have any control about
the various ., and their behaviour. To capture the "maximum amount of information"
about N with each subspace, we don’t want the e, to be arbitrary, but instead we need
them to be separating for W*(N) (or some subset of it), since then W*(NV)e,, has a bijection
to W*(N). For this endeavour we will use Lemma 3.8.5. This way we can assure that
actually pi,4+1 < pyp, for all n € N.

For a start, we label s; the separating vector with e; € J¢,, which is given to us
by Lemma 3.8.5. We will now inductively define the (s,),en as follows. Let us assume
that 7, = @y_, 7, is well defined with J7;, 1 J for i # j. Then we will choose
Spi1 € f%/nl, which ensures via Lemma 3.8.4 that J7; . L JZ, for all k < n and thus
i = Zi% 2, is well defined. However, we will not take any vector as s,4; but want
to make sure that it is a separating vector for W*(N| 1) and that 2, C J£,,1. To this
end we now want to show that N|,. € % (+) and that N| s 1s normal, and afterwards
we will use Lemma 3.8.5 to find a suitable s,1.

First, we see from Proposition 3.5.4 that for all T € W*(N) we have T2, C J,,
and thus T.#, C J,. Since T* € W*(N), we can take z € ¥, and y € ' and
see T*x € , and thus 0 = (T*x,y) = (x,Ty). This means T.#,;- C #=*. Since
both N, N* € W*(N), we can use Corollary 3.7.8 to see that W*(N| 1) = W*(N)| .,
which especially implies that N| . € (") and that N|,. is a normal operator with
(N|xL)" = N*| 41. Similarly, we see that W*(N|,) = W*(N)|x,. Now we return to the

partition 77 = @;°, 7, (from Lemma 3.4.5) and separate e, = eyLH + €51, where

eﬂLH € A, and ey, € X,. Next, we invoke Lemma 3.8.5 to find a separating vector

Snt1 € A+ for W*(N| 1) so that
ol (W*(N|)ern) € el (W (N )sni1)
Since W*(N| 1) = W*(N)| 4. we have for k € J£,;" that
el (W (N2 )k) =l (W*(N)| k) = cl (W (N)k) = 74

Thus we can rewrite the above equation to %L_H C J, ... On the other hand we know

that e|,|l+1 € J, and W*(N|,) = W*(N)|.x,, which means especially that
Ay = A (W) |gensa) = el (W (N g ensn) €

This means that 7, C J,. On another note, we see that J7; , C -, and so

n+1
Hnp1 = Ky © I, ., is a well defined subspace of 7. Because e,4, = €|T|z+1 + eiﬂ with
el 1L €1, We can use Lemma 3.8.4 to get /2, ., C

S %ﬂeLH. Combining this
n+1 n
with the insights that 7, C J,, that %L_H C ., and K, = H, © I, we
n+1 n
finally get 72,

C ;1. This construction ensures the following inclusion

n+1

n+1

N N
b 7, C oy =P A,

n=1 n=1
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3.8 Multiplicity Theory on Seperable Hilbert Spaces 61

This means we get

H =P A, DA, CH

n=1 n=1

Therefore we have 7 = @7, 7, and also

N =D N,

n=1

As discussed above, Theorem 3.5.8 tells us that N
Lemma 3.8.1 we get

A, =~ Ny, and thus together with

N ~ @ NNSn
n=1

The previous construction would have been possible with just Lemma 3.4.5, that is
with a simple deconstruction .72 = @52, ., and no special requirements for (e,)nen. In
this case however, there would be no special relation between the p.,. Thus, to prove
that p,, ., < fs,, we want to use Theorem 3.7.11 in conjunction with Proposition 3.7.1,
which tells us that if © € .7 is separating for W*(NV), then p, is a scalar-valued measure
and thus for any h € 57 we have u;, < p,. We now remember that s; is separating for
W*(N) and s, is separating for W*(N| 1) with J#, = @;_, /,. We therefore obtain
right away that p,, < js,. Further, we see that %, | C %, and since s,,; € J#, - we
therefore have s, € L,. However, s, is separating for W*(N| L) and thus we find
Pspir <K sy, -

One important caveat here is that we defined p, with respect to 52" and N. This means
for the spectral measure E for N and a Borel set A that

psn (B) = (E(A)sn, $n)

There might be a problem for us as we now take u,, with 2+ as underlying vector space
and N| . as normal operator. However, we have already shown during the proof of
Corollary 3.7.8 that |, . is the spectral measure for N| 1, and thus we get for a Borel
set A that

psn (B) = (E(A)sn, ) = (E(A) 0505 5n) s,

Therefore we can take j,, with respect to either J# or -

For the last step we have to define the actual Radon measures p,,. We just set us, =
and we remember Proposition 3.5.6, which states that p,, is a Radon measure with
compact support. We now combine this with our previous insights to arrive at statement
(a) of our Theorem. O

Proof of Theorem 3.8.8 (b). Let us denote Ng := @2, N, and % = @52, L* (i)
Since p, < 1 for n € N, we have supp(p,) € supp(p1), which is equivalent to o(V,,) C
o(N,,) according to Proposition 3.5.2. Together with Lemma 3.8.6 and the fact that
spectra are always closed this gives us

oVe) = (U o(¥,.)) = Aa(,)) = () = sup(a)
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62 3 Multiplicity Theory

Now we remember that the (N, )nen are normal and thus by Proposition 3.2.5 Ng is
normal and Ng := @, N . For any n € N we understand that L*(pyn) C 5 is a closed
subspace* with

NGBLQ(P%) = NunLQ(PJn) - LQ(#H)

We can produce the same equation for Ng, and since Ng is normal we can use Corollary
3.7.8 to get ¢(Ng)|r2(u,) = ¢(Ny,) for any ¢ € B(o(Ng)). Now we see from Theorem
3.6.3 that ¢(N,,) = M, on L?*(p,). Since p, < p1, we see that My = 0 on L*(u;) implies
My =0 on L*(,). Thus ¢(Ng)|r2(u) = 0 implies ¢(Ng)|12(u,) = 0 for all n € N and
therefore ¢(Ng) = 0. Now we take hg :=1 € L*(u1) C % and see that Mgh = ¢, and
thus Mghg = 0 if and only if ¢ = 0 with respect to L*(p1). This is equivalent to M, = 0
on L?(yy), which we have shown to be equivalent to ¢(Ng) = 0. Now Theorem 3.7.7 tells
us that all elements of W*(Ng) can be written as some ¢(Ng), which means we have just
proven that hg is a separating vector for W*(Ng).

Now we take V : 5 + J, as the unitary operator with VNV ™! = Ng and define
h =V ~the. Because of Corollary 3.7.9, we see that VIWW*(N)V~! = W*(Ng) and thus h
is also a separating vector for W*(N). We can therefore use Theorem 3.7.11 to see that
i is a scalar-valued spectral measure for V.

Our final goal is to show that p, = ;. We remember that for a Borel set A we have
E(A) = ¢pa(N) with E being the spectral measure for N and ¢ = xa. Collecting all our
previous knowledge, we can now obtain the following equality

pn(A) = (BE(A)h, h) e = (da(N)h, h) sz
= (Voa(N)V " he, ha) s, = (9a(Ne)he, he)
= (@a(Na) |2 L D12y = (Mop 1, 1) L2
— [es@dm(2) = [ xa(@)dm(z) = ()

Therefore we have p, = 1, and since py, is a scalar-valued spectral measure for N so is
fi- O

Proof of Theorem 3.8.8 (c). First we examine the case where [u,] = [v,] for all n € N.
Proposition 3.5.3 then tells us that N,, ~ N,,,, which, together with Lemma 3.8.1 gives

NS@NHZ@NVHZM
n=1

n=1

For the other implication, we take a look at the case where N ~ M, and will produce our

proof in two steps. As a start, we will show that [u;] = [11]. Next, we inductively reduce
the problem for the measures (p;)i>n+1 and (p;)i>n+1 to the initial case and subsequently
obtain [fin+1] = [Vni1]-

Let V : 2 + # be a unitary operator so that VNV ™! = M, and let Ey, Ey; be
the spectral measures for N and M respectively. We know by Theorem 4.6.3 that for a

4We write this inclusion to emphasize that we don’t consider L?(j,) on its own but rather as a subspace
of %@
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3.8 Multiplicity Theory on Seperable Hilbert Spaces 63

Borel set A and the function ¢a(z) := xa(z) we have ¢po(N) = En(A), and similarly
da(M) = Ep(A). Since pa € B(o(N)), we know by Corollary 3.7.9 that

VEN(A)V T = Voa(N)VTH = 6a(M) = En(A)

However, V' is unitary, so we see that Ex(A) = 0 if and only if Ey/(A) = 0. Now, according
to part (b) of this theorem, p; and vy are scalar-valued spectral measures for N and M
respectively. Therefore we see that

w(A)=0 < Ex(A)=0 & Ey(A)=0 < 1nA)=0

Altogether we can conclude [p;] = [14].

For the next step, we want to prove [g,4+1] = [Vns1] by induction. Our induction
assumptions are twofold. First, we assume [u,] = [v,]. For the second, we define
N, = @;2, Ny, and M,, := @;2,, N,,, and we assume that

N, ~ M,
As the induction start we have just proven [u;] = [11], and from N ~ M together with

our assumptions about (g, )neny and (v, )pen We know that

le@NM:N:M:@Nw:MI
i=1

=1

Now we consider the assumptions true for n and want to deduce them for n + 1. We get
from our second assumption that

Nﬂn @ Nn_;’_l — Nn ~ Mn - NVn @ Mn+1

Now we want to use Lemma 3.8.7 to obtain N,y ~ M, 1, but first we have to show that
all involved operators are normal and that W*(N,,,) and W*(N,,) have a cyclic vector.
For the first fact, we know for a Radon measure p with compact support by Proposition
3.5.1 that N, is normal. Further, Proposition 3.2.5 gives us that a direct sum of normal
operators is normal again. The second fact follows from the proof of Theorem 3.5.8 There
we have shown that for a Radon measure p with compact support, we find 1 € L?(u) and
(P, 1) = L*(p), and finally Py, € W*(N,). This means cl(W*(N,)1) = L*(n) and
thus we can do the same for p,, and v, to see that W*(N,, ) and W*(N,,) both have a
cyclic vector. Altogether we can use Lemma 3.8.7 to obtain

@ Ni:Nn—l—l:Mn—s—l: @ Nl/i

i=n+1 1=n-+1

We now have normal operators N, ~ M, with partitions (u;)i>ns1 and (4)i>nt1
respectively, where the measures fulfil all properties given in part (a) of this theorem.
Therefore we can use our reasoning from earlier to obtain [g,11] = [V,41], which concludes
our induction. O]
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64 3 Multiplicity Theory

3.9 Alternative Formulations of Multiplicity Theory

After having proven the First Multiplicity Theorem, we can now investigate further.
We will restate Theorem 3.8.8 in two different ways in Theorems 3.9.2 and 3.9.5, with
each theorem building upon the previous one. For the Second Multiplicity Theorem, we
simply want to switch the measures (i, )nen With just one scalar-valued measure p and a
decreasing sequence of Borel sets (A,,)nen with A, € A, so that

N ~ @ NMIAn
n=1

Therefore, we want to construct the sets so that [u,] = [u|a,] for all n € N. The reason
why we want to prefer this restatement is that we can extract the multiplicities much
easier from the sets (A, ),en, since we see that the set A, \ A1 "appears" exactly n times
in the sum above. We will use this fact when further developing multiplicity theory, but
before we get ahead of ourselves, let us prove two small lemmata, after which we will come
to the Second Multiplicity Theorem.

Lemma 3.9.1. Let p be a Radon measure, and let A be a Borel set so that pu(A°) = 0.
Then we have p = pi|a. In particular this means (1 = ft|supp(u)-

Proof. For a Borel set A we find
p(A) = (AN A) + p(ANA%) = u(AN A) = pla(A)

Thus we get 1 = u|a. For the second point, we remember that by Proposition 4.7.6 we
have u((supp(11))°) = 0. 0

Theorem 3.9.2 (Second Multiplicity Theorem). Let S be a separable Hilbert space and
let N € B(H) be a normal operator.

(a) Let p be a scalar-valued measure for N. Then we find a decreasing sequence (A,)nen
of Borel subsets of o(N) so that Ay = o(N) and

N = @ N/‘|An
n=1

(b) Let & be a separable Hilbert space and let M € () be normal with a scalar-valued
measure v. Let further (3,)nen be the corresponding sequence of Borel sets for M, as

detailed in (a). Then N ~ M if and only if [u] = [v] and p(A, \ 3,) =0 = u(X, \ A,).

Proof of Theorem 3.9.2 (a). We will prove this by using the partition of N as given by
(a) in Theorem 3.8.8, that is

N ~ @ Nz,
n=1

Our goal is to define the A, in such a way that [u|a,] = [fin] for all n € N. Proposition
3.5.3 then tells us that N, ~ which means we can get the proof by using Lemma
3.8.1.

M'An’
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3.9 Alternative Formulations of Multiplicity Theory 65

To this end, we will first define A; := o(N) and show that [u|a,] = [f11]. Part (b) of
Theorem 3.8.8 tells us that ji; is a scalar-valued spectral measure for /N, and so Proposition
3.7.1 gives us [pu| = [f1]. By Lemma 3.9.1 we further get that 1 = |,(v), and so we see
that

[1la,] = (1] = ]

Now we move on to inductively define A, ;1. We assume that we already have a decreasing
sequence (A;);<, with [p]a,] = [f;] for all i <n. Part (a) of Theorem 3.8.8 now tells us
that finy1 < fin, and so we have fi, 11 < pfa,. This means we can use Lemma 3.8.3 to
obtain a Borel set A, 11 so that [fi,41] = [(¢]a,)|A,,,]- By the definition of restricted
measures, we see for a Borel set w that

(1la,) An“(w) = pla,(wN An+1> = p(wn AnJrl NA,) =p Api1NA, (w)

We now define A1 := A,y1 N A, and see that A,y € A, and [p|a,,,] = [fint1]. This
means our induction is successful and we get a decreasing sequence of Borel sets (A, ),en
with [p]a, ] = [fin] for all n € N.

Finally, we can return to our initial quest. As discussed, Proposition 3.5.3 tells us that

N, =~ Ny, for all n € N and thus we get by Lemma 3.8.1 that
N ~ @]\ﬁn ~ @NMA”
n=1 n=1
This concludes the proof. n

Proof of Theorem 3.9.2 (b). We will prove part (b) in two steps. First we show that
N ~ M if and only if [u|a,] = [V|s,] for all n € N by making use of part (¢) of Theorem
3.8.8. Then we will show that [u|a,] = [v]s,] for all n € N is equivalent to [u] = [v] and
w(A, N\ 3,) =0=puE,\ 4A,) forall n € N.

For the first part, we want to use the uniqueness given in part (¢) of Theorem 3.8.8.
We know that . -

V=@V, o M=@N,

This means we have to show that the p|a, are Radon measures with compact support
and that p|a,,, < pla, for all n € N. We remember that p is a scalar-valued spectral
measure for N, and so by Theorem 3.7.11 there exists a vector h € JZ so that pu = puy,.
Proposition 4.6.5 then tells us that u; is a Radon measure with compact support, and
we get from Lemma 3.8.2 that p|a, is also a Radon measure with compact support for
all n € N. Because for n € N we have A, C A,, we see that y|a,,, < p|a,. This
means our partition N >~ @2, N, is exactly as described in Theorem 3.8.8, and we can
deduce the same for M ~ @72, N, . This means N ~ M if and only if [u|a,] = [v[s,]
for all n € N.

We will now turn to show that this is equivalent to [u| = [v] and p(A, \ 3,) =0 =
u(3, \ A,) for all n € N. First, we assume that we have [u|a,] = [v|s,] for all n € N.
Since p is a scalar-valued spectral measure for N, we know by Proposition 3.7.1 that
supp(p) = o(NN) and thus Lemma 3.9.1 tells us that p = pfsny. On the other hand, we
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66 3 Multiplicity Theory

have by definition that A; = o(N) and so we see p = p|a,, and can show the same for
v = vly,. By our assumption, we also know that [u|a,] = [V|s,], which altogether gives us

(1] = [pla,] = [v]s] = V]
Next, we take n € N and inspect the following
Vg, (An \ En) = v(En N (An \ X)) =v(0) =0
Since we know from our assumption that [u|a,] = [v|s,], we see that

0= pfa, (A \ Zn) = 1(An N (Ap \ 20)) = pu(An \ 3,)

In a similar fashion we see v(3, \ A,) = 0, and since we have shown that [u] = [v] we get
w(X, \ Ay,) = 0. Altogether we see that [u|a,] = [v]s,] for all n € N implies [u] = [v] and
(A, \ X)) =0=u(3,\ 4A,) for all n € N.

Now we will prove the other implication and assume [u] = [v] and p(A, \ X,) =0 =
w(X, \ A,) for all n € N. Let n € N and w be a Borel set so that u|a, (w) =0
the additivity of measures and our assumption to see

0= pla, (W) = p(An Nw)

= p((An \ Xn) Nw) + pw(E, Nw) — p((Bn \ Ap) Nw)
=0+ pu(X,Nw)—0
Since [p] = [v], we thus know that

0=v(3,Nw) =rls, (w)

This means vy, < p|a,, and similarly we can show that pu|a, < v|s,. Therefore we see
that [p] = [v] and p(A, \ X,) =0 = pu(X, \ A,) for all n € N implies [u|a,] = [V]s,] for
all n € N.

Finally, we have shown that N ~ M if and only if [u|a,] = [v|s,] for all n € N, which
is in turn equivalent to [u] = [v] and p(A, \ X,) =0 = u(3, \ A,) for all n € N. This
proves the theorem. O

Now we can set our sights towards the Third Multiplicity Theorem 3.9.5. As discussed
above, we will use the sets (A, ),en from Theorem 3.9.2 to define w,, := A, \ A1 and
Weo = Nigy A;. Each w,, will be "contained" in the direct sum in Theorem 3.9.2 exactly n
times, so with a bit of clever rearranging we find

N~ @NulAn >~ (Nyjws )™ & @(wan)” .
n=1 n=1

We also notice that pul,. and the (|, )nen are mutually singular, and we have already
arrived at Theorem 3.9.5. Again, we will quickly prove two lemmatas and then flesh out
the thoughts above for the proof of the Third Multiplicity Theorem.
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Lemma 3.9.3. Let p be Radon measure with compact support and let (Ay)nen be a
sequence of Borel sets so that u(A; N A;) =0 for all i # j and p((Upe; An)©) =0. Then
we find:

(o) }
p=>_ tla,
n=1
(v) )
N/'L = @ NulAn
n=1

Proof. The proof of (a) is rather easy. We define A := 22, A,, and find p(A€) =0, so
Lemma 3.9.1 tells us that g = p|a. Now we take a Borel set w and see

) = s = (w0 U s ) = (Utanno)

Since we have p(A; NA;) =0 for all i # j, we can split this expression into a sum and get

W) = g (Q(A" rm)) > i(A000) = 3 pls, )

This means we find p = >0, pfa,,
Now we turn to show (b). First we remark that according to Proposition 4.7.5 we have

for n € N that % = xa,- Thus, for f € L*(p) according to Proposition 4.7.6 we find

17 B2, = [ Xanl P < (1 fIegy < o0

This means that f € L?(u|a, ). Therefore we can define the function

ViR e @Ps) . V=@ -

n=1

This function is linear, and we can show that it is also an isometry. For this, we remember
A=U2 Ayand p(A; NA;) =0 for all i # j. Therefore there is at most one xa, with
non-zero value p-almost everywhere. This means we have

Xa =) Xa,
n=1
We now take f € L?(p), label L2 := @52, L*(u|a,) and see

IVl = 3 [ 17Pdls, = 3 [xa,lfdn = [ xalrPd
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68 3 Multiplicity Theory

The fact that p = u|an means we can use Proposition 4.7.5 to get du = xadu, and we
obtain

VAR = [xalfPdu= [15Pdn =11

Thus, V is an isometry and thus injective. We now want to prove that V' is also surjective,
which gives us altogether that V' is unitary. Let thus fe Lfe with f = @;2, fi. Further we
define f =372, xa, fi. We want to show that V f = f, but we don’t yet know if f € L?(p).
Since p|a;(A§) = 0 for all ¢ € N, we see that f; and xa,f; are the same p|a,-almost
everywhere, and thus

=1

We can now reverse the calculations above and see that f € L2(p) and Vf = f. Thus V
is surjective and therefore unitary.

Now we turn to canonical multiplication operators and their equivalence. According
to Lemma 3.8.2 we see that p|a, is again a Radon measure with supp(u|a,) C supp(pu).
Since p has compact support and supp(u|a, ) is closed we see that it is also compact.
Therefore N, is well defined for all n € N. We take f € L?(u) and see

lan

0T =Vt = @t = @ = (@ ) @1 — (@ v

First, this means that @;2; N, is a continuous linear operator, and further that VN, =
@2 Ny, V. Since V is unitary, we find N, ~ @2, N, O

la, -

Lemma 3.9.4. Let (,)nen be a sequence of measures. Then the (fin)nen are mutually
singular if and only if there exists a sequence of sets (wy)nen SO that

pi = filo, , wiNw;=10
ijeEN | i#]
Proof. We start by reminding ourselves that two measures p and v are mutually singular

if there exists a Borel set A so that p(A) =0 and v(A) = 0. Let us now assume that we
have a sequence of sets (w,),en so that

i = fhilo, » wiNw; =10
LJEN 1 #)
Thus for 7,7 € N and ¢ # 7 we find

pi(wy) = philw; (Wi) = pi(wi Nw;) =0

pj(wi) = pjlw; (wi) = pj(w; Nw;) =0

Therefore we find that p; and p; are mutually singular. Since 7, j were chosen arbitrarily,
this means the (u,)nen are mutually singular.
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Next we assume that the (1,)nen are mutually singular and we want to construct the
sets (wy)nen to fulfil the conditions stated in the lemma. We know for ¢,j € N and i # j
that there exists a set A;; so that

wi(A) =0 pi(Ay) =0

We now take ¢ € N and define w; := N,; A, and we see that

pi(wy) = pi (U Afj) < ZMz‘(Afj) =0

J#i i

Therefore we can use Lemma 3.9.1 to obtain p; = p;],,. On the other hand, we see for
J # 1 that w; € A;;, which means

pi(wi) < pi(Aig) =0

This means we have found suitable sets (p,)nen S0 that the conditions of the lemma are
fulfilled. O

Theorem 3.9.5 (Third Multiplicity Theorem). Let 5 be a separable Hilbert space and
let N € B(H) be a normal operator.

(a) Let pu be a scalar-valued spectral measure for N. Then we find mutually singular Radon
Measures floo and fiy, fia, ... with compact support so that 1 = fiee + >y fbn and

N~ (N, )™ & é(NM)" :

(b) If & is a separable Hilbert space and M € PB(X') is normal with corresponding
MEASUTES Voo, V1, Va, ..., then we have N ~ M if and only if [u;] = [vi] for all i € N and
[1o0] = Voo

Remark. 1t is actually not necessary to assume that p is a scalar-valued measure, or that
foo + 200 iy is a measure at all. The proof for this is based on (b) from Theorem 3.8.8,
but we won’t need it in this thesis.

Proof of Theorem 3.9.5 (a). For this proof, we start with the deconstruction of N given
by Theorem 3.9.2, that is the decreasing sequence (A,,),en of Borel sets, with the property

N ~ @ NMIAn
n=1

We now want to partition the sets (A,),en further into disjoint sets wo, and (wy)nen-
Afterwards, we will use Lemma 3.9.3 to get

Wi

a, = ploe + > 1
i=n

NM|An = Hlweoo ® @ Nﬂwi

i=n
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70 3 Multiplicity Theory

We can then insert this in our first decomposition obtained by Theorem 3.9.2 and rearrange
the terms to obtain the desired expression. Finally we will show that u = e + >0 ft]w:,
and that pul,_ and the (ul,, )nen are mutually singular.

As discussed we start with the deconstruction of N given by Theorem 3.9.2 and define
the sets

wn = A\ Apyy ww::ﬂAn
n=1

From this definition we see that A,, = w. U U2, w;. This means we have

la, ((woo oy w)) — il (AZ) = 0

=n

Further we find for ¢ # j that w; Nw; = 0 and w; Nws = 0, and therefore we get
pla,(wiNwy) =0, pla, (Wi Nws) =0

This means the preconditions for Lemma 3.9.3 are fulfilled and we get

dlan = (1la) e + 3 (el

i=n

Nuja, = Niata o ® B Nuia, e,

i=n
However, since w; C A; C A, for i > n, we get that (u|a,)|w;, = ttlw, for i > n. Similarly
we have wo, € A, and thus (¢|a,)|w.. = tw., - Altogether we get

pla, = tlw. + Z:ulwi

i=n

Nyja, = Nl @@ Heo;

We can insert this into the deconstruction of N given by Theorem 3.9.2 and get

N ~ EB (Nulwoo D EDNM%) @ ( ploes D Ny, @ Nﬂwn+1 b )

n=1 k>n

When taking the direct sum of vector spaces, their ordering is irrelevant up to a unitary
transformation, so we can rearrange the terms above and get

o0}

N = u'woo @ len

This is already the form required by the theorem, so we only have to prove that the
measures fulfil all necessary properties.

It remains to be shown that p = |, + >0, ple, and that p|,. and the (p|o, )nen
are mutually singular. For one, we have seen that pu|a, = pt|w., + 22 ft|w,, and we know
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3.9 Alternative Formulations of Multiplicity Theory 71

from Theorem 3.9.2 that A; = o(NN) and that u is a scalar-valued spectral measure.
By Proposition 3.7.1 we further get o(NN) = supp(p), and Lemma 3.9.1 tells us that
= t|supp(p)- Altogether we find

n= N|supp(#) = N‘U(N) = pt|a, = ftlwn + ZN

i=1

wi

Now let us inspect whether the measures are mutually singular. For i # 7 we know that
wj Nw; = 0 and also we Nw; = (0. Therefore we can use Lemma 3.9.4 and see that the
measures are mutually singular. We now label p; := pul,, for i € N and py := pl,,, and
obtain the theorem. O

Proof of Theorem 3.9.5 (b). We will prove the statement by inspecting both directions of
the implication. First we assume that [fi.] = [Veo] and [u;] = [v4] for all i € N. We now
want to show that this implies N ~ M. By Proposition 3.5.3 we know that N, ~ N,, for
all i € Nand N, ~ N,_. Using Lemma 3.8.1 we therefore get

N~ (N,)® @ @(Nm ~ (V)% @ @m" ~ M

This proves one implication.

Now we turn to the other implication and assume N ~ M, and we want to obtain
[foo] = [Voo] and [p;] = [vs] for all i € N from this assumption. This implication is
unfortunately much harder to show, and we will go at it in several steps. First we will
reverse-engineer the proof of (a) to get measures p and v together with decreasing sequences
of sets (Ap)nen and (X,,)nen so that we can use part (b) of Theorem 3.9.2. From this we
will obtain that [u] = [v] and (A, \ X,) =0 = u(X, \ A,) for all n € N. In the second
step, we will show that this in turn implies [u;] = [14] for all i € N and finally (o] = [Voo-

For the first step we take the well defined scalar-valued spectral measure

1= oo + Y fn
n=1
According to Theorem 3.7.11 there exists a vector h € S so that u = py, and Proposition
4.6.5 then tells us that u is a Radon measure with compact support. Our goal is to use u
as a springboard to apply Theorem 3.9.2. We know that the (y;);en and po are mutually
singular, so we can use Lemma 3.9.4 to get sets (w;)ieny and ws, with the properties

Wi = i wiNw; =10

floo = floolww 5 Woo Nwj =10
LjeEN . i#]
We can now reverse-engineer (A,,),en by defining n > 2 the sets

Ap:=0(N) |, A,:=w,U Uwi

i=n
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72 3 Multiplicity Theory

Before we get into the meat of it all, we will prove some properties relating p to the (1;)en-

We start by showing that u|a, = fieo + X500, pt;. First, we deal with the general case and
afterwards we will turn towards the special case n = 1. Let n € N with n > 2 and let ¢ < n.
We remember that the (w;);eny and we, are disjoint and that j;(w;) = pj(w; Nw;) = 0 for
i # j. Similarly we see fioo(w;) = 0. This means we get

i(An) = pi (woo U G Wj) = pti(weo) + i pi(w;) =0

Jj=n J=n

Therefore we find that for any Borel set A we have p;(A N A,) = 0. On the other hand
we take ¢ > n and see that w; C A,,. We remember that p; = p;]., and we calculate

1i(ANAL) = p

= pi(A Nw;) = pilu, () = pi(A)

Taken together, this means we have p;(ANA,) = pu;(A) if i > nand p;(ANA,) =0if
i <mn. Since we C A, we can show similarly that g (A NA,) = pieo(A). Therefore we
can now calculate

wi(ANAY)) = (ANA, Nw)

tla, () = (AN AL) = peo(ANA,) +ZN1AOA +Zﬂz

=1
This means we get for n > 2 that
lan = oo+ 3 pi

For the case n = 1, we know that p is a scalar-valued spectral measure and Proposition
3.7.1 tells us that supp(u) = o(N). Further, we have Ay = o(N) and Lemma 3.9.1 tells
us that 1 = fi|supp(n), SO altogether we get

(o, = 1= too + Y fin
n=1

Now we move on to inspect (4|a,)|w, for n,i € N. We remember that p;(w;) = 0 for i # j
and i (w;) = pi(ws) = 0, and we can use a similar argumentation as above to obtain

_{pi ifi>n

(/’L|An) wj ) (M|An>|woo = Mo

0 ifi<n
Now we want to use these insights together with Lemma 3.9.3 and show
Noan 2= Nt o B D Nty = Nooo @D N (3.5)

To use the lemma we have to prove for n € N that p|a, is a Radon measure with compact
support, that p|a, (wiNw;) = 0 and p|a, (wiNwes) = 0 for ¢ # j and @ > n. Finally, we also
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3.9 Alternative Formulations of Multiplicity Theory 73

have to prove that u|a, ((wWeoUUS, w;i)¢) = 0. For the first condition, we have already stated
that p is a Radon measure with compact support, so according to Lemma 3.8.2 we know
that p|a, is also a Radon measure with compact support. Coming to the second condition,
we know that the (w;);eny and we, are disjoint, so we get pi|a, (wi Nw;) = pla, (Wi Nws) =0
with ¢ > n and ¢ # j. Now for the third condition we see

o ( (w0 O] ) = s (85) = (8501 8 = 0) =0
This means we can use Lemma 3.9.3 and obtain Equation 3.5. Now we take Lemma 3.8.1
to form the direct sum and then rearrange the terms, so we get

P Ny, ~ 691 (Nuoo@Ni> ~NX &PN; ~N
n=1 n= n=1

= i=n

Therefore we have found a scalar-valued spectral measure p and a sequence of Borel sets
(Ap)nen with Ay = o(N) so that @52, N, ~ N, which are the exact conditions for
Theorem 3.9.2.

Next we turn our attention to M, v and (v;);en. We know that we have the scalar-valued
spectral measure

lan

o
ViIVOO—l-ZVn

n=1

We can now define in the same manner as before the sets (;);en with
Vi=Vily, , %0y =0

VOO:Z/OO"YOO ) 700m7j:®
ihL,jEN | i#]
We further define for n > 2 the sets

Yy = O-(M) ) Y= Voo U U’yz

i=n

As we have shown before, we get @;> Ny, =~ M with the same conditions as given in
Theorem 3.9.2. To tie everything up, we remember that our assumption was N ~ M, and
so part (b) of Theorem 3.9.2 tells us that [pu] = [v] and p(A, \ X,) =0 = pu(X, \ A,) for
all n € N. This concludes the first step of our proof.

In the second step of this proof we show that this leads to [ps] = [Veo] and [w;] = [14]
for all i € N. We start with ¢ € N and want to prove [p;] = [1;]. To this end we will show
some equalities that will help us along the way. First we see that

Ay = Moo+ D 5 = Hoo — D Hy = [l
j=i j=i+1

Hin; — H
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74 3 Multiplicity Theory

We then remember that p(A; \ X;) =0 = p(E; \ 4;) and get for a Borel set A that

pla,(A) = p(ANAy)

= p(ANE) = AN\ Ad)) + (AN (AN X)) = (AN
Similarly we get fi|a,,,(A) = p(A N X;41). Finally, we know that ¥;1, C 3;, so we get

n(ANS) = p(AN D) = p(AN (5 Bit))
Next we take A so that p;(A) = 0 and see
0= MZ(A) = :U’|A1(A) - M|Ai+1 (A) = :U“(A N AZ) - M(A M Ai-‘rl)
= p(ANY) = w(AN i) = p(AN (5 \ Ziva))

Now we use the fact that [u] = [¢] and a chain of similar equalities as above to get

0=v(ANE\ i) =vs (D) = vig,, (A) = vi(A)

This means we have found that v; < ;. We can show p; < v; by switching p; with v;
and A; with 3;, so altogether we obtain [u;] = [1].

Unfortunately the deductions above don’t hold true for [fi.] = [Vso], SO We need some
additional considerations. To this end, we will now define for ¢ € N the sets

Mi=wi Ny, Beoi= (U m)
=1

We will now show that 1;(E.) = 0 for i € N and po,(Z5) = 0 to obtain u|z, = piee. To
this end we take i € N and consider [u;] = [14]. Since we know v;(7§) = v (7 N~5) = 0, we
get p;(7§) = 0. Further we similarly have p;(wf) = 0, so together we find

pi(nf) = pi(wi Uag) < palwp) + pa(yg) =0

Because =, C 7§, we see that 1;(Es) < u;(nf) = 0. On the other hand we remember that
oo (Wi) = oo (Woo Nw;) = 0 for ¢ € N, so we get

Hoo(Z5) = Moo (U ﬁi) <D poo(wi N7) = 0
i=1 i=1

According to Lemma 3.9.1 this means fi|z,, = ftoo. Now we take a Borel set A and
calculate

e (8) = (A N Z) + 3 15(A N Eag) = ool AN Eoe) = el (B) = ()

i=1



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.10 Multiplicity Functions 75

Thus we get |z, = fioo. Since the (1;);en are defined symmetrically in w and 7, we can
show v|z, = Vs in the same way. Now we take a Borel set A so that p(A) = 0, which
means

0= p1eo(A) = pilz. (&) = p(A N Es)

Since [p] = [v], this means we also get

0=v(ANZy) =z (A) =1vs(A)
Therefore we have v, < [, and we can similarly show v, < 1. This means we have
[ftoo] = [Voo], Which concludes the proof. O

3.10 Multiplicity Functions

We have finally reached the crowning section of this thesis, in which we will state our
Central Multiplicity Theorem and obtain the multiplicity function # for N. Before we
can do that however, we must introduce some definitions to understand where and how
the multiplicity function operates, and how we can construct a relevant operator N4 so
that we actually find N o~ Ny.

Definition 3.10.1. Let J# be a Hilbert space, let (X,Q, 1) be a measure space, and
let f: X —= 2. Then we call f measurable if the function f, : X +— C defined by
fo(x) :== (f(x),g) is measurable for each g € J7.

Proposition 3.10.1. Let 5 be a separable Hilbert space, let (X, ), 1) be a measure space,
and let f: X — A be a measurable function. Then the function ||f||» : X — C defined
by [|f||le(x) = || f(x)||# is a measurable function.

Proof. Since J is separable, we can find a countable orthonormal basis (e,)nen of 7.
We know that f. is measurable for n € N, and we know that we have the point-wise
convergence

N—oo 1

fim, 2 Voo @F = Jim, 3, [KF (@), enll” = 1/ @)lLe

Therefore || f(x)|[% is also a measurable function, and because /. : C — C is measurable
we see that ||f(x)|| is measurable as well. O

Definition 3.10.2. Let .7 be a separable Hilbert space, and let (X, 2, 1) be a measure
space. We define the set

L2, H) = {f + | is measurable and [ ||f(2)||dp(x) < o0}
Further we define the inner product on .£?(u, ) as
(f.9)2000) = [(£(2). (&) i)
Proposition 3.10.2. The set £*(u, ) with the pointwise vector space operations of A

is a vector space. Further, the inner product from Definition 3.10.2 is well defined, and
the equivalence classes L*(p, 7€) of £L*(u, 7€) form a Hilbert space.
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76 3 Multiplicity Theory

Proof. First we will investigate whether .£?(u, ) is a vector space. For f € £?(u, )
A € C we find

JIN@IEdu@) = [ NI @) Bedu(2) <

Now we remember that for a,b € R we have (a + b)? < 2(a® + b?). Therefore we see for

g € L*(u, ) that

J15@) + 9@)|Eednt@) < [ 20115153 + llgl 3 )du(2) < o0

Altogether we find that summation and multiplication maps to Z?(u, #) again, so it is
indeed a vector space.

Now we proceed to discuss the inner product. By similar considerations as above, we see
that it is sesquilinear. Now we take f,g € £%(u, #) and see that ||f||., ||g]|» € L*(1).
This leads us to calculate

@) g@sedn@)] < [ 1 @ILellg@ledi(o)

< I 22w (1]

Therefore the scalar product is well defined.
Finally we want to show that the equivalence classes of .£?(u, 5#) form a Hilbert space.
For f € Z*(u, ) we find

#) )| L2y < 00

1112y = (o P = [ 1) ()

It now suffices to show that £?(u, ##) is closed with respect to ||.H202(M,%a). To this end
we take a Cauchy sequence (fi)reny € -L2(11, #) and we want to show that there exists a
[ € L%, A) so that || fy — f|| #2(un) — 0. Since S is separable, we can further find an
orthonormal base (e, )nen. Further, for g € £*(u, ) we have a monotonously increasing
convergence

> g, @) f: e (@)% = [[9(2)| %

Therefore we can use Theorem 4.7.1 to take the limit out of the integral and see

191120029 /z|gen ) Pdpu(x Z [ e (@) Pt zngenum

This means especially that (fx.e, )ken is @ Cauchy sequence in L?(u) for n € N, and therefore
there exists a sequence of limit functions (hy,)neny € L*(p) with || fre, — hnl|20) — 0 for
n € N. Without concerning ourselves about the convergence, we now define

f = Z hypen
n=1

One issue is whether f € Z?%(u, #), but the (h,),en are measurable, so we have only
to think about ||f||#2(.») < oo. Since the (f,), form a Cauchy sequence, this follows



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.10 Multiplicity Functions 7

automatically if we manage to show || f,, — f||#2(u%) — 0. To this end we choose € > 0
and k € N so that ||fi — fj|| 22 < € for all j > k. Now we can take N € N and
calculate

N N
Y Mhn = Freallizgy < 2D (1hn = fieallizgy + fien = Freallizg)
n=1 n=1

N N
<2|f5 = fellzzuory + 2D 1o = fieal 220 < 26+ 2D 1ha = fieal 72

n=1 n=1

We know that || f;c, —hn||r2() — 0, and since we have a finite sum and the only requirement
for j was j > k, we can take the limit j — 0o to get 001 |[hn = frenl[72(,) < 2¢. Now we
do the same thing for N — oo to obtain

= fell%2 ) = Zl [ = FreallT2(u) < 2€
Additionally, for j > k we find

= Fill%2 ey < 201 = Fell %2y + |1fk = Fill %2 que)) < Ge

Therefore we find that ||f — f"“?i”?(u,ff) — 0, which means that (f,,)nen has a limit value
in %, 7). Finally, the proof that L?(u,.5#) is a Hilbert space is almost the same proof
as for the fact that the equivalence classes of square-integrable functions over p called
L?(u) is a Hilbert space. O

We now take [? to be the Hilbert space of all absolute square summable complex
sequences, and we will turn our attention to L?(y,[?). This space is essentially the space
of sequences in L?(p) with the added condition that their L2-norms are square-summable.
The following two propositions elaborate on this.

Proposition 3.10.3. Let 11 be a measure, and let (f,)nen be a sequence of functions in
L*(n) so that

Z_:lenHi?(u) < o0

Then we define f(z) = (fu(2))nen and see that f € L*(u,1?). Additionally, every element
of L*(11,1?) has the aforementioned form.

Proof. Since there might be some z € C where (f,,(2))nen is not in {2, we first have to find
representatives of (f,)nen so that f(z) € [? for all z € C. We define the set

A=Az |lf(2)]lr2 < o0}

We will prove that u(A°) = 0 and thus we can just set f(z) = (0),en for z € A°. To this
end we calculate

S [ 1) Pdu(z) = 3 [l fal By < o0
n=1 n=1
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78 3 Multiplicity Theory

We can now use Theorem 4.7.1 to switch the integral with the summation and obtain

IR = [ S 1R

Thus we find || f(2)]]% < co p-almost everywhere, and we find a sequence of representatives
so that f(2) = (fu(2))neny on A and f(2) = (0),ey for 2 € A°. Since (0),ey € [?, this
means f(z) € 2 for all z € C.

Now we want to show that f is measurable according to Definition 3.10.1. We take
g = (gn)nen € I? and see that

[(f(2), gbeel < (£ (2)]721gl ez

On the other hand we also have
g>l2 < Z fn(z)g
n=1

Since the sum converges, f, is measurable and g, is just a constant for n € N, we see that
the sum is measurable again. Thus we find that f is measurable.

Now we discuss whether || f[]2, (2 < 00. We have seen that 3207, ['[f.(2 )Pdp(z) < oo,
and since all functions are positive, we can use Theorem 4.7.1 to swap integral and sum to
get

J 1) ledpz) /Zm ) 2dp(2) z/m ) 2dp(2)

By Definition 3.10.2 the left hand side is exactly ||f|[z2(u2) and therefore we find
[ f1|22(ui2) < 00. This means f € L*(u, ).

Now let f € L*(u,1?). This means f(z) € [? for all z € C and we can write f(z) =
(fu(2))nec. We then reverse the steps above and see

> Wl = 32 [ 1n(2)Pu(z)

—/Z|fn Edu(=) = [ 117 NRdn() = 1Bz <

This means especially f,, € L?(u) for n € N, and we have proven that f is indeed of the
form described above. O]

Proposition 3.10.4. Let f € L?(u,1?) with f = (fn)nen. Then we find

122y = D2 1 fall 22
n=1
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Proof. We have shown a more general version of this during the proof of Proposition 3.10.2,
where we have shown for g € L?*(u, 7)) and an orthonormal base (€,,),en C 2 that

S
1911220y = Z g, en) |

We now take the orthonormal base of [ that is formed by the (8, ;)neny with is 6,,; = 1 if
n =14 and 9,,; = 0 otherwise. This leads directly to

||f||l2_Z| e nz nEN l2|2 Z||fn||L2(u

O

Now we are ready to define the multiplicity function #, together with the canonical
multiplication operator Ny associated with a certain multiplicity function and the Hilbert
space it operates on.

Definition 3.10.3. Let i be a Radon measure with compact support. The we define a
multiplicity function for p as a function # : C — {0, 1,2, ..., 00} so that #(z) > 1 p-almost
everywhere.

Definition 3.10.4. We define for n € N the subspace (2 C [? as
12 :={(ap)ren : (ax)ren € I* and a;, = 0 for k > n}
We further define (2, = [2.

Definition 3.10.5. Let i be a Radon measure with compact support, and let # be a
multiplicity function for p. Then we define the subspace Zy of L*(u,[?) as

Dy ={f:f€L*pl? and f(z) € l2 .) H-almost everywhere}
Further we define the canonical multiplication operator Ny : Dy — Dy as the operator

Ny f(z) = 2f(2)

Proposition 3.10.5. Let p be a Radon measure with compact support and let # be a
multiplicity function for u. Then the space Dy is a closed subspace of L*(u,(*) and thus a
Hilbert space. Further we find that Ny € B(Py).

Proof. By Proposition 3.10.2 we already know that L*(u, %) is a Hilbert space, so it suffices
to show that Z. is closed. Now let (gx)ren C P4 be a sequence so that |[gy — f|[L2(u2) — 0
for some f € L?(u,l?). By Proposition 3.10.4 this means especially for n € N that
[(g9r)n — fallz2q — 0. Now we define the set A, := {z : #(2) < n}. Since (gi)n € Zx,
we know that (gx), = 0 p-almost everywhere on A, for k € N. Thus we find

/An |fn(z)|2d:u(z) = /An |fn(Z) - (gk)n(z)|2d,u(z) < /lfn - (gk)n|2d,u(z)
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80 3 Multiplicity Theory

= ||fn - (gk)n||L2(u) — 0

This means f,, = 0 p-almost everywhere on A,,, which in turn implies f(z) € li(z) p-almost
everywhere and thus we find f € Z.

Now we turn towards showing that Nx € #(Z4). We can see by the definition that
Ny is linear, so it remains to prove that it is bounded and Ny %, C Z4. We start
with the latter fact and take n € N and f € Z4, and we know that for n € N we have
fn(z) = 0 p-almost everywhere on A,,. Since Ny f(z) = zf(2), we know that also p-almost
everywhere on A, we have

(Ngef)n(2) = 2fu(2) = 0

This holds for all n € N, so we get Ny f € Zy4 and thus Ny Zy C Z4. For the boundedness
of Nyf we consider r, := sup{|z| : z € supp(p)}. Since supp(p) is compact, this
supremum is finite. Further, we remind ourselves that according to Proposition 4.7.6 we
have p(supp(p)®) = 0. Thus for n € N and f € 2, we have p-almost everywhere that

(N ) (2)] = |20 (2)] < 7l fu(2)]

This holds for all n € N, so we can calculate
INafIE, = [ S 1) Pdut=) <72 [ S 1) Pdutz) = 721111,
n=1 n=1
Therefore we find that ||[Ng|| < r, and thus Ny € B(Z4). O

Now all the pieces are set up and we are ready to tackle the Central Multiplicity Theorem.
Hopefully we can already see the similarity bewteen Zy and (L*(f100))™ @ @221 (L2 (11n))™,
so from here on we basically just have to work through the technical details to show their
unitary equivalence and subsequently

n=1

We start our final push with a lemma, after which we prove Theorem 3.10.7.

Lemma 3.10.6. Let i be a Radon measure with compact support and let # be a multiplicity
function for . We denote for i € N the sets w; := #1(i) and ws = # 1(c0). Then we
find pp= plo, + 3272 ple, and

o0

Ny 2 (Ny,.,)* @ @(Nulwi)i
i=1
Proof. To facilitate our notation, we first set

12 = L) & @ L1

=1

i)
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Although we need to go through a lot of technical detail to prove it, this lemma is relatively
intuitive. First, we will quickly show that u = pl,, + >0, ], Next, we will try to
rearrange the spaces L%(ul,,) and L?*(ul,.. ) so that

L3 ~ D L*(nlay)
k=1

Here, the (Ag)ren will be akin to the sets given in Theorem 3.9.2 so that Ay C Ay for
all k € N. For f € @2, L*(|a,) we can then write f = @2 xa, [k, and we see that e.g.
on Ay only xa, fi is potentially non-zero. Therefore (xa, fx)ren € l? on Af, which already
looks a lot like Z4 (and we will confirm in our derivation that (xa, fi)reny € Z4). With
these considerations as a basis, we will define an operator

Vi LE— Dy

We can then show that V' is unitary, and that

Ny =V (N 0 @) ) v

It is important to note, however, that we will not directly use the aforementioned sets
(Ag)ken, and we just mentioned them to gain a better understanding of the proof. Instead,
we will define functions (fy)ren with the relevant properties directly.

First we see that w; Nw; = 0 for i # j and w; Nws = 0 for ¢ € N. Further we define

Q= wy, U iji =#1{1,2,...,00})

i=1

This means we find Q¢ = #71(0). Since # is a multiplicity function for p, we know that
pw(#71(0)) = 0, and thus we have p(Q°) = 0. Therefore we can use Lemma 3.9.3 to get
p= ] + 202 ptlw,. To facilitate the future notation, we further relabel p; := pl,, for
i€ Nand fioo := pt]w., -

Now we proceed to take f € Lge and we want to construct a sequence of functions
(frx)ken as discussed in the introduction. We start by labelling the components of f in the
following way

f= (@ foo,k) D <@@fzk>
k=1 i=1 k=1
Here we have for € L?(us) for all k € N and f;, € L*(p;) for all k <i and i € N. Now
we can we define for k£ € N the function

flc = Xwoofoo,k + ZXwifi,k
i=k
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82 3 Multiplicity Theory

At the moment this definition is just pointwise, but we will show in the following that
fx € L*(1n). We know that

151 = (32 [ 1@ Pdun(a)) + (£ [ 1o (2

All terms in the second sum are positive, so we can rearrange it. In addition, Proposition
4.7.5 tells us that ‘ZLT‘X’ = Xwo, and for ¢ € N that (Z‘Z = Xw,. logether we find

||f||L2—(Z [ X )| foon ()2 ) (Zz/xww i >|2du<z>)

k=11i=k
For i € N and ¢ # j we know that w; Nw; = 0 and w; Nws = 0, so we find
Xw; Xw; = 0, XwiXweo = 0

This means we get

finl®

|fk|2 = Xwoo‘fOO,kP + wai
i=k

Because all entries in the following integral are positive, we can use Theorem 4.7.1 to
obtain

J1EEa() = [ X () ool +z/xwz i) Pn(z)
This means we find that

S W elBago = - [ 1) Pdn(z) = 1f1Rz < o0
k=1 k=1

Therefore we especially get fi € L*(u).

Our next goal is to show that (fi)ren € . We have just shown that 3332, || fxl|72(,) <
oo, and so Proposition 3.10.3 tells us that (fx)ren € L?(1,1?). Now we remember again
for i € N and i # j that we have w; Nw; = 0 and w; Nws = 0. Next we take i < k < j
and see that for z € w; we get x,,(2) = 0 and ., (2) = 0. This means we also get

fk(Z):Xwoo foolc +ZX% f]k

Since w; = #71(i), this means we have (fi(2))ren € [? for 2 € #71(i) and therefore
(fi)ken € Dy.
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3.10 Multiplicity Functions 83

Altogether we can now take our whole previous calculation and define the operator
VL% — Py as V[ = (fi)ren. Our next step is to prove that V' is unitary. Previously
we have shown that 72, ||fk||%2(u) = || f|32 , and Proposition 3.10.4 tells us

52}

1122 = D I allizg = IV L2 gue) = IV AIZ,
k=1

Therefore we know that V' is unitary as a function onto its image.

This means we have to prove that VL% = Z,. To this end, let (fy)ren € Py, and
we now want to find f € L2 so that Vf = (fi)ken. We will reverse our previous
deduction and define f; 1 := xu, fr for i > k and i,k € N and f 1 := Xw. [r- First we set
Q= woo UUZ, w;. Since (fi)ren € Py, we know that fi(2) = 0 p-almost everywhere
for {z : #(z) < k}. Further, we remember that w; = #7!(i) for i € N and w., = #!(c0).
Together we find that {z : #(z) < k} = Qf and thus u(€2f) = 0. Additionally we have
wiNw;j =0 and w; Nwa = 0 for i # j and i, j € N. If we combine these insights, we get

fooke + > fike = fiXew + D feXws = fixo, = fr  p-almost everywhere.
=k =k

By squaring the previous equation and using the fact that x,, xw, = 0 and X, Xw,, = 0 for
i # 7 and 7,j € N, we then get

2
= |fi|* p-almost everywhere.

| fooiel® + D 1 finl? = [foose + 2 fik
i—k ik

This means we have
[l ser@Pu(=) + [ S 1fi)Pduz) = [ 1) Pdu(z) = 1z,
i=k

Since all entries in the sum are positive, we can use Theorem 4.7.1 to switch sum and

integral. Further, we know that for « € N we have Cﬁl’:j’ = Xu; and f; xXw, = fik, and the

same goes for dsToo = Xweo N foo kXw;, = foo k- This means altogether we get

bl By + 3 Wil = [ etz + 3 [ 1foale)Pa2)
= [3en@a ) + 3 [ xe a2 )

= [ 1es P+ [ S 1s(DPdn) = 11fel g
i=k
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84 3 Multiplicity Theory

Therefore we especially have || fi x||72(,,) < oo and thus f;, € L*(y;) for i € N, and
similarly we find f. 1 € L*(jiso). We can now sum over all k and obtain

(Z Hfoo,kniz(,,w)) ; (ZZ Hfi,kuiw) = 3" 1Al

k=11i=k

Proposition 3.10.4 tells us that the right hand side is exactly ||( fk)keNH%j#, and since all
elements of the sums on the left hand side are positive, we can rearrange them to get

(Z Hfoo,kn%zmm)) s (ZZ ||fi,k|riz(ui)) eenl2,
k=1

1=1 k=1

This means we can define

- ()= (B)

i=1 k=1

The equation above has shown us that || f||r2(@) = ||(fr)ken]| 2, s0 f € LE,.

Now we only need to confirm that V f = (fi)ren. For k € N we have defined (V f); =
fook + 2ick fik, and we have shown that fo, + 372, fix = fr p-almost everywhere. By
using Proposition 3.10.4 again to express the norm on Z, we see

V- (fk)keNH.Q@# = IV f = (fo)renlZaguzy = D NV e = felliz( = 0
=1

This means we have found an f € L2 so that V f = (fi)ren and thus VL2 = Zy.

For the final part, we inspect the unitary equivalence. We remember that N, is just
the multiplication by z on L?(x) and Ny is just the multiplication by z on Z4. We take
f € LZ, use the same notation as before and get

(N30 @S = (Dstes) o (DD

k=1 i=1 k=1

=V (2 fi)ren = VI Ng(fidhen = VTINLV f
Since V' is unitary, this means we have Ny ~ (N, _)> @ @i1(Nulwi>i- [

Theorem 3.10.7 (Final Multiplicity Theorem). Let 5 be a separable Hilbert space and
let N € B(H) be a normal operator.
(a) Let p be a scalar-valued measure for N. Then we find a multiplicity function #y for u
so that

N ~ Ny,

(b) Let X be a separable Hilbert space and let M € B( ") be normal with corresponding
scalar-valued measure v and multiplicity function #5;. Then we find that N ~ M if and
only if [u] = [v] and #x = #m p-almost everywhere.
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3.10 Multiplicity Functions 85

Remark. We remind ourselves that according to Corollary 3.4.9 we can always find a
separating vector h € 5 for W*(N) and thus by Theorem 3.7.11 we have that py, is a
scalar-valued measure for N. Therefore the representation above is always valid.

Proof of Theorem 3.10.7 (a). We start by taking the partition from Theorem 3.9.5 to get
measures fio, and (;);en so that p = e + > o0, p; and

N (N oW (3.6)

From these measures we will construct a multiplicity function #y for p by using the fact
that they are all mutually singular. Then we will prove that it is indeed a multiplicity
function, and further that Ny, ~ (N, )™ @& @2, N},

Since pioo and the (u;);en are mutually singular, we can use Lemma 3.9.4 to get sets woo
and (w;)ien so that

i = [ wi Nw; =10
foo = Hoolwe » Woo Nw; =10
ijEN | i
We now take € := wo, UUY, w;. This lets us define the function #y : C+— {0,1,...,00} as

w;

1 if 2z € w;
#n(z) =00 if 2 € Wy
0 ifzeQ°

To check whether #y is a multiplicity function for u, we need to verify that p(22°) = 0,
and that p is a Radon measure with compact support. For the first condition, we take
© € N. We remark that Q¢ = wS N ﬂ‘;‘;l w§ and thus Q¢ C wS, and Q° C wf. In addition,
we remember that p; = ], so we have

i (§2°) = pg

Similarly we obtain f(§2) = 0. Taking this together, we find that

wi(829) = (2 Nw;) < pi(wi Nw;) =0

Q) = oo () + 3 () = 0
i=1
For the second condition, we know that p is a scalar-valued measure for . Theorem 3.7.11
then tells us that there is a h € ¢ so that © = u;, and Proposition 4.6.5 ensures that
wn = i is a Radon measure with compact support. Therefore # is a multiplicity function
for ;1 and we can use Lemma 3.10.6 to obtain

Ny = (N, )° & é(sz | (3.7)
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86 3 Multiplicity Theory

Now we want to show that pu|,, = p; for i € N and pl,., = peo. We remember that
w;Nw; =0 and w; Nwe = 0 for i # j. We further remember that y;l,, = u; for i € N and
foo = Moolws, - Together, this means we can take a Borel set A and calculate

[l (A) = (A N w;) = oo |ws (A Nw;) + Z /~Lj|wj<A N w;)

j=1

= oo (A Nw; Nwao) + D 1 (A Nw; Nwj) = (A Nw;) = il (D) = ps(A)

Jj=1

Thus we have p|,, = u; for i € N, and in a similar way we get ft|oc = fioo. Taken together
with equations 3.6 and 3.7 we obtain

N#N - .LL|w EB @ l‘|w EB @ 2

This concludes the proof. O

Proof of Theorem 3.10.7 (b). We will conduct the proof in two steps. First, we reverse-
engineer the proof of part (a) to obtain a representation of N and M as given in Theorem
3.9.5, that is

N~ (N,)® o @(Nm L M~ (N)xe @(N )

The theorem then tells us that N ~ M is equivalent to [p] = [Veo] and [u;] =
i € N. In the second step we will show that this is, in turn, equivalent to [u]
#nN = #u p-almost everywhere.

To start the first step, we use Lemma 3.10.6 to see that

Nyl @@ )

[1;] for all
= [v] and

Ny, ~

Here we have w; = #5' (i) for i € N and w,, = #5' (00). We know that w; Nw; = () for
i # j and w; Nwe = 0 for i € N. Additionally, we define  := w., U U2, w; and we see
that Q° = #,'(0). Since #y is a multiplicity function for p, this means that () = 0,
and therefore we can apply Lemma 3.9.3 to obtain

= s + D Mo,
=1

Now we remind ourselves that p is a scalar-valued spectral measure and thus we can
use Theorem 3.7.11 together with Proposition 4.6.5 to see that p is a Radon measure
with compact support. This means according to Lemma 3.8.2 that u|,.. and the (ul,,)ien
are Radon measures with compact support as well. Further, since w; Nw; = () for i # j
and w; Nws = 0 for i € N we can use Lemma 3.9.4 to see that the (ul,,)ien and pe,
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3.10 Multiplicity Functions 87

are mutually singular. We then relabel u; := pul,, for i € N and po := pfw,,. Because
N ~ Ny, , we have

N ~ N#N = (Nuoo)oo D @(Nﬂzy
i=1

Our previous insights show that this representation is of the form given in Theorem 3.9.5.
We can do the same for M ~ Ny, and get

M ~ N#M = (NVoo)OO @@(Nw)i .
=1

Here we have v; = v|,, with v; = #;, (i) for i € N, and vy, = v|,_ with 7o, = #/(00).
To cap off this part of the proof, Theorem 3.9.5 now tells us that N ~ M if and only if
[loo] = [Voo) and [u;] = [14] for all i € N.

Now we will prove that this condition is equivalent to [u] = [v] and #y = #r p-almost
everywhere. We start by assuming that [u] = [v] and #y = # p-almost everywhere, and
we take i € N. Since w; = #5' (1) and that 4; = #,; (1), this means that

plwi\y) =0 p(y\w) =0
Let now A be a Borel set so that u;(A) = 0. We know that p; = pl.,, so we get
0= pi(A) = p(ANw)

= (AN ) + (AN (wi \ 7)) — (AN (v \wi)) = p(ANy)

Since [p] = [v] and v; = v/|,,, we therefore see
0=v(ANm) =v(A) =v(A)

Thus we obtain v; < pu;, and by switching p; and v; in the previous calculations we can

also get p; < v;. This means [p;] = [v4] for all i € N, and we can show similarly that
[ftoo] = [Voo). This concludes one implication.

For the other implication, we assume that [p;] = [1;] for all i € N and [peo] = [Veo], and
we want to show this leads to [u] = [v] and #x = # p-almost everywhere. First, we

take a Borel set A so that p(A) = 0. This means
0= (D) = poo (D) + 3~ u(A)
i=1

Therefore we can deduce pioo(A) = 0 and u;(A) = 0 for all ¢ € N. With our assumption,
this means we also find v (A) = 0 and v;(A) = 0 for all : € N. Thus we can calculate

0=vo(A)+ i vi(A) =v(A)

i=1
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88 3 Multiplicity Theory

Therefore we have shown v < p, and similarly we can show u < v to obtain [u] = [v].
Now turn towards #y and #,, and define the sets

Sii={z :#n(2z) =#m(z) =i} forieN | So:={z:#n(2)=#u(z) = o0}

S = {z: #n(2) = #u(2)} = S U f] S,

Next, we remember that w; = #5'(i) and ~; = #,; (i) for i € N and that w., = # ' (c0)
and 7Y, = #,; (00). This means we get

Si=wiNvy forteN | S =wse NV
We now consider 7 € N and find
pi(wi) = plo (@7) = plwi Nwf) =0
Similarly, we get v;(7f) = 0, and since [u;] = [v;] this means p;(7f) = 0 Together we find
i (S7) = pilw; U)) < pa(wyi) + pa(i) =0
Since S¢ = S5 NNX, S, we find that S¢ C S¢. Therefore we get u;(S¢) < w;(SF) = 0,

and we can deduce fi0,(5¢) = 0 in the same way. Thus we have

S7) = e (5%) + 3 (5 = 0

=1

We now remember that S = {z : #n(2) = #nm(2)}, and thus we find that #y = #u
p-almost everywhere. This concludes the second implication and thus the proof. ]
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Chapter 4
Appendix

In this appendix, we provide definitions, propositions and theorems that are required for
the main text which we won’t prove. Many of them should be familiar to maths students
with at least a bachelor’s degree, and we will provide references for further details on them.
They are divided into conceptual groups so that we might have a better overview.

4.1 Analysis & Topology

Theorem 4.1.1 (Stone-Weierstrass). Let X C C be a compact space and let C(X) be
the algebra of continuous functions on X endowed with the ||.||sc norm. Now let o be a
subalgebra of C(X) with the following properties

(a) For f € o we also find f € o .
(b) For every z € C there exists a f, € & so that f,(z) # 0.
(¢c) For every pair z; # z there exists a function f,, ., € & so that f,, .,(21) # [z 2 (22).

Then we find that < is dense in C'(X).
Note. See Corollary 12.18.9 in [5].

Theorem 4.1.2 (Tietze). Let X be a normal space, A C X be a closed subset and
f: A~ C be a continuous function. Then there exists a continuous function F' : X — C
so that F|a = f and sup{|f(z)| : a € A} = sup{F(x) :z € X}.

Note. See page 83 in [9].

4.2 Zorn’s Lemma

Theorem 4.2.1 (Zorn’s lemma). Let P be a partially ordered set. If every chain in P
has an upper bound in P, then P contains a maximal element.

Note. See Theorem 13.0.7 in [6].
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4.3 Locally Convex Vector Spaces

Lemma 4.3.1. Let X be a vector space and p be a seminorm on X. Then N, = {z €
X : p(x) = 0} is a subspace and the function [x + N,| — p(x) is a norm on the vector
space X, := X/N,.

Definition 4.3.1. Let X be a vector space and M be a family of seminorms on X. We
call M separating if Myepr Np = {0}.

Theorem 4.3.2. Let X be a vector space and M a separating family of seminorms on X.
Further for allp € M let X, be defined as in Lemma 4.5.1 and let m, : X — X, be the
canonical projection. Then the initial topology Th generated by the projections m,,p € M
makes (X, Tyr) into a locally convex topological vector space. In addition, a net (z;);cr in
X converges to x if and only if p(x; —x) — 0 for all p € M.

Note. See Theorem 5.1.4 in [1].

Theorem 4.3.3 (Hahn-Banach). Let X be a vector space, M be a linear subspace of X
and f: M — C be linear. Further, let p be a seminorm on X with |f(z)| < p(z) for all
x € M. Then there exists a linear F' : X — C with F|y = f and |F(z)| < p(x) for all
reX.

Note. See Theorem 5.2.3 in [1] or Corollary I11.6.4 in [2].

Theorem 4.3.4 (Hahn-Banach Separation Theorem). Let X be a locally convez topological
vector space, and let A, B C X be disjoint, nonempty and convex subsets of X. In addition,
let A be compact and B be closed. Then there exist y1,72 € R and f € X* such that for
allx € A and y € B it holds

Ref(z) <7 <72 < Ref(y)

Note. See Theorem 5.2.5 in [1].

4.4 Hilbert Spaces

Theorem 4.4.1 (Riesz-Fischer). The mapping V : 5 — F* with V(y)(z) = (x,y) is an
isometric and conjugate linear bijection.

Note. See Proposition 3.2.5 in [1] or Theorem 1.3.4 in [2].

Proposition 4.4.2. Let A € B(H#,%). Then we find (ranA)*+ = ker A*.

Note. See Proposition 6.6.2 in [1].

Proposition 4.4.3. Let A € B(H) be a normal operator. Then ker A = ker A*.
Note. See Proposition 6.1(b) in [7].

Proposition 4.4.4. Let # C 7 be a subspace. Then we have ()t = cl(X).
Note. See Corollary 3.2.4 in [1].
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4.5 Operator-Valued Functions 91

4.5 Operator-Valued Functions

Definition 4.5.1. Let . be a Banach space, and let B € #(.%). Then the exponential

B

of B is defined as exp(B) := >.22 | L B". Sometimes we will also write exp(B) = e”.

Proposition 4.5.1. Let.% be a Banach space, and let B, B € HB(S). Then, the following
two rules for calculation apply:

1. (exp(B))* = exp(B°)
2. If BB = BB then we have exp(B) exp(B) = exp(B + B).

Note. Follows from Definition 4.5.1.

Proposition 4.5.2. Let B be defined as in Definition 4.5.1, and let z € C. The function
f 2z — exp(zB) is differentiable for all = € C and the first derivative is given by
f'(z) = Bexp(zB).

Note. Similar to Example 9.3.20 in [6], we just replace RP*? with #(J¢).

Theorem 4.5.3 (Liouvilles Theorem for Operators). Let .7 be a Hilbert space and let
f: Cw— B(IH) be differentiable for all z € C. If there exists a K € R, such that
| f(2)|| < K for all z € C, then f is constant.

Note. See Problem V.2.2 in [10].

4.6 Spectrum & Spectral Theorem

Proposition 4.6.1. Let A € B(I) and let A € p(A). Then we find

(A=) < dist(o(A), )

Note. See Lemma 6.4.10 in [1].

Proposition 4.6.2. A self adjoint operator A € B(H) has spectrum o(A) C R. Further,
we find o(A) > 0 if and only if (Ah,h) >0 for all h € .

Note. See Corollary 6.6.13 in [1].

Definition 4.6.1. Let (X, 2) be a measurable space, let 5 be a Hilbert space and let
E : Qw— B(H) be a Hilbert space. The function F is called a spectral measure if it fulfils
the following three properties

1. For all hy, hy € S the function Ej, 5, : Q +— C defined by Ej,, ,(A) = (E(A)hy, hg)
is a complex measure.

2. E(X) is the identity.

3. For all A € 2 we have that E(A) is a projection.
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Theorem 4.6.3. Let E be a spectral measure on the measurable space (X, Q) for the Hilbert
space . We consider the mapping @ : BY(X,C) — B(H) defined by P : ¢ — [ ¢dE.
Then g has the following properties:

1. For all A € Q we have Pg(xa) = E(A).
2. ®g is an algebra-homeomorphism compatible with the x-operation.

8. Let now A € B(H) and f € BYX,C). Then we have the implication
VAeQ AE(A)=E(A)A =  Adgp(f)=Pp(f)A

Note. Follows from the definition of a spectral measure and Proposition IX.1.12 in [2].

Theorem 4.6.4 (Spectral Theorem). Let N € B(I) be a normal operator. Then there
exists a unique spectral measure E on o(N) such that

T = /sz(z)

Let A € B(H) and let S(o(N)) be the Borel sets of o(N). Then, the following additional
properties hold for E and T':

1. supp E = o(T)
2.VA € S((N)) AE(A)=FE(A)A & AN =NA and A*N = NA*

Note. See Theorem IX.2.2 in [2].

Proposition 4.6.5. Let N € B(H) be a normal operator and E be the associated spectral
measure. Then the complex measure Ey ) is a Radon measure with compact support.

Note. See Theorem 2.18 in [8].

4.7 Measure Theory

Theorem 4.7.1. Let (X, Q, p) be a measure space and let (f)nen be a series of functions
fn: X = [0,00|. Let further f, — be monotonically increasing and convergent p-almost

everywhere. Then we find
giggo/fndu = /fdu

Note. See Theorem IV.2.7 in [3].

Theorem 4.7.2. Let (X, Q, p) be a measure space and let (f,)nen be a series of functions
fn: X — R. Let further f, — f p-almost everywhere. If there exists a function g : X — R
so that | f,| < g p-almost everywhere for allm € N and [ gdu < oo, then we find

ggrgo/fndu = /fdu
Note. See Theorem IV.5.2 in [3].
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4.7 Measure Theory 93

Theorem 4.7.3 (Radon-Nikodym). Let (X,Q) be a measurable space and let u,v be two
o-finite measures on this measurable space. If v < p, then there exists a {2-measurable
function f: X — [0,00) so that for A € Q we have

v(4) = [ fdu

This function f is also denoted by ZTVL'
Note. See Theorem VII.2.3 in [3].

Proposition 4.7.4. Let (X,Q) and p,v be as in Theorem 4.7.3 with v < u, and let f be
a v-integrable function. Then the following statements are true:

1. [ fdv=[f%dp.

-1
2. If also p < v, then we have 373 = (3—5) :

Note. A combination of Theorem IV.2.12, Theorem VII.2.3 and Exercise VII.2.4 in [3].

Proposition 4.7.5. Let (X,Q, 1) be a measure space and let A € Q2. Then the measure
pla < pand we have
dpla _
dp
Note. Follows from Theorem 4.7.3.

Proposition 4.7.6. Let ji be a Radon measure, let K := supp(p) and let f € L'(p).
Then the following statements hold:

1. K¢ is measurable and pu(K°) = 0.

2. If K is compact, then 1 is finite.

3. The measure v defined by v(A) = [ |f|du is also a Radon measure.
Note. See §256 in [4].

Theorem 4.7.7. Let p be a o-finite measure. Then we have that L™ (u) N L*(p) is dense
in L*(u) with respect to the ||.||z2 norm.

Note. Is a corollary to Theorem VI.2.28 in [3].

Theorem 4.7.8. Let pu be a Radon measure with compact support X. Then C(X) is dense
in L*(u) with respect to the ||.||z2 norm.

Note. Follows from Theorem VI1.2.31 in [3] if we substitute R? with C.

Theorem 4.7.9 (Riesz Representation Theorem). Let X be a locally compact Hausdorff
space, and let C.(X) be the space of continuous functions with compact support on X .
Then for any positive linear functional 1 on C.(X), there is a unique Radon measure
on X such that for all f € C.(X) we have

() = [ fau
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94 4 Appendix

Remark. This means especially that for a Radon measure p the functional {(f) = [ fdu is
uniquely defined by pu.

Note. See Theorem VIIL.2.5 in [3].
Theorem 4.7.10 (Lusin). Let X be a Hausdorff space and (X,Q, ) be a measure space
with i a Radon measure. Let further f : X +— C be a Q2-measurable function. Then for

every A € Q with p(A) < oo and € > 0, we find a compact set K with p(A\ K) < € so
that f|k is continuous.

Note. See Theorem VIII.1.18 in [3].
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