
Controlling concurrent events in IEC 61499 based
systems on FPGAs

Martin Resetarits
Automation and Control Institute

TU Wien
Vienna, Austria

https://orcid.org/0000-0003-4788-2664

Martin Melik Merkumians∗
Automation and Control Institute

TU Wien
Vienna, Austria

https://orcid.org/0000-0001-7461-1793

Georg Schitter
Automation and Control Institute

TU Wien
Vienna, Austria

https://orcid.org/0000-0002-8746-5892

Abstract—IEC 61499 is currently explored at a rapid pace,
although only few studies were conducted on the role of FPGAs
for automation systems based on IEC 61499. With the necessary
time quantization for synchronous FPGA systems, a new problem
arises – the phenomenon of simultaneous events. Additionally,
fan-ins of events complicate the requirements for the system,
as it must be ensured that all arriving events are considered.
This work proposes an implementation for concurrent events for
FPGAs in the context of IEC 61499. To overcome the described
problem, the incoming events are split into several single bit
signals and are stored in a ring buffer. The proposed approach
is verified in simulations of typical situations, testing the behavior
of the system with respect to simultaneous events.

Index Terms—IEC 61499, automation, FPGA, VHDL, Events

I. INTRODUCTION

Modern industry systems and Cyber-Physical Systems
(CPSs) are increasingly focusing on distributed automation [1].
To model such systems, the IEC 61499 provides an event-
driven modeling paradigm based on Function Blocks (FBs)
[2]. A big advantage of this approach is that a system can
be spread over different devices with different architectures,
such as PCs, Programmable Logic Controllers (PLCs), or Field
Programmable Gate Arrays (FPGAs). Several studies have
shown that it is practical to distribute systems on several
devices [3]–[9].

Some efforts were made to run IEC 61499 systems directly
on FPGAs, and an increase in performance was reported.
Internal execution is split into receiving events, executing
algorithms, and sending resulting events and data, and a buffer
is used for the arriving events, which holds the information
until it is processed by the following parts. [10], [11]

While [11] uses a bus system to transport events and data,
[10] flattens the system and connects the different components
directly.

Although FPGAs seem to perfectly fit the highly par-
allel structure of FBs, new problems need to be solved.
Synchronous FPGA programs quantize time, leading to the
possibility of simultaneous events. The possible overload of
the event queue due to too many events has been discussed
[12], but the problem is different on FPGAs, as on typical

∗ Corresponding author

General Purpose Processor (GPP) instructions are executed
sequentially, ensuring events occur one after another.

Furthermore, IEC 61499 allows the fan-in of events, which
means that a single event input can be triggered by several
FBs [2]. This can lead to the phenomenon that, in a single
time step, a specific event is triggered multiple times. These
event can be grouped and handled as a single event, or each
event trigger is handled as an independent event. The standard
does not describe what the expected behavior is in such cases.
Neither event storms [12], nor concurrent events have been
considered in [10], [11].

The contribution of this paper is a general programming
paradigm for the IEC 61499 targeting FPGAs. This paradigm
is introduced in Section II. In Section III the paradigm is
utilized to implement a sample Basic Function Block (BFB),
and the behavior and timings are simulated and discussed.
Section IV concludes the work and provides an outlook for
future work.

II. PROPOSED PROGRAMMING PARADIGM

The IEC 61499 defines an 8-step sequence for the execution
of FBs for a received input event [13]. This sequence can be di-
vided into two phases: the first part is responsible for receiving
the incoming event and preparing the FB for execution, while
the second part is responsible for processing of received data
and sending output data and events to potentially connected
FBs.

In the first phase, the event buffer (see Section II-A) accepts
events, updates relevant data, and notifies the Event Execution
Control (EEC). A second entity, named Execution Unit (ExU),
is then responsible for the actual computation of the event
with its data. Based on current state, internal functionality,
and received event, specific algorithms are triggered and new
output events are generated.

The events for the communication between multiple FBs
are impulses without duration. Single-bit wires for events are
used to implement similar behavior in a synchronous Very
High Speed Integrated Circuit Hardware Description Language
(VHDL) architecture. The value is set to active for one
clock cycle for an event. If the same event occurs two times
successively, the wire is active for two cycles.

Post-print version (generated on 20.12.2022)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: Martin Resetarits, Martin Melik-Merkumians, and Georg Schitter, “Controlling concurrent
events in IEC 61499 based systems on FPGAs,”2022 IEEE 27th International Conference on Emerging Technologies and
Factory Automation (ETFA), 2022. DOI: 10.1109/ETFA52439.2022.9921614
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA52439.2022.9921614

A. The Buffer

A buffer is needed to save multiple events when they occur
simultaneously. As events are spent after they are executed,
they can be discarded, and memory can be reused for a later
event. To exploit this behavior, a ring buffer is used.

IEC 61499 defines that data and events are related, but the
data port input may change before the event is executed, so the
data must be saved too. Only related data are updated, new but
unrelated data are not considered. Although this is considered
bad programming [14], a FB’s algorithm can change the FB
interface’s input values. Therefore, the ExU needs to store the
current data state, while the buffer saves all related data at the
time of the event. When the event is processed, ExU updates
only the data that are changed by the event. This increases the
amount of memory needed, but simplifies the structure greatly.

Further, the implementation of the buffer must be able to
write multiple events into the buffer in a single clock tick. This
behavior can be achieved in VHDL by using a loop statement
inside a process (see Fig. 1).

When the number of supported parallel write operations
increases, the complexity of a synthesized circuit increases. To
make an estimation, the cyclomatic complexity [15] for each
memory slot is calculated and then summed up. This leads
to to Eq. (1), with Table I showing the results for the first
numbers. Based on this equation a computational complexity
of O(n) can be estimated for the parallel writes. It should be
noted that the true amount of resources used for the circuit
depends on the hardware and tool chain used.

nins∑

i=nins−(nparWrites−1)

i+ 1 =

nins · nparWrites +
3 · nparWrites

2
−

n2
parWrites

2
=

nparWrites · (nins +
3

2
− nparWrites

2
) (1)

TABLE I: Sum of Cyclomatic Complexity for each memory
slot.

number of Number of input events
parallel writes 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8
2 - 5 7 9 11 13 15
3 - - 9 12 15 18 21
4 - - - 14 18 22 26
5 - - - - 20 25 30

Two general solutions exist if the buffer must be able to
observe multiple events of the same kind from earlier FBs
during one tick of the clock. Either all received events are
processed as one event, or, if it is considered relevant how
often the event is triggered, each event must have an input
on its own, and the buffer stores them separately. In the first
case, a logical OR of all events of the same type is enough.
The latter concept is more complex and is shown in Fig. 2.

Save event and
related data to

ringbuffer

Ignore event and
 current data

Increase head
pointer*

It
e

ra
te

 t
h

ro
u

gh
 a

ll
ev

en
t

in
p

u
ts

Set error flag

Event
active

Head pointer + 1
==

 tail pointer

Event 1

Event 2

Event 3

*Manage jump from last to first slot

Fig. 1: Visualization of the process to save incoming events
into the buffer. To mark an overflow, an error flag is used.

FB1

FB2

Buffer
Event_b

Data

Event_a_1
Event_a_2
Event_b_1
Event_b_2
Event_c

Data

Data

Event_a

Event_b
Event_a

Event_c

Fig. 2: Ring buffer event input wires. FB1 and FB2 both have
an event output Event_a. Each one is connected to its own
one-bit wire (red) and the buffer considers both as event input
of the type Event_a.

B. The Execution Unit

The ExU combines EEC and the execution of internal
algorithms (cf. [16]). For that, ExU communicates with the
buffer in a provider/consumer manner, where the ExU is the
consumer, controlling the buffer via the Tail Pointer (TP). On
request of ExU the buffer provides the data and event of the
next queued buffer entry to be consumed.

In case of a BFB, the EEC refereed in Step 4 is a state
machine, called Execution Control Chart (ECC) in IEC 61499,
and can be implemented as such [13], [17]. The BFB is of
special interest in the context of this work, as it directly encap-
sulates functionality inside IEC 61499. The Simple Function
Blocks (SFBs) can be considered as a reduced form of a
BFB when no complex ECC is required, removing the ECC
altogether and mapping each input event to one algorithm.

Rising edge
of the clock

Load old
data

Increase tail pointer if
a not empty event was sent

Save data for
next cycle

Set outputs
as calculated

Overload data with
new relevant data

Execute an
algorithm

Fig. 3: Concept of the execution algorithm, which depends on
the current state and the received event.

Post-print version (generated on 20.12.2022)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: Martin Resetarits, Martin Melik-Merkumians, and Georg Schitter, “Controlling concurrent
events in IEC 61499 based systems on FPGAs,”2022 IEEE 27th International Conference on Emerging Technologies and
Factory Automation (ETFA), 2022. DOI: 10.1109/ETFA52439.2022.9921614
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA52439.2022.9921614

Fig. 4: A BFB that performs the operation x = a + b or
x = a − b, depending on whether the ADD or SUB event is
triggered.

Other available FB types are aggregating several other FBs
to describe their internal algorithms (Composite Function
Block (CFB)) [13], or are responsible for the interaction with
components outside the scope of IEC 61499, such as hardware-
access (Service Interface Function Block (SIFB)) [18].

The ExU is responsible for updating the data according to
previous events. After the new data are loaded, a state change
may be triggered and the event processing starts. Finally, the
out-ports are set and TP is increased. This process is triggered
every clock cycle, but the TP is only incremented if the buffer
is not empty (see Fig. 3).

III. EXPERIMENTS

To evaluate the event and data flow of the proposed
concepts, two systems were simulated with Xilinx‘s Vi-
vado©Design Suite. Experiments focus on when and how
events are forwarded and executed by components of the
system. For the simulation, the buffer size is set to four and all
four memory slots can be written in a single clock cycle. To
distinguish between the buffer write phase and the execution
phase, the buffer reads from the previous FBs at the falling
clock edge and the execution of an event is triggered at the
rising clock edge.

First, a calculator with two event inputs is tested to show
the behavior of a BFB (see Fig. 4). It adds or subtracts the two
data inputs according to the event it receives. In this simple
design, it is easy to observe the communication and execution
of the buffer and the ExU.

Specific sequences are chosen to show how the events are
executed when they arrive one after another and when they
arrive at the same time.

The second simulation shows the routing of an event to a
system with nested FBs.

A. Simulation

The waveform shown in Fig. 5 shows the signals of a
buffer when 3 events arrive. At Marker 1 the SUB Event
is received and registers, saving the corresponding data in
memory slot 0. At Marker 2, both events ADD and SUB are
received simultaneously. The general order of execution of
these events is ambiguous, but the buffer imposes an order
that can influence the system’s results. As the IEC 61499 does
not define a correct behavior for such a situation, this issue
cannot be resolved in a general way.

0 1

Undefined

1 2

Event input:
Add

Event input:
Sub

Headpointer

Event Buffer
Content

0

1

3

2

Undefined

Undefined

Sub

Sub

Add

Fig. 5: Waveform of the buffer when three events arrive.
Marker 1: the first event is read and the SUB event is saved into
memory slot 0, and the head pointer is incremented. Marker 2:
two events arrive simultaneously, and are saved into memory
slots 1 and 2. The head pointer is incremented by two to three.

AddEmpty Empty

Undefined [10, 5]

0 1

RDY ADD RDY

 15Undefined

1 2 3

Event from
Buffer to ExU

Data from
Buffer to ExU

Tailpointer

State

Event output:
Done

Date output

Undefined

Fig. 6: Communication between the buffer and ExU.
Marker 1: event and data arrives at the buffer and is saved to
slot 0. As the TP points to slot 0, event and data is forwarded
to the ExU (see first row). Marker 2: event and data are read,
the state of ExU changes to adding, and the TP is incremented.
The buffer forwards the content of slot 1. Marker 3: the
processing of the event is finished. The event output is set
to low and the next event is read. No event is available, so the
state is set to Ready.

The waveform shown in Fig. 6 shows the communication
between the buffer and the ExU. Marker 1 is placed at a falling
clock edge, reading events, while at Markers 2 and 3 a rising
edge occurs, when the buffer contents are read by ExU. The
outputs of the FB are read at the falling edge, between the
Markers 2 and 3.

B. Composite Function Blocks

CFBs act as containers for other FBs forming reusable
subroutines. Higher-level subroutines can be created by creat-
ing CFB with multiple layers of CFBs. To achieve the same
behavior regarding multiple events and event fan-in, CFBs also
needs the proposed ring buffers, as described in Section II-A.
But this will delay the event by one clock cycle to reach the FB
which finally executes the event. As an example, the previous

Post-print version (generated on 20.12.2022)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: Martin Resetarits, Martin Melik-Merkumians, and Georg Schitter, “Controlling concurrent
events in IEC 61499 based systems on FPGAs,”2022 IEEE 27th International Conference on Emerging Technologies and
Factory Automation (ETFA), 2022. DOI: 10.1109/ETFA52439.2022.9921614
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA52439.2022.9921614

AddEmpty Empty

Event from
Outside

Event sent from
CFB Buffer

Event Inside CFB

Event for
Calculator FB

Empty Add Empty

1 2 3 4 5

CLOCK

Fig. 7: Waveform showing delay of Composite Function
Block.
Marker 1: Event arrived at the CFB and is saved into the
buffer. Marker 2: At the next falling clock edge the ExU of
the CFB reads from its ring buffer and propagates the event
further (Marker 3). Marker 4: The event is read by the buffer
of the Calculator. Marker 5: The event arrives at the ExU
of the Calculator FB and is executed.

introduced calculator is placed inside a CFB as only element.
The interface of the CFB is similar to the calculator and the
event and data is connected directly to the corresponding inner
ports. This behavior is shown in Fig. 7.

In summary, it has been shown, that IEC 61499 FBs can be
translated to VHDL and executed on FPGAs. Due to FPGAs
synchronous execution semantics, special care must be taken
to ensure the correct execution of events and their associated
algorithms. The buffer and ExU components presented ensure
that each received event/data pair is preserved and executed
for IEC 61499 FBs, enabling that FPGAs can be targeted by
IEC 61499 systems.

IV. CONCLUSION AND FUTURE WORK

This work proposes a programming paradigm to implement
IEC 61499 systems on FPGAs, focusing on the event handling
and the possibility of simultaneous events, which becomes
possible due to the time quantization needed for synchronous
FPGAs. To solve this problem, a buffer is introduced to handle
events when they arrive simultaneously. The execution of the
event and its associated algorithms is separated into another
entity, and the simulations show the feasibility of the proposed
paradigm.

This paper also highlights the problem of order for simulta-
neous events, which is not considered in IEC 61499. Although
event execution order influences the behavior of the system,
there is no way to determine the chronological order when two
events arrive simultaneously. This affects FPGAs in particular,
since they quantize time into clock cycles.

The next step to deploy IEC 61499 systems on FPGAs
is the evaluation of the proposed ring buffer, as it takes a
lot of resources. The determination of the correct buffer size
is a complex problem and strongly depends on the system.
Implementations on GPPs, like Eclipse 4diac [19] use a

centralized buffer to handle events. The use of one buffer for
several FBs limits the execution of events to one event per
clock cycle. Although this leads to a decrease in performance,
this can decrease resource consumption. This trade-off must
be further studied to determine its usefulness.

REFERENCES

[1] G. Lyu and R. W. Brennan, “Towards IEC 61499-based distributed intel-
ligent automation: A literature review,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 4, pp. 2295–2306, apr 2021.

[2] I. TC65/WG6, IEC 61499: Function blocks for industrial-process mea-
surement and control systems – Parts 1 to 4. Geneva: International
Electrotechnical Commission (IEC).

[3] S. Olsen, J. Wang, A. Ramirez-Serrano, and R. W. Brennan,
“Contingencies-based reconfiguration of distributed factory automation,”
Robotics and Computer-Integrated Manufacturing, vol. 21, no. 4-5, pp.
379–390, aug 2005.

[4] R. Brennan, P. Vrba, P. Tichy, A. Zoitl, C. Sünder, T. Strasser, and
V. Marik, “Developments in dynamic and intelligent reconfiguration of
industrial automation,” Computers in Industry, vol. 59, no. 6, pp. 533–
547, aug 2008.

[5] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype implementa-
tions and challenges,” Computers in Industry, vol. 81, pp. 11–25, sep
2016.

[6] N. Cai, M. Gholami, L. Yang, and R. W. Brennan, “Application-oriented
intelligent middleware for distributed sensing and control,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 6, pp. 947–956, nov 2012.

[7] P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel
Approach for Integrating IEC 61131-3 Engineering and Execution Into
IEC 61499,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8,
pp. 5411–5418, 2021.

[8] M. Melik Merkumians, P. Gsellmann, and G. Schitter, “Hierarchiza-
tion and Integration of IEC 61131-3 and IEC 61499 for Enhanced
Reusability,” in 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2021), 2021, pp. 1–4.

[9] M. Melik-Merkumians, T. Baier, M. Steinegger, W. Lepuschitz, I. Hegny,
and A. Zoitl, “Towards OPC UA as portable SOA middleware between
control software and external added value applications,” in Proceedings
of 2012 IEEE 17th International Conference on Emerging Technologies
Factory Automation (ETFA 2012), 2012, pp. 1–8.

[10] H. Pearce and P. Roop, “Synthesizing IEC 61499 function blocks to
hardware,” in 2019 International Conference on Electronics, Informa-
tion, and Communication (ICEIC). IEEE, jan 2019.

[11] D. O'Sullivan and D. Heffernan, “VHDL architecture for IEC 61499
function blocks,” IET Computers & Digital Techniques, vol. 4, no. 6,
pp. 515–524, nov 2010.

[12] D. Pescha and M. Horauer, “Event storms in IEC 61499 applications,” in
2018 Conference on Design of Circuits and Integrated Systems (DCIS).
IEEE, nov 2018.

[13] A. Zoitl, Modelling control systems using IEC 61499, 2nd ed., ser. IET
control engineering series 95. Stevenage, Herts, United Kingdom: The
Institution of Engineering and Technology, 2014.

[14] M. Wenger and A. Zoitl, “Re-use of IEC 61131-3 structured text
for IEC 61499,” in 2012 IEEE International Conference on Industrial
Technology. IEEE, March 2012, pp. 78–83.

[15] T. McCabe, “A complexity measure,” vol. SE-2, no. 4, pp. 308–320.
[16] A. Zoitl, Real-Time Execution for IEC 61499. ISA, 2008.
[17] P. Gsellmann, M. Melik-Merkumians, and G. Schitter, “Comparison

of Code Measures of IEC 61131–3 and 61499 Standards for Typical
Automation Applications,” in 2018 IEEE 23rd International Conference
on Emerging Technologies and Factory Automation (ETFA 2018), vol. 1,
2018, pp. 1047–1050.

[18] M. Melik-Merkumians, M. Wenger, R. Hametner, and A. Zoitl, “Increas-
ing Portability and Reuseability of Distributed Control Programs by I/O
Access Abstraction,” in Proceedings IEEE Emerging Technologies and
Factory Automation (ETFA 2010), 2010.

[19] Eclipse. 4diac - Framework for Industrial Automation & Control.
[Online]. Available: https://eclipse.org/4diac/

Post-print version (generated on 20.12.2022)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: Martin Resetarits, Martin Melik-Merkumians, and Georg Schitter, “Controlling concurrent
events in IEC 61499 based systems on FPGAs,”2022 IEEE 27th International Conference on Emerging Technologies and
Factory Automation (ETFA), 2022. DOI: 10.1109/ETFA52439.2022.9921614
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA52439.2022.9921614

