

ANAEROBIC DIGESTION AS A CARBON CAPTURE, STORAGE, AND UTILIZATION TECHNOLOGY

Fernando Ramonet^{*}, Christian Jordan, Bahram Haddadi, Michael Harasek

Technische Universität Wien

Institute of Chemical, Environmental and Bioscience Engineering

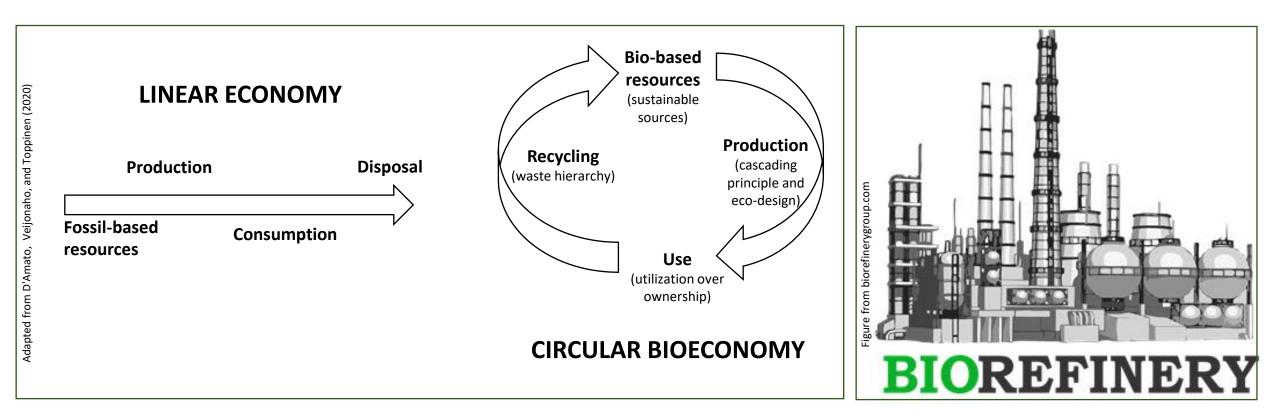
1ST International Conference on Energy, Environment & Digital Transition - E2DT

23-26 October 2022. Milan, Italy.

About AgRefine European Training Network

2

- Green biorefineries
- 15 PhD students, interdisciplinary projects
- 3 work packages



E2DT E2DT

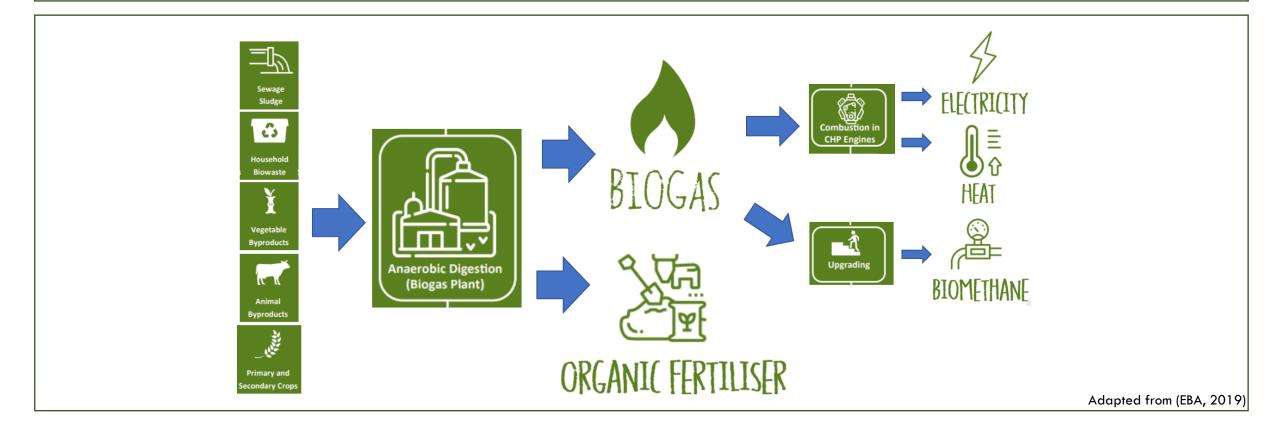
Transition to the circular bioeconomy

Biorefinery

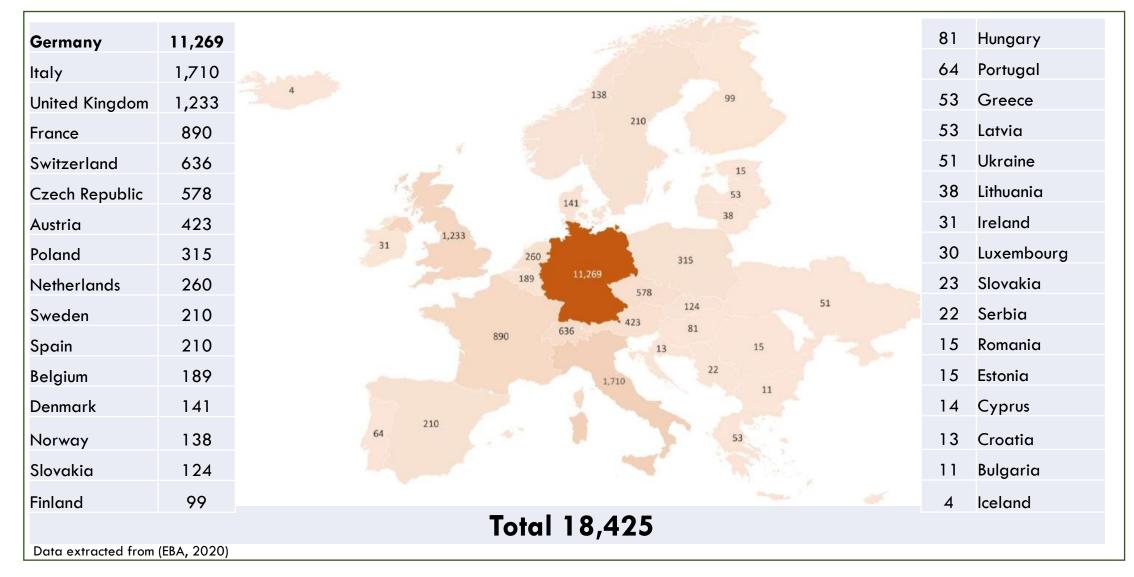
A biorefinery is an industrial site that sustainably transforms biomass into human and animal food products, biomaterials, biofuel, and chemical products with high value-added, such as cosmetics (Schieb et al., 2015).

"A biorefinery is the sustainable processing of biomass into a spectrum of marketable products (food, feed, materials, chemicals) and energy (fuels, power, heat)" (IEA Bioenergy Task 42).

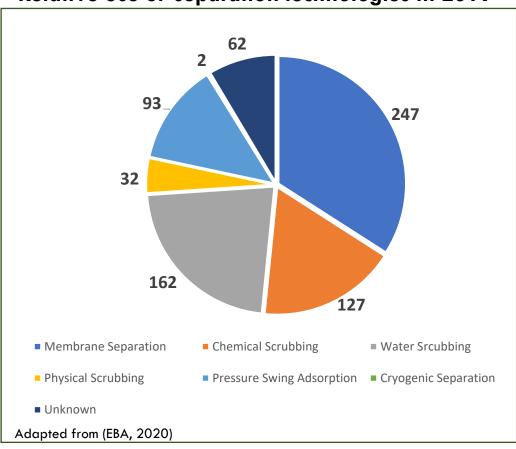
The IEA Bioenergy Task 42 classifies biorefineries according to their feedstocks, processes, platforms and products.


In the green biorefinery concept the integration of anaerobic digesters into biorefineries as a valorisation technique was proposed to produce lactic acid, amino acids, fibres, and energy (Kromus et al., 2004).

Biogas Plant


A biogas plant is a facility where organic materials are transformed into biogas to be utilized as energy and heat or be upgraded to grid quality gas (biomethane > 96 %).

Biogas Plants in Europe 2020

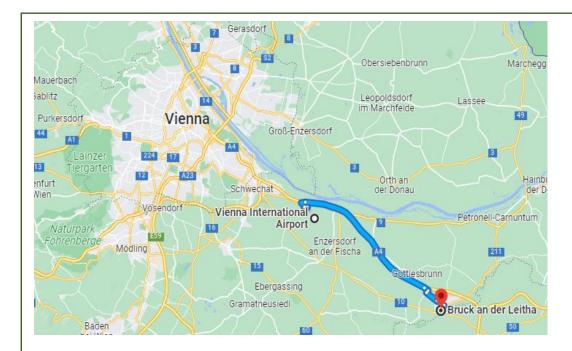


Fernando Ramonet

Biogas upgrading technologies

Relative use of separation technologies in 2019

100.00% 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% Luxemboure United Kingdom Netherlands Switzenland AUSTIS BERBUR LECT REPROSENT DENNON ESCONS SPOINTING FOR FOR HURBAN CEISING sweden NOUNSY Membrane separation Chemical scrubbing Water scrubbing Physical scrubbing Pressure swing adosrption Cryogenic separation Unknown Adapted from (EBA, 2020)


Biogas Upgrading Technologies by country

Fernando Ramonet

Biogas Plant in Bruck an der Leitha

- 7,660 inhabitants
- 23.81 km²
- 25 km from Vienna's airport

- Built in 2004
- Retrofitted to biomethane plant in 2008
- 5,200,000 m³ of biogas are produced and upgraded,
- 3,300,000 m^3 of biomethane and
- 1,900,000 m^3 of carbon dioxide

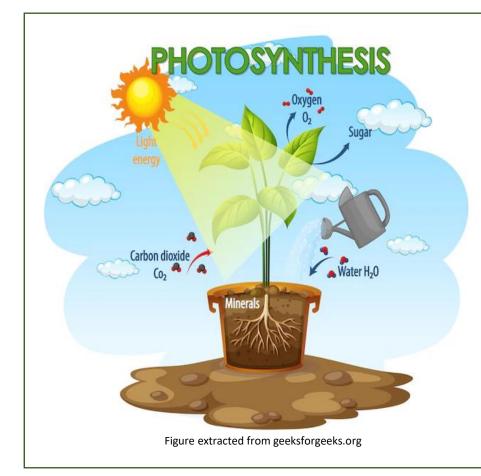


Figure extracted from growerssupply.com

CO_2 concentration

- In outside air: 416 ppm¹.
- In closed greenhouses with little ventilation: 200 ppm².
- Optimal CO₂ concentration for growth and yield: 700 -900 ppm².
- Crop saturation point: 1,000 -1,300 ppm².
- 5,000 ppm are harmful for humans³.

¹ gml.noaa.gov; ² Blom et al., (2002); ³ Daisey, Angell and Apte (2003)

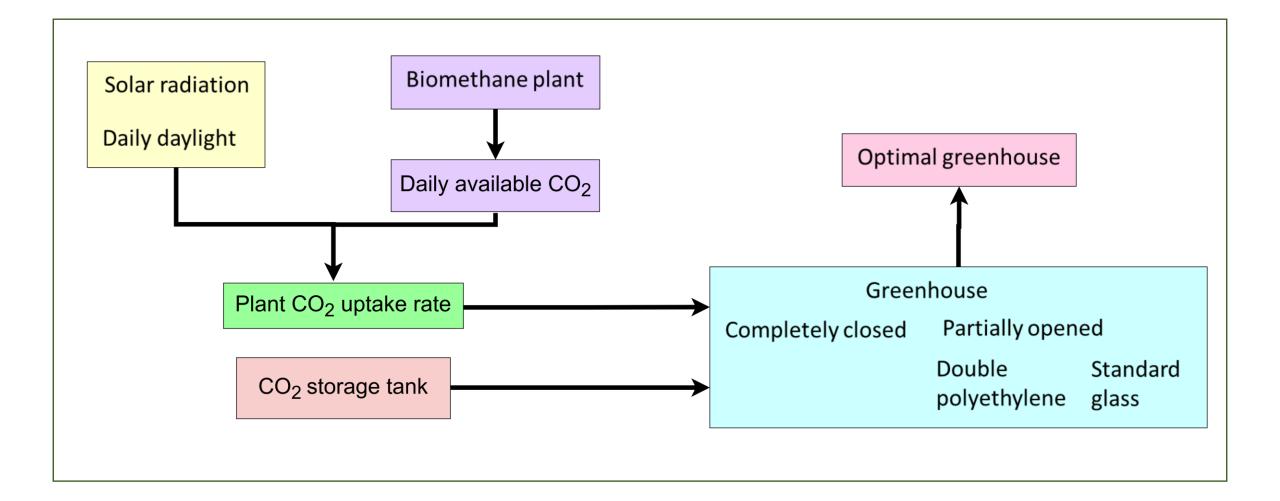
- "As <u>fertiliser factories are shutting down due to energy costs</u>, a shortage of concentrated CO₂ is looming, and brewers and other food companies are sounding the alarm that their trade will be particularly affected."
- "Fertiliser production is being reduced across Europe due to high gas prices. This is having a knock-on impact on the availability of carbon dioxide. Meat producers are calling for urgent government intervention."

Climatological data

Monthly average climatological data of Bruck an Der Leitha

Month	Solar Radiation	Daily Daylight	Air Temperat	Relative Humidity	Wind Speed	Cloudines
	(MJ)	(h)	ure (°C)	(%)	(m/s)	s (%)
January	4.68	8.9	-3 / 3	89	4.43	57
February	7.92	10.3	-2 / 5	84	4.65	57
March	12.6	12	2 / 10	72	4.52	56
April	18	13.7	6 / 16	64	4.34	52
May	21.96	15.2	10 / 20	65	4.07	49
June	23.76	16	14 / 24	59	3.93	43
July	23.76	15.6	16 / 26	55	3.80	35
August	20.52	14.2	15 / 25	54	3.62	37
September	15.12	12.5	11 / 21	64	3.80	45
October	9.72	10.8	7 / 14	76	3.98	51
November	5.4	9.2	2 / 8	88	4.16	61
December	3.96	8.4	-1 / 3	88	4.25	61
Data extracted from (WeatherSpark, 2022)						

Simplified Calculation


Potential yearly CO₂ use on a monthly basis based on sunshine hours at Bruck an der Leitha

Month	Number of	CO ₂ Applied Rate (kg/ha/h)						
	hours applied (h)	Completely Closed			Pa	rtially Opene	ed	
		12	18	24	45	65	90	
January	275.9	3,310.8	4,966.2	6,621.6	12,415.5	17,933.5	24,831	
February	288.4	3,460.8	5,191.2	6,921.6	12,978	18,746	25,956	
March	372	4,464	6,696	8,928	16,740	24,180	33,480	
April	411	4,932	7,398	9,864	18,495	26,715	36,990	
May	471.2	5,654.4	8,481.6	11,308.8	21,204	30,628	42,408	
June	480	5,760	8,640	11,520	21,600	31,200	43,200	
July	483.6	5,803.2	8,704.8	11,606.4	21,762	31,434	43,524	
August	440.2	5,282.4	7,923.6	10,564.8	19,809	28,613	39,618	
September	375	4,500	6,750	9,000	16,875	24,375	33,750	
October	334.8	4,017.6	6,026.4	8,035.2	15,066	21,762	30,132	
November	276	3,312	4,968	6,624	12,420	17,940	24,840	
December	260.4	3,124.8	4,687.2	6,249.6	11,718	16,926	23,436	
Total (kg)		53,622	80,451	107,244	201,082.5	290,452.5	402,165	
Greenhouse Area (Ha)		17.92	11.95	8.96	4.78	3.31	2.39	

Detailed calculation

Detailed calculation

Summary of results of detailed calculation

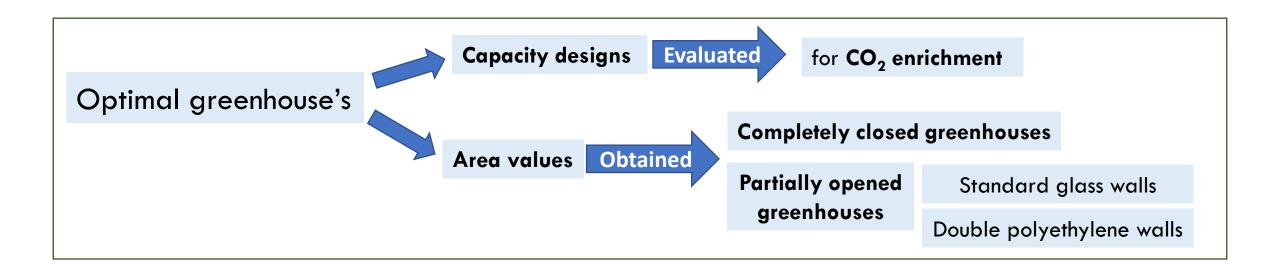
		Partially Opened	
Concept	Completely Closed	Double Polyethylene	Standard Glass
Greenhouse with No CO ₂ Storage (Ha)	7.03	4.82	2.81
Greenhouse with CO ₂ Storage (Ha)	11.31	6.97	3.85
CO ₂ Storage (m ³)	368,989	276,515	232,791
CO ₂ Uptake Rate (kg/h/100m ²)	0.12-0.24	0.25-0.35	0.5-0.6

Calculation comparison

Partially Open Greenhouse

Simpli	fied Calculation (Ha)	Detailed Calculation (Ha)				
Lish	Low Rate	Standar	Standard Glass		Double Polyethylene	
High Rate		No				
Kafe		CO ₂	CO ₂	No CO ₂	CO ₂	
		Storage	Storage	Storage	CO ₂ Storage	
2.39	4.78	4.8	7	2.81	3.85	

Completely Closed Greenhouse


Simpli Calculati		Detailed Calculation (Ha)			
High Rate	Low Rate	No CO ₂ Storage	CO ₂ Storage		
9	18	7	11		

Conclusions

- Simplified methods allow quantifying the potential greenhouse CO_2 enrichment for greenhouse farming.
- Another use for the CO_2 by-product of the biomethane plant of Bruck an der Leitha is algae farming.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860477

