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Kurzfassung

Die vorliegende Dissertation beschäftigt sich mit der Entwicklung einer Simulationssoft-

ware die in der Lage ist, die volle Boltzmann Transportgleichung (BTG) zu lösen. Das Ziel

dahinter ist, neue Einsichten in das Zusammenspiel von Elektronentransport und Thermal-

isation in Festkörpern zu bekommen. Das Verständnis der Nichtgleichgewichtsdynamik

von Elektronen in festen Körpern bildet die Basis für viele moderne Technologien wie zum

Beispiel Mikroelektronik, Solarzellen oder Thermoelektrische Generatoren. Die meisten

technologischen Anwendungen basieren auf Physik nahe am thermischen Gleichgewicht,

ein gut verstandenes Forschungsgebiet. Die Entwicklung von Femtosekundenlasern hat

das neue Forschungsfeld der starken Nichtgleichgewichtsphyisk eröffnet, welches das Poten-

zial für weiteren technologischen Fortschritt mit sich bringt. Nichtgleichgewichtseffekte

könnten für neuartige Terahertz Strahler, ultraschnelle magnetische Schreibvorgänge oder

Solarzellen effizienter als die Schokley-Queisser Grenze genutzt werden.

Wenn ein Femtosekundenlaserpuls von einem Festkörper absorbiert wird, werden die

Elektronen zu höherenergetischen Zuständen angeregt. Diese hochenergetischen Elektro-

nen unterlaufen einen komplizierten Prozess, bei dem die Elektronen untereinander, aber

auch mit Phononen oder Verunreinigungen streuen. Gleichzeitig können sie durch ein

elektrisches Feld beschleunigt werden und sich im Raum bewegen. Um Nichtgleichgewicht-

sexperimente korrekt verstehen und interpretieren zu können, sind wir deshalb gezwungen

auf theoretische Modelle und Simulationen zurückzugreifen. Eine der Standardmethoden

zur Beschreibung von Elektronentransport in Festkörpern ist die BTG.

Trotz ihrer fundamentalen Bedeutung für die Nichtgleichgewichtselektronendynamik

wird die BTG üblicherweise nur mit starken Vereinfachungen oder für einfache Modell-

systeme gelöst. Der Grund liegt in ihrer mathematischen Struktur, die es besonders

schwierig macht, sie numerisch auszuwerten. Um dieses Problem zu lösen, wird zunächst

ein vereinfachter Boltzmann Streuoperator, bei dem die Impulserhaltung vernachlässigt

wird, untersucht. Die damit berechnete Thermalisationsdynamik eines optisch angeregten

Mott-Isolators wird mit den Resultaten einer dynamischen Molekularfeldtheorie Rechnung

im Nichtgleichgewicht verglichen. Im Hauptteil wird eine neue Methode zum numerischen

Lösen der vollständigen BTG ausgearbeitet. Bei dieser Methode ist die Energie, der Impuls

und die Teilchenanzahl dann exakt erhalten. In weiterer Folge wird diese Methode verwen-

det um die Thermalisationsdynamik von verschiedenen Nichtgleichgewichtsmodellsystemen

und die dabei wirksamen, fundamentalen Prozesse, besser zu verstehen. Als Abschluss

wird die Methode zur Simulation eines tatsächlich durchgeführten Experiments verwendet.

Dabei werden einwandige Kohlenstoffnanoröhren unter Spannung mit Femtosekunden

Laserpulsen beschossen. Die Messungen offenbaren eine Diskrepanz zwischen Photostrom

und Terahertzemission, die wir numerisch reproduzieren und verstehen können.
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Abstract

This thesis is dedicated to the development of a numerical solver for the full Boltzmann

transport equation (BTE) and a better understanding of thermalization and transport

dynamics in solids. Many modern technologies are based on non-equilibrium dynamics

of electrons in solids, for example microelectronics, solar cells or thermoelectric gener-

ators. Most technological applications are however based on transport physics close to

thermal equilibrium which is a mature and well understood field. The development of

femtosecond lasers has created the whole new research area of strongly out-of-equilibrium

dynamics with a wide range of interesting effects that have the potential for further tech-

nological advances. These strong non-equilibrium effects could be exploited for novel

terahertz emitters, ultrafast magnetic recording or particularly efficient solar cells beyond

the Schokley-Queisser limit.

When a femtosecond laser pulse hits a solid, it excites electrons to higher energy

states. These high energetic electrons are subject to a complicated interplay of scatterings

with other electrons, phonons or impurities while at the same time the electrons may be

accelerated by electric fields and move to different positions in space. For a correct inter-

pretation and understanding of strongly out-of-equilibrium transport and thermalization

experiments one has to rely on theoretical models and simulations. One of the standard

approaches to describe transport of electrons in solids is the BTE.

Although of fundamental importance for strongly out-of-equilibrium dynamics, the full

BTE is usually only solved numerically with huge approximations or for oversimplified

model systems. The reason lies in its inherent mathematical structure that makes it

difficult to compute. To approach this problem we first introduce a simplified Boltzmann

collision operator where the momentum conservation is neglected. We compare the result-

ing thermalization dynamics to results of non-equilibrium dynamical-mean-field theory

for a photodoped Mott-insulator. In the main part we develop a novel numerical method

to solve the full BTE that exactly conserves momentum, energy and particle density. We

then apply it to several strongly out-of-equilibrium model systems to get a deeper insight

into fundamental processes. Finally, we use the developed method to simulate an actual ex-

periment where biased single-walled carbon-nanotubes are excited by a femtosecond laser

pulse. We uncover a mysterious discrepancy of the measured photocurrent and terahertz

emission that we can numerically reproduce and understand thanks to our simulation.
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Chapter 1

Introduction

Without non-equilibrium physics the world would be a boring place. Almost all phenomena

encountered in daily life, including life itself, are based on the fact that the world is not

in thermal equilibrium. There is actually no such thing as real equilibrium physics. An

at least slightly out of equilibrium situation is always needed to measure any physical

property in an experiment. One can think for example of a measurement of the electrical

conductivity where one has to drive a current through the sample to obtain information on

the system. Non-equilibrium situations are natural for interactions with the physical world,

however the theoretical description of these phenomena belongs to the most demanding

tasks in physics.

While currently most solid-state technologies are based on physics close to equilibrium,

driving the solid strongly out-of-equilibrium shows a range of intriguing dynamical effects

that have the potential for future technological use. Some examples are novel solar

cells [1,2], giant spin injection in semiconductors [3,4], the ultrafast demagnetization [5–7]

and novel opto-electronic terahertz-devices [8, 9]. Strongly out-of-equilibrium situations

in solids can be generated by femtosecond laser pulses [5, 10–17]. These laser pulses can

be very intense and therefore significantly alter the electronic population and even trigger

metal-to-insulator transitions [18–20]. After an irradiation by a femtosecond laser the

electrons scatter with each other, lattice vibrations, impurities and potential other quasi-

particles in the system. At the same time, due to external fields or a broken translational

symmetry at e.g. surfaces, the electrons may propagate in space. This interplay between

thermalization through scatterings and transport takes place on the femto-, pico- and

even nanosecond scale and is particularly hard to simulate [3, 7, 21–23].

Various different models and techniques have been developed to calculate the non-

equilibrium dynamics in solids. The two most common ways to describe transport are the

non-equilibrium Green’s function formalism (NEGF) [24,25] and the so called Boltzmann

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2 CHAPTER 1. INTRODUCTION

equation [26–28]1 and its extensions [33,34].

The NEGF methods introduce the many-particle Green’s functions that describe the

time-evolution of a test particle added to the particles already in the system. From the

behavior of this test-particle one can extract information on the current state of the system.

These methods include the full effect of the interaction potential (i.e. they are per se

not restricted to weakly interacting particles) and coherent phenomena like quasi-particle

renormalizations. This results in a huge computational cost so that either additional

simplifications have to be made like the non-equilibrium dynamical-mean-field theory

approach [35,36] or only very simple model systems can be described.

The Boltzmann equation was historically introduced by Boltzmann in 1872 to describe

classical gas dynamics [26]. Later it was extended to the description of quantum mechanical

particles and counts as the basic transport theory in solids. When it is applied to quantum

mechanical particles, coherence between the scattering events is lost but the leading order

dynamical properties of the particles, stemming from quantum mechanics, are preserved.

This simplification limits the range of applicability of the technique. Nevertheless, the

success of the Boltzmann equation for the description of transport in solids is remarkable.

It has been used to calculate basic response quantities such as the electrical or thermal

conductivity and the Seebeck-coefficient as well as for transport through junctions between

differently doped regions in semiconductors or entire heterostructures consisting of different

materials [27, 37–41].

Although less numerically demanding than the NEGF methods, solving the complete

Boltzmann equation numerically is a formidable challenge and usually heavy approxima-

tions are used [42–45]. The most prominent numerical methods to solve the Boltzmann

equation are so-called Monte Carlo methods [46–49] or their extensions [50, 51]. They

are particularly popular in the fields of semiconductor and plasma physics. However,

due to the stochastic nature of these methods, they give only approximate solutions and

introduce huge noise especially when they are used for transport.

Deterministic methods do not posses these shortcomings. However, they are consid-

ered computationally too demanding to solve the full Boltzmann equation when processes

like electron-electron scatterings are included. Hence, they are only used for strongly

simplified forms of the Boltzmann collision term [52,53]. The most popular simplifications

are the relaxation-time-approximation, restriction to lowest order electron-phonon scatter-

ing, restriction to parabolic dispersion relations and low electron-densities. Additionally,

all the above mentioned methods, being deterministic or stochastic in nature, lack an

1When people talk about the Boltzmann equation for electrons the term quantum Boltzmann equation

is also used [28–30]. However, sometimes quantum Boltzmann refers to extensions of the ordinary

Boltzmann equation [31,32]. Hence, we refer to it as Boltzmann equation in the following.
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3

exact conservation of one or several extensive, thermodynamic quantities like particle

number, energy or momentum. This constitutes problems for the convergence in long-time

thermalization simulations.

The aim of this thesis is to take one step towards a semi-deterministic Boltzmann

solver including transport in combination with the full collision operators even for two-

particle scatterings and without any restrictions on bandstructures or particle-densities.

Additionally we put emphasis on the problem of the exact conservation of the extensive,

thermodynamic quantities in order to make simulations possible that describe dynamics

from the sub-picosecond scale up to nanoseconds. Furthermore we seek to get a deeper

understanding on how the two most popular methods in the field of non-equilibrium

dynamics, i.e. the Boltzmann-equation and the NEGF-methods, are connected.

The thesis is organized as follows:

• In chapter 2 we will give a basic introduction to the Boltzmann-transport-equation

(BTE) and its theoretical foundations. The concept of quasi-particles and phase-

space are introduced. Furthermore the two main parts of the BTE, the transport

term and the collision term, are introduced for arbitrary particles and scatterings.

Finally, the very famous relaxation-time approximation and local-equilibrium as-

sumption of the BTE are discussed.

• In chapter 3 we investigate the Boltzmann collision operator for electron-electron

interaction disregarding the momentum conservation. This approximation is similar

to the simplification used in dynamical-mean-field theory (DMFT). We compare the

solution of the simplified Boltzmann collision term and non-equilibrium DMFT and

discuss the similarities and differences.

• In chapter 4 we use the discontinuous Galerkin finite-elements method to solve the

transport part of the Boltzmann equation for a one-dimensional system. We explain

the effect of different boundary conditions and discuss the stability of the code.

• In chapter 5 we develop the numerical method to solve the computationally most

demanding part of the BTE, the collision operator. The numerical discretization

scheme is introduced followed by a discussion on mathematical symmetries and how

they affect the conservation of thermodynamic extensive quantities. The numerical

implementation of the method is applied to two-dimensional, two-band systems

(with and without bandgap). Furthermore we discuss how the scattering code can

be joined with the transport code.

• In chapter 6 we discuss an experiment where aligned semiconducting carbon-nanotubes

(CNTs) are illuminated with a femtosecond laser pulse under simultaneous presence
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4 CHAPTER 1. INTRODUCTION

of an external electric field. It is found that this setup is an unexpectedly efficient

terahertz emitter. We solve the full BTE for an elaborate model of CNTs explaining

the puzzling discrepancy in the scaling of the terahertz radiation amplitude and the

measured photocurrent with the applied voltage.
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Chapter 2

Boltzmann Theory

In this chapter we introduce the basic theoretical foundations of the Boltzmann transport

equation (BTE). The Boltzmann equation actually consists of two parts, the transport

part and the collision part that are conceptually different. In the following the two parts

are introduced independently and then combined to get the full Boltzmann equation.

Although there exist very formal derivations of the BTE from the Bogoliubov-Born-

Green-Kirkwood-Yvon-hierarchy [54–58] or alternative approaches [30], we chose here to

show a straightforward, though less formal approach. We highlight how different types

of scatterings (e.g. electron-electron, electron-phonon, phonon-phonon) are written as

Boltzmann collision operators.

The chapter is organized as follows: At first, we introduce the concepts of phase-

space and distribution function in quantum mechanics (section 2.1). Then we give a

short introduction to the transport part of the Boltzmann equation (section 2.2). This is

followed by an introduction to the Boltzmann collision operators (section 2.3) where we

derive the collision operators from perturbation theory. Additionally this concept, which

is well known for electron-electron and electron-phonon scattering, is extended to arbitrary

scattering processes. Finally, we briefly discuss the famous relaxation-time approximation

and local equilibrium assumption (section 2.4).

2.1 Phase-space and distribution function

The use of the Boltzmann equation for quantum mechanical many-body systems is closely

related to the concept of the quasi-particle. The fundamental statement of this concept

is, that even though the physical particles in the system interact through the strong

and long-range Coulomb force the basic excitations of the system behave like almost

independent particles which are called quasi-particles. Their dynamical behavior however

can be strongly renormalized due to the interaction of the physical electrons in the system.

5
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6 CHAPTER 2. BOLTZMANN THEORY

The reason for the success of the Boltzmann equation is that in most solids the basic

excitations are quasi-particles.

Let us consider a system of N non-interacting quasi-electrons that is described by the

time-independent Schrödinger equation

N∑

i=1

(

− p̂2
i

2me

+ V (x̂i)

)

|ψ〉 = E |ψ〉 (2.1)

with the quasi-electron mass me, the momentum operator of the i-th electron p̂i, the

position operator of the i-th electron x̂i, the energy E and the single particle potential

V (·). As the particles are non-interacting, Eq. (2.1) separates into N independent single

particle equations that all have the same structure,
(

− p̂2

2me

+ V (x̂)

)

|φ〉 = ǫ |φ〉 . (2.2)

In a crystal the single-particle potential is periodic, i.e. V (x̂ + Rl) = V (x̂) where Rl is

the vector pointing to the l-th unit cell in the Bravais lattice. This discrete translational

symmetry gives rise to a quantum number, the crystal momentum k. The momenta k

can assume values that lie in the so-called first Brillouin-zone which is a unit cell of the

reciprocal lattice centered around the Γ-point (i.e. k = 0). In case of a finite-size crystal,

k is discrete while in case of an infinitely large crystal it becomes continuous. For a

certain k the Schrödinger equation has several solutions which are labeled by another

quantum number, the so-called band index n. Additionally we have the spin index σ1.

Each eigenstate |φn,k,σ〉 has then the eigenenergy ǫn,σ(k) that is called dispersion relation

or quasi-particle energy alternatively.

One can construct wave-packet states that are centered at a certain position xc in

real space and kc in momentum space. These states are only approximate eigenstates

of the hamiltonian and consist of superpositions of the exact eigenstates |φn,k,σ〉. As

each particle can now be labeled with its real-space and reciprocal-space position it is

convenient to introduce the so-called phase-space. This is the Cartesian product of real

and momentum space. The volume of the total phase-space is then VP h = V ×VBZ with the

volume of the crystal V and the volume of the Brillouin-zone VBZ . From the construction

of the wave-packet it follows that it occupies a finite volume in the phase-space, i.e.

Vparticle = (2π)d where d is the dimension of the system. This is a direct consequence of

the uncertainty-principle which states, that a particle cannot have a definite position in

real- and momentum-space simultaneously. As the wave-packets are no real eigenstates

of the hamiltonian they are subject to an increase in real-space volume in time, i.e. they

will spread. In Boltzmann theory it is assumed that the momentum-space volume of

1Here we assume that spin-orbit coupling is negligible, hence, the spin is a good quantum-number.
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2.1. PHASE-SPACE AND DISTRIBUTION FUNCTION 7

(a) (b)

Figure 2.1: (a) Symbolic picture of the propagation of a wave-packet in the phase-space

from time t to t+ ∆t. (b) Symbolic picture of several wave-packet trajectories. As they

are solutions of the equations of motion Eqs. (2.3) they never cross.

the wave-packet is much smaller than the size of the first Brillouin-zone. Consequently,

the real-space volume of the wave-packet is much larger than a crystal unit-cell. Under

the assumption of a wave-packet that is strongly localized in momentum space, the time-

dependent spread of the wave-packet in real-space can be neglected.

By the application of the time-evolution operator one can show that the center of the

wave-packet
(

xc,kc

)

, to leading order, moves according to [27,37,38]

∂xc(t)

∂t
=

1

~
∇kc

ǫn,σ(kc) ≡ vxc
, (2.3a)

∂kc(t)

∂t
= − e

~

(

E(xc, t) +
1

c

∂xc(t)

∂t
× H(xc, t)

)

≡ vkc
, (2.3b)

with the gradient with respect to momentum ∇k, the absolute value of the electron charge

e, the speed of light c, the real-space velocity vxc
, the momentum-space velocity vkc

, the

external electric field E(xc, t) and the external magnetic field H(xc, t).

The Eqs. (2.3) are the so-called semi-classical equations of motion2. As they are

first order differential equations a wave-packet with a certain position in the phase-space

at time t propagates to a position at time t + ∆t that is uniquely determined by the

integration of these equations of motion. As a consequence two trajectories of particles in

the phase-space can never cross.

As we already know how the individual particle wave-packets evolve in time it is not

always necessary to deal with the full N -particle wave-function |ΨN(t)〉. Instead, it may

be sufficient to use the single-particle phase-space distribution function fn,σ(t,x,k). It is

2Note, that there can be additional velocity terms if the band has non-trivial Berry-curvature. These

cases are not discussed here but can be found in e.g. Ref. [59].
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8 CHAPTER 2. BOLTZMANN THEORY

defined as the probability that a wave-packet state with (n, σ,xc = x,kc = k) is occupied

at time t. Using the distribution function is an approximation and will definitely not

hold if quantum-effects like interference are relevant. However, in many real systems

the particles scatter with phonons, impurities and each other which leads to a rapid

decoherence. Therefore, in many cases it is completely sufficient and well justified to study

the dynamics of a many-electron system using the distribution function instead of the

wave-function.

Each wave packet occupies the phase-space volume (2π)d, hence, the density-of-states

in the phase-space is 1

(2π)d . With this knowledge we can write the number of particles

dNn,σ(t,x,k) located in a phase-space volume-element dVph = ddx ddk as

dNn,σ(t,x,k) ≡ ddx ddk
1

(2π)d
fn,σ(t,x,k) . (2.4)

The dynamic properties of each wave-packet are determined by its position in the phase-

space and quantum numbers, i.e. by the set (n, σ,x,k). Therefore, with the distribution

function and Eq. (2.4), extensive thermodynamic quantities Θ(t) and their corresponding

currents JΘ(t,x) can be calculated according to

Θ(t) =
∑

n,σ

∫

V
ddx

∫

VBZ

ddk
1

(2π)d
fn,σ(t,x,k)θn,σ(x,k) , (2.5a)

JΘ(t,x) =
∑

n,σ

∫

VBZ

ddk
1

(2π)d
fn,σ(t,x,k)θn,σ(x,k)vx(k) (2.5b)

where θn,σ(x,k) is the single-particle contribution to Θ(t). Some examples of thermody-

namic quantities and their currents are given in Tab. 2.1.

2.2 The transport term: Vlasov Equation

In a non-interacting system the total particle number of each species (n, σ) has to be

conserved. Additionally, as the particle-motion is described by a first-order differential

equation, a particle located at a certain position in phase-space can only smoothly move

to a neighboring point. As a result of these properties, the particle density, or equivalently

the distribution function, has to fulfill the continuity equation

∂

∂t
fn,σ(t,x,k) + ∇ ·

(

vfn,σ(t,x,k)
)

= 0 , (2.6)

where ∇ = (∇x,∇k)T is the gradient in the full 2d-dimensional phase-space and v =

(vx,vk)T is the total velocity.

As pointed out in section 2.1 an electron always occupies a volume of (2π)d in the

phase space. In order for this property to hold for all times we further have to require

https://www.tuwien.at/bibliothek
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2.3. THE COLLISION OPERATOR 9

description Θ θn,σ(x,k)

number of particles / particle current N 1

charge / charge current C −e
spin / spin current S σ

inner energy / inner energy current E ǫn,σ(k)

total energy / total energy current U ǫn,σ(k) − eφ(x)

entropy / entropy current S (ǫn,σ(k) − µ(x)) /T (x)

heat / heat current Q ǫn,σ(k) − µ(x)

Table 2.1: Different thermodynamic quantities, their associated symbols Θ and their

corresponding single-particle contribution θn,σ(x,k) for Eqs. (2.5). φ(x) is the local

electrical potential, T (x) is the local temperature and µ(x) is the local chemical potential.

Local temperature and chemical potential are closely related to the local equilibrium

assumption which is introduced later.

incompressibility of the phase-space distribution function. This is equivalent to a vanishing

divergence of the velocity field, i.e. ∇ · v = 0. The equations of motion given by Eqs. (2.3)

indeed fulfill this requirement. We can therefore write Eq. (2.6) as

∂

∂t
fn,σ(t,x,k) + vx · ∇xfn,σ(t,x,k) + vk · ∇kfn,σ(t,x,k) = 0 , (2.7)

where it is easy to see that the left-hand side is the total time derivative of the distribution-

function if we follow a wave-packet at its trajectory in the phase-space.

This equation is historically called Vlasov-equation [60, 61] and was first used in

combination with the Maxwell-Equations for the description of plasmas. It describes the

collision-less flow of particles if external fields are present.

2.3 The collision operator

The Vlasov equation (2.7) describes the motion of non-interacting quasi-particles where

a part of the electron-electron interaction is already included in the dispersion relation

ǫn,σ(k) of the quasi-particle. Additionally, there will be a residual short-range interaction

between the quasi-particles that gives rise to scattering. In order to correctly describe this

effect, the Vlasov equation Eq. (2.7) has to be modified by adding the so-called collision

operators
(

∂fn,σ

∂t

)

col
,

∂

∂t
fn,σ + vx · ∇xfn,σ + vk · ∇kfn,σ =

∑

col

(

∂fn,σ

∂t

)

col

. (2.8)
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10 CHAPTER 2. BOLTZMANN THEORY

The sum on the right-hand side runs over all possible scattering processes. This is the

Boltzmann-equation as described in numerous textbooks [27, 37, 38]. The Boltzmann

collision operator is also called quantum Fokker-Planck equation [28].

2.3.1 Electron-electron collision operator

In order to understand how to construct such a collision operator let us consider electron-

electron scattering at first. We assume a system that is described by a Hamiltonian Ĥ

consisting of a non-interacting part Ĥ0 and an interaction part Ĥe-e,

Ĥ =
∑

n,k,σ

ǫn,σ(k)ψ̂†n,k,σψ̂n,k,σ

︸ ︷︷ ︸

Ĥ0

+
1

2

∑

n0...n3
σ0...σ3
k1,k2,q

V e-e
n0...n3
σ0...σ3

(k0,k1,q)ψ̂†n2,k0+q,σ2
ψ̂†n3,k1−q,σ3

ψ̂n1,k1,σ1ψ̂n0,k0,σ0

︸ ︷︷ ︸

Ĥe-e

(2.9)

where we have used the creation (annihilation) operator ψ̂†n,k,σ (ψ̂n,k,σ) that creates (an-

nihilates) an electron in the state (n,k, σ)3. V e-e
n0...n3
σ0...σ3

(k0,k1,q) is the matrix element of

the interaction potential that may depend on the involved bands ni as well as on the

spins σi and momenta k1, k2, q in general. We can now calculate the time-evolution of

a wave-function with two electrons in a state |0, 1〉 ≡ ψ̂†n0,k0,σ0
ψ̂†n1,k1,σ1

|∅〉 at time t = 0,

where |∅〉 is the state without electrons. The probability rate for a transition into another

state |2, 3〉 at time t can be calculated in first-order time dependent perturbation theory

as

W0123 =
2π

~

∣
∣
∣〈2, 3| Ĥe-e |0, 1〉

∣
∣
∣

2

︸ ︷︷ ︸

≡ (2π)2d

V 2 we-e
0123

δt(ǫ0 + ǫ1 − ǫ2 − ǫ3) (2.10)

where ǫi ≡ ǫni,σi
(ki). The function δt(·) is peaked at zero and becomes a delta-distribution

in the limit t → ∞. When this limit is performed Eq. (2.10) is known as Fermi’s Golden

Rule [62, 63]. We will call W0123 transition rate and we-e
0123 transition amplitude in this

thesis.

An important property of the transition rate W0123 can be seen when the translation

operator T̂Rl
that shifts a wave-function by a Bravais-lattice vector Rl, is used. From

the Bloch-theorem it follows that T̂Rl
ψ̂†n,k,σ = eiRl·kψ̂†n,k,σT̂Rl

. With this relation and the

property T̂−1
Rl

= T̂ †Rl
we can write

〈2, 3| Ĥe-e |0, 1〉 = 〈2, 3| T̂−1
Rl
T̂Rl

Ĥe-eT̂
−1
Rl

︸ ︷︷ ︸

=Ĥe-e

T̂Rl
|0, 1〉 (2.11a)

=eiRl·(k0+k1−k2−k3) 〈2, 3| Ĥe-e |0, 1〉 . (2.11b)

3Note, that this is not a wave-packet state, but an eigenstate of the non-interacting Hamiltonian Ĥ0.
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2.3. THE COLLISION OPERATOR 11

In order for 〈2, 3| Ĥe-e |0, 1〉 to be non-zero it must hold that Rl · (k0 + k1 − k2 − k3) = 2πz

with an arbitrary integer number z. This is fulfilled if (k0 + k1 − k2 − k3) = G where G

is a reciprocal lattice vector. With this knowledge we can write Eq. (2.10) as

W0123 =
(2π)2d

V 2
we-e

0123

∑

G

δ(k0+k1−k2−k3),G δt(ǫ0 + ǫ1 − ǫ2 − ǫ3) (2.12)

where δ(k0+k1−k2−k3),G is the Kronecker-delta. The transition amplitude has the important

properties

we-e
0123 = we-e

1023 , (2.13a)

we-e
0123 = we-e

2301 , (2.13b)

which follow directly from its definition Eq. (2.10) and the fermionic anti-commutation

relations for creation and annihilation operators.

The time-evolution of the single-particle distribution function fn,σ(t,k)4 due to electron-

electron collisions can now be calculated by the summation of all scattering rates that

scatter electrons into the state (n, σ,k) and subtraction of all scattering rates that scatter

the electron away from (n, σ,k). A scattering process only happens if both initial two

single-electron states are occupied which has the probability fn0,σ0(k0)fn1,σ1(k1) for a

process |0, 1〉 → |2, 3〉. In case of Fermions the final two states additionally have to

be unoccupied due to the Pauli-principle. This gives the additional probability (1 −
fn2,σ2(k2))(1 − fn3,σ3(k3)) for this scattering. Altogether the resulting probability factor

for the scattering is then fn0,σ0(k0)fn1,σ1(k1)(1 − fn2,σ2(k2))(1 − fn3,σ3(k3)) for the process

|0, 1〉 → |2, 3〉.
The collision operator for electron-electron scattering thus eventually reads

(

∂fn0,σ0(k0)

∂t

)

e-e

=
(2π)2d

V 2

1

2

∑

G

∑

n1,n2,n3
σ1,σ2,σ3
k1,k2,k3

we-e
0123 δ(k0+k1−k2−k3),G δt(ǫ0 + ǫ1 − ǫ2 − ǫ3)

×
[

(1 − fn0,σ0(k0))(1 − fn1,σ1(k1))fn2,σ2(k2)fn3,σ3(k3)

− fn0,σ0(k0)fn1,σ1(k1)(1 − fn2,σ2(k2))(1 − fn3,σ3(k3))
]

.

(2.14)

The factor 1
2

in front of the sums is needed to prevent double counting. The terms

within the square brackets are called phase-space factor in the following and denoted

as P(f0, f1, f2, f3) ≡ [(1 − f0)(1 − f1)f2f3 − f0f1(1 − f2)(1 − f3)] with the abbreviation

fi = fni,σi
(ki). Note that there are more formal ways to derive the phase-space factor we

are not discussing within the scope of this introduction [28].

4As we are discussing a spatially homogeneous system we have dropped the real-space dependence

https://www.tuwien.at/bibliothek
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12 CHAPTER 2. BOLTZMANN THEORY

If the real-space volume V of the system is sufficiently large one can replace the sums

over the momenta by integrals
∑

k → V

(2π)d

∫

VBZ
ddk, the momentum-delta with a delta-

distribution δ(k0+k1−k2−k3),G → (2π)d

V
δ(k0 + k1 − k2 − k3 + G) and for sufficiently large

times t the function δt(·) with a delta distribution δ(·) to get the more common version

(

∂f0

∂t

)

e-e

=
1

2

∑

G

∑

n1,n2,n3
σ1,σ2,σ3

∫∫∫

VBZ
3
ddk1d

dk2d
dk3 w

e-e
0123 δ(k0 + k1 − k2 − k3 + G)

× δ(ǫ0 + ǫ1 − ǫ2 − ǫ3)P(f0, f1, f2, f3) .

(2.15)

This is the collision term for electron-electron interaction that can be found in various

textbooks [27,28,38].

The transition amplitude we-e
0123 as defined by Eq. (2.10) does not depend on the

real-space volume V . Since the transition amplitude is volume-independent, also the

collision operator Eq. (2.15) is volume-independent. Assuming that the volume used in

the derivation is microscopically large but macroscopically small we can use the exact same

collision operator for spatially non-homogeneous systems.5 All the involved distribution

functions then have to be evaluated at the same real-space position x.

2.3.2 Electron-phonon collision operator

Consider a system with electron-phonon scattering to leading order. This interaction is

described by the Fröhlich-Hamiltonian [64,65] that reads

Ĥe-ph =
∑

k,q
ni,σ

V e-ph
n0,n1

σ

(k,q)
(

ψ̂†n1,k,σψ̂n0,k−q,σân2,q + ψ̂†n1,k−q,σψ̂n0,k,σâ
†
n2,q

)

(2.16)

where V e-ph
n0,n1

σ

(k,q) is the effective (spin-conserving) electron-phonon interaction potential

and â†n2,q (ân2,q) is the creation (annihilation) operator of a phonon with momentum q

in the phonon-band n2. In analogy with the electron-electron collision operator one can

5The volume used in the derivation would then be the real-space volume of the wave-packets.

https://www.tuwien.at/bibliothek
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2.3. THE COLLISION OPERATOR 13

construct the electron-phonon collision operator as

(

∂f0

∂t

)

e-ph

=
∑

G

∑

n1,n2
σ1

(

1 − 1

2
δn0,n1δσ0,σ1

) ∫∫

VBZ
2
ddk1d

dk2 w
e-ph
012 δ(k1 − k0 + k2 + G)

× δ(ǫ0 − ǫ1 − ω2)
[

(1 − f0)f1f2 − f0(1 − f1)(1 + f2)
]

+
∑

G

∑

n1,n2
σ1

(

1 − 1

2
δn0,n1δσ0,σ1

) ∫∫

VBZ
2
ddk1d

dk2 w
e-ph
012 δ(k1 − k0 − k2 + G)

× δ(ǫ0 − ǫ1 + ω2)
[

(1 − f0)f1(1 + f2) − f0(1 − f1)f2

]

(2.17)

with the phonon dispersion relation ω2 ≡ ωn2(k2) and the phonon distribution function

f2 ≡ fn2(k2) which can be understood in the same sense as the electron dispersion relation

and distribution function. For electrons or fermions in general, the term (1 − f) in the

phase-space factor is the probability that a certain state is unoccupied and accounts for

the Pauli-principle. In case of bosons we need a (1 + f) factor that can be interpreted

as probability for stimulated- (∝ f) plus spontaneous- (∝ 1) emission. As can be seen

Eq. (2.17) actually consists of two collision operators. The first operator (first two lines)

describes the process where an electron in state 0 emits a phonon in state (n2,k2) and

becomes an electron in state 1 and the time reversed version of this process. The second

operator (third and fourth line) describes the situation where an electron in state 0 absorbs

a phonon (n2,k2) and becomes an electron in state 1 and the time reversed version. The

factor
(

1 − 1
2
δn0,n1δσ0,σ1

)

is needed to prevent double-counting.

2.3.3 General collision operators

The electron-electron collision operator Eq. (2.15) can be extended to higher order electron-

boson or boson-boson scattering. This is done by modifying the phase-space factor to

account for different particle types. For example the phase-space factor for the electron-

boson scattering-case reads

P4-cons(f0, f1, f2, f3) = [(1 − f0)(1 + f1)f2f3 − f0f1(1 − f2)(1 + f3)] , (2.18)

where f1 and f3 are bosonic distribution-functions. As above, the bosonic particles have

(1 + f) terms in the phase-space factor in contrast to electrons which have (1 − f). The

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
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14 CHAPTER 2. BOLTZMANN THEORY

collision operator for particle-number conserving electron-phonon scattering then reads

(

∂f0

∂t

)

e-ph-2

=
∑

G

∑

n1,n2,n3
σ1,σ2,σ3

∫∫∫

VBZ
3
ddk1d

dk2d
dk3 w

e-ph-2
0123

× δ(k0 + k1 − k2 − k3 + G)δ(ǫ0 + ω1 − ǫ2 − ω3)P4-cons(f0, f1, f2, f3) .

(2.19)

Note that the 1
2

pre-factor of Eq. (2.15) is not needed here as electrons and phonons are

different particles, thus distinguishable.

If bosons are taken into account it is also possible that the total number of particles

is not conserved in the scattering process. An example would be a process where one

electron scatters into another state by absorbing two phonons. The collision operator for

such a processes reads

(

∂f0

∂t

)

e-ph-3

=
∑

G

∑

n1,n2,n3
σ1,σ2,σ3

∫∫∫

VBZ
3
ddk1d

dk2d
dk3 w

e-ph-3
0123

× δ(k0 + k1 − k2 + k3 + G)δ(ǫ0 + ω1 − ǫ2 + ω3)P4-noncons(f0, f1, f2, f3) ,

(2.20)

with

P4-noncons(f0, f1, f2, f3) = [(1 − f0)(1 + f1)f2(1 + f3) − f0f1(1 + f2)f3] . (2.21)

Note, that here the arguments of the delta-distributions have also changed to account

for the correct energy- and momentum-conservation. As a matter of course the particle-

number conserving electron-boson scattering and two-bosons absorption/emission are

effective processes containing several elementary interactions (cf. Fig 2.2 below).

Like the electron-phonon scattering discussed in section 2.3.2 there can be further

scatterings where one phonon is scattered into another state by absorbing a phonon.

These processes are called anharmonic scatterings and are considered the leading order

contribution in thermalization of phonon ensembles. The collision operator for theses

cases has a similar form as the electron-phonon collision operator but of course with the

bosonic phase-space factors.

Logically the previously discussed scatterings can be grouped into two types of collision

operators, the three- and four-leg operators. The three-leg operator involves three different

particle states, hence does not conserve the total particle number. As discussed above

there are two types of four-leg operators, particle-number conserving and non-conserving,

with slightly different structures. In order to keep track of the different scatterings, and the

corresponding operators it is advisable to use Feynman diagrams as a simple visualization.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
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2.3. THE COLLISION OPERATOR 15

(a) (b)

Figure 2.2: Illustration of electron-phonon scattering by Feynman-diagrams. (a) The

consecutive repetition of the three-leg electron-phonon scattering in Boltzmann. Note

that the intermediate electron ki is limited to the energy ǫ(ki). (b) In order to include real

two-phonon processes one has to implement the four-leg collision operator in Boltzmann.

However, there are some differences compared to the Feynman diagrams used in high-

energy physics or in quantum many-body physics. The major difference is, that lines

going into, or out of the diagram are always considered proper quasi-particle states. The

corresponding propagator is already strongly renormalized and the energy is linked to the

corresponding momentum by the dispersion relation.

This is illustrated by Fig. 2.2 that shows an example with electron-phonon scatter-

ing. When three-leg electron-phonon scattering is included, consecutive electron-phonon

scatterings are taken into account in Boltzmann theory automatically. However, the in-

termediate electron in state ki has to have the energy ǫ(ki). If for example the three-leg

process is not possible at all because of momentum or energy conservation also the con-

secutive repetition of the diagram gives no contribution. In quantum field theory the

intermediate electron can have any energy regardless of the momentum. Hence, there can

be two-phonon processes even if the simple one-phonon process is not possible (at least in

the Boltzmann-sense). In order to include such two-phonon processes in Boltzmann one

has to describe them as four-leg operators.

Additionally, the phase information between consecutive scatterings is lost in Boltz-

mann theory.6 Nevertheless, renormalizations because of phase-coherent scatterings can be

included in the effective interaction potential that adjusts the strength of the corresponding

scattering operator and in the renormalization of the dispersion relation.

With the Feynman diagrams in mind it is easy to set up some general rules for the

construction of the corresponding collision operators:

6We will implicitly always assume that if we draw Feynman diagrams in the following.

https://www.tuwien.at/bibliothek
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16 CHAPTER 2. BOLTZMANN THEORY

• The momenta and energies corresponding to lines that go into (out of) the diagram

get a positive (negative) sign in the delta distributions.

• The first term in the phase-space factor is the product of (1−f) (fermions) or (1+f)

(bosons) factors for all lines that go out of the diagram and f factors for all lines

that go into the diagram.

• The second term in the phase-space factor is subtracted from the first one and is

constructed in the exact opposite way. It corresponds to the time-reversed diagram.

• If the tracked state (i.e. the state that is not integrated out) corresponds to a line

going into the diagram one has to multiply the whole phase-space factor with (−1)

to ensure the correct ordering of the two terms.

This way additional collision operators can be constructed.

2.3.4 Difficulties in calculating the collision operator

The integral of a four-leg collision operator is 3d-dimensional for a d-dimensional system. In

three dimensions the integral, hence, would be 9-dimensional. This already precludes most

deterministic integration procedures, like the trapezoidal rule, as they scale badly with

the dimension of the integral. The standard methods that are used for high-dimensional

integrals are from the field of Monte-Carlo integration which are non-deterministic. The

absolute accuracy of these methods scales with the inverse square-root of the number of

points used, i.e. ∝ 1√
NMC

and is independent of the integral-dimension. Unfortunately,

the demands regarding accuracy are relatively high for the scattering problem. If there is

a finite error added to the actual value of the collision integral, the time derivative will

change the total number of particles and the total energy in the system. Hence, it will

eventually thermalize to a different equilibrium or not thermalize at all.

Furthermore, the integrand of a collision operator includes four delta-distributions in

3-dimensional systems, one per spatial dimension for momentum-conservation and one

for energy-conservation. The momentum-deltas depend on the integration variables in

a linear fashion, hence, they can be inverted analytically. The energy delta, however,

depends on the integration variables (i.e. the momenta) only through the dispersion

relations which can be arbitrary functions. If we consider the momentum that is not

integrated as fixed, the energy-delta describes a (3d− 1)-dimensional hypersurface in the

3d dimensional integration domain. In a similar way as the Fermi-surface it can have

arbitrarily complicated shapes and even consist of several disconnected parts. This makes

standard Monte-Carlo integration on the 3d-dimensional integration domain impossible

as the hypersurface will never be hit by a Monte-Carlo point by chance. The analytical

https://www.tuwien.at/bibliothek
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2.4. RELAXATION TIME APPROXIMATION AND LOCAL EQUILIBRIUM 17

reduction of the integral to an integration on the energy- and momentum-conserving

subspace is only possible for some special cases like purely parabolic dispersion relations.

In addition to the difficulties discussed above the four-leg collision operator is a quartic

operator in the distribution function f . If we want to project the whole Boltzmann equa-

tion onto a basis, as in finite-element discretization schemes, the collision operator would

become a rank-five tensor. Given a finite number NB of basis functions in the momentum

space, we would have to evaluate the collision operator for all NB
5 basis-function combi-

nations. For a rather small basis-set consisting of NB = 100 basis functions this would

already give 1010 integrations. To describe a distribution function in the 3-dimensional

momentum-space at room-temperature, NB = 100 is often far from sufficient. We would

rather need 100 basis-functions per dimension, i.e. NB = 106 which makes a straight

forward implementation of a finite-element scheme impossible on current computers or

any machine in near future.

The above arguments are the reason why the full four-leg collision operator is usu-

ally not used in calculations, but only certain approximations. Summarizing, the main

problems are

• The high dimensionality of the integral.

• The d+ 1 delta-distributions inside the integral, where one of them depends on the

integration variables through an arbitrary function.

• High accuracy requirements, in order to conserve the number of particles and the

energy.

• The quartic structure of the four-leg operator that makes a projection onto a basis-set

scale as NB
5.

These issues will be discussed in more detail in chapter 5 where we will also explain how

to tackle them.

2.4 Relaxation time approximation and local equilib-

rium

Due to the complicated mathematical structure of the full BTE it is very difficult to

solve it numerically, especially if the full scattering is taken into account. Therefore, for

standard transport calculations, several approximations are usually made. This thesis

is dedicated to the solution of the full Boltzmann-transport-equation, nevertheless the

https://www.tuwien.at/bibliothek
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18 CHAPTER 2. BOLTZMANN THEORY

relaxation-time approximation and the local equilibrium are introduced here as they are

widely used and constitute the standard test-case.

The Fermi-Dirac (for fermions) and Bose-Einstein (for bosons) distributions are a fixed-

point of the collision operators consistent with our knowledge from statistical physics. This

means, if an external perturbation induces a non-equilibrium distribution, the collision

operator ensures that the Fermi-Dirac or Bose-Einstein distribution is reestablished af-

ter the external perturbation has vanished. For non-equilibrium distributions that are

sufficiently close to equilibrium one expects the non-equilibrium to decay to the thermal

equilibrium exponentially with a time constant τ known as relaxation time. The collision

operators for electron-scattering can then be approximated as

(

∂f(t,x,k)

∂t

)

col

= −f(t,x,k) − fFD(ǫ(k), µ, T )

τcol(k, µ, T )
≡ −δf(t,x,k, µ, T )

τcol(k, µ, T )
. (2.22)

The Fermi-Dirac distribution fFD(·, ·, ·) is defined as

fFD(ǫ, µ, T ) =
1

exp
(

ǫ−µ
kBT

)

+ 1
, (2.23)

with the Boltzmann-constant kB, the chemical potential µ and the temperature T . Note,

that in the given version the relaxation-time depends on the momentum k. This follows

directly from the momentum-dependence of the original collision operators. However, often

the approximation of a purely energy dependent τ(ǫ(k), µ, T ) or even constant τ(µ, T )

relaxation time is made in order to simplify calculations. It is important to keep in mind

that the relaxation-times τcol have to fulfill certain symmetries with respect to k in order

to conserve the number of particles in the system. The energy conservation may be broken

if the scatterings include dissipative processes like electron-phonon scatterings.

If the dynamics in a system is described by several different scattering mechanisms,

the sum of the inverse relaxation-times gives the inverse of the total relaxation-time, i.e.

1

τ(k, µ, T )
=
∑

col

1

τcol(k, µ, T )
. (2.24)

The relaxation-time approximation is often used in combination with another sim-

plification, the so-called local equilibrium approximation. This approximation assumes

that even in a spatially inhomogeneous system, the local distribution function resembles a

Fermi-Dirac distribution. However, in order to account for the spatial inhomogeneity, the

chemical potential and the temperature have to be position dependent, i.e. µ → µ(x) and

T → T (x), i.e. we have Eq. (2.22) with fFD(ǫ(k), µ(x), T (x)). This is well-justified if the

electron mean-free path, i.e. the path an electron can move without scattering, is short

compared to the scale on which T (x) and µ(x) change. Note, that δf still depends on x
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2.4. RELAXATION TIME APPROXIMATION AND LOCAL EQUILIBRIUM 19

and k explicitly. In this regime it is advantageous to rewrite the Boltzmann-equation in

terms of δf as defined in Eq. (2.22). Together with the relaxation-time approximation,

the BTE becomes

δf

∂t
+ vx · ∇x(δf + fFD) + vk · ∇k(δf + fFD) = −1

τ
δf . (2.25)

In the stationary case the time-derivative of δf is zero and Eq. (2.25) becomes

δf = −τ
(

vx · ∇x(δf + fFD) + vk · ∇k(δf + fFD)
)

, (2.26)

for which we can perform a fixed-point iteration to obtain δf . When we insert δf = 0

into the right-hand side of Eq. (2.26) we get the leading-order approximation of δf , i.e.

the linear response of the system,

δf ≈ −τ
(

vx ·
(

∂fFD

∂µ
∇xµ+

∂fFD

∂T
∇xT

)

+ vk · ∂fFD

∂ǫ
∇kǫ

)

. (2.27)

With δf known, one can calculate response quantities, for example the electric current

JC , according to Eq. (2.5). For the case of zero magnetic field and constant temperature

this gives the famous Drift-Diffusion7 equation [39],

JC = σ
(

E +
1

e
∇µ

)

, (2.28)

with the electrical conductivity tensor σαβ,

σαβ =
e2

~2

∑

n,σ

∫

VBZ

ddk
τ

(2π)d
(∇kǫn,σ)α(∇kǫn,σ)β

(

−∂fFD

∂ǫ

)

. (2.29)

In the exact same way other response functions like the Seebeck coefficient, the thermal

conductivity or the Hall coefficient can be calculated.

The transport equations and response functions obtained by the combination of re-

laxation time and local equilibrium approximation are vastly applied in physics and

engineering. They are often referred to simply as Boltzmann transport theory even if they,

more properly, are the perturbative expansion of Boltzmann with relaxation time and local

equilibrium approximation. This leads to some confusion when it comes to discussions

about the applicability of Boltzmann theory as often simply the approximations break

down rather than Boltzmann transport theory itself.

7Here, the version with electrical field and chemical potential is shown. Instead of the chemical

potential one can also write the equation in dependence of the particle density which is more common in

the field of semiconductor physics.
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Chapter 3

Boltzmann scattering without

momentum conservation

In order to study the thermalization of systems out-of-equilibrium one has to solve the

Boltzmann-equation Eq. 2.8. This, however, proves a very difficult task due to the involved

nature of the collision operator as pointed out in section 2.3.4. One common, though

severe, approximation for the collision-operator is the relaxation-time approximation briefly

discussed in section 2.4. This simplification works well for simple transport calculations

but gives poor results for the thermalization dynamics of strongly out-of-equilibrium

systems.

One of the main complications of the collision operator is the simultaneous conservation

of momentum and energy. In the field of non-equilibrium Green’s functions (NEGF) one of

the state-of-the-art methods is non-equilibrium DMFT (NEDMFT) [35,36] which becomes

exact in the limit of infinite dimensions. In this limit it is sufficient to map the lattice

problem onto a single impurity problem that is then solved. In the equations describing

a single impurity the momentum k does not occur at all as it is a quantum-number that

corresponds to the discrete translational invariance of the hamiltonian. In other words

DMFT neglects the momentum dependence of the scattering.

In this section we will apply the DMFT approximation to the Boltzmann electron-

electron collision operator and compare the corresponding thermalization dynamics to

results obtained by NEDMFT. Remarkably, even in the Mott-insulating phase, the mod-

ified Boltzmann approach gives almost identical results, at least for some quantities. It

can be shown that there is a deeper connection with the NEGF formalism from which

this seemingly semi-classical collision-operator can be derived, even if there are no proper

quasi-particles.

The chapter is organized as follows: At first, a simplified collision operator without

momentum conservation is derived (section 3.1), then the numerical implementation of a

21
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solver for this collision operator is discussed (section 3.2) and finally the modified collision

operator is used to describe the thermalization dynamics of a photo-excited Mott-insulator

and the results are compared to NEDMFT (section 3.3).

The results shown in this chapter have been published in Ref. [66]. Some of the figures

and parts of the text (marked by a black, vertical bar) are taken from this publication.

3.1 Model and derivation

For the entire chapter we will focus on a single band system with electron-electron in-

teraction only. We are going to compare the results with NEDMFT that was applied to

a Hubbard model [67] for a hypercubic lattice. In the Hubbard model, the Schrödinger

equation is projected onto localized orbitals, the so-called Wannier orbitals. An orbital

is located at each lattice site and the electrons are allowed to jump from one lattice site

to another. Here we limit the hopping to the nearest neighbor only. If two electrons are

located on the same site the system energy is increased by a factor U because of their

electric repulsion. The corresponding Hamiltonian reads,

Ĥ = −t
∑

〈i,j〉,σ
â†iσâjσ

︸ ︷︷ ︸

Ĥ0

+U
∑

i

â†i↑âi↑â
†
i↓âi↓

︸ ︷︷ ︸

Ĥe−e

(3.1)

with the hopping amplitude t, the on-site interaction U and the creation (annihilation)

operator â†iσ (âiσ) of an electron with spin σ at site i.

The non-interacting part Ĥ0 is diagonal when it is written with the new creation and

annihilation operators,

Ψ̂kσ ≡ 1√
N

∑

j

eiRj ·kâjσ, (3.2a)

Ψ̂†kσ ≡ 1√
N

∑

j

e−iRj ·kâ†jσ . (3.2b)

The quantity N is the total number of lattice sites1 and the vector Rj points to the j-th

lattice site. For the case U ≪ t the new operators describe proper quasi-particles for

which we can apply Boltzmann-theory.

The Boltzmann equation Eq. (2.8) for a spatially homogeneous (i.e. ∇xf = 0) single-

band system with vanishing external electromagnetic fields (i.e. E = 0 and B = 0) and

electron-electron interaction becomes
∂

∂t
f0 =

1

2

∑

σ1,σ2,σ3

∑

G

∫∫∫

VBZ
3
ddk1d

dk2d
dk3 w

e-e
0123 δ(k0 + k1 − k2 − k3 + G)

× δ(ǫ0 + ǫ1 − ǫ2 − ǫ3) P(f0, f1, f2, f3)

. (3.3)

1For now we consider a d-dimensional system. The limit d → ∞ is performed in the end.
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3.1. MODEL AND DERIVATION 23

The factor 1
2

in front of the sums is needed to prevent double counting. With the operators

Eq. (3.2) and the fermionic anti-commutation relations we can calculate we-e
0123 as defined

by Eq. (2.10) (see Appendix A),

we-e
0123 =

2π

~

U2

VBZ
2 δσ0,σ̄1δσ2,σ̄3 . (3.4)

The two Kronecker-deltas represent the fact that only electrons of opposite spin may

scatter with each other (σ̄i ≡ −σi) and that the total spin is conserved in the scattering

event. This is a direct consequence of the single band and the local nature of the interaction

that is used in the Hubbard-model.

In analogy to DMFT we give up momentum conservation also for the Boltzmann

equation. That is, we remove the delta-distribution that ensures momentum conservation.

To leave the order of magnitude and unit the same, we replace the delta-distribution with

the inverse volume of the Brillouin-zone,

∑

G

δ(k0 + k1 − k2 − k3 + G) → 1

VBZ

. (3.5)

With the simplification Eq. (3.5) and the explicit form of the scattering amplitude we-e
0123

Eq. (3.4), the Boltzmann-equation Eq. (3.3) becomes

∂

∂t
fσ0(k0) =

2π

~

U2

VBZ
3

∫∫∫

VBZ
3
ddk1d

dk2d
dk3 δ(ǫ0 + ǫ1 − ǫ2 − ǫ3)

×
[

(1 − fσ0(k0))(1 − fσ̄0(k1))f↑(k2)f↓(k3)

− fσ0(k0)fσ̄0(k1)(1 − f↑(k2))(1 − f↓(k3))
]

.

(3.6)

Analyzing the above equation we find that the sums over the spins have completely

vanished due to the Kronecker-deltas in we-e
0123 and the fact that the integrand is symmetric

with respect to exchange of the spins σ2 and σ3.

Furthermore, we observe that the integrand only depends on the momenta ki through

the distribution-functions. Hence, if the initial distribution-function at time t = 0 depends

on k only through the dispersion relation ǫ(k) (i.e. when fσ(t = 0,k) = f̃σ(ǫ(k))), the

Boltzmann-equation without momentum-conservation (Eq. (3.6)) preserves that property.

If we start from such a distribution, we may describe the system by a distribution function

that only depends on the energy, i.e. fσ(k) → fσ(ǫ) for all times. Moreover, the integrand

does not distinguish between spins. If the two spin distributions for spin up and spin down

are equal at time t = 0 we can apply the same argument as above and describe the system

with a single distribution function that depends only on the energy, i.e. fσ(ǫ) → f(ǫ).

Now, the whole integrand in Eq. (3.6) depends on the momenta only through the

dispersion relations ǫ(k). We can split each d-dimensional momentum integration into a
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d− 1 dimensional integration over the equal-energy shells and the momentum orthogonal

to it or, equivalently, the energy, i.e.
∫

ddk =
∫

dk⊥
∫

dd−1k‖ =
∫

dǫ
∫

dd−1k‖
1
|∇kǫ| . Using

furthermore the fact that the normalized non-interacting density-of-states may be written

as A0(ǫ) = 1
VBZ

∫

dd−1k‖
1
|∇ǫ| we can write the Boltzmann-equation without momentum-

conservation eventually as

∂

∂t
f(ǫ0) =

2π

~
U2

∫∫∫

dǫ1dǫ2dǫ3 A0(ǫ1)A0(ǫ2)A0(ǫ3) δ(ǫ0 + ǫ1 − ǫ2 − ǫ3)

×
[

(1 − f(ǫ0))(1 − f(ǫ1))f(ǫ2)f(ǫ3)

− f(ǫ0)f(ǫ1)(1 − f(ǫ2))(1 − f(ǫ3))
]

.

(3.7)

This simplified version has several numerical advantages over the original Eq. (3.3):

• The integral is only 3-dimensional, regardless of the dimension of the system.

• There is only a single delta-distribution, and its argument depends on the integration

variables only in a linear fashion.

• There is only a single distribution function due to spin-degeneracy.

Eq. (3.7) was derived from the Boltzmann equation. Hence, it is only a valid description

if the interaction U is sufficiently smaller than the hopping t, i.e. U ≪ t. This is also

reflected by the occurrence of the density-of-states A0(·) as in interacting systems with

finite interaction there is strictly spoken no density-of-states. However, there exists an

analogue quantity, the so-called spectral density A(ǫ) [68,69]. When it is multiplied with

an energy interval dǫ, it gives the number of states that lie in this interval dǫ around the

energy ǫ. It is calculated with

A(ω) = − 1

π
ImGR(ω) , (3.8)

where GR(ω) is the local, retarded Green’s function that is defined as

GR(t− t′) = −iΘ(t− t′)
1

N

∑

k

〈[Ψ̂kσ(t), Ψ̂†kσ(t′)]+〉 , (3.9)

with the Heaviside-function Θ(·) and the anti-commutator [A,B]+ ≡ AB +BA. In case

of larger U it is tempting to use Eq. (3.7) but replace the density-of-states by the spectral-

density, A0(·) → A(·). This will be a good approximation when the operators defined by

Eq. (3.2) describe good quasi-particles. For the strongly interacting case this is not at all

clear. The scattering rate in e.g. the upper Hubbard band is quite substantial, in particular

at the low energy edge. However, we find that the above equation with the spectral
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density gives good agreement with results from non-equilibrium DMFT (NEDMFT) for

the relaxation of an excited Mott-insulator (see section 3.3). A deeper reason for this

unexpected result lies in the fact that a connection with NEDMFT exists.

From the non-equilibrium DMFT formalism we get, in principle, a time-dependent

spectral density, A(t, ǫ). For NEGF there exists an analogue to the quasi-particle distribu-

tion function that is denoted as F (t, ǫ) (see Ref. [70] and Eq. (3.11) below) which will be

called distribution function as well in the following. In equilibrium, F (t, ǫ) is given by a

Fermi-Dirac distribution like the equilibrium quasi-particle distribution function. It can be

shown that even for the case where U ≪ t does not hold, an equation with the same math-

ematical structure as the Boltzmann equation without momentum conservation Eq. (3.7)

can be obtained for F (t, ǫ) if we require that the spectral-density is time-independent, i.e.

A(t, ǫ) = A(0, ǫ) ∀t . (3.10)

For the details of the derivation refer to Ref. [66]. For this simplified case, the distribution

function can be calculated from the so-called lesser Green’s function G< to leading order

with the relation

F (t, ǫ) =
G<(t, ǫ)

2πiA(0, ǫ)
. (3.11)

The obtained equation for the time-derivative of F (t, ǫ) reads [66]

∂

∂t
F (ǫ0) =

2π

~
UŪ

︸ ︷︷ ︸

≡α

∫∫∫

dǫ1dǫ2dǫ3 A(ǫ1)A(ǫ2)A(ǫ3) δ(ǫ0 + ǫ1 − ǫ2 − ǫ3)

×
[

(1 − F (ǫ0))(1 − F (ǫ1))F (ǫ2)F (ǫ3)

− F (ǫ0)F (ǫ1)(1 − F (ǫ2))(1 − F (ǫ3))
]

.

(3.12)

This equation for F is structurally equivalent to Eq. (3.7), however, the interacting spectral

density occurs instead of the density-of-states. Furthermore, a renormalized interaction

Ū enters the pre-factor, reflecting the fact that we no longer describe the original quasi-

particle occupation. It is not clear how to determine this renormalized interaction ab-initio,

hence, we use it as a free parameter of the theory.

We will call Eq. (3.12) quantum Boltzmann equation (QBE) in the following.

3.1.1 Laser excitations

In order to describe the dynamics of a system within the Boltzmann without momentum-

conservation framework we have to solve Eq. (3.12) starting from a non-equilibrium

distribution. This non-equilibrium population has to be induced externally, which is
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usually achieved by irradiating the system under surveillance with an intense, femto-

second laser pulse. In principle, we could calculate the excitation process with some other

method like NEDMFT and then use the distribution function right after the laser pulse

as starting distribution (i.e. F0(·) ≡ F (t = 0, ·)).
Alternatively, we can also describe the excitation process within the Boltzmann frame-

work. The electric field entering the semiclassical equations-of-motion Eq. (2.3) is limited

to sufficiently low frequencies where the energy of a single photon is much smaller then

the energetic distance to the next band. Electric fields with higher frequencies are not

described through the semi-classical equations-of-motion, but rather through an additional

collision term. The excitation (de-excitation) can be viewed as the absorption (emission)

of a single photon, i.e. it is a three-leg process structurally equivalent to electron-phonon

scattering as discussed in section 2.3.2. Here we assume a sufficiently high photon density

so that we may describe them as a classical electric field. The corresponding collision term

for the Boltzmann equation without momentum conservation reads
(

∂F (ǫ0)

∂t

)

col-laser

=
∫

dǫ1 A(ǫ1)Wlaser (ǫ0, ǫ1)
[

(1−F (ǫ0))F (ǫ1)−F (ǫ0)(1−F (ǫ1))
]

, (3.13)

where Wlaser (ǫ0, ǫ1) is the transition rate due to the laser.

For the case of a laser field with a single frequency Ω that was switched on in the

distant past we can calculate the transition rate with time-dependent perturbation theory

as

Wlaser (ǫ0, ǫ1) = I [δ (ǫ0 − ǫ1 − Ω) + δ (ǫ0 − ǫ1 + Ω)] (3.14)

which is simply Fermi’s golden rule. The two delta-distributions describe absorption and

stimulated emission. The actual matrix element of the operator that couples the electric

field is absorbed in the factor I together with the intensity of the field and the other

constants. Due to the assumption of a classical electric field, the spontaneous photon

emission term is neglected. This assumption is better justified for sunlight than for actual

laser-pulses.

To mimic the effect of a solar photon we consider a laser pulse with a finite duration.

As an approximation we can use Eq. (3.14) but with a time-dependent pre-factor that

is proportional to the time-envelope function of the laser pulse, I → I(t). This is well

justified if the envelope function changes slowly compared to the laser period τ = 2π
Ω

.

This argument does not strictly hold for femto-second laser-pulses as they often consist

of few field-cycles only. Hence, we will also apply first-order, time-dependent perturbation

theory directly. The laser field we use has the shape

E(t) = nE(t) = nE0e
−( t−t0

σ )
2

︸ ︷︷ ︸

≡
√

I(t)

sin(Ω(t− t0)) (3.15)
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with the unit vector n that gives the polarization direction. If magnetic excitations are

negligible, we can describe the coupling of the electric field to the system via the operator

−r̂, hence, the perturbing potential reads V̂ (t) = E(t)Ô with Ô ≡ −r̂ · n. The probability

to find the system that initially was in the state |0〉 at time t = 0, in the state |1〉 at time

t reads

p01(ǫ0, ǫ1, t) =
∣
∣
∣
∣ 〈1| Ô |0〉

∫ t

0
dτE(τ)ei(ǫ1−ǫ0)τ

∣
∣
∣
∣

2

(3.16)

with the energies ǫ0 (ǫ1) of the initial (final) state (~ = 1). In the following we assume

for simplicity that the transition matrix element is one, i.e. 〈1| Ô |0〉 = 1 for all states.

In analogy with the derivation of Fermi’s golden rule we replace the transition rate in

Eq. (3.13) with

Wlaser (ǫ0, ǫ1, t) =
∂

∂t
p01(ǫ0, ǫ1, t) . (3.17)

The transition rate Wlaser (ǫ0, ǫ1, t) is now time-dependent and can become negative as

well. The latter represents the coherent dynamics of electrons which are brought back to

their original state after being excited. Such coherent processes are usually excluded in

Boltzmann theory as they average to zero over longer timescales. On short timescales they

can produce internal inconsistencies since they are associated with negative transition

probabilities. This, in turn, could lead to negative populations. However, if the electron-

electron scattering is much slower than the frequency of the coherent processes we can

still employ Eq. (3.17) as an approximation since it is a valid (first-order) description if

we only consider the (phase coherent) laser excitation between the states ǫ0 and ǫ1.

3.2 Numerical implementation

The QBE Eq. (3.12) consists of a three-dimensional integration and the energy-conserving

delta-distribution. The delta could, in principle, be easily inverted analytically as it only

depends on the integration variables in a linear fashion. The remaining two-dimensional

integral is easily calculated by a standard numerical technique like Gauss-Integration or

the Trapezoidal Rule. Eventually, the time-propagation can be calculated with an explicit

time-stepping method, e.g. Forward-Euler or Runge-Kutta-4 which simply requires the

evaluation of the scattering term at specific times.

Although numerically doable we chose another path here. We introduce a basis and

project the distribution-function as well as the collision-operators onto this basis. The

distribution-function then becomes a vector and the collision-operator becomes a tensor.

In this way, applying the collision operator simply requires contracting the tensor with

the distribution function vector. The tensor-elements are calculated for a certain spectral-

density and stored. The time-propagation then reduces to a contraction of the tensor
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Figure 3.1: The basis functions Φi
I(·) as defined by Eq. (3.18) for element I = 3 up to

second polynomial order, i ∈ [0, 2]. The black dots and the vertical gray lines mark the

element boundaries, the number of mesh elements is NE = 13. The element size in this

example is not uniform.

in every time-step. This method proves numerically advantageous when many different

time-integrations are done for the same system, i.e. the same spectral-density A(·).
The discontinuous Galerkin basis (DG-basis) which will be more formally introduced

in section 4.1 has several favorable properties for the collision-problem. First, each basis-

function has a compact support, hence, it is only nonzero in a certain energy-range. In

combination with the energy-conserving delta-function, this makes the projected collision

operators sparse tensors. Second, the discontinuous nature of the basis-set allows for steep

changes of the projected function. This is particularly advantageous for low-temperature

Fermi-Dirac distributions.

In order to define the discontinuous Galerkin basis we split the energy domain into NE

elements where each element I ∈ [1, NE] has the lower (upper) boundary bI (bI+1). The

basis functions we use are defined as

Φi
I(x) =







√
2i+1

bI+1−bI
Pi(

2x−bI+1−bI

bI+1−bI
) bI ≤ x < bI+1

0 otherwise
, (3.18)

where Pi(y) is the Legendre-polynomial of order i at position y. We use Legendre-

polynomials up to second polynomial order, i.e. i ∈ [0, 2] (Fig. 3.1). It can be shown easily

that the basis-set as defined by Eq. (3.18) is orthonormal with respect to the L2-scalar

product.

Using the expansion coefficients of the distribution function,

F i
I(t) ≡

∫

dǫ Φi
I(ǫ)F (t, ǫ) , (3.19)
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and the projection of the number 1 onto the basis,

1i
I ≡

∫

dǫ Φi
I(ǫ) , (3.20)

Eq. (3.12) becomes

∂F i
I(t)

∂t
= α

∑

j,k,m,n
J,K,M,N

S
ijkmn
IJKMN

×
( (

1j
J − F j

J (t)
) (

1k
K − F k

K(t)
)

Fm
M (t)F n

N(t)

− F j
J (t)F k

K(t) (1m
M − Fm

M (t)) (1n
N − F n

N(t))
)

,

(3.21)

with the tensorial form of the collision operator that we will call scattering tensor in this

thesis,

S
ijkmn
IJKMN =

∫∫∫

dǫ0dǫ1dǫ2dǫ3 Φi
I(ǫ0)Φ

j
J(ǫ0)Φ

k
K(ǫ1)Φ

m
M(ǫ2)Φ

n
N(ǫ3)

× A(ǫ1)A(ǫ2)A(ǫ3) δ (ǫ0 + ǫ1 − ǫ2 − ǫ3) .
(3.22)

The scattering tensor contains all the information about the system (i.e. the spectral-

density) and is independent of time and distribution-function. It has two important

properties,

S
ijkmn
IJKMN = S

ijknm
IJKNM , (3.23a)

S
ijkmn
IJKMN = δI,J S

ijkmn
JJKMN . (3.23b)

The relation Eq. (3.23a) is irrespective of the basis used, whereas Eq. (3.23b) follows from

the fact that the DG-basis functions are only non-zero within their corresponding element.

The collision-operator for laser excitations calculated with Fermi’s golden rule (Eq. (3.13)

and Eq.(3.14)) becomes,

S
laser
ijk

IJK

=
∫∫

dǫ0dǫ1 A(ǫ1)Φ
i
I(ǫ0)Φ

j
J(ǫ0)Φ

k
K(ǫ1)

× [δ (ǫ0 − ǫ1 − Ω) + δ (ǫ0 − ǫ1 + Ω)] ,

(3.24)

that also has the property S
laser
ijk

IJK

= δI,J S
laser
ijk

JJK

. In case of the perturbation-theory laser

excitation, the transition rate depends on time explicitly (see Eqs. (3.17) and (3.16)). The

scattering-tensor method can still be applied when a scattering tensor for each time-step

is calculated. Numerically, this is still advantageous as the laser field is only non-zero in

a very short period, hence the number of tensors required is small.
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The total Boltzmann equation without momentum conservation in the DG-basis can

eventually be written as

∂F

∂t
=α S

(

(1 − F), (1 − F),F,F
)

− α S

(

F,F, (1 − F), (1 − F)
)

+ I(t) S
laser

(

1 − F,F
)

− I(t) S
laser

(

F,1 − F
)

,
(3.25)

in case Fermi’s Golden Rule is used to describe the laser excitations.2 In case we use

first-order perturbation theory for the laser excitation, the equation is similar but without

the factor I(t) as it is already included in the time-dependent tensor. Eq. (3.25) is time-

integrated using a Runge-Kutta-4 scheme starting from an initial distribution F(t = 0, ·) ≡
F0(·).

This code was implemented in Mathematica 10. The delta-distribution inside the

tensors removes one of the integrations where we have chosen the ǫ1-integration without

loss of generality. For the actual calculation of the remaining integrals the standard built-

in procedure NIntegrate was used. The tensors themselves were implemented using the

built-in SparseArray class.

3.2.1 Test of the code

For an infinitesimal excitation of the equilibrium Fermi-Dirac at the energy ǫ0 (i.e. F =

fFD + δF ) we can calculate the time derivative from Eq. (3.12) as3

∂

∂t
δF (ǫ0) ≈ −δF (ǫ0)

∫∫∫

dǫ1dǫ2dǫ3 A(ǫ1)A(ǫ2)A(ǫ3) δ(ǫ0 + ǫ1 − ǫ2 − ǫ3)

×
[

(1 − fFD(ǫ1))fFD(ǫ2)fFD(ǫ3) + fFD(ǫ1)(1 − fFD(ǫ2))(1 − fFD(ǫ3))
]

≡ −δF (ǫ0)
1

τ(ǫ0)
.

(3.26)

This differential equation describes an exponential decay of the excitation with a decay-

time of τ(·). We can eliminate the ǫ1-integration in Eq. (3.26) with the delta-distribution

and then calculate the remaining two-dimensional integration with a standard numerical

integration technique for a given A(·). Hence, we can directly determine the decay-time

for a certain energy.

Additionally, we can use our code to simulate how a non-equilibrium distribution

thermalizes. We use the fact that the decay-time can be directly calculated to test our code

and the method applied. For the direct calculation of the decay-time we have assumed an

2Here we have used a symbolic way of writing the tensor contractions, where the rank-5 tensor takes

four vectors and returns a vector.
3For a detailed derivation of a similar expression see section 5.3.
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(a) (b)

(c) (d)

Figure 3.2: (a) The simulated decay-time τsim of a finite but small excitation (green: fit

over full simulation-time; red: fit over first three time-steps) versus the decay-time τcalc of

an infinitesimal excitation directly calculated with Eq. (3.26). The inverse-temperature of

the initial distribution was β = 3, the chemical potential µ = 0 and the amplitude of the

excitation δF (0, ǫex) = 0.001. (b) Thermalization of a distribution-function with a finite

excitation at energy ǫex. The amplitude of the excitation shown here is 100-times larger

than the amplitude used for the decay-time calculation shown in (a). (c) Decay-times

versus excitation energy for the two different fitting-procedures and the directly calculated

result. (d) Spectral-density used for the calculation with the mesh on top.
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infinitesimal excitation with
∫

dǫ A(ǫ)δF (ǫ) ≈ 0 which we can achieve only approximately

in the simulation due to the finite mesh-element size4. For each mesh-element with ǫ > 0

we perform a simulation with an excitation that is peaked at the mesh-element center

ǫex. Then we fit an exponential-function of the shape g(t) = c1 + c2 Exp(− t
τ
) to F (t, ǫex)

in order to determine τ . We perform two different fits, (i) over the full simulation-time

and (ii) over the first three time-steps yielding two different decay-times. The results are

shown in Fig. 3.2.

The reason for the two different fittings is that for excitations close to the chemical

potential of the initial Fermi-Dirac distribution the decay is not purely exponential. Hence,

there is a certain ambiguity in determining the decay-time. The non-exponential decay is

observed because of the finite mesh-element size as explained in the following: The amount

of particles artificially injected by the excitation is proportional to the amplitude δF (0, ǫex)

of the excitation and the mesh-element size. The distribution-function thermalizes to a

new equilibrium accounting for the injected energy and particles (see inset Fig. 3.2b).

The change of the distribution-function at its exponential tail depends on the number

of injected particles and the energy, hence, it also depends on the amplitude of the

excitation and the mesh-element size. Consequently, the ratio between the local change

of the distribution-function and the change of the excitation itself is independent of the

excitation amplitude δF (0, ǫex). The consequence is a non-exponential decay behavior

occurring irrespective of the excitation-amplitude (assuming that we are still in the low

perturbation regime).

3.3 Thermalization dynamics of an excited, hypercu-

bic Mott-insulator

We use the quantum Boltzmann equation (QBE) introduced in the previous sections to

simulate the excitation and relaxation of a hypercubic Mott-insulator. The results are com-

pared to NEDMFT simulations of Ref. [71] and an unexpectedly good agreement between

the conceptually different methods is found for the time-dependent particle-density. With

the QBE we can simulate the laser excitation process with two different approximations

introduced in section 3.1.1 and get more insight into the intriguing excitation dynamics

also seen in NEDMFT. Due to the high cost of NEDMFT simulations, they can access

only relatively short timescales. Since the QBE is numerically cheaper to calculate we

can simulate the full thermalization which enables us to study the partial thermalization

4More precisely, the criteria under which Eq. (3.26) (see Appendix B) holds are only fulfilled approxi-

mately in the simulation due to the finite mesh-element size.
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3.3. THERMALIZATION DYNAMICS OF AN EXCITED, HYPERCUBIC MOTT-INSULATOR33

between the different Hubbard-bands occurring at an intermediate timescale.

The following pages marked by a black, vertical line are taken from Ref. [66] and were

mainly written by me, yet reviewed and slightly modified by my co-authors. The actual

publication contains more theory about the connection of the QBE with non-equilibrium

Green’s functions which was not written by me and hence, only briefly summarized in

section 3.1 above.

The term QPBE used in the following pages is an abbreviation of Quasi-particle-

Boltzmann-equation and refers to Boltzmann for small interactions where clear quasi-

particles can be identified (i.e. Eq. (3.7)). As in the previous section the term QBE stands

for quantum Boltzmann equation and refers to the mathematically similar Eq. (3.12).

3.3.1 Spectral density for QBE

As described in the previous sections, our quantum Boltzmann equation is based on

the assumption of a relatively rigid local density of states A(ω), with the Boltzmann

equation describing the distribution function F (ǫ) with respect to this rigid density of

states. This approximation is justified retrospectively by comparison to non-equilibrium

DMFT results, where it is found to work under certain conditions. For our calculations

we use the equilibrium spectral density A(ǫ) obtained from DMFT calculations for a

certain chemical potential µ0 and temperature T0 and assume that its structure remains

unchanged even when energy is pumped into the system, i.e.

A(ω) = − 1

π
ImGR(ω) ∀t, (3.27)

where GR(ω) is the local retarded Green’s function of a system with µ0 and T0.

The density of states used in the simulations corresponds to a Mott insulator with

Hubbard bands and is shown in Fig. 3.3. Here, quasiparticles are not particularly well

defined since the equilibrium DMFT self-energy [71] is 0.4 at the upper edge of the

upper Hubbard band and – for generating the Mott gap – even larger (larger than the

bandwidth) at its lower edge. Note, that the DMFT self-energy in the Mott-Hubbard

bands remains finite also in the U → ∞ limit, albeit it becomes slightly smaller and

symmetric. Nonetheless the Boltzmann equation is found to produce meaningful results

which demonstrates that the local Boltzmann equation does not have to be built on a

quasiparticle approximation, as explained in Sec. 3.1.
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U=3.0

U=3.5
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Figure 3.3: Spectral functions obtained from DMFT calculations for a hypercubic

lattice at half-filling (µ = 0), inverse temperature β = 5 and two different Hubbard-

interactions U . For both interactions the system is in the Mott-insulating phase. (taken

from Ref. [71])

3.3.2 Two time-scale relaxation dynamics

In this section we compare the dynamics obtained by the QBE to the non-equilibrium

DMFT result for a hypercubic lattice at half-filling. The noninteracting density of

states is ρ0(ǫ) = exp(−ǫ2/W 2)/
√
πW and we use W = 1 as the unit of energy (1/W

as the unit of time). We discuss Mott insulating systems with Hubbard-interactions

U = 3.0 and U = 3.5 and set the initial inverse temperature to β = 5.

The excitations in the upper Hubbard band can be interpreted as double-occupancies

of lattice-sites (doublons) while excitations in the lower Hubbard-band are empty sites

(holons). We hence define the total doublon density d(t) as

d(t) =
∫ ∞

0
dǫF (t, ǫ)A(ǫ) (3.28)

in the Boltzmann approach. Note that this does not include virtual doublon excitations

which are present in the Mott insulator even at zero temperature where F (t, ǫ) = 0

for ǫ > 0. If one counts both, up- and down-spin spectral functions there is also a

factor of two compared to the usual double occupation because each doublon gives a

peak in both, spin-up and -down, spectral functions. Since we discuss ratios of double

occupations this factor two cancels anyhow.

As in Ref. [71] we excite the system with laser-pulses at different frequencies Ω and

let it time-propagate until it is thermalized, i.e. until it has reached a Fermi-Dirac

distribution again. We use a Gaussian time envelope centered at t0 = 6 for the laser

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.3. THERMALIZATION DYNAMICS OF AN EXCITED, HYPERCUBIC MOTT-INSULATOR35

pulse as defined in Eq. (3.15), and a pulse width σ =
√

6. The strength of the laser

pulse is adjusted such that the photo-induced doublon density at a given time t̃ right

after the pulse is 0.01, i.e. D(t̃) ≡ d(t̃) − d(0) = 0.01. For the two different laser

implementations a different strength of the laser pulse is needed to produce the same

number of photo-doped doublons. We use t̃ = 15 for the results given in Tab. 3.1, and

t̃ = 12 otherwise, in order to directly compare with time dependent data provided in

Ref. [71].

Figure 3.4 shows that after the laser pulse has created a non-Fermi-Dirac population,

the doublon density further increases until the system reaches its new equilibrium

(marked by dashed lines). This means that during the thermalization process new

doublons (and holons) have to be generated, hence electrons have to be excited across

the Mott gap. The doublon-holon creation results from two different mechanisms: i)

impact ionization and ii) multiple-scattering events. Case i) means that a doublon

with an initial kinetic energy larger than the gap lowers its energy and excites another

electron across the band-gap which generates one doublon and one holon [71,72]. This

process has been shown to be beneficial to the efficiency of correlated solar cells [1, 2].

The second thermalization process ii) means that a low energy doublon gains kinetic

energy through several scatterings with other doublons and holons until its kinetic

energy exceeds the gap size. Then it generates another doublon and a holon by lowering

its kinetic energy. Excited holons undergo analogous processes. Within the Boltzmann

description these are the only two processes that can lead to the generation of additional

doublons. There are further processes in non-equilibrium DMFT related to the change

of the spectral function. In particular, spectral weight is filled into the Mott-gap,

similarly as upon increasing the temperature [73].

The two mechanisms i) and ii) take place on different timescales which can be seen if

we try to fit a single-exponential decay D1(t) = a+ b exp[−t/τ ] to the doublon density

d(t) in a short time interval right after the pulse, i.e. for t ∈ [12, 60]. If there was only one

thermalization mechanism the doublon curve would roughly follow the fitted function

over the whole time range. However, this is not the case as can be seen in Fig. 3.4. The

final value of the doublon density (dashed lines in Fig. 3.4) deviates significantly from

the final value of the fitting function (arrows in Fig. 3.4). In accordance with Ref. [71]

we find that the whole time evolution of the doublon density can be described by the

sum of two exponential functions D2(t) = a+b exp[−t/τ ]+c exp[−t/γ]. The two fitting

parameters τ and γ represent the timescales on which the two different thermalization

mechanisms described above take place. Here γ corresponds to the short timescale

associated with impact ionization and τ to the long timescale associated with multiple

https://www.tuwien.at/bibliothek
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(a) (b)

Figure 3.4: Normalized doublon density D(t)/D(12) as a function of time for different

laser frequencies (a) U = 3.0 and (b) U = 3.5. The dashed lines indicate the final

value when the system has reached the new thermal equilibrium; the arrows give the

final doublon density for a single exponential function fitted within the time interval

t ∈ [12, 60]. Note that in a) the blue and red arrows lie almost on top of each other. In

(b) there is no pink arrow as the fit was not possible within reasonable tolerance. Here

Fermi’s golden rule (section 3.1.1) was used for the laser excitation.
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3.3. THERMALIZATION DYNAMICS OF AN EXCITED, HYPERCUBIC MOTT-INSULATOR37

DMFT QBE

U Ω γ τ τ/γ γ τ τ/γ γ τ τ/γ α

3 3.5 π
2

13 60 4.50 15 95 6.48 11 70 6.37 8

3 3 π
2

15 61 4.09 18 91 5.01 13 68 5.20 8

3 2.5 π
2

17 65 3.93 22 95 4.23 16 76 4.84 8

3.5 3.5 π
2

44 376 8.55 39 231 5.88 26 131 5.03 5

3.5 3 π
2

48 257 5.31 53 254 4.85 32 167 5.18 5

Table 3.1: Results for different interaction parameters U and laser frequencies Ω. The

non-italic numbers in the QBE section are obtained from fits to the doublon density

over the whole thermalization time and the italic ones are from fits within the interval

t ∈ [15, 60] with fixed final doublon value, i.e. as in Ref. [71] for non-equilibrium DMFT.

scattering events.

The two-time relaxation is already qualitatively consistent with DMFT. For a quanti-

tative comparison, we note that the overall timescale for the evolution of the Boltzmann

equation Eq. (3.12) is set by the constant α. As discussed above, α is treated as an

adjustable parameter, as its ab-initio determination is difficult. Nevertheless, we can

perform a non-trivial quantitative comparison between the Boltzmann approach and

DMFT, by comparing the ratio between different timescales.

We choose integer-valued α for each value of U (independent of the laser frequency),

such that the short timescale γ extracted from the fit roughly coincides with the short

timescale γDMFT of Ref. [71]. The strategy of not fitting the timescales obtained from

Ref. [71] more precisely, is motivated by the fact that the choice of t̃ and the fitting

time range have a sizeable impact on the value of the time constants (see a more precise

discussion below). This makes it meaningless to fit α with more than one significant

digit. Interestingly, in spite of the limitations due to the fitting procedure, we clearly

find that the second (longer) time scale τ shows the same order of magnitude as the

DMFT result τDMFT (see Tab. 3.1), and the ratio τ
γ

is almost independent of α for both

DMFT and the Boltzmann approach.

As mentioned above, there is some freedom in the determination of the time constants

listed in Tab. 3.1. First of all, the times γ and τ are extracted from fits of a sum of two

exponential functions to the doublon curve over the whole time range. As can be seen

in Fig. 3.4, impact ionization takes place on the same timescale as the laser excitation

for the case U = 3. In other words, while the laser is switched on, the excited doublons

immediately start to produce additional doublons through impact ionization. Since we
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Figure 3.5: Normalized doublon density as a function of time for U = 3.0 and different

laser frequencies Ω in a large time interval. The solid lines are the simulated doublon

density, the dashed lines represent the double-exponential fit within the time interval t ∈
[15, 60] and with fixed final doublon number. The dots indicate the double-exponential

fit obtained from an even larger total simulated time t ∈ [15, 1700].

further normalize the number of doublons to 0.01 at time t̃ = 12 (or t̃ = 15), to be

consistent with the approach in Ref. [71], the details of the dynamics depend on the

exact timing and shape of the laser as well as on the normalization time t̃. For U = 3.5

the laser and impact ionization timescales are well separated which makes the dynamics

more independent of the exact laser shape and duration.

Furthermore, when comparing the times to the non-equilibrium DMFT results one

should keep in mind that the non-equilibrium DMFT has only access to short times after

the excitation (maximum time t = 60 in Ref. [71]). The final (equilibrium) doublon value

was determined from the temperature corresponding to the total energy of the system,

and the remaining constants were obtained from a fit in the time interval t ∈ [15, 60].

However, within the Boltzmann framework we can obtain the thermalization times

τ and γ from fits of D2(t) to the doublon density over the full thermalization time

(e.g. t ∈ [15, 1700] for U = 3.0; “Fit 2” in Fig. 3.5). In order to estimate the error

arising from the fact that non-equilibrium DMFT has only a limited time interval for

the fit we perform a second fit analogous to the DMFT fit. That is, we assume that

the constant a in D2 is equal to the final doublon value, a = D(tmax) and we obtain

the other coefficients from fitting within t ∈ [15, 60] (“Fit 1” in Fig. 3.5). All results

are collected in Tab. 3.1 and the different fits are shown together with the simulated

doublon densities in Fig. 3.5 for two laser frequencies. Some deviations are visible at

intermediate times between t = 100 and t = 300.
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t =9
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Figure 3.6: Upper panel: Time-dependent doublon density for QBE comparing Fermi’s

golden rule (blue lines) and first order perturbation theory (red lines) for the laser

transition at different frequencies for U = 3.5. Lower panel: Transition probability p01

[Eq. (3.16)] from a specific initial state energy ǫ0 = −1.8, at different times (dashed lines

in the right upper panel), for Ω = 6.28 and U = 3.5. For the related non-equilibrium

DMFT result see Fig. 2 of Ref. [71].
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U
=

3
.5

U
=

3
.0

non-equilibrium DMFT
Boltzmann:

perturbation theory

Boltzmann: 

Fermi's golden rule

F
A

F
A

Figure 3.7: Electron population for U = 3.0 (first row) and U = 3.5 (second row) at

different times. The figures in the first column are obtained from QBE simulations with

the Fermi’s golden rule laser transition, the figures in the second column are obtained

from QBE simulations with first-order perturbation theory laser transitions and the

figures in the third column show the photo-emission spectra obtained from the lesser

component of the DMFT Green’s function [71]. For U = 3.0 the number of photo-doped

doublons after the laser pules is D(12) = 0.0056 and the laser frequency is Ω = 3.5π/2,

for U = 3.5 we have D(12) = 0.0021 and a laser frequency of Ω = 4π/2 in accordance

with Ref. [71]. For both U -values the initial inverse temperature is β = 5.
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F
A

Figure 3.8: Electron population for U = 3.0 (left panel) and U = 3.5 (right panel) from

QBE with laser transition in perturbation theory (dashed lines) and non-equilibrium

DMFT (solid lines). Here, the Boltzmann distributions of the middle column of Fig.

3.7 were smoothed by convolution with a Gaussian with σ = 0.14 in order to resemble

the smoothing inherent in the DMFT data.

The data in Tab. 3.1 in addition with the previous discussion shows that the

doublon-relaxation timescales of non-equilibrium DMFT and QBE are similar within

the numerical and methodological tolerance. This result may be unexpected given the

fact that the validity of the QBE, which assumes a rigid spectrum, is not a priori clear

for the description of strongly correlated systems.

3.3.3 Coherent laser excitations

When the first order perturbation theory laser is used to model the absorption process

(section 3.1.1), there are some differences compared to the simpler implementation with

Fermi’s golden rule. First, we can observe that the excitation due to the laser field is

not monotonic but oscillates with twice the laser frequency (upper panel Fig. 3.6). For

smaller frequencies (Ω = 3π
2
, 3.5π

2
) the doublon density roughly follows the prediction

from Fermi’s golden rule, whereas for higher frequencies (Ω = 4π
2
) we observe that the

doublon density in the perturbation theory implementation first increases more strongly,

but then decreases at the end of the laser pulse to approach the same value as given by

the Fermi’s golden rule implementation. That is, we have a maximum in D(t) at t ≈ 7

in Fig. 3.6 (upper right panel). This behavior gets more pronounced as the frequency

increases, as was confirmed by an additional simulation at Ω = 4.5π
2

(not shown). A
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similar effect was also observed in non-equilibrium DMFT simulations (compare upper

right panel of Fig. 2 of Ref. [71]) and finite system simulations [74].

With the simpler Boltzmann approach, the physics behind this behavior can be

understood. The laser frequency Ω = 4π
2

is so large that only the outermost regions

of the density of states are connected by direct transitions. In the Fermi’s golden

rule implementation only excitations from ǫ0 to ǫ0 + Ω are possible. In contrast, in

the perturbation theory implementation, transitions are possible into a broader energy

range because of the finite time of the laser pulse. Generally speaking the energy

integrated transition probability in Eq. (3.16) grows monotonically with time, making

the energy-integrated transition rate (Eq. 3.17) always positive. However if we inspect

the energy resolved quantities, we notice that, right after the laser pulse is switched

on, the transition probability p01 given by Eq. (3.16) is very broad in energy as the

laser field restricted to short times [0, t] contains many frequency components. As the

time passes the central peak height increases while the distribution gets narrower and

the transition probability resembles more and more a Dirac-δ function that we would

expect from Fermi’s golden rule (see Fig. 3.6 lower panel). We observe, that the central

peak grows during the whole duration of the laser pulse while the narrowing happens

only for times where the time-envelope of the pulse has a negative slope (i.e. for times

t > 6).

This narrowing effect implies that the transition rate (Eq. (3.17)) after being initially

positive, becomes negative at later times on the tail of the peak, e.g. for ǫ = 3 in Fig. 3.6

(lower panel). Therefore, after an initial excitation, the electrons that were excited at

those energies will be returned to their original state in the lower band. For low

frequency excitations, most of the allowed transitions will lie well within the upper

Hubbard band. Therefore the excitation and de-excitation happening on the energy

tails of the transitions will be heavily shadowed by the always positive transition rate at

the central peak. However, for large laser frequencies, a larger fraction of the transitions

will be happening only at the borders of the Hubbard bands. In this scenario transitions

happening at the peak of the energy resolved transition rate will not be activated since

they will fall outside of the density of states, and the excitation and de-excitatiton of

electrons at the tail will be more evident.

Finally we emphasize that the choice of the laser implementation makes little dif-

ference on the overall thermalization dynamics (i.e. the relaxation times vary by less

than 5%).
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3.3.4 Population dynamics

In Fig. 3.7 we further compare the energy resolved electron population F (ǫ)A(ǫ) at

different times for Boltzmann with Fermi’s golden rule laser transitions, Boltzmann with

perturbation theory laser transitions, and non-equilibrium DMFT. The three methods

give very similar electron-distributions and provide evidence for impact ionization, since

high energy doublons (spectral weight at high energies in the upper Hubbard band)

disappear while low energy doublons increase more strongly. However there are some

differences that we will address in the following. First, we can see that the laser

excitation around ǫ ≈ 2.5 for U = 3.0 or around ǫ ≈ 3 for U = 3.5 displays sharper

features for Boltzmann with Fermi’s golden rule laser transition than for the two other

cases. This is because Fermi’s golden rule assumes a sharp transition at the laser

frequency Ω which is only well justified when the period of the laser frequency is short

compared to the time-envelope of the pulse. Therefore we can see a smoothened laser

excitation due to an energetic broadening of the laser-pulse for Boltzmann with laser

transitions in first order perturbation theory, as well as for non-equilibrium DMFT.

Furthermore, one observes that the non-equilibrium DMFT distribution has a finite

electron density within the gap. A part of this effect arises because the Mott-gap

gets filled with electrons as the energy (or temperature) of the system increases. This

is physics beyond the Boltzmann description, as it corresponds to a redistribution

of spectral weight in the density of states which contradicts the assumption made

in Eq. (3.10). However, it is important to note that is not the only reason for the

presence of spectral weight within the bandgap in the computed non-equilibrium DMFT

distribution. It is noteworthy that a finite electron density within the gap (see Ref. [71],

not shown here) is reported even at t = 0. The latter is due to the fact that the

calculation of the time-resolved photo-emission spectrum was performed by integration

only over short time intervals: this results in a purely numerical broadening in the

frequency space. Therefore, for a meaningful comparison we convolute the Boltzmann

electron distributions with a Gaussian, where the width (σ) is chosen such that the

electron density inside the gap is approximately the same as at t = 0 in the non-

equilibrium DMFT case calculation (not shown here; σ = 0.14). For both cases (U = 3.0

and U = 3.5) the broadened electron distribution is much closer to the DMFT result

(see Fig. 3.8).

3.3.5 Scattering strength

So far we have not discussed the role of the scattering pre-factor α that gives the strength

of the interaction between excitations and has been used as a free parameter. If α were
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derived by taking the bare Hubbard interaction U for the vertex w(k0,k1,k2,k3) in

a QPBE, or for the vertex Ū in (3.12), we would get αbare = 2π
~
U2 (see section 3.1).

The values we obtain for α in order to fit the time-scales differ significantly from this

simple value. Not only the values are different from αbare, also the dependency on

U is reversed: α decreases with increasing U . The reason for this is that we have

used a strongly renormalized spectral density which means that part of the interaction

is already included in the density of states. The parameter α would then just be

the residual interaction between excitations within this renormalized density of states.

Another effect which is disregarded in the Boltzmann approach approach is the filling of

the Mott-Hubbard gap due to the laser excitation. This effect is larger for intermediate

U (i.e. small band-gaps) and gives rise to additional scattering channels via the in-gap

states, leading to a larger α when trying to represent the dynamics in a Boltzmann

approach. Indeed, full DMFT simulations yield the most rapid thermalization for

intermediate values of U [75]. While this might explain the counterintuitive decrease

of α, how to obtain the correct pre-factor for QBE for strongly interacting systems is

left for further investigation.

3.3.6 Three-step thermalization

An advantage of the quantum Boltzmann equation compared to non-equilibrium DMFT

is the possibility to simulate the whole thermalization process, not only a short time

interval after the laser pulse. By studying the distribution function at different times

during thermalization, one finds a third, intermediate characteristic timescale.

Right after the laser pulse, the system shows a strong deviation from its original

Fermi-Dirac distribution (see Fig. 3.7). In a first step, as already discussed above, the

highly excited electrons produce impact ionization until there are no electrons with

sufficient energy any more. This happens in the case U = 3.5 and Ω = 3π
2

over the

characteristic timescale γ = 53 (see TABLE 3.1).

In a second step, the thermalization proceeds through scatterings that leave the

doublon and holon numbers unchanged. One doublon (holon) can scatter with another

doublon (holon) redistributing the energy within the upper (lower) Hubbard band, or

one doublon can scatter with a holon which corresponds to an exchange of energy

between the upper and lower Hubbard bands. These doublon- and holon-conserving

scatterings are not affected by the gap, hence they take place on a much faster timescale

than the long-time thermalization. Since the number of doublons remains unchanged,

this additional time scale is not visible in the doublon dynamics shown in Fig. 3.5.

Only on a much longer time scale (τ = 254 in the case U = 3.5 and Ω = 3π
2
,
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see Tab. 3.1) the system reaches a full thermalization. This requires the creation of

high energy doublons (holons) through multiple scattering processes so that impact

ionization can eventually thermalize the number of doublons (holons). These processes

constitute the second, long time scale in Fig. 3.5.

We now systematically analyze this intermediate thermalization step by fitting

two Fermi-Dirac functions within the lower and upper Hubbard band, respectively, to

the distribution function F (t, ǫ) in every time step. Such independently thermalized

distributions in the upper and lower band are common in semiconductor physics, and

have also been observed in more strongly correlated insulators using non-equilibrium

DMFT for the ionic Hubbard model [76]. The fit yields two chemical potentials µ, two

inverse temperatures β and two (squared) deviations ∆ from the Fermi-Dirac functions

for the lower and upper bands

∆lower(t) ≡
∫ −Egap

2

−∞
dǫ
(

F (t, ǫ) − 1

e(ǫ−µlower(t))βlower(t) + 1

)2

, (3.29a)

∆upper(t) ≡
∫ ∞

Egap
2

dǫ
(

F (t, ǫ) − 1

e(ǫ−µupper(t))βupper(t) + 1

)2

. (3.29b)

Figure 3.9 (a) shows that the deviation from a Fermi-Dirac distribution is largest

directly after the laser pulse. It decays over a characteristic timescale of η = 100

and is essentially zero at t = 400. Because the system is particle-hole symmetric, the

inverse temperatures in Fig. 3.9 (b) are equal at all times for both Hubbard bands but

at t = 400 still lower than the equilibrium (long time) value. Even more obvious is

the substantial difference in the two chemical potentials at this intermediate time in

Fig. 3.9 (c). Let us stress once more that one cannot see the intermediate relaxation

stage, where the upper and lower Hubbard bands are thermalizing independently, in

the time dependence of the double occupation.

The third thermalization step, full thermalization between the bands (involving

further doublon-holon generation), is clearly seen in Fig. 3.9(c) as the equalization of

the two chemical potentials.
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(a)

(b)

(c)

(d)

F

Figure 3.9: Fermi-Dirac fit to the non-equilibrium distribution function within the lower

(red) and the upper (green) Hubbard-band. The interaction parameter for this case is

U = 3.5 and the laser frequency is Ω = 3π
2
. The fitting error (a) [Eq. (3.29)] has almost

vanished at time t = 400 (black, dashed line) whereas the inverse temperatures (b) are

not yet thermalized and the chemical potentials (c) still differ significantly. Panel (d)

shows the actual distribution function (blue, solid line) in comparison to the Fermi-

Dirac fit in the lower (red) and upper (green) Hubbard band for t = 400. The gray

area marks the gap of size Eg = 0.8.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 4

Transport numerics

The numerically most challenging part in solving the Boltzmann equation is the scattering

as pointed out in section 2.3.4. Hence, most of the work done in the scope of this thesis is

dedicated to the development of an algorithm to calculate the collision operator. However,

many non-equilibrium experiments are performed with applied electric fields in order to

obtain additional information during the thermalization process. Indeed, many intriguing

physical effects may occur due to the interplay of transport and thermalization like for

example terahertz (THz) emission [8, 9], ultrafast demagnetization [5–7] or giant spin

injection in semiconductors [3, 4]. Therefore, we have also implemented a solver for the

transport part (i.e. the Vlasov equation) for one-dimensional systems. In section 6.2 we

apply the combined method (i.e. the solver for transport and scattering) to THz emission

from carbon-nanotubes.

This chapter is organized as follows: We begin with an introduction to the discontinuous

Galerkin method (section 4.1) where we put special emphasis on its application to the

one-dimensional Vlasov equation. Then we discuss the details of our implementation, in

particular the basis, how the different tensors simplify and how the boundary conditions

are implemented (section 4.2). Finally, we apply the transport code to some test cases to

show stability, error and overall functionality (section 4.3).

4.1 The Discontinuous Galerkin method

If one attempts to solve a partial differential equation numerically, a certain discretization

scheme has to be used. The most popular one is probably finite-differences where a

rectangular grid is introduced and the sought function is only known at the grid points.

The biggest advantage of this method is its fairly easy implementation leading to codes

that are straight forward to read and debug. However, it is difficult to account for non-

rectangular domain boundaries and it is not possible to refine the grid only in a finite

47
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48 CHAPTER 4. TRANSPORT NUMERICS

part of the domain. This lack of flexibility is the reason why finite-differences are rarely

used for problems where the solution varies on different scales depending on the position

in the domain.

The finite-element Galerkin methods [77] represent an important improvement over the

standard finite-differences schemes. There, the domain is split into finite-size subdomains,

i.e. “finite elements” and a special basis is introduced where each basis function has

a compact support. Usually the basis functions are only non-zero on a small number

of neighboring elements so that the local accuracy is governed by the local size of the

elements. In general there is no restriction concerning the shape of the elements but

often tetrahedrons (or their lower dimensional analogs) are used, which makes it easy to

approximate arbitrary domain boundaries. The partial differential equation is then solved

on the finite subspace spanned by the basis functions after reformulating the problem in

the so-called weak formulation.

The discontinuous Galerkin method [77,78] is an extension of standard finite-elements

with a set of intriguing properties. Originally it was developed for convection dominated

convection-diffusion problems as they occur for example in fluid dynamics, plasma physics,

semiconductor physics or even meteorology. A general convection diffusion equation has

the shape,
∂f

∂t
+ ∇ · F(f) + β∇2f = 0 , (4.1)

where f is a density, F(·) is a vectorial function depending on f describing the convective

flow and ∇2f is the diffusive part. In order for the problem to be convection dominated

the diffusion-parameter β has to be sufficiently small.

The Vlasov equation is a pure convection equation with a linear convective flow, i.e.

β = 0 and F(f) = vf . Hence, it obviously falls into the class of convection dominated

convection-diffusion problems. For illustration, we will discuss discontinuous Galerkin for

the Vlasov equation of a one-dimensional system. In this case the phase-space is two-

dimensional, one dimension for the real-space and one dimension for the momentum-space

(Fig. 4.1). We denote the volume of the domain (i.e. the phase-space) with VP h in the

following.

First, the space is split into non-overlapping, finite elementsGJ where the index J labels

the different elements. Then a basis is introduced, where each basis-function is only non-

zero inside one element GJ . Inside its element the basis-function is usually a polynomial

of a certain degree but in principle any function that is continuously differentiable can

be used. There can also be an arbitrary number of basis-functions that are non-zero

within the same element GJ as long as they are linearly independent. We will denote

the basis-functions as Φj
J in the following where the index J labels the element and j the

different basis-functions inside the element.
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4.1. THE DISCONTINUOUS GALERKIN METHOD 49

Figure 4.1: Two-dimensional phase-space domain VP h for a one-dimensional system. The

full domain is split into a finite number of elements GJ with the boundaries ∂GJ . The

lines with arrows illustrate the streamlines given by the velocity field v(x, k).

The next step is to reformulate the partial differential equation we want to solve in an

integral form, i.e. in the weak formulation. The equation

∂f

∂t
+ ∇ · (vf) = 0 (4.2)

also holds when it is multiplied with an arbitrary function of the solution space and

integrated over the domain. As the basis-functions are obviously elements of the solution

space we can write
∫

VP h

dV Φj
J

(

∂f

∂t
+ ∇ · (vf)

)

= 0 . (4.3)

The basis function is only non-zero within the element J , hence it is sufficient to perform

the integration only on GJ and not VP h. With partial integration and the Gauss-theorem

we can write,

∫

GJ

dV Φj
J

∂f

∂t
−
∫

GJ

dV (∇Φj
J) · vf +

∫

∂GJ

dA Φj
Jn · FN(f) = 0 . (4.4)

Here, we have introduced the so-called numerical flux FN(·). The quantity n is a nor-

malized vector pointing outwards of the element J and stands normal to the surface ∂GJ .

From the straight-forward application of the Gauss-theorem we would actually have to use

FN(·) = vf . However, the solution f in the solution space spanned by the basis-function

is not continuous at the element boundaries. Therefore a straight forward calculation

of the flux is not possible and we need an expression for the so-called numerical flux.

There are several different schemes to the construct FN(·) where some examples are the

upwind-flux, the Godunov-flux, the Engquist-Osher-flux or the Lax-Friedrichs-flux [78].
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50 CHAPTER 4. TRANSPORT NUMERICS

For a linear flux of the form F(f) = vf all mentioned fluxes coincide with the definition

of the upwind flux that is

FN(f) =







vf− if n · v > 0

vf+ if n · v < 0
, (4.5)

where f− (f+) means that f is evaluated inside the current (neighboring) element.

The distribution function can be expanded in the basis-functions as well,

f(t, x, k) =
∑

I,i

f i
I(t)Φi

I(x, k) , (4.6)

where one should note that the time-dependence of f enters into the expansion coefficients

f i
I(t) and the phase-space coordinates enter into the basis-functions Φi

I(x, k). When the

expansion Eq. (4.6) is inserted into Eq. (4.4) we obtain an ordinary first-order linear

differential equation for the coefficients f i
I ,

∑

I,i

[
∂f i

I

∂t

∫

GJ

dV Φj
JΦi

I

︸ ︷︷ ︸

≡M
ji
JI

−f i
I

∫

GJ

dV (∇Φj
J) · vΦi

I

︸ ︷︷ ︸

≡T
ji
JI

+f i
I

∫

∂GJ

dA Φj
Jn · FN(Φi

I)
︸ ︷︷ ︸

≡F
ji
JI

]

= 0 . (4.7)

The introduced tensor M ji
JI is called mass-matrix and is always diagonal in the element

indices JI which makes it computationally cheap to invert. Finally, we can rewrite

Eq. (4.7) as
∂f

∂t
= M−1 (T − F ) f , (4.8)

which can be solved by any time-integration method as forward Euler or Runge-Kutta

starting from an initial distribution f0.

4.2 Algorithm

As already discussed above, the phase-space of a one-dimensional system is two-dimensional

(denoted as 1D × 1D-case in the following) consisting of the real-space position x and

the momentum k. If the studied system is homogeneous in real-space, we can describe it

approximately with a distribution function depending on the momentum only (denoted

as 1D-case in the following). Therefore we have implemented a solver for both cases, the

purely k-dependent 1D-case described by the equation

∂

∂t
fn,σ +

q

~
E
∂fn,σ

∂k
= 0 , (4.9)

and the momentum- and position-dependent 1D × 1D-case,

∂

∂t
fn,σ +

q

~
E
∂fn,σ

∂k
+

1

~

∂ǫn,σ

∂k

∂fn,σ

∂x
= 0 . (4.10)
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4.2. ALGORITHM 51

There is no coupling between the transport equations of different bands n or spins σ,

hence, these quantum numbers will be dropped in the following. For the algorithm we

restrict ourselves to spatially uniform electric fields for simplicity.

As explained in section 4.1 the domain of the problem is split into finite-size elements

that can have, in principle, arbitrary shapes. For the purely 1D-case the domain is a

line and the only possible element shape is a line-interval. We split the domain into NE

elements where each element I ∈ [1, NE] has the lower (upper) boundary bI (bI+1). We

choose so-called nodal basis-functions of first order for the implementation of the transport

code,

Φi
I(y) =







θi
I(y) if bI ≤ x < bI+1

0 otherwise
, (4.11)

with

θi
I(y) =







bI+1−y

bI+1−bI
if j = 1

y−bI

bI+1−bI
if j = 2

. (4.12)

For each element J there exist two basis-functions where the first one has a value of one

at the left boundary of the element and then decays linearly to zero at the other side of

the element. The second function has the same shape but is one at the right boundary

of the element. Note that these basis functions are not orthogonal. However, they have

the advantage that the calculation of the flux-matrix F (see Eq. (4.7)) becomes very easy

as shown below. Furthermore, we can determine the approximate expansion coefficients

quickly by simply taking the values of the original function at the node-positions bI . Note

that this procedure does not give the proper expansion coefficients regarding the L2-Norm.

The 1D × 1D phase-space is a two-dimensional, rectangular domain. The elements

could have arbitrary shapes e.g. triangular, rectangular or even more complicated ones.

However, we can make a special choice that simplifies our future work. The 1D-basis

Eq. (4.11) can be used to cover the momentum space Φj
J(k) with corresponding mesh-

nodes bk
J ; J ∈ [1, Nk

E]. The same basis can also be used to cover the real-space ϕi
I(x)1

with mesh-nodes bx
I ; I ∈ [1, Nx

E]. A basis Φ(x, k) of the product space is then given by the

products of all combinations of these 1D-basis functions for position and momentum:

Φ
h(i,j)
H(I,J)(x, k) ≡ ϕi

I(x)Φj
J(k) . (4.13)

The combined index H(I, J) (h(i, j)) is a bijective map between the two element- (node-)

indices {I, J} ({i, j}) of the respective 1D-bases and the elements (nodes) of the 1D× 1D

domain. The elements of the 1D×1D space are the Euclidean products of the line-elements

of the 1D-bases, i.e. have rectangular shape.

1We denote the 1D-basis for real-space with ϕ instead of Φ but it is defined in the same way as

Eq. (4.11).
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52 CHAPTER 4. TRANSPORT NUMERICS

The distribution-function is expanded in the bases introduced above,

f(t, k) →
∑

I,i

f i
I(t)Φi

I(k) for 1D (4.14a)

f(t, x, k) →
∑

i,j
I,J

f ij
IJ(t)ϕi

I(x)Φj
J(k) for 1D × 1D . (4.14b)

We project the dispersion relation ǫ(k) onto the basis Φj
J(k) as well. As we have restricted

ourselves to a linear basis, the real-space velocity (i.e. the derivative of the dispersion

relation) is constant within each mesh-element.

The next step is to setup the matrices M , T and F as defined by Eq. (4.7). As the

1D-case is rather trivial we will show the explicit matrices only for the 1D × 1D-case.

Due to the fact that we have chosen non-orthogonal basis-functions calculating the

inverse of the mass-matrix M−1 is non-trivial. The inversion of a n× n matrix scales as

O(n3) for simple Gauss-elimination. Here, n would be the total number of basis functions.

This would result in huge computational cost for large systems. However, we can use

the fact that the DG-basis functions are only overlapping within the same mesh-element

to order the basis-functions in a way, so that the mass-matrix becomes block-diagonal.

The individual blocks are two(four)-dimensional for the 1D-(1D × 1D-)case. Hence, the

inversion consists of NE inversions of small, fixed-size matrices, where NE is the total

number of mesh elements. This reduces the computational cost of the inversion to O(NE).

For the 1D × 1D case the mass matrix reads

M
h(ij)l(mn)
H(IJ)L(MN) = δI,MδJ,N

∫

dx ϕi
I(x)ϕm

I (x)
∫

dk Φj
J(k)Φn

J(k) . (4.15)

After the calculation of the inverse mass matrix we have to setup the remaining T -

and F -matrices. The T -matrix actually consists of the sum of two matrices,

T
h(ij)l(mn)
H(IJ)L(MN) =δI,MδJ,N

( ∫

dx
∂ϕi

I(x)

∂x
ϕm

I (x)
∫

dk
1

~

∂ǫ

∂k
Φj

J(k)Φn
J(k)

+
∫

dx
q

~
E ϕi

I(x)ϕm
I (x)

∫

dk
∂Φj

J(k)

∂k
Φn

J(k)
). (4.16)

Due to the ordering of the basis-functions the T -matrix is block-diagonal in the same way

as the mass matrix.

The numerical flux Eq. (4.5) couples only neighboring elements and as a consequence

the F -matrix is sparse, yet not block-diagonal as the M - or T - matrix. Following the

definition of the flux-matrix Eq. (4.7) and the numerical flux Eq. (4.5) we have to perform a

case-distinction for every side of the elements. The flux can be split into two flux-matrices,

one that describes the flux in real-space direction Fx and one in momentum-direction Fk;
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F = Fx + Fk. The different matrices read

Fx
h(ij)l(mn)
H(IJ)L(MN) =






δJ,N

[

δI,Mδi,2δm,2 − δ(I−1),Mδi,1δm,2

] ∫

dk 1
~

∂ǫ
∂k

Φj
J(k)Φn

J(k)
(

∂ǫ
∂k

)

J
> 0

δJ,N

[

δ(I+1),Mδi,2δm,1 − δI,Mδi,1δm,1

] ∫

dk 1
~

∂ǫ
∂k

Φj
J(k)Φn

J(k)
(

∂ǫ
∂k

)

J
< 0

,
(4.17)

and

Fk
h(ij)l(mn)
H(IJ)L(MN) =






δI,M

∫

dx q
~
Eϕi

I(x)ϕm
I (x)

[

δJ,Nδj,2δn,2 − δ(J−1),Nδj,1δn,2

]

E > 0

δI,M

∫

dx q
~
Eϕi

I(x)ϕm
I (x)

[

δ(J+1),Nδj,2δn,1 − δJ,Nδj,1δn,1

]

E < 0
.

(4.18)

4.2.1 Boundary conditions

In the discontinuous Galerkin method the boundary conditions enter into the flux-matrix

F . For the calculation of the T - and M -matrix it is sufficient to know the distribution-

function inside the simulation domain. The flux, however, couples the distribution function

values of neighboring elements. When an element touches a boundary, one of its sides

will not have any corresponding neighbor within the simulation domain and it is a priori

not clear how to deal with the flux at these positions. This freedom is used to implement

different boundary conditions.

The flux-matrix in real-space direction Eq. (4.17) has terms ∝ δ(I−1),Mδi,1δm,2 and

∝ δ(I+1),Mδi,2δm,1 which are responsible for the coupling of neighboring elements. The

index I corresponds to the real-space element where the flux is calculated and the index

M labels the real-space element of the discretized distribution-function responsible for the

flux. The small indices correspond to the different basis-functions inside the elements. As

we use nodal basis-functions the flux through a side of an element involves only one of

the two basis-functions of the corresponding element (only one basis-function is non-zero

at a element-boundary). In this paragraph and in the following, we are only explicitly

discussing the boundary conditions for the flux in real-space direction. All findings also

apply for the momentum-space flux.

Following the definition of the basis-functions strictly, it follows that I,M ∈ [1, Nx
E],

hence, the Kronecker-Delta δ(I−1),M evaluates to zero at the left boundary (I = 1) and

the Kronecker-Delta δ(I+1),M evaluates to zero at the right boundary (I = Nx
E). This

corresponds to pure outflow boundary conditions meaning that particles can move out of

the system at the boundary and no new particles come in. For a real physical system this

could make sense under some circumstances but in most cases this will not represent a

realistic situation.
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Another possibility for the boundary would be a periodic index, i.e.

M = 0 → M = Nx
E , (4.19a)

M = Nx
E + 1 → M = 1 . (4.19b)

Implementing a periodic index represents periodic boundary conditions, i.e. when a

particle at the boundary moves further into the boundary direction it is transported to the

opposite side of the domain. From theory we know that the crystal-momentum k is limited

to the first Brillouin-zone (BZ) and all the physically relevant quantities are periodic with

k. Therefore we always use periodic boundary conditions for the momentum-direction (i.e.

for the index N in Eq. (4.18))2.

For the real-space direction periodic boundary conditions rarely make sense. The

most natural boundary conditions are the so-called inflow-boundary conditions. They

assume that electrons with a certain distribution enter the simulated material from the

boundaries. In most cases this distribution will be a Fermi-Dirac with the chemical

potential and temperature of the neighboring material, but there is no general limitation

on the shape of the distribution. This can be achieved by a matrix Lx (Rx) representing

just the flux through the left (right) real-space boundary,

Lx
h(ij)n
H(IJ)N =







−δI,1δi,1δJ,N

∫

dk 1
~

∂ǫ
∂k

Φj
J(k)Φn

J(k)
(

∂ǫ
∂k

)

J
> 0

0
(

∂ǫ
∂k

)

J
< 0

, (4.20)

Rx
h(ij)n
H(IJ)N =







0
(

∂ǫ
∂k

)

J
> 0

δI,Nx
E
δi,2δJ,N

∫

dk 1
~

∂ǫ
∂k

Φj
J(k)Φn

J(k)
(

∂ǫ
∂k

)

J
< 0

. (4.21)

The boundary-flux matrices have to be contracted with the projection of the distribution

function at the left (right) boundary fL
n
N (fR

n
N) that streams into the domain. Note, that

these functions and their projections are elements of the momentum-space only. When

inflow boundary conditions are used, outflow boundary conditions have to be used in the

setup process of the flux-matrix F . With the new terms added, Eq. (4.8) reads

∂f

∂t
= M−1 (T − F ) f −M−1Lx fL −M−1Rx fR . (4.22)

A third possibility would be reflective boundary conditions. They represent the situ-

ation where particles which reach the real-space boundary, are reflected and stay within

the simulated material. This could happen when there is a strong band mismatch or, if a

quasi-particle is described that does not exist within the other material, e.g. an exciton.

For simplicity, we assume here that the dispersion relation is symmetric with respect

2Of course, this is only correct if there is no band-crossing at the BZ-boundary.
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to the gamma-point and a monotonous function of the momentum for k > 0. If these

conditions are fulfilled, every energy of a particle corresponds to exactly two momenta

that are exactly the opposite of each other and have opposite velocities, i.e. ǫ(k) = ǫ(−k);

vx(k) = −vx(−k). We require these properties also for the projected dispersion relation

which means that also the k-mesh has to be symmetric around the gamma-point. The

implementation is similar to the inflow boundary conditions using the boundary-flux matri-

ces. However, they are not contracted with a fixed vector but with the mirrored projection

of the distribution function at that boundary,

fL
n
N =δn,1 f

1,2

1,(Nk
E
−N+1)

+ δn,2 f
1,1

1,(Nk
E
−N+1)

, (4.23)

fR
n
N =δn,1 f

2,2

Nk
E

,(Nk
E
−N+1)

+ δn,2 f
2,1

Nk
E

,(Nk
E
−N+1)

. (4.24)

The inflow boundary condition can also be combined with the reflective boundary condition

assuming that particles stream in at one side and are reflected at the other one. This is

achieved by the corresponding assignments of the boundary vectors fL
n
N and fR

n
N .

4.3 Test cases

We test the code with several simple examples for which the behavior is known. In the

1D-case (i.e. without real-space dependence) we setup a system with periodic boundary

conditions as the Brillouin-zone is always periodic. The initial distribution at time t = 0

is a simple Gaussian function centered at k = 0 (Fig. 4.2). The charge is negative and

the electric field positive. Hence, the distribution function is shifted towards negative

momenta as time progresses (Fig. 4.2a and Fig. 4.2c). The electric field is irrespective of

momentum which results in a rigid shift of the initial distribution. As we have employed

periodic boundary conditions, after a certain time t = T (or all integer multiples of this

time, i.e. t = nT ; n ∈ N) the initial distribution is reestablished. This is of course only

true as we did not include any scattering here. Note, that the dispersion relation of

the band has no influence on the transport in the 1D-case and it does not occur in the

underlying equations.

The discretization error results in so-called numerical dissipation [78] broadening the

curves in Fig. 4.2b. This effect gets weaker when the number of basis functions is increased.

In order to show the effect of the numerical dissipation we have performed simulations with

two different meshes where the distribution is propagated till a time t = 10T (Fig. 4.2).

With the 1D × 1D code we study several different cases. First, we discuss inflow

boundary-conditions in real-space and periodic boundary-conditions in momentum-space

at different electric fields (Fig. 4.3). For the electrons entering the domain from the

boundaries we assume a Fermi-Dirac distribution with a chemical potential µ = −0.5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

56 CHAPTER 4. TRANSPORT NUMERICS
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(a) (b)

(c) (d)

Figure 4.2: Test case calculated with the 1D code for periodic boundary conditions and

two different meshes: NE = 25 (a) and (b); NE = 50 (c) and (d). The initial distribution

function is a Gaussian centered at k = 0. The electric field is E = 1 and the charge q = −1.

(a) and (c) show the initial movement which is a rigid shift of the initial population. (b)

and (d) show the distribution after several periods (T = 2; t = 5T = 10; t = 10T = 20).
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and an inverse temperature β = 20. The dispersion relation inside the domain is ǫ(k) =

− cos(πk) with the first Brillouin zone k ∈ [−1, 1]. As initial condition we assume that

there are no electrons within the simulation domain, i.e. f(t = 0, x, k) = 0.

Electrons with k > 0 have positive real-space velocities and electrons with k < 0 have

negative ones. As a consequence, only electrons with positive momentum stream in from

the left boundary at x = 0 while the electrons coming from the right boundary at x = 10

have negative momentum. After a certain time the distribution function in the domain

does not change any more and a steady state is reached. In case of E = 0 the steady

state distribution function is just a Fermi-Dirac with the same temperature and chemical

potential as the boundary distribution that streams into the system. For moderate electric

fields (E = 0.03 in Fig. 4.3) the particles are shifted towards smaller k-values during their

journey through the domain. This results in a steady state distribution that for each real-

space position resembles a momentum-shifted Fermi-Dirac with locally different chemical

potentials (at least for sufficiently small fields). When the electric field is very strong

(E = 0.1 in Fig. 4.3) all the electrons entering from the left side are decelerated until they

revert their velocity and leave the domain through the left side from which they have

originally entered. The electrons entering the system from the right side get shifted to

smaller k as well which results in an acceleration.

Another instructive example is shown in Fig.4.4. There, the setup of the system is

similar to the previous example but with the boundary distributions set to zero (i.e. pure

outflow boundary conditions). The initial distribution is a Gaussian centered at k = 0.5

and x = 5. For the field E = 0 the electrons stay at their momenta which all have

positive, but different velocities. Hence, the electron distribution gets dispersed while

moving out of the system. If the electric field is strong enough (here E = 0.8) one can

observe so-called Bloch-oscillations. The electrons start moving in positive x-direction and

are shifted to smaller k-values at the same time. Once the momenta become negative, also

the velocities becomes negative. As a consequence one can show, that after a certain time

T each electron gets back to its original position in the phase-space, i.e. after the time

T the initial distribution function is reestablished. Note that a proper Bloch-oscillation

is only observable if no particles leak out of the system during this one period, i.e. the

real-space domain must be large enough.
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Figure 4.3: Example for the 1D× 1D code with inflow boundary-conditions in x-direction

and periodic boundary-conditions in k-direction at different fields E. The distribution

function at the boundaries are Fermi-Dirac distributions with µ = −0.5 and β = 20, the

dispersion relation of the band is ǫ(k) = − cos(πk), the charge is q = −1 and the initial

distribution function is zero. The number of mesh-elements is Nx
E = 40 and Nk

E = 80.
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Figure 4.4: Example for the behavior of electrons at different fields in the 1D × 1D case.

The band- and mesh-properties are the same as in Fig. 4.3. In the x-direction we use

outflow boundary-conditions, in the k-direction periodic boundary-conditions. For E = 0

the electrons in the system move into the x-direction as they have finite and positive

velocities until they leave it. In case of E = 0.8 the electrons propagate through the

phase-space until they reach their initial position after a time T = 2
E

= 2.5.
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Chapter 5

Scattering numerics

In this chapter we develop a numerical method to calculate the Boltzmann collision

operators (see section 2.3). As already mentioned in section 2.3.4 calculating the collision

operators is a demanding task, especially for four-leg processes. This requires several

methodological developments that are introduced in this chapter. For brevity we explicitly

discuss the different aspects of the method for the electron-electron scattering process

only. The basic ideas can be directly extended to other four-leg and three-leg scatterings.

Also the treatment of different kinds of quasi-particles like electrons, phonons or excitons

is possible within the framework we are presenting. We have implemented scattering

for one-dimensional (1D) and two-dimensional (2D) systems. When we discuss specific

details of the scattering we stick to the 2D-case in the following as many intriguing details

become trivial for the 1D-case.

The overall method resembles the simplified method introduced in section 3.2 that was

used to calculate the Boltzmann scattering without momentum conservation. However,

the scheme introduced in this chapter is a lot more sophisticated as it includes scattering

between different bands, different scattering processes and simultaneous momentum- and

energy- conservation up to machine precision.

Within the standard Boltzmann framework, all collision operators are local in real-

space. This means, that all distribution-functions occurring are evaluated at the same real-

space position. Hence, we neglect a (potential) real-space dependence of the distribution-

functions for the discussion of the scattering algorithm.

The chapter is organized in the following way: In section 5.1 we introduce a basis and

project the collision operator onto it which yields a mathematical object we call scattering

tensor. We present a numerical procedure to calculate the tensor elements and discuss its

limitations. This is followed by a discussion about the symmetries of the scattering tensor

and how these symmetries are linked to particle, momentum and energy conservations. We

also present a scheme on how to enforce these symmetries in the tensor (section 5.2). The
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scattering tensor can also be used to calculate scattering rates of particles in equilibrium

systems which is explained in section 5.3. In section 5.4 we apply the introduced method

to non-equilibrium thermalization dynamics in 2D-systems. In section 5.5 we present some

details on the numerical implementation and finally, we discuss how to join the scattering

code with the transport code (section 5.6).

The method introduced in this chapter was published in Ref. [79]. This chapter was

written first and provides more detailed information than the publication for which the

text was shrunk and slightly modified by the co-authors. Hence, in this chapter only

those sections are marked with a vertical, black bar that are exactly the same as in the

publication. Single sentences will also be identical to sentences in Ref. [79] in the other

parts of this chapter.

5.1 Scattering Tensor

As prototypical collision operator we use electron-electron scattering where an electron

of band n0 scatters with an electron of band n1 to end up in the bands n2 and n3 (or

the time-reversed process; n0 + n1 ↔ n2 + n3). The collision integral that gives the

distribution-function change in band n0 due to this process is

(

∂f0

∂t

)

n0+n1↔n2+n3

= we-e
n0n1n2n3

∑

G

∫∫∫

VBZ
3
ddk1d

dk2d
dk3 δ(k0 + k1 − k2 − k3 + G)

× δ(ǫ0 + ǫ1 − ǫ2 − ǫ3) [(1 − f0)(1 − f1)f2f3 − f0f1(1 − f2)(1 − f3)] ,

(5.1)

with fi ≡ fni
(ki) and ǫi ≡ ǫni

(ki). The spin indices σi are absorbed into the band indices

ni for brevity. The scattering amplitude we-e
n0n1n2n3

is proportional to the transition matrix

element squared (see section 2.3.1). It depends, in principle, on all the involved electron

states, i.e. their momenta ki and their bands ni. We assume that the dependence of

the scattering amplitude on the momenta is weak compared to the contribution from the

phase-space which is a good approximation in many cases [80]1. Therefore, we neglect

the momentum dependence of we-e
n0n1n2n3

and write it in front of the integral in Eq. (5.1).

Nevertheless, the method developed in this chapter can be easily extended to momentum

dependent scattering amplitudes which are then used as additional input for the method.

Note, that if we want to calculate the full scattering we need to sum over all different

band-contributions and multiply the sum with a global pre-factor of 1
2

to prevent double-

1In fact, the scattering amplitude is indeed momentum independent for a local interaction as e.g. in

the Hubbard model (see Appendix A).
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counting (see Eq. (2.15)),
(

∂f0

∂t

)

e-e

=
1

2

∑

n1,n2,n3

(

∂f0

∂t

)

n0+n1↔n2+n3

. (5.2)

5.1.1 Basis and discretization

When we attempt to calculate the collision operators numerically we have to discretize

them using a certain scheme. In analogy to finite-element methods we project the collision

operators as well as the distribution functions onto a basis. We choose the discontinu-

ous Galerkin (DG)-type basis for that purpose. For the 1D-case we use the definition

Eq. (3.18).

For the 2D-case we use the two-dimensional equivalent of the 1D-basis. We split the

two-dimensional domain of each band n into NE(n) non-overlapping triangles that are

labeled with a capital index, I ∈ [1, NE(n)]. The I-th triangle of band n is denoted TI
n

.

Each DG-basis function is non-zero only within a single triangle. Within their correspond-

ing triangle (or element), the basis functions consist of two-dimensional, orthonormal

polynomials up to linear order. In two dimensions this gives three linearly independent

basis functions per element (Fig. 5.1) while in one dimension a locally linear DG basis has

two basis functions per element. The definition of the 2D basis-functions reads

Φi
I
n

(k) =







P i
I
n

(k) if k ∈ TI
n

0 otherwise
, (5.3)

with

P i
I
n

(k) =







γ0
I
n

if i = 0

β1
I
n

ky + γ1
I
n

if i = 1

α2
I
n

kx + β2
I
n

ky + γ2
I
n

if i = 2

. (5.4)

Let us stress, that a possible real-space dependence is not taken into account in this

section, therefore the basis functions only depend on the momentum. In section 5.6 we

will extend the method to position dependent problems. The above definition Eq. 5.4

contains six unknown coefficients per element that are determined by requiring the basis

to be orthonormal, i.e. ∫

d2k Φi
I
n

(k)Φj
J
n

(k) = δI,Jδi,j . (5.5)

Note, that the numerical values of the coefficients of a certain basis-function depend on

the exact position and shape of the corresponding triangle.

We project the distribution functions onto the subspace spanned by the basis,

f i
I
n

(t) ≡
∫

ddk fn(t,k)Φi
I
n

(k) , (5.6)
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(a) (b) (c)

Figure 5.1: All three linear-independent basis functions for the element I = 32; (a) Φ0
32(k),

(b) Φ1
32(k), (c) Φ2

32(k). For a definition see Eq. (5.3)

and for later convenience we define

1i
I
n

≡
∫

ddk Φi
I
n

(k) . (5.7)

As pointed out in section 2.1 extensive thermodynamic quantities like total energy or

particle number can be calculated once the distribution-function is known. If the real-

space integration and the summation over all bands in Eq. (2.5) is not performed, we get

the corresponding density contributed by band n,

Θn(t) =
∫

VBZ

ddk
1

(2π)d
fn(t,k)θn(k) , (5.8)

where θn(k) is the single-particle contribution (θn(k) = 1 for particle density, θn(k) = ǫn(k)

for energy density, etc.; see TABLE 2.1). Using the basis introduced above, Eq. (5.8)

becomes

Θn(t) =
1

(2π)d

∑

I,i

f i
I
n

(t)θi
I
n

, (5.9)

where θi
I
n

is the expansion coefficient of the single-particle contribution,

θi
I
n

(t) ≡
∫

ddk θn(k)Φi
I
n

(k) . (5.10)

5.1.2 The scattering tensor

When we project Eq.(5.1) onto the basis and apply Eq. (5.6) and (5.7) we get





∂f i
I

n0

∂t






n0+n1↔n2+n3

≡
∫

ddk Φi
I

n0

(k0)

(

∂f0

∂t

)

n0+n1↔n2+n3

=

= we-e
n0n1n2n3

∑

j,k,m,n
J,K,M,N

(Sn0+n1↔n2+n3)ijkmn

IJKMN
n0n1n2n3

(

(1j
J

n0

− f j
J

n0

)(1k
K
n1

− fk
K
n1

)fm
M
n2

fn
N
n3

− f j
J

n0

fk
K
n1

(1m
M
n2

− fm
M
n2

)(1n
N
n3

− fn
N
n3

)
)

,

(5.11)
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with the scattering tensor:

(Sn0+n1↔n2+n3)ijkmn

IJKMN
n0n1n2n3

=
∑

G

∫∫∫∫

ddk0d
dk1d

dk2d
dk3 Φi

I
n0

(k0)Φ
j
J

n0

(k0)Φ
k
K
n1

(k1)Φ
m
M
n2

(k2)Φ
n
N
n3

(k3)

× δ(k0 + k1 − k2 − k3 + G) δ (ǫ0 + ǫ1 − ǫ2 − ǫ3) .

(5.12)

In 2D, this tensor consists of a 8-dimensional integration and contains all the information

about the scattering system. For each scattering process (e.g. n0 + n1 ↔ n2 + n3) we get

as many tensors as the process has legs where each of the tensors describes the effect of

the scattering on one of the involved bands. This is only strictly true if all the bands are

different. When some of the legs belong to the same band, one has to be careful not to

double count. In the following we will drop the process-label and denote the scattering

tensor only with S
ijkmn
IJKMN
n0n1n2n3

for brevity.

In general, the basis of each band can have a different number of elements. In order

to understand the scaling of the scattering tensor we will assume here that the meshes of

all bands consist of the same number of elements NE. In a straight forward estimation

the number of tensor elements scales with the number of mesh elements as NSC ∝ NE
5.

However, in the DG-basis each basis function has a compact support and the elements,

where they are non-zero, are non-overlapping. This strongly improves the effective scaling

for the following reason: The integration domain of the scattering tensor is 4d-dimensional

for a system of dimension d. The integral contains d+ 1 delta-distributions limiting the

effective integration to the 4d − (d + 1) = 3d − 1 dimensional subspace that conserves

energy and momentum. Each dimension is covered by a number of basis function that

is ∝ NE

1
d (which is only true due to their compact support), hence the effective scaling

(counting only non-zero tensor elements) of the scattering tensor is

N4-leg
SC ∝

(

NE

1
d

)3d−1
= NE

3− 1
d , (5.13)

for four-leg processes and

N3-leg
SC ∝

(

NE

1
d

)2d−1
= NE

2− 1
d , (5.14)

for the three-leg processes.

5.1.3 Calculation of the scattering tensor elements

Calculating the tensor elements of the scattering tensors is a numerically demanding task.

The integrals are high dimensional and they contain delta-distributions. The momentum-

deltas can be analytically inverted as they simply depend on the integration variables in
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(a) (b)

Figure 5.2: (a) Example of a 2D bandstructure consisting of two bands. (b) The band-

structure of (a) but locally linearized with the opaque original bands on top. A rather

coarse mesh is used to highlight the effect of the local linearization.

a linear fashion. The energy-delta, however, describes a complicated hypersurface that

depends on the exact shape of the dispersion-relations similar to Fermi-surfaces but in a

higher dimensional space.

We solve this problem by local linearization of the dispersion relations. As each DG-

basis function is only non-zero within one element, the actual integration domain for a

tensor element Sijkmn
IJKMN
n0n1n2n3

is not VBZ ×VBZ ×VBZ ×VBZ but rather T J
n0

×TK
n1

×TM
n2

×TN
n3

, i.e.

the product of the triangles (that are the elements) where the basis functions are non-zero.

As all the momenta inside the integral are limited to their triangles, we can approximate

the corresponding dispersion relations with their linearized versions, i.e.

ǫn0(k0)|k0∈T J
n0

→ ǭ J
n0

(k0) ≡ u J
n0

· k0 + t J
n0

, (5.15)

and equivalently for the other momenta. The three coefficients u x
J

n0

, u y
J

n0

and t J
n0

are fixed

by the requirement that the linearized dispersion ǭ J
n0

(k0) is equal to the original dispersion

ǫn0(k0) at the three nodes of the triangle T J
n0

. When the linearization is done in that

fashion, the locally linearized dispersions form a globally continuous function (Fig. 5.2).

This is particularly important for the combination of the scattering method with transport

as the semiclassical equations of motion require a continuous dispersion and are ill-defined

otherwise.

Now that the energy-conserving delta-distribution only contains a function that de-

pends linearly on the momenta, it can be (at least in principle) inverted analytically. In

the following, we discuss step-by-step how to invert all the deltas and how to calculate

the resulting integrals with a special version of the Monte-Carlo integration technique. As

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.1. SCATTERING TENSOR 67

a first step, we invert the momentum-conserving delta in Eq. (5.12) with respect to k1

without loss of generality, which gives

S
ijkmn
IJKMN
n0n1n2n3

= δI,J

∑

G

∫

T J
n0

d2k0

∫

TM
n2

d2k2

∫

T N
n3

d2k3 Ω
(

(k2 + k3 − k0 − G) ∈ TK
n1

)

× P i
J

n0

(k0)Pj
J

n0

(k0)Pk
K
n1

(k2 + k3 − k0 − G)Pm
M
n2

(k2)Pn
N
n3

(k3)

× δ

(

ǭ J
n0

(k0) + ǭK
n1

(k2 + k3 − k0 − G) − ǭM
n2

(k2) − ǭN
n3

(k3)

)

,

(5.16)

with the function Ω(·) that we define to be 1 if the statement inside is true and 0 otherwise.

In Eq. (5.16) we have already changed the integration domains of the integrals to the

triangles corresponding to the basis functions inside. As the momenta of the integrals

are restricted to their triangles, we may also replace the basis functions Φi
I
n

(·) with the

polynomials P i
I
n

(·) (see Eq. (5.3)). In Eq. (5.16) we have also used the property

S
ijkmn
IJKMN
n0n1n2n3

= δI,J S
ijkmn
JJKMN
n0n1n2n3

, (5.17)

that follows from the local nature of the DG basis.

With the definition of the linerized dispersion Eq. (5.15) the energy-conserving delta

in Eq.(5.16) reads,

δ

((

u J
n0

− uK
n1

)

· k0 +

(

uK
n1

− uM
n2

)

· k2 +

(

uK
n1

− uN
n3

)

· k3 + t J
n0

+ tK
n1

− tM
n2

− tN
n3

− uK
n1

· G

)

.

(5.18)

For the following let us assume that

(

ux
K
n1

− ux
M
n2

)

6= 02. When this requirement is fulfilled

we can invert the energy-delta with respect to kx
2 , which gives

S
ijkmn
IJKMN
n0n1n2n3

= δI,J

∑

G

∫

T J
n0

d2k0

∫

L
[a,b]
M
n2

dky
2

∫

T N
n3

d2k3 Ω
(

(k2 + k3 − k0 − G) ∈ TK
n1

)

|
kx

2
=ξ

× Ω(k2 ∈ TM
n2

)|
kx

2
=ξ

1
∣
∣
∣ux

K
n1

− ux
M
n2

∣
∣
∣

P i
J

n0

(k0)Pj
J

n0

(k0)Pk
K
n1

(k2 + k3 − k0 − G)|
kx

2
=ξ

× Pm
M
n2

(k2)|
kx

2
=ξ

Pn
N
n3

(k3) ,

(5.19)

2One can also use any other vector-component of the momentum-prefactors occurring in Eq. (5.18) as

long as it is non-zero.
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68 CHAPTER 5. SCATTERING NUMERICS

Figure 5.3: Schematic picture of the electron-electron scattering process for the elements

(triangles) T J
n0

, TK
n1

, TM
n2

, TN
n3

. The integration of k1 is removed due to the inversion of the

momentum-conserving delta (dashed triangle). The kx
2 -integration is fixed by the inversion

of the energy-conserving delta. The remaining integration variables are k0, k3, and ky
2 .

with

ξ =
1

ux
K
n1

− ux
M
n2



tM
n2

+ tN
n3

− t J
n0

− tK
n1

+ uK
n1

· G −
(

u J
n0

− uK
n1

)

· k0 −
(

uy
K
n1

− uy
M
n2

)

ky
2

−
(

uK
n1

− uN
n3

)

· k3



 .

(5.20)

In Eq. (5.19) the integration domain is T J
n0

×TN
n3

×L
[a,b]
M
n2

where L
[a,b]
M
n2

is a line interval from

a to b, where a (b) is the minimum (maximum) ky
2-value in the corresponding triangle

(Fig. 5.3). Furthermore, another Ω-function is introduced in Eq. (5.19) to ensure that only

contributions are counted for which the momentum k2 lies inside its triangle.

The integral Eq. (5.19) contains a smooth integrand (except for the Ω-functions) and

can be readily calculated with Monte-Carlo. For that purpose we generate a number

NMC of sets of random points k0
α

∈ T J
n0

, k3
α

∈ TN
n3

and ky
2
α

∈ L
[a,b]
M
n2

. The scattering tensor

components are then calculated according to

S
ijkmn
IJKMN
n0n1n2n3

= δI,J

T J
n0

× TN
n3

× L
[a,b]
M
n2

NMC

∣
∣
∣ux

K
n1

− ux
M
n2

∣
∣
∣

∑

G

NMC∑

α=1

Ω
(

(k2
α

+ k3
α

− k0
α

− G) ∈ TK
n1

)

|
kx

2
α

=ξα

× Ω(k2
α

∈ TM
n2

)|
kx

2
α

=ξα

P i
J

n0

(k0
α

)Pj
J

n0

(k0
α

)Pk
K
n1

(k2
α

+ k3
α

− k0
α

− G)|
kx

2
α

=ξ

Pm
M
n2

(k2
α

)|
kx

2
α

=ξα

Pn
N
n3

(k3
α

) .

(5.21)
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(a) (b)

Figure 5.4: Triangular mesh of a single band with the element numbering on top for a 2D-

system. (a) Energy- and momentum-conserving Monte-Carlo point-sets for the scattering

J
n0

+K
n0

↔ M
n0

+N
n0

with the elements J = 25 (blue), K = 37 (red), M = 20 (green), N = 17

(orange) (NMC = 300). The effective integration domain here is T20 × T17 ×L
[a,b]
25 . (b) The

same point-sets as in (a) but only those where all momenta lie within their corresponding

triangles (i.e. the accepted Monte-Carlo point-sets; Nacc = 28).

Above, we have made the assumption

(

ux
K
n1

− ux
M
n2

)

6= 0 which was necessary for the

inversion of the energy-delta. This does not hold in general, hence, the algorithm has to

decide which momentum component to use for the inversion. We exclude scatterings where

all the momentum pre-factors are zero as this would give an infinite expression. We discuss

this case in section 5.1.4. Our method always uses the momentum where the corresponding

prefactor has the largest absolute-value for the inversion. To understand why this is

reasonable, we study the scattering-tensor elements for the case i = j = k = m = n = 0.

With the definition of the basis functions Eq. (5.4), Eq. (5.21) becomes

S
00000
IJKMN
n0n1n2n3

= δI,J

T J
n0

× TN
n3

× L
[a,b]
M
n2

NMC

∣
∣
∣ux

K
n1

− ux
M
n2

∣
∣
∣

γ0
J

n0

γ0
J

n0

γ0
K
n1

γ0
M
n2

γ0
N
n3

×
∑

G

NMC∑

α=1

Ω
(

(k2
α

+ k3
α

− k0
α

− G) ∈ TK
n1

)

|
kx

2
α

=ξα

Ω(k2
α

∈ TM
n2

)|
kx

2
α

=ξα

︸ ︷︷ ︸

Nacc

.

(5.22)
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In Eq. (5.22) the only factors that depend on the momentum that was chosen for the

inversion are L
[a,b]
M
n2

,
∣
∣
∣ux

K
n1

− ux
M
n2

∣
∣
∣ and the number of accepted Monte-Carlo points Nacc (see

Fig. 5.4). If the mesh contains only triangles that have approximately the same area

and that are well conditioned3, the line-element L
[a,b]
M
n2

is almost independent of the chosen

inversion. As the actual value of the scattering tensor element does not depend on the

method used for its calculation, it must hold that if the factor
∣
∣
∣ux

K
n1

− ux
M
n2

∣
∣
∣ is largest of

all possible inversions, also the expectation value of the number of accepted Monte-Carlo

points is the largest. This, in turn, makes the Monte-Carlo error the smallest.

5.1.4 Caveats of the method

The method to calculate the scattering tensor elements presented in the previous section

has some caveats. The first one is, that it is essentially a standard Monte-Carlo method.

Therefore, in order to get a decent precision for the individual tensor elements the number

of Monte-Carlo points NMC must be rather high. However, since the number of total

scatterings (i.e. all combinations of basis functions) is high, the single integrals do not

need a very high precision for the overall dynamics to give reasonably precise results.

Yet, another problem arises: For the overall dynamics the precision of the individual

scatterings does not matter so much but, as each scattering is not calculated exactly,

the conservation of energy, particle number and momentum is broken and subject to a

Monte-Carlo error. We find that these errors make the long-time convergence impossible

as the system loses or gains particles/energy/momentum in ever time-step. The required

number of Monte-Carlo points necessary to reduce this error sufficiently would exceed the

computational capabilities. Fortunately one can show that the conservation of extensive

quantities is linked to symmetries between different tensors-elements. If these symmetries

are enforced on the tensor-elements during calculation, our method conserves all quantities

up to machine precision. This topic is addressed in section 5.2.

Another problem arises due to the local linearization of the dispersion relation: In order

to invert the energy-conserving delta, at least one pre-factor of the momenta in Eq. (5.18)

has to be non-zero. However, for a scattering where all the involved legs correspond to

the same element (i.e. J = K = M = N and n0 = n1 = n2 = n3), this requirement is

automatically violated and the corresponding scattering-tensor element diverges. This

effect does not only happen for scatterings within the same element but for all scatterings

where all involved linearized dispersion relations lie in the same plane. This is due to the

fact that the momentum conservation is a linear equation in dependence of momentum.

When the linearized dispersions of the different legs have the same functional form for

3That means that all sides have approximately the same length.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.
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certain elements, the energy-conservation equation degenerates and becomes equivalent

to the momentum-conservation equation (up to a multiplicative factor). The two delta-

distributions then have their zero-points at the same positions in the integration-domain

which gives a divergence. We neglect such element-combinations as the algorithm would

yield a too large, unphysical scattering. A proper finite-size scaling is hence necessary.

5.2 Conservation symmetries and clean-up

5.2.1 Symmetries

As mentioned above, a problem of using Monte-Carlo integration for the tensor elements is

the conservation of extensive quantities such as particle number, energy or momentum. The

precision requirements on these quantities are much higher than on the overall dynamics.

Therefore we would like to conserve these quantities exactly.

The total change of an extensive quantity d
dt

Θ J
n0

in one element T J
n0

due to the electron-

electron scattering process n0 + n1 ↔ n2 + n3 reads

d

dt
Θ J

n0

=
∫

T J
n0

d2k0 θn0

(

∂f0

∂t

)

n0+n1↔n2+n3

= we-e
n0n1n2n3

∑

i,j,k,m,n
K,M,N

θi
J

n0

(Sn0+n1↔n2+n3)ijkmn

JJKMN
n0n1n2n3

(

(1j
J

n0

− f j
J

n0

)(1k
K
n1

− fk
K
n1

)fm
M
n2

fn
N
n3

− f j
J

n0

fk
K
n1

(1m
M
n2

− fm
M
n2

)(1n
N
n3

− fn
N
n3

)
)

,

(5.23)

with the projection of the single-particle contribution θi
J

n0

(see Eq. (5.10)).

As above, we will drop the process-label and denote the scattering tensor only with

S
ijkmn
JJKMN
n0n1n2n3

in the following. Furthermore, we will assume that all four bands that are involved

in the scattering process are different (i.e. n0 6= n1 6= n2 6= n3). For the cases where some

of the bands are the same one can derive the corresponding equations in the same way as

explained below.

We can now choose a specific set of elements J,K,M,N and study the change of the

extensive quantity within theses elements due to scattering processes only between them.

The time-derivative of the extensive quantity may be split into two different contributions:

One that comes from electrons scattered into the element ( d
dt

ΘJ←
n0

) and one that comes

from electrons scattered away from the element ( d
dt

ΘJ→
n0

); d
dt

Θ J
n0

= d
dt

ΘJ←
n0

+ d
dt

ΘJ→
n0

. Each

possible scattering has to conserve the extensive quantity, hence, we do not only get a
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conservation equation for the total change of the extensive quantity but also for the two

components stemming from electrons scattered into and out of the elements, i.e.

d

dt
ΘJ→

n0

+
d

dt
ΘK→

n1

+
d

dt
ΘM←

n2

+
d

dt
ΘN←

n3

= 0 , (5.24)

d

dt
ΘJ←

n0

+
d

dt
ΘK←

n1

+
d

dt
ΘM→

n2

+
d

dt
ΘN→

n3

= 0 . (5.25)

In Eq. (5.23) the part containing the projected distribution functions (i.e. the phase

space factor) consists of two terms which represent the scattering into the current element

[(1j
J

n0

− f j
J

n0

)(1k
K
n1

− fk
K
n1

)fm
M
n2

fn
N
n3

] and away from it [−f j
J

n0

fk
K
n1

(1m
M
n2

− fm
M
n2

)(1n
N
n3

− fn
N
n3

)]. Hence, if

we want to calculate the conservation equations Eq. (5.24) and Eq. (5.25) we have to use

only one part of the phase-space in each term. Eq. (5.24) then becomes

0 =
∑

i,j,k,m,n



θi
J

n0

(

S
ijkmn
JJKMN
n0n1n2n3

+ S
ijknm
JJKNM
n0n1n3n2

)(

− f j
J

n0

fk
K
n1

(1m
M
n2

− fm
M
n2

)(1n
N
n3

− fn
N
n3

)
)

+ θi
K
n1

(

S
ikjmn
KKJMN
n1n0n2n3

+ S
ikjnm
KKJNM
n1n0n3n2

)(

− fk
K
n1

f j
J

n0

(1m
M
n2

− fm
M
n2

)(1n
N
n3

− fn
N
n3

)
)

+ θi
M
n2

(

S
imnjk
MMNJK
n2n3n0n1

+ S
imnkj
MMNKJ
n2n3n1n0

)(

(1m
M
n2

− fm
M
n2

)(1n
N
n3

− fn
N
n3

)f j
J

n0

fk
K
n1

)

+ θi
N
n3

(

S
inmjk
NNMJK
n3n2n0n1

+ S
inmkj
NNMKJ
n3n2n1n0

)(

(1n
N
n3

− fn
N
n3

)(1m
M
n2

− fm
M
n2

)f j
J

n0

fk
K
n1

)


 .

(5.26)

Note, that the sum in Eq. (5.26) only runs over the small indices, i.e. the indices corre-

sponding to the different basis functions inside the elements. Interestingly, all the partial

phase-space factors occurring in Eq. (5.26) are the same (except for the signs). This partial

phase-space factor actually consists of several terms of different powers of the distribution

function,

f j
J

n0

fk
K
n1

(1m
M
n2

− fm
M
n2

)(1n
N
n3

− fn
N
n3

) = f j
J

n0

fk
K
n1

1m
M
n2

1n
N
n3

︸ ︷︷ ︸

∝ f2

− f j
J

n0

fk
K
n1

fm
M
n2

1n
N
n3

− f j
J

n0

fk
K
n1

1m
M
n2

fn
N
n3

︸ ︷︷ ︸

∝ f3

+ f j
J

n0

fk
K
n1

fm
M
n2

fn
N
n3

︸ ︷︷ ︸

∝ f4

.

(5.27)

Since these terms scale with different powers of the distribution function vector f , Eq. (5.26)

must hold for each of them separately. Therefore we may apply the variational principle

for the projected distribution-function components. This gives the conservation equation

for the quantity Θn, obtained from Eq. (5.26) and the term ∝ f4, which reads

0 =
∑

i



θi
J

n0

(

S
ijkmn
JJKMN
n0n1n2n3

+ S
ijknm
JJKNM
n0n1n3n2

)

+ θi
K
n1

(

S
ikjmn
KKJMN
n1n0n2n3

+ S
ikjnm
KKJNM
n1n0n3n2

)

− θi
M
n2

(

S
imnjk
MMNJK
n2n3n0n1

+ S
imnkj
MMNKJ
n2n3n1n0

)

− θi
N
n3

(

S
inmjk
NNMJK
n3n2n0n1

+ S
inmkj
NNMKJ
n3n2n1n0

)

 .

(5.28)
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We have now obtained a relation between several tensor elements that is independent of

the distribution functions. It can be shown easily that if Eq. (5.28) holds, all the other

equations that stem from the lower-order contributions in Eq. (5.26) (i.e. the terms that

are ∝ f3 and ∝ f2) are automatically fulfilled as well. We have used Eq. (5.24) as a

starting point for the derivation. When instead Eq. (5.25) is used, we arrive at the exact

same relation.

When the scattering tensor elements fulfill Eq. (5.28), the extensive quantity Θ =
∑

n Θn is conserved exactly in the scattering process. It is interesting to note that Eq. (5.28)

couples only tensor elements which are certain permutations (eight in total) of the index

triples {J, j, n0}, {K, k, n1}, {M,m, n2}, {N, n, n3}. In a 2D-system with basis functions

up to linear order (i.e. three basis functions per element) this means that 24 tensor elements

are coupled by the conservation equations. Furthermore, the conservation equations do

not couple different groups of these 24 tensor elements which makes them independent

subspaces when it comes to the enforcement of the symmetries.

There are more symmetries in the tensors than the symmetries that stem from con-

served quantities. It is easy to see from the definition of the tensor, that it is symmetric

in the last two index triples, i.e.

S
ijkmn
JJKMN
n0n1n2n3

= S
ijknm
JJKNM
n0n1n3n2

. (5.29)

Note, that this symmetry depends on the specific scattering process described by the

tensor. For example a four-leg process where three legs go into the vertex and only

one comes out does not have this symmetry in general. Furthermore, the tensors show

symmetry in the first two, small indices,

S
ijkmn
JJKMN
n0n1n2n3

= S
jikmn
JJKMN
n0n1n2n3

, (5.30)

which is a general symmetry independent of the specific scattering process. As discussed

above, the conservation symmetries Eq. (5.28) couple only tensor elements inside blocks of

24 elements in a 2D-system. The symmetry in the last two index-triples Eq. (5.29) does

not interfere with this block-structure as it only affects tensor elements inside these blocks

as well. However, the symmetry Eq. (5.30) does couple several different blocks. Hence,

taking all symmetries together, in a 2D-system a number of Ncoupled = 35 × 8 = 1944

scattering tensor elements are coupled by the symmetries. Still, the symmetries can be

restored in these blocks of Ncoupled elements independently.

There is yet another symmetry that follows from the definition of the scattering tensors

and the basis Eq. (5.4). From the fact that the basis functions are orthonormal and the

definition Eq. (5.7) it directly follows that

Φ0
I
n

(k) = γ0
I
n

!
=

1

10
I
n

. (5.31)
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With this relation it is easy to show that

10
J

n0

S
0jkmn
JJKMN
n0n1n2n3

= 10
K
n1

S
0kjmn
KKJMN
n1n0n2n3

= 10
M
n2

S
0mnjk
MMNJK
n2n3n0n1

= 10
N
n3

S
0nmjk
NNMJK
n3n2n0n1

. (5.32)

Again, this symmetry depends on the scattering process under consideration. If the tensors

fulfill the symmetries Eq. (5.32) and Eq. (5.29), particle conservation in the scattering

process directly follows. This can be easily proven when the above symmetries are inserted

in the equation for particle-conservation (Eq. (5.28) with θi
J

n0

= 1i
J

n0

= δi,01
0
J

n0

),

0 =



10
J

n0

(

S
0jkmn
JJKMN
n0n1n2n3

+ S
0jknm
JJKNM
n0n1n3n2

)

+ 10
K
n1

(

S
0kjmn
KKJMN
n1n0n2n3

+ S
0kjnm
KKJNM
n1n0n3n2

)

− 10
M
n2

(

S
0mnjk
MMNJK
n2n3n0n1

+ S
0mnkj
MMNKJ
n2n3n1n0

)

− 10
N
n3

(

S
0nmjk
NNMJK
n3n2n0n1

+ S
0nmkj
NNMKJ
n3n2n1n0

)

 .

(5.33)

According to the symmetries Eq. (5.32) and Eq. (5.29) all the terms in the above equation

are equal, hence it is automatically fulfilled.

5.2.2 Clean-up

As long as the symmetry-equations that correspond to physically conserved quantities are

fulfilled exactly, the numerical scattering conserves these quantities exactly as well. As

explained in section 5.1.3 we use a special Monte-Carlo technique to calculate the tensors

and therefore the tensor-elements are subject to a finite Monte-Carlo error. A solution to

this problem is to restore the broken symmetries in the tensor after the calculation.

One strategy would be calculating only some of the tensor-elements using the Monte-

Carlo routine and determining the remaining elements from the symmetry equations. This

leads to the problem of finding the best inversion of the equations. This procedure was,

indeed, implemented and tested. Nevertheless, we stick with another method that proved

to be more stable and easier to implement which we will explain in the following.

The symmetry-equations derived in the previous section are all linear and homogeneous

equations in the tensor-elements. We may write these equations as a scalar product of

two vectors, the first one representing the i-th equation (vi, i ∈ [1, Nsym] where Nsym

is the number of symmetry-equations), the second one being a vector representation of

the involved tensor-elements (Sv). The system of symmetry-equations is fulfilled if the

scalar product of those vectors vanishes (i.e. vi · Sv = 0 ∀i). The vectors vi and Sv

are elements of a Ncoupled-dimensional vector space S where Ncoupled denotes the number

of tensor-elements coupled by the equations. The vectors vi form a basis of a Nsym-

dimensional subspace V of S; V ⊂ S. All vectors that lie in the space orthogonal to V
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Figure 5.5: Schematic picture of the vector representation of the equation-vectors vi, the

involved scattering-tensor elements Sv, the exact tensor S
exact
v , the monte-carlo calculated

tensor Sv, the cleaned-up tensor S̃v and their mutual relations. In this illustration the

total space is three-dimensional (i.e. Ncouple = 3) and the subspace orthogonal to the vi

is two-dimensional (i.e. Ncouple −Nsym = 2; dashed plane).

fulfill the conservation equations, hence, the exact tensor is an element of that space as

well; Sv ∈ (S \ V).

As an example we consider one of the symmetry-equations for the last two index-

triples (Eq. (5.29)) of the element-combination {J, n0}, {K,n1}, {M,n2}, {N, n3}. The

corresponding vectors are

v1 =














1

−1

0
...

0














, Sv =


















S
00000
JJKMN
n0n1n2n3

S
00000
JJKNM
n0n1n3n2

S
10000
JJKMN
n0n1n2n3

...

S
22222
NNMKJ
n3n2n1n0


















, (5.34)

for which the symmetry equation is obtained if the scalar-product is zero,

0
!

= v1 · Sv = S
00000
JJKMN
n0n1n2n3

− S
00000
JJKNM
n0n1n3n2

→ S
00000
JJKMN
n0n1n2n3

= S
00000
JJKNM
n0n1n3n2

. (5.35)

In the following we will denote the vector representing the Monte-Carlo calculated

scattering-tensor as Sv and the exact tensor as S
exact
v . We define the absolute Monte-

Carlo error of the j-th tensor-elements as ∆MC
j and the maximum Monte-Carlo error as
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∆MC ≡ max|j
(

|∆MC
j |

)

. It is easy to see that

|Sv − S
exact
v |2 =

Ncoupled∑

j=1

(∆MC
j )

2 ≤ (∆MC)
2
Ncoupled . (5.36)

Assuming that all the components of Sv have equal importance for the dynamics we may

argue, that every other S̃v lying within a sphere with radius ∆MC
√

Ncoupled around the

exact tensor Sexact
v is as good as Sv. Therefore, we may project the Monte-Carlo calculated

tensor Sv onto the part of the error-sphere that lies in the subspace (S \ V) to obtain a

vector S̃v : S̃v · vi = 0 ∀i (see Fig. 5.5).

Calculating the projection of the tensor onto (S \ V) is equivalent to orthogonalizing

it to the subspace V . For that purpose we define a set of vectors ξi,

ξi =







vi if i ∈ [1, Nsym]

Sv if i = Nsym + 1
. (5.37)

The vectors ξi span a (Nsym + 1)-dimensional subspace4 and they are, in general, non-

orthogonal vectors. A fully orthogonal set of vectors χi that spans the same subspace

can be obtained by the so-called Gram-Schmidt [81, 82] procedure. The Gram-Schmidt

algorithm to calculate the χi reads,

χ1 = ξ1 , (5.38)

χi = ξi −
i−1∑

j=1

ξi · χj

χj · χj

χj ∀i ∈ [2, Nsym + 1] . (5.39)

The last vector of the orthogonalized vector set is the sought tensor within the Monte-Carlo

error-sphere that fulfills all symmetries exactly (Fig. 5.5b), i.e.

S̃v = χNsym+1 . (5.40)

5.3 Scattering rates

With the scattering tensors we can calculate how a non-equilibrium distribution relaxes

to a new equilibrium. However, it is also quite interesting to study the scattering rates of

particles in a system close to equilibrium. In fact, many physically relevant quantities like

the macroscopic transport coefficients contain these scattering rates in one way or another.

Additionally, as will be discussed later, we need the equilibrium scattering rates if we want

to determine the scattering strengths by comparison to thermalization experiments.

4This is only true if all the vectors are linearly independent.
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The scattering tensors contain the whole information of the scattering channels and how

the available phase-space affects each of them. Hence, they also contain the equilibrium

scattering rates already. In order to show how they are related to the scattering tensors we

first have to define what we call the equilibrium scattering rate λn(k). For that purpose

we write the distribution-function as a Fermi-Dirac distribution5 fFD(ǫn(k), µ, β) plus an

excitation δfn(k),

fn(t,k) = fFD(ǫn(k), µ, β) + δfn(t,k) , (5.41)

where we assume that δfn(k) is small. For the following we will consider the prototypical

case of electron-electron scattering within one band. All results can be easily extended to

other scattering processes.

The time derivative of the distribution function due to electron-electron scattering

within the same band reads

∂f0

∂t
= we-e

0123

1

2

∑

G

∫∫∫

ddk1d
dk2d

dk3 δ(k0 + k1 − k2 − k3 + G)

× δ(ǫ0 + ǫ1 − ǫ2 − ǫ3) [(1 − f0)(1 − f1)f2f3 − f0f1(1 − f2)(1 − f3)] .

(5.42)

When we insert Eq. (5.41) into the above equation we get

∂(δf0)

∂t
= we-e

0123

1

2

∑

G

∫∫∫

ddk1d
dk2d

dk3 δkδǫ

×
[

(1 − fFD0)(1 − fFD1)fFD2fFD3 − fFD0fFD1(1 − fFD2)(1 − fFD3)

− δf0

(

(1 − fFD1)fFD2fFD3 + fFD1(1 − fFD2)(1 − fFD3)
)

− δf1

(

(1 − fFD0)fFD2fFD3 + fFD0(1 − fFD2)(1 − fFD3)
)

+ δf2

(

(1 − fFD0)(1 − fFD1)fFD3 + fFD0fFD1(1 − fFD3)
)

+ δf3

(

(1 − fFD0)(1 − fFD1)fFD2 + fFD0fFD1(1 − fFD2))
)

+ · · ·

, (5.43)

where we have just written the terms of leading order in δf . The second line in Eq. (5.43)

is just the electron-electron phase-space factor evaluated with Fermi-Dirac distributions.

One can show that the Fermi-Dirac distribution is a fixed point of the collision integral,

hence, this term equals zero. The term in the third line is ∝ δf(k0). The momentum k0 is

not an integration variable of the integrals and therefore the term δf(k0) can be written

5Of course only if the studied band is fermionic. In case of bosons we would have to use a Bose-Einstein

distribution instead.
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in front of the integrals. With all the remaining terms grouped together in the function

R0 we can write Eq. (5.43) as

∂(δf0)

∂t
= − δf0 λ0 + R0 , (5.44)

with

λ0 ≡ we-e
0123

1

2

∑

G

∫∫∫

ddk1d
dk2d

dk3 δkδǫ

(

(1 − fFD1)fFD2fFD3 + fFD1(1 − fFD2)(1 − fFD3)
)

.

(5.45)

Eq. (5.44) describes an exponentially decaying excitation δf0 if the term R0 is negligible.

One can show (see Appendix B) that this is indeed the case when the excitation δf is

asymptotically equivalent to adding (or removing) a single particle at a momentum k0.

Then λ(k0) as defined by Eq. (5.45) can be interpreted as the scattering rate of this

particle (or hole). Interestingly, for the scattering rate it does not make a difference if we

add or remove a particle as the scattering rate is irrespective of the sign of the excitation

δf .

The discretized version of the scattering rate is obtained by projection onto the basis

functions, λi
I ≡ ∫

ddkλ(k)Φi
I(k). Together with the discretized versions of the Fermi-Dirac

distributions [fFD]iI the scattering rate can be written as

λi
I = we-e

0123

1

2

∑

k,m,n
K,M,N

∑

G

∫∫∫∫

ddk0d
dk1d

dk2d
dk3 δk δǫ Φi

I(k0)Φ
k
K(k1)Φ

m
M(k2)Φ

n
N(k3)

×
(

(1k
K − [fFD]kK)[fFD]mM [fFD]nN + [fFD]kK(1m

M − [fFD]mM)(1n
N − [fFD]nN)

)

,

(5.46)

which has a mathematical structure similar to a scattering tensor that is contracted with

projections of the Fermi-Dirac distributions. In order to bring Eq. (5.46) to a form that

involves the full scattering tensor we exploit the fact that the number one can be written

as 1 =
∑j

J 1j
JΦj

J(k0)
6 for arbitrary momentum k0. When we insert this relation into

6Note, that this relation is exactly true also for a finite number of basis functions as we use a modal

DG-basis.
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Eq. (5.46) we obtain

λi
I =we-e

0123

1

2

∑

j,k,m,n
J,K,M,N

∑

G

∫∫∫∫

ddk0d
dk1d

dk2d
dk3 δk δǫ Φi

I(k0)Φ
j
J(k0)Φ

k
K(k1)Φ

m
M(k2)Φ

n
N(k3)

×
(

1j
J(1k

K − [fFD]kK)[fFD]mM [fFD]nN + 1j
J [fFD]kK(1m

M − [fFD]mM)(1n
N − [fFD]nN)

)

=we-e
0123

1

2

∑

j,k,m,n
J,K,M,N

S
ijkmn
IJKMN

×
(

1j
J(1k

K − [fFD]kK)[fFD]mM [fFD]nN + 1j
J [fFD]kK(1m

M − [fFD]mM)(1n
N − [fFD]nN)

)

(5.47)

which is the contraction of the scattering tensor with a certain phase-space factor evaluated

with projections of the equilibrium distributions. Using Eq. (5.47) we can now calculate

equilibrium scattering rates directly from the scattering tensor S
ijkmn
IJKMN .

5.4 Non-equilibrium dynamics of model systems

The following section was published in Ref. [79] and is therefore marked by a black, vertical

bar.

In this section we discuss several prototypical non-equilibrium thermalizations and

highlight different aspects of the dynamics in order to show the full capabilities of the

method.

We describe a 2D system, with two electronic bands with the following dispersion

relations

ǫ2(k) ≡ 2t cos(2πkx) + 2t cos(2πky) + 4t+
∆

2
, (5.48a)

ǫ1(k) ≡ −ǫ2(k) , (5.48b)

with the band-gap ∆ and the tight-binding hopping t = 1/2 (see Fig. 5.6). Here, we

have used a rescaled first Brillouin-zone that occupies the domain [0, 1] × [0, 1] instead

of [−π
2
, π

2
] × [−π

2
, π

2
]. In this notation the Γ-point is kΓ = (0.5, 0.5)T.

We will study the thermalization of an excited system for two different initial strongly

out-of-equilibrium distributions and two different band-gaps (∆ = 0 and ∆ = 2t ≡ 1).

We include all possible electron-electron scatterings which are shown in TABLE 5.1.

Notice that the scattering 1 + 1 ↔ 2 + 2 will result in an empty phase space, as there

https://www.tuwien.at/bibliothek
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(a) (b)

Figure 5.6: Locally linearized band-structure used for thermalization calculations with

band-gaps (a) ∆ = 0 and (b) ∆ = 1. For each band we use the same mesh consisting

of NE = 200 triangles resulting in NB = 200 × 3 × 2 = 1200 basis functions in total.

are no transitions that can satisfy energy conservation. For simplicity we assume, that

all scattering processes have the same scattering amplitude we-e. The value of the

scattering amplitude simply determines the global timescale, hence, without loss of

generality we choose we-e = 1. Furthermore we do not consider spin in our calculations,

i.e. we only have one electron-distribution per band.

For all studied cases, we use Fermi-Dirac distributions with µ = 0 and β = 3 with

additional band resolved excitations δfn(k) as the initial distributions,

f2(k, t = 0) = fFD(ǫ2(k), µ, β) + δf2(k) , (5.49a)

f1(k, t = 0) = fFD(ǫ1(k), µ, β) + δf1(k) . (5.49b)

These may arise e.g. from a laser excitation at momentum k which would lead to

δf2(k) = −δf1(k).

5.4.1 Scattering rates

Before discussing the full thermalization process, it is instructive to get a preliminary

idea of the scattering processes. The dynamics of a scattering process is mainly dictated

by the phase space factor, which changes during strongly out-of-equilibrium dynamics. It

https://www.tuwien.at/bibliothek
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process description

1 + 1 ↔ 1 + 1 scattering within band 1

2 + 2 ↔ 2 + 2 scattering within band 2

1 + 2 ↔ 1 + 2 scattering between band 1 and 2

1 + 1 ↔ 1 + 2 Auger emission

2 + 2 ↔ 2 + 1 impact excitation

Table 5.1: All possible electron-electron scattering processes for a two-band system; the

process 1 + 1 ↔ 2 + 2 is energetically forbidden.

is in general hard to visualize the internal structure of the scattering tensors which closely

resembles the phase space factor, as they are high dimensional functions. Nonetheless

often looking at scattering rates close to equilibrium can be an effective driver of

intuition even further away from equilibrium.

With Eq. (5.47) we can calculate the scattering rates of a single electron (or hole)

added to the equilibrium system (i.e. δf1(·) → 0; δf2(·) → 0 in Eq. (5.49)). As the

band-structure is particle-hole symmetric, we only discuss the scattering rates of an

electron added to the upper band (band 2).

In general, for the gap-less (∆ = 0) system, the scattering rates for all the scattering

channels become higher with increasing energy (Fig. 5.7). The level-lines roughly follow

the equal-energy lines of the dispersion indicating that the scattering rates mainly

depend on the energy of an excitation and not on the momentum explicitly. An

exception is the scattering rate of an electron in the upper band due to Auger-process

(i.e. the process 1+1 ↔ 1+2) which decreases with increasing energy. Impact excitation

(2 + 2 ↔ 2 + 1) is the strongest process, leading to a quick particle tranfer between

the bands. Obviously scattering within the lowest band (1 + 1 ↔ 1 + 1) does not

contribute to the decay of an excitation in band 2, and the associated scattering rates

are identically 0 (they have been plotted for completeness and consistency).

The situation is different for the gapped (∆ = 1) system (Fig. 5.8). The scattering

rates (except Auger-emission) still increase with increasing energy. The total scattering

rate, however, is not anymore approximately only energy dependent (the equal-rate lines

in the total rate in Fig. 5.8 do not follow anymore the equal-energy lines). This indicates

a momentum-dependence beyond the dependence through the dispersion-relations. This

behavior mainly stems from impact excitation (2 + 2 ↔ 2 + 1).

Furthermore, we observe that impact excitation is now weaker (relative to the other

processes) compared to the gap-less system. This is due to the fact that an electron

has to be excited across the gap when impact excitation is performed. The larger the

https://www.tuwien.at/bibliothek
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total rate

0.02

0.04

0.06

0.08

0.10

Figure 5.7: Equilibrium scattering rates λ2(k) of an electrons in the upper band (band

2) for the different processes (band gap ∆ = 0, temperature T = 1
6t

≡ 1
3
). On top the

equal-energy lines (red) are plotted as well as the equal-scattering-rate lines (white).

gap, the smaller the region within the upper bands where electrons have enough energy

(relative to the Γ-point energy) to excite an electron from the lower band. The allowed

phase space for the other relevant processes (i.e. 2 + 2 ↔ 2 + 2 and 1 + 2 ↔ 1 + 2)

is not affected by the gap at all. Yet these two processes are weakened compared to

the gap-less system since there are fewer thermally excited electrons (and holes) as

scattering partners as the gap ∆ = 1 is larger than the fixed temperature T = 1
3
.

Let us stress that the structure of the scattering rates entirely comes from the

scattering phase-space and not from transition matrix elements (which we have assumed

to be momentum independent).
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total rate

0.002

0.004

0.006

0.008

Figure 5.8: Same as Fig. 5.7 but for the band gap ∆ = 1. Note the order of magnitude

difference in the color scale.

5.4.2 Particle-hole symmetric excitation: ∆ = 0

We now compute the full time propagation, in the presence of the above mentioned

scattering channels, of some initial non-equilibrium distributions for the two considered

model systems.

First, we study the thermalization of a particle-hole symmetric excitation that

depends on the momentum only through the dispersion relations,

δf2(k) = α× exp

(

−(ǫ2(k) − ǫc)
2

2σ2

)

, (5.50a)

δf1(k) = −δf2(k) (5.50b)

with α = 0.1, σ = 0.5 and ǫc = 4t+ ∆
2

. This type of excitation is similar to the excitation

generated by a laser at an energy ~ω = 2ǫc that is resonant with the transition between

the center van-Hove singularities of the two 2D bands.

We calculate the time-propagation for this setup which is shown in Fig. 5.9 for the

system with band gap ∆ = 0. The band structure and the initial distributions are
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Figure 5.9: Distrubution function f(k, t) of band 2 (a) and band 1 (b) (band gap

∆ = 0) for different times. (c) Distribution function as a function of energy for different

times. The initial distribution was a Fermi-Dirac distribution with µ = 0, β = 3 and

an excitation (Eq. (5.50)) that only depends on the energy.
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particle-hole symmetric. As the electron-electron collision operators do not break it,

the particle-hole symmetry is maintained at all times.

During the thermalization process the high-energetic electrons (or holes) of the

initial excitations are transferred towards the Γ-point (kΓ = (0.5, 0.5)T), losing energy

in the process. As the total energy is conserved, additional electrons have to be brought

up from the lower band to compensate for this energy loss. Eventually, the system

thermalizes to a new Fermi-Dirac with a higher temperature than the initial (see time

t = 190 in Fig. 5.9).

The approach to the equilibrium distribution is more easily recognized when the

distribution function is plotted versus energy, i.e. plotting all f(k(ǫ), t) for a given ǫ

and t (see Fig. 5.9c). Note, since the dispersion-relations cannot be inverted globally,

we get several different distribution-function values for every energy (stemming from

different points in the Brillouin-zone). In principle, far from equilibrium, there is no

guarantee that these points will form a curve, as in general the population depends on k

only through the energy solely at equilibrium (this is for instance evident in Fig. 5.12c

below, where at early times the population plotted as a function of energy does not fall

on a line, yet after the thermalization has taken place, a Fermi-Dirac distribution is

recovered). As we are studying a case where the initial excitation was only dependent

on the energy, the population has this characteristic at the initial timestep (t = 0

case in Fig. 5.9c). Interestingly, even though the scattering operators are explicitly

momentum dependent, the population preserves this characteristic throughout the

whole thermalization process. This is due to the fact that the scattering rates for

this configuration have shown negligible explicit momentum dependence (as shown in

section 5.4.1 and Fig. 5.7).

5.4.3 Particle-hole symmetric excitation: ∆ = 1

We now address the thermalization dynamics of the system with gap ∆ = 1, which shows

important qualitative differences compared to the gap-less case. The first difference

is that the time needed to thermalize is about one order of magnitude larger than

for the system with zero gap. As pointed out in section 5.4.1 due to the larger gap

there are fewer thermally excited carriers leading to a reduced strength of the processes

1 + 1 ↔ 1 + 1, 1 + 2 ↔ 1 + 2 and 2 + 2 ↔ 2 + 2. However, the reduced number of

thermal carriers alone cannot explain the large difference in the thermalization time. It

mainly originates from the fact that the available phase-space for the Auger process and

impact excitation is strongly reduced by the band gap. These are the only processes

that may change the number of particles in the bands. In order to reach equilibrium

the bands need to transfer particles among each other (which can happen only through

https://www.tuwien.at/bibliothek
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the scatterings 1 + 1 ↔ 1 + 2 and 2 + 2 ↔ 2 + 1). Hence, a complete thermalization

can happen only over the time-scales of impact excitation and Auger processes.

This leads yet to another very important effect: the thermalization happens in two

distinct steps. The scatterings within the bands (1 + 1 ↔ 1 + 1, 2 + 2 ↔ 2 + 2) and

between the bands (1 + 2 ↔ 1 + 2) are faster than the remaining impact excitation

(2 + 2 ↔ 2 + 1) and Auger process(1 + 1 ↔ 1 + 2). As a result the two bands

will first undergo an initial partial thermalization, during which they can redistribute

energy within each band individually but there is not yet a sizeable number of particles

exchanged between the bands. In oder words, the two bands act as two thermodynamic

objects that can transfer energy but not particles.

The distribution-functions of the two bands will therefore form two individual Fermi-

Dirac distributions with different chemical potentials but the same temperature for times

t & 100. This is visualized in Fig. 5.11. In Fig. 5.11a we plot the fitting with Fermi-Dirac

distributions of the energy resolved population separately for the two bands. At earlier

times the fitting error (Fig. 5.11d) is too large, showing that the distribution is still

far from equilibrium. However, within several tens of time units the two bands already

look internally thermalized (as the fitting error drastically decreases in Fig. 5.11d).

Within this time the two bands also reach the same temperature because the bands

can exchange energy through the process 1 + 2 ↔ 1 + 2 which is not affected by the

band gap (notice that this process is shadowed in this case by the fact that since the

excitation is particle-hole symmetric, the population remains particle-hole symmetric

throughout the whole dynamics, making the temperature trivially identical).

Nonetheless one can clearly see how a global thermalization has not been reached

yet within the first several hundreds of time units. The two individual Fermi-Diracs

have chemical potentials that lie below (above) zero for the upper (lower) band. As

time progresses, the two chemical potentials, however, approach each other, due to

Auger process and impact excitation scatterings on a scale of 2000 time units. One can

also observe how the temperature of the two bands decreases. Eventually both chemical

potentials equalize and the system reaches global thermal equilibrium where it can be

described with a single Fermi-Dirac distribution for both bands (see time t = 1990 in

Figs. 5.10 and 5.11).
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Figure 5.10: Same as Fig. 5.9 but for a band gap of ∆ = 1. Note the much longer

thermalization time.
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Figure 5.11: (a) Distribution function in dependence of the energy for different times

with a Fermi-Dirac fit for the upper- (red) and lower- (green) band. (b) Chemical

potentials, (c) inverse temperatures and (d) squared deviation of the Fermi-Dirac fits

in dependence of time.
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5.4.4 Particle-hole asymmetric excitation: ∆ = 0

In this section we will discuss a case where the excitation breaks particle-hole symmetry

and is momentum asymmetric. We use the same band-structures as in the previous

sections (which are particle-hole symmetric) but a different excitation (which is now

not particle-hole symmetric and also k-dependent),

δf2(k) = α
∑

G

exp

(

−(k − kc − G)2

2σ2

)

, (5.51a)

δf1(k) = 0 , (5.51b)

with α = 0.2, σ = 0.1 and kc = (0.8, 0.8). The sum over all reciprocal lattice vectors

is needed to ensure that the distribution function is periodic at the borders of the first

Brillouin-zone.
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Figure 5.12: Distrubution function f(k, t) of band 2 (a) and band 1 (b) (band gap

∆ = 0) for different times. (c) The distribution function in dependence of the energy

for different times. The initial distribution was a Fermi-Dirac with µ = 0, β = 3 and

an excitation that explicitly depends on the momentum.
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Figure 5.13: Total momentum density (red, upper band; green, lower band) in depen-

dence of time for the x- (a) and y- (b) momentum component (gap ∆ = 0).

First, we discuss the case with zero band gap (Fig. 5.12). As seen in the previous

sections, the electrons are redistributed by the scatterings towards the Γ-point during

the thermalization process and electrons are excited from the lower band to the upper

band to compensate for the energy loss. In contrast to the case discussed in the previous

sections the distribution function in dependence of the energy (Fig. 5.12c) now clearly

shows that the population is not a function of energy only. This is a consequence of

starting with a distribution function centered around kc = (0.8, 0.8)T which even has a

net lattice momentum. To achieve a full thermalization towards a Fermi-Dirac (which

has no net momentum), momentum needs to be dissipated. Since no electron-phonon

scatterings have been included, this can happen only through two different electronic

processes. (i) The electrons in the upper band scatter with each other (2 + 2 ↔ 2 + 2)

and perform umklapp processes reducing the total momentum. (ii) The electrons of

the upper band scatter with electrons of the lower band (1 + 2 ↔ 1 + 2) where they

transfer momentum from the upper to the lower band and/or dissipate momentum

through umklapp processes. The electrons of the lower band will then as well scatter

with each other (1 + 1 ↔ 1 + 1) and dissipate momentum through further umklapp

processes (Fig. 5.13).

We calculate the total momentum density by integrating over the population (see

also section. 5.1.1)

Kn(t) =
∫

VBZ

d2k
1

(2π)2fn(t,k) (k − (0.5, 0.5)) , (5.52)

and plot the results in Fig. 5.13. We can see how the momentum of the upper band is

partially reduced by umklapp and partially transferred to the lower band. The total

momentum in the lower band shows an initial increase due to the direct transfer from

the other band. Eventually both tend to decay to a situation with a vanishing total

momentum. Interestingly, one can observe how the dissipation slows down considerably
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with time. The reason is that when the population decays closer to the Γ-point, fewer

and fewer electrons are still close enough to the edge of the Brillouin zone to perform

umklapp.

5.4.5 Particle-hole asymmetric excitation: ∆ = 1

We now simulate the thermalization process of the gapped system (∆ = 1; Fig. 5.14)

with the same initial distribution (Eq. (5.51)). As in the gap-less system, the initial

momentum has to be dissipated in order to thermalize the system. In principle, the

processes 2 + 2 ↔ 2 + 2, 1 + 2 ↔ 1 + 2 and 1 + 1 ↔ 1 + 1 are not affected by the gap,

hence, one might expect that the momentum exchange between the upper and lower

band and the dissipation should be as fast as in the gap-less system. However, this is

not the case (Fig. 5.15a). The reason is again the smaller number of thermally excited

carriers. Since they involve two electrons, the strengths of the scattering processes

relevant for momentum dissipation depend on the number of carriers in the band, both

the ones that are thermally present and the excited ones.

The time-dependence of the total momentum in x-direction (i.e. Kx(t) = Kx
1 (t) +

Kx
2 (t)) can be well described with a double-exponential function (g(t) = a + b ×

Exp(− t
τI )) + c× Exp(− t

τII ); with τ I ≤ τ II)(Fig. 5.15a). The two times obtained from

the fit are τ I
K = 194 and τ II

K = 597. We attribute the two different timescales to

the strong energy dependence of the scattering rates. The short time τ I
K reflects the

momentum dissipation of the initial high-energy carriers while the larger time τ II
K is

the average dissipation time of the low energetic electrons closer to the Γ-point (note

that only Umklapp processes contribute to the momentum dissipation).

After a time t = 3 × τ II
K ≈ 1800 a large part of the momentum has already decayed

and the purely energy dependent representation is justified again. Therefore, for times

t & 3 × τ II
K it makes sense to perform Fermi-Dirac fits within each band. As we can

see from the time-dependent chemical potentials µn(t) and inverse temperatures βn(t),

the system undergoes the same step of partial thermalization as in the previous section

where the upper and lower bands are populated according to Fermi-Dirac distributions

with the same temperature but different chemical potentials. With increasing time,

the chemical potentials approach each other until they equalize and the system reaches

global equilibrium. We can estimate the time it takes for global thermalization from

single exponential fits (i.e. with y(t) = a + b × Exp(− t
τ
)) to µn(t) and βn(t) within

the time interval t ∈ [4000, 5990]. We get τµ1 = 2564, τµ2 = 2554, τβ1 = 3207 and

τβ2 = 3182. The two different times we get from the two bands for each quantity are

identical within the tolerance; τβ1 ≈ τβ2 ≡ τβ, τµ1 ≈ τµ2 ≡ τµ. As expected, chemical
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Figure 5.14: Same as Fig. 5.12 but for a band gap of ∆ = 1. Note the much longer

thermalization time.

potential and inverse temperature thermalize on similar timescales albeit not identical.

It is interesting to study the particle density in dependence of time. In analogy to

the momentum density, the band resolved particle density can be calculated with the

relation

Nn(t) =
∫

VBZ

d2k
1

(2π)2fn(t,k) . (5.53)

From the scattering rates Fig. 5.8 we see, that some of the initial electrons may

directly perform impact excitation (i.e. the process 2 + 2 ↔ 2 + 1). These initial, high

energy electrons rapidly change the particle number in the upper band (Fig. 5.15b).

After the initial electrons have decayed to lower energies, the low energetic electrons

must perform several scatterings to gain again enough energy for the process 2+2 ↔ 2+1

leading to a much longer timescale for total thermalization. Similar to the momentum

density, the particle density follows a double exponential function. From a fit over the

whole timescale we get τ I
N2

= 178 and τ II
N2

= 2479. The scattering rate of the process

2 + 2 ↔ 2 + 1 is around λimpact = 0.0055 at its maximum, leading to a lifetime of

τimpact = 1/λimpact = 182 which is approximately τ I
N2

. The larger thermalization time

τ II
N2

reflects the long-time thermalization of the system and is approximately the same
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Figure 5.15: (a) Total momentum density in x-direction (red) with double-exponential

fit (blue) on top, (b) particle density of the upper band (red) with double-exponential

fit (blue) on top, (c) inverse temperatures and chemical potentials (d) of Fermi-Dirac

fits to the upper (red) and lower (green) band with single-exponential fits (dashed,

fitting-interval t ∈ [4000, 5990])on top.

as the time constant τµ determined from the fitting of the time-dependence of chemical

potentials.

Summarizing, the case of the gapped system with explicitly momentum dependent

initial distribution reveals dynamics on several timescales. First, the initial, finite mo-

mentum is dissipated, i.e. the electrons that were added in a finite region in momentum

space are distributed symmetrically over the whole Brillouin-zone. This process takes

place on two timescales, one for high energetic electrons (τ I
K) and one for long-time

dissipation (τ II
K ). The high energetic electrons of the upper band also perform impact

excitation which quickly increases the number of particles in the upper band (τ I
N2

).

Then the upper and lower band behave like two separately thermalized systems with

different chemical potentials. Only high-energetic electrons or holes, which are few

at that time, may perform processes that lead to a particle transfer between the sub-

systems. Moreover, after a high energetic electron has brought up an electron through

impact excitation, both electrons end up with low energy. They need to undergo further

several scatterings to get enough kinetic energy to perform another impact excitation.

This determines the timescale on which the chemical potentials of the upper and lower

band equilibrate (τµ ≈ τ II
N2

), reaching full thermalization. The timescales can be set in

relation to each other giving τ I
N2
< τ I

K < τ II
K < τµ.
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5.5. NUMERICAL IMPLEMENTATION 93

5.5 Numerical implementation

Several parts of the algorithm were implemented and tested in Mathematica 10. The

full scattering code was then completely implemented in MATLAB R2017b in an object

oriented fashion. The main idea was to limit the development effort to a manageable

amount as the scheme introduced in this chapter had to be developed and tested. The

program design was already done with a future port to C++ in mind as the computational

capabilities of MATLAB, being a script language, are limited. We will not give a detailed

explanation of all the classes and their properties and methods here as this would go

beyond the scope of this thesis. As a substitute, the code itself contains comments where

necessary and small descriptions within each class that explain the details. TABLE 5.2

gives an overview of the classes and their main purpose.

class purpose

Mesh2D contains a triangulation of the simulation domain

DGSpace2Dtypes represents different basis-functions

function2D contains a discretized function

Band2D like function2D but with additional methods for bands

BandStructure2D contains several Band2D instances

multFunction2D contains the distribution-functions for all bands

time function2D contains a multFunction2D instance for each timestep

scTens3chBasic2D scattering tensor for 3-leg processes

scTens4chBasic2D scattering tensor for 4-leg processes

ScTensFull2D object that combines all the scattering tensors

linker all needed internally by ScTensFull2D for band-assignment

Vlasov1D transport only in momentum space; only for 1D

Vlasov1Dx1D transport in full phase-space; only for 1D

Table 5.2: Overview of the different classes and their purpose for the 2D-case.

In Fig. 5.16 we show a schematic flow of a simulation. The first step is to setup a

mesh where one has to specify the momentum-space simulation domain (usually the first

Brillouin-zone) and the desired resolution. This determines the total number of mesh-

elements used for the triangulation of the domain. Then one has to setup the bandstructure

of the system. The Band2D class needs a Mesh2D instance and the dispersion-relation

(either as analytical or numerical function) as input. During the initialization it generates

a locally linearized but continuous version of the dispersion. In the BandStructure2D class

the different bands are stored together to represent the whole system bandstructure.
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setup bandstructure

pre-calculation for each 

scattering process

needs analytical or numerical 

representation of dispersions 

as input; generate projection 

onto DG-basis

setup mesh and basis
triangulation of the domain 

depending on mesh resolution;

initialization of the DG basis

calculate the scattering tensor 

elements and save them to 

hard-drive

Mesh2D

DGSpace2Dtypes

Band2D

BandStructure2D

scTens4chBasic2D

scTens3chBasic2D

load scattering tensors
load all scattering tensors that 

have been previously pre-

calculated 

scTens4chBasic2D

scTens3chBasic2D

setup full tensor
load all scattering tensors that 

have been previously pre-

calculated 

ScTensFull2D

linker_all

setup inital system
specify the distribution 

functions of the system at time 

t=0

function2D

multFunction2D

time_function2D

time propagation
perform time propagation of 

the initial distribution under the 

action of the scatterings

ScTensFull2D

time_function2D

(a) (b)

Figure 5.16: (a) Program flow for the pre-calculation and (b) the time propagation of a

2D system. The classes that are mainly involved at each stage are denoted in red outside

the boxes.

The next step is the actual pre-calculation of the scattering-tensors. We have im-

plemented two different scattering-process classes, scTens3chBasic2D for 3-leg processes

and scTens4chBasic2D for 4-leg processes. Each instance of these classes represents

a full scattering process, e.g. there is one scTens4chBasic2D-object for the process

n0+n1 ↔ n2+n3. The object contains a scattering-tensor for each leg, i.e. for the given ex-

ample these would be (Sn0+n1↔n2+n3)ijkmn

IJKMN
n0n1n2n3

, (Sn0+n1↔n2+n3)ikjmn

IKJMN
n1n0n2n3

, (Sn0+n1↔n2+n3)imnjk

IMNJK
n2n3n0n1

and (Sn0+n1↔n2+n3)inmjk

INMJK
n3n2n0n1

. The pre-calculated tensor-elements are saved to the hard-drive

during pre-calculation. The generated tensors are already symmetrized, i.e. fulfill the

conservation equations exactly.

Once all scattering-processes are pre-calculated we can perform time-propagations. For

that we first need to load the scattering-tensors into the RAM. Then all the individual

scattering-process objects have to be combined in an instance of the class ScTensFull2D

that represents the total collision-operator of the system. As a next step we need to setup

the initial configuration of the system, i.e. the distribution-functions at time t = 0. The

discretized functions are combined in a multFunction2D instance which serves as starting

point for the time-propagation.

The ScTensFull2D-instance performs the actual time-propagation starting from the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.6. JOINING SCATTERING WITH TRANSPORT 95

initial-distribution using a Runge-Kutta4 scheme. At the end we get a time function2D-

instance back that contains the distribution-functions of the system for each time-step.

All the above mentioned classes have been implemented for 1D-case7 as well. The

use is exactly as in the 2D-case. In case of a calculation with transport (see section 5.6)

in momentum-space, additionally an instance of the class Vlasov1D must be initialized

for each band participating in transport. This object can be used in the same way as a

scattering-process object and must be added to the ScTensFull2D-instance.

5.6 Joining scattering with transport

In chapter 4 we have discussed the transport part of the Boltzmann equation and how to

solve it numerically for one-dimensional systems. In this chapter we have introduced a

numerical scheme capable of calculating the full, momentum conserving collision operators

for momentum dependent distribution-functions. The scattering algorithm has been

introduced for two-dimensional systems, however, we have implemented it for one- as well

as two-dimensional setups.

This section is dedicated to the combination of both schemes (i.e. transport and

scattering) in order to solve the full Boltzmann equation numerically, at least in one-

dimension. The generalization to higher dimensions is straightforward.

In the chapter about transport we have distinguished between the full transport in

one-dimension taking real-space as well as momentum-space into account (1D× 1D-case),

and transport for problems where we have dropped the real-space dependencies (1D-case).

The 1D-case can be easily joined with scattering. The discretized distribution-function

time-derivative is the sum of the time-derivative stemming from transport and the time-

derivatives stemming from all the collisions,

∂f i
I

n0

∂t
=






∂f i
I

n0

∂t






transport

+
1

2

∑

n1,n2,n3






∂f i
I

n0

∂t






n0+n1↔n2+n3

. (5.54)

In the above equation we have only summed the electron-electron scatterings. If there

are other scattering-types they are added in the same way. The implementation of the

time propagation for the equation above is straightforward and it was applied to the

non-equilibrium dynamics in semi-conducting carbon-nanotubes which can be seen as a

prototypical, real 1D-system (see chapter 6).

7Note, that we use the term 2D (1D) for a two- (one-) dimensional momentum space. Again, the term

1D × 1D means one dimension in momentum-space and one dimension in real-space.
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The 1D × 1D-case is more complicated. For the transport implementation we have

used a product basis,

Φaj
AJ
n0

(x, k) ≡ ϕa
A(x)Φj

J
n0

(k) , (5.55)

fn0(t, x, k) →
∑

aj
AJ

faj
AJ
n0

(t) Φaj
AJ
n0

(x, k) =
∑

aj
AJ

faj
AJ
n0

(t) ϕa
A(x)Φj

J
n0

(k) . (5.56)

When we use this discretization for the collision operator Eq. (5.11) in the same way as

the purely momentum dependent basis in section 5.1.2 we get






∂fai
AI
n0

∂t






n0+n1↔n2+n3

≡
∫

ddx
∫

ddk0 ϕ
a
A(x)Φi

I
n0

(k0)

(

∂f0

∂t

)

n0+n1↔n2+n3

=

= we-e
n0n1n2n3

∑

b,c,d,e
B,C,D,E

∑

j,k,m,n
J,K,M,N

L
abcde
ABCDE (Sn0+n1↔n2+n3)ijkmn

IJKMN
n0n1n2n3

(

(1bj
BJ
n0

− f bj
BJ
n0

)(1ck
CK
n1

− f ck
CK
n1

)fdm
DM

n2

f en
EN
n3

− f bj
BJ
n0

f ck
CK
n1

(1dm
DM

n2

− fdm
DM

n2

)(1en
EN
n3

− f en
EN
n3

)
)

,

(5.57)

where we have introduced the so-called local tensor L
abcde
ABCDE,

L
abcde
ABCDE ≡

∫

ddx ϕa
A(x)ϕb

B(x)ϕc
C(x)ϕd

D(x)ϕe
E(x) . (5.58)

The local tensor is diagonal in the element-indices due to the compact support of the

DG-basis functions, i.e.

L
abcde
ABCDE = δA,BδA,CδA,DδA,E Labcde

AAAAA . (5.59)

With the full 1D×1D-discretization of the collision operators Eq. (5.57) and transport

we again can calculate the time derivative of the distribution-functions as

∂fai
AI
n0

∂t
=






∂fai
AI
n0

∂t






transport

+
1

2

∑

n1,n2,n3






∂fai
AI
n0

∂t






n0+n1↔n2+n3

. (5.60)

Due to lack of time, the 1D× 1D scattering code was not joined with transport within

the scope of this thesis and is left for future work.
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Chapter 6

Dynamics in carbon-nanotubes

Low dimensional materials are a fascinating field of research. Many intriguing effects

emerge due to the reduced dimensionality like suppressed screening, strong excitonic

effects or mass-less quasi-electrons. The increasing need for miniaturization of information

processing structures in modern electronics has triggered huge interest in low dimensional

materials and even large, single molecules as possible candidates for small transistors.

A prototypical two-dimensional (2D) material is graphene which has been extensively

studied in recent years. One reason for the huge interest in this special material lies in its

unique band-structure which consists of cones around the Fermi-level leading to Dirac-like

physics. Understanding graphene forms the basis to understand the one-dimensional (1D)

carbon-nanotubes (CNTs) which are essentially rolled graphene-sheets.

The strongly out-of-equilibrium physics in CNTs is still under discussion in the scientific

community. The reason lies in the complicated interplay of many different quasi-particles

and bands which requires a unified picture using concepts of several fields like DFT,

many-body physics, transport and non-equilibrium thermalization dynamics.

In this chapter we will give a short introduction to graphene and carbon nanotubes.

Then we will discuss an experiment that uses aligned single-walled carbon nanotubes

(SWCNTs) to produce terahertz (THz) radiation. Then we explain how we model this

experiment and calculate the dynamics with our Boltzmann solver.

The chapter is organized as follows: We give short introduction to graphene and

carbon-nanotubes, in particular how the nanotube bandstructure can be deduced from

graphene (Introduction to graphene and carbon-nanotubes, section 6.1). Then we discuss

the experiment where terahertz emission is measured after an excitation of aligned carbon-

nanotubes with a femtosecond laser pulse (Aligned CNTs as THz emitters; section 6.2).

In that section we also discuss how to model the CNTs theoretically. Then we use our

Boltzmann code to numerically calculate the complex dynamics produced by the model

which gives results consistent with experimental findings. Through the simulation we gain
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deeper insight into the origin of the discrepancy between the dependence of the terahertz

amplitude and the photocurrent on the applied voltage.

The results shown in this chapter have been published in Ref. [83]. Some of the figures

and parts of the text (marked by a black, vertical bar) are taken from this publication.

6.1 Introduction to graphene and carbon-nanotubes

This section should give a (very) quick introduction to graphene and carbon-nanotubes

without claim of completeness. It is broadly based on Refs. [84–87] and we encourage the

interested reader to consult the excellent references to learn more about the fascinating

field of carbon-nanotubes.

6.1.1 Graphene band-structure

Graphene is a 2D-material that entirely consists of carbon-atoms. Carbon has six electrons

where two of them fill the first electron shell and cannot form bonds with other atoms.

The remaining four electrons in the second shell determine the chemical properties of

carbon, i.e. how it may bind with other atoms. Atomic carbon may bind to three other

carbon atoms by sp2 hybrid orbitals where all the atoms lie within the same plane. When

we assume that we have a lattice where each carbon binds to three other carbons and

further assume that the distance between two neighboring carbons is always the same, we

obtain a honeycomb structure given the triangular orientation of the sp2 bonds.

The corresponding unit-cell is orthorhombic with an angle between the lattice basis-

vectors of ϕ = π
3
. Each unit-cell contains two carbon atoms (Fig. 6.1) where the first one

(A) is located at the origin of the unit-cell and the second atom (B) at rB = acc
a1+a2

|a1+a2| .

The carbon-bond length is about acc ≈ 1.42Å and the lattice parameter is a ≡ |a1| =

|a2| =
√

3acc.

As graphene is a 2D-material, the localized sp2 orbitals form σ-(anti-)bonding bands.

Each atom in the unit-cell contributes three orbitals resulting in six bands where three of

them are σ-bonding and three are σ-anti-bonding. The three bonding bands are completely

filled by the six electrons per unit-cell, leaving the three anti-bonding bands completely

empty.

The sp2 orbitals consist of superpositions of the atomic 2s, 2px and 2py orbitals. The

remaining pz-orbitals of the carbon-atoms form two more bands, one π-bonding and one

π-anti-bonding. In a tight-binding model with next-neighbor hopping one can calculate

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6.1. INTRODUCTION TO GRAPHENE AND CARBON-NANOTUBES 99

(a) (b)

Figure 6.1: (a) Graphene unit-cell with the two carbon atoms A and B and the lattice

vectors a1 and a2. (b) Graphene sheet composed of several unit-cells.

the dispersion relations of the two π-bands as [84]

ǫ±(k) = ±γ0

√
√
√
√1 + 4 cos

(√
3kxa

2

)

cos

(

kya

2

)

+ 4cos2

(

kya

2

)

, (6.1)

with γ0 ≈ 2.9eV (Fig. 6.2a). The first Brillouin-zone has a hexagonal shape (Fig. 6.2b)

with the two bands touching at its edges. The two electrons per unit-cell, that are left

after filling the σ-bonding bands, completely fill the lower band (at zero temperature).

Therefore, the chemical potential lies exactly at µ = 0 for undoped graphene1. The

σ-bonding and σ-anti-bonding bands are energetically well separated (≈ ±4eV) which is

the reason why usually only the π-bands are taken into account in transport calculations.

A remarkable property of the two π-bands is that they are touching at the K- and the

K ′-points in the Brillouin-zone (Fig. 6.2a). In the area around these special points, the

dispersion relation has the shape of two cones touching at their tips. In the area around

each of these points one can describe the system with an effective Hamiltonian that has

the same shape as the Dirac-Hamiltonian from relativistic quantum mechanics and the

electrons behave as particles with zero rest-mass. This has been the subject of extensive

research as it poses a well controlled test-case for relativistic effects emerging from the

Dirac equation, even winning Geim and Novoselov the Nobel price in 2010 [88–90].

6.1.2 From graphene to carbon-nanotubes

Carbon-nanotubes (CNTs) are carbon-structures resembling cylinders. Their diameter

is of the order of nm while the length can range from several nm to several µm. Most

1Due to particle-hole symmetry this obviously also holds for finite temperature.
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(a) (b)

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5
- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

1.5

Figure 6.2: (a) Dispersion relation ǫ(kx, ky) of the two π-bands around the Fermi-level

calculated within the tight-binding approximation with next-neighbor hopping. (b) Hexag-

onal first Brillouin-zone of graphene including the reciprocal lattice vectors b1 and b2.

production processes easily lead to CNTs that are much longer than their diameter,

hence they can be seen as quasi-one-dimensional materials. A CNT is essentially a rolled

graphene-sheet. Therefore, the physical properties of carbon-nanotubes can be deduced on

an approximate level from graphene. To produce a physically stable CNT, the graphene

must be rolled in such a way that the honey-comb structure smoothly covers the surface

of the (fictive) cylinder it is rolled on. Hence, one can classify a CNT by its so-called

chiral vector Ch which is a vector that points from the origin of one graphene unit-cell to

the origin of another one (Fig. 6.3). It is defined as Ch = na1 + ma2 where n,m ∈ N0.

In order to make the integer set (n,m) unique, the convention is that n ≥ m. A certain

type of cabon-nanotubes is then called (n,m)-CNT. The CNT can be constructed, at

least theoretically, by rolling the graphene in the direction of Ch. The circumference of

the tube must be |Ch| which is equivalent to requiring that the graphene honey-combs

smoothly cover the whole cylinder surface. Depending on the integers (n,m) that specify

the carbon-nanotubes, we can group them into three classes, the armchair- (n = m),

zigzag- (m = 0) and chiral- (n 6= m 6= 0) tubes.

When we draw a vector in the graphene sheet that is orthogonal to the chiral vector

and points from the origin of the chiral vector to the next nearest origin of another unit-cell

we obtain the so-called translational vector T. It points into the longitudinal direction

of the carbon-nanotube and its length is the CNT unit-cell size, i.e. the lattice constant

aCNT = |T|.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.3: Graphene sheets with the chiral- (Ch) and translational- (T) vectors and the

corresponding CNT unit-cells for the (a),(b) armchair-, (c),(d) zigzag- and (e),(f) chiral-

CNTs.

In order to understand the physics of CNTs we can treat them in an approximate sense

as graphene-sheets with Born-von Karman boundary conditions in the direction of the

chiral-vector. Those graphene-quasi-particle states that fulfill the boundary-conditions,

namely those with ψn,k(r + Ch) = ψn,k(r), are also proper quasi-particle states of the

carbon-nanotube. As the states also fulfill the Bloch-theorem we get

ψn,k(r + Ch) = eiCh·kψn,k(r)
!

= ψn,k(r) . (6.2)

Eq. (6.2) implies that momentum k must fulfill the condition

2πz = Ch · k ≡ |Ch|k⊥ → k⊥ =
2π

|Ch|z , (6.3)

where z is an arbitrary integer. This means that only certain values are allowed for the

momentum parallel to the chiral vector (k⊥). We can define the so-called cutting lines,

Lz(k) ≡ k
T

|T| +
2π

|Ch|z
Ch

|Ch| (6.4)

where the Lz(·)-lines describe all valid momenta of graphene-eigenstates that fulfill the

CNT boundary conditions. The momentum k is the momentum in the longitudinal

direction of the carbon-nanotube, i.e. it is equivalent to the electron-momentum in a

1D-picture.
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- 0.05 0.00 0.05
- 2

- 1
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(a) (b)

- 0.2 - 0.1 0.0 0.1 0.2
- 2

- 1

0
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Figure 6.4: Band-structure of (6,4)-CNTs. (a) Obtained by evaluating the graphene band-

structure (see Eq. (6.1)) along the cutting lines in the vicinity of one cone (see Eq. (6.5))

and (b) from the full application of the zone-folding scheme (including the bands stemming

from both cones). Note that the momentum k in (a) and (b) is not equivalent.

The graphene band-structure around the Fermi-level resembles cones. Depending on

the chiral vector (i.e. the type of CNT), the carbon-nanotube is either metallic (when

there is a Lz(·)-line cutting through the center of the cones) or semi-conducting (when no

Lz(·)-line is cutting through the center of the cones).

The electrons in metallic carbon-nanotubes cannot be described by a straightforward

Boltzmann treatment using the bands obtained in this way. The reason is that the

dispersion relation at the Fermi-level is linear which leads to perfect nesting in Boltzmann

scattering. This means, that the expression for the scattering diverges as the first-order

time-dependent perturbation theory used in the derivation of the Boltzmann scattering

term is not sufficient any more. In order to describe the dynamics in such a case, we need

to use different quasi-particles as fundamental excitations. In case of metallic CNTs the

electrons around the Fermi-level cannot be described as independent quasi-electrons (as

in Fermi-liquid theory), but as so-called Tomonaga-Luttinger liquid [91,92]. We will not

deal with metallic CNTs within the scope of this thesis.

As already mentioned above, around the Fermi-level the dispersion relation of graphene

consists of two double-cones located at K and K′. They determine the transport properties

of graphene, hence, they are also the most relevant part of the dispersion relation for carbon-

nanotubes. When we are just interested in the electrons sufficiently close to the Fermi-level,
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we may approximate the CNT dispersion relation with the graphene dispersion-relation

evaluated along the cutting-lines only around the K (or equivalently K′) position. For

semi-conducting carbon-nanotubes, this gives [84]

ǫ±q (k) = ±
√

3a

2
γ0

√
√
√
√

(

2π

|Ch|

)2(

q + ξ
1

3

)2

+ k2 , (6.5)

with the integer q ∈ Z0 (Fig. 6.4a) labeling the discrete momenta perpendicular to the

tube direction. The factor ξ = ±1 depends on the type of carbon nanotube. If there

exists an integer l so that n−m = 3l + 1 it is ξ = +1 and if there exists an integer l so

that n−m = 3l− 1 it is ξ = −1. Let us stress, that this approximation only holds in the

vicinity of the K-point and does not reflect the full carbon-nanotube band-structure.

Here we want to note that there are different representations of the carbon-nanotube

band-structures. Depending on the type of CNT, the 1D lattice parameter aCNT can be

much larger than in graphene, leading to CNT unit-cells that may contain hundreds of

carbon atoms (Fig. 6.3f). The size of the 1D Brillouin-zone is 2π
aCNT

which, in turn, is

much smaller than in graphene. A proper CNT band-structure within the smaller first

Brillouin zone can be constructed by folding the dispersions obtained from graphene, into

the small 1D Brillouin zone. The full procedure is called zone-folding. Within the scope of

this introduction we will not explain this procedure and the different representations here,

but refer to Ref. [86]. In the representation obtained by proper zone-folding, the number

of emerging bands is much higher compared to the simpler approximation Eq. (6.5) (see

Fig. (6.4)b). Many of these bands show degeneracies at the Brillouin-zone boundaries.

They are protected by the numerous additional symmetries stemming from the fact that

the CNT is composed of a rolled graphene layer that has translational invariance with

respect to the smaller graphene lattice vectors. In (chiral) CNTs these translational

symmetries become screw symmetries. Additionally, the bands get a non-trivial topology

and additional quantum numbers [93]. When the Boltzmann-method is applied to such a

band-structure, all these additional quantum-numbers must be conserved in the scatterings

leading to very complicated scattering tensors.

For the Boltzmann-method it is more natural to think in terms of the graphene

band-structure along the cutting-lines as in Eq. (6.5). Hence, we will stick to these

band-structures (Fig. 6.4a) and not use the fully zone-folded bands.

6.1.3 Excitons in carbon-nanotubes

The electronic screening in carbon-nanotubes is weaker than in two- or three-dimensional

materials due to their one-dimensional nature. A consequence of the enhanced electron-

electron interaction is the occurrence of strong excitonic effects [94–96]. An exciton is a
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quasi-particle that can be understood as a bound electron-hole pair.

As the exciton is a composite quasi-particle consisting of two particles, its wave function

depends on two spatial coordinates. One is associated with the center-of-mass and one with

the relative position of the constituents. In a similar way as a hydrogen atom in vacuum,

the relative motion of the particles leads to a set of energetically separated orbitals. The

center-of-mass motion, however, yields an energetic continuum depending on a continuous

center-of-mass momentum. The total energy is then the sum of the orbital energy and

the center-of-mass energy. In complete analogy to a free hydrogen atom, the exciton

band-structure in CNTs consists of many different bands corresponding to the different

orbitals. Their momentum k is associated with the motion of their center-of-mass along

the tube. However, in CNTs there are more degrees of freedom [94]. Electrons in any of

the conduction bands may bind with holes in any of the valence bands. Additionally, the

bands of the electron and the hole may belong both to the K or the K′ cone of graphene

or they may be any combination of both (e.g. the electron stems from a K conduction

band while the hole stems from a K′ valence band). This leads to many exciton-bands

with different energetic shapes and different symmetries. Furthermore, depending on the

symmetry of the wave function, the spins may form a singlet or triplet state. The exact

binding energy of an exciton depends on the type of the carbon-nanotube and the type of

exciton, but the order of magnitude is around EB ≈ 300meV [95].

Only few of the excitons are optically active. The spin is conserved in an optical

excitation, hence only spin-singlet excitons can be optically generated. Furthermore, the

exciton has to have odd symmetry under reflections about the tube axis to be optically

active. An electric field polarized in direction of the tube-axis couples via an operator

with odd symmetry about tube-axis reflections to the Hamiltonian of the system. In

the absorption process, the exciton is generated, hence, the final state contains one more

exciton than the initial state. It is then easy to see, that the transition matrix element

between initial and final state is only non-zero if the generated exciton has odd symmetry.

An example of different exciton bands for (6,5)-CNTs can be found in Ref. [96] where

the dispersion relations are calculated with the Bethe-Salpeter equation.

6.2 Aligned CNTs as THz emitters

The following section consists mainly of the publication Ref. [83] and its supplementary

material (marked by a vertical bar on the left side of the pages). The text and its structure

have been slightly modified to better fit the scope of the thesis. The work Ref. [83] was

a collaboration with experimentalists who synthesized the sample and performed the

measurements while we have done the microscopic modeling, the simulation using our

https://www.tuwien.at/bibliothek
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Boltzmann code and the interpretation of the results.

The advent of modern low-dimensional semiconductor materials has opened up ex-

citing possibilities for developing novel optoelectronic devices, utilizing their uniquely

tunable optical properties which arise from unconventional degrees of freedom such as

chirality, valley index, layer number, and twist angle. In particular, single-wall car-

bon nanotubes (SWCNTs) provide ideal one-dimensional (1D) semiconductors whose

properties depend on the chirality and diameter [97]. Recent seminal advances in en-

riching chiralities [98] and achieving alignment [99] on a macroscopic scale promise

large-scale applications of SWCNT transistors, light-emitting diodes, and photodetec-

tors. Furthermore, the 1D nature of SWCNTs implies a highly restricted phase space

for scattering, which in turn leads to ultrahigh carrier mobilities, suitable for high-

frequency devices including terahertz (THz) emitters [8, 9]. Therefore, aligned and

single-chirality SWCNT films are promising candidates for attaining electronic, THz,

and optoelectronic functions on the same platform.

However, characteristic of low-dimensional semiconductors is their enormously en-

hanced exciton binding, compared to their bulk counterparts. The typical exciton

binding energies of semiconducting SWCNTs exceed 300 meV [95,97,100,101], as com-

pared to 1-10 meV in typical bulk semiconductors. This means that excitons in these

semiconductors are very difficult to ionize, casting serious doubt about their abilities

to generate THz radiation in response to an external electric field because excitons are

charge-neutral particles. Namely, to produce THz radiation efficiently, one needs to

photogenerate charged free carriers that can be accelerated by an external field. From

this point of view, undoped low-dimensional semiconductors with huge exciton binding

energies do not seem to be promising as optically excited THz emitters.

Here, we report on our finding that a photoconductive antenna (PCA) made from

a film of aligned single-chirality semiconducting SWCNTs is an unexpectedly efficient

THz emitter. Without any optimization, we demonstrate that the produced THz

intensities are only one order of magnitude lower than a state-of-the-art GaAs PCA.

Furthermore, the CNT-based THz emitter can be easily fabricated on a variety of flexible

substrates and is expected to be applied to compact THz analysis systems and wearable

optoelectronics. The THz intensity is resonantly enhanced through an interband exciton

resonance, indicating the importance of excitons in the THz generation process. To

explain these observations, we developed a detailed microscopic model describing the

strongly out-of-equilibrium dynamics and complex interplay of free carriers, excitons,

photons, and phonons. We took into account all energy and momentum conserving

scattering processes with realistic band dispersions. Through this, we shed light on

a range of long-standing issues in SWCNT ultrafast dynamics. Importantly, we show

https://www.tuwien.at/bibliothek
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that E22 excitons autoionize into free carriers right after the laser excitation. We find

multiexciton generation through exciton impact generation to be efficient at high bias.

This process explains the nonlinear bias dependence of the simultaneously measured

DC photocurrent.

6.2.1 The experiment

We fabricated a dipole-type PCA structure (Fig. 6.5a) on top of a highly-aligned

and chirality-enriched (6,5) SWCNT film deposited on a sapphire substrate (for more

details see Supplementary Material of Ref. [83]). The nanotube alignment direction was

aligned with the dipole gap during the fabrication process, so the applied DC electric

field was parallel to the nanotube alignment direction (Fig. 6.5a). The electrodes

attached on the PCA structure were used to apply the DC bias and to measure the

generated photocurrent at the same time (Fig. 6.5a). A separate low-temperature (LT)-

GaAs PCA switch was used to detect the generated THz radiation in a transmission

configuration (Fig. 6.5a). We used an optical parametric oscillator as the wavelength-

tunable excitation source or pump.

We excited the aligned SWCNTs around the E22 exciton resonance for (6,5) SWCNTs.

Despite the fact that uncharged excitons are excited, a strong THz signal immediately

appeared (Fig. 6.5b). The THz signal reversed its sign when the polarity of the applied

biased was switched, confirming that the THz radiation is associated with a transient

current parallel to the SWCNTs. We then probed the dependence of both THz emission

and photocurrent on the pump laser photon energy (Fig. 6.5c), as well as its polarisation

(Fig. 6.5d). Both closely follow the behavior of the E22 exciton absorption, which peaks

at 2.14 eV and gets excited only by light polarized parallel to the nanotube axis. This

further confirms that the THz generation process is initially triggered by the generation

of excitons.

Figure 6.6a and 6.6b show the THz emission amplitude, as well as its spectrum,

for our SWCNT device relative to that of a LT-GaAs-based PCA. After considering

the losses due to absorbance and reflectance (see Supplementary Material of Ref. [83]),

the emission efficiency (per thickness and absorbed power) of the SWCNT-based PCA

is comparable within an order of magnitude to that of the LT-GaAs PCA. This is

an excellent achievement for a prototype unoptimized device compared to the well-

established THz emitter based on a conventional LT-GaAs PCA.

We also carried out pump-intensity- and bias-dependent measurements. At a fixed

pump intensity, both THz amplitude and photocurrent showed direct proportionality to

https://www.tuwien.at/bibliothek
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6.2. ALIGNED CNTS AS THZ EMITTERS 107

Figure 6.5: Schematic diagram of (a) CNT-based photoconductive antenna switch and

experimental set-up. The CNTs are aligned with the direction of applied electric field.

(b) THz emission waveforms at forward and reverse biases. (c) Absorbance spectrum for

(6,5) CNT film plotted with the THz emission amplitude (red spheres) and photocurrent

(blue spheres) as a function of photon energy. (d) THz amplitude and photocurrent

as a function of angle between excitation femtosecond (fs) laser polarization and CNT

alignment.
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108 CHAPTER 6. DYNAMICS IN CARBON-NANOTUBES

Figure 6.6: Relative THz emission from CNT-based PCA and LT-GaAs-based PCA

in (a) time and (b) frequency domains. Bias (c) and pump power (d) dependence of

photocurrent and THz emission from CNTs compared to same data from LT-GaAs-

based PCA (insets).
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the absorbance, with no apparent changes in the THz waveforms and spectra (see Sup-

plementary Material of Ref. [83] for details). However, we observed striking differences

between THz emission and photocurrent in their pump power and bias dependences.

As shown in Fig. 6.6c and 6.6d, the THz amplitude shows a linear dependence on both

the pump power and bias, whereas the photocurrent saturates at high pump powers

and increases superlinearly with the bias. This is in direct contrast with the LT-GaAs

device wherein both THz emission and photocurrent always show the same behavior.

This difference in the bias dependence of THz and photocurrent suggests the emergence

of new mechanisms for generating charged carriers in SWCNTs compared to typical

PCAs.

6.2.2 The microscopic model

Quasiparticle-bandstructures

To provide a microscopic picture, we need to be able to accurately study the thermal-

ization dynamics of several types of quasiparticles (electrons, excitons, photons, and

phonons) within realistic band structure and in the presence of an external electric

field. Describing the thermalization dynamics is particularly challenging: it requires

full computation of far out-of-equilibrium scattering processes. The most critical com-

plication is the precise accounting of energy and momentum selectivity of scattering

events, which become exceptionally restrictive in 1D, and lead to critical deviation

from typical Fermi liquid behaviors. Commonly used approximations [102–105] either

irreparably break the predictive power over the thermalization dynamics, particularly

the ability to describe metastable states and many-timescales dynamics, or only allow

for lower order processes.

We explicitly treated four electron bands [84], three phonon [106]/defect bands (ac:

acoustic phonon, op: optical phonon, Imp: impurity/defect), three exciton bands [94,95],

and a photon band (see Fig. 6.7a).

For the exciton bands we take the dispersions from Ref. [94]. To contain the

numerical cost, we include the lowest energetic, bright E22 mode (E22), the lowest

energetic, bright E11 mode (E11) and the lowest energetic, dark singlet E11 mode

(dE11). Since [94] does not provide absolute energies, but relative positions to the E11

Γ-point, we place the bottom of both the E11 and E22 exciton bands by fitting with our

experimental absorption spectrum (Fig. 6.5c).

For the electron bands we include two valence (e1, e2) and two conduction (e3, e4)

bands, and we use the tight-binding dispersion-relations of graphene within the zone-

folding approximation [107]. The energetic position of the electron bands is deduced
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from the position of the exciton bands and the exciton binding energy EB = 0.37eV [95].

That is at the Γ-point the bands are chosen such as ǫe4(0) − ǫe1(0) = ǫE22(0) + EB and

ǫe3(0) − ǫe2(0) = ǫE11(0) + EB.

Carbon-nanotubes have a variety of different acoustic and optical phonon modes

[106]. In order to keep the computational cost manageable we only use two phonon

bands, one acoustic (ac) resembling the 2nd A-branch of Fig. 3 in Ref. [106] and one

optical (op), Einstein-like phonon with an energy of ǫop = 0.1eV. Additionally one flat

phonon-like band at zero energy (Imp) is used to mimic the effect of impurities.

6.2.3 Scattering processes and amplitudes

We took into account fifty two scattering channels, including both three-leg scatterings

(i.e., two particles in and one out) and four-leg scatterings (i.e., two particles in and two

out, or three in and one out), as shown in Fig. 6.7c. Within the Boltzmann equation,

we also took account of the fact that quasiparticles are subject to an external electric

field due to the bias, which induces an acceleration proportional to the quasiparticle

charge. The electric field E is calculated from the external voltage U with E = U
lǫ

with

the length of the CNT sample l = 6 µm and the dielectric constant ǫ = 2.

Due to the lack of spatial resolution at this stage of implementation of the numerical

solver, the physical extraction of accelerated quasiparticles from the SWCNTs into the

metallic leads was included via an effective population decay term.

The 52 scattering processes (TABLE 6.1) can be grouped into 5 families, including all

possible combinations of band indices. Below we briefly discuss each type of scattering.

Laser

We treat the laser excitation within the Boltzmann-scattering framework. The direct

excitation (one photon absorbed and one exciton created) is a 2-leg process which has a

0 dimensional phase space for 1D systems (this does not happen in higher dimensions).

This means that the excitation is allowed to happen only at exactly one k, and cannot

contribute to a finite change in exciton number. Therefore the leading order must be a

3-leg process: specifically, we use a three-leg process where one photon is destroyed and

one exciton plus an excitation in the impurity-band is generated. This is equivalent to

an absorption process where momentum conservation is broken.

To simulate the effect of a laser pulse we assume a constant photon distribution

fhν(k) = α
(

Exp[− (k−km)2

2σ2 ] + Exp[− (k+km)2

2σ2 ]
)

with km = 3.5667 × 10−5 bohr−1 and

σ = 1.6667 × 10−6 bohr−1. For numerical convenience we apply the time profile to
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Laser-absorption Autoionization Electron-phonon Exciton-phonon Exciton impact-gen

E22 + Imp ↔ hν e1 + E22 ↔ e3 e1 + ac ↔ e1 E11 + ac ↔ E11 e2 + Imp+ dE11 ↔ e2

e2 + E22 ↔ e3 e1 + op ↔ e1 E11 + op ↔ E11 e3 + Imp+ dE11 ↔ e3

e2 + E22 ↔ e4 e2 + ac ↔ e2 dE11 + ac ↔ dE11 e3 + Imp+ dE11 ↔ e4

e1 + E11 ↔ e3 e2 + op ↔ e2 dE11 + op ↔ dE11 e1 + Imp+ dE11 ↔ e2

e2 + E11 ↔ e3 e3 + ac ↔ e3 E22 + ac ↔ E22 e2 + Imp ↔ dE11 + e2

e2 + E11 ↔ e4 e3 + op ↔ e3 E22 + op ↔ E22 e3 + Imp ↔ dE11 + e3

e1 + dE11 ↔ e3 e4 + ac ↔ e4 E11 + ac ↔ dE11 e4 + Imp ↔ dE11 + e3

e2 + dE11 ↔ e3 e4 + op ↔ e4 E11 + op ↔ dE11 e2 + Imp ↔ dE11 + e1

e2 + dE11 ↔ e4 e1 + ac ↔ e2 dE11 + ac ↔ E11

e2 + ac ↔ e1 dE11 + op ↔ E11

e1 + op ↔ e2 E22 + ac ↔ E11

e2 + op ↔ e1 E22 + op ↔ E11

e3 + ac ↔ e4 E11 + ac ↔ E22

e4 + ac ↔ e3 E11 + op ↔ E22

e3 + op ↔ e4 E22 + ac ↔ dE11

e4 + op ↔ e3 E22 + op ↔ dE11

dE11 + ac ↔ E22

dE11 + op ↔ E22

Table 6.1: All 52 scattering processes grouped into five families as described in the text.

the scattering-amplitude wE22 + Imp↔ hν(t) = Exp[− (t−tc)2

2σt
2 ] (for the center-time we use

tc = 0.5ps and for the temporal broadening σt = 0.1ps). These parameters correspond

to a laser center-frequency of ~ω = 2.14eV and an energetic broadening of σen = 0.1eV.

As amplitude we choose α = 10−3 a.u. which produces a small number of excitons.

We do not include the generation of free electron-hole pairs by laser absorption.

Exciton autoionization

An exciton can break up into an electron and a hole, for instance E11 ↔ e3+h1. However

since we treat all the bands within the electronic picture and we do not directly describe

holes, the hole generated by the exciton autoionization process has to be written as an

electron removal in the valence band, i.e. e1 + E11 ↔ e3.

The time reversed process of exciton autoionization is the binding of an electron and

a hole into an exciton. As we are studying small excitations (to preserve the validity

of the approximate statistical factor for excitons) and the case of chemical potential in

the middle of the bandgap (see more later), such processes becomes negligible, as they

are quadratic in the excitation density.
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Ref. [108] reports that the dissociation ofE22 excitons into free carriers competes with

exciton-thermalization, which means that they must act on similar timescales. Their

ratio controls the ratio of produced free carriers and produced E11 and dE11 excitons.

We have chosen an exciton autoionization scattering amplitude (w = 9.3 × 10−6 a.u.)

that leads to an autoionization lifetime of 0.1ps. With this strength ratio, each laser

excited E22 exciton generates around 0.6 low energy excitons and 0.4 free electrons.

This ratio is the free carrier yield of the laser excitation, which does not influence the

qualitative picture of our results, but simply the absolute values.

Electron-phonon scatterings

Electron-phonon scatterings are fundamental as they lead to momentum dissipation

(otherwise the electric field would indefinitely accelerate carriers). We include all

scattering combinations among the bands that are energetically allowed. Notice that

scatterings like e1 + ac ↔ e2 are not the time reversal to e2 + ac ↔ e1 and both must

be explicitly included.

It is difficult to find data to estimate the scattering lifetime of electrons in semicon-

ducting carbon nanotubes, as most of the experiments probe the excitonic system. In

Ref. [109] they estimate that the most effective electron-phonon scattering leads to an

electron lifetime of around 50fs, irrespectively on the metallicity or non-metallicity of the

CNTs. We hence use a scattering amplitude that leads to an average electron-phonon

scattering lifetime of 50fs (w = 4.84 × 10−6 a.u.).

Exciton-phonon scatterings

Exciton-phonon scatterings are included following similar considerations as in the case

of electron-phonon scatterings.

The decay of E22 excitons to the bottom of the E11 and dE11 excitonic bands

happens through exciton-phonon scatterings. Ref. [110, 111] reports a decay rate of

excited E22 excitons of the order of one to two hundred femtoseconds, and a similar

timescale for the transfer of population to low energy excitonic states E11. This is

comparable to experimental results in Ref. [112]. We use exciton-phonon scattering

amplitudes (wop = 60.5×10−6 a.u. for optical phonons) which leads to exciton scattering

with one phonon every around 40fs. It requires around ten scatterings to dissipate the

energy difference E22-E11, leading to a thermalisation time of around 400fs. We use a

weaker scattering amplitude for acoustic phonons (wac = 4.84 × 10−6 a.u.) to reduce

numerical cost. They have anyhow a minor effect (they merely smooth the spikes in

the excitonic population). Note that these scattering amplitudes should be interpreted

https://www.tuwien.at/bibliothek
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6.2. ALIGNED CNTS AS THZ EMITTERS 113

as rescaled scattering amplitudes, since we are explicitly considering fewer excitonic

bands compared to real CNTs.

Impurity assisted exciton impact generation

Electrons accelerated to high energies can scatter, lose energy and create an exciton in

the process. Such exciton impact generation can be the effect of a number of slightly

different scattering channels. We found that the direct process is not allowed due to

simultaneous energy and momentum conservation, in agreement with Ref. [113]. In

Ref. [113] they propose impact generation facilitated by a previous electronic transition

into a higher energetic band. We here propose a direct impurity (or phonon) assisted

transition. The impurity/phonon acts as a breaking of the momentum conservation

making impact-excitation allowed as soon as energetically possible. Such process has a

larger phase space compared to the one proposed in Ref. [113]. However we warn against

making conclusions on the precise scattering channel for exciton impact generation,

since our simulations would provide qualitatively similar results for both alternative

hypotheses (assuming the scattering amplitudes are properly rescaled). We include only

the processes that generate excitons in the dE11 band, as it is the most relevant band

due to its lowest energy and largest phase-space for the process. Our simulations show

that direct exciton impact generation into higher energy exciton bands have importantly

smaller phase space and negligibly contribute to the population dynamics compared to

other processes like scattering with phonons.

The strength of this process controls the ratio between the non-linear vs linear

component in the photocurrent in our calculations. In Ref. [113] they calculate the

life-time due to impact exciton generation and show that it varies on several orders

of magnitude. It plateaus around 0.1-1ps and several values are also around 2fs. The

scattering rate (wac = 48.4 × 10−6 a.u.) has been chosen such as one electron with

energy above the threshold generates one exciton by impact generation approximately

every 1ps in agreement with the majority of the data shown in Ref. [113].

We report that we have found that the semi-quantitative theoretical behavior of

the dynamics for both unbiased (to be compared to older experimental results) and

biased (to be compared to the experimental results in this work) CNTs closely follows

experimental results even if we moderately modify the scattering rates used in this

work. Apart from testing variations of the parameters, we have not attempted a proper

fitting due to the numerical cost. This proves that the proposed scenario is robust with

respect to its parameters in explaining a rather large range of experimental findings.
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114 CHAPTER 6. DYNAMICS IN CARBON-NANOTUBES

Electron-electron scatterings

Similarly to the case of binding of free carriers into excitons, electron-electron scatterings

are quadratic in the excitation density, negligibly contribute to the thermalisation, and

have not been included in the presented numerical calculations.

6.2.4 Details of the simulation

Carrier extraction from CNTs

As mentioned above we are not explicitly describing the spatial distribution of quasi-

particles. Nevertheless the extraction of carriers from the CNTs into the metallic leads

plays an important role in the switching off of the current. Moreover a single electron

can only perform few exciton impact generations before being removed from the system.

We model this process with a decay term of the free carriers populations

(

∂fn(k)

∂t

)

extr.

= − 1

τextr.

(fn(k) − fn−eq.(k)) n ∈ {e1, . . . , e4} (6.6)

where τextr. is the characteristic time the electron stays in the carbon-nanotube and

fn−eq.(·) is the equilibrium distribution of band n, i.e. the initial distribution.

The maximum velocity in our carbon nanotubes is approximately vmax ≈ 1µm/ps.

The length of CNTs is of the order of µm, hence, it takes a carrier in the middle of a

tube around 1ps to reach the end or the leads and be able to recombine when moving

at maximum speed. However in reality the electrons would take longer to reach the

end of the CNTs due to scatterings. We use an extraction time τ = 5ps to mimic this

timescale.

Notice that an alternative scenario to the switching off of the current can be envi-

sioned. Carriers could also recombine at the CNT’s edge. Thanks to the trapping at

the defect that is the edge of the CNT, electrons and holes can come closer together

and more easily recombine. If that happens the carriers do not need to reach the edge

of the sample, but just the edge of the CNT they are generated in. This implies that

the switching off of the current would happen more or less 5 times faster. Notice that

this would make the negative peak following the main positive one in the theoretical

data in Fig. 6.8a five times narrower and 5 times higher leading to a better fit of the

experiments. However, we decided to not include this latest scenario in our treatment,

even if it would have made the comparison better. The reason is that the discrep-

ancy could as well be explained simply by the detector’s response. Therefore, we felt
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https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6.2. ALIGNED CNTS AS THZ EMITTERS 115
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Figure 6.7: (a) Dispersions of the bands of all the included quasiparticles. (b) Qualitative

description of the most influential scattering processes at different timescales. (c)

Schematic representation of all the types of the 52 scatterings included in the modeling.

(d) Time snapshots of the populations displayed over the dispersion: the thickness of

the color bar as well as its colorscale represent the k−resolved population. The time

propagation of the population in the remaining bands is calculated but not shown here.

(e) Band resolved density plot of the quasiparticle population fn(k, t) for two of the

electronic bands and all the excitonic bands.
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we do not have enough support from the experiments to make a reliable statement

on that microscopic mechanism and we opted to include only the simplest and more

straightforward scenario (recombination at the metallic leads).

Initial configuration

For the initial setup we choose Fermi-Dirac distributions for the electron-bands e1...4

with µ = 0 and β = 35eV−1 (T ≈ 330K). A temperature higher than room temperature

has been chosen, since, even if the experiments are done at room temperature, it is

expected that the sample will heat up during the excitation process. Nonetheless our

numerical simulations show a negligible effect of temperature on the dynamics.

For the two phonon-bands we choose Bose-Einstein distributions with the same µ

and β as the electrons. As we are only describing two phonon bands we keep their

distribution-function fixed for the whole simulation time in order to account for the

higher lattice heat capacity.

We have treated impurities as a phonon-band. However it can be shown that to

produce the proper statistical factor for impurity scattering, we have to impose a

distribution-function fImp = 0. This impurity distribution-function is kept zero for the

whole simulation.

Calculation of THz radiation

For a 1D-system the electric current is calculated within the Boltzmann-framework

with

I(t) =
1

2π

e4∑

n=e1

∫

dk
∂ǫn(k)

∂k
qnfn(k, t) . (6.7)

It can be shown that a time-dependent current emits radiation with an electric field

that is proportional to the first time-derivative of the current,

ET Hz(t) ∝ ∂I(t)

∂t
. (6.8)

which was used to calculate the THz radiation in the simulation.

6.2.5 Results and comparison of theory and experiment

The schematic diagram in Fig. 6.7b describes the processes occurring at different

timescales, and Figs. 6.7d-6.7e show the populations of each band at selected time

steps A-E. The laser excitation generates optically active E22 excitons (Fig. 6.7dA).

They partially decay through scatterings with phonons [110,111] into bright and dark
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E11 excitons with similar energy but larger momentum (Fig. 6.7dB). These quasipar-

ticles are unaffected by the electric field and eventually decay to the bottom of the

excitonic bands through scatterings with phonons (Fig. 6.7dC). A fraction of the exci-

tons autoionize into electron-hole pairs in the conduction (valence) bands (Fig. 6.7dB)

through spontaneous dissociation [108]. The free carriers are then accelerated by the

electric field and shift in k (Fig. 6.7dC), inducing a rapid rise in current, which, in

turn, generates THz radiation (Fig. 6.8a). The acceleration in momentum is limited by

electron-phonon scatterings [109, 112] (Fig. 6.7dC), which prevent the electronic pop-

ulation from being accelerated indefinitely, simply leading to an asymmetry between

positive and negative k in the electronic population. Eventually, the free carriers are

physically extracted from the SWCNTs, thermalizing in the metal contacts, leading to

a drop in the electron and hole population and therefore a drop in the charge current

(Fig. 6.8a).

The simulated THz radiation (Figs. 6.8a) and its spectrum (Figs. 6.8b) are overall

in good agreement with the experimental data. The time domain experimental THz

signal shows a sharp negative peak directly after the main positive one originating from

the switching off of the current. Our theoretical choice of the extraction mechanism

leads to a broader and therefore smaller negative peak. At this stage we cannot make

a claim on the details of the extraction mechanism since this discrepancy as well as

the presence of further side peaks in the experimental THz radiation can be ascribed

to suppression of low and high frequency components due to a variety of factors which

were not incorporated in the simulations: inherent response of detector [114–116],

alignment and the effects of optical components along the THz propagation path from

sample to detector [117–120]. All of these could easily distort the actual temporal and

frequency profile of THz radiation from the sample. However, to verify the validity of our

microscopic picture, we compare the effect of laser fluence (limited to the low fluence

regime, see more in supplementary material of Ref. [83]) and bias in the simulated

dynamics to the measured ones. The population of the electronic conduction bands

within 2 ps after excitation is proportional to the number of absorbed photons, which

explains why the THz emission amplitude shows a linear dependence on the pump power.

An increase in the bias increases the induced asymmetry of the electronic distribution of

both the conduction and valence bands. Since the number of autoionized free carriers is

simply proportional to the laser power and not to the electric field, the induced current

becomes proportional to the bias. Notice that we can exclude with certainty that the

exciton break-up happens through field ionization, as the THz amplitude would, in that

case, be superlinear with the bias [121].

What remains still puzzling is the superlinear behavior of the photocurrent with
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Figure 6.8: Theoretical THz emission in (a) time and (b) frequency domain, compared

to experimental measurements for two biases. (c) Number of excitons left in the system

at the last simulated time. (d) Comparison the computed peak amplitude of the THz

emission and photocurrent with experimental results.

the applied voltage. One is usually tempted to assume the photocurrent and the THz

emission to be simply different measurements of the same current, as our LT-GaAs

control experiment seems to suggest (see inset in Fig. 6.6c). However, there is a

subtle difference between the two measurements: while the photocurrent is able to time

integrate all the current generated in the PCA, only high-frequency components are

emitted and measured as THz radiation. Therefore, the two techniques provide insight

into different timescales. By oversimplifying, one could say that the difference between

the photocurrent and THz radiation is the amplitude of low-frequency currents.

The low energy excitons that are left in the system after the dynamics explained

above (Fig. 6.7dE) are not subject to the applied bias due to their zero net charge and

therefore not accelerated and not subject to an important extraction from the SWCNTs.
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6.2. ALIGNED CNTS AS THZ EMITTERS 119

They survive at the bottom of the band and require longer times to annihilate through

radiative or non-radiative processes (not included in the model). During this time,

their high-energy tails will, due to the high temperature, slowly autoionize into free

carriers (Fig. 6.7b). These will generate a slow (i.e., low-frequency) electric current,

which will not contribute to the THz emission, but will be measured at the electrodes

as photocurrent. Such current will be proportional to the product of the number of

excitons present in the system at the end of the initial thermalization (time E in Fig. 6.7)

and the bias.

At a first sight, such current is expected to be simply linear in the bias. However, a

careful analysis of all possible scatterings shows that an important four-leg scattering

channel becomes active for electrons with an energy above a certain threshold: exciton

impact generation (Fig. 6.8c). An electron can scatter with an impurity (which provides

momentum), lose energy, and generate an exciton in the process. Due to energy

conservation, this scattering is allowed only for electrons with an energy larger than

1.2 eV above the band bottom. At low electric fields, only a small number of electrons

can occupy such high energies. However, as the bias increases, this number grows.

These electrons have therefore the chance of creating further excitons compared to the

ones generated by the original optical excitation. As a consequence, the number of

generated low-energy excitons has one component that is independent of the electric

field, and another that instead grows with it (see Fig.6.8c). On a longer timescale (not

included in our simulations), a fraction of these eventually autoionize into free carriers,

which will again be accelerated by the electric field. Therefore, the photocurrent will

be the sum of the picosecond current pulse and a low-frequency current generated by

these autoionizing excitons. The low-frequency component of the photocurrent will be

proportional to the product of the bias and the number of residual excitons at the end

of the thermalization process (which depends partially on the bias itself). This explains

the observed superlinear dependence of the amplitude of the photocurrent on the bias

(see Fig.6.8d).

Concluding, against expectations because of the large exciton binding energy, we

produced a prototype SWCNT-based THz emitter with an efficiency already compara-

ble to commercially available THz emitters. We further performed an unprecedentedly

accurate theoretical analysis of the thermalization dynamics in these SWCNTs and

explained the microscopic mechanisms behind the dissociation of both high and low

energy excitons, free carriers dynamics in an applied electric field, and the conversion

mechanisms between different quasiparticles. We identified the critical role of exciton

impact generation in the ultrafast dynamics of SWCNTs causing a superlinear depen-

dence of the photocurrent on the bias voltage. Last but not least, our work shows that
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120 CHAPTER 6. DYNAMICS IN CARBON-NANOTUBES

large-area films of aligned SWCNTs provide an exciting and promising playground for

the study and use of the coexistence of positively and negatively charged as well as

uncharged quasiparticles, as well as for the development of THz excitonics.
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Chapter 7

Conclusion and outlook

The aim of this thesis was to take one step towards a better understanding of non-

equilibrium dynamics in solids. Due to the involved nature of thermalization problems,

where a complicated interplay of scattering and transport dictates the time-evolution,

it is particularly difficult to interpret experimental results. For that purpose one needs

microscopic models and numerical simulations of non-equilibrium electron dynamics.

In chapter 2 a brief introduction to the Boltzmann transport equation (BTE) was given.

The BTE is seen as one of the standard methods to describe transport and thermalization

in solids. We explained the main difficulties of the numerical solution of the BTE, how

arbitrary scatterings are described within the Boltzmann framework and the most popular

approximations.

In the following chapter 3 a special version of the electron-electron collision operator

without momentum conservation was introduced. The predicted thermalization dynamics

of a photo-doped Mott-insulator was compared to results of non-equilibrium DMFT. The

dynamics predicted by both methods was almost identical. Additionally, the modified

Boltzmann method allowed to access the whole thermalization timescale, revealing a

transient state. In this intermediate state the two Hubbard bands are occupied according

to Fermi-Dirac distributions with the same temperature but different chemical potentials.

The numerical implementation of the modified collision operator also served as a first step

towards solving the full Boltzmann collision operators.

Chapter 4 was dedicated to the transport part of the BTE. We have introduced the

so-called discontinuous Galerkin finite-element method and applied it to the transport

problem of a one-dimensional material without scatterings as a test case.

Chapter 5 constitutes the main part of this thesis. A novel numerical method capable

of solving the fully momentum, particle and energy conserving collision operator was

developed. The collision operator was projected onto a special basis that strongly improves

the scaling with the number of basis-functions. Special emphasis was given to the exact
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122 CHAPTER 7. CONCLUSION AND OUTLOOK

conservation of energy, momentum and particle density which is necessary for long-time

thermalization simulations. We found, that the exact conservation of these quantities is

linked to symmetries in the discretized collision operator. The numerical method enforces

these symmetries, leading to a conservation of momentum, energy and particle density up

to machine precision. The developed method was implemented and the code was used to

simulate the thermalization dynamics of metallic and semi-conducting two-dimensional

materials. The method for solving the collision operators was also joined with the code

that solves the transport part of the BTE for one-dimensional systems. The spatial

resolution and transport in the spatial dimension was neglected for simplicity.

In the final chapter 6 the unified transport-plus-collision code was used to describe a real

non-equilibrium experiment with semi-conducting carbon-nanotubes. In the experiment a

sample of aligned nanotubes was irradiated with a femtosecond laser pulse while a voltage

was applied simultaneously. It was found that this setup emits terahertz radiation. Its

amplitude increased linearly with the voltage while the measured photocurrent increased

super-linearly. Due to the simulations performed with the developed code we were able to

understand the experimental findings on a microscopical level. The microscopic current

can be split into two parts, a quick impulsive current responsible for the terahertz emission

and a slow long-term current generated by thermally dissociating excitons. We found that

the super-linear dependence of the photocurrent on the voltage originates from additional

excitons generated by free carriers through impact excitation.

Several future projects are planned based on the findings in this thesis: (i) So far,

only the transport code without spatial transport was joined with the scattering code.

The theoretical method to join the full transport code with scattering was introduced in

this work but not yet implemented. (ii) It is planned to compare the scattering rates

obtained by Boltzmann without momentum conservation and Boltzmann with momentum

conservation to the scattering rates obtained by DMFT for model systems in order to get

a deeper understanding of the fundamental approximations the methods are based on.

(iii) The non-equilibrium experiment with aligned carbon-nanotubes was also performed

with non-aligned carbon-nanotubes where the results differ from the aligned case. We plan

to use the code to understand the fundamental processes leading to the difference. (iv)

The long-term goal is to make non-equilibrium simulations possible in three-dimensional

systems as well. Further methodological development is needed to achieve this goal.
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Appendix A

Scattering amplitude for the

Hubbard model

The scattering amplitude for electron-electron scattering is defined (Eq. (2.10)) as

we-e
0123 ≡ V 2

(2π)2d−1
~

∣
∣
∣〈2, 3| Ĥe-e |0, 1〉

∣
∣
∣

2
(A.1)

with the initial electron state |0, 1〉 = Ψ̂†k0σ0
Ψ̂†k1σ1

|∅〉 and the final electron state |2, 3〉 =

Ψ̂†k2σ2
Ψ̂†k3σ3

|∅〉 (|∅〉 denotes the state without electrons). The creation-operator for an

electron in state (k, σ) reads

Ψ̂†kσ ≡ 1√
N

∑

j

e−iRj ·kâ†jσ , (A.2)

with the creation-operator â†jσ of an electron with spin σ at lattice-site j and the total

number of lattice sites N . The operator â†jσ and its hermitian conjugate are fermionic

creation and annihilation operators, hence they fulfill the relations

[

âiσ, â
†
jσ′

]

+
= δijδσσ′ (A.3a)

[

âiσ, âjσ′

]

+
= 0 (A.3b)

[

â†iσ, â
†
jσ′

]

+
= 0 (A.3c)

âiσ |∅〉 = 0 (A.3d)

〈∅| â†iσ = 0 (A.3e)

with [A,B]+ ≡ AB+BA. The effective interaction potential operator Ĥe-e for a Hubbard

model reads

Ĥe-e = U
∑

i

â†i↑âi↑â
†
i↓âi↓ (A.4)
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126 APPENDIX A. SCATTERING AMPLITUDE FOR THE HUBBARD MODEL

with the on-site interaction U . With the above definitions, the transition-matrix element

in Eq. (A.1) reads

〈2, 3| Ĥe-e |0, 1〉 =
U

N2

∑

p,j,l,s,m

[

eiRm·k3eiRs·k2e−iRj ·k0e−iRl·k1

〈∅| âmσ3 âsσ2 â
†
p↑âp↑â

†
p↓âp↓â

†
jσ0
â†lσ1

|∅〉
]

.

(A.5)

We can calculate the matrix-element in the above equation with Eqs. (A.3) as

〈∅| âmσ3 âsσ2 â
†
p↑âp↑â

†
p↓âp↓â

†
jσ0
â†lσ1

|∅〉 = δplδpjδpmδpsδσ0σ̄1δσ2σ̄3 (2δσ0σ2 − 1) (A.6)

with the short notation σ̄i ≡ −σi. This result was expected as it tells us that the electrons

can only interact (i) if they are at the same orbital with the position index p, and (ii)

if the two initial electrons have opposite spin (which is necessary for (i) to be possible).

Additionally the total spin is conserved in the scattering event which makes sense as the

interaction potential Ĥe-e commutes with the spin operators. The term (2δσ0σ2 − 1) on

the right-hand side of Eq. (A.6) is equal to ±1 and therefore it vanishes if we take the

absolute square.

With Eq. (A.6) the transition matrix-element Eq. (A.5) becomes

〈2, 3| Ĥe-e |0, 1〉 = δσ0σ̄1δσ2σ̄3 (2δσ0σ2 − 1)
U

N

1

N

N∑

j=1

[

e−iRj ·(k0+k1−k2−k3)
]

︸ ︷︷ ︸

≡
∑

G
δ(k0+k1−k2−k3),G

(A.7)

where we have introduced the sum over all reciprocal lattice vectors G which are all

vectors that fulfill G · Rj = 2πn with an arbitrary integer n ∈ Z0. Note that in Eq. (A.7)

we have used a Kronecker-Delta assuming discrete momentum vectors stemming from

periodic boundary conditions of the lattice.

With Eq. (A.7) the scattering amplitude becomes

we-e
0123 =

V 2

(2π)2d−1
~

U2

N2
δσ0σ̄1δσ2σ̄3

∑

G

δ(k0+k1−k2−k3),G (A.8)

=
2π

~

U2

VBZ
2 δσ0σ̄1δσ2σ̄3

∑

G

δ(k0+k1−k2−k3),G (A.9)

where we have used the fact that a Kronecker-Delta squared gives the same Kronecker-

Delta1 and the relations V = NVUC , VUCVBZ = (2π)d. Due to the momentum-conserving

delta-distribution in the collision-operator Eq. (3.3) we may write
∑

G δ(k0+k1−k2−k3),G = 1

here. Eventually we can write the scattering amplitude for the Hubbard-model in d-

dimensions as

we-e
0123 =

2π

~

U2

VBZ
2 δσ0σ̄1δσ2σ̄3 . (A.10)

1The mixed terms from squaring the sum of Deltas are all zero.
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Appendix B

Applicability of the scattering rate

equation

In section 5.3 we have re-written the collision integral as

∂(δf0)

∂t
= − δf0 λ0 + R0 , (B.1)

for some deviation from the Fermi-Dirac distribution, δf(t,k0) = f(t,k0)−fFD(ǫ(k0), µ, β).

If the term R0 gives a negligible contribution, the above equation describes an exponential

decay of the excitation δf and we may interpret λ0 as scattering rate at k0. Here we will

discuss under which conditions this requirement is fulfilled. Note that for the following

derivation we will assume that δf is strictly positive in the whole domain (i.e. δf(k0) ≥
0 ∀k0) which represents the creation of particles (the whole proof also works with strictly

negative excitations, representing the annihilation of particles).

In order to understand the structure of R0 we will study its first term (all other

contributions may be treated equivalently) that we call R01,

R01 = we-e
0123

1

2

∑

G

∫∫∫

ddk1d
dk2d

dk3 δkδǫδf1

(

(1−fF D0)fF D2fF D3+fF D0(1−fF D2)(1−fF D3)
)

.

(B.2)

We may rewrite this term as

R01 =
1

VBZ

∫

ddk1δf(k1) Fk0(k1). (B.3)

with the function Fk0(k1) that is defined as,

Fk0(k1) ≡ we-e
0123

1

2

∑

G

VBZ

∫∫

ddk2d
dk3 δkδǫ

(

(1−fF D0)fF D2fF D3+fF D0(1−fF D2)(1−fF D3)
)

.

(B.4)
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As defined, Fk0(k1) has the same unit and a similar order of magnitude as the scattering

rate λ(k0). It is also strictly positive in the whole domain. Furthermore, we can write the

inequality relation

1

VBZ

∫

ddk1δf(k1) Fk0(k1) ≤ maxk1(Fk0(k1))
1

VBZ

∫

ddk1δf(k1) . (B.5)

In order for R01 to have negligible impact on the scattering, it must be much smaller than

δf0λ0 which is fulfilled if

maxk1(Fk0(k1))
1

VBZ

∫

ddk1δf(k1) ≪ δf(k0)λ(k0) . (B.6)

Assuming that maxk1(Fk0(k1)) and λ(k0) have comparable orders of magnitudes, Eq. (B.6)

reduces to
1

VBZ

∫

ddk1δf(k1) ≪ δf(k0) . (B.7)

Eq. (B.7) shows that the mean value of the excitation (left-hand side of Eq. (B.7)) must

be much smaller than the value at the momentum k0 (i.e. the maximum value of δf)

where we probe the system. This is plausible as we need a particle that is localized in

momentum space for the concept of a momentum dependent scattering rate (or lifetime

vice versa).

We can easily construct an excitation for which Eq. (B.7) holds; we take δf(0,k) =

A× exp
(

− (k−k0)2

2σ2

)

. We want to add only a single particle in order to probe the system,

i.e.

1 =
V

(2π)d

∫

ddk δf(k) =
V

(
√

2π)
d
σdA . (B.8)

With the above relation Eq. (B.7) becomes

(2π)d

VBZV
=

1

N
≪ A , (B.9)

with the number of particles N in the system. This relation is always fulfilled for macro-

scopic systems where N → ∞. By integration of the left-hand side of Eq. (B.7) we

furthermore get the requirement

(
√

2π)
d

VBZ

σd ≪ 1 → σd ≪ VBZ

(
√

2π)
d

(B.10)

that is independent of A. Eq. (B.10) again shows that the probe-particle must be strongly

localized in the Brillouin-zone. If this is the case, the terms in R0 that are ∝ δf vanish

compared to the actual scattering rate contribution. Furthermore, in order for the higher

order terms ∝ δf 2 and ∝ δf3 to vanish, the amplitude of the excitation must be sufficiently

small.
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An interesting result of the above derivation is that it is not sufficient to require the

excitation to be small, but it must also be strongly localized within the Brillouin-zone for

the collision integral to become the easy shape

∂(δf0)

∂t
= − δf0 λ0 , (B.11)

when thermalization is studied.
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[105] C. Köhler, T. Watermann, and E. Malic. Time- and momentum-resolved phonon-

induced relaxation dynamics in carbon nanotubes. J. Phys.: Condens. Matter 25,

105301 (2013).

[106] Y.-S. Lim, A. R. T. Nugraha, S.-J. Cho, M.-Y. Noh, E.-J. Yoon, H. Liu, J.-H. Kim,
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