

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 5 January 2023 Accepted 13 January 2023

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; sulfosalt; selenide; disorder.

CCDC reference: 2236460

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

The crystal structure of the selenide-based synthetic sulfosalt CuPbSb₃Se₆

Paul Sicher and Berthold Stöger*

X-Ray Centre, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria. *Correspondence e-mail: bstoeger@mail.tuwien.ac.at

Single crystals of copper lead triantimony hexaselenide, CuPbSb₃Se₆, were obtained as a minor phase during systematic studies of the formation conditions of selenide-based sulfosalts. The crystal structure is an unusual representative of the family of sulfosalts. Instead of the expected galena-like slabs with octahedral coordination, it features mono and double-capped trigonal–prismatic (Pb), square-pyramidal (Sb) and trigonal–bipyramidal (Cu) coordination. All metal positions are occupationally and/or positionally disordered.

1. Chemical context

Sulfosalts (Moëlo et al., 2008) are promising candidates as thermoelectric materials owing to their high electrical conductivity paired with a low thermal conductivity. Inspired by natural sulfur-based sulfosalts, we attempted to further increase the electrical conductivity by substituting Se for S. During systematic studies of the formation conditions of sulfosalts of the andorite structure type (Moëlo et al., 2008), we obtained crystals of the title compound, CuPbSb₃Se₆, as a minor phase, by heating the precursor selenides Cu₂Se, PbSe and Sb₂Se₃ in evacuated fused silica ampules. Surprisingly, the title compound does not follow the expected crystal chemistry of the structural family. In fact, crystals of the andorite family are modular structures, which are composed of galena-like slabs, with octahedral coordination of the metal atoms. This coordination is not observed for CuPbSb₃Se₆. Nevertheless, certain structural relationships can be established, as will be shown below. These structural relationships are reflected by andorite-like compounds of the Sn₃Bi₂Se₆ structure type (Chen & Lee, 2010) with very similar cell parameters yet a different space-group symmetry. The structure with the closest matching cell parameters is SnPb₂Bi₂S₆ (Li et al., 2019) with a = 20.5458 (12) Å, b = 4.0925 (4) Å and c = 13.3219 (10) Å, whereby the axes have been cyclically permuted with respect to the cell of CuPbSb₃Se₆ presented here. SnPb₂Bi₂S₆ crystallizes in a lillianite-type ⁴L (Moëlo et al., 2008) structure and was investigated by the authors for its thermoelectric performance, sporting a figure of merit ZT of 0.3. Since CuPbSb₃Se₆ shows strongly disordered positions, it is possible that it exhibits similar thermoelectric properties.

It should be noted that from a structural point of view, lillianites and andorites are interchangeable terms. However, in a mineralogical context, they define distinct sulfosalt mineral groups because the Sb that replaces Bi from the lillianite structure in andorite forms electron-pair micelles that distort the structure (Makovicky & Topa, 2014).

2. Structural commentary

Crystals of the title compound crystallize in the *Pnnm* space group. All atoms are located on or disordered about (in the case of Sb4A) the reflection plane parallel to (001), which corresponds to the Wyckoff position 4g. The crystal structure is comprised of three mixed Pb/Sb positions, one Sb and one Cu position (Fig. 1). There are three different kinds of coordination polyhedra, with the interatomic distances compiled in Table 1. The predominantly Pb Pb1/Sb1 position is coordinated by Se atoms, forming a double-capped trigonal prism. The predominantly Sb Sb2/Pb2 and Sb3/Pb3 positions and the disordered Sb4/Sb4A are quadratic pyramids in the case of Sb and mono-capped trigonal prisms in the case of Pb. Finally, the disordered Cu1/Cu1A position features trigonalbipyramidal coordination. Whereas the [PbSe₈] doublecapped trigonal prisms of the Pb1/Sb1 position are a defining feature of lillianite-type structures and form where the galenalike slabs meet, the remaining two coordinations are unexpected in this structural family.

It has to be noted that the description of the coordination polyhedra of the Sb2/Pb2, Sb3/Pb3 and Sb4/Sb4A positions as quadratic pyramids and capped trigonal prisms is not completely unambiguous. Both variants based on the central atom are shown in Fig. 2 for Sb3 and Pb3. Since the distance from Sb3 to the two farther Se6 atoms is 3.7015 (19) Å and the

Figure 1

CuPbSb₃Se₆ viewed down [001]. Pb and Pb/Sb are represented by grey, Sb by dark blue, Cu by cyan spheres of arbitrary radius.

Table 1			
Selected	bond	lengths	(Å).

Pb1-Se1	3.0553 (15)	Pb2-Se4 ⁱ	2.900 (7)
Pb1-Se1 ⁱ	3.0553 (15)	Pb2-Se6 ⁱ	3.283 (8)
Pb1-Se2	2.9124 (17)	Pb2-Se6 ^{vii}	3.283 (8)
Pb1–Se3 ⁱⁱ	3.5754 (15)	Sb3-Se1	2.587 (2)
Pb1-Se3 ⁱⁱⁱ	3.5754 (15)	Sb3-Se2 ^{vi}	2.9293 (15)
Pb1-Se4 ⁱⁱ	3.4061 (16)	Sb3-Se2	2.9293 (15)
Pb1-Se5 ^{iv}	3.1205 (17)	Sb3-Se3	2.8835 (14)
Pb1-Se5 ^v	3.1205 (17)	Sb3-Se3 ⁱ	2.8835 (14)
Sb1-Se1	2.95 (2)	Sb3-Se6 ^{viii}	3.7015 (19)
Sb1-Se1 ⁱ	2.95 (2)	Sb3-Se6 ^{ix}	3.7015 (19)
Sb1-Se2	2.68 (3)	Pb3-Se1	3.02 (4)
Sb1-Se3 ⁱⁱ	3.75 (2)	Pb3-Se2 ^{vi}	3.05 (3)
Sb1-Se3 ⁱⁱⁱ	3.75 (2)	Pb3-Se2	3.05 (3)
Sb1–Se4 ⁱⁱ	3.65 (2)	Pb3-Se3	2.86 (3)
Sb1-Se5 ^{iv}	3.16 (3)	Pb3-Se3 ⁱ	2.86 (3)
Sb1-Se5 ^v	3.16 (3)	Pb3-Se6 ^{viii}	3.35 (3)
Sb1-Cu1 ^v	3.54 (3)	Pb3-Se6 ^{ix}	3.35 (3)
Sb2-Se1 ^{vi}	3.1563 (14)	Sb4-Se2 ^x	3.166 (3)
Sb2-Se1	3.1563 (14)	Sb4-Se2 ^{xi}	3.166 (3)
Sb2-Se3	2.6135 (19)	Sb4-Se5	2.595 (3)
Sb2-Se4	2.7090 (12)	Sb4-Se6	2.723 (2)
Sb2-Se4 ⁱ	2.7090 (12)	Sb4–Se6 ⁱ	2.723 (2)
Sb2–Se6 ⁱ	3.6962 (17)	$Sb4a - Se2^{x}$	3.30 (3)
Sb2–Se6 ^{vii}	3.6962 (17)	$Sb4a - Se2^{xi}$	2.77 (3)
Pb2-Se1 ^{vi}	3.114 (7)	Sb4a-Se2 ⁱⁱ	3.66 (2)
Pb2-Se1	3.114 (7)	Sb4a-Se5	2.633 (19)
Pb2-Se3	3.094 (10)	Sb4a-Se6	3.15 (3)
Pb2-Se4	2.900 (7)	$Sb4a - Se6^{i}$	2.59 (3)

Symmetry codes: (i) x, y, z + 1; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{3}{2};$ (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{5}{2};$ (iv) -x + $\frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (v) -x + $\frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (vi) x, y, z - 1; (vii) x, y, z + 2; (viii) x + $\frac{1}{2}, -y + \frac{1}{2}, -z - \frac{1}{2};$ (ix) x + $\frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2};$ (x) -x + $\frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (xi) -x + $\frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}.$

corresponding calculated bond valence, using the parameters $R_0 = 2.60$ Å and b = 0.37, is only 0.05, they are considered not to coordinate with Sb3. In contrast, the Se2 and Se3 atoms at the base of the pyramid are located at 2.9293 (15) Å and 2.8835 (14) Å, respectively. The Se1 atom at the apex of the pyramid is located at 2.587 (2) Å from the Sb3 atom. This is different for Pb3, where the two distant Se6 atoms are much closer, with the atomic distances changed to 3.35 (3) Å. The other Se atoms are further away with 3.05 (3) Å for Se2, 2.86 (2) Å for Se3 and 3.02 (4) Å for Se1. Note that the large standard uncertainties (s.u.s) of the Pb—Se distances here are due to Pb3 being a minor position in close proximity to Se3. Thus, in the case of the Pb3 atoms, the coordination is clearly a

Graphical comparison of the two different coordination polyhedra of Sb3 and Pb3. Colours as in Fig. 1.

Figure 3

The coordination polyhedron of Pb1/Sb1. Colours as in Fig. 1

capped trigonal prism, whereas for Sb3 it is better described as quadratic pyramidal. When considering the electron lone-pair of the Sb^{III} atoms, the coordination might also be seen as ψ^1 -octahedral.

For the Sb2/Pb2 position, the same observation is made with slightly changed distances. The extended coordination environment of Sb2 possesses two far Se6 atoms at 3.6962 (17) Å, Se1 and Se4 atoms at the square base at 3.1563 (14) Å and 2.7090 (12) Å and an apex Se3 atom at 2.6135 (19) Å. For Pb2 these distances change to 3.283 (6) Å, 3.114 (7) Å, 2.900 (7) Å and 3.094 (10) Å, respectively.

On the Sb4/Sb4A position, the Sb atom is sometimes located on the ...*m* position [Sb4, 83 (3)%] and sometimes to both sides of the reflection plane [Sb4A, 2×8.4 (15)%]. The

coordination of Sb4 is similar to those of Sb2 and Sb3. The coordination polyhedron can be considered as a quadratic pyramid with the bond lengths being 2×2.723 (2) Å (Se6), 2×3.166 (3) Å (Se2) and 2.595 (3) Å (Se5, located at the apex). The next Se atom is Se2 located 3.875 (2) Å from Sb4, which can be considered as non-coordinating. The coordination of Sb4A is very similar, as it is located only 0.44 (3) Å from Sb4.

As for the other discussed coordination polyhedra, one might also see the double-capped trigonal prisms that surround the Pb1/Sb1 position (Fig. 3) as quadratic pyramids in the case of Sb because the metal atoms do not lie in the centre of the polyhedron. If the Sb1 atom is realized, one might rather think of a fivefold instead of an eightfold coordination, again with the atoms forming a quadratic pyramid. Here, the bond distances involving the Pb1 atom are 3.0553 (15) Å and 3.1205 (17) Å for the quadratic base (Se1 and Se5) and 2.9124 (14) Å to the apex (Se2). The two Se3 atoms are located at 3.5754 (15) Å from the Pb1 atom and the last Se4 atom, which forms the second cap of the prism at a distance of 3.4061 (16) Å. The coordination of Sb1 is very similar [distance to Pb1 = 0.26 (2) Å], with a slightly more pronounced quadratic pyramidal coordination.

The (double-)capped trigonal prism is, as stated above, a defining structural element of the lillianite family. It is interesting to note that whereas the 90° angles of all the prisms are perfectly realized owing to the ..*m* reflection plane, the triangular bases deviate significantly from an ideal trigonal symmetry. The prism around Pb1/Sb1 is formed from a triangle with 48.31 (2), 66.60 (3) and 65.09 (3)° angles. The

Figure 4

Comparison of four-polyhedra-long chains delimited by the Pb1/Sb1 position in (top) $CuPbSb_3Se_6$ and (bottom) the lillianite ⁴L-type structure of $SnPb_2Bi_2S_6$. Colour codes: Bi red, Pb grey, Bi/Sn pink, S yellow.

other prisms are closer to regular, with the angles deviating the most from 60° being 54.53 (3)° for Pb2 and 65.57 (3)° for Pb3.

Finally, the trigonal-bipyramidal coordination of Cu is unusual as Cu is usually encountered as coordinated tetrahedrally or in a planar square. This is still somewhat true for Cu1/Cu1A, as the disordering takes place over the trigonal base of the pyramids, placing them both in their own tetrahedron. However, the position closer to the base (Cu1), *i.e.* with the more trigonal-bipyramidal-like coordination, has a higher occupancy [59.5 (17)%] than the position further removed from the centre of the trigonal bipyramid (Cu1A).

Despite the clearly different coordination polyhedra, $CuPbSb_3Se_6$ can nevertheless be described as a distorted ⁴L andorite-type structure, since there are four polyhedra between two double-capped trigonal prisms as shown in Fig. 4. However, the spatial distribution of the Se/S atoms is fundamentally different, leading not only to different coordination polyhedra, as described above, but also an altered connectivity of the polyhedra.

3. Database survey

No compounds containing only copper, lead, antimony and selenium have been deposited in the Inorganic Crystal Structure Database (ICSD; Bergerhoff & Brown, 1987) as of Fall 2022.

4. Synthesis and crystallization

40.0mg of Cu_2Se , 47.6mg of PbSe and 125mg of Sb_2Se were mixed thoroughly and transferred into a fused silica ampoule, which was sealed under vacuum. The ampoule was heated at 1223 K for 2 h, cooled to 873 K over 7 h and held at that temperature for 149 h. After cooling to 473 K over 5 h and quenching in air, the ampoule was opened and the obtained ingot crushed. Among other phases in the andorite family, single crystals of the title compound CuPbSbSe₃ were isolated.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All atoms were refined with anisotropic atomic displacement parameters (ADPs). It was necessary to model the Cu-atom position as positionally disordered to avoid non-positive definite (NPD) ADP tensors. Modelling the positions of Pb1, Sb2 and Sb3 as mixed Pb/Sb positions as well as the position of Sb4 as positionally disordered improved the residuals significantly. The pairs Pb1/Sb1, Sb2/Pb2, Sb3/Pb3 and Sb4/Sb4*A* were refined with identical ADP tensor elements, though distinct coordinates. Furthermore, the site occupancies were constrained to full occupancy and the Pb occupancies were restrained to fit the sum formula CuPbSb₃Se₆, corresponding to an electroneutral structure.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	CuPbSb ₃ Se ₆
M _r	1109.7
Crystal system, space group	Orthorhombic, Pnnm
Temperature (K)	300
a, b, c (Å)	13.7217 (5), 20.5149 (8), 4.0716 (2)
$V(Å^3)$	1146.15 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	42.44
Crystal size (mm)	$0.08 \times 0.06 \times 0.04 \times 0.03$ (radius)
Data collection	
Diffractometer	Stoe Stadivari
Absorption correction	Multi-scan [absorption correction by scaling of reflection intensi- ties followed by a spherical absorption correction (<i>LANA</i> ; Koziskova <i>et al.</i> , 2016)]
T_{\min}, T_{\max}	0.428, 0.654
No. of measured, independent and observed $[I > 3\sigma(I)]$ reflections	15049, 2534, 1472
R _{int}	0.079
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.792
Refinement	
$R[F > 3\sigma(F)], wR(F), S$	0.042, 0.110, 1.40
No. of reflections	2534
No. of parameters	86
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	2.96, -2.68

Computer programs: X-AREA Pilatus3_SV, Recipe, Integrate and LANA (Stoe & Cie, 2021), SHELXT (Sheldrick, 2015), JANA2006 (Petříček et al., 2014), DIAMOND (Putz & Brandenburg, 2021) and publCIF (Westrip, 2010).

Funding information

The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

- Bergerhoff, G. & Brown, I. D. (1987). In *Crystallographic Databases*, edited by F. H. Allen, G. Bergerhoff and R. Sievers, pp. 77–95. Chester: International Union of Crystallography.
- Chen, K. B. & Lee, C. S. (2010). J. Solid State Chem. 183, 807-813.
- Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140.
- Li, J., Zhou, Y., Hao, S., Zhang, T., Wolverton, C., Zhao, J. & Zhao, L. D. (2019). *Inorg. Chem.* 58, 1339–1348.
- Makovicky, E. & Topa, D. (2014). Miner. Mag. 78, 387-414.
- Moëlo, Y., Makovicky, E., Mozgova, N. N., Jambor, J. L., Cook, N., Pring, A., Paar, W., Nickel, E. H., Graeser, S., Karup-Møller, S., Balic-Žunic, T., Mumme, W. G., Vurro, F. & Topa, D. (2008). *Eur. J. Mineral.* 20, 7–62.
- Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
- Putz, H. & Brandenburg, K. (2021). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe & Cie (2021). X-AREA. Stoe & Cie GmbH. Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2023). E79 [https://doi.org/10.1107/S2056989023000361]

The crystal structure of the selenide-based synthetic sulfosalt CuPbSb₃Se₆

Paul Sicher and Berthold Stöger

Computing details

Data collection: *X-AREA* Pilatus3_SV 1.31.175.0 (Stoe & Cie, 2021); cell refinement: *X-AREA* Recipe 1.37.0.0 (Stoe & Cie, 2021); data reduction: *X-AREA* Integrate 2.5.1.0 (Stoe & Cie, 2021) *X-AREA* LANA 2.6.2.0 (Stoe & Cie, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2014); molecular graphics: *DIAMOND* (Putz & Brandenburg, 2021); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Copper lead triantimony hexaselenide

Crystal data

```
CuPbSb<sub>3</sub>Se<sub>6</sub>

M_r = 1109.7

Orthorhombic, Pnnm

Hall symbol: -P -2xabc;-2yabc;-2z

a = 13.7217 (5) Å

b = 20.5149 (8) Å

c = 4.0716 (2) Å

V = 1146.15 (8) Å<sup>3</sup>

Z = 4
```

Data collection

Stoe Stadivari
diffractometer
Radiation source: Axo_Mo
Graded multilayer mirror monochromator
Detector resolution: 13.33 pixels mm ⁻¹
rotation method, ω scans
Absorption correction: multi-scan
[absorption correction by scaling of reflection
intensities followed by a spherical absorption
correction (LANA; Koziskova et al., 2016)]

Refinement

Refinement on F^2 $R[F > 3\sigma(F)] = 0.042$ wR(F) = 0.110 S = 1.402534 reflections 86 parameters 0 restraints F(000) = 1872 $D_x = 6.431 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 17463 reflections $\theta = 2.5-33.5^{\circ}$ $\mu = 42.44 \text{ mm}^{-1}$ T = 300 KFragment, black $0.08 \times 0.06 \times 0.04 \times 0.03$ (radius) mm

 $T_{\min} = 0.428, T_{\max} = 0.654$ 15049 measured reflections
2534 independent reflections
1472 reflections with $I > 3\sigma(I)$ $R_{\text{int}} = 0.079$ $\theta_{\text{max}} = 34.3^{\circ}, \theta_{\text{min}} = 2.5^{\circ}$ $h = -21 \rightarrow 19$ $k = -32 \rightarrow 17$ $l = -6 \rightarrow 4$

24 constraints Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(I) + 0.0016I^2)$ $(\Delta/\sigma)_{\text{max}} = 0.028$ $\Delta\rho_{\text{max}} = 2.96 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -2.68 \text{ e } \text{Å}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pb1	0.22598 (7)	0.14687 (9)	1.5	0.0286 (2)	0.897 (4)
Sb1	0.2448 (17)	0.1462 (17)	1.5	0.0286 (2)	0.103 (4)
Sb2	0.40745 (12)	0.33892 (6)	0.5	0.0247 (3)	0.923 (3)
Pb2	0.3710(7)	0.3449 (5)	0.5	0.0247 (3)	0.077 (3)
Sb3	0.49573 (14)	0.17280(7)	1	0.0411 (4)	0.974 (5)
Pb3	0.527 (3)	0.1673 (19)	1	0.0411 (4)	0.026 (5)
Sb4	0.14104 (17)	0.47308 (17)	-0.5	0.0307 (11)	0.83 (3)
Sb4a	0.1341 (12)	0.4816 (13)	-0.402 (6)	0.0307 (11)	0.084 (15)
Se1	0.33027 (8)	0.23328 (6)	1	0.0199 (3)	
Se2	0.41682 (9)	0.08474 (6)	1.5	0.0228 (4)	
Se3	0.55995 (8)	0.26260 (6)	0.5	0.0209 (3)	
Se4	0.49064 (9)	0.40595 (6)	0	0.0214 (4)	
Se5	0.30698 (8)	0.53372 (6)	-0.5	0.0208 (3)	
Se6	0.19799 (9)	0.39357 (7)	-1	0.0297 (4)	
Cula	0.3449 (8)	0.4703 (6)	0	0.050 (3)	0.405 (17)
Cul	0.3896 (5)	0.4990 (3)	0	0.0341 (14)	0.595 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.0292 (5)	0.0306 (3)	0.0260 (3)	-0.0027 (5)	0	0
Sb1	0.0292 (5)	0.0306 (3)	0.0260 (3)	-0.0027 (5)	0	0
Sb2	0.0228 (6)	0.0241 (5)	0.0272 (5)	0.0007 (5)	0	0
Pb2	0.0228 (6)	0.0241 (5)	0.0272 (5)	0.0007 (5)	0	0
Sb3	0.0267 (6)	0.0335 (7)	0.0632 (8)	0.0089 (6)	0	0
Pb3	0.0267 (6)	0.0335 (7)	0.0632 (8)	0.0089 (6)	0	0
Sb4	0.0212 (5)	0.0344 (9)	0.037 (3)	-0.0042 (5)	0	0
Sb4a	0.0212 (5)	0.0344 (9)	0.037 (3)	-0.0042 (5)	0	0
Se1	0.0185 (5)	0.0209 (6)	0.0205 (6)	-0.0003 (5)	0	0
Se2	0.0183 (5)	0.0262 (7)	0.0241 (6)	-0.0016 (5)	0	0
Se3	0.0196 (5)	0.0208 (7)	0.0223 (6)	0.0003 (5)	0	0
Se4	0.0182 (5)	0.0220 (7)	0.0239 (6)	-0.0016 (4)	0	0
Se5	0.0197 (5)	0.0225 (7)	0.0200 (6)	-0.0012 (5)	0	0
Se6	0.0221 (6)	0.0257 (7)	0.0415 (8)	0.0009 (5)	0	0
Cula	0.044 (5)	0.057 (6)	0.048 (3)	0.025 (5)	0	0
Cu1	0.034 (3)	0.036 (3)	0.0331 (17)	0.009 (2)	0	0

Geometric parameters (Å, °)

Pb1—Sb1	0.26 (2)	Pb3—Sb4a ^{viii}	3.41 (5)	
Pb1—Se1	3.0553 (15)	Pb3—Sb4a ^{ix}	3.41 (5)	
Pb1—Se1 ⁱ	3.0553 (15)	Pb3—Se1	3.02 (4)	
Pb1—Se2	2.9124 (17)	Pb3—Se2 ^{vi}	3.05 (3)	
Pb1—Se3 ⁱⁱ	3.5754 (15)	Pb3—Se2	3.05 (3)	
Pb1—Se3 ⁱⁱⁱ	3.5754 (15)	Pb3—Se3	2.86 (3)	

Pb1-	-Se4 ⁱⁱ	3.4061 (16)	Pb3—Se3 ⁱ	2.86 (3)
Pb1-	–Se5 ^{iv}	3.1205 (17)	Pb3—Se6 ^x	3.35 (3)
Pb1-	–Se5 ^v	3.1205 (17)	Pb3—Se6 ^{viii}	3.35 (3)
Pb1-	–Cula ^v	3.751 (13)	Sb4—Sb4a ^{vi}	3.68 (3)
Pb1-	-Cu1 ^v	3.423 (6)	Sb4—Sb4a	0.44 (3)
Sb1-	–Sel	2.95 (2)	Sb4—Sb4a ^{xi}	0.44 (3)
Sb1-	–Sel ⁱ	2.95 (2)	Sb4—Sb4a ^{xii}	3.68 (3)
Sb1-	-Se2	2.68 (3)	Sb4—Se2 ^{xiii}	3.166 (3)
Sb1-	–Se3 ⁱⁱ	3.75 (2)	Sb4—Se2 ^{xiv}	3.166 (3)
Sb1-	–Se3 ⁱⁱⁱ	3.75 (2)	Sb4—Se5	2.595 (3)
Sb1-	–Se4 ⁱⁱ	3.65 (2)	Sb4—Se6	2.723 (2)
Sb1-	–Se5 ^{iv}	3.16 (3)	Sb4—Se6 ⁱ	2.723 (2)
Sb1-	–Se5 ^v	3.16 (3)	Sb4—Cu1a ^{vi}	3.461 (9)
Sb1-	-Cu1 ^v	3.54 (3)	Sb4—Cu1a	3.461 (9)
Sb2-	–Pb2	0.515 (10)	Sb4a—Sb4a ^{xv}	3.76 (2)
Sb2-	-Sel ^{vi}	3.1563 (14)	Sb4a—Sb4a ^{xi}	0.79 (4)
Sb2-	–Sel	3.1563 (14)	Sb4a—Sb4a ^{xii}	3.28 (4)
Sb2-	–Se3	2.6135 (19)	Sb4a—Se2 ^{xiii}	3.30 (3)
Sb2-	–Se4	2.7090 (12)	Sb4a—Se2 ^{xiv}	2.77 (3)
Sb2-	-Se4 ⁱ	2.7090 (12)	Sb4a—Se2 ⁱⁱ	3.66 (2)
Sb2-	–Se6 ⁱ	3.6962 (17)	Sb4a—Se5	2.633 (19)
Sb2-	-Se6 ^{vii}	3.6962 (17)	Sb4a—Se6	3.15 (3)
Sb2-	–Cula	3.485 (10)	Sb4a—Se6 ⁱ	2.59 (3)
Sb2-	Cu1a ⁱ	3.485 (10)	Sb4a—Cu1a ^{vi}	3.79 (2)
Pb2-	-Sel ^{vi}	3.114 (7)	Sb4a—Cu1a	3.33 (2)
Pb2-	–Sel	3.114 (7)	Se1—Se3	3.7999 (14)
Pb2-	–Se3	3.094 (10)	Se1—Se3 ⁱ	3.7999 (14)
Pb2-	-Se4	2.900 (7)	Se1—Se3 ⁱⁱ	3.7101 (16)
Pb2-	–Se4 ⁱ	2.900 (7)	Se1—Se6 ^{vii}	3.7560 (19)
Pb2-	–Se6 ⁱ	3.283 (8)	Se3—Se4	3.7009 (15)
Pb2-	–Se6 ^{vii}	3.283 (8)	Se3—Se4 ⁱ	3.7009 (15)
Pb2-	–Cu1a	3.300 (12)	Se3—Se6 ^x	3.7219 (19)
Pb2-	–Cu1a ⁱ	3.300 (12)	Se4—Se5 ^{xvi}	3.6590 (14)
Pb2-	Cu1	3.770 (9)	Se4—Se5 ^{xvii}	3.6590 (14)
Pb2-	-Cu1 ⁱ	3.770 (9)	Se4—Cu1a	2.395 (12)
Sb3-	–Pb3	0.44 (4)	Se4—Cu1a ^{xvi}	3.397 (12)
Sb3-	–Sb4 ^{viii}	3.596 (4)	Se4—Cu1	2.360 (6)
Sb3-	$-Sb4a^{viii}$	3.71 (2)	Se4—Cu1 ^{xvi}	2.550 (6)
Sb3-	–Sb4a ^{ix}	3.71 (2)	Se5—Cu1a ^{vi}	2.472 (7)
Sb3-	–Sel	2.587 (2)	Se5—Cu1a	2.472 (7)
Sb3-	–Se2 ^{vi}	2.9293 (15)	Se5—Cu1 ^{vi}	2.436 (4)
Sb3-	–Se2	2.9293 (15)	Se5—Cu1	2.436 (4)
Sb3-	–Se3	2.8835 (14)	Se6—Cu1a ^{vi}	2.558 (12)
Sb3-	-Se3 ⁱ	2.8835 (14)	Se6—Cu1 ^{vi}	3.405 (6)
Sb3-	–Se6 ^x	3.7015 (19)	Cu1a—Cu1	0.851 (13)
Sb3-	–Se6 ^{viii}	3.7015 (19)	Cu1a—Cu1 ^{xvi}	3.696 (13)
Pb3-	–Sb4 ^{viii}	3.28 (4)	Cu1—Cu1 ^{xvi}	3.030 (9)

Se1—Pb1—Se1 ⁱ	83.57 (5)	Se2 ^{vi} —Sb3—Se6 ^x	70.61 (4)
Se1—Pb1—Se2	80.37 (4)	Se2 ^{vi} —Sb3—Se6 ^{viii}	115.63 (6)
Se1—Pb1—Se3 ⁱⁱ	67.52 (4)	Se2—Sb3—Se3	176.06 (8)
Se1—Pb1—Se3 ⁱⁱⁱ	112.11 (6)	Se2—Sb3—Se3 ⁱ	90.93 (3)
Se1—Pb1—Se4 ⁱⁱ	128.95 (3)	Se2—Sb3—Se6 ^x	115.63 (6)
Se1—Pb1—Se5 ^{iv}	93.71 (3)	Se2—Sb3—Se6 ^{viii}	70.61 (4)
Se1—Pb1—Se5 ^v	159.10 (5)	Se3—Sb3—Se3 ⁱ	89.82 (5)
Sel ⁱ —Pb1—Se2	80.37 (4)	Se3—Sb3—Se6 ^x	67.52 (4)
Se1 ⁱ —Pb1—Se3 ⁱⁱ	112.11 (6)	Se3—Sb3—Se6 ^{viii}	113.22 (6)
Se1 ⁱ —Pb1—Se3 ⁱⁱⁱ	67.52 (4)	Se3 ⁱ —Sb3—Se6 ^x	113.22 (6)
Se1 ⁱ —Pb1—Se4 ⁱⁱ	128.95 (3)	Se3 ⁱ —Sb3—Se6 ^{viii}	67.52 (4)
Sel ⁱ —Pb1—Se5 ^{iv}	159.10 (5)	Se6 ^x —Sb3—Se6 ^{viii}	66.73 (4)
Se1 ⁱ —Pb1—Se5 ^v	93.71 (3)	Se1—Pb3—Se2 ^{vi}	78.8 (8)
Se2—Pb1—Se3 ⁱⁱ	143.15 (2)	Se1—Pb3—Se2	78.8 (8)
Se2—Pb1—Se3 ⁱⁱⁱ	143 15 (2)	Se1—Pb3—Se3	80 5 (8)
Se2—Pb1—Se4 ⁱⁱ	135.50(7)	Sel—Pb3—Se3 ⁱ	80.5 (8)
Se2—Pb1—Se5 iv	78 74 (5)	Se1—Pb3—Se6 x	1425(4)
Se2 Pb1 Se5 $Se2 Pb1 Se5$	78.74 (5)	Se1_Pb3_Se6 viii	142.5(4)
$Se2^{ii}$ Ph1 Se3 ⁱⁱ	69 42 (3)	Se^{2vi} _Ph3_Se ²	83 8 (9)
$Se3^{ii}$ Pb1 $Se4^{ii}$	63.97(3)	$Se2 \longrightarrow Be3 \longrightarrow Se2$	89.0(2)
$Se3^{ii}$ Db1 $Se5^{iv}$	85 56 (3)	Se2 - 105 - Se3	1501(13)
S_{23}^{ii} Db1 S_{25}^{v}	131.72(A)	$S_{2} = 105 = S_{2}$	74.6 (5)
Se3 = 101 = Se3	131.72(4)	Se2 - 105 - Se0	123 1 (12)
Se3 = 101 = 3e4 Se3 ⁱⁱⁱ Db1 Se5 ^{iv}	(3.57(3))	Se2 = 105 = Se0	123.1(12)
Ses = r01 = Ses	151.72 (4) 95 56 (2)	Se2 - FU3 - Se3	139.1(13)
$Se_{3} - PD_{1} - Se_{3}$	85.50 (5)	Se2-PD3-Se3	89.0 (2)
$Se4^{\mu}$ PD1—Se5 ^{μ}	08.04 (4)	$Se2$ —PD3— $Se0^{\circ}$	123.1(12)
Se4"—PDI—Se5"	68.04 (4) 81.45 (5)	Se2—Pb3—Seb ^{***}	/4.6 (5)
	81.45 (5)	$Se3-Pb3-Se3^{\circ}$	90.8 (11)
Sel—Sbl—Sel	87.2 (8)	Se3—Pb3—Se6 [*]	73.2 (5)
Sel—Sbl—Se2	86.2 (6)	Se3—Pb3—Se6 ^{viii}	125.2 (12)
Sel—Sbl—Se3"	66.0 (4)	Se3 ¹ —Pb3—Se6 ^x	125.2 (12)
Sel—Sbl—Se3 ^m	110.0 (9)	Se ³¹ —Pb3—Se ⁶ ^{vin}	73.2 (5)
Sel—Sbl—Se4 ⁿ	123.9 (6)	Se6 ^x —Pb3—Se6 ^{vm}	74.9 (7)
Sel—Sbl—Se5 ¹	94.99 (14)	Se2 ^{xin} —Sb4—Se2 ^{xiv}	80.04 (8)
Sel—Sbl—Se5 ^v	167.5 (10)	Se2 ^{xin} —Sb4—Se5	82.71 (8)
Sel ¹ —Sb1—Se2	86.2 (6)	Se2 ^{xin} —Sb4—Se6	91.41 (3)
Sel ¹ —Sb1—Se3 ¹¹	110.0 (9)	Se2 ^{xiii} —Sb4—Se6 ⁱ	170.44 (11)
Sel ⁱ —Sb1—Se3 ⁱⁱⁱ	66.0 (4)	Se2 ^{xiv} —Sb4—Se5	82.71 (8)
Sel ⁱ —Sbl—Se4 ⁱⁱ	123.9 (6)	Se2 ^{xiv} —Sb4—Se6	170.44 (11)
Sel ⁱ —Sb1—Se5 ^{iv}	167.5 (10)	Se2 ^{xiv} —Sb4—Se6 ⁱ	91.41 (3)
Sel ⁱ —Sb1—Se5 ^v	94.99 (14)	Se5—Sb4—Se6	92.03 (7)
Se2—Sb1—Se3 ⁱⁱ	146.2 (3)	Se5—Sb4—Se6 ⁱ	92.03 (7)
Se2—Sb1—Se3 ⁱⁱⁱ	146.2 (3)	Se6—Sb4—Se6 ⁱ	96.76 (11)
Se2—Sb1—Se4 ⁱⁱ	134.8 (12)	Se2 ^{xiii} —Sb4a—Se2 ^{xiv}	83.9 (7)
Se2—Sb1—Se5 ^{iv}	81.6 (7)	Se2 ^{xiii} —Sb4a—Se2 ⁱⁱ	113.3 (5)
Se2—Sb1—Se5 ^v	81.6 (7)	Se2 ^{xiii} —Sb4a—Se5	79.6 (6)
Se3 ⁱⁱ —Sb1—Se3 ⁱⁱⁱ	65.7 (5)	Se2 ^{xiii} —Sb4a—Se6	81.8 (6)
Se3 ⁱⁱ —Sb1—Se4 ⁱⁱ	60.0 (3)	Se2 ^{xiii} —Sb4a—Se6 ⁱ	170.0 (9)

Se3 ⁱⁱ —Sb1—Se5 ^{iv}	82.1 (3)	Se2 ^{xiv} —Sb4a—Se2 ⁱⁱ	79.3 (5)
Se3 ⁱⁱ —Sb1—Se5 ^v	124.2 (7)	Se2 ^{xiv} —Sb4a—Se5	90.4 (8)
Se3 ⁱⁱⁱ —Sb1—Se4 ⁱⁱ	60.0 (3)	Se2 ^{xiv} —Sb4a—Se6	164.8 (10)
Se3 ⁱⁱⁱ —Sb1—Se5 ^{iv}	124.2 (7)	Se2 ^{xiv} —Sb4a—Se6 ⁱ	104.1 (9)
Se3 ⁱⁱⁱ —Sb1—Se5 ^v	82.1 (3)	Se2 ⁱⁱ —Sb4a—Se5	162.1 (9)
Se4 ⁱⁱ —Sb1—Se5 ^{iv}	64.6 (5)	Se2 ⁱⁱ —Sb4a—Se6	111.0 (7)
Se4 ⁱⁱ —Sb1—Se5 ^v	64.6 (5)	Se2 ⁱⁱ —Sb4a—Se6 ⁱ	74.6 (6)
Se5 ^{iv} —Sb1—Se5 ^v	80.3 (8)	Se5—Sb4a—Se6	82.3 (6)
Se1 ^{vi} —Sb2—Se1	80.33 (4)	Se5—Sb4a—Se6 ⁱ	94.2 (6)
Se1 ^{vi} —Sb2—Se3	81.80 (4)	Se6—Sb4a—Se6 ⁱ	89.7 (7)
Se1 ^{vi} —Sb2—Se4	90.30 (3)	Se3—Se1—Se3 ⁱ	64.79 (2)
Se1 ^{vi} —Sb2—Se4 ⁱ	167.07 (5)	Se3—Se1—Se3 ⁱⁱ	145.65 (2)
Se1 ^{vi} —Sb2—Se6 ⁱ	65.93 (4)	Se3—Se1—Se6 ^{vii}	105.20 (4)
Sel ^{vi} —Sb2—Se6 ^{vii}	107.62 (5)	Se3 ⁱ —Se1—Se3 ⁱⁱ	145.65 (2)
Se1—Sb2—Se3	81.80 (4)	Se ³ⁱ —Se ¹ —Se ⁶ ^{vii}	105.20 (4)
Se1—Sb2—Se4	167.07 (5)	Se ³ ⁱⁱ —Se ¹ —Se ⁶ ^{vii}	59.80 (3)
Sel—Sb2—Se4 ⁱ	90 30 (3)	Sel ^{vi} —Se3—Sel	64 79 (2)
Sel—Sb2—Se6 ⁱ	107 62 (5)	Sel ^{vi} —Sel ^{xviii}	146387(17)
Sel—Sb2—Se6 ^{vii}	65 93 (4)	Sel ^{vi} —Se3—Se4	67 54 (3)
Se3—Sb2—Se4	88.09(5)	Sel ^{vi} —Se3—Se4 ⁱ	101.97(4)
Se3—Sb2—Se4 ⁱ	88.09(5)	Sel ^{vi} —Se3—Se6 ^x	106.61 (4)
Se3—Sb2—Se6 ⁱ	143 55 (3)	Sel—Se3—Sel ^{xviii}	146 387 (17)
Se3—Sb2—Se6 ^{vii}	143.55 (3)	Sel—Se3—Se4	101.97 (4)
Se4—Sb2—Se4 ⁱ	97 44 (5)	Sel—Se3—Se4 ⁱ	67 54 (3)
Se4—Sb2—Se6 ⁱ	76 10 (3)	Sel—Se3—Se6 ^x	106 61 (4)
Se4—Sb2—Se6 ^{vii}	125.99 (5)	Sel ^{xviii} —Se3—Se4	100.01(1) 103.82(4)
Se4 ⁱ —Sb2—Se6 ⁱ	125.99 (5)	Sel ^{xviii} —Se3—Se4 ⁱ	103.82(1) 103.82(4)
Se4 ⁱ —Sb2—Se6 ^{vii}	76 10 (3)	Sel ^{xviii} —Se3—Se6 ^x	60 71 (3)
Se6 ⁱ —Sb2—Se6 ^{vii}	66 84 (3)	Se4—Se3—Se4 ⁱ	66 75 (3)
Set V^{i} Pb2—Set	81 7 (2)	Se4—Se3—Se6 ^x	14456(2)
Sel ^{vi} —Pb2—Se3	75 5 (2)	Se4 ⁱ —Se3—Se6 ^x	144 56 (2)
Sel vi —Pb2—Se4	87 72 (9)	Se 3^{vi} —Se 4 —Se 3	66 75 (3)
Sel vi —Pb2—Se4 i	151 4 (4)	Se 3^{vi} —Se 4 —Se 5^{xvi}	76 57 (3)
Sel ^{vi} —Pb2—Se6 ⁱ	71 86 (13)	Se3 ^{vi} —Se4—Se5 ^{xvii}	112 32 (4)
Sel ^{vi} —Pb2—Se6 ^{vii}	1200(3)	Se3—Se4—Se5 ^{xvi}	112.32(1) 112.32(4)
Se1—Pb2—Se3	75 5 (2)	Se3—Se4—Se5 ^{xvii}	76 57 (3)
Se1—Pb2—Se4	151 4 (4)	Se5 ^{xvi} —Se4—Se5 ^{xvii}	67.61 (3)
Se1—Pb2—Se4 ⁱ	87 72 (9)	$Se4^{xix}$ Se5 Se4 xvi	67.61 (3)
Se1—Pb2—Se6 ⁱ	1200(3)	Sel ^{xx} —Se6—Se3 ^{xxi}	59 49 (3)
Se1—Pb2—Se6 ^{vii}	71 86 (13)	Se4—Cu1a—Se4 ^{xvi}	81.8 (3)
Se3—Pb2—Se4	76.2 (2)	Se4—Cu1a—Se5	117.8(3)
Se3—Pb2—Se4 ⁱ	76.2 (2)	Se4—Cu1a—Se5 ⁱ	117.8(3)
Se3 $-$ Pb2 $-$ Se6 ⁱ	14054(13)	Se4— $Cu1a$ —Se6 ⁱ	108.6(5)
Se3 $Pb2$ Se6 ^{vii}	140.54(13) 140.54(13)	Set $Cula = Set$	75 3 (3)
Se4—Pb2—Se4 i	89 2 (3)	Set $Cu1a - Set$	75 3 (3)
Set 102 Set $8e4$	80.94 (12)	Set $Cuta Set$	169 6 (5)
Set $Pb2 = Sec$	135 5 (3)	Set $Cu1a$ Set	109.0(3)
$S_{0} = 102 - S_{0}$	135.5(3) 135.5(3)	Ses = Cu1a = Ses	110.7(3)
SC4 - FU2 - SC0	133.3 (3)	555-Cu1a-560	77.1 (J)

Se4 ⁱ —Pb2—Se6 ^{vii}	80.94 (12)	Se5 ¹ —Cu1a—Se6 ¹	99.1 (3)
Se6 ⁱ —Pb2—Se6 ^{vii}	76.7 (2)	Se4—Cu1—Se4 ^{xvi}	103.9 (2)
Se1—Sb3—Se2 ^{vi}	88.36 (6)	Se4—Cu1—Se5	120.65 (13)
Se1—Sb3—Se2	88.36 (6)	Se4—Cu1—Se5 ⁱ	120.65 (13)
Se1—Sb3—Se3	87.81 (5)	Se4—Cu1—Se6 ⁱ	86.53 (17)
Se1—Sb3—Se3 ⁱ	87.81 (5)	Se4 ^{xvi} —Cu1—Se5	94.39 (16)
Se1—Sb3—Se6 ^x	146.549 (19)	Se4 ^{xvi} —Cu1—Se5 ⁱ	94.39 (16)
Se1—Sb3—Se6 ^{viii}	146.549 (19)	Se4 ^{xvi} —Cu1—Se6 ⁱ	169.6 (2)
Se2 ^{vi} —Sb3—Se2	88.05 (5)	Se5—Cu1—Se5 ⁱ	113.3 (2)
Se2 ^{vi} —Sb3—Se3	90.93 (3)	Se5—Cu1—Se6 ⁱ	79.99 (16)
Se2 ^{vi} —Sb3—Se3 ⁱ	176.06 (8)	Se5 ⁱ —Cu1—Se6 ⁱ	79.99 (16)

Symmetry codes: (i) x, y, z+1; (ii) x-1/2, -y+1/2, -z+3/2; (iii) x-1/2, -y+1/2, -z+5/2; (iv) -x+1/2, y-1/2, -z+1/2; (v) -x+1/2, y-1/2, -z+3/2; (vi) x, y, z-1; (vii) x, y, z+2; (viii) x+1/2, -y+1/2, -z+1/2; (ix) x+1/2, -y+1/2, z+3/2; (x) x+1/2, -y+1/2, -z-1/2; (xi) x, y, -z-1; (xii) x, y, -z; (xiii) -x+1/2, y+1/2, -z+1/2; (xiv) -x+1/2, y+1/2, -z+3/2; (xv) -x, -y+1, z; (xvi) -x+1, -y+1, z; (xvii) -x+1, -y+1, z+1; (xviii) x+1/2, -y+1/2, -z+3/2; (xix) -x+1, -y+1, z-1; (xx) x, y, z-2; (xxi) x-1/2, -y+1/2, -z-1/2.