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Propositional satisfiability (SAT)
• SAT (or CNF-SAT) is the following problem:


• Instance: a propositional formula in conjunctive normal form


• Question: is the formula satisfiable? 
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satisfied by setting  

define literal, clause, occurrence, truth assignment

F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

y = 1,u = 0,v = 1,x = 0
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just a simple problem…
• Donald E Knuth wrote a 300+ page chapter on SAT in his 

TAOCP.
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“The SAT problem is evidently a killer app, 
because it is key to the solution of so many 

other problems.”  

Knuth: Wed, 9:00
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The silent (R)evolution of SAT  
[Fichte, Hecher, Leberre, Sz. CACM 2022, to appear]

• The Pre-Revolution (< 2000)


• DPLL 1960s, Variable selection heuristics 1990s, DIMACS SAT 
Challenges


• The Revolution (≈ 2000)


• Solvers GRASP, Chaff, Conflict-driven Clause learning (CDCL), Watched 
Literal data structure, etc


• The Evolution (> 2000)


• Efficient encodings, incremental solving, in/preprocessing, 
parallelization, proofs, cube and conquer, open source 
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Time Leap Challenge [Fichte, Hecher, Sz. CP 2020]
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new 
computer  

old computer
new 

Comp Comp 1999Algo 1999 Algo 2014

Grasp zChaff siege v3 Glucose CaDiCal Maple
(1996) (2001) (2003) (2016) (2019) (2019)

old HW (1999) 73 48 37 106 98 77

new HW (2019) 76 71 93 188 190 195

Team SW

Team HW

Table 1: Summary of experimental results

implementation or hardware tricks, they provide an excellent comparison of the algorithmic ad-
vancement of solver techniques. We therefore included, for comparison, the results of Knuth’s
solvers on the same benchmark set and hardware platform as the time leap challenge. Mitchell [54]
provides an overview of techniques, implementations, and algorithmic advances of the year 2005
and looking back for 15 years. He already mentioned that the success of SAT-solving is due to
three factors: improved algorithms, improved implementation techniques, and increased machine
capacity. However, Mitchell’s work does not provide evaluations on any actual practical e↵ects at
the time. Kohlhase [46] recently published work on collecting and preserving the comparability
of old theorem provers to preserve cultural artifacts and history in Artificial Intelligence.1 For an
overview on the technique of CDCL-based solvers we refer the reader to introductory literature
such as a chapter in the Handbook of Knowledge Representation [29], chapters on the history of
modern SAT-solving [24], and CDCL-solvers [53] in the Handbook of Satisfiability [9]. Katebi,
Sakallah, and Marques-Silva [43, 64] considered various techniques of modern SAT-solvers un-
der an empirical viewpoint. They designed experiments to evaluate factors and the aggregation
of di↵erent SAT-enhancements that contribute to today’s practical success of modern solvers.
Works on targeted algorithm engineering for SAT-solvers are extensive. Just to name a few
examples, there is work on exploiting features such as optimizing memory footprints for the ar-
chitecture [10], on implementing cache-aware [13], on using huge pages [22], on how to benefit
from parallel solving [35] or employing inprocessing. Inprocessing particularly takes advantage of
modern hardware as one can execute much more instructions on a modern CPU than accessing
bytes on memory [31, 51]. Very recently, Audemard, Paulev, and Simon [1] published a heritage
system for SAT solvers. It allows for compiling, archiving, and running almost all released SAT
solvers and is based on Docker, GitHub, and Zenodo. While they aim for archivability, our
work provides an actual experiment incorporating soft- and hardware advances. We hope that
their system allows for long term preservation and, if there is no major change in the computer
architecture, that one can repeat our time leap challenge in another decade.

2 The Arena: Designing the Time Leap Challenge

To run a proper challenge, we design an arena by selecting from standard benchmark sets and
several contestants out of a vast space of possibilities. We aim for the reasonable oldest hardware
on which we can still run modern benchmark sets and solvers. In turn, this requires to set up a
modern operating system on old hardware. To make it a time leap challenge, we are interested
in solvers and hardware from similar generations, so a preferably small time frame from which
both originate. The physical e↵ort restricts us to consider only two time frames in the following.
We take modern hardware and solvers from 2019 and old hardware from around 2000 and solvers
from 2001/2002. Following academic ideas by Stallman [69], we focus on benchmark sets and

1
The Theorem Prover Museum is available online at https://theoremprover-museum.github.io/
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“Hidden Structure” in SAT instances 
• SAT solvers routinely solve industrial instances with millions of clauses and 

variables (today’s solvers use the CDCL approach which is closely linked to 
the resolution proof system)


• For classical TCS approaches, SAT is hard 
 
(PPSZ: 1.364200 = 2 x age of universe in nanoseconds, (S)ETH) 


• Theory-practice gap


• Common insight: real-world SAT-instances contain some kind of “hidden 
structure” which is implicitly utilized by solvers 


• Can we utilize the structure also in theory?

6



Stefan Szeider

Two Approaches
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Try to capture structure in a way that provides 
worst-case performance guarantees for SAT 
algorithms 
decomposability, backdoors, ….

Causation

Try to capture structure in a way that 
statistically correlates with CDCL-solving 
time  
community structure, modularity, centrality, … 
features for hardness prediction  
[Ansótegui, Bonet, Giráldez-Cru, Levy, Simon JAIR’19]

  [Li, Chung, Mukherjee, Vinyals, Fleming, Kolokolova, 
Ganesh SAT’21]

Correlation
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Community Structure in Industrial SAT 
Instances

• modularity of  is 
 over all 

partitions  of  
[Newman, Girvan 2004]

G
max q(C)

C V
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• In general, industrial formulas have a exceptionally high modularity, 
greater than 0.8 in many cases. Notice that in other kind of networks, 
values greater than 0.7 are rare [Ansotegui et al JAIR 2019] 

1.2. Notation and Definitions

1.1.3 Integer Linear Programming
Integer Linear Programming (ILP) is another well-known problem in computer science.
A specialized version, 0-1 Integer Linear Programming was introduced as one of Karp’s
21 NP-complete problems in 1972 [9]. The maximization variant of this optimization
problem that is used for the ILP-encoding by Brandes et al. takes as input a set S of n
linear functions of the form aixi + bi Æ ci, 1 Æ i Æ n, where ai, bi, ci are integer constants.
The set of linear functions S is called the objective function. Additionally, constraints
for variables or functions contained in S can be specified. A solution to an ILP-instance
maximizes the objective function for all variables xi, 1 Æ i, Æ n while also satisfying all
linear functions and constraints. Furthermore, there is also a minimization variant of the
problem, where a solution minimizes the objective function.

1.2 Notation and Definitions

1.2.1 Notation
We will use the notation of Brandes [5] for all definitions regarding graph modularity.
Let G = (V, E) be an undirected graph where V denotes the set of vertices, E the set
of edges, n := |V | the number of vertices and m := |E| the number of edges in the
graph. An edge is denoted as (u, v) œ E, which is the pair of vertices that it connects. A
partition or clustering C of V is a set of nonempty sets C1, . . . , Ck, k Ø 1, called clusters
that are an exact cover of V . The cases where k = 1 or k = n are considered trivial.
Furthermore, E(Ci) := {(u, v) œ E : u, v œ Ci} is the set of edges contained in cluster Ci,

which are also called intra-cluster edges, while the edges E \
kt
i

E(Ci) are inter-cluster

edges. G[Ci] = (Ci, E(Ci)) is the subgraph that contains all nodes and edges that are
in Ci.

1.2.2 Definition of Modularity
The modularity of a graph clustering C in a graph G = (V, E) is defined by Newman and
Girvan [13] as

q(C) =
ÿ

CœC

C
|E(C)|

m
≠

3q
vœC deg(v)

2m

42D

. (1.1)

This definition shows that in order to maximize the modularity of a graph, the number of
edges inside the clusters should be maximized while also minimizing the total degrees in
each cluster. It also shows the upper and lower bound of graph modularity, ≠1

2 Æ q(C) Æ 1.
As Brandes et al. state, the upper bound is only reached in a graph with no edges, where
modularity is defined as 1 [4]. The lower bound can be reached, if a bipartite graph is
partitioned into two clusters with all of the edges being inter-cluster edges.
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Algorithmic use of modularity?

• It is easy to construct a class of formulas of arbitrarily large 
modularity for which SAT decision remains NP-hard.


• [Ganian, Sz, AIJ 2021] (we’ll come back to this a bit later …)
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FPT-SAT
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Parameterized Complexity
• For causal models, parameterized complexity provides and 

ideal framework


• We can develop different parameters that capture different 
properties of SAT instances


• Compare parameters by their generality
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On Fixed-Parameter Tractable
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Abstract. We survey and compare parameterizations of the propo-
sitional satisfiability problem (SAT) in the framework of Parameter-
ized Complexity (Downey and Fellows, 1999). In particular, we consider
(a) parameters based on structural graph decompositions (tree-width,
branch-width, and clique-width), (b) a parameter emerging from match-
ing theory (maximum deficiency), and (c) a parameter defined by trans-
lating clause-sets into certain implicational formulas (falsum number).

1 Introduction

The framework of Parameterized Complexity, introduced by Downey and Fellows
[12], provides a means for coping with computational hard problems: It turned
out that many intractable (and even undecidable) problems can be solved effi-
ciently “by the slice”, that is, in time O(f(k) · nα) where f is any function of
some parameter k, n is the size of the instance, and α is a constant independent
from k. In this case the problem is called fixed-parameter tractable (FPT). If a
problem is FPT, then instances of large size can be solved efficiently.

The objective of this paper is to survey and compare known results for fixed-
parameter tractable SAT decision. Although the SAT problem has been con-
sidered in more general works on parameterized complexity (e.g., [9]) and FPT
results have been obtained focusing on a single parameterization of SAT (e.g.,
[2, 18]), it appears that no broader approach has been devoted to this subject.

We suggest the following concept of fixed-parameter tractability for SAT.
Consider a parameter π for clause-sets; i.e., π is a function which assigns some
non-negative integer π(F ) to any given clause-set F . We say that “satisfiability of
clause-sets with bounded π is fixed-parameter tractable” if there is an algorithm
which answers correctly for given clause-sets F and k ≥ 0

“F is satisfiable” or “F is unsatisfiable” or “π(F ) > k”

in time O(f(k) · lα); here l denotes the length (i.e., sum of clause widths) of F , f
is any function, and α is a constant independent from k. (Being aware of the phe-
nomenon of so-called “robust algorithms” [27, 13], we do not require (i) that the
! Supported by the Austrian Science Fund (FWF) projects J2111 and J2295.

E. Giunchiglia and A. Tacchella (Eds.): SAT 2003, LNCS 2919, pp. 188–202, 2004.
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FPT-SAT
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F,k A

“SAT”

“UNSAT”

“p(F)>k”

“permissive” or “robust” approach

SAT
“SAT”

“UNSAT”
F,k Ver

explicit 
k-structure

two-phases approach

“p(F) ≤ k”
“p(F) > k”

“p(F) ≤ f(k)” FPT-approx
p(F) ≤ k
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Comparison of SAT-parameters

• General research program: come up with stronger and stronger 
parameters, and draw a detailed map of SAT-parameters and their 
mutual dominance

14

p dominates q if there is a function f such that
                  for all F it holds that p(F) ≤ f(q(F))
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1) Graphical Structure 
2) Syntactical Structure 
3) Hybrid Models
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Graphical Structure
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Common Graphs
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 F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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primal aka VIG
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

dual aka CIG
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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incidence aka CVIG
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

2

hypergraph

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c’)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Graph Decompositions and Width Parms

• tw(G)=min width over all its tree decompositions


• checking tw(G) ≤ k  is FPT

18
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Conditions: covering and connectedness.

6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G)  k. (Bodlaender’s
Theorem)

a graph G
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6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G)  k. (Bodlaender’s
Theorem)

a tree decomposition of G

width = size of largest bag -1  
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Treewidth of Formulas

• prim-tw(F), dual-tw(F), inc-tw(F), 
cons-tw(F), conf-tw(F)


• SAT is FPT parameterized by all 
the above parameters, except for 
confl-tw.

19

dual-twprim-tw

inc-tw

confl-tw

cons-tw

W[1]

FPT

Improvement of    for inc-tw using 
covering products [Slivovsky, Sz SAT 2020]

O*(4k) ⇒ O*(2k)
Slivovsky  

Thu Aug 11, 15:00
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Width 
Parameter Zoo

20

prim-tw

inc-tw

branch-width

dir-inc-cwd

inc-cwd

hypertree-width

FPT/FPT

FPT/XP

XP/paraNP

Ver/SAT

(also #SAT)dir-rank-wd

dual-tw

confl-tw

cons-tw
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Twin-Width
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Diagram of Graph Classes [Bonnet et al. JACM 2022]

22

3:6 É. Bonnet et al.

Fig. 3. Hasse diagram of classes on which FO model checking is FPT, with the newcomer twin-width. The
dash-do!ed edge means that polynomial expansion may well be included in bounded twin-width. Bounded
twin-width and nowhere dense classes roughly subsume all the current knowledge on the fixed-parameter
tractability of FO model checking. Do they admit a natural common superclass still admi!ing an FPT algo-
rithm for FO model checking?

Theorem 1.1. Given ann-vertex (di)graphG, a sequence ofd-contractionsG = Gn ,Gn−1, . . . ,G1 =
K1, and a !rst-order sentence φ, we can decide G |= φ in time f ( |φ |,d ) · n for some computable, yet
non-elementary, function f .

This uni&es and extends known FPT algorithms for
• H -minor free graphs [18],
• posets of bounded width (i.e., size of the largest antichain) [23],
• permutations avoiding a &xed pattern [30]1 and hereditary (that is, closed under taking in-

duced subgraphs) proper subclasses of permutation graphs,
• graphs of bounded rank-width or bounded clique-width [13],2

since we will establish that these classes have bounded twin-width, and that, on them, a sequence of
d-contractions can be found e'ciently. By transitivity, this also generalizes the FPT algorithm for
L-interval graphs [28], and may shed a new uni&ed light on geometric graph classes for which FO
model checking is FPT [31]. In that direction we show that a large class of geometric intersection
graphs with bounded clique number, including Kt -free unit d-dimensional ball graphs, admits
such an algorithm. We also show that map graphs have bounded twin-width but we only provide
a d-contraction sequence when the input comes with a planar embedding of the map. FO model
checking was proven FPT on map graphs even when no geometric embedding is provided [16].
See Figure 3 for the Hasse diagram of classes with a &xed-parameter tractable FO model checking.

Permutation patterns can be represented as posets of dimension 2. Any proper hereditary sub-
class of posets of dimension 2 contains all permutations avoiding a &xed pattern. In turn, posets
can be encoded by directed graphs (or digraphs), with an arc fromu tov ifu is smaller thanv . Thus
we formulated Theorem 1.1 with graphs and digraphs, to cover all the classes of bounded twin-
width listed after the theorem (in particular, permutations excluding a &xed pattern). Twin-width
and the applicability of Theorem 1.1 is actually broader: one may replace “an n-vertex (di)graph

1Guillemot and Marx show that Permutation Pattern (not FO model checking in general) is FPT when the host permuta-
tion avoids a pattern, then a win-win argument proper to Permutation Pattern allows them to achieve an FPT algorithm
for the class of all permutations.
2for this class, even deciding MSO1 is FPT, which is something that we do not capture.

Journal of the ACM, Vol. 69, No. 1, Article 3. Publication date: November 2021.
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Twin-Width of Graphs
• Reduce a given Graph to a single vertex by a sequence of contractions.


• Each contraction removes a vertex  by contracting it to one of the remaining vertices . In symbols 
.


• If  are twins, then the contraction is perfect.


• if  are not twins, record the error by coloring edges red. 


• red edges remain red in subsequent steps

u v
u ↝ v

u, v

u, v

23

u

v

a
b
c
d

u ↝ v
v

a

b
c
d
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Twin-width of Graphs
• A d-contraction sequence of a graph contracts all vertices 

step-by-step to a single vertex graph, such that each 
intermediate graph has red degree at most d.


• 


• The twin-width of a graph is the smallest d such that it admits 
a d-contraction sequence.

G = Gn ↝ Gn−1 ↝ Gn−2 ↝ ⋯ ↝ G1

24
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Signed twin-width
• The given graph G is signed, i.e., all edges are labeled + or -.


• A d-contraction sequence is defined as before, except that contracting 
black edges of different signs become red as well.

25

u

v a′ 

u ↝ v
a

—

+

+
+

v a′ 

a
+

• For bipartite signed graphs, we can assume that we always contract 
vertices that belong to the same side of the partition. We can show that 
the tww does only change by a small constant factor if we implement this 
assumption.
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Main Result
Bounded-ones Weighted Model Counting (BWMC) 

Input: a CNF formula F where each literal is weighted , an integer  


Task: compute the sum of weights for all satisfying assignments of F that set at 
most   variables to true.

w(ℓ) ∈ ℝ k ≥ 0

k

37

BWMC generalizes WMC and SAT by setting k=|vars(F)|

Theorem: BWMC is fixed-parameter tractable parameterised by the 
certified signed tww of F and k.

None of the restrictions can be dropped.  

[Ganian, et al. SAT 2022]
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Tightness

• All hardness results hold even if an optimal contraction sequence is provided, and only SAT decision is queried.

38

signed tww tww primal tww

k is parmeter FPT W[1]-hard W[2]-hard

k is 
unrestricted para-NP-hard para-NP-hard para-NP-hard

By reduction from Hitting Set.
We can make tww=0 by adding 

a dummy large clause.

By reduction from Partitioned Clique.
Gadgets with k classes of clauses, in each 

class clauses are over the same vars. 

By reduction from SAT.
We can make tww=0 by adding 

a dummy large clause.Planar signed graphs have bounded tww.
SAT remains NP-hard for planar formulas 

[Lichtenstein 1982]
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Relation to other 
width parameters

39

prim-tw

inc-tw

branch-width

sign-inc-cwd

inc-cwd

sign-inc-rank-wd

dual-tw

sign-inc-tww

inc-tww

SAT:  
Wed Aug 3, 17:00
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Syntactic Structure
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Tractable Classes or Islands of Tractability

41

Parameterize by the 
distance to a class 

where the class is 
syntactical defined  

easy
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Distance = size of smallest backdoor set

• Fix a base class C (e.g., Horn)


• B is a strong C-backdoor of F if for 
all assignments t:B →{0,1} we have 
F[t] ∈ C.


• F[t] is obtained from F by removing 
clauses from F which contain a 
literal that t sets to 1, and removing 
from the remaining clauses all 
literals that t sets to 0

42

F

2k

x=0 x=1

y=0 y=0y=1 y=1

z=0 z=1 z=0 z=1 z=0 z=1 z=0 z=1

∈C ∈C ∈C ∈C ∈C ∈C ∈C ∈C

B={x,y,z}

strong
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Syntactic Base Classes
• Horn: each clause contains at most one positive literal


• dual Horn: each clause contains at most one negative 
literal


• 2CNF (or Krom): each clause contains at most 2 literals


• RHorn: can be made Horn by consistently flipping 
literals


• QHorn: there exists a function  such 
that  and  for all clauses C 

of F.

v : var(F) → [0,1]
v(x) + v(x) = 1 ∑

x∈C

v(x) ≤ 1

43

QHorn

RHorn

Horn dHorn

2CNF
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Other base classes
• HIT: any two clauses of the forma contain a 

complementary pair of literals


• CLU: variable-disjoint union of HIT formulas


• W[t]: formulas of incidence treewidth at 
most t.


• From base classes C and D we can form 


• the heterogeneous base class C ∪ D and


• the scattered base class C ⊕ D

44

F

∈Horn ∈2CNF ∈2CNF ∈Horn

heterogeneous base classes

A hitting formula is 
unsatisfiable if 

∑
C∈F

2−|C| = 1
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h-modularity
• Any parameter that resembles modularity but gives runtime 

guarantees?


• h-modularity [Ganian, Sz. AIJ 2021]


• partition clauses into clusters of HIT formulas


• contract each cluster into a single vertex


• take the treewidth of the resulting graph


• h-modularity: smallest tw over all possible partitions 

45
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Backdoor Parameter Zoo

46

Horn-bd dHorn-bd 2CNF-bd

dHorn ⋃ 2CNF-bdHorn ⋃ 2CNF-bd

Horn ⋃ dHorn-bd

Horn ⋃ dHorn ⋃ 2CNF-bd RHorn-bd

QHorn-bd

FPT

W[2]-hard
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Deletion backdoor sets
• B is a deletion backdoor if .


• Instead of looking at all partial assignments 
we delete the backdoor variables from F 

(notation )


• Fact: if  is clause-induced ( ) 
then each deletion backdoor set is also a backdoor set 
(but not necessarily the other way around)

F − B ∈ C

t : B → {0,1}
F − B

C F′ ⊆ F, F ∈ C ⇒ F′ ∈ C

47
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Deletion Backdoor Sets

48

Horn-bd dHorn-bd 2CNF-bd

dHorn⋃2CNF-bdHorn⋃2CNF-bd

Horn⋃dHorn-bd

Horn⋃dHorn⋃2CNF-bdRHorn-bd

QHorn-bd

FPT

W[2]-hard

deletion-QHorn-bd
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Avoid the 2k assignments: Backdoor Trees

• smallest backdoor sets ≠ 
backdoor trees with 
smallest number of leaves!


• subset-minimal  backdoor 
sets ≠ backdoor trees with 
smallest number of leaves

49

F

2k

F

k + 1

Finding backdoor trees with k leaves 
is FPT for Horn, dHorn, and 2CNF

even heterogeneous base class 
Horn ∪ 2CNF

size of backdoor 
tree = number of 

leaves

[Samer, Sz. AAAI 2008], [Ordyniak, Sz. ĲCAI 2021]
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Avoid the 2k assignments: Backdoor DNFs

• Partial assignments 
at the leaves of a 
backdoor tree give 
rise to a DNF


• The DNF is a 
tautology

50

F
x = 0 x = 1

y = 0 y = 1

z = 0 z = 1

[x]

[x ∧ y]

[x ∧ y ∧ z] [x ∧ y ∧ z]

[x] ∨ [x ∧ y] ∨ [x ∧ y ∧ z] ∨ [x ∧ y ∧ z]
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Avoid the 2k assignments: Backdoor DNFs
• Partial assignments at the leaves of a backdoor tree give rise to a DNF


• The DNF is a tautology


• Backdoor DNF: take any such tautological DNF


• Backdoor DNFs are more succinct than backdoor trees

51

Finding backdoor DNFs with k terms 
is FPT for Horn, dHorn, and 2CNF

one can even mix Horn with 2CNF  
(or dHorn with 2CNF)

bd-set bd-tree bd-DNF

DNF

[Ordyniak, Sz. ĲCAI 2021]
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Backdoor Depth



Stefan Szeider

Component backdoor trees

• backdoor depth: smallest depth of any component backdoor tree


• for fixed depth, number of variables in the backdoor is unbounded!

53

component nodes (red) 
split instance into 

connected components.

F

[Mählmann, Siebertz, Vigny, MFCS 2021] 
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Component backdoor Trees
• Backdoor depth is significantly better 

parameter than backdoor size or number of 
backdoor tree leaves 


• Definition motivated by treedepth [Nesetril, 
Ossona de Mendez 2006]


• Once we have a component backdoor tree 
that witnesses the backdoor depth of a given 
instance, we can decide the instance quickly


• Algorithmically challenging problem: find a 
component backdoor tree of small depth

54
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FPT-approximating backdoor depth
• FPT approximation for base class NULL [Mählmann, 

Siebertz, Vigny, MFCS 2021]


• FPT approximation for the base classes Horn and 2CNF 
[Dreier, Ordyniak, Sz. ESA 2022]


• starting point: obstruction trees from  Mählmann et al. 


• Separator obstructions can separate obstruction trees 
containing an unbounded number of variables from all 
potential future obstruction trees.


• Use game theoretic framework for specifying the 
algorithm

55

CP:  
Tue Aug 2, 9:00
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Comparison Summary

56

C-bd-size D-bd-size

C∪D-bd-size C⊕D-bd-sizeC-bd-depth D-bd-depth
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What’s next?

57

C-bd-size D-bd-size

C∪D-bd-size C⊕D-bd-sizeC-bd-depth D-bd-depth

C∪D-bd-depth=C⊕D-bd-depth 

FPT?
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Hybrid parameters

58

INCOMPARABLE
large incidence treewidth 

constant Horn-bd size
large Horn-bd size 

constant incidence treewidth
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(A) Backdoors into bounded treewidth

• deletion backdoors are not interesting, 
but strong backdoors are!

59

For each constant t, TW[t]-backdoor 
detection is FPT-approx. 

F

TW[t]

TW[t] = {F | tw(I(F)) ≤ t } 
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(B) backdoor treewidth

60

C C C

backdoor
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(B) backdoor treewidth

• C-backdoor treewidth is the minimum 
treewidth over the torso graphs of all the C-
backdoors.


• C-backdoor treewidth  
  ≤ min{ primal treewidth, C-backdoor size}

61

backdoor

torso graph

C-backdoor treewidth is FPT 
for C ∈ {Horn,dHorn,2CNF} PCCR:  

Mon Aug 1, 14:00



Stefan Szeider

Parameter Zoo

62

Horn-bd dHorn-bd 2CNF-bd prim-tw

inc-tw

dir-inc-cwd

dual-tw

2CNF-bd-twdHorn-bd-twHorn-bd-tw

TW[1]-bd

TW[2]-bd

TW[3]-bd

TW[t]-bd

…
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Resolution
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Resolution: proofs of unsatisfiability 
• To certify that a formula is satisfiable, just provide a 

satisfying assignment


• To certify that a formula is unsatisfiable, we need a proof.


• There are many proof systems, resolution is the most 
fundamental one.


• Idea: consider all clauses of the input formula as axioms.


• From two clauses already obtained and they contain a 
pair of closing literals, obtain their resolvent as new 
clause.


• When you derive the empty clause, you can stop.

64

{u, v, w} {x, y, u}

{v, w, x, y}

axioms

□

tree-like vs sag-like
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Resolution and SAT-solvers
• Fact: a formula is unsatisfiable if and only if it has a resolution 

proof


• DAG-like resolution is exponentially more succinct then tree-
like resolution


• CDCL SAT solver runs on unsatisfiable formulas can be 
interpreted as dag-like resolution proofs. 

65
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Resolution and FPT algorithms
• Question: are there parameters that admit FPT SAT decision, 

but where not always an FPT-size resolution proof exists?


• Let’s look at some of the parameters from above.

66
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Treewidth
• primal-treewidth admits FPT-size resolution proofs 


• incidence-pathwidth  admits FPT-size resolution proofs 
[Imanishi, WALCOM 2017]


• incidence-treewidth admits XP-size resolution proofs 
(unknown whether FPT)


• incidence-treewidth after preprocessing admits FPT-size 
resolution proofs [Samer, Sz. JCSS 2010]

67
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Backdoors
• If formulas in the base class C do 

have poly-size resolution proofs, then 
strong backdoor size  into C admits 
FPT-size resolution proofs.


• This also holds for backdoor depth.


• Poly-size resolution proofs are known 
for Horn, 2CNF, QHorn


• Interesting open case: HIT 

68

F

F[x = 0] F[x = 1]

□ □

x

F

x

F

□
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HIT and Resolution
• We can construct large HIT formulas from smaller ones, but the resulting formulas 

don’t have a significantly larger resolution complexity.


• In fact, it is not known whether there exist infinitely many irreducible HIT formulas.


• [Peitl, Sz Arxiv 2022] conducted computer search for hard HIT formulas.
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than one, the one with the largest symmetry group.
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Figure 5: Selected hardest IUHs with 7 and 9� 13 clauses written in ‘incidence
matrix’ form (rows are variables, columns are clauses, ‘+’ and ‘–’ mean positive
and negative occurrence). The hardest IUH with 1 clause is {?}, with 5 clauses F2

5 ,
already shown in Example 3, and with 8 clauses the formula F from Example 4.

8 Conclusion

Inspired by the observation that hitting formulas are remarkable among polynomial-
time decidable classes of propositional formulas in that they admit polynomial-
time model counting and at the same time lack obvious resolution-complexity
upper bounds, we set out to answer whether hitting formulas are hard for resolu-
tion. This quest led us into the land of (strong) irreducibility and to discover a
number of interesting related questions and phenomena. With our theoretical
and experimental results we now understand that IUHs are a key subset of hitting
formulas with respect to both resolution complexity, as well as just plain existence.
Because the number of IUHs (and even more so RUHs) grows so fast, it seems
safe to conjecture that there are infinitely many—but at the same time there are
intriguing similarities with other algebraic objects like orthogonal Latin squares,
and the rules governing existence of IUHs (and RUHs) with fixed parameters
n and m also exhibit simple-looking patterns that deserve further investigation.
Based on the resolution complexity we could observe, we see no signs that hitting
formulas should be significantly easier for resolution than formulas in general,
even if they are a bit easier than the absolutely hardest formulas; although
we cannot draw definitive conclusions beyond the formulas whose proofs we
computed.

While we focused on resolution here, it would also be interesting to look at
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