

Diplomarbeit

Parametrisierung des Verstellmechanismus für den ebenen Leitapparat

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs (Dipl.-Ing.) eingereicht an der TU Wien, Fakultät für Maschinenwesen und Betriebswissenschaften,

von

Christoph STIERBERGER, BSc.

unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr. techn. Georg Kartnig

Institut für Konstruktionswissenschaften und Produktentwicklung, E307

und

Dipl.-Ing. Dr. techn. Klaus Decker

Institut für Konstruktionswissenschaften und Produktentwicklung, E307

Dipl.-Ing. Markus Pruscha

Andritz Hydro GmBH

Wien, August 2020

Christoph, Stierberger

Ich nehme zur Kenntnis, dass ich zur Drucklegung dieser Arbeit nur mit Bewilligung der Prüfungskommission berechtigt bin.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grundsätzen für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser Arbeit genannt und aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen, sind als solche kenntlich gemacht.

Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland einer Beurteilerin/einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsarbeit vorgelegt. Diese Arbeit stimmt mit der von den Begutachterinnen/Begutachtern beurteilten Arbeit überein.

Wien, am 05.08.2020

Stadt und Datum

Unterschrift

Aus Gründen der Lesbarkeit wird bei Personenbezeichnungen die männliche Form gewählt, es ist jedoch immer die weibliche Form mitgemeint.

Danksagung

Die vorliegende Diplomarbeit wäre in dieser Form nicht denkbar gewesen, wenn mir nicht einige Menschen mit Rat und Tat beigestanden hätten.

Ich bedanke mich bei meiner Familie für ihre Unterstützung und Aufmunterung während meiner Studienzeit in Wien. Insbesondere bei meinen Eltern, welche mir meine Ausbildung überhaupt erst ermöglicht haben.

Herzlich bedanken möchte ich mich bei meinen Diplomarbeitsbetreuern, Herrn Dipl.-Ing. Markus Pruscha und Herrn Dipl.-Ing. Niklas Matthias Leitner der ANDRITZ HYDRO GmbH in Linz, für deren stetige Betreuung und fachliche Anregungen während meiner Zeit als Diplomand, sowie allen weiteren Kollegen der Abteilung EM in Linz die mich in meiner Arbeit unterstützt haben.

Im Besonderen bedanke ich mich bei Herrn Univ.Prof. Dipl.-Ing. Dr.techn. Georg Kartnig und Herrn Dipl.-Ing. Dr.techn. Klaus Decker vom Institut für Konstruktionswissenschaften und Produktentwicklung der Technischen Universität Wien für die bereitwillige Betreuung meiner Diplomarbeit.

Des Weiteren gilt mein Dank Herrn Karl Oberhumer von Siemens Industry Software GmbH für seine raschen Hilfestellungen bei meinen Fragen zu *HEEDS*.

Abschließend bedanke ich mich bei meinen Studienkollegen, die mit mir den Weg durch das Studium bestritten haben.

Kurzfassung

Nicht selten kommt es im Anlagenbau vor, dass Fehler in der Bauteilauslegung erst während der Montage auf der Baustelle entdeckt werden. Diese Fehler, z.B. Kollisionen mit anderen Bauteilen, müssen in diesem späten Stadium des Projektes rasch und unter Umständen sehr kostspielig beseitigt werden.

Kernthema dieser Diplomarbeit war es, ein Parametriktool zu entwickeln, welches eine gute Vorauslegung für die Kinematik des Leitapparates bei Wasserkraftwerken ermöglicht sowie die dazugehörigen Hydraulikzylinder und Sicherheitselemente in der Anfangsphase eines Projektes liefert. Dafür wurden alle benötigten Parameter mit analytischen Funktionen berechnet. Unter der Zuhilfenahme eines Design of Experiments wurde eine Funktion entwickelt, welche anhand einer Bauteilgeometrie und vorgegebener Belastung eine Kerbspannung liefert. Weiterführend werden über eine definierte Schnittstelle alle Parameter in ein CAD-System implementiert.

Mit dieser Arbeitskette sollen die Fehlerhäufigkeit und die Durchlaufzeit gesenkt werden, um somit direkt zu einer Förderung der Wirtschaftlichkeit und der Konkurrenzfähigkeit des Unternehmens beizutragen.

Abstract

It is not uncommon in plant engineering that errors in component design are only discovered during assembly on the construction site. These errors, e.g. collisions with other components, must be eliminated quickly and possibly very costly at this late stage of the project.

The core topic of this master thesis was to develop a parametric tool allowing a good preliminary design of the guide vane mechanism for hydroelectric power plants and provides the hydraulic cylinders and safety elements in the initial phase of a project. For this purpose, all required parameters were calculated with analytical functions. With the help of a Design of Experiment a function was developed, which delivers a notch stress based on a component geometry and a given load. Further on all parameters are implemented into a CAD system via a defined interface.

The aim of this work chain is to reduce the error frequency and throughput time in order to contribute directly to promoting the profitability and competitiveness of the company.

Symbolliste

A _{profil}	Maximale Querschnittsfläche des Leitschaufelblattes	[mm ²]
Α	Querschnittsfläche der hydraulikzylinderstange	[mm ²]
B ₀	Höhe des Leitschaufelblattes	[mm]
D ₂	Austrittsdurchmesser am Laufrad	[mm]
Da	Außendurchmesser Hydraulikzylinder	[mm]
D _{pc}	Kolbendurchmesser Hydraulikzylinder	[mm]
D _{pr}	Kolbenstangendurchmesser Hydraulikzylinder	[mm]
D _{reg}	Bolzenkreisdurchmesser am Regelring	[mm]
Dz	Leitschaufelstiel Teilkreisdurchmesser	[mm]
Ε	Elastizitätsmodul	[MPa]
Flink	durch das Leitschaufelmoment auf den Lenker übertragene Kraft	[kN]
F _{rbact}	wirkende Hydraulikzylinderkraft pro Regelringbolzen	[kN]
F _{reg}	durch den Hebel auf die Leitschaufel eingeleitete Kraft	[kN]
F _{servo}	wirkende Hydraulikzylinderkraft	[kN]
F _{stat}	Kraft auf das Leitschaufelblatt infolge der statischen Höhe	[kN]
Н	Fallhöhe	[m]
H _{dyn}	dynamische Fallhöhe	[m]
H _{lever}	Länge des Hebels	[mm]
H _{stat}	statische Fallhöhe	[m]
I _{min}	minimales Flächenträgheitsmoment des Leitschaufelblattes bezogen auf die Rotationsachse der Leitschaufel	[mm ⁴]
J	polares Flächenträgheitsmoment der Hydraulikzylinderstange	[mm ⁴]
L _{BA}	Länge Lager A	[mm]
L _{BB}	Länge Lager B	[mm]
L _{BC}	Länge Lager C	[mm]
$L_{\rm K}$	Länge der Kolbenstange in mittlerer Position	[mm]
L _{rod}	Länge des Biegelenkers	[mm]
M _{close}	Leitschaufelmoment in "Geschlossen" Stellung bezogen auf die Rotationsach Leitschaufel	nse der [Nm]

SYMBOLLISTE

Q	Volumenstrom durch das Laufrad	[m ³ /s]
R ₁	Abstand Leitschaufeldrehpunkt zu Leitschaufelnase	[mm]
R ₂	Abstand Leitschaufeldrehpunkt zu Leitschaufelschwanz	[mm]
R _{servo}	Radius von Turbinenwellenachse zu Hydraulikzylinderauge am Regelring	[mm]
S _{buckling}	Sicherheitsfaktor gegen Knickung der Kolbenstange	[-]
S _{ELC}	Sicherheitsfaktor für den Lastfall ELC	[-]
S _{NLC}	Sicherheitsfaktor für den Lastfall NLC	[-]
Sprestress	Faktor für die Vorspannung der Leitschaufeln in "Geschlossen" Stellung	[-]
S _{servo,fric}	Verlustfaktor für die Hydraulikzylinderkraft infolge innerer Reibung	[%]
T _{fric}	gesamtes Lagerreibungsmoment	[Nm]
\mathbf{d}_{wgi}	Durchmesser i an der Position i der Leitschaufel	[mm]
g	Erdbeschleunigung	[m/s ²]
i _{min}	Trägheitsradius der Hydraulikzylinderstange	[mm]
l_{wi}	Position i an der Leitschaufel	[mm]
l_k	Knicklänge der Hydraulikzylinderstange	[mm]
n	Drehzahl des Laufrades	[min ⁻¹]
n _q	spezfische Drehzahl des Laufrades	[min ⁻¹]
p _{bearing}	maximal zulässige Lagerpressung	[MPa]
p _{max}	maximaler Hydraulikzylinderdruck	[bar]

minimaler Hydraulikzylinderdruck

Streckenlast auf das Leitschaufelblatt

Anzahl der Hydraulikzylinderen

Anzahl der Leitschaufeln

maximale Dicke des Leitschaufelblattes

[bar]

[MPa]

[mm]

[-]

[-]

 p_{min}

 \mathbf{q}_0

 \mathbf{t}_{max}

 \mathbf{z}_0

 $\mathbf{z}_{\mathbf{s}}$

γh0	Winkel zwischen der Hebelachse und der Radialen durch den Leitschaufelstiel in "Geschlossen" Stellung [de		
μ	Reibungskoeffizient für die Materialpaarung "Compound - Steel"	[-]	
μ_{steel}	Reibungskoeffizient für die Materialpaarung "Steel - Steel"	[-]	
ρ	Dichte des Wassers	[kg/m ³]	
$\sigma_{\rm uts}$	Zugfestigkeit	[MPa]	
$\sigma_{\rm ys}$	Streckgrenze	[MPa]	
$\tau_{\rm uts}$	Scherfestigkeit	[MPa]	

Nomenklatur

Abaqus verwendetes CAE-System für die Finite Elemente Rechnungen

AH	Andritz Hydro GmbH		
BL	Biegelenker		
CAE	Computer-Aided Engineering		
cl	Vorgang "Schließen"		
DoE	Design of Experiments		
ELC	Exceptional Load Case		
GV	Leitschaufel		
KoRiLi	Konstruktionsrichtlinie		
lever	Hebel		
max	maximaler Wert der Größe		
NLC	Normal Load Case		
NX12	verwendetes CAx-System von Siemens		
op	Vorgang "Öffnen"		
PaCS	Parametric Calculation Sheet - Bezeichnung des Optimierungstools		
RMS-Verfahren Root-Mean-Square Verfahren			
servo	Formelbezeichnung für Hydraulikzylinder		

ÜM-Verfahren Übertragungsmatrizen Verfahren

Inhaltsverzeichnis

Da	nksagung	I
Ku	zfassung	II
Ab	stract	III
Sy	nbolliste	IV
No	nenklatur	VII
1	Einleitung1.1Problemstellung1.2Zielsetzung1.3Forschungsfragen	1 3 4 5
2	Grundlagenteil 2.1 Theoretischer Hintergrund zur Berechnung	6 9 11
3	Berechnung der einzelnen Komponenten 3.1 Berechnung der Auflagerkräfte und Reibmomente 3.2 Berechnung der notwendigen Hydraulikzylinderkraft 3.3 Auslegung der minimal benötigten Arbeit des Hydraulikzylinders 3.3.1 Berücksichtigung der Kolbenstangenschiefstellung 3.3.2 Knickung des Hydraulikzylinders 3.4 Auslegung des Biegelenkers 3.5 Auslegung des Hebels 3.5.1 Bauform mit Biegelenker 3.5.2 Bauform ohne Biegelenker	12 12 15 17 19 24 25 27 27 27 29 31
4	Optimierungsprozess4.1Vergleich der bisherigen Ausführungen und Optimierung4.2Optimierung der Kinematik mit HEEDS4.3Entwicklung analytischer Funktion4.4Optimierung des Biegelenkers mit HEEDS	32 33 34 37 41
5	Design of Experiments (DoE) 5.1 Vorbereitung der Studie 5.1.1 Skizze des Biegelenkers in Abaqus 5.2 Abaqus Modell 5.3 Durchführung mit HEEDS 5.4 Auswertung und Vergleich	42 45 46 48 50
6	Auslegungstool	52
7	Umsetzung im CAD 7.1 Parametermodell der Baugruppe	56 56

	7.2 Importieren der Parameter	60
8	Zusammenfassung der Ergebnisse	64
9	Beantwortung der Forschungsfragen	66
10	10 Anhang	
Ab	Abbildungsverzeichnis	
Lit	Literatur	

1 EINLEITUNG

1 Einleitung

Die Nutzung der Wasserkraft hat in Österreich in einem weiten Bereich von Leistungsklassen eine lange Tradition. Sie stellt eine der wichtigsten Formen der alternativen und CO₂-neutralen Energieproduktion dar und ist sowohl in Form von Groß- als auch Kleinwasserkraftwerken in großem Umfang etabliert.

In Laufwasser-, Speicher- und Pumpspeicherkraftwerken wird die kinetische Energie des Wassers genutzt und in Turbinen der Wasserkraftwerke in elektrische Energie umgewandelt. Dabei strömt Wasser durch eine oder mehrere Turbinen, die einen Generator antreiben, welcher wiederum Strom erzeugt.[8]

Wie in Abbildung 1 und Abbildung 2 ersichtlich, wird der elektrische Strom in Österreich zum überwiegenden Anteil aus Wasserkraft gewonnen, wobei der Anteil im Jahr 2019 mehr als 60% betrug.

Das weltweite technisch nutzbare Potential der Wasserkraft beträgt etwa 11.000 TWh pro Jahr, tatsächlich werden davon etwa 3.200 TWh pro Jahr genutzt. In Europa beträgt der tatsächlich genutzte Anteil etwa 97 % am wirtschaftlich nutzbaren Anteil, wobei mögliche Kleinkraftwerke (<1 MW) nicht berücksichtigt sind. Diese stellen jedoch etwa noch einmal 1/4 des gesamten angeführten Potentials dar [9].

Zur Erschließung der restlichen nutzbaren Potentiale werden von Turbinenbauern, wie der Andritz Hydro GmbH (AH) im Zuge der Angebotsphasen präzise Vorauslegungen gefordert. Um diesen Anspruch gerecht zu werden, kommt es vermehrt zum Einsatz moderner Parametriktools zur Auslegung einzelner Kraftwerkskomponenten.

Die vorliegende Arbeit behandelt ein neuartiges Berechnungstool zur mechanischen Vorauslegung des Leitapparates bei Wasserkraftwerken.

Energie- und Stromerzeugungsmix in Österreich

Abbildung 2: Bruttostromerzeugung in Österreich [2]

Abbildung 3: Schematische Darstellung einer Pumpspeicheranlage - Vianden, Luxembourg [1]

1.1 Problemstellung

Die in Abbildung 3 ersichtliche schematische Darstellung eines Wasserkraftwerks veranschaulicht die Komplexität einer Gesamtanlage. Die Umsetzung eines Großprojektes dieser Art erfordert eine detailreiche Planung, sodass im Zuge der Umsetzung etwaige Probleme bei Fertigung oder Montage vermieden werden können. Mit der sogenannten "Rule of ten"(Abbildung 4) lässt sich sehr deutlich veranschaulichen, wie stark die von Fehlern verursachten Kosten mit fortschreitenden Projektstatus zunehmen. Die Zielsetzung digitale Auslegungsprozesse zu etablieren, dient insbesondere der Vermeidung von kostspieligen Fehlern in der Planungs- und Entwicklungsphase.

Abbildung 4: Rule of Ten[3]

1.2 Zielsetzung

Ziel dieser Diplomarbeit war es, ein Parametriktool zu erstellen, welches durch Eingabe der Hauptanlagendaten eine Vorauslegung der Bauteile für den Leitapparat und eine Vordimensionierung der Hydraulikzylinder für die notwendige Verstellung liefert..

Die aus dem Tool gewonnenen Ergebnisse sollen anschließend in ein CAD/CAE System übertragen und in eine parametrisierte Baugruppe eingelesen werden (Abbildung 5).

Zusätzlich soll unter Verwendung eines Optimierungsprogramms die Kinematik der auszulegenden Komponente soweit verändert werden, dass das benötigte Ölvolumen für den Hydraulikzylinder der Antriebseinheit minimal wird. Ergebnis dieser Prozessschritte ist eine solide Vorauslegung der Leitapparatkinematik , die als Basis für die nachfolgende Projektschritte dient. Dadurch soll es zu einer kostensenkenden Verkürzung der Vorprojektierungsphase und gleichzeitiger Senkung der Fehlerhäufigkeit kommen.

Abbildung 5: Ablauf der Vorauslegung

Die Schritte aus Abbildung 5 gliedern sich in:

- Hauptanlagendaten
 - Leitschaufelgeometrie
 - Hydraulische Momente als Ergebnis von Prüfstandmessungen
- Vorauslegung / Optimierung
 - Abmessungen der Hebel-Lenker-Verbindung
 - Berechnung aller Parameter f
 ür die Modellerstellung unter Ber
 ücksichtigung von vorgeschriebenen Sicherheitsfaktoren und Festigkeitskennwerten
 - Vorauslegung der Hydraulikzylinder
 - Optimierung der Hebel-Lenker-Verbindung um das benötigten Regelvolumen für die Hydraulikzylinder zu reduzieren, bei Einhaltung aller Sicherheitsfaktoren
- CAD/CAE
 - Übergabe der berechneten Parameter in eine parametrisierte CAD-Baugruppe

1.3 Forschungsfragen

- Ist mit einem mathematischen Optimierungsverfahren eine Idealauslegung der Antriebseinheit hinsichtlich Ölhaushalt der Antriebseinheit möglich?
- Führt der Einsatz eines parametrisierten Modells zu Effizienzvorteilen (Zeitersparnis, Kostenreduktion)?
- Lässt sich die Optimierung bei unterschiedlichen Bauarten von Wasserkraftanlagen beliebig einsetzen?

2 Grundlagenteil

Abbildung 6: Turbinenschnitt eines Maschinensatzes [10]

2 GRUNDLAGENTEIL

Zur Regelung des Durchflusses von Überdruckmaschinen (Kaplan- und Francis-Laufräder) wird ein Leitapparat verwendet. Wie in Abbildung 6 ersichtlich, befindet er sich unmittelbar vor dem Laufrad am Turbineneintritt (Leitschaufeln sind grün hervorgehoben). Die Verstellung der Leitschaufeln (Guide Vane) erfolgt über eine Hebel-Lenker-Verbindung (Lever Link Connenction), die einerseits am Leitschaufelstiel und andererseits am Regelring (Regulating Ring) befestigt ist (Abbildung 7).

Abbildung 7: 3D-CAD Baugruppe eines Leitapparates

Wie in Abbildung 8 und Abbildung 9 ersichtlich, wird der Regelring mit linearen Hydraulikzylinderen verdreht. In der "Geschlossen"-Stellung (Abbildung 8 links) dient der Leitapparat zusätzlich als Absperrorgan und verhindert eine Wasserzufuhr zum Laufrad.

Abbildung 8: Funktionsweise Leitapparat

Da es mitunter beim Schließen des Leitapparates zum Einklemmen von Fremdkörpern kommen kann, muss mit geeigneten Sicherheitselementen gewährleistet werden, dass es zu keiner Schädigung der Leitschaufeln kommt. Dabei soll bei einer eindeutig definierten Kraft oder einem Moment ein mechanisches Sicherheitselement auslösen, da sich dieses im Schadensfall einfacher als eine beschädigte Leitschaufel tauschen lässt. Als Sicherheitselemente können Reibkupplungen, Scherbolzen oder Biegelenker zum Einsatz kommen.

Abbildung 9: Leitapparat[4]

2.1 Theoretischer Hintergrund zur Berechnung

Um eine Verstellung des Leitapparates zu ermöglichen, muss das durch den Linearantrieb übertragene Moment jenes der durch die hydraulische Strömung auf die Leitschaufeln wirkende überwinden. Das Leitschaufelmoment ist abhängig von:

- der Leitschaufelgeometrie (*B*₀, *R*₁, *R*₂ aus Abbildung 10)
- der statischen Fallhöhe in der "Geschlossen"-Stellung (H_{stat})
- dem Durchfluss in der "Geöffnet"-Stellung (Q)

Abbildung 10: Leitschaufelgeometrie

Die Leitschaufelmomente T_{GV} werden in Abhängigkeit des Öffnungswinkels α an den internen Prüfständen von AH im Modellversuch ermittelt und anschließend auf die tatsächliche Anlage skaliert.

Für die Ermittlung der minimal benötigten Hydraulikzylinderkraft müssen zusätzlich zu dem hydraulischen Moment auch die Reibmomente in den Leitschaufellagern berücksichtigt werden.

In Abbildung 11 sind die Verläufe der auftretenden Momente, bezogen auf die Leitschaufelachse, grafisch dargestellt. Die blaue strichlierte Linie steht für das hydraulische Moment, welches auf die Leitschaufel wirkt. Die Änderung des Vorzeichens ist von der Geometrie der Leitschaufel abhängig und wie diese vom Wasser angeströmt wird. Je nach Bewegungsrichtung der Leitschaufel wird zu diesem hydraulischen Moment das Reibmoment der Lagerkräfte addiert oder davon subtrahiert (rote Linie). Der Bereich zwischen den beiden roten Linien wird als das sogenannte "Reibband" bezeichnet. Die beiden violetten Linien stellen die Hydraulikzylinderkräfte, umgerechnet auf ein Drehmoment um die Leitschaufelachse, dar. Diese Linien der Hydraulikzylinderkraft müssen über den gesamten Verstellbereich, jeweils für den Lastfall Normal Load Case (NLC) und Exceptional Load Case (ELC), einen nach internen Vorgaben von AH festgelegten Sicherheitswert einhalten. Beim Lastfall NLC handelt es sich um jenen für den überwiegenden Betrieb im optimalen Betriebspunkt der Anlage bei H_{stat}, wohingegen der Lastfall ELC eine Erhöhung des dynamischen Druckes während des Schließvorganges abdeckt.

Abbildung 11: Einwirkende Momente auf die Leitschaufel

2.2 Vorauslegung der Kinematik

Die bisherige Auslegung der Leitapparatkinematik ist in der firmeninternen Konstruktionsrichtlinie (KoRiLi) vorgeschrieben. In dieser sind in Abhängigkeit der Leitschaufelanzahl z_0 und des Leitschaufelstielteilkreisdurchmesser D_z die Längen für Hebel H_{lever} und Lenker L_{rod} vordefiniert, um eine sichere und effiziente Kraftübertragung zu gewähren.

In dem nachfolgenden Kapitel wird auf die Auslegung der einzelnen Komponenten eingegangen.

3 Berechnung der einzelnen Komponenten

In den nachfolgenden Abschnitten wird der prinzipielle Ablauf der Berechnung erläutert. Hier wird ausgehend von der Belastung der Leitschaufel die minimal notwendige Kraft für den Hydraulikzylinder ermittelt und die Bauteildimensionierung durchgeführt. Ein detailliertes Rechenbeispiel kann dem Anhang entnommen werden. In diesem Beispiel sind alle Werte frei gewählt und repräsentieren kein aktuelles oder ausgeführtes Projekt von AH.

3.1 Berechnung der Auflagerkräfte und Reibmomente

Für die Ermittlung der Reibmomente müssen zunächst die Auflagerkräfte bestimmt werden. Die Lagerreaktionen A, B und C, (Abbildung 12), wurden in der "Geschlossen"-Stellung mit dem hydrostatischen Druck p_{stat} und der durch den Hebel eingeleiteten Kraft F_{reg} als einwirkende Größen nach dem Übertragungsmatrizenverfahren¹ ermittelt. Diese Berechnung wurde aus einer bestehenden Auslegungsrechnung übernommen.

Abbildung 12: Vereinfachte Skizze der Leitschaufel für die Auflagerberechnung

¹Für mehr Details über das Übertragungsmatrizenverfahren siehe [12]

Mit dem hydrostatischen Druck

$$p_{\text{stat}} = \rho \cdot g \cdot H \tag{1}$$

folgt mit der Umfangslänge einer Leitschaufel

$$q_0 = p_{\text{stat}} \cdot \frac{D_z \cdot \pi}{z_0} \tag{2}$$

die einwirkende Streckenlast q_0 pro Leitschaufel, welche als konstant über das Leitschaufelblatt angenommen wird.

Die eingeleitete Kraft durch den Hebel folgt in Anlehnung an Abbildung 14 aus

$$F_{\rm reg} = \frac{T_{\rm cl,op}}{H_{\rm lever}} \tag{3}$$

mit der Summe aus dem gesamten hydraulischen Moment in "Geschlossen"-Stellung und je nach Drehrichtung den dazugehörigen Reibmomente in den Lagern

$$T_{\rm cl,op} = M_{\rm close} \pm T_{\rm fric}.$$
 (4)

Für den Vorgang "schließen" ist das Reibmoment T_{fric} abzuziehen, für den Vorgang "öffnen" zu addieren.

Das Moment in "Geschlossen"-Stellung ($\alpha = 0^{\circ}$) ist

$$M_{\text{close}} = \underbrace{\rho \cdot g \cdot H_{\text{stat}}}_{Druck} \cdot \underbrace{B_0 \cdot (R_1 - R_2)}_{Fläche} \cdot \underbrace{\frac{1}{2} \cdot (R_1 + R_2)}_{Hebelarm}$$

$$M_{\text{close}} = \frac{1}{2} \cdot \rho \cdot g \cdot H_{\text{stat}} \cdot B_0 \cdot (R_1^2 - R_2^2)$$
(5)

und daraus das gesamte Reibmoment in den Lagern

$$T_{\rm fric} = \frac{1}{2} \cdot \mu \cdot (F_{\rm A} \cdot d_{\rm wg0} + F_{\rm B} \cdot d_{\rm wg5} + F_{\rm C} \cdot d_{\rm wg8}).$$
(6)

Da allerdings für die Ermittlung der Lagerkräfte durch das Übertragungsmatrizen Verfahren (ÜM-Verfahren) alle einwirkenden Kräfte notwendig sind, liegt hier für die Bestimmung von F_{reg} ein iteratives Problem vor. Aus diesem Grund wurde die Kraft solange variiert, bis die Summe der statischen Kräfte

$$\Sigma F = F_{\rm A} + F_{\rm B} + F_{\rm C} + q_0 \cdot B_0 + F_{\rm reg} = 0$$
⁽⁷⁾

ist.

Ein Vergleich zwischen dem ÜM-Verfahren und einer exakten Rechnung mittels ABAQUS brachte, für die selbe Geometrie und Belastungen an der Leitschaufel, folgende Abweichung

	ÜM-Verfahren	CAE	Abweichung	
Lagerkraft in A	-437,9 kN	-483,0 kN	45,1 kN	+9 %
Lagerkraft in B	-665,5 kN	-563,7 kN	-101,8 kN	-18 %
Lagerkraft in C	86,7 kN	95,1 kN	-9,4 kN	+10 %
Σ	-1016,7 kN	-950,6 kN	-66,1 kN	-7 %

Tabelle 1: Vergleich der Auflagerkräfte zwischen ÜM-Verfahren und CAE Rechnung

Obwohl eine Abweichung deutlich erkennbar ist und die Rechnung mittels CAE das genauere Ergebnis liefert, wurde seitens AH die Bestimmung der Auflagerkräfte durch das Matrizenverfahren für in Ordnung befunden und für die weiteren Auslegungen verwendet.

Abbildung 13: Darstellung der Auflagerkräfte in CAE

3.2 Berechnung der notwendigen Hydraulikzylinderkraft

Für den Öffnungsvorgang ergibt sich das auf die Leitschaufel einwirkende Moment zu

$$T_{\rm op} = T_{\rm GV} + T_{\rm fric}.$$
 (8)

Mit T_{GV} wird das hydraulische Moment auf die Leitschaufel in Abhängigkeit des Öffnungswinkels α bezeichnet (Abbildung 11).

Während für den Schließvorgang

$$T_{\rm cl} = T_{\rm GV} - T_{\rm fric} \tag{9}$$

gilt.

Die minimal notwendige Hydraulikzylinderkraft leitet sich anhand Abbildung 14 folgendermaßen her

$$F_{\text{servo}} = \underbrace{\frac{T_{\text{cl,op}}}{H_{\text{lever}} \cdot sin(\beta)}}_{Lenkerkraft} \cdot \underbrace{\frac{\cos(\psi - 90^{\circ}) \cdot z_{\text{GV}}}{gesamte \ Umfangskraft}}_{gesamte \ Umfangskraft} \cdot \underbrace{\frac{R_{\text{reg}}}{R_{\text{servo}} \cdot z_{\text{s}}}}_{Kraft \ pro \ Hydraulikzylinder}$$

$$F_{\text{servo}} = \frac{T_{\text{cl,op}} \cdot \cos(\psi - 90^{\circ}) \cdot R_{\text{reg}} \cdot z_{\text{GV}}}{z_{\text{s}} \cdot R_{\text{servo}} \cdot H_{\text{lever}} \cdot sin(\beta)}. \tag{10}$$

Abbildung 14: Skizze für die Umrechnung des Leitschaufelmoments auf die Hydraulikzylinderkraft

Die Winkel ε und ψ in Abbildung 14 definieren zugleich die geometrischen Grenzen für H_{lever} , L_{rod} und γ . Demzufolge müssen diese so gewählt werden, dass $\varepsilon \neq 0^{\circ}$ und $90^{\circ} < \psi < 180^{\circ}$ gilt.

3.3 Auslegung der minimal benötigten Arbeit des Hydraulikzylinders

Bei der Auslegung des Hydraulikzylinders sind zwei Aspekte wesentlich Einerseits muss, mit Sicherheitsfaktoren behaftet, das Moment groß genug sein, um den Regelring zu verstellen, und des Weiteren muss die Sicherheit gegen Knickung der Kolbenstange ausreichend groß sein. Zusätzlich wurde auch die Anordnung der Hydraulikzylinderen berücksichtigt sowie die Reduktion der Umfangskraft infolge einer Schiefstellung der Kolbenstange.

In Abbildung 15 sind die möglichen Anordnungen dargestellt. Diese sind:

- zwei Hydraulikzylinderen auf der selben Seite (Variante 1)
- ein einzelner Hydraulikzylinder (Variante 2a)
- zwei Hydraulikzylinderen gegenüber mit gleichem Drehsinn (Variante 2b)
- mehrere Hydraulikzylinderen kreisförmig, innenliegend (Variante 3)

Lediglich bei der ersten Variante sind die Kräfte für beide Verstellrichtungen gleich groß, bei den anderen ist jeweils darauf zu achten, welche Kolbenfläche für "Schließen" beziehungsweise "Öffnen" mit Druck beaufschlagt wird.

Abbildung 15: Mögliche Anordnungen der Hydraulikzylinderen

Durch die vorher bestimmte minimal nötige Hydraulikzylinderkraft zuzüglich eines Sicherheitsbeiwertes und des vertraglich festgelegten minimalen Druckes p_{min} des Drucksystems ergibt sich die notwendige gesamte Kolbenfläche zu

$$A_{\rm tot} = \frac{F_{\rm servo} \cdot S_{\rm NLC}}{p_{\rm min}}.$$
 (11)

Durch Umformen der gesamten Kolbenfläche

$$A_{\rm tot} = \frac{(2 \cdot D_{\rm pc}^2 - d_{\rm rod}^2) \cdot \pi}{4}$$
(12)

folgt der Kolbendurchmesser für die Anordnung 1 zu

$$D_{\rm pc} = \sqrt{\frac{2 \cdot A_{\rm tot}}{\pi} + 0.5 \cdot d_{\rm rod}^2}.$$
 (13)

wobei der Kolbenstangendurchmesser aus der Knickrechnung (siehe nachfolgend) kommt. Dadurch liegt für diesen Anordnungsfall ein iteratives Problem vor. Für die anderen drei Anordnungsfälle ergibt sich der Kolbendurchmesser nach

$$D_{\rm pc} = \sqrt{\frac{4 \cdot A_{\rm tot}}{z_{\rm s} \cdot \pi}}.$$
 (14)

Mit den so bestimmten Hydraulikzylindergrößen lässt sich nun mit der Hydraulikzylinderkraft und durch Umformen von 10 sowie Ersetzen von T_{cl} durch T_{servo} der tatsächliche Sicherheitsfaktor

$$S = \frac{T_{\rm cl}}{T_{\rm servo}} \tag{15}$$

ermitteln. Dieser muss über dem intern festgelegten Mindestwert liegen.

3.3.1 Berücksichtigung der Kolbenstangenschiefstellung

Die Bestimmung der notwendigen Hydraulikzylinderkraft aus 3.2 ist nur gültig, wenn die Wirkungslinie des Hydraulikzylinders genau tangential wie in Abbildung 15 wirkt. Nachfolgend wird erläutert, wie eine Schiefstellung einerseits durch die Verdrehung des Regelringes und anderseits durch eine baubedingte schiefe Einbaulage berücksichtigt wird.

Für die Anordnungen 1 und 2 wird die Hydraulikzylinderkraft zunächst mit

$$\delta_{1,2} = atan\left(\frac{y_{1,2}}{x_{1,2}}\right) \tag{16}$$

und

$$F_{\rm x1,2} = F_{\rm servo} \cdot \cos(\delta_{1,2}) \tag{17}$$

$$F_{y1,2} = F_{servo} \cdot sin \left(\delta_{1,2}\right) \tag{18}$$

in Richtung des Hauptkoordinatensystems zerlegt, Abbildung 16, und die Kraftkomponenten der beiden Hydraulikzylinderen addiert.

$$F_{\rm x} = F_{\rm x1} + F_{\rm x2} \tag{19}$$

Abbildung 16: Anordnung der Hydraulikzylinderen bei Schiefstellung

Mit Hilfe einer Transformationsmatrix werden die Kräfte von der Hauptachsenrichtung in jene der Radialrichtung $F_{\rm R}$ und Umfangsrichtung $F_{\rm U}$ gedreht, Abbildung 17.

$$F_{\rm R} = F_{\rm x} \cdot \cos(\varphi) - F_{\rm y} \cdot \sin(\varphi)$$

$$F_{\rm H} = F_{\rm x} \cdot \sin(\varphi) + F_{\rm y} \cdot \cos(\varphi).$$
(21)

Der Winkel $\varphi,$ welcher sich über den Verstellbereich ändert, ergibt sich zu

$$\varphi_{i} = \alpha - \Omega_{i} \tag{22}$$

(20)

Dabei ist α jener Winkel, um welchen die Anschlusspunkte des Hydraulikzylinders am Regelring in "Geschlossen"-Stellung verdreht sind, und Ω_i der Verdrehwinkel des Regelringes über den Verstellbereich.

Abbildung 17: Transformation der Kräfte

Wie aus Abbildung 18 ersichtlich, ergibt sich für die Anordnung 3 mit innenliegenden Hydraulikzylinderen die Umfangs- und Radialkomponente der Hydraulikzylinderkraft zu

$$F_{\rm R} = F_{\rm s} \cdot cos(\varphi)$$

$$F_{\rm U} = F_{\rm s} \cdot sin(\varphi)$$
(23)

und der Winkel φ zwischen der radialen Linie und der Hydraulikzylinderachse zu

Abbildung 18: Winkel φ zwischen der Hydraulikzylinderkraft und der radialen Komponente

Abbildung 19: Geometrie bei Anordnung 3 der Hydraulikzylinderen

Da der Winkel φ und dadurch auch die Komponenten der Hydraulikzylinderkraft ihren Betrag über den Verstellwinkel Ω des Regelringes ändern, wurde φ für beide Endstellungen ermittelt und mit

$$step = \frac{\varphi_{\rm op} - \varphi_{\rm cl}}{9} \tag{25}$$

die Schrittweite für 10 Positionen festgelegt. Für diese 10 Positionen wurde jeweils die Hydraulikzylinderkraft ermittelt und analog zu den Anordnungen 1 und 2 auf ein Drehmoment um die Leitschaufelachse zurückgeführt.

3.3.2 Knickung des Hydraulikzylinders

Sämtliche in diesem Unterkapitel vorkommenden Formeln und Werte sind aus [13] übernommen.

Bei der Überprüfung der Knicksicherheit wird zwischen dem Euler Knicken im elastischen Bereich und dem Knicken im unelastischen Bereich nach Tetmajer unterschieden. Kriterium dafür ist der sogenannte Schlankheitsgrad und wird wie folgt ermittelt

$$\lambda = \frac{l_{\rm k}}{i_{\rm min}} \tag{26}$$

mit l_k als die Knicklänge des Ersatzsystems und i_{min} als minimalen Trägheitsradius. Die von AH interne Berechnungsvorschrift Für Knickung der Hydraulikzylinderstange schreibt die Verwendung des zweiten Eulerfalles für eine beidseitig gelenkig gelagerte Stange vor. Das Ersatzsystem aus Hydraulikzylinder und Hydraulikzylinderstange wird mit der Knicklänge l_k aus Summe von Hydraulikzylinderstange und halben Hub gebildet.

Der Trägheitsradius bestimmt sich über das polare Flächenträgheitsmoment und der Querschnittsfläche der Hydraulikzylinderstange

$$i_{\min} = \sqrt{\frac{J}{A}}.$$
(27)

Der Grenzschlankheitsgrad liegt je nach verwendetem Werkstoff bei

$$\lambda_{\rm p} \approx \begin{cases} 104, 4 , \text{ für } S235 \\ 85, 3 , \text{ für } S355 \end{cases}$$

Ist der nach 26 ermittelte Schlankheitsgrad größer als λ_p , so liegt Knickung nach Euler vor und die Knicksicherheit ergibt sich aus

$$S_{\rm Euler} = \frac{F_{\rm k}}{F_{\rm servo}} \tag{28}$$

wobei
$$F_{\rm k} = \frac{\pi^2 \cdot E \cdot J_{\rm min}}{l_{\rm k}^2} \tag{29}$$

gilt.

Für die Knickung nach Tetmajer folgt die Sicherheit aus

$$S_{\text{Tetmajer}} = \frac{\sigma_{\text{k}}}{\sigma_{\text{rod}}}$$
(30)

wobei hier die zulässige Knickspannung der Kolbenstange

$$\sigma_{\mathbf{k}} = a - b \cdot \lambda \tag{31}$$

mit den Werkstoffkonstanten a und b in N/mm² aus Tabelle 2 ermittelt wird.

S235	a = 310	b = 1,14	$\lambda_{\rm p} = 103$
S355	a = 335	b = 0,62	$\lambda_{\rm p} = 84$

Tabelle 2: Knickung nach Tetmajer - Werkstoffkonstanten

Für die Druckspannung in der Kolbenstange folgt

$$\sigma_{\rm rod} = \frac{F_{\rm servo}}{A_{\rm rod}}.$$
(32)

Die Sicherheiten sollten im Maschinenbau nach [13] in den angeführten Bereichen liegen

 $\nu \approx 5-10$ im elastischen Bereich (Euler)

 $\nu \approx 3-8$ im unelastischen Bereich (Tetmajer)

3.4 Auslegung des Biegelenkers

Der Biegelenker muss so dimensioniert werden, dass einerseits für den Dauerfestigkeitsnachweis die Spannungsamplitude in der Kerbe (Abbildung 20) einen zulässigen Wert nicht überschreitet, er anderseits, da es sich um ein Sicherheitselement handelt, bei einer definierten Last versagt. Die Zug- bzw. Druckkraft auf den Lenker ist von dem auf die Leitschaufel wirkenden Moment für "Öffnen" beziehungsweise "Schließen" abhängig.

$$F_{\text{linkcl,op}} = \frac{T_{\text{cl,op}}}{H_{\text{lever}} \cdot sin(\beta)}.$$
(33)

Mittels CAE und dem aufgebrachten Lastkollektiv werden die maximalen Zug- und Druckspannungen nach Mises ermittelt. Daraus folgt mit

$$\sigma_{\rm A} = \frac{\sigma_{\rm zug} - \sigma_{\rm druck}}{2} \tag{34}$$

die maximale Spannungsamplitude. In weiterer Folge wurde mit einem Design of Experiments (DoE) eine Ersatzfunktion entwickelt, welche durch Eingabe der Geometrie und der Belastungen eine Näherung der Spannungsamplitude liefert.

Abbildung 20: Spannungszustände am Biegelenker

Die Größe der Knicklast, bei welcher der Biegelenker versagen muss, liegt nach internen Vorgaben vor und wurde mit einem bestehenden Berechnungsfile ermittelt.

Abbildung 21: Ausknicken des Biegelenkers

3.5 Auslegung des Hebels

3.5.1 Bauform mit Biegelenker

Abbildung 22: Skizze des Hebels für die Bauform mit Biegelenker

schaufelstiels. Der Außendurchmesser entspricht

Für die Vorauslegung wurde zunächst die Geometrie des Hebels (Abbildung 22) durch Abschätzungen bestimmt. Die Durchmesser rechts in der Skizze, D_{out} und d_{pin} , sind die gleichen, wie für den Biegelenker. Links in der Skizze ist der Innendurchmesser d_{wg10} jener des Leit-

 $D_{\text{out,lever}} = d_{\text{wg10}} + 2 \cdot s_{\text{min}} \tag{35}$

mit

$$s_{\min} = 1, 2 \cdot d_{\min, \text{GV}}.$$
(36)

Dabei ist $d_{pin,GV}$ der Durchmesser des Stiftes, mit dem der Hebel und die Leitschaufel formschlüssig verbunden sind, und folgt aus

$$A_{\text{pin,GV}} = \frac{T_{\text{GV,max}}}{\frac{d_{\text{wg10}}}{2} \cdot \tau_{\text{uts}} \cdot n_{\text{pin}}}$$
(37)

mit $l_{\text{pin,GV}} / d_{\text{pin,GV}} \approx 2,5-3$.

$$d_{\text{pin,GV}} = \sqrt{\frac{A_{\text{pin,GV}}}{2,5-3}}$$
(38)

Die Überprüfung hinsichtlich der Festigkeit erfolgte in dem durch die rote Linie markierten Bereich (Abb. 22) über die Forderung der Widerstandsmomente

$$W_{b,\min} > W_{b,erf} \tag{39}$$

wobei sich W_{b,erf} ergab durch

$$W_{\rm b,erf} = \frac{T_{\rm GV,max} \cdot \frac{d_{\rm wg10}}{D_{\rm out,lever}}}{\sigma_{\rm b,min}}.$$
(40)

3.5.2 Bauform ohne Biegelenker

Abbildung 23: Skizze des Hebels für die Bauform ohne Biegelenker

Bei der Bauform ohne Biegelenker wird durch eine Klemmschraube am linken Ende des Hebels in Abbildung 23 ein Reibmoment erzeugt, welches groß genug sein muss, damit es für den Lastfall NLC zu keinem Durchrutschen kommt. Als Sicherheitselement wird hier ein Scherbolzen verwendet. Bei einer Erhöhung des auftretenden Momentes über den Lastfall NLC hinaus bis zum von AH festgelegten Auslösemoment wird die gesamte zusätzlich auftretende Kraft vom Scherbolzen übernommen. Dies verhindert ein Durchrutschen des Hebels. Die Klemmkraft berechnet sich nach

$$F_{\rm k} = \frac{T_{\rm fric,min} \cdot l_1}{l_2 \cdot d_{\rm r} \cdot \mu_{\rm steel}}.$$
(41)

Abbildung 24: Zusammenbau von Leitapparat und Hebel-Lenker-Verbindung [7]

3.6 Auslegung des Scherbolzens

Abbildung 25: Skizze eines Scherbolzens

Die auf den Scherbolzen einwirkende Scherkraft wird gemäß Abbildung 23 durch

$$F_{\rm sp} = \frac{T_{\rm GV,max}}{l_{\rm sp}} \tag{42}$$

umgerechnet. Mit einer zulässigen Scherspannung folgt der minimale Querschnitt zu

2

$$A_{\rm sp} = \frac{F_{\rm sp}}{\tau_{\rm uts,SP}} \tag{43}$$

Mit einem gewählten Bohrungsdurchmesser folgt der minimale Kerbendurchmesser zu

$$D_{\text{shear}} = \sqrt{\frac{4 \cdot A_{\text{sp}}}{\pi} + D_{\text{bsp}}^2}$$
(44)

und weiteres mit einem Rundungsradius der Außendurchmesser zu

$$D_{\text{out,sp}} = D_{\text{shear}} + 3 \cdot r_{\text{sp}}.$$
(45)

Höhe und Abmessung des Bundes sind von der Geometrie des Hebels abhängig.

4 Optimierungsprozess

Das Kernthema dieser Diplomarbeit war es, die Kinematik des Leitapparates soweit zu optimieren, dass das verdrängte Ölvolumen des Linearantriebes ein Minimum annimmt. Die Reduzierung im benötigten Volumen führt dazu, dass seitens der Hydraulik kleinere Druckspeicher, Tanks und Rohrleitungen verbaut werden können, was direkt zu einer Kostenersparnis in Beschaffung und Wartung führt.

Das verdrängte Volumen ist von der gewählten Anordnung abhängig:

für Anordnung 1

$$V_{\text{servo}} = \frac{(2 \cdot d_{\text{pc}}^2 - d_{\text{rod}}^2) \cdot \pi}{4} \cdot Stroke_{\text{max}}$$
(46)

für Anordnung 2 und 3

$$V_{\text{servo}} = \frac{d_{\text{pc}}^2 \cdot \pi}{4} \cdot Stroke_{\text{max}} \cdot z_{\text{s}}$$
(47)

Für die Optimierung wurde die Gleichung 10 umgeformt in einen konstanten und einen variablen Term

$$F_{\text{servo}} = \underbrace{\frac{T_{\text{cl}} \cdot R_{\text{reg}} \cdot z_{\text{GV}}}{z_{\text{s}} \cdot R_{\text{servo}}}}_{konstant} \cdot \underbrace{\frac{\cos(\psi - 90^{\circ})}{H_{\text{lever}} \cdot \sin(\beta)}}_{variabel}.$$
(48)

Durch geometrische Überlegung erkennt man aus Abbildung 14, dass die Winkel β und ψ nur von den variablen Größen H_{lever} , L_{rod} und γ_{h0} abhängen, weshalb versucht wurde, aus diesen drei Größen einen Zusammenhang, insbesondere ein Verhältnis zwischen Hebel- und Lenkerlänge, zu finden.

$$R_{L\gamma} = \sqrt{\left(\frac{D_z}{2}\right)^2 + H_{lever}^2 - 2 \cdot \frac{D_z}{2} \cdot H_{lever} \cdot \cos(\gamma_{h0} - \alpha)}$$
(49)

$$\psi = acos\left(\frac{\left(\frac{D_{\text{reg}}}{2}\right)^2 + L_{\text{rod}}^2 - R_{L\gamma}^2}{2 \cdot \frac{D_{\text{reg}}}{2} \cdot L_{\text{rod}}}\right)$$
(50)

$$\epsilon = a\cos\left(\frac{L_{\rm rod}^2 + R_{\rm L\gamma}^2 - \left(\frac{D_{\rm reg}}{2}\right)^2}{2 \cdot R_{\rm L\gamma} \cdot L_{\rm rod}}\right)$$
(51)

$$\rho_{\rm i} = acos \left(\frac{H_{\rm lever}^2 + R_{\rm L\gamma}^2 - \left(\frac{D_z}{2}\right)^2}{2 \cdot R_{\rm L\gamma} \cdot H_{\rm lever}} \right)$$
(52)

$$\beta = \rho_{\rm i} - \varepsilon. \tag{53}$$

Das Verhältnis zwischen den Längen sollte eine Funktion in Abhängigkeit der Fallhöhe und des Durchflusses sein.

$$Ratio = \frac{L_{\rm rod}}{H_{\rm lever}} = f_{\rm (H,Q)}.$$
(54)

Dafür wurde das Optimierungsprogramm HEEDS[5] von Siemens verwendet.

4.1 Vergleich der bisherigen Ausführungen und Optimierung

Zunächst wurde an bestehenden Referenzanlagen das Verhältnis der Längen zwischen Lenker und Hebel bestimmt. Bei der Auswertung zeigte sich, dass es keinen allgemein gültigen Zusammenhang der Verhältnisse gibt. Aus diesem Grund wurde in weiterer Folge in einer Excel Arbeitsmappe die Berechnung für das Gesamtarbeitsvermögen des Hydraulikzylinders

$$W = F_{\text{servo,max}} \cdot Stroke_{\text{max}} \tag{55}$$

aufgestellt (siehe dazu Rechenbeispiel im Anhang). Dieses Berechnungsfile wurde danach in das Programm *HEEDS* implementiert. Der Ablauf wird in Kapitel 4.2 genauer erläutert.

4 OPTIMIERUNGSPROZESS

4.2 Optimierung der Kinematik mit HEEDS

Grundsätzlich gliedert sich der Vorgang des Programms in folgende Schritte

- Öffnen der hinterlegten Excel Arbeitsmappe
- Ändern der definierten Parameter der Leitapparatkinematik (*H*_{lever}, *L*_{rod} und *γ*_{h0}, Abbildung 14)
- Anpassung des dafür benötigten Hydraulikzylinders (Kolbendurchmesser D_{pc} und Kolbenstangendurchmesser D_{pr}
- Ausgabe des aktuellen Arbeitsvermögens
- Speichern der geänderten Arbeitsmappe und Werte für das Postprocessing

Die Abbildungen 26 bis 28 dienen zur Veranschaulichung des Optimierers

0 🖸 🗂 🔒			HEED	S mdo - PaCS_GVKin	.heeds			_ 🗆 🔀
Process Autor	nation	Exploration					Luce	
File Process Paramete	rs Tagg	ging Study Run						
Add Connection		Excel	🔷 Abaqus	🖨 Abaqus CAE	夑 FEMAP		^ 🔩 📫	Manage Conditions
Create Add Loop	Create	🚔 Abaqus	🚔 Abaqus CAE	ACS	Adams/Car	Adams/Chassis	Input Output	
Process	Analysis	Adams/View	Amesim	NSA 🥎	ANSYS	Aspen +	~	
Process				Analyses		2↓	Files	Tools
 ▼ PaCS_GVKin.heeds ▼ Process Automation ▼ Process_1 ▼ Process_1 ▼ PaCS_GVKin_XXXX, ♥ PaCS_GVKin_XXXX, ♥ Parameters > Wariables > PacSonses ♥ Exploration > ₩ Template > ₩ XXXYY_rev00 > ₩ Responses > ₩ Responses > ₩ Responses > ₩ Objective History 	. 0	Process_1 Analysis name: Excel_1 Portal: I Excel_1 Portal: I Excel_1 Input File Nam	el (Input and output Files Cill Excel Pr	c) ortal V Depende Location	Excel1	Enabled Environment Output File	Comments Name	.ocation
Image: Weight of the second secon	y	1 PacS_GVKin_XX	XYY 🗹 Proje	ct folder	🕂 Input File 🔻	<	XXXYY Project fo	der → Output File ×

Abbildung 26: HEEDS - Process Tab

🗘 🗟 🚞 🖶				HEEDS m	do - PaCS_GV	/Kin.heeds			
Process Automation File Process Parameters Ta	gging Study	ation Run							
Image: Continuous Image: Continuous Image: Continuous Create (abc) Discrete 0.01 Variable Image: Contact of the contact of th	lent ^{'abc'} Text nt	Create Response	Formula	Filter 🔗	RS Model	XXXYY_rev00 (Current Study)	{a} Manage S nlock tudy ✓ Manage C	ets istributions urves	
Variables			Respo	nses			Tools		
✓ PaCS_GVKin.heeds	- Variable								
Process Automation		-s Respo	mses						
✓ ➡ Process_1	¥ _₹ Va	riable Name	_ ⊻_ Туре	Min	Baselin	ie Max	Resolution	Distribution	
✓ 💵 Excel_1	1 🗹 🔁 H		Continuous	3 01	430	559	259	-	·
acS_GVKin_XXXY 📎	2 🗹 🏝 L		Continuous	245	350	455	211	-	•
PaCS_GVKin_XXXY 📎	3 🗹 🏝 ga	mmah0	Continuous	30	59,85	65	71	-	•
✓ □ Parameters	4 🗹 🏝 Dp	c	Continuous	 150 	220	230	81	-	•
> 🤤 Variables	. 5 🖂 🏝 Dp	r	Continuous	8 0	120	150	71	-	
> 🤤 Responses		and a Course File							
✓	. 😡 HEEDSIN	ndo - Open File							^
> 🖍 Template	$\leftarrow \rightarrow$	1 🛧 📙 « D	iplomarbeit Stierbe	rger > XXXYY-TU	R-2400 → Ter	mplate 🗸	ට Search Tem	plate	Q
✓ ✓ XXXYY_rev00								_	
> 🤤 Variables	Organize	 New fold 	der						•
> 🤤 Responses	💧 💧 Mu	sic		^	Name	^	Date n	nodified Ty	pe
Y 🤤 Plots	Pict	tures			- D		10.00	-	
Dbjective History	Vid.				a valuetor	rHEEDS.CSV	19:09:2	2019/09:57	ICrosott
Performance History									
Constraint Violations		2N15105415 (C:)							
🖉 Excel_1 Image 🧕	🛨 🛫 ME	(\\andritz.com\	dfs\HYDRO-Globa	I) (M:)	<				>
NonError									
III Feasible		Filei	name:				✓ Comma-Se	parated Value Files	(~
							Open	▼ Cancel	
	<								

Abbildung 27: HEEDS - Parameter Tab

Abbildung 28: HEEDS - Run Tab

Hierbei wurden für jede Referenzanlage aus Tabelle 3 2000 Evaluierungen durchgeführt und das Ergebnis in der Form einer Pareto Front ausgegeben. Nachdem jede Anlage ihre eigene Charakteristik besitzt, können unterschiedliche Formen einer Pareto Front entstehen. Dies veranschaulicht Abbildung 29, welche das Ergebnis von vier Referenzanlagen aus dieser Tabelle zeigt. In diesen Diagrammen ist auf der x-Achse das Arbeitsvermögen und auf der y-Achse die minimal notwendige, gesamte Hydraulikzylinderkraft aufgetragen. Jeder blaue Punkt stellt ein mögliches Design der Kinematik, unter Einhaltung der Randbedingungen dar. Der graue, umrandete Kreis repräsentiert das Baseline Design. Mit diesen 4 Fällen wird veranschaulicht, dass bei allen eine Reduzierung des Arbeitsvermögens und dadurch eine Kostensenkung möglich gewesen wäre.

Abbildung 29: Verschiedene Formen einer Paretofront

"Ein Pareto-Optimum (…) ist ein Zustand, in dem es nicht möglich ist, eine (Ziel-)Eigenschaft zu verbessern, ohne zugleich eine andere verschlechtern zu müssen" [6].

Dies lässt sich am Beispiel von Abbildung 29-d sehr gut erklären. Die Grenzlinie der Optima sinkt mit einer negativen Steigung und geht danach in eine waagrechte Linie über. Die Verbes-

serung des Arbeitsvermögens W ist annähernd unter gleicher Hydraulikzylinderkraft bis zum Knickpunkt möglich. Danach erfolgt eine weitere Verringerung von W nur unter Zunahme von F_{min}. Im umgekehrten Fall, eine Minimierung von F_{min} bedeutet automatisch eine Steigerung von W.

4.3 Entwicklung analytischer Funktion

Aus den Paretofronten wurde für jede Anlage individuell das ideale Verhältnis bestimmt. Mit diesen neu gefundenen Verhältnissen wurde eine analytische Funktion der Form

$$H_{\text{lever}} = \alpha \cdot H^{\beta} \cdot Q^{\gamma} \tag{56}$$

für die optimale Hebellänge ermittelt. Die Wahl für die beiden Parameter H und Q liegt darin begründet, dass diese die einwirkenden Momente definieren und zugleich, wie in Abbildung 30 gezeigt, die Bauart des Laufrades festlegen. Der Volumenstrom Q ist hier implizit über die spezifische Drehzahl

$$n_{\rm q} = n \cdot \sqrt{\frac{Q}{\sqrt{H_{\rm stat}^3}}} \tag{57}$$

mit der tatsächlichen Drehzahl *n* des Laufrades gegeben.

Dabei wurden unter Verwendung der Solver Funktion in Excel die Werte für α , β und γ variiert und mit dem Root-Mean-Square Verfahren (RMS-Verfahren) die Abweichung zum tatsächlichen Wert bestimmt.

Hierbei wurde mit der analytischen Funktion ein IST-Wert ermittelt

$$x_{\rm IST} = \alpha \cdot H^{\beta} \cdot Q^{\gamma} \tag{58}$$

und danach die Summe der quadratischen Mittel der Differenzen zum SOLL-Wert

$$\Sigma = \frac{(x_{\rm IST} - x_{\rm SOLL})^2}{n}$$
(59)

gebildet. Je kleiner die Summe ist, desto genauer entspricht das Ergebnis der analytischen Funktion dem wahren Wert.

4 OPTIMIERUNGSPROZESS

Projekt	H _{stat}	Q	L/H ausgeführt	L/H optimiert	Differenz	Abweichung
1	125,50 m	153,25 m ³ /s	0,6712	0,6950	0,0,00057	-4 %
2	141,00 m	205,30 m ³ /s	0,4135	0,7214	0,09479	-74 %
3	222,63 m	29,56 m ³ /s	0,5830	0,5057	0,00598	+13 %
4	66,10 m	110,00 m ³ /s	0,5940	0,6550	0,00372	-10 %
5	122,80 m	221,62 m ³ /s	0,7285	0,7625	0,00115	-5 %
6	208,90 m	107,00 m ³ /s	0,974 6	0,6457	0,10817	+34 %
7	56,00 m	90,50 m ³ /s	0,4980	0,5677	0,00486	-14 %
8	39,00 m	505,40 m ³ /s	0,7530	0,5830	0,02891	+23 %
9	30,00 m	810,00 m ³ /s	0,6639	0,6970	0,00110	-5 %
10	647,30 m	38,50 m ³ /s	0,4135	0,4233	0,00010	-2 %
11	105,90 m	89,11 m ³ /s	0,4175	0,6671	0,06230	-60 %
12	35,89 m	90,00 m ³ /s	0,6395	0,5570	0,00688	+13 %
13	39,20 m	97,00 m ³ /s	0,7806	0,6304	0,02256	+19 %
14	73,60 m	104,11 m ³ /s	0,5089	0,6755	0,02774	-33 %
15	227,43 m	53,85 m ³ /s	0,6441	0,6895	0,00207	-7 %
16	30,98 m	175,00 m ³ /s	0,8667	0,6452	0,04905	+26 %
Summe					0,4199	

Tabelle 3: Ergebnis der RMS Rechnung

Da allerdings die prozentuellen Abweichungen (Tabelle 3) zu groß waren, wurde die Entscheidung getroffen, Abstand von einer allgemeinen analytischen Funktion zu nehmen und dafür die Kinematikoptimierung für jedes Projekt separat durchzuführen.

Die nachfolgende Tabelle 4 zeigt anhand von sechs Referenzanlagen aus Tabelle 3, plus zusätzlich vier unabhängigen Testanlagen, das Ergebnis einer separaten Optimierung. In Tabelle 5 ist die Einsparung am benötigen Regelvolumen gelistet. Im Fall der ersten Anlage führte die Optimierung zu einer Erhöhung des benötigten Ölvolumens, da die ausgeführte Anlage einen Sicherheitswert unterhalb des von AH festgelegten Wertes hat.

4 OPTIMIERUNGSPROZESS

Anlag	gendaten	Ausgeführte Anlage					
H _{stat}	Q	Н	L	γ h0	D _{pc}	D _{pr}	V _{servo}
56 m	90,5 m ³ /s	560 mm	400 mm	60 °	360 mm	150 mm	119,5 Liter
222,63 m	29,56 m ³ /s	230 mm	220 mm	60 °	210 mm	90 mm	9,8 Liter
77,8 m	271,6 m ³ /s	550 mm	630 mm	74,83 °	450 mm	200 mm	133,5 Liter
125,5 m	153,25 m ³ /s	350 mm	400 mm	53,32 °	320 mm	130 mm	40,4 Liter
66,1 m	110 m ³ /s	430 mm	350 mm	59,85 °	220 mm	120 mm	26,6 Liter
39,2 m	97 m ³ /s	558,4 mm	393,7 mm	39,5 °	405 mm	80 mm	121,7 Liter
39 m	505,4 m ³ /s	975 mm	600 mm	30 °	400 mm	170 mm	457,8 Liter
684 m	68,3 m ³ /s	500 mm	335,2 mm	$40~^\circ$	500 mm	250 mm	142,0 Liter
122,8 m	193,1 m ³ /s	475 mm	450 mm	63,14 °	530 mm	200 mm	185,6 Liter
108,9 m	89,11 m ³ /s	360 mm	290 mm	48°	260 mm	160 mm	23,6 Liter

Anlag	gendaten	Optimierte Anlage					
H _{stat}	Q	Н	L	$\gamma_{ m h0}$	D _{pc}	D _{pr}	V _{servo}
56 m	90,5 m ³ /s	580 mm	422 mm	61 °	362 mm	121,2 mm	123,4 Liter
222,63 m	29,56 m ³ /s	297 mm	190 mm	54 °	200,4 mm	91,5 mm	8,8 Liter
77,8 m	271,6 m ³ /s	550 mm	300 mm	60°	450 mm	215 mm	106,2 Liter
125,5 m	153,25 m ³ /s	419 mm	381 mm	57,5 °	278 mm	132 mm	34,4 Liter
66,1 m	110 m ³ /s	498 mm	343 mm	53 °	200 mm	112 mm	20,8 Liter
39,2 m	97 m ³ /s	690mm	385 mm	40,5 °	348 mm	79 mm	102,8 Liter
39 m	505,4 m ³ /s	975 mm	600 mm	30 °	389 mm	171 mm	433,0 Liter
684 m	68,3 m ³ /s	350 mm	258 mm	30,5 °	488 mm	250 mm	107,2 Liter
122,8 m	193,1 m ³ /s	457 mm	460 mm	55 °	493,61 mm	161 mm	158,2 Liter
108,9 m	89,11 m ³ /s	394 mm	215 mm	42 °	228 mm	116 mm	23,0 Liter

Tabelle 4: Vergleich zwischen ausgeführten Anlagen und deren Optimierung

Differer	ız
V _{servo}	V _{servo}
3,93 Liter	3 %
-1,04 Liter	-11 %
-27,26 Liter	-20 %
-6,01 Liter	-15%
-5,76 Liter	-22 %
-18,93 Liter	-16 %
-24,83 Liter	-5 %
-34,8 Liter	-25 %
-27,39 Liter	-15 %
-0,60 Liter	-3%

Tabelle 5: Differenz Hydraulikzylindervolumen und Abweichung

4.4 Optimierung des Biegelenkers mit HEEDS

Da in der Kinematikkette, vom Regelring bis zur Leitschaufel, der Biegelenker als Sicherheitselement agiert, ist dieser das schwächste Glied. Demzufogle müssen alle übrigen Bauteile eine höhere Belastung ertragen. Die Auslösekraft, bei welcher der Biegelenker versagt, ist nach internen Vorgaben eindeutig festgelegt.

Daraufhin wurde wiederum mit *HEEDS* die Geometrie des Lenkers variiert, um eine möglichst kleine Auslösekraft zu erhalten. Dies geschah unter Berücksichtigung der Kriterien aus Kapitel 3.4.

5 Design of Experiments (DoE)

Hintergrund des DoE ist, einen experimentellen Zusammenhang zwischen Eingangsvariablen und Ausgangsvariablen zu finden und daraus eine Ersatzfunktion, genannt Surrogate-Funktion, zu erstellen. Durch Bildung einer solchen Funktion ist es möglich, je nach deren Güte, ohne lange Rechenzeit in einem CAE-Programm eine gute Näherung des tatsächlichen Ergebnisses zu erhalten.

Im konkreten Fall stellten die Geometrie und Belastung des Bauteils die Eingangsvariablen und die Spannungsamplitude in der Kerbe die Ausgangsvariable dar.

5.1 Vorbereitung der Studie

Durch Ermittlung der Kleinst- und Größtwerte anhand von zehn ausgeführten Biegelenkern, wurde zunächst der Desginbereich für die Studie festgelegt. Nachdem die Ersatzfunktion nur für Geometrien in diesem Bereich ein Ergebnis liefert, wurde dieser nach oben und unten um circa 20 Prozent erweitert.

Des Weiteren ist es wichtig, ein robustes CAE Modell zu erstellen, da während dem DoE die Parameter zufällig variiert werden und es, wie man in Tabelle 6 erkennen kann, durchaus passiert, dass der Innenradius größere Werte als der Außenradius annimmt. Solche Fehler im Modellaufbau führen zu einer hohen Anzahl an ErrorDesigns und sind zu vermeiden. Als Abhilfe wurden die Parameter in Verhältnisse (Tabelle 7) zueinander gesetzt. Die nachfolgenden Formeln beschreiben die Umrechnung von Verhältnissen auf die Geometrie des $\frac{1}{4}$ Modells.

depth	inner radius	length	outer radius	transition	width	min. Load	max. Load
70 mm	45 mm	400 mm	67,5 mm	70 mm	41 mm	-78380 N	64192 N
72 mm	37,5 mm	350 mm	60 mm	60 mm	36 mm	-86129 N	80050 N
50 mm	33 mm	220 mm	47 mm	40 mm	32,5 mm	-40483 N	31569 N
70 mm	37,5 mm	450 mm	60 mm	60 mm	39,5 mm	-68233 N	66796 N
85 mm	55 mm	300 mm	75 mm	50 mm	31,5 mm	-65473 N	43489 N
64 mm	40,5 mm	385 mm	60 mm	120 mm	46 mm	-51220 N	45417 N
55 mm	41 mm	400 mm	56 mm	80 mm	35 mm	-29063 N	9003 N
67 mm	37,5 mm	446 mm	65 mm	90 mm	48 mm	-70800 N	25070 N
100 mm	50 mm	630 mm	85 mm	85 mm	77 mm	-124000 N	121280 N
40 mm	32,5 mm	350 mm	60 mm	70 mm	55 mm	-55575 N	44489 N

Tabelle 6: Designgrenzen als Abmessungen ausgeführter Biegelenker

Ratio IR/OR	Ratio W/D	Ratio T/OR	Ratio D/IR	р
0,666667	1,17143	1,03704	0,77778	11,97 MPa
0,62500	1,00000	1,00000	0,96000	15,95 MPa
0,70213	1,30000	0,85106	0,75758	12,27 MPa
0,62500	1,12857	1,00000	0,93333	13,00 MPa
0,73333	0,74118	0,66667	0,77273	7,00 MPa
0,67500	1,43750	2,0000	0,79012	9,88 MPa
0,73214	1,27273	1,42857	0,67073	6,44 MPa
0,57692	1,43284	1,38462	0,89333	14,09 MPa
0,58824	1,54000	1,00000	1,00000	12,40 MPa
0,54167	2,75000	1,16667	0,61538	21,38 MPa

Tabelle 7: Designgrenzen als Verhältnis zueinander

$$RatioIR/OR = \frac{innerradius}{outeradius}$$
(60)

$$RatioW/D = \frac{width}{depth}$$
(61)

$$RatioT/OR = \frac{transition}{outerradius}$$
(62)

$$RatioD/IR = \frac{depth}{innerradius}$$
(63)

$$p = \frac{Load1}{RatioD/IR \cdot innerradius^2}$$
(64)

Dabei sind die Abmessungen in Abbildung 31 ersichtlich, "depth" steht für die Dicke des Lenkers, p ist die Flächenpressung im Regelbolzenauge und "Load1" der Absolutwert der Druckkraft (min. Load) aus 6.

Abbildung 31: Begriffe des Biegelenkers

5.1.1 Skizze des Biegelenkers in Abaqus

Abbildung 32: Skizzen des Biegelenkers in Abaqus

Für ein robustes CAE-Modell in einer DoE Studie ist es wichtig, eine stabile Skizze zu erstellen. Wie man in Abbildung 32 erkennen kann, könnte eine Verkürzung der Biegelenkerlänge unter Beibehalten oder Vergrößern der anderen Parameter zu einer unbrauchbaren Skizze führen. Aus diesem Grund wurde, wie in Abbildung 32 c, die Länge auf der unteren Seite definiert. Dadurch kann eine Geometrie, wie in Abbildung 32 b, nicht mehr entstehen. Damit dennoch für die spätere Eingabe der Ersatzfunktion die tatsächliche Biegelenkerlänge verwendet werden kann, wurde diese auf die Ersatzlänge wie folgt umgerechnet

$$l = \frac{L_{\text{rod}}}{2} - (outerradius + transition) \cdot sin(\xi)$$
(65)

mit

$$\xi = a\cos\left(1 - \frac{2 \cdot outerradius - width}{outerradius + width}\right)$$
(66)

Abbildung 33: Bestimmung des Winkels ξ

5.2 Abaqus Modell

Für ein genaueres Ergebnis wurde eine Kontaktsimulation durchgeführt. Dabei wird, wie in Abbildung 35 dargestellt, die Belastung nicht über eine Einzelkraft, sondern über eine analytische Fläche mit der Steifigkeit EI $\rightarrow \infty$, welche quasi den Regelbolzen darstellt, aufgebracht. Da eine Kontaktsimulation mehr Rechenzeit in Anspruch nimmt, wurde der Biegelenker als Doppelt symmetrisches Modell erstellt, (Abbildung 34). In einem Rechengang wurde die Belastung für Zug und Druck aufgebracht und anschließend im Postprocessing mit $\sigma_A = \frac{\sigma_{zug} - \sigma_{druck}}{2}$ die maximale Spannungsamplitude nach Mises in der Kerbe gebildet, (Abbildung.36).

Abbildung 34: Vernetztes CAE Modell des Biegelenkers

Abbildung 35: CAE Modell des Biegelenkers mit analytischer Fläche

Abbildung 36: CAE Modell des Biegelenkers im Postprocessing

5.3 Durchführung mit HEEDS

Das DoE wurde ebenfalls mit dem Optimierungsprogramm *HEEDS* durchgeführt. Der Ablauf gliedert sich wie folgt

- Öffnen des CAE-Files, Änderung der Geometrie und Belastung, erstellen des Input Files für den Abaqus Solver
- Starten des Abaqus Solvers, einlesen des Input Files, Rechnung
- Auswertung und Ausgabe der vorher definierten Werte

Von Seiten des Supports wird als Studienumfang für ein erfolgreiches DoE ein Umfang von 3^x Rechnungen empfohlen, wobei x für die Anzahl der veränderlichen Parameter steht. Dies würde bei dieser Studie einen Umfang von $3^8 = 6561$ ausmachen.

Im Postprocessing von HEEDS wurde im Anschluss an die Studie mit allen erfolgreichen "Success Designs" eine Ersatzfunktion erstellt. Die Genauigkeit dieser Ersatzfunktion wird im Programm durch die automatische Auswertung der Kreuzvalidierung ermittelt. Durch Erhöhung des Studienumfanges oder Ausschließen einzelner Success Desgins kann man die Abweichung senken. Aus zeitlichen Gründen wurde das DoE nach 1790 erfolgreichen Rechnungen beendet. Diese ergaben in der Kreuzvalidierung eine Abweichung von 17,4 Prozent und wurden von AH akzeptiert.

Abbildung 37: Ergebnis der DOE als Surrogate Funktion in Excel

Die Surrogate Funktion wird von *HEEDS* direkt in der Form einer Excel Arbeitsmappe exportiert. In Abbildung 37 sieht man die umgerechneten Eingangsvariablen und die Spannungsamplitude als Response Value. Zusätzlich lassen sich 3-dimensionale Plots erstellen, um den Einfluss zweier Parameter auf die Spannungsamplitude zu veranschaulichen. In diesem Fall ist der Einfluss zwischen dem Verhältnis vom Rundungsradius T und Außenradius des Biegelenkerauges (Ratio T/OR) und der Druckkraft aufgezeichnet.

Abbildung 38: Verschiedene Modelle des Biegelenkers während der DoE Studie

5.4 Auswertung und Vergleich

Für die Auswertung und Beurteilung wurden die Spannungsamplituden in der Kerbe jeweils mit der Surrogate Funktion und der exakten Abaqus Rechnung ermittelt und gegenübergestellt. Dieser Vergleich wurde, wie in Tabelle 8 erkennbar, bereits während der Studie durchgeführt, um die Verbesserung der Funktion zu verfolgen. Mit einer Erhöhung von 900 auf 1200 Success Designs ist eine Verschlechterung der mittleren Abweichung festzustellen. Mit einer weiteren Ausweitung auf ungefähr das doppelte von 1790 Designs nahm die mittlere Abweichung um circa ein Drittel ab.

Seitens AH wurde diese mittlere Abweichung von 15 Prozent für eine Vorauslegung akzeptiert und somit der Studienumfang nicht weiter vergrößert.

Testprojekt	Abaqus Solver	DOE Surrogate 900 Success	Differenz	DOE Surrogate 1200 Success	Differenz
1	117 MPa	100 MPa	-15 %	107 MPa	-9 %
2	116 MPa	200 MPa	+72 %	209 MPa	+80 %
3	231 MPa	167 MPa	-28 %	189 MPa	-18 %
4	102 MPa	102 MPa	0 %	150 MPa	+47 %
5	158 MPa	112 MPa	-29 %	63 MPa	-60 %
6	291 MPa	284 MPa	-2 %	294 MPa	+1 %
7	366 MPa	371 MPa	+1 %	294 MPa	-20 %
8	245 MPa	202 MPa	-1 8%	207 MPa	-16 %
9	257 MPa	272 MPa	+6 %	280 MPa	9 %
10	387 MPa	230 MPa	-41 %	271 MPa	-30 %
11	204 MPa	148 MPa	-27 %	144 MPa	-29 %
12	112 MPa	69 MPa	-38 %	72 Mpa	-36 %
13	126 MPa	119 MPa	-6 %	128 MPa	+2 %
Dure	chschnittliche Abv	veichung	+22 %		+27 %

Testprojekt	Abaqus Solver	DOE Surrogate 1650 Success	Differenz	DOE Surrogate 1790 Success	Differenz
1	117 MPa	120 MPa	+3 %	126 MPa	+8 %
2	116 MPa	187 MPa	+61 %	181 MPa	+56 %
3	231 MPa	195 MPa	-16 %	190 MPa	+2 %
4	102 MPa	111 MPa	+9%	104 MPa	-4 %
5	158 MPa	108 MPa	-32 %	152 MPa	-14 %
6	291 MPa	274 MPa	-6 %	249 MPa	-4 %
7	366 MPa	373 MPa	+2 %	352 MPa	-9 %
8	245 MPa	200 MPa	-18 %	224 MPa	-9 %
9	257 MPa	242 MPa	-6 %	233 MPa	-9 %
10	387 MPa	278 MPa	-28 %	288 MPa	-26 %
11	204 MPa	157 MPa	-23 %	136 MPa	-33 %
12	112 MPa	86 MPa	-23 %	119 Mpa	+6 %
13	126 MPa	116 MPa	-8 %	119 MPa	-6 %
Duro	chschnittliche Abv	veichung	+18 %		+15 %

Tabelle 8: Auswertung der Surrogate Funktion und Vergleich mit dem exakten Ergbnis aus der

CAE Rechnung

6 Auslegungstool

Die zentrale Funktion für die Vorauslegung und den Optimierungsprozess bildet das in Excel erstellte Auslegungstool, bezeichnet als Parametric Calculation Sheet (PaCS). Dieses ist in verschiedene Arbeitsblätter unterteilt. Die wichtigsten sind

• General

Hier erfolgt die Eingabe der notwendigen Parameter für die Auslegung. Sollten einzelne Parameter wie exakte Sicherheitswerte, Reibungskoeffizienten oder auch Bauteildimensionen noch nicht bekannt sein, so werden voreingestellte Standardwerte übernommen.

• Worktable

Hier sind alle Berechnungen der einzelnen Komponenten hinterlegt. Es werden alle Werte von der Eingabeseite übernommen und die Berechnung durchgeführt.

• ASM-Group

Alle berechneten Bauteildimensionen werden aus dem "Worktable" übernommen und nach Komponenten gelistet. Eine manuelle Änderung der gerechneten Werte ist nachträglich noch möglich.

• Transfer

Auf diesem Arbeitsblatt werden alle Parameter von der "ASM-Group" übernommen und über eine Buttonfunktion als Expression-File für das CAD-System exportiert.

Für die einfachere Handhabung wurden Buttons erstellt, mit welchen Makros für das automatische Importieren der Daten aus einem externen Übergabefile beziehungsweise die in Kapitel 3.1 beschriebene Iteration ausgeführt werden.

6 AUSLEGUNGSTOOL

		Parametric Calculation (PC) Tool		
		2400		V 0.1
		Project: Template	User Input	Precalculated
Rev	Date	Modifications	Done by	Checked by

Transfer to other sheets

		General			
GENeProjectName File Name of NX Control File GENeRotationDirection	Template 900990406 -1	Project Name NX Control File Name Rotation spiral case (1 cw; -1 ccw)	rot_sc	Template [-] 900990406 [-] : -1 [-]	1
>					
othe		Main Data			
k.					
he	maximum height during normal operating	Maximum gross head	H _{gmax}	30 [m]	
en	maximum (design head;runaway head)	Design head Density of water	H _k	[m] 996.9 [kg/m ³]	39 996 9
i Mi		Acceleration due to gravity	g	9,786 [m/s ²]	9,786
		Reference diameter for guide vane torque	D	8600 [mm]	
r T Viei		Guide Vane circle diameter	D _z	10000 [mm]	
≤de		max. guide vane opening	α _{max}	50 [°]	
L D L		Angle between lever axis and rad. Axis in cl. Po	D: Yh0	60 [°]	60
st a		Length of lever	H _{lever,pre}	500 [mm]	500,00
it it int i		Length of link	►link,pre	350 [iiiii]	550,00
e in		Safety Factor - Kinematic			
abl					
ail		Safety factor for normal load case	S _{NLC}		
av		Safety factor against buckling	Sbuckling		
<u>N. <u>i</u><u></u></u>		loss of servomotor force due to int. Friction	S _{servo,fric}	E)	
SIS		Pre-stressing Factor Servomotor length Factor	S _{prestress}	[·]	
210 Lee			Servolength		
·					
jinalve of this		Materials - Kinematic			
Originalve ion of this		Materials - Kinematic		\$235 FI	
te Originalve ersion of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link	σ _{ys,BL}	S235 [-] 235 [MPa]	
ckte Originalve version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link	σ _{yn,BL} σ _{uts,BL}	S235 [-] 235 [MPa] 360 [MPa]	
Iruckte Originalve nal version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link	σ _{yn,BL} σ _{uts,BL} σ _A	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa]	
gedruckte Originalve iginal version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material	$\sigma_{ys,BL}$ $\sigma_{uts,BL}$ σ_A	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-]	
e gedruckte Originalve original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,GV}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrN13-4 [-] 550 [MPa]	
erte gedruckte Originalve ed original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane	$\sigma_{ys,BL}$ $\sigma_{uts,BL}$ σ_A $\sigma_{ys,OV}$ $\sigma_{uts,GV}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrN113-4 [-] 550 [MPa] 760 [MPa]	
obierte gedruckte Originalve oved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Utimate tensile strength guide vane	$\sigma_{ys,BL}$ $\sigma_{uts,BL}$ σ_A $\sigma_{ys,OV}$ $\sigma_{uts,OV}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrN13-4 [-] 550 [MPa] 760 [MPa] S355 [MPa]	
probierte gedruckte Originalve pproved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of piston rod Material Yield strength piston rod	$\sigma_{y_B,BL}$ $\sigma_{uts,BL}$ σ_A $\sigma_{y_B,QV}$ $\sigma_{uts,GV}$ $\sigma_{y_B,PR}$ $\sigma_{uts,RR}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] S355 [-] 355 [MPa] 470 [MPa]	
approbierte gedruckte Originalve approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,GV} σ _{uts,GV} σ _{ys,PR} σ _{uts,PR}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] S355 [-] 3355 [MPa] 470 [MPa]	
ie approbierte gedruckte Originalve he approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever	$σ_{y_B,BL}$ $σ_{uts,BL}$ $σ_A$ $σ_{y_B,QV}$ $σ_{y_B,PR}$ $σ_{uts,PR}$ $σ_{y_B,PR}$ $σ_{y_B,PR}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] S355 [-] 355 [MPa] 470 [MPa]	
Die approbierte gedruckte Originalve The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever Ultimate tensile lever	$\sigma_{ys,BL}$ $\sigma_{uts,BL}$ σ_A $\sigma_{ys,GV}$ $\sigma_{uts,GV}$ $\sigma_{ys,PR}$ $\sigma_{uts,PR}$ $\sigma_{ys,LEV}$ $\sigma_{uts,LEV}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] 355 [-] 355 [MPa] 470 [MPa] 355 [-] 355 [-] 355 [MPa] 470 [MPa]	
Die approbierte gedruckte Originalve The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever Ultimate tensile lever Name of regulating ring Material	$\sigma_{ys,BL}$ $\sigma_{uts,BL}$ σ_A $\sigma_{ys,GV}$ $\sigma_{uts,GV}$ $\sigma_{ys,PR}$ $\sigma_{uts,PR}$ $\sigma_{ys,LEV}$ $\sigma_{uts,LEV}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] 355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-]	
The approblerte gedruckte Originalve The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring	$\sigma_{y_{B},BL}$ $\sigma_{uts,BL}$ σ_{A} $\sigma_{y_{B},QV}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] S355 [-] 335 [MPa] 470 [MPa] S355 [-] 355 [MPa] 470 [MPa]	
The approblerte gedruckte Originalve The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of guiston rod Material Yield strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,QV} σ _{uts,QV} σ _{ys,PR} σ _{uts,PR} σ _{uts,LEV} σ _{ys,RR} σ _{uts,RR}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] 355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [-] 355 [MPa] 470 [MPa]	
theks Die approbierte gedruckte Originalve The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Ultimate tensile strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring Ultimate tensile strength regulating ring Name of tapper pin Material	$\sigma_{y_{B},BL}$ $\sigma_{uts,BL}$ σ_{A} $\sigma_{y_{B},QV}$ $\sigma_{y_{B},QV}$ $\sigma_{y_{B},QV}$ $\sigma_{uts,QV}$ $\sigma_{uts,QV}$ $\sigma_{uts,RR}$ $\sigma_{uts,RR}$	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] S355 [-] 335 [MPa] 470 [MPa] S355 [-] 355 [MPa] 470 [MPa] S355 [-] 355 [MPa] 470 [MPa] S355 [-] 355 [MPa] 470 [MPa]	
othek, Die approbierte gedruckte Originalve de hub The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Ultimate tensile strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring Ultimate tensile strength regulating ring Ultimate tensile strength regulating ring Name of tapper pin Material allowable surface preassure	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,GV} σ _{uts,QV} σ _{ys,PR} σ _{uts,PR} σ _{uts,LEV} σ _{ys,RR} σ _{uts,RR} φ _{tp} φ _{tp} φ _{tp}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] S355 [-] 3355 [MPa] 470 [MPa] S355 [-] 355 [MPa] 470 [MPa] S355 [-] 355 [MPa] 470 [MPa] S355 [-] 355 [MPa] 470 [MPa]	
liothek Die approbierte gedruckte Originalve wedge hub The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength puide vane Ultimate tensile strength guide vane Name of guide vane Material Yield strength piston rod Ultimate tensile strength piston rod Ultimate tensile lever Name of lever Material Yield strength lever Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring Ultimate tensile strength regulating ring Name of tapper pin Material Yield strength regulating ring Ultimate tensile surface preassure Yield strength tapping pin	σ _{yn,BL} σ _{uts,BL} σ _A σ _{yn,GV} σ _{uts,GV} σ _{yn,GV} σ _{yn,GV} σ _{yn,FR} σ _{uts,EV} σ _{uts,RR} σ _{uts,RR} σ _{yn,TP} σ _{uts,PP}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-] 5355 [-] 65 [MPa] 355 [MPa] 470 [MPa]	
bliothek , Die approbierte gedruckte Originalve knowledge hub The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring Ultimate tensile strength tapping pin Ultimate tensile strength tapping pin	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,GV} σ _{uts,GV} σ _{ys,PR} σ _{uts,PR} σ _{uts,EV} σ _{uts,EV} σ _{uts,RR} σ _{uts,TP}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 355 [MPa] 355 [MPa] 470 [MPa] 355 [MPa] 470 [MPa] 355 [MPa] 470 [MPa] 355 [MPa] 470 [MPa] 355 [MPa] 355 [MPa] 355 [MPa] 355 [MPa] 355 [MPa] 355 [MPa] 355 [MPa]	
Bibliotheks Die approbierte gedruckte Originalve vour knowledge hub The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Vield strength guide vane Vield strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Name of lever Material Yield strength lever Ultimate tensile strength regulating ring Vield strength regulating ring Vield strength regulating ring Ultimate tensile strength regulating ring Ultimate tensile strength regulating ring Ultimate tensile strength regulating ring Name of tapper pin Material allowable surface preassure Yield strength tapping pin Ultimate tensile strength tapping pin Ultimate shearing strength	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,GV} σ _{uts,GV} σ _{uts,GV} σ _{ys,EV} σ _{uts,LEV} σ _{uts,RR} σ _{ys,RR} σ _{uts,RR} σ _{uts,RP} σ _{uts,RR} T _{otts,SP}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 355 [MPa] 470 [MPa] 355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-] 65 [MPa] 470 [MPa] 5355 [-] 65 [MPa] 470 [MPa] 470 [MPa] 470 [MPa]	
Bibliotheks Die approbierte gedruckte Originalve vur knowledge hub The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Ultimate tensile strength piston rod Vield strength lever Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring Ultimate tensile strength regulating ring Vitimate tensile strength regulating ring Vitimate tensile strength regulating ring Vitimate tensile strength regulating ring Name of tapper pin Material allowable surface preassure Yield strength tapping pin Ultimate tensile strength tapping pin Ultimate shearing strength Yield strength stapping pin Vitimate shearing strength Ultimate shearing strength	σys,BL σuts,BL σA σys,GV σuts,GV σuts,GV σys,LEV σuts,LEV σys,LEV σys,RR σuts,RR PTP σuts,RP Tuts,SP E	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-] 5355	
Wurknowledge hub The approbierte gedruckte Originalve Vourknowledge hub The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength regulating ring Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring Ultimate tensile strength regulating ring Ultimate tensile strength regulating ring Name of tapper pin Material allowable surface preassure Yield strength tapping pin Ultimate tensile strength tapping pin Ultimate shearing strength Youngs modulus Friction Coefficient BL bearing	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,GV} σ _{uts,GV} σ _{uts,GV} σ _{ys,EV} σ _{uts,LEV} σ _{ys,LEV} σ _{ys,RR} σ _{uts,RP} T _{uts,LEV} σ _{ys,TP} σ _{uts,TP} T _{uts,SP} E μ _{BL}	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 3555 [-] 3555 [MPa] 470 [MPa] 5355 [-] 3555 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 470 [MPa] 5355 [-] 355 [MPa] 470 [MPa] 470 [MPa] 5355 [-] 5355 [-]	
TU Bibliotheks Die approbierte gedruckte Originalve wien vourknowledge hub The approved original version of this		Materials - Kinematic Name of Bending Link Material Yield strength bending link Ultimate tensile strength bending link allowable stress amplitude bending link Name of guide vane Material Yield strength guide vane Ultimate tensile strength guide vane Name of piston rod Material Yield strength piston rod Ultimate tensile strength piston rod Ultimate tensile lever Name of lever Material Yield strength lever Ultimate tensile lever Name of regulating ring Material Yield strength regulating ring Ultimate tensile strength regulating ring Name of tapper pin Material allowable surface preassure Yield strength tapping pin Ultimate tensile strength tapping pin Vltimate shearing strength Youngs modulus Friction Coefficient GV radial bearing Eriction Coefficient GV radial bearing Eriction Coefficient GV radial bearing	σ _{ys,BL} σ _{uts,BL} σ _A σ _{ys,GV} σ _{uts,GV} σ _{uts,GV} σ _{ys,RR} σ _{uts,RR} Prp σ _{uts,TP} σ _{uts,SP} E H _{BL} μον	S235 [-] 235 [MPa] 360 [MPa] 70 [MPa] G-X4CrNi13-4 [-] 550 [MPa] 760 [MPa] 3555 [MPa] 470 [MPa] 3555 [MPa] 470 [MPa] 3555 [MPa] 470 [MPa] 3555 [-] 355 [MPa] 470 [MPa] 3555 [-] 355 [MPa] 470 [MPa] 470 [MPa] 470 [MPa] 25355 [-] 355 [MPa] 470 [MPa] 470 [MPa] 470 [MPa] 260000 [MPa] 0.15 [-] 0.15 [-] 0.15 [-] 0.2 10	

53

6 AUSLEGUNGSTOOL

		SPI - Shear Pin	MANUAL	Calculated
Main Countour SPIpTotalLength SPIpUpperSocketUeterDiameter SPIpShankDiameter Groove SPIpGrooveInnerDiameter SPIpGrooveInnerRadius SPIpGrooveInnerRadius SPIpGrooveAngle Shear Pin Bore Sorew Size SPIpThreadDepth SPIpT	100 10 40 44 45 45 45 45 45 45 36 11 82 45 45 30	0,0 [mm] 0,0 [mm] 0,0 [mm] 5,0 [mm] 5,0 [mm] 1,0 [mm] 8,0 [degrees] 6,0 [M] (String) 0,0 [mm] 8,0 [mm] 2,0 [mm] 2,0 [mm] 2,0 [mm] 0,6 [mm] 2,0 [mm] 0,6 [mm] 0,6 [degrees] 3,0 [mm] 0,0 [degrees] 3,0 [mm] 0,0 [degrees]		AUTO 100,0 [mm] AUTO 10,0 [mm] AUTO 50,0 [mm] AUTO 40,0 [mm] AUTO 40,0 [mm] AUTO 40,0 [mm] AUTO 35,0 [mm] AUTO 8,0 [degrees] AUTO 8,0 [degrees] AUTO 36,0 [mm] AUTO 30,0 [mm] AUTO 30,0 [mm] AUTO 3,0 [mm] AUTO 3,0 [mm]
u Wier		TSL - Taperd Sleeve/Tapered Pin	MANUAL	Calculated
Wien T				
ist an at TU		EPI - Eccentric Pin	MANUAL	Calculated
print print				
loma de in		Bending Link	MANUAL	Calculated
cleser Dip s is aveila		CLI -Clapming Lever Inner Part	MANUAL	Calculated
aversion this the si		CLO -Clapming Lever Outer Part	MANUAL	Calculated
Origination of t		GVL - Guide Vane Link	MANUAL	Calculated
uckte I vers				
a gedr origina		Link	MANUAL	Calculated
obierte roved -		Servomotor	MANUAL	Calculated
appr				
		Regulating Ring	MANUAL	Calculated
Vour knowledge hub	Abbildung 4	0: Beispiel des ASM-Group Sheet im PaCS		

6 AUSLEGUNGSTOOL

Summary of general data

Dynamic head	н		30 [m]	
Dynamic neau Density of water	n _k		096 9 [kg/m ³]	
Acceleration due to gravity	a		9.786 [m/s²]	
Youngsmodulus	Ē	20	6000 [Mpa]	
Number of guide vanes	Z ₀		0 [-]	
Minimal principle moment of inertia of guide vane blade	I _{min}		0 [mm⁴]	
Dimensions of the guide vane acc. to sketch	I _{w0}		135 [mm]	
	l _{w1}		165 [mm]	
	I _{w2}		0 [mm]	
	I _{w3}		2010 [mm]	
	I _{w4}		2035 [mm]	
	I _{w5}		2170 [mm]	
	l _{w6}		2305 [mm]	
	l _{w7}		-135 [mm]	
			0 [mm]	
	wo Luo		135 [mm]	
	-wa		3435 [mm]	
	'w10		0400 [iiiii]	
	d _{wg0}		0 [mm]	
	d _{wg1}		300 [mm]	
	d _{wa2}	profil	[mm]	
	d _{wa3}	profil	[mm]	
	d _{wa4}		440 [mm]	
	d _{wa5}		390 [mm]	
	dure		390 [mm]	
	d		355 [mm]	
	d .		370 [mm]	
	d _{wg8}		270 [mm]	
	u _{wg9}		370 [mm]	
	u _{wg10}		330 [mm]	

List of materials

Guide Vane Kinematic minimum required servomotor capacity
Kinematic precalculation and control values
Calculation bearing forces
Hydraulic moments, required servomotor force, guide vane stress & deflection
Charts hydraulic torque for NLC & ELC / servomotor force / guide vane stress / guide vane deflection
Servomotor Required capacity and safety against buckling
Structure Analysis dimensioning of the guide vane mechanism
Results for further Calculation and Report Summary of Guide Vane Torques / Forces accting on regulating ring

TU Bibliothek Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar WIEN Vour knowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

7 Umsetzung im CAD

Um die berechnete Kinematik hinsichtlich Kollisionen für die beiden Endstellungen überprüfen zu können, wurde eine vereinfachte Baugruppe des Leitapparates modelliert und über Parametersteuerung mit der Berechnung aus dem Excel Sheet verknüpft.

Dies ermöglicht eine erste Abschätzung. Als CAD-System wurde NX12 von Siemens verwendet.

7.1 Parametermodell der Baugruppe

In Abbildung 42 ist die Baugruppe, bestehend aus Leitschaufel, Hebel-Lenker-Verbindung und Regelring, dargestellt. Im Folgenden wird die Parametrisierung der Bauteile anhand des Biegelenkers erklärt. Die Modellierung der übrigen Bauteile erfolgte analog.

Die Modellierung lehnt sich an das Top-Down Prinzip an, bei welchem ausgehend von der übergeordneten Baugruppe auf die Unterbaugruppen, beziehungsweise auf die Einzelteile referenziert wird. Demzufolge wurden alle notwendigen Parameter der Bauteile in der Parameterliste, in NX12 als "Expressions" bezeichnet (Abbildung 44), der Hauptbaugruppe eingegeben.

Im Einzelteilmodell des Biegelenkers wurden in der Parameterliste über den Befehl "Create/Edit Interpart Expression" jene für das Bauteil relevanten Parameter aus der übergeordneten Hauptbaugruppe verlinkt. Die restliche Modellerstellung erfolgte, wie in den meisten Systemen üblich, über die Erstellung einer Skizze und deren Extrusion. Der Unterschied zwischen einem herkömmlichen CAD Modell und einem Parameter-gesteuerten liegt nun darin, dass in der Skizze keine Maße sondern die Parameternamen eingegeben werden, (Abbildung 32).

7 UMSETZUNG IM CAD

Abbildung 42: Vereinfachte Baugruppe des Leitapparates

Abbildung 43: Parameterskizze des Biegelenkers

Displaying 128 of 128 expressions Show All Expressions Show All Show Locked Formula Expressions Show Locked Formula Expressions Show Locked Filtering Show Locked Filtering </th <th>/isibility</th> <th></th> <th>^</th> <th></th> <th>1 Name</th> <th>Formula</th> <th>Value</th> <th>Units</th> <th>Dimensionality</th> <th></th>	/isibility		^		1 Name	Formula	Value	Units	Dimensionality	
Show All Expressions 2 Memory mm Length Show All 3 a_alpha 41 41 0 Angle Show Locked Formula Expressions 5 a_angcut 30 0	Displaying 128 of 128 (expressions		1	✓ Default Group					
Expression Groups Show All 3 a_alpha 41 41 0 • Angle Show Locked Formula Expressions S a_alphaservo 0 0 0 • Angle Enable Advanced Filtering S a_angcut 30 30 • Angle Actions • a_depthlev 26.4 26.4 mm< <	Show	All Expressions	-	2				mm	 Length 	-
Angle Show Locked Formula Expressions Image: Show Locked Formula Expression Image: Show Locked Formula Expres	expression Groups	Show All	•	3	a_alpha	41	41	۰	 Angle 	
Show Locked Formula expressions 5 a_angcut 30 30 0 0 Angle Leade Advanced Filtering 6 a_depth 30 30	Channel a sheed Form	SHOW AI	•	4	a_alphaservo	0	0	۰	 Angle 	
Image: Problem Advanced Filtering 	Show Locked Formula Expressions		5	a_angcut	30	30	۰	 Angle 		
7 a_depthlev 26.4 mm Length Actions 8 a_depthlnk 30 30 mm Length New Expression 9 a_Din 44 44 mm Length Create/Edit Interpart Expression 11 a_Dinplate1 225 225 mm Length 12 a_Dinplate2 2960 2960 mm Length 13 a_Dining 2960 2960 mm Length 14 a_Dout 66 66 mm Length 20pon Referenced Parts Im a_Doutplate2 301 mm Length 14 a_Doutplate1 66 66 mm Length 20pon Referenced Parts Im a_Doutplate2 301 3010 mm Length 19 a_Doutplate1 30 3010 mm Length 20pont Referenced Parts Im a_Doutplate2 3010 3010 mm Length 20 a_Doutplate2 a_Doutplate2 301 3010 mm Length	Enable Advanced F	iltering	T	6	a_depth	30	30	mm	 Length 	
Actions 8 a_depthlink 30 30 mm Length New Expression 9 a_Din 44 44 mm Length Create/Edit Interpart Expression 10 a_Dinplate1 2825 2825 mm Length Create Multiple Interpart Expressions 11 a_Dinplate2 2960 mm Length 13 a_Dout 66 66 mm Length 14 a_Dout 197 197 mm Length 15 a_Doutplate2 197 197 mm Length 16 a_Doutplate1 66 66 mm Length 17 a_Doutplate1 310 3101 mm Length 18 a_Doutplate2 315 3101 mm Length 19 a_Doutplate1 310 3101 mm Length 19 a_Doutplate2 3101 3101 mm Length 19 a_Doutplate2 3101 3101 mm Length 19 a_Doutplate2 <				7	a_depthlev	26.4	26.4	mm	 Length 	
New Expression 9 a_Din 44 44 mm<	Actions		^	8	a_depthlink	30	30	mm	 Length 	
Vew Expression 10 a_Dinlnk 44 44 mm Length Create/Edit Interpart Expression 11 a_Dinplate1 2825 2825 mm Length Create Multiple Interpart Expressions 12 a_Dinplate2 2960 mm Length Add Multiple Interpart Expressions 11 a_Dinplate2 2960 2960 mm Length Replace Expressions 11 a_Dout 66 66 mm Length Departed Parts 10 a_Doutplate2 197 197 mm Length Image: Part Expressions 11 a_Doutplate1 310 mm Length Image: Part Expressions 11 a_Doutplate2 310 310 mm Length Image: Part Expressions Length Image: Part Expressions Image: Part Expressions Image: Part Expressions Image: Part Expressions Length Image: Part Expressions Image: Part Expressions Image: Part Expressions Image: Part Expressions Length </td <td colspan="2" rowspan="2">New Expression</td> <td>1</td> <td>9</td> <td>a_Din</td> <td>44</td> <td>44</td> <td>mm</td> <td> Length </td> <td></td>	New Expression		1	9	a_Din	44	44	mm	 Length 	
Arreace/Edit Interpart Expression Image:			P2=	10	a_Dinlink	44	44	mm	 Length 	
Image: Construction of the system of the	Create/Edit Interpart Expression		<u></u>	11	a_Dinplate1	2825	2825	mm	 Length 	
Create Multiple Interpart Expressions Image: Specific Sp			P1-	12	a_Dinplate2	2595	2595	mm	 Length 	
Image: Second	Create Multiple Interp	art Expressions	1= P2=	13	a_Dinring	2960	2960	mm	 Length 	
Add Multiple interpart expressions Image: Second	Edit Multiple Interpart Expressions		(a)	14	a_Dinsp	15	15	mm	 Length 	
Replace Expressions Image: Second s			12	15	a_Dout	66	66	mm	 Length 	
Depen Referenced Parts Jpdate for External Change	Replace Expressions		P1=	16	a_Doutlev	197	197	mm	 Length 	
Depen Referenced Parts 18 a_Doutplate1 3410 mm Length Jpdate for External Change 19 a_Doutplate2 3351 3351 mm Length				17	a_Doutlink	66	66	mm	 Length 	
Jpdate for External Change	Open Referenced Part	5	2	18	a_Doutplate1	3410	3410	mm	 Length 	
	Undate for External Change	ange		19	a_Doutplate2	3351	3351	mm	 Length 	
	opuate for External change		C	2	2 1		1.00		- · · · ·	

Abbildung 44: Parameterliste

Abbildung 45: CAD Modell eines Biegelenkers

Abbildung 46: CAD Modell eines Hebels für die Ausführung mit Biegelenker

Abbildung 47: CAD Modell eines Hebels für die Ausführung ohne Biegelenker

Abbildung 48: CAD Modell eines Scherbolzens

7.2 Importieren der Parameter

Die in Kapitel 7.1 erstellte Baugruppe soll nun als Template für zukünftige Projekte dienen und mit weiteren Bauteilen ergänzt werden. Um daher künftig auch schnell eine Baugruppe generieren zu können, wurden in der NX12 Oberfläche zusätzliche User Buttons erstellt, mit welchen sich durch ein hinterlegtes Python Script alle Parameter automatisch einlesen lassen, Button "Create GV" (Abbildung 49). Mit "GV Close" und "GV Open" lassen sich die beiden Endpositionen darstellen (Abbildung 50). Nachfolgend ist der Python Code aufgelistet.

Abbildung 49: Zusätzliche Buttons in der Benutzeroberfläche

Abbildung 50: Leitapparat in geschlossener und geöffneter Position

```
NX 10.0.3.5
    Journal created by ravchr06 on Wed Jul 11 13:21:52 2018 W. Europe Daylight Time
2
  Option Strict Off
4
  Imports System
5
  Imports NXOpen
6
 Module NXJournal
8
 Sub Main (ByVal args() As String)
9
10
11 Dim theSession As NXOpen.Session = NXOpen.Session.GetSession()
12 Dim workPart As NXOpen. Part = theSession. Parts. Work
13
14 Dim displayPart As NXOpen.Part = theSession.Parts.Display
15
16 Dim FileName As String
17
18 FileName = workPart.Leaf
 FileName = replace (FileName, "/", " - ")
19
  'Msgbox (FileName)
20
```

7 UMSETZUNG IM CAD

```
21
  'Import Expressions from file
23
24
      Menu: Tools->Expressions...
25
26
  theSession . Preferences . Modeling . UpdatePending = False
28
  Dim markId4 As NXOpen. Session. UndoMarkId
29
  markId4 = theSession.SetUndoMark(NXOpen.Session.MarkVisibility.Visible, "Expression
30
      ")
31
  Dim expModified1 As Boolean
32
33
  Dim errorMessages1() As String
  Dim PathNameExpList As String
34
35
  PathNameExpList = "C:\temp\" & FileName & ".exp"
36
37
  On Error GoTo MissingFile
38
39
  workPart.Expressions.ImportFromFile(PathNameExpList, NXOpen.ExpressionCollection.
40
      ImportMode.Replace , expModified1 , errorMessages1)
41
  On Error GoTo 0
42
43
  theSession.Preferences.Modeling.UpdatePending = False
44
45
  Dim nErrs2 As Integer
46
  'nErrs2 = theSession.UpdateManager.DoUpdate(markId4)
47
48
49 Dim markId9 As NXOpen. Session . UndoMarkId = Nothing
  markId9 = theSession.SetUndoMark(NXOpen.Session.MarkVisibility.Visible, "Update
50
      Session")
51
52
  theSession.UpdateManager.DoInterpartUpdate(markId9)
53
  the Session . Update Manager . Do Assembly Constraints Update (markId9)
54
55
56
  Exit Sub
```

```
<sup>57</sup>
<sup>58</sup> MissingFile:
<sup>59</sup> Msgbox ("Filename " & PathNameExpList & " not found")
<sup>60</sup>
<sup>61</sup> End Sub
<sup>62</sup>
<sup>63</sup> End Module
```

Listing 1: Python Code zum Importieren der Parameter

Da für die vorliegende Arbeit ein Zeitplan von sechs Monaten vorgesehen war, stellt die Einbindung in das CAD-System hiermit den Abschluss der festgelegten Arbeitskette aus Abbildung 5 dar. Durch diese Vorgehensweise ist es künftig möglich einen raschen Entwurf des Leitapparates mit bereits optimierter Kinematik zu erhalten, wodurch es zu einer großen Kostensenkung kommt.

Durchaus könnte man hier direkt mit einer Folgearbeit anschließen, die Parametrisierung und Modellierung der Bauteile vertiefen um fertigungstechnische gerechte Detailzeichnung samt Stückliste zu generieren.

8 Zusammenfassung der Ergebnisse

Ergebnis aus der Kinematikoptimierung

In Tabelle 4 ist ein Vergleich von zehn Anlagen zwischen deren Baseline Design und einer Optimierung angeführt. Bei allen wurden die Optimierung der Kinematik sowie die Dimension des Hydraulikzylinders an die Grenzen gelegt, damit alle internen Vorgaben und Sicherheitswerte erfüllt werden. Die Optimierung der ersten Vergleichsanlage ergab eine Vergrößerung des Hydraulikzylindervolumens. Dies liegt darin begründet, dass für das ursprüngliche Design der Sicherheitswert unter dem vorgeschriebenen lag. Die Optimierung führte in diesem Fall zu einer Erhöhung des benötigten Hydraulikzylindervolumens. Dies verdeutlicht, dass das Parametrisierungstool auch dazu verwendet werden kann, die vorgeschriebenen Sicherheitswerte zu erreichen.

Die durchschnittliche Optimierungsdauer mit *HEEDS* liegt zwischen 45 und 60 Minuten, je nach verfügbarer Rechnerleistung des PCs. Da mit einer Optimierung eine Reduzierung des benötigten Hydraulikzylindervolumens von bis 25% erreicht werden kann, sollte diese auf jeden Fall bei zukünftigen Projekten angewendet werden.

Allerdings sollte beachtet werden, dass teilweise die Lenker stark verkürzt werden und dadurch kein Biegelenker mehr verwendet werden kann.

Ergebnis aus DOE

Wie in Tabelle 8 ersichtlich, ergab der Vergleich zwischen der Surrogate-Funktion und dem exakten Ergebnis eine Abweichung von rund 15%. Diese Abweichung ist für eine erste Vorauslegung durchaus vertretbar, da wie in Abbildung 37 gezeigt durch Eingabe der Geometrie und Belastung, die Ersatzfunktionen einen Spannungswert für die Kerbspannung liefert. Eine exakte Berechnung mittels Abaqus würde mit demselben Modell aus dem DoE circa 20 Minuten dauern. Die Rechenzeit variiert je nach PC-Leistung.

Durch Erweiterung mit zusätzlichen Designs könnte man die Abweichung durchaus senken, allerdings sollte dabei eine Abwägung zwischen Aufwand und Nutzen gemacht werden. Durch diese erfolgreich gewonnene Funktion könnte man Überlegungen anstellen, ein DoE auch bei weiteren Bauteilen anzuwenden.

Ergebnis aus Import in NX12

Das Importieren der Parameter in das Template Modell der Baugruppe bringt den Vorteil einer schnellen Visualisierung der Geometrie hinsichtlich Kollisionen in den beiden Endpositionen. Kollisionen mit diversen Anbauten am Turbinendeckel oder etwaigen Rohrleitungen für die Ölversorgung der Lager oder Drainageleitungen werden hierbei nicht berücksichtigt und sind separat zu untersuchen.

Bei den verwendeten Komponenten der Template Baugruppe handelt es sich nur um erste Entwürfe. Änderungen beziehungsweise Ergänzungen durch den Konstrukteur sind notwendig. Künftig könnten die Baugruppe um den Turbinendeckel erweitert oder auch die Bauteile detaillierter gestaltet werden.

9 Beantwortung der Forschungsfragen

- Ist mit einem mathematischen Optimierungsverfahren eine Idealauslegung der Antriebseinheit hinsichtlich Ölhaushalt möglich?
 - Ja, das benötigte Ölvolumen lässt sich durch den Einsatz eines Optimierungsverfahrens reduzieren. Wie in Tabelle 5 angeführt, wären für die getesteten Referenzanlagen Einsparungen von bis zu -25% möglich.
- Führt der Einsatz eines parametrisierten Modells zu Effizienzvorteilen (Zeitersparnis, Kostenreduktion)?
 - Ja, durch den Einsatz eines parametrisierten Modells lassen sich frühzeitig etwaige Kollisionen der Bauteile aufdecken. Dies verhindert im späteren Projektstatus Kosten- und Zeitintensive Korrekturen.
- Lässt sich die Optimierung bei unterschiedlichen Bauarten von Wasserkraftanlagen beliebig einsetzen?
 - Ja, die Optimierung lässt sich f
 ür alle Bauarten mit einem ebenen Leitapparat anwenden.

10 Anhang

Zum besseren Verständnis ist nachfolgend ein Rechenbeispiel angeführt, in welchem die grundlegende Überlegung der Kinematikrechnung veranschaulicht wird.

Bei allen Werten und Faktoren handelt es sich um frei gewählte. Diese repräsentieren in keiner Weise jene, welche bei AH verwendet werden! The following calculation for the guide vane mechanism is used to check the Excel calculation and to better understand them.

All occurring values and factors, with the exception of constants, are freely selected and do not originate from any completed or ongoing project of ANDRITZ HYDRO GmBH!

choosen values	
$H_{lever} := 450 mm$	length of lever
$L_{rod} := 380 mm$	length of bending link
<u>given values</u>	
H _{stat} := 70m	static head
$H_{dyn} \coloneqq 100m$	dynamic head
$D_2 := 3500 mm$	runner outlet diameter
D _z := 4200mm	guide vane circle diameter
$D_{reg} := 3000 mm$	regulatingring bolt circle diameter
$\gamma_{h0} \coloneqq 50^{\circ}$	inclination between lever axis and radial in closed position
E := 206000MPa	youngs modulus
$\mu := 0.15$	friction coefficient for steel - compound
$z_{link} := 1$	number of links
$\rho \coloneqq 1000 \frac{\text{kg}}{\text{m}^3}$	density of water
$g_{grav} := 9.81 \frac{m}{s^2}$	acceleration due gravity
$z_0 := 20$	number of guide vanes
$B_0 := 1000 mm$	distributor height
$R_1 := 350 mm$	distance guide vane axis to nose
$R_2 := 320 mm$	distance guide vane axis to tail

$L_{BA} := 100 \text{mm}$	length bearing A
$L_{BB} \coloneqq 100 \text{mm}$	length bearing B
$L_{BC} \coloneqq 100 \text{mm}$	length bearing C
$A_{\text{profil}} \approx 63975 \text{mm}^2$	crosssection area of the guide vane blade
$I_{\min} := 69035994 \text{mm}^4$	min. moment of inertia, guide vane blade
$t_{max} := 130 mm$	max. thickness of the guide vane blade

length of the guide vane acc. to sketch	diameter of the guide vane acc. to sketch
$l_{w0} := 77.25 mm$	d _{wg0} := 180mm
$l_{w1} := 97.75 mm$	$d_{wg1} := 240 mm$
$l_{w2} := 663.75 \text{mm}$	$d_{wg2} := 0 mm$
$l_{w3} := 1229.75 \text{ mm}$	$d_{wg3} := 0$ mm
$l_{w4} := 1249.25 \text{mm}$	$d_{Wg4} := 240 mm$
l _{w5} := 1351.5mm	$d_{wg5} := 180 \text{mm}$
$l_{w6} := 1453.75 \text{mm}$	$d_{wg6} := 180 \text{mm}$
l _{w7} := 1961.25mm	$d_{wg7} := 150 mm$
$l_{w8} := 1998.75 \text{mm}$	$d_{wg8} := 160 mm$
l _{w9} := 2036.25mm	$d_{wg9} \coloneqq 160 \text{mm}$
$l_{w10} := 2107.4 \text{mm}$	$d_{wg10} \coloneqq 125 mm$
SNIL C = 1.4	safety factor for normal load case

SNLC - 1.4	
$S_{ELC} \coloneqq 1.1$	safety factor for exceptional load case
$S_{Buckling} = 3$	safety factor against buckling
$S_{servofric} := 7.5\%$	loss factor in the servomotor due internal friction

$$i := 1 .. 10$$
 ... calculation steps

		0	
	0	50	
	1	48	
	2	44	
	3	40	
$\gamma_i \coloneqq \gamma_{h0} - \alpha_i =$	4	34	×
	5	25	
	6	20	
	7	16	
	8	12	
	9	9	

$F_A := -216.14$ kN	bearing load A	calculated bearing loads
$F_B := -334.76$ kN	bearing load B	from external spreadsheet
$F_C := 27.96 kN$	bearing load C	
$F_{req} \approx 34.24 kN$	introduced force from lever	

servomotor data

$R_{servo} := 1600 mm$	radius of servomotor connection on regulating ring
$p_{\min} \approx 130 bar$	min. operating pressure
$p_{max} := 150 bar$	max. operating pressure
$z_s := 2$	number of servomotors
L _k := 2500mm	length of piston rod in middle position

start calculation of the guide vane kinematic

$$R_{L\gamma i} := \sqrt{\left(\frac{D_z}{2}\right)^2 + H_{lever}^2 - 2 \times \frac{D_z}{2} \times H_{lever} \times \cos(\gamma_{h0} - \alpha_i)} = \begin{pmatrix} 0 \\ 0 \\ 1843.27 \\ 1 \\ 2 \\ 1803.59 \\ 3 \\ 1778.95 \\ 4 \\ 1745.17 \\ 5 \\ 1702.81 \\ 6 \\ 1684.19 \\ 7 \\ 1672.04 \\ 8 \\ 1662.47 \\ 9 \\ 1657.04 \end{pmatrix} \times mm$$

8

9

108.91

107.95

$$\psi_{i} := \operatorname{acos} \left[\frac{\left(\frac{D_{reg}}{2} \right)^{2} + L_{rod}^{2} - R_{L}\gamma_{i}^{2}}{2 \times L_{rod}^{2} - R_{L}\gamma_{i}^{2}} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 151.65 \\ 1 \\ 146.76 \\ 2 \\ 138.86 \\ 3 \\ 132.51 \\ 4 \\ 124.84 \\ 5 \\ 116.3 \\ 6 \\ 112.82 \\ 7 \\ 110.61 \end{array} \right] \times \left[\begin{array}{c} 0 \\ 0 \\ 151.65 \\ 1 \\ 146.76 \\ 2 \\ 138.86 \\ 3 \\ 132.51 \\ 4 \\ 124.84 \\ 5 \\ 116.3 \\ 6 \\ 112.82 \\ 7 \\ 110.61 \end{array} \right]$$

$$\rho_{i} = \beta_{i} + \varepsilon_{i} \qquad \rho_{i} := \arccos \left[\frac{H_{lever}^{2} + R_{L\gamma i}^{2} - \left(\frac{D_{z}}{2}\right)^{2}}{2 \cdot R_{L\gamma i} \cdot H_{lever}} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 119.22 \\ 1 \\ 2 \cdot R_{L\gamma i} \cdot H_{lever} \end{array} \right] \times \left[\begin{array}{c} 2 \\ 2 \\ 3 \\ 5 \\ 148.59 \\ 6 \\ 154.76 \\ 7 \\ 159.75 \\ 8 \\ 164.77 \\ 9 \\ 168.57 \end{array} \right] \times \left[\begin{array}{c} 0 \\ 0 \\ 119.22 \\ 1 \\ 121.47 \\ 2 \\ 126.02 \\ 3 \\ 130.64 \\ 4 \\ 137.71 \\ 5 \\ 148.59 \\ 6 \\ 154.76 \\ 7 \\ 159.75 \\ 8 \\ 164.77 \\ 9 \\ 168.57 \end{array} \right]$$

$$\beta_i := \rho_i - \varepsilon_i = \begin{bmatrix} 0 \\ 0 \\ 96.49 \\ 1 \\ 94.76 \\ 2 \\ 92.85 \\ 3 \\ 92.21 \\ 4 \\ 92.84 \\ 5 \\ 96.43 \\ 6 \\ 99.58 \\ 7 \\ 102.64 \\ 8 \\ 106.17 \\ 9 \\ 109.12 \end{bmatrix} \times^8$$

		0	
	0	5.16	
	1	3.99	
	2	2.01	
	3	0.3	
$\Omega_{new} \coloneqq \eta_i - \sigma_i =$	4	-2	×
	5	-5.13	
	6	-6.76	
	7	-8.03	
	8	-9.26	
	9	-10.17	

15.33

9

rotation angle of regulating ring

Stroke :=
$$\left| R_{\text{servo}} \times \sin\left(\frac{\Omega_{\text{ai}_9}}{2}\right) \right| \times 2 = 427 \times \text{mm}$$

operating moments and forces

GVT _{cl} := M _i – T _{fric} =	0 0 -822 1 326 2 1191 3 1905 4 2971 5 925 6 -1778 7 -4647 8 -8149 9 -10798	хVжn	GVT _{op} := M _i + T _{fri}	$c = \frac{4}{5}$	0 14724 12762 8825 9195 9741 6971 6971 3818 639 -3209 -6134	} - - - - -
$F_{rescl} := \frac{GVT_{cl}}{H_{lever} \times in(\beta_i)}$	0 0 -183 1 72 2 264 3 423 4 661 5 206 6 -400 7 -1058 8 -1885 9 -2539	8.43 6.96 9.94 6.48 0.35 N H 8.58 6.96 3.12 4.74 6.27	$F_{circcl} \coloneqq \overline{\left(F_{rescl} \times cos(\psi_i - 90^\circ)\right)}$	$= \frac{0}{1}$ $= \frac{4}{5}$ $= \frac{6}{7}$ $= \frac{9}{5}$	0 -873 399 1743 3123 5426 1854 -3693 -9906 -17837 -24160	N
$F_{radcl} := \overline{(F_{rescl} \times in(\psi_i - \psi_i))}$	$(-90^{\circ})) = \frac{1}{4}$ $(-90^{\circ})) = \frac{4}{5}$ $(-90^{\circ})) = \frac{4}{5}$ $(-90^{\circ})) = \frac{4}{5}$ $(-90^{\circ})) = \frac{1}{5}$ $(-90^{\circ})) = \frac{1}{5}$ (-90	0 -1618 608 1996 2863 3776 917 -1554 -3726 -6110 -7828	Ν			

	0			0
0	32931			15640
1	28458		1	15601
2	19635		2	12019
GVT _{op} 3	20449		2	12910
$F_{resop} := \frac{op}{H_r} = 4$	21673	N $F_{\text{simple}} := \overline{(F_{\text{rescen}} \times \cos(\psi_i - 90^\circ))} =$		17780 N
$11 \text{lever}^{\text{sm}}(\rho_1)$ 5	15589		5	13975
6	8604		6	7931
7	1455		7	1362
8	-7425		8	-7024
9	-14427		9	-13724
$F_{radop} \coloneqq \overline{\left(F_{resop} \times in(\psi_i - 90^\circ)\right)}$	$\vec{)} = \frac{0}{1}$ $\vec{2}$ $\vec{3}$ $\vec{4}$ $\vec{5}$ $\vec{6}$ $\vec{7}$ $\vec{8}$ $\vec{9}$	28980 23801 14788 13817 12381 N 6908 3337 512 -2406 -4447		
$F_{servocl} \coloneqq F_{circcl} \approx_0 \times \frac{D_{reg}}{2 \Re_{servol}}$	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ - \\ - \\ 4 \\ 5 \\ 6 \\ 7 \\ - \\ 8 \\ - \\ 9 \\ \end{array} $	-16.37 7.47 32.69 58.56 101.73 34.77 -69.25 185.73 334.45 -453		

$$F_{servoop} := F_{circop} \approx_{0} \times \frac{D_{reg}}{2 \times R_{servo}} = \frac{0}{4} \frac{0}{0293.24} \\ \frac{1}{2} \frac{292.51}{2242.21} \\ \frac{3}{282.65} \\ \frac{4}{333.54} \frac{333.54}{5262.03} \\ \frac{6}{6} \frac{148.71}{725.54} \\ \frac{8}{9} -257.33 \end{array}$$

Servomotor Layout Design

$$F_{servoreq} := \min(F_{servocl}) = -452.998 \text{ kN} \qquad \qquad \dots \text{ min. required servomotor force}$$

$$A_{req} := \frac{|F_{servoreq}| \cdot \$_{NLC} \cdot (1 + \$_{servofric})}{p_{min}} = 5.244 \times 10^4 \text{ smm}^2 \quad \dots \text{ min. required servomotor area}$$

$$D_{pc_predesign} := \sqrt{\frac{4 \times A_{req}}{\pi \times z_s}} = 182.7 \text{ smm} \qquad \dots \text{ min. piston diameter}$$

$$D_{pc} := 190 \text{ mm} \qquad \dots \text{ choosen piston diameter}$$

$$D_{pc} := 190 mm$$

$$F_{\text{servomax}} \coloneqq \frac{D_{\text{pc}}^2 \times \pi}{4} \times p_{\text{max}} = 425.293 \times \text{N} \qquad \dots \text{ max. servomotor force}$$

$$d_{rod_predesign} \coloneqq \sqrt{\frac{\left(3.64 \times F_{servomax} \times L_k^2\right)}{\pi^3 \times E}} = 94.545 \times nm$$

$$d_{rod} := 100mm$$

$$J_{rod} := \frac{\pi \times d_{rod}^{4}}{64} = 4.909 \times 10^{6} \times mm^{4}$$

... choosen piston rod diameter

... min. piston rod diameter

```
... polar moment of
inertia piston rod
```

$$A_{rod} := \frac{\pi \times d_{rod}^2}{4} = 7.854 \times 10^3 \times mm^2$$
$$i_{min} := \sqrt{\frac{J_{rod}}{A_{rod}}} = 25 \times mm$$

 $L_{buck} := L_k + 0.5$ Stroke = 2713×mm

$$\lambda := \frac{L_{\text{buck}}}{i_{\text{min}}} = 108.53$$

$$\sigma_{\text{tet}} := (335 - 0.62 \text{A}) \text{APa} = 268 \text{APa}$$

... area of pistonrod

... radius of inertia

... buckling length

... slenderness factor

... allowable tension according to Tetmajer

$$\begin{split} \sigma_k &:= \frac{\pi^2 \cdot E}{\lambda^2} = 173 \cdot MPa & \sigma_d := \frac{\frac{D_{pc}^2 \cdot \pi}{4} \cdot p_{max}}{A_{rod}} = 54.15 \cdot MPa & \dots \text{ compression} \\ \hline \\ S_{buck} &:= \frac{\sigma_k}{\sigma_d} = 3.187 & \dots \text{ safety against buckling} \\ F_u &:= z_s \cdot \frac{D_{pc}^2 \cdot \pi}{4} \cdot p_{min} = 737.175 \cdot MN & \dots \text{ circumference force} \\ F_{rb} &:= \frac{F_u \cdot R_{servo}}{D_{reg}} = 39315.985 \, N & \dots \text{ regulating bolt force} \\ \hline \\ T_{servocl} &:= -F_{rb} \cdot H_{lever} \cdot \frac{\sin(\beta_l)}{\cos(\psi_l - 90^\circ)} = \frac{0}{4} \cdot \frac{0}{2.2398 \cdot 104} \cdot \frac{1}{4} \cdot \frac{1}{2.2153 \cdot 104} \cdot N \cdot m & \dots \text{ torque due to servomotor} \\ \hline \\ \end{array}$$

7

8

9

-1.844[.]10⁴

-1.796.104

-1.757·10⁴

guide vane opening angle [°]

Abbildungsverzeichnis

1	Stromerzeugungsmix in Österreich [9]	2
2	Bruttostromerzeugung in Österreich [2]	2
3	Schematische Darstellung einer Pumpspeicheranlage - Vianden, Luxembourg [1]	3
4	Rule of Ten[3]	4
5	Ablauf der Vorauslegung	5
6	Turbinenschnitt eines Maschinensatzes [10]	6
7	3D-CAD Baugruppe eines Leitapparates	7
8	Funktionsweise Leitapparat	8
9	Leitapparat[4]	9
10	Leitschaufelgeometrie	10
11	Einwirkende Momente auf die Leitschaufel	11
12	Vereinfachte Skizze der Leitschaufel für die Auflagerberechnung	12
13	Darstellung der Auflagerkräfte in CAE	15
14	Skizze für die Umrechnung des Leitschaufelmoments auf die Hydraulikzylin-	
	derkraft	16
15	Mögliche Anordnungen der Hydraulikzylinderen	18
16	Anordnung der Hydraulikzylinderen bei Schiefstellung	20
17	Transformation der Kräfte	21
18	Winkel φ zwischen der Hydraulikzvlinderkraft und der radialen Komponente .	22
19	Geometrie bei Anordnung 3 der Hydraulikzylinderen	23
20	Spannungszustände am Biegelenker	26
21	Ausknicken des Biegelenkers	27
22	Skizze des Hebels für die Bauform mit Biegelenker	27
23	Skizze des Hebels für die Bauform ohne Biegelenker	29
24	Zusammenbau von Leitapparat und Hebel-Lenker-Verbindung [7]	30
25	Skizze eines Scherbolzens	31
26	HEEDS - Process Tab	34
27	HEEDS - Parameter Tab	35
28	HEEDS - Run Tab	35
29	Verschiedene Formen einer Paretofront	36
30	Turbinenbauart in Abhängigkeit der Fallhöhe und spezifischen Drehzahl[11]	38
31	Begriffe des Biegelenkers	44
32	Skizzen des Biegelenkers in Abagus	45
33	Bestimmung des Winkels &	46
34	Vernetztes CAE Modell des Biegelenkers	46
35	CAE Modell des Biegelenkers mit analytischer Fläche	47
36	CAE Modell des Biegelenkers im Postprocessing	47
37	Ergebnis der DOE als Surrogate Funktion in Excel	49
38	Verschiedene Modelle des Biegelenkers während der DoE Studie	50
39	Beispiel des General Sheet im PaCS	53
40	Beispiel des ASM-Group Sheet im PaCS	54
41	Beispiel des Worktable Sheet im PaCS	55
42	Vereinfachte Baugruppe des Leitapparates	57
43	Parameterskizze des Biegelenkers	58
44	Parameterliste	58
45	CAD Modell eines Biegelenkers	59
	······································	

46	CAD Modell eines Hebels für die Ausführung mit Biegelenker	59
47	CAD Modell eines Hebels für die Ausführung ohne Biegelenker	59
48	CAD Modell eines Scherbolzens	60
49	Zusätzliche Buttons in der Benutzeroberfläche	60
50	Leitapparat in geschlossener und geöffneter Position	61

Tabellenverzeichnis

1	Van 1-1-1- day Audia and with a main than UNA Van falanan and CAE Dash your a	14
T	Vergleich der Auflagerkräfte zwischen UM-verfahren und CAE Kechnung	14
2	Knickung nach Tetmajer - Werkstoffkonstanten	25
3	Ergebnis der RMS Rechnung	39
4	Vergleich zwischen ausgeführten Anlagen und deren Optimierung	40
5	Differenz Hydraulikzylindervolumen und Abweichung	41
6	Designgrenzen als Abmessungen ausgeführter Biegelenker	43
7	Designgrenzen als Verhältnis zueinander	43
8	Auswertung der Surrogate Funktion und Vergleich mit dem exakten Ergbnis aus	
	der CAE Rechnung	51

Literatur

- [1] URL: https://www.andritz.com/products-en/hydro/markets/large-new-installations, 11-10-2019.
- [2] *Energie in Österreich 2018 Zahlen, Daten, Fakten.* Bundesministerium für Nachhaltigkeit und Tourismus, 11-10-2019.
- [3] URL : https : //www.sixsigmablackbelt.de/wp content/uploads/2013/05/Fehlerkosten 10 er Regel.png, 08 10 2019.
- [4] URL: https://naguassembly.ch/portfolio.php?lin=deu, 08-10-2019.
- [5] URL : https : //www.plm.automation.siemens.com/global/de/products/simcenter/simcenter heeds.htm, 08 10 2019.
- [6] URL: https://de.wikipedia.org/wiki/Pareto-Optimum, 11-10-2019.
- [7] URL : https : //muskrat falls.nalcorenergy.com/wp content/uploads/2015/08/Independent Engineers China Andritz Hydro Plant March 2015 Site Visit_Reported August 2015.pdf, 16 10 2019.
- [8] URL: https://www.erneuerbare-energie.at/wasserkraft, 14-03-2020.
- [9] URL: https://oesterreichsenergie.at/stromerzeugung-231.html, 14-03-2020.
- [10] Univ.Prof. Dipl.-Ing. Dr.-Ing. C. Bauer. VORLESUNGSSKRIPTUM Hydraulische Maschinen und Anlagen I & II. TU Wien - Institut f
 ür Energietechnik und Thermodynamik - E302, 10.2016.
- [11] Prof. Dr.-Ing. Valentin Crastan. Elektrische Energieversorgung 2. Springer-Verlag Berlin Heidelberg, 2012. ISBN 978-3-642-19855-7.
- [12] Robert Gasch. Strukturmechanik Das Verfahren der Übertragungsmatrizen. Springer, Berlin, Heidelberg, 02.10.2012. ISBN 978-3-540-88976-2.
- [13] Univ. Prof. Dr. Georg Kartnig. *Skriptum zur Vorlesung Grundlagen der Konstruktionslehre*. TU Wien Institut für Konstruktionswissenschaften und Produktentwicklung E307, 2019.