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Foreword

The third edition of the Patent Text Mining and Semantic Tech-
nologies (PatentSemTech’22) workshop series was held as a full-day hybrid
event in conjunction with the SIGIR 2022 conference. The workshop focused
on research and new developments from relevant fields such as Natural Lan-
guage Processing, Text and Data Mining and Semantic Technologies applied
to Patent Retrieval and Patent Analytics.

The workshop’s main aim was to address the adaptation of existing Natural
Language Processing (NLP) methods, Machine Learning and Deep Learning-
based tools (ML/DL) to the search and analytics of patent data. The challenge
in this domain is that patent data is complex in content, contains lengthy doc-
uments, and provides a heterogeneous type of scientific text that covers diverse
scientific subject areas, like chemistry, pharmacology, engineering, communica-
tion technologies, etc. Therefore, patent data is, compared to general language
text corpora, more difficult to analyse. Processing patent data has multiple
facets that should be exploited to obtain good results:

• It constitutes a huge corpus of scientific-technical documents for a variety
of technological domains,

• They are rich in available meta-data such as spatial data, bibliographic
data, classifications, temporal data, etc.

• Patents describe essential scientific-technical knowledge enclosing solu-
tions for real-world applications,

• They are complementary knowledge to scientific literature, e.g. chemical
and physical properties, bio-science knowledge for drug-target-interaction,
which appears first in patents, mostly not published elsewhere

During the full-day event at SIGIR 2023, a number of 2-4 page contributions
were presented and discussed. The contributions were screened for relevancy
and quality by the workshop organizers. The workshop included a keynote
contribution given by Henry (Jamie) Holcombe, Chief Information Officer (CIO)
at the United States Patent and Trademark Office (USPTO), who presented the
Office’s long term strategies for managing the large number of patent documents
in an efficient way. The workshop concluded with a lively discussion round where
all the participants expressed their ideas and possible solutions to the challenges
of working with patent data.

Germany, Austria, USA, July 2022 Ralf Krestel,
Hidir Aras,

Linda Andersson,
Florina Piroi,

Allan Hanbury,
Dean Alderucci

Copyright © 2022 for this text by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY-NC-ND 4.0).
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ABSTRACT
With the rapid growth of chemical patents, there is increasing de-
mand for automated extraction of information relating to chemical
compounds and their synthesis from patents. Although there are
existing models that can extract chemical entities and reaction
events, these have significant practical limitations. First, they typi-
cally cannot process a full patent document, targeting short texts
containing only reaction descriptions. Second, they neglect reaction
texts where steps in the reaction are elided through reference to
other reactions. To address these issues, we propose an integrated
and comprehensive chemical reaction extraction system consisting
of a pipeline of components for reaction detection, chemical named
entity recognition, event extraction, anaphora resolution, reaction
reference resolution, and table classification.

CCS CONCEPTS
• Computing methodologies → Information extraction.

KEYWORDS
information extraction, named entity recognition, event extraction, 
anaphora resolution, chemical reactions, patent text mining
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1 INTRODUCTION
The discovery of new chemical compounds is a key driver of the
chemistry and pharmaceutical industries, inter alia. Patents serve
as a critical source of information about new chemical compounds,
providing timely and comprehensive information about new chem-
ical compounds [1, 2]. Despite the significant commercial and re-
search value of the information in patents, manual effort is still the
primary mechanism for extracting and organizing this information.
This is costly, considering the large volume of patents available
[11]. Development of automatic natural language processing (NLP)
systems for chemical patents, which aim to convert text corpora
into structured knowledge about chemical compounds, has become
a focus of recent research [9, 10].

In this study we consider a system that focuses on chemical reac-
tion processes described in chemical patents. A chemical reaction
is a process leading to the transformation of one set of chemical
substances to another. A full reaction requires at least the starting
materials and the final product to be defined, and usually includes
information such as reagents, catalysts, and experiment conditions
to further describe the reaction. Our overarching objective is to
enable the automatic identification of each reaction described in a
complete patent document, and to fully characterize each reaction
by extracting each relevant component.

2 SYSTEM OVERVIEW
To perform end-to-end extraction of chemical reactions from full
patents, we define a pipeline of interconnected NLP tasks.

Reaction snippet detection: We first need to locate reaction de-
scriptions in a patent, for processing in downstream tasks. We
formulate this task as a paragraph-level sequence tagging problem,
where a patent is given as a sequence of paragraphs and the task
is to detect a span of contiguous paragraphs describing a single
chemical reaction. We train a BiLSTM-CRF model for this task on
the dataset described in [13] using the same experimental settings.

Chemical NER:. Using the reaction snippets extracted from full
patents, the task to identify chemical entities and their roles in a
chemical reaction can be formulated as named entity recognition

2
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(NER). We train a BERT-CRF model for this task using the annota-
tion schema and data for chemical NER task detailed in [7, 8].

Event extraction: A chemical reaction usually consists of an or-
dered sequence of event steps that either transforms a starting mate-
rial into a product or just purifies or isolates a chemical substance.
An event is characterised by (a) a trigger word that flags its occur-
rence, and (b) a relation connecting the trigger word and chemical
entities involved in the event. For this task, we use a BERT-CRF
model to extract trigger words and chemical entities from snippets
and borrow ideas from the span-based BERT model in [5]. In this
approach, all pairs of trigger words and entities are enumerated,
BERT is applied to obtain the contextualized representation of each
relevant token, and a classifier decides the nature of the relation
between them using pooling of token representations.

Anaphora resolution: There are rich anaphoric relations between
and within event steps. We consider two main types of anaphoric
relations defined in [6]: coreference, where two mentions refer
to the same entity, and bridging, linking a chemical compound
and its source. We decompose this task into (a) anaphor mention
detection and (b) relation classification. We use a BERT-CRF model
for mention detection. For relation classification, we adopt the
span-based BERT model proposed in [4].

Reaction reference resolution: So far, we have assumed that a re-
action snippet contains the complete information of a chemical
reaction. However, chemical patents often detail several similar
compounds that have a common substructure and can be synthe-
sized in analogous ways. They contain many references connecting
descriptions of similar chemical reactions, to avoid redundancy in
describing common reaction conditions. This leads to the problem
of identifying references from an incomplete snippet to others. Here,
we use the model proposed in [12], first determining if a snippet
has others that refer to it, and then enumerating possible reference
pairs of snippets and classifying them.

Table classification: Apart from text paragraphs, a large amount
of information in patents is represented in tables and images. Here,
we focus on identifying tables containing chemical reaction proper-
ties such as starting materials, products, yields, etc. To differentiate
tables of interest from others, we train a Table-BERT classifier [3]
on the ChemTables data [14]. The model first concatenates all to-
kens within all cells from the table and then takes the flattened
table as input. For tables classified into reaction properties category,
we further extract reactions based on the table header if there are
sufficient information describing reactions.

3 DISCUSSION
We have introduced the essential requirements for building a com-
prehensive chemical reaction extraction system covering a wide
range of tasks. We have proposed an initial approach for each step
leveraging existing data resources from the ChEMU shared tasks,
illustrating how the individual tasks can be brought together into a
coherent whole. This integration addresses two key limitations of
previous studies: our system can process full patent documents di-
rectly, and we can find the snippets an incomplete reaction snippet
refers to. We leave performance evaluation of individual steps, as

well as the complete system, to a more in-depth presentation. In the
future, we plan to further develop this framework to extract com-
plete reaction information by incorporating inference over reaction
references, and to extend the scope of our system to handle images
and chemical structures. Opportunities also exist to explore joint
modelling or multi-task learning across the constituent tasks in this
pipeline, for instance coupling NER and anaphora resolution.
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1 INTRODUCTION
Extracting references from the unstructured text of patents is of

great importance for those who study the link between science and

technology. The scientific references (citations) in patents provide

valuable information for investigating the impact of science on

technological advances. For example, the features of a scientific

paper that would lead to technological advances can be extracted.

We divided the task of identifying patent–science references into

two main steps namely (1) reference extraction and (2) reference

matching. In the first step, we need to extract the string of the ref-

erences from the unstructured text of the patents and in the second

step we need to match the extracted reference string to a database

of scientific papers. In the first step, the key point is extracting

all of the in-text references from the patent’s text. Consequently,

improving the recall is of a higher value than precision because the

wrong extracted references would be omitted in the second step

when they do not match with any publication.

In this work, we are going to improve the BERT-based reference

extraction model from prior work [7] by (1) using multiple pre-

trained BERT models, including patent-specific models, (2) using a

more effective method for sequence splitting, (3) investigating the

impact of down sampling on our model to cope with the class imbal-

ance, (4) and annotating a larger dataset for training the model on

the reference extraction task. We will collect a large size dataset that

links the in-text references of the USPTO and EPO patents dataset

Published in "Proceedings of The 3rd Workshop on Patent Text Mining and
Semantic Technologies (PatentSemTech 2022)", Eds. H. Aras, R. Krestel, F. Piroi,
L. Andersson, A. Hanbury, D. Alderucci, PatentSemTech 2022, 15 July 2022,
Madrid, Spain. https://doi.org/10.34726/3550 | © Authors 2022. CC BY-NC-ND 4.0
License.

to scientific publications. In this extended abstract we present our

on-going work, including the results for step (1)-(3) and our plans

for step (4).

2 OUR REFERENCE EXTRACTION METHOD
We consider the reference extraction problem as a sequence labeling

task, following prior work [6, 7]. The goal of reference extraction

is to predict the beginning and inside tokens of a reference in

the input patent text. To this aim, we utilize pre-trained language

models like BERT-base [2], SciBERT [1], PatentBERT [3], BERT for

patents [5], and BioBERT [4]. We added an additional classification

layer on top of these models for classifying each token as ‘I’ (inside

of a reference), ‘B’ (beginning of a reference), and ‘O’ (outside of

reference). The PatentBERT model is generated by fine-tuning the

BERT-base model on the claims of the USPTO patent dataset for

the patent classification task. While the BERT for patents model

is generated by further pre-training the BERT-large model on the

whole text of patents including description, abstract, and claims.

Sequence splitting. Having the texts of patents, we generate the

samples by segmenting the text into a sequence of 𝑛 tokens. The

number 𝑛 is calculated in a way that ensures the length of sub-

tokens will not exceed the maximum length for the model’s input.

We selected the maximum length of 512 for the model’s input in

our experiments because this is the maximum sequence length in

BERT. Compared to prior work, which used sentence splitting [7],

our longer sequences provide more context information for the

model. First, we tokenize the whole patent text, using the tokenizer

of the corresponding pre-trained model to obtain the number of

sub-tokens (|𝑡 |) for each token 𝑡 . Then, we select each sequence as

follows:

{𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑛} : max

𝑛
|𝑡1 | + |𝑡2 | + |𝑡3 | + ... + |𝑡𝑛 | <= 512 (1)

Downsampling. As the occurrence of references in patent texts is

relatively sparse, we have many sequences with no references. We

used down sampling to remove the sequences with no reference

in our train set. With down sampling, the models train faster and

more robustly. Our experiments reveal a boost in the performance

of the model with down sampling.

Data. We use the annotated 22 patents dataset collected by [6]

from Google Patents. All patents in this sample have IPC class C12N

and were published in 2010. Each token in this dataset was hand-

labeled with IOB labels. The whole dataset includes 2,318 ‘B’ tokens

(thus 2,318 references) and 32,359 ‘I’ tokens. After segmentation

in sequences, we converted the dataset of 22 patents into 14,270

sequences where 8,530 of them had no ‘B’ or ‘I’ labels.

4
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Table 1: Results of experiments on effect of down sampling
using BERT-base on 22 patents dataset.

Down Sampling Label Precision Recall

True

B 0.884 0.922

I 0.967 0.966

False

B 0.880 0.919

I 0.959 0.964

3 EXPERIMENTS AND RESULTS
We evaluated our models using Leave-One-Out Cross-Validation

(LOOCV). We implemented our models using the HuggingFace

framework (here is our source code
1
). We train our models for six

epochs with the learning rate of 10
−4
.

The effect of downsampling. The results of this experiment are

shown in Table 1. The table shows that down sampling results in

higher recall and precision. By applying down sampling, the model

trained more smoothly. The sequences with no reference are less

informative for the model and the long sequences with 512 tokens,

provide enough context for the model to recognize the references.

Comparing BERT models. The result of these experiments is

shown in Table 2. We used SciBERT, BioBERT, and PatentBERT

models which are based on BERT-base while the BERT for patents

model is based on the BERT-Large model and it was further pre-

trained on patent data. All of the models except the PatentBERT

and the BERT for patents model were ‘cased’, which means that

upper- and lowercase has been retained on those models. As shown

in the tabel, SciBERT outperforms the other models in the recall and

BERT for patents outperforms the rest of the models in precision.

The superb performance of the SciBERT model can be due to the

fact that SciBERT is also fine-tuned with sequence tagging tasks

on scientific texts. The Patent-BERT model does not outperform

the SciBERT and the BERT for patents models. This can be because

it is only fine-tuned on the claims of the patents and the claims do

not include any references. In addition, for the in-text reference

extraction task the case of the tokens is a very informative. This

fact can explain the lower performance of Patent-BERT.

Finally, we observe that our BERT for patents model outperforms

the previous work on the 22 patents dataset with 1.4% point on ‘B’

precision and our SciBERT model outperforms the baseline with

1.4% and 1.0% on ‘B’ recall and ‘I’ recall, respectively.

4 DISCUSSION AND FUTUREWORK
The results of our model, as shown in Table 2, depicts almost perfect

scores (Recall is 96.8% for B-labels and 98.6% for I-labels). How-

ever, this great improvement and results are based on small scale

evaluation on a single-domain sample. In order to have a large

scale and complete evaluation, we plan to further improve our

reference extraction model using a larger and more diverse set

of training dataset. We draw a random sample of (between 500

and 1000 patents) EPO and USPTO patents from all technological

fields. We have hired student assistants to read through the patent

full texts and manually label in-text reference strings. We have re-

cruited 8 students for 4 weeks in June and 10 hours per week. This

1
https://github.com/ZahraAbbasiantaeb/Patent-in-text-reference-extraction

Table 2: Results of evaluation on 22 patents dataset. The
baseline SciBERTmodel was trained without down sampling
and on shorter sequence lengths (sentences).

Model Label Precision Recall

BERT-base

B 0.884 0.922

I 0.967 0.966

SciBERT (base)

B 0.954 0.968
I 0.980 0.986

BERT for patents (large)

B 0.961 0.965

I 0.983 0.978

Patent-BERT (base)

B 0.945 0.963

I 0.979 0.970

BioBERT (base)

B 0.952 0.962

I 0.984 0.980

Our Baseline (SciBERT) [7]

B 0.947 0.954

I 0.986 0.976

dataset may help us to further improve and evaluate our reference

extraction model. In addition, we will investigate the impact of

considering a special token for the end token of references rather

than labeling them as ‘I’.

With a model trained on the larger data set we will extract

references from the complete EPO and USPTO collections. Next,

we will focus on matching the extracted references to a publication

database (the Web of Science). For the reference matching task, we

will improve the available model [6] by mitigating its weaknesses,

in particular the problem of ambiguous matching. For example,

in the case that we only have the name of the author and year of

publication, we can use text matching models to match the abstract

of the patent with the title of all of the author’s publications in that

year, to find the most relevant publication. Finally, we intend to

further pre-train a BERT cased model on a large patent collection,

to be used for sequence labelling tasks in the patent domain.
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INTRODUCTION 

One important task when a patent application is submitted is to 

assign one or more classification codes. Correct pre-classification 

will enable routing of the patent application to an appropriate patent 

examiner who is knowledgeable of the specific technical field. This 

task is undertaken by patent office desks, however due to the large 

number of applications and the potential complexity of an 

invention, they are usually overwhelmed. Additionally, in several 

innovation related tasks it is important to identify the technical area 

of an idea or potential invention as it is represented in the 

international patent classification taxonomy. Therefore, there is a 

need to support this manual task or even to fully automate it, 

hopefully with an accuracy close to patent professionals. 

Patent classification can be a single- or multi-label text 

classification problem dealing with patent documents that are long 

technical documents having a quite distinctive language and 

structure. Moreover, classification schemes used to classify patent 

documents follow a hierarchical structure containing thousands of 

codes each representing a more general (at higher levels) or a very 

specific (at lower levels) technological concept. 

Research efforts in this field have tried to automate the patent 

classification task [1-4], bringing together NLP and ML/DL 

techniques for efficient patent modelling and representation and 

automatic classification. However, they failed to achieve high 

performance although they applied various simplifications, e.g., 

working with well-represented codes having many training samples 

or working at higher level of the classification hierarchy. 

A promising ML method that can improve the performance of 

learning models are ensemble techniques, which combine the 

results from multiple models. An ensemble technique receives 

evidence from multiple learning models, working either at the same 

or different sources of information, combines these evidences to 

produce improved results, i.e. more accurate predictions than a 

single model would [5]. The ensemble techniques exploit 

potentially not related information coming from all single models 

involved and this is the reason they attain better performance.  

Although ensemble techniques produced good results in many 

applications, they have been less explored for automated patent 

classification. One of these examples is presented in [6] where a 

variety of combination techniques of different ML methods (kNN, 

LLSF, NN, Winnow) was explored to improve the overall 

performance. Moreover, in [7], the proposed ensemble technique is 

performed only at the upper levels of the IPC hierarchy. Last, 

Kamateri et al. [8] presented an ensemble technique, which consists 

of three identical individual classifiers (CNN, bi/GRU, bi/LSTM) 

with each of them trained on a different part of the patent text, i.e., 

the title-abstract, the description and the claims section, 

respectively, obtaining better results than each of those classifiers 

acting on its own.  

In this study, we extend the work already presented in [8] and 

introduce a new ensemble architecture for automated patent 

classification at multiple levels. The ensemble architecture is 

instantiated in the single-label pre-classification task at the subclass 

(3rd) and group (4th) level category of the IPC 5+ level hierarchy. 

Our first results are quite promising showing that the combination 

of classifiers significantly outperforms the same classifiers when 

used as standalone solutions as well as the current state-of-the-art 

techniques.  

ENSEMBLE ARCHITECTURE 

An ensemble architecture (Fig. 1) can consist of individual 

classifiers that can be of any number and type, while they can be 

trained with the same or different parts of the patent document. 

Each classifier produces a list of probabilities for all labels based 

on its whole or partial knowledge about the patent. Then, the 

probabilities for a specific label derived from all individual 

classifiers are combined and the final probability is calculated for 

this label. The label with the maximum probability consists the 

predicted label for the patent. The combination of probabilities of 

the individual classifiers can be aggregated using simple/weighted 

averaging, voting, stacking or other combination techniques.  

Figure 1: Ensemble architecture of classifiers 
Published in "Proceedings of The 3rd Workshop on Patent Text Mining and
Semantic Technologies (PatentSemTech 2022)", Eds. H. Aras, R. Krestel, F. Piroi, L. 
Andersson, A. Hanbury, D. Alderucci, PatentSemTech 2022, 15 July 2022, Madrid, 
Spain. https://doi.org/10.34726/3550 | © Authors 2022. CC BY-NC-ND 4.0 License.
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Table 1: Accuracy at subclass/group level 

DATA COLLECTION  

The CLEF-IP 2011 test collection was imported in a MySQL 

database and the latest version of English patent documents which 

contain the required information were used for evaluating the 

proposed technique. The code for re-creating the MySQL database 

and the specific dataset used in this study are available online1. 

EXPERIMENTS 

An ensemble of bidirectional LSTM classifiers was employed, 

since this ML method has been proved in [8] to attain better results 

than other DL methods. Each classifier was trained on a particular 

patent part, i.e., title, abstract, description, claims, inventors and 

applicants, respectively. The outcome probabilities of individual 

classifiers were aggregated using simple and weighted averaging.  

With respect to the patent representation, the first 60 words from 

the patent part of interest (e.g., title, abstract, etc.) were used after 

undertaking a sequence of preprocessing steps (cleaning 

punctuation, symbols and numbers, and stop word removal). The 

feature words were then mapped to embeddings using a domain-

specific pre-trained language model which has been created on a 

patent dataset, proposed by Risch and Krestel [4].  

The dataset of 541,131 patents was split into training, validation 

and testing sets (80:10:10). Batch size was set to 128 and epochs to 

15. 

RESULTS 

Table 1 presents the Accuracy of six individual classifiers trained 

on a specific patent part and the Accuracy of the ensemble 

technique. The accuracy is much improved when an ensemble 

technique is applied combining (with weighted averaging) the 

predicted probabilities acquired by individual classifiers working 

on a specific patent part. Moreover, the weighted averaging seems 

to slightly outperformed simple averaging. It is also clear that the 

proposed method provides better results than those obtained from 

current state-of-the-art techniques (e.g., an accuracy of 67% for 

subclass level using LSTM and Word2Vec trained on patent data 

[9] and 36.89% for group level [10]).

ANALYSIS OF RESULTS 

Looking carefully at the experimental results, we observe that 

under-represented codes are those that mainly affect the accuracy 

score (Fig. 2). The usage of a more balanced dataset excluding such 

codes further enhances the accuracy scores indicating the general 

expectation of any ML method that larger quantities of training data 

will produce better results. To what extent and up to which point, 

increasing training data will enhance the performance it remains an 

open research question. 

1 https://github.com/ekamater/CLEFIP2011_XML2MySQL 

Figure 2: Accuracy as a function of average code frequency for 

groups of 50 subsequent codes; error bars denote σ. 

Another interesting note is that this ensemble of classifiers seems 

to achieve better performance when it exploits not related 

information. For example, when we tried to combine the predicted 

probabilities from two classifiers, the first trained with first 60 

words of a patent description (achieving an accuracy of 66.46%) 

and the second trained with the subsequent 60 words (achieving an 

accuracy of 56.15%) then the outcome performance was slightly 

improved (67.23%/67.66% for simple/weighted averaging).  

CONCLUSIONS 

In this study, an ensemble architecture is presented to address the 

automated patent classification problem at multiple levels. An 

ensemble architecture of bidirectional LSTM classifiers was 

employed in the single-label pre-classification task getting an 

accuracy of 70.70% at the subclass and 53.11% at the group level.  

REFERENCES 

[1] Grawe, M. F., Martins, C. A., & Bonfante, A. G. (2017). Automated patent

classification using word embedding. In 2017 16th IEEE International

Conference on Machine Learning and Applications (ICMLA) (pp. 408-411).

[2] Xiao, L., Wang, G., & Zuo, Y. (2018). Research on patent text classification 

based on word2vec and LSTM. In 2018 11th International Symposium on 

Computational Intelligence and Design (ISCID) (Vol. 1, pp. 71-74).

[3] Li, S., Hu, J., Cui, Y., & Hu, J. (2018). DeepPatent: patent classification with 

convolutional neural networks and word embedding. Scientometrics, 117(2).

[4] Risch J. & Krestel, R. (2019). Domain-specific word embeddings for patent

classification. Data Technologies and Applications

[5] Zhou, Z. H., Wu, J., & Tang, W. (2002). Ensembling neural networks: many 

could be better than all. Artificial intelligence, 137, 239-263.

[6] Mathiassen, H., & Ortiz-Arroyo, D. (2006). Automatic categorization of patent 

applications using classifier combinations. In International Conference on 

Intelligent Data Engineering and Automated Learning (pp. 1039-1047).

[7] Benites, F., Malmasi, S., & Zampieri, M. (2018). Classifying patent applications

with ensemble methods. arXiv preprint arXiv:1811.04695.

[8] Kamateri, E., Stamatis, V., Diamantaras, K., & Salampasis, M. (2022).

Automated Single-Label Patent Classification using Ensemble Classifiers. 

ICMLC 2022.

[9] Sofean, M. (2021). Deep learning based pipeline with multichannel inputs for

patent classification. World Patent Information, 66, 102060.

[10] Tikk, D., Biró, G., & Törcsvári, A. (2008). A hierarchical online classifier for

patent categorization. In Emerging technologies of text mining: Techniques and

applications (pp. 244-267).

Su
b

cl
as

s
/G

ro
u

p
 1. Abstract 2. Description 3. Claims 4. Title 5. Applicants 6. Inventors 

Individual Bi-LSTM classifier 63.76/44.68 66.46/47.23 64.56/45.10 59.58/40.74 24.32/12.93 11.52/6.01 
Ensemble (simple averaging of classifiers 1-6) 70.67/53.06 

Ensemble (weighted averaging of classifiers 1-6) 70.70/53.11  

7

https://github.com/ekamater/CLEFIP2011_XML2MySQL


Patent Classification using Extreme Multi-label Learning:
A Case Study of French Patents

You Zuo
Inria Paris

Paris, France
you.zuo@inria.fr

Houda Mouzoun
Institut national de la propriété

industrielle
Paris, France

hmouzoun@inpi.fr

Samir Ghamri Doudane
Institut national de la propriété

industrielle
Paris, France

sghamridoudane@inpi.fr

Kim Gerdes
LISN, CNRS and University

Paris-Saclay
Orsay, France
gerdes@lisn.fr

Benoît Sagot
Inria Paris

Paris, France
benoit.sagot@inria.fr

CCS CONCEPTS
• Computing methodologies → Natural language processing;
• Information systems → Document representation; • Social and
professional topics → Patents.

KEYWORDS
IPC prediction, Clustering and classification, Extreme Multi-label
Learning, French

1 INTRODUCTION
The number of patent applications has risen sharply over the past
20 years. As a result, automatic patent classification systems have
become essential for patent specialists to analyze and manage large
collections of patents. There are several standard classification
structures, the most commonly used being the IPC (International
Patent Classification) and the CPC (Cooperative Patent Classifica-
tion), which have hierarchical structures with five different levels:
sections, classes, subclasses, groups, and subgroups.

Most previous approaches [1, 6, 11, 12, 20–22] treat the patent
classification task as a general text classification task and apply
commonly used text classificationmethods. Some have attempted to
implement XML (Extreme Multi-label Learning) methods to handle
large numbers of classes [5, 24], but they focus only on the IPC
subclasse level, which is far from "extreme" with less than 700 labels.

In this paper, we present a French Patents corpus, named INPI-
CLS, with IPC labels at all levels, and we test different models at the
subclass and group levels on it. Our published French patents are
extracted from the INPI1 internal database, and contain all parts of
patent texts (title, abstract, claims, description) published from 2002
to 2021, each patent being annotated with all levels from sections to
the IPC subgroup labels. A statistical overview of the data is given
in Tables 1 and 2. The training set is constructed from patent doc-
uments published before 2020, while the test set includes patents
published in 2020 and 2021. In Table 2, 𝑁 represents the number
of patents in the training and test sets. 𝐿 indicates the label count,
𝐿 stands for the average number of IPC labels of a document. �̂�
represents the average number of documents per label. The sub-
scripts of 4,6,8 represent respectively IPC’s subclass, group, and
1French National Institute of Industrial Property https://www.inpi.fr/fr

subgroup levels (4, 6, and 8 correspond to the number of characters
used to encode the class). We then compare the performance of
the XML (Extreme Multi-label Learning) approaches with other
popular NLP methods on our INPI-CLS as well as on the English
patent classification benchmark USPTO-2M[12] with 1.9 million
training data and 48,000 test data.

We are releasing all relevant code and our French patent classifi-
cation dataset as open source. The dataset may be used for research
purposes and is available under specific licensing requirements
detailed in the GitHub repository. 2

section title abstract description claims

# items 296 270 295 421 296 216 291 539
# tokens (average) 11 111 4202 725

Table 1: Description of our French corpus INPI_fr

Dataset 𝑁 𝐿4 𝐿4 𝐿4 𝐿6 𝐿6 𝐿6 𝐿8 𝐿8 𝐿8

Train 268254 638 1.73 420.46 6788 2.21 39.52 48932 2.73 5.48
Test 28017 583 1.77 48.06 4351 2.20 6.44 19593 2.64 1.43

Table 2: Basic Statistics of INPI-CLS dataset

2 EXPERIMENTS AND RESULTS
The details of the selected model are listed below:

Logistic Regression The one-vs-all approach is implemented
to train a binary logistic regression classifier for each label. We use
TF-IDF as input features after applying the snowball stemmer from
NLTK and eliminating stop words from the first 1000 words of the
input text.

FastText text classification [9] FastText applies a shallow
neural network on a hidden variable represented by the average of
n-gram character embeddings of input, where the ngram character
embeddings are trained under supervision specifically for text clas-
sification. We initialize the token representations by the embedding
matrix pre-trained on Wikipedia3 and train a linear classifier for
multi-label text classification.

2https://github.com/ZoeYou/Patent-Classification-2022
3https://fasttext.cc/docs/en/pretrained-vectors.html
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Bert [4] Just as in the PatentBert[11] experiments, we fine-tune
Bert on patent classification. We test the bert-large instead of
bert-base to allow for a comparison with Bert for Patents [23] of
the same architecture.

Bert for Patents [23] The model was trained from scratch
on more than 100 million English patent documents of USPTO,
it leveraged bert-large architecture, and built a patent-specific
custom tokenizer to hold longer tokens. We took their officially
released checkpoint4 and fine-tuned it on USPTO-2M[12]. 5

XML-CNN [13] Based on CNN-Kim[10], XML-CNN applies
a dynamic maximum pooling to accommodate longer texts and
extract location information. It adds a hidden bottleneck layer be-
tween the pooling and the output layer, which learns a better repre-
sentation of the document and improves the prediction accuracy.6

Parabel [19] As one of the baseline tree-based algorithms of
XML approaches, Parabel firstly learns a balanced binary tree of
labels by recursively dividing the label nodes into two balanced
clusters until the number of labels in each cluster is less than a
given value, and then trains a probabilistic hierarchical multi-label
model that generalizes hierarchical softmax to a multi-label setup.7

AttentionXML [26] AttentionXML compresses the binary
partitioned label tree of [18] into shallower and wider tree to better
handle larger label size. A bi-LSTMwith multi-label attention mech-
anism is trained for each level of the tree with the first 500 words
of raw text as input. The word representation layers are initialized
by Glove8 for English and French FastText trained on Wikipedia
for French patents.

LightXML [8] LightXML applies multiple pre-trained lan-
guage models. For each model, it concatenates the representations
of the [CLS] in the last five hidden state as text representation, then
trains a label recalling network to dynamically sample negative
samples followed by a label ranking network to separate positive
from negative labels.9

We tested all models on both English and French datasets, except
for Bert and Bert for patent, two language models trained on the
English corpus. We use ensemble approach for Parabel and Atten-
tionXML with the number of ensemble being 3. For LightXML, we
use three different encoders for ensemble. The encoders used for
USPTO-2M are

• bert-base-uncased[4]
• roberta-base[14]
• xlnet-base-cased[25]

and
• camembert-base[15]
• bert-base-multilingual-cased[17]
• xlm-roberta-base[2]

4BERT-for-patents GitHub repository.
5The hyperparameters for fine-tuning the two previous language models on patent
classification are set as follows: max_sequence_length = 128; epoch = 4; batch_size =
32; learning_rate (Adam) = 3𝑒−5 ; binary cross-entropy loss.
6We used the code provided by the authors with default values for hyperparameters
from https://github.com/siddsax/XML-CNN.
7The scripts we utilize are from the Omikuji project. We change CBOW to TF-IDF for
better label representation and leave all other hyperparameters as default.
8Glove 840B,300d from https://nlp.stanford.edu/projects/glove/
9For AttentionXML and LightXML, we used codes provided by the online extreme
classification repository.

for the INPI French patent corpus.
We employ the rank-based metrics Precision@K (P@k(%); k = 1,

3, 5) as evaluation metric following prior Multi-label text classifica-
tion works. P@K are calculated for each test document and then
averaged over all the documents. Due to space limitations, we only
show the two main results that we test on the English Benchmark
USPTO-2M and our new French dataset INPI-CLS (title+abstract as
classifiers’ input).

Table 3 demonstrates that LightXML achieves the best results
on USPTO-2M, and Bert for Patents achieves comparable perfor-
mance on it. Compared to the results obtained from [11, 22], we can
conclude that we achieve state-of-the-art performance on USPTO-
2M with LightXML. It is worth noting that Bert for patent is a
large-scale language model specifically pre-trained on patent text
from scratch. Bert is very time and resource intensive to train, and
we may not be able to find a training corpus of the same size for
non-English languages. Yet, the same performance can easily be
achieved or even exceeded based on LightXML using ensemble
learning with several other off-the-shelf language models including
some blocks specifically designed for the XML task. This gives the
possibility to obtain higher patent classification performance in
languages that do not have as much patent data as English (e.g.
French).

For our proposed French patent classification dataset INPI-CLS,
LightXML is vastly outperforming the others on both subclass and
group levels. LightXML’s outstanding performance is attributed
to its powerful feature extraction from multiple layers of differ-
ent transformer encoders and its negative sampling approach on
dynamically selecting negative labels from easy to difficult.

Model P@1 P@3 P@5
Logistic Regression 74.63 41.66 28.82
FastText 73.89 40.55 28.02
bert-large 83.77 46.27 31.37
Bert for Patents 84.31 46.73 31.73
XML-CNN 57.00 31.22 22.08
Parabel 74.43 41.49 28.50
AttentionXML 82.49 45.15 30.82
LightXML 84.43 46.81 31.91

Table 3: Overall Performance on IPC subclass on USPTO-2M
(title + abstract)

Model subclass group
P@1 P@3 P@5 P@1 P@3 P@5

Logistic Regression 65.87 37.63 26.02 49.12 30.32 22.06
FastText 53.76 30.64 21.31 36.21 22.32 16.35
XML-CNN 43.43 25.50 18.23 17.74 10.20 6.96
Parabel 65.13 36.87 25.32 48.93 30.61 22.28
AttentionXML 72.54 40.68 27.63 54.83 33.78 24.49
LightXML 76.45 42.82 29.05 60.60 36.95 26.65

Table 4: Overall Performance on IPC subclass and group on
INPI-CLS (title + abstract)

The reasons why the same model performs better on USPTO-2M
are 1) USPTO-2M has a much larger dataset for training, almost
ten times larger than the French dataset, and 2) by calculating the
KL-divergence of the label distributions of the training and test
data, we find that the label distributions of the training and test
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data are closer for USPTO-2M than that for INPI-CLS. Therefore,
we assert that our dataset is "more difficult" to classify.

Different combinations of document parts were tested on our pro-
posed French patent corpus and it was experimentally demonstrated
that the combination of title and description achieves the best re-
sults (compared to abstract, claims, description and title+abstract).
More precisely, when the input constraints are loose (much larger
than 128 subwords), there is an improvement of about 4% to 8%
on precision@1. However, for methods using pre-trained language
models with max_sequence_length set to 128, the precision im-
provement using title+description compared to title+abstract is less
than 2%.

We perform the error analysis by examining the single-label
AUC and confusion matrix at 𝑘 = 1. We conclude that weaker
models perform worse in learning to classify those labels with less
training examples (the AUC of the classifier corresponding to that
IPC label is lower). Also, all models have a tendency to mistake
"long-tail" labels for those more frequent labels.

3 ONGOING AND FUTUREWORK
Our current focus is on classifying labels with fewer patent exam-
ples by using label descriptions or correlations between labels as
input information as in [3, 16] and using propensity scored metrics
[7] to better evaluate the "long-tailed" labels.
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ABSTRACT 

The European Patent Office (EPO) has defined its mission[1] “to 

deliver high-quality patents and efficient services that foster 

innovation, competitiveness and economic growth.” In its 

Strategic Plan 2023 the EPO committed itself to increase the 

efficiency of the search procedure by providing its patent 

examiners with an improved set of tools to support their daily 

work. 

There is a high correlation between identifying a set of very 

relevant documents in the Search phase and the quality of the 

decision that is taken concerning the patentability of an 

application. Despite all advances made in automated analysis of 

incoming applications, and automated retrieval of relevant 

documents, well formulated and constructed keyword queries 

against a complete prior art index are still the foundation of a 

successful search.   

Therefore, providing tools to support query generation is a key 

task for Business Information Technology within the EPO. We set 

out to provide a framework to enable the retrieval of semantically 

similar words for a given query word, or concept. 

By leveraging our large corpus of 120 million patent documents, 

we trained a set of word2vec[2] models for different technical 

areas in all our core-languages (EN, DE, FR), in which 

applications can be filed at the Office.  

In our contribution to PatentSemTech 2022, we will showcase the 

developed solution, the technical complexity and motivate the 

strategical decisions taken. 

We will focus on: 

1. Data cleaning and processing

2. Technical challenges of our solution in an operational

setting

3. Scenarios how the implementation will support

examiners in their work

Cleanliness and correctness of data is a key requirement for the 

final models, as retrieved nearest words need to be of high quality, 

and not e.g. malformatted words due to OCR errors in the original 

document. We will demonstrate and motivate our implement-

tations used to pre-process the datasets.  

As words can have different meaning in different technical fields, 

we define models per technical domains guided by Collaborative 

Patent Classification[3] (CPC) allocations of the patent documents. 

We will present performed experiments to assess the granularity 

under which the best trade-off between quality of nearest word 

neighbours and number of independent models was observed. 

In the context of our business, cross lingual information retrieval 

is an important aspect of the examiner’s work, and an identified 

requirement is to look up semantically similar words in different 

languages. This can be achieved via alignment of the resulting 

word embedding space of the different models. We will showcase 

how this is supported with our implementation approach. 

Another important requirement is the support of concepts queries: 

Identifying potential query terms not yet known to the human 

searcher for a given set of keyword queries. We will demonstrate 

use cases of how concept queries can fill blind spots and 

complement and assist human defined queries. 

Finally, we will present our current strategy to support our users 

by an up-to-date terminology of the models. We implemented a 

fully automated machine learning operations pipeline that can be 

run in defined intervals or event triggered to ensure the 

availability of high quality models in our productions tools. We 

demonstrate how model and data lineage is implemented, 

automated monitoring of the training process is handled and how 

the model is deployed in operations. We will present the 

underlying architecture and the selected technologies for our setup 

at the EPO.  
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1 INTRODUCTION 

Several methods for patent search have been developed in the 

last years [1, 2]. Researchers have been using various techniques 

that are query-oriented, meta-data based, Pseudo Relevance 

Feedback Methods, Semantic-based methods, etc. Recently there 

has been a shift in research towards implementing machine 

learning methods for the patent domain [3, 4]. However, 

transformer models like BERT [7] that have achieved impressive 

results on various NLP tasks have not been sufficiently explored 

for patent search. While BERT has drawn some attention in 

research in the patent industry, it is either used for classification 

[8, 9] or didn't work as much effectively as expected for retrieval 

[10]. Our research investigates how to adapt the BERT model in 

the patent domain to increase the retrieval performance.  

Specifically, the research question we will explore in this work is: 

how can the BERT model be adapted to improve retrieval 

effectiveness in patent prior art search? To do this, first, we 

examine BERT's generalization ability to the patent domain in a 

zero-shot setting and demonstrate that it cannot improve patent 

retrieval effectiveness as an off-the-shelf method. Then, we 

propose a new hybrid document retrieval method and test it in 

patent prior art search task. The proposed technique combines 

BM25's and BERT's scores so that the BERT model is used as a 

scaling factor that operates on the BM25 score and modifies it 

according to the BERT estimate of relevance. To train a BERT 

model in patent language, we also created a new dataset that 

consists of relevant and non-relevant pairs of patent abstracts, 

called Intellectual Property Abstracts (IPA dataset). This dataset is 

a processed extract from the MAREC dataset [11], and is 

available for download∗. 

CCS CONCEPTS 

• Information systems → Information retrieval → Retrieval

models and ranking • Computing methodologies → Artificial

intelligence → Natural language processing

2    METHODOLOGY 

The experiments presented in this paper are based on the 

CLEF-IP 2011 collection [12] and our new IPA dataset. To create 

the IPA dataset, we iterate all MAREC documents, and for each 

document with an English abstract, we process its citations. For 

every citation, we extracted it's English abstract and wrote one 

relevant instance in the CSV file (abstract_doc | abstract_citation | 

1) and one non-relevant instance using the abstract from a random

document from the MAREC collection (abstract_doc |

abstract_random | 0). Finally, we removed all the lines containing

abstracts used in CLEF-IP topics so that our retrieval results will

not be biased. The whole dataset contains approximately 78

million pairs of abstracts.

The queries we used are taken from the 3973 topics of the CLEF-

IP 2011 evaluation campaign. We used the first 150 English

topics. Each query consists of a maximum of 500 words produced

sequentially from the title, abstract, description, and the claims.

2.1 Hybrid Retrieval method 

The proposed approach fuses the effectiveness of lexical 

methods and the deep semantic similarities that the neural models 

can capture. Fang & Zhai [13] examined the semantic term 

matching constraint, which states that the exact matching of a 

term is as much important for the relevance score as matching a 

semantically related term several times. Even though this work 

was presented some time ago, lexical models still perform better 

than semantic methods such as BERT in the patent domain as we 

observe in our experiments and the literature [10]. Our hybrid 

approach combines the lexical signals from BM25 as the main 

relevance factor and a fine-tuned cross-encoder BERT model that 

will score the similarity between the query and the candidate 

documents by looking only at their abstracts. The BERT score is 

then combined with the BM25 score so that BERT functions as a 

scaling factor, operating on the BM25 score. The final score will 

be an increased or decreased or with no change BM25 score. 

Mathematically, we get the final scores using the formula (1) 

below: 

𝑠𝑐𝑜𝑟𝑒 = 𝑏𝑚25 + 𝑐 ∗ 𝑏𝑚25 ∗ 𝑏𝑒𝑟𝑡 (1) 

where 𝑏𝑚25 is the BM25 score and 𝑏𝑒𝑟𝑡 is the BERT relevance 

KEYWORDS 
Prior Art Search, Patent Search,  BERT, Neural IR, Domain-

Specific Search 

∗ https://zenodo.org/record/6612936#.YptqxHZBy1s
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score. We also add the weighting factor 𝑐 in order to reduce the 

bias of the different scaling between the scores. For example the 

BM25 score was on average between (200, and 1000), and the 

BERT score was between (-3, and 3). For our proposed method, 

we optimized the parameter c in formula (1) and conducted a grid 

search with different values of c (0.1, 0.25, 0.5, 0.75, 1, 2). We 

chose these values experimentally, observing where the scores 

increase and decrease. Formula (1) optimized for c = 0.25 using 

our dataset. For instance, if BERT estimates a candidate document 

as non-relevant with a low value i.e. -3, then the score would be: 

𝑠𝑐𝑜𝑟𝑒 = 𝑏𝑚25 − 3 ∗ 0.25 ∗ 𝑏𝑚25 

which will significantly reduce the score compared to the BM25 

score and more specifically the final score will be BM25/4. 

Respectively, if BERT estimates a high score, i.e., 3, it will 

increase the final score to 1.75 * BM25. This is why we consider 

BERT as a scaling factor that modifies the BM25 score based on 

its estimate of relevance. The architecture is presented below in 

Figure 1. 

Figure 1: Hybrid Retrieval method 

4 Results 

To examine the effectiveness of the proposed architecture 

(Hybrid), we compare it with the following baselines: BM25, 

Cross-Encoder BERT (CE BERT), i.e., use a cross-encoder BERT 

model and use as inputs the abstracts between query and candidate 

document to get the final score. Bi-Encoder BERT (BE BERT) 

i.e. use the bi-encoder BERT model and use the abstract

embeddings to calculate the cosine similarity between query and

candidate document.

The used metrics are the MAP, RECALL, and PRES scores. As

there are millions of documents in our index, we conduct an initial

ranking using BM25 to retrieve 1000 documents and apply our

methods to re-rank these results for efficient computation. The

top-ranked 100 results are then used for comparison. Additionally,

to examine BERT's ability to generalize to the patent domain in a

zero-shot setting, we run the experiments twice, one with zero-

shot learning settings and one with the fine-tuned BERT on the

IPA dataset. We also implemented a random ranking to create the

lowest baseline where the 1000 results are re-ranked randomly.

Our fine-tuned hybrid method achieved the best scores and

outperformed all the baselines, especially the BM25 by 5.56% at

MAP, 3.6% at PRES, and 3.5% at RECALL @100. We also

conducted statistical tests and we found that even though our

proposed method achieved higher scores than BM25 the results

are not statistically significant.

MODEL MAP 

@100 

PRES 

@100 

RECALL 

@100 

BM25 0.0881 0.2115 0.2761 

CE BERT (zero-shot) 0.0005 0.0050 0.0090 

CE BERT (fine-tuned) 0.0088 0.0877 0.1544 

BE BERT (fine-tuned) 0.0114 0.0521 0.0916 

BE BERT (zero-shot) 0.0226 0.0868 0.1242 

Hybrid (zero-shot) 0.0006 0.0045 0.0069 

Hybrid (fine-tuned) 0.0930 0.2191 0.2859 

Random 0.0017 0.0188 0.0421 

Table 1: Results of the different models 

5 Conclusion 

In this work, we explored the research question of how can 

BERT model be adapted to improve retrieval effectiveness in 

patent prior art search. We adapted BERT to patent characteristics 

by first using only the abstracts to create a new dataset (IPA 

dataset) specifically for training the patent-specific BERT model. 

Second, we proposed a hybrid model that effectively combines 

BM25 and BERT models. To the best of our knowledge, this is 

the first time that BERT has achieved a better performance than 

BM25 for patent prior art search and the first time that the BERT 

model operates as a scaling factor for the BM25 score. 
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ABSTRACT
In this paper, we propose a novel method for the prior-art search
task. We fine-tune SciBERT transformer model using Triplet Net-
work approach, allowing us to represent each patent with a fixed-
size vector. This also enables us to conduct efficient vector similarity
computations to rank patents in query time. In our experiments,
we show that our proposed method outperforms baseline methods.

CCS CONCEPTS
• Information systems → Information retrieval; • Applied
computing → Document searching.

KEYWORDS
patent search, transformer models, information retrieval

1 INTRODUCTION
The number of patents is increasing rapidly with the incredible
advances in scientific knowledge and technology. This brings many
challenges for patent examiners as they have to compare each
patent application against prior ones and determine whether it is
novel. Therefore, we need effective search engines that can find
relevant patents for a given patent application.

Prior-art search has particular challenges compared to typical
search operations [5]. Firstly, the patent documents are generally
long and use very technical language. Secondly, the documents
are prepared to show the novelty of the application, instead of
focusing on the similarities with the existing ones. Thirdly, it is a
recall-oriented retrieval task as we have to find all relevant patents
to detect the novelty of a patent application.

Prior work shows that BERT [2] based models achieve state-of-
the-art results in various Natural Language Processing (NLP) tasks.
Therefore, in order to find relevant patents for a given patent, we
can fine-tune a BERT [2] model to directly predict the pairwise
patent similarities. However, this approach has two main short-
comings. Firstly, BERT models are capable of processing only 512
“tokens",which corresponds to roughly 400 words on an average
text. However, patents are generally much longer than 400 words
and we have to provide two patent documents to calculate their sim-
ilarity, reducing the number of tokens we can use for each patent.
Therefore, this approach would force us to ignore many parts of
patent documents. Secondly, given that we have millions of patents,
predicting similarity scores using a fine-tuned BERT model for all
patents for a given query patent would be excessively slow.

In this paper, we develop a novel method for overcoming the
shortcomings discussed above. In particular, we represent each
patent using SciBERT [1] allowing us to capture technical language
used in patent documents. Next, we fine-tune SciBERT model based
on Triplet Networks approach [3]. This allows us to derive a fixed

vector for each patent document and apply efficient vector com-
putations. In query time, we rank patents based on their cosine
similarity to the query patent. In our experiments with 1.8M patents,
we show that our proposed method outperforms baseline methods.

2 PROPOSED APPROACH
In this section, we explain the details of representing patents with
SciBERT and Triplet Network based fine-tuning.

2.1 Patent Representation
BERT models are successful at catching the semantics of texts.
However, the language of patent documents might include many
technical terminologies while BERT is pre-trained using Wikipedia
articles and BooksCorpus. Therefore, we exploit SciBERT [1], which
is pre-trained on large multi-domain corpus of scientific publica-
tions, instead of using the original BERT.

Patent documents are generally much longer than BERT based
models can process. We could truncate patent documents to meet
the limits of BERT. However, it would mean ignoring many parts of
patent documents that might be useful for our search task. There-
fore, in order to capture the semantics of patent documents, we
create separate embeddings for the description (𝑣𝑑 ) and claims (𝑣𝑐 )
part of each patent. For descriptions longer than 400 words, we
use TextRank [4] automatic summarization tool to reduce the text
length to 400 words. However, for the claims part of patents, we do
not use the text summarization but truncate the parts that exceed
BERT’s token limit. This is because the first claim of patents is gen-
erally the main innovative part of the patents while the other claims
are less important ones. Subsequently, we concatenate the vectors
for the description and claim parts to form a single embedding for
each patent and normalize them to have a unit norm. In order to
give more emphasis to the description part of the patents than their
claims, we multiply each element of 𝑣𝑑 by

√
0.8 and multiply each

element of 𝑣𝑐 with
√
0.2. The parameters are selected arbitrarily.

Note that because of the vector multiplication in cosine similarity
calculation, the relative weights used for description and claims
parts will be 8:2.

2.2 Fine-Tuning via Triplet Networks
We fine-tune SciBERT using Triplet Networks approach [3] which
allows us to derive fixed-size embeddings for each patent, and
thereby, apply efficient vector operations to calculate the similarity
between patents. In the Triplet Network approach, we have to
provide positive and negative samples for each patent such that
the model can learn the semantic differences between relevant and
not relevant patents. In particular, we construct 3 embeddings for
each patent based on i) an anchor (i.e., the patent itself) patent (a),
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Ranking Method Average Precision Recall@100 Recall@500 Recall@1000
Lucene with TF-IDF 0.0548 0.2178 0.3642 0.4364
Lucene with BM25 0.0469 0.1800 0.3083 0.3743
Our Approach 0.0675 0.2233 0.3934 0.4821

Table 1: Comparison of our approach with baseline methods. The best performing score for each metric is written in bold.

ii) a positive (i.e., relevant) patent (p), and iii) a negative (i.e., not
relevant) patent (n). We calculate triplet objective loss as follows:

𝑚𝑎𝑥 (𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣𝑎, 𝑣𝑝 ) −𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣𝑎, 𝑣𝑛) + 𝜖, 0)

where 𝑣𝑎 , 𝑣𝑝 , and 𝑣𝑛 are the embeddings for a, p, and n, respectively.
𝜖 is a margin ensuring that 𝑣𝑝 is at least 𝜖 closer to 𝑣𝑎 , than 𝑣𝑛 .

Obviously, the training data and the label distribution directly
affect supervised models’ performance. Therefore, we take the fol-
lowing steps to select the patents given as positive and negative
samples.
• We select ‘positive’ texts from the cited patents which have a

similarity score of higher than 0.6 according to vectors provided
by Google1.

• We select 20% of the negatives from the not-cited patents which
are from the Cooperative Patent Classification (CPC) group of the
anchor patent. Therefore, the model can learn textual properties
of patents that are on a similar topic but not as close as the positive
ones.

• We select 20% of the negatives from the patents which are not
cited by the anchor patent but cited by the patents that it cites.
This process allows us to train the models with negative samples
that are not semantically far from the anchor patent.

• The remaining 60% of the negatives are randomly selected from
the patents which are not cited by the anchor patent and have a
similarity score of less than 0.6 based on Google’s vectors. There-
fore, the model can learn the textual properties of patents that
are distinctively different from the anchor.

3 EXPERIMENTS
We randomly select 2 million patents granted after 1980. Among
these patents, 1,817,504 of them have a title, abstract, description,
and claims sections. From this sample, we randomly select 5,000
patents for testing, and others are used in training. Following prior
work [5], we consider cited patents as relevant ones and not-cited
ones as not-relevant.

We train the model with four million examples (i.e., patent
triplets). We use patents which have at least five backward and
forward citations in total, as anchors in the training set. We train
the model using 4 Nvidia Titan RTX GPUs with a batch size of
8, using Adam optimizer with a learning rate of 3𝑒−6 with linear
learning rate warm-up over 10% of the training data for 1 epoch.

We compare our model against BM25 and TF-IDF ranking func-
tions that Lucene2 provides. The results are shown in Table 1. We
observe that our approach outperforms Lucene’s methods based on

1https://console.cloud.google.com/marketplace/details/google_patents_public_
datasets/google-patents-research-data
2https://lucene.apache.org/core/

all four metrics, suggesting that our proposed method can be an
effective solution for the prior-art search problem.

4 CONCLUSION
In this paper, we propose a novel method to represent patent doc-
uments by fine-tuning SciBERT with Triplet Network approach.
We show that our proposed method outperforms baseline methods
in our experiments. In the future, we plan to extend our work in
several directions. Firstly, we plan to use other variants of BERT
pre-trained with different types of documents, e.g., PatentBERT. In
addition, we plan to investigate which parts of patent documents
are more important for the prior-art search task and how to best
summarize them. Furthermore, we will investigate using BERT
variants that have higher token limits. Finally, we believe that our
model should be evaluated in various test collections and compared
against other baseline methods.
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Abstract
Patent data is a unique data set for information retrieval.
The data is publicly available, patent examiners from patent
offices have created a network of citations and also classifica-
tion for the documents, and the language in the documents
is standardised to describe technology in an exact way in
the legal sense.

IPRally patent search platform was developed to solve
the challenge of information retrieval from patents. Our key
insight is the graph format that can represent an invention in
an compressed way. Only the essential features are kept from
the original text, semantically connected to each others. We
created a parser that converts patent document into a high
quality graph - the parsing of a full patent document takes
on average 10 seconds. In a cloud computing environment
we are able to scale this for the 100 million patent documents
that are now covered by IPRally search. We use IFI CLAIMS
as our data provider.
For the general approach for the patent search, we use a

vector search model [1]. The nearest neighbors of the em-
bedding of query graph can be fetched in milliseconds using
approximated nearest neighbor methods. We chose the Spo-
tify’s Annoy algorithm [2] for this.

We utilise patent examiner citations for supervised train-
ing of the encoder network. By maximizing cosine similarity
of the patent application and the cited publication we can

1
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create a neural network that mimics a human patent exam-
iner.

The graphs are simplified into trees. This way, TreeLSTM 
[4] is a suitable model architecture for the encoder network.
Node values are text, which is presented with GloVe [3] word
embeddings.

We measure search performance mainly with top 50 recall, 
considering the examiner citations. The motivation for this 
metric is that the typical user is expected to read similar 
number of results. As long as the relevant result is within 
top 50, the user gains the needed knowledge.

The result quality is significantly better than baseline with 
bag-of-words type approach. Result quality has been also 
the main selling point of the product - it compares favorably 
with the competition.

Keywords: Patent search, knowledge graph, GNN
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ABSTRACT
There are many general purpose benchmark datasets for Semantic
Textual Similarity but none of them are focused on technical con-
cepts found in patents and scientific publications. This work aims
to fill this gap by presenting a new human rated contextual phrase
to phrase matching dataset. The entire dataset contains close to
50, 000 rated phrase pairs, each with a CPC (Cooperative Patent
Classification) class as a context. This paper describes the dataset
and some baseline models.
ACM Reference Format:
Grigor Aslanyan and Ian Wetherbee. 2022. Patents Phrase to Phrase Seman-
tic Matching Dataset. In Proceedings of SIGIR PatentSemTechWorkshop.ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND RELATEDWORK
Semantic Textual Similarity (STS) measures how similar two pieces
of text are. STS is one of the most important tasks in Natural Lan-
guage Processing (NLP) and there has been a significant amount of
research in recent years in this domain. Benchmark datasets play
the important role of allowing to consistently and fairly measure
model improvements. There are multiple benchmark datasets for
STS that are commonly used to measure the performance of state
of the art models. Some notable examples are STS-B [1], SICK [5],
MRPC [3], and PIT [13]. However, these datasets are fairly general
purpuse, and to the best of our knowledge there are currently no
datasets that are focused on technical concepts found in patents and
scientific publications. The somewhat related BioASQ challenge
contains a biomedical question answering task [12].

This paper introduces a new human rated contextual phrase to
phrase matching dataset focused on technical terms from patents.
In addition to similarity scores that are typically included in other
benchmark datasets we include granular rating classes similar to
WordNet [8], such as synonym, antonym, hypernym, hyponym,
holonym, meronym, domain related.

The dataset was generated with focus on the following:
• Phrase disambiguation: certain keywords and phrases can
have multiple different meanings. For example, the phrase
"mouse" may refer to an animal or a computer input de-
vice. We have included a context CPC class that can help
disambiguate the anchor and target phrase.

• Keyword match: there are phrases that have matching key-
words but are otherwise unrelated (e.g. “container section”
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anchor target context rating score
acid absorption absorption of acid B08 exact 1.00
acid absorption acid immersion B08 synonym 0.75
acid absorption chemically soaked B08 domain 0.25
acid absorption acid reflux B08 not rel. 0.00
gasoline blend petrol blend C10 synonym 0.75
gasoline blend fuel blend C10 hypernym 0.50
gasoline blend fruit blend C10 not rel. 0.00
faucet assembly water tap A22 hyponym 0.50
faucet assembly water supply A22 holonym 0.25
faucet assembly school assembly A22 not rel. 0.00

Table 1: A small sample of the data.

→ “kitchen container”, “offset table”→ “table fan”). Many
models will not do well on such data (e.g. bag of words mod-
els). Our dataset is designed to include many such examples.

• State of the art language models: We created our dataset with
the aim to improve upon current state of the art language
models. Specifically, we have used the BERT model [2] to
generate target phrases. So our dataset containsmany human
rated examples of phrase pairs that BERT may identify as
very similar but in fact they may not be.

The dataset is used in the U.S. Patent Phrase to Phrase Match-
ing Kaggle competition1 from March 21 - June 20, 2022. After the
completion of the competition the full dataset will be made public.

2 DATASET DESCRIPTION
Each entry of the dataset contains two phrases - anchor and target,
a context CPC class, a rating class, and a similarity score. A small
sample of the dataset is shown in Table 1.

The entire dataset contains 48, 548 entries with 973 unique an-
chors, split into a training (75%), validation (5%), and test (20%) sets.
When splitting the data all of the entries with the same anchor are
kept together in the same set. There are 106 different context CPC
classes and all of them are represented in the training set.

We have used the following steps for generating the data. For
each patent in the corpus we first extract important (salient) phrases.
These are typically noun phrases (e.g. “fastener”, “lifting assembly”)
or functional phrases (e.g. “food processing”, “ink printing”). Next,
we keep only phrases that appear in at least 100 patents. We ran-
domly sample around 1,000 phrases from the remaining phrases
which become our anchor phrases. For each anchor phrase we find
all of the matching patents and all of the CPC classes for those
patents. From all of the matching CPC classes we randomly sample
up to four. These become the context CPC classes for that anchor
phrase. The target phrases come from two sources - pre-generated
and rater generated.

1https://www.kaggle.com/c/us-patent-phrase-to-phrase-matching
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Model Dim. Pearson cor. Spearman cor.
GloVe 300 0.429 0.444

FastText 300 0.402 0.467
Word2Vec 250 0.437 0.483
BERT 1024 0.418 0.409

Patent-BERT 1024 0.528 0.535
Sentence-BERT 768 0.598 0.577

Table 2: Baseline model metrics.

We use two different methods for pre-generating target phrases
- partial matching and a masked language model (MLM). For partial
match we randomly select phrases from the entire corpus that par-
tially match with the anchor phrase. This means that one or more
of the tokens matches, but the whole phrase is different (e.g. “abate-
ment” → “noise abatement”, “material formation” → “formation
material”). For MLM we select sentences from the patents that con-
tain a given anchor phrase, mask it out, and use a BERT model [2]
to predict candidates for the masked portion of the text. All of the
phrases are cleaned up before sending to the raters. This includes
lowercasing and removal of punctuation and certain stopwords (e.g.
"and", "or", "said").

The raters were asked to determine the similarity level between
the two phrases given the context CPC class. They choose between
five different levels of similarity - very high, high, medium, low, and
not related. Each similarity level is further divided into different
subclasses, such as hyponym (broad-narrow), hypernym (narrow-
broad), antonym, domain related. The detailed description of the
similarity levels and subclasses will be included with the public
release of the data.

All of the pre-generated target phrases were independently rated
by two raters. After completing the ratings they met and went over
all of the non-matching ratings to discuss and agree on a final
rating. Each rater separately generated new target phrases and
gave ratings to them. We have merged all of the rater generated
phrases together. We have left out the rare cases where the two
raters generated the same target phrase with different ratings.

3 BASELINES
Table 2 describe the performance of some common off the shelf
models on the test data. We have only included dual-tower model
architectures that perform an embedding of the anchor and target
phrases separately and compute similarity using cosine distance. All
of the models use mean pooling of individual keyword embeddings
to get the full phrase embedding.

For GloVe [9] we have used the Wikipedia 2014 + Gigaword 5
model2, for FastText [4] the wiki-news-300d-1M model3 [7], and for
Word2Vec [6] the Wiki-words-250 model from TensorFlow Hub4.
For BERT [2] we have used the BERT-Large model from TensorFlow
Hub5. For comparison, we have also included the publicly available
BERT model pre-trained on patent data [11] of the same size as
BERT-Large. Finally, for Sentence-BERT [10] we have used the
all-mpnet-base-v2 pretrained model6.

2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/docs/en/english-vectors.html
4https://tfhub.dev/google/Wiki-words-250/2
5https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/4
6https://www.sbert.net/docs/pretrained_models.html

The bag-of-words models do not perform very well, which is
expected given the dataset structure (e.g. many matching terms
with different meanings). The Patent-BERT model significantly
outperforms the regular BERT model, which implies that generic
pretrained models are not optimal for technical terms found in
patents. However, we get the best results from the Sentence-BERT
model. This is not entirely surprising since Sentence-BERT has
been specifically fine tuned for the dual-tower architecture we are
using for similarity.
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ABSTRACT
The USPTO disseminates one of the largest publicly accessible
repositories of scientific, technical, and commercial data world-
wide. USPTO data has historically seen frequent use in fields such
as patent analytics, economics, and prosecution & litigation tools.
This article highlights an emerging class of usecases directed to
the research, development, and application of artificial intelligence
technology. Such usecases contemplate both the delivery of arti-
ficial intelligence capabilities for practical IP applications and the
enablement of future state-of-the-art artificial intelligence research
via USPTO data products. Examples from both within and beyond
the USPTO are offered as case studies.
ACM Reference Format:
Scott Beliveau and Jerry Ma. 2022. Recent Developments in AI and USPTO
Open Data. In Proceedings of SIGIR 3rd Workshop on Patent Text Mining
and Semantic Technologies (SIGIR ’22 PatentSemTech). ACM, Madrid, Spain,
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1 INTRODUCTION
As America’s national IP office, the United States Patent and Trade-
mark Office (USPTO) is charged with the mission of granting
patents and registering trademarks. The USPTO is required by
law to disseminate most nonprovisional patent applications and
granted patents to the public. 1 U.S. patent data has long been used
in many domains of application, including in patent analytics [18],
economics [2, 4], and commercial tools for patent prosecutors and
litigators, 2 thus serving as a versatile substrate for illustrating the
dynamics of national and global innovation.

Concurrently, the fields of artificial intelligence (AI) and natural
language processing (NLP) have witnessed a remarkable cadence of
scientific breakthroughs. Fueled by model architecture innovations
such as self-attention [26] and by the ever-increasing computational
horsepower of the leading AI hardware accelerators [21, 27], these
novel techniques have found versatile areas of application, from
machine translation [26] to structural biology [20].

∗The views expressed in this extended abstract should not be construed as official
policy statements of the United States Patent and Trademark Office or of the U.S.
Government. All errors are the authors’ own.
135 U.S.C. § 122(b); 37 C.F.R. § 1.11(a).
2Because agency practice is to refrain from public endorsements of any particular
commercial IP products, we omit references to specific examples.
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In this article, we survey recent developments at the intersec-
tion of AI and USPTO data. These developments fall in two broad
categories:

(1) Promising AI and NLP techniques can be brought to bear on
USPTO data in existing or novel fields of application.

(2) USPTO data can contribute to work that advances the fron-
tiers of AI and NLP research.

Both bodies of work hold great promise for advancing scientific
and technical progress. We encourage those in both the AI and the
IP communities to explore how USPTO data can unlock numerous
exciting opportunities—both in their respective disciplines and at
the intersection of AI & IP.

2 USPTO DATA FOR PATENT-FOCUSED AI &
NLP USECASES

One distinct body of work uses AI & NLP techniques on USPTO
patent data toward enhancing the value of such data toward long-
standing areas of application. Here, we present case studies in the
context of IP administration, practice, and empirical research.

2.1 AI & NLP tools for IP administration
IP offices worldwide seek to apply AI & NLP in the administra-
tion of their respective IP systems, and the USPTO is no exception.
The USPTO recognizes the advent of AI as among the most conse-
quential technologies—both for global society as a whole and for
the agency’s mission of delivering reliable, timely, and quality IP
rights [13].

Operationally, the USPTO focuses on two critical areas of AI ap-
plication: prior art search and patent classification. AI is a natural
tool with which to augment prior art search systems. Represen-
tation learning and related techniques can produce semantically
meaningful embeddings of language, graphs, images, and even
proteins [8–10, 20]. The USPTO applies such techniques on the
agency’s patent archives and uses the results toward improving
examiner-facing search systems to surface more relevant prior art
documents [24].

Turning to patent classification, the USPTO currently classifies
patents using a two-stage process. First, the agency assigns a set
of Cooperative Patent Classification (CPC) symbols to each patent
to characterize the relevant technologies contained therein. Sec-
ond, the agency determines the subset of CPC symbols (“claim
indicators”) associated with claim scope. The USPTO has recently
deployed an AI system, trained on annotated USPTO patent data, for
assigning claim indicators, and the agency is currently augmenting
the system to assign the full set of CPC symbols [13].
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2.2 AI & NLP tools for IP practitioners &
inventors

Since the dawn of computer-based information retrieval, software
developers have built tools for assisting IP practitioners and inven-
tors. Some tools are similar to those needed by IP offices (e.g., prior
art search), while others are specific to the needs of the private IP
bar and inventors (e.g., IP portfolio intelligence). Recent work has
used publicly-available USPTO data to train AI models that provide
new or enhanced capabilities to IP software products.

The USPTO has recently released AI-empowered search capa-
bilities to the public through the Inventor Search Assistant [25].
This tool surfaces not only published applications from the USPTO
patent archives, but also non-patent literature (NPL) and foreign
patent documents. Traditional prior art search systems have a steep
learning curve (e.g., basic query syntax, proximity operators) that
may pose a hurdle to early-stage and independent inventors. Such
inventors can especially benefit from the Inventor Search Assistant,
which uses machine learning techniques to offer an initial overview
of the state-of-the-art from natural language queries alone.

2.3 AI-powered empirical research & analytics
Finally, USPTO data can be elucidated via existing AI & NLP tech-
niques to produce boundary-pushing empirical research & analytics.
A common patent analysis task is to sort patent documents into
specific fields of technology or business applications—commonly
known as “patent landscaping” [23]. Recent work has applied deep
learning to the task of patent landscaping [1], with USPTO data
frequently used both as training data and as the source of docu-
ments to be landscaped. The USPTO has recently leveraged such
techniques in its own empirical studies on U.S. patent archives.

Released in 2021, the USPTO’s AI Patent Dataset identifies the
presence of AI in over 13 million U.S. patent documents and further
subcategorizes them into one of eight component technologies [12].
This dataset was created by training a recurrent neural network
in a semi-supervised manner to distinguish between positive and
negative examples [1]. The USPTO leveraged the AI Patent Dataset
to trace the diffusion of AI and its component technologies within
post-1976 U.S. patents [22], with such findings informing agency
stakeholder engagements and other policy-relevant activities [24].

Much patent analysis focuses on specifications, claims, and meta-
data, but an often-overlooked data source for patent analytics lies in
prosecution history. The USPTO has applied AI techniques to make
Office actions more accessible to the patent analysis community.
Released in 2017, the USPTO’s Office Action Research Dataset com-
prises a relational database of key elements from 4.4 million Office
actions mailed during the 2008 to mid-2017 period [17]. This dataset
was created using machine learning and NLP techniques to system-
atically extract information from Office actions, thus marking the
first time that comprehensive data on examiner-issued rejections
was made readily available to the research community.

3 ADVANCING THE AI & NLP RESEARCH
FRONTIERS VIA USPTO DATA

The foregoing body of work centers around the application of
existing AI & NLP techniques in IP-relevant areas. But another
emerging body of work flips this paradigm by using USPTO data

as an accelerant for scientific research in AI & NLP. We highlight
examples in both the training and evaluation of AI models.

3.1 USPTO data in large language modeling
Large language models have demonstrated a surprisingly diverse
portfolio of natural language capabilities [7, 8]. Yet early iterations
of billion-parameter language models employed lightly curated
datasets constructed with few quality or diversity filters. Observing
this, Gao et al. [11] compiled a dataset prioritizing both data quality
and diversity, combining the background sections of millions of
U.S. patents with 21 other data sources to form “The Pile”.

This 825 GiB language modeling dataset, and subsets thereof,
were subsequently used in training or assessing some of the largest
and most advanced language models to appear in published re-
search, including GPT-NeoX-20B, Gopher, and RETRO [5, 6, 19].
OPT-175B [29], currently the largest publicly-available language
model by parameter count, was trained on public USPTO data
sourced from The Pile.

We observe that the background sections of patents, while infor-
mative, only scratch the surface of available content within the U.S.
patent archives. Future language modeling datasets could include
full patent specifications or prosecution history documents (e.g.,
Office actions). The latter holds particular promise as a source of
scientific and legal reasoning examples not easily found elsewhere.

3.2 Patent-sourced datasets for common tasks
The quantity and detail of patent documents also readily enable
their use as datasets for common AI & NLP benchmark tasks. Patent
classification (discussed in Section 2.1) is, at its core, a quintessential
multiclass classification challenge. AI researchers have already used
public USPTO data and CPC annotations to create text classification
benchmarks encompassing millions of patent documents [15, 16].
These benchmarks have subsequently been used to evaluate the
capabilities of new self-attention neural network models [28].

Recent work has also augmented public USPTO data with au-
tomated data generation and manual annotations to form special-
ized benchmark datasets that can test the ability of novel AI and
NLP models to penetrate complex technical concepts. For instance,
Aslanyan and Wetherbee [3] construct a novel semantic similarity
benchmark dataset by extrating phrases from patent documents,
generating facially similar phrases, and manually rating the seman-
tic similarity of each phrase pair on a five-point scale. A Kaggle
competition featuring this benchmark resulted in nearly 43,000
submissions, achieving a top Pearson correlation of 87.8% [14].
The USPTO is interested in building upon these early successes by
fostering future efforts to refashion patent data into valuable AI
research benchmarks.

4 CONCLUSION
We have described two technical bodies of work that rest upon
USPTO data. The first integrates USPTO data with AI & NLP tech-
niques to benefit IP administration, practice, and empirical analysis.
The second leverages USPTO data in service of state-of-the-art AI
& NLP research.

We envision these two spheres forming a virtuous cycle wherein
successes in one area furthers progress in the other. From search
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engines to benchmarks, and from landscapes to large language
models and beyond, we hope that researchers and practitioners will
find novel means of harnessing the richness of USPTO data to serve
both the IP community and future AI researchers.
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