
Robotics and Computer–Integrated Manufacturing 82 (2023) 102516

0

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

Full length article

Optimization-based path planning framework for industrial manufacturing
processes with complex continuous paths✩

Thomas Weingartshofer a,∗, Bernhard Bischof b, Martin Meiringer a, Christian Hartl-Nesic a,
Andreas Kugi a,b

a Automation and Control Institute, TU Wien, 1040 Vienna, Austria
b Center for Vision, Automation & Control, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria

A R T I C L E I N F O

Keywords:
Motion planning of continuous paths
Industrial robots
Manufacturing process
Manufacturing tolerances
Motion constraints
Optimization-based approach

A B S T R A C T

The complexity of robotic path planning problems in industrial manufacturing increases significantly with the
current trends of product individualization and flexible production systems. In many industrial processes, a
robotic tool has to follow a desired manufacturing path most accurately, while certain deviations, also called
process tolerances and process windows, are allowed. In this work, a path planning framework is proposed,
which systematically incorporates all process degrees of freedom (DoF), tolerances and redundant DoF of
the considered manufacturing process as well as collision avoidance. Based on the specified process DoF and
tolerances, the objective function and the hard and soft constraints of the underlying optimization problem
can be easily parametrized to find the optimal joint-space path. By providing the analytical gradients of the
objective function and the constraints and utilizing modern multi-core CPUs, the computation performance
can be significantly improved. The proposed path planning framework is demonstrated for an experimental
drawing process and a simulated spraying process. The planner is able to solve complex planning tasks of
continuous manufacturing paths by systematically exploiting the process DoF and tolerances while allowing
to move through singular configurations, which leads to solutions that cannot be found by state-of-the-art
concepts.
1. Introduction

Current trends in industry show that the number of employed indus-
trial robots increases significantly [1], the product diversity advances
up to full individualization [2] and the demand for flexible produc-
tion systems raises tremendously [3]. In automated manufacturing
processes, the motions of industrial robots are mostly planned using
CAD-based offline path planning approaches [4], which have to keep
pace with the recent developments in terms of flexibility, complexity
and computational performance. Frequently implemented automated
industrial manufacturing processes include welding, spray painting,
milling, sanding, polishing and chamfering. Executing a manufacturing
process often requires a robotic tool to follow a given manufacturing
path most accurately. If the requirements of the manufacturing process
exceed the capabilities of the robotic system or the planning algorithm,
the manufacturing paths have to be adapted [5], the robot has to be
positioned differently relative to the workpiece [6], a different robot
has to be used, or the robotic tool has to be adapted [7], which
are laborious procedures in general. Alternatively, incorporating the

✩ The authors acknowledge TU Wien Bibliothek, Austria for financial support through its Open Access Funding Programme.
∗ Corresponding author.
E-mail address: weingartshofer@acin.tuwien.ac.at (T. Weingartshofer).

specific properties of the executed process into the path planning has
the potential to significantly increase the flexibility of a given robot
configuration.

The Cartesian degrees of freedom (DoF) of the tool, which are
needed to accomplish the manufacturing task, see [8], are called process
DoF in the following. Most processes demand all six DoF from the
robot, e.g. cutting and sewing, while some processes only require five
DoF. The remaining DoF is referred to as a redundant process DoF in
this work. For example, a rotating tool like a drill or a polishing disk
is considered as redundant process DoF. Furthermore, some processes
allow for deviations from the manufacturing path to some extent. In
the following, the term process window refers to allowed tool deviations
from the manufacturing path, which do not degrade the process quality,
see, e.g., [8]. On the other hand, deviations which degrade the process
quality to a tolerable extent, but should be avoided if possible, will be
denoted process tolerances. The process tolerances may be constrained
additionally by defining a tolerance band. In the remainder of this
736-5845/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.rcim.2022.102516
Received 26 July 2022; Received in revised form 5 December 2022; Accepted 18 D
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
ecember 2022

https://www.elsevier.com/locate/rcim
http://www.elsevier.com/locate/rcim
mailto:weingartshofer@acin.tuwien.ac.at
https://doi.org/10.1016/j.rcim.2022.102516
https://doi.org/10.1016/j.rcim.2022.102516
http://creativecommons.org/licenses/by/4.0/

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

e
i
C
b
t
i
c
w

p
p
i
(

a
t
c
f
f
t
w
t
I
p
s
i
I
p
i

a
d
g
i
i
a
C
r
t
D
c
p
F
b
a
a
s

2

e
p
c
P

r
s

work, the generic term process properties encompasses process toler-
ances, process windows, constraints and redundant process DoF. A
manufacturing process is specified by a set of process properties in one
or multiple process DoF, i.e. allowing position deviations in specific
Cartesian directions or orientation deviations w.r.t. specific axes. For
example, in a polishing process, the orientation may deviate slightly
from the surface normal, but the tool position should exactly follow
the desired path. Additionally, the rotating disk of the polishing tool
represents a redundant process DoF. In a spraying process, the spray
nozzle has to perfectly align with the surface normal vector and the
manufacturing path, but the distance of the spray nozzle to the surface
may vary within a certain tolerance band.

In the literature, several path planning algorithms tailored to spe-
cific manufacturing processes have been published, which incorporate
only the application-specific process properties, e.g. welding [9,10],
surface inspection [11], sanding [12] and chamfering [13]. In this
work, a general deterministic path planning framework is proposed,
which systematically considers all process properties. Additionally,
the planning algorithm takes into account collision avoidance and is
capable of planning through singular joint configurations. By incor-
porating process tolerances, windows and redundant process DoF, the
path planning framework is able to compute continuous robot motions
for manufacturing paths which exceed the kinematic capabilities of
the robot. These advanced planning abilities enable the algorithm to
handle industrial path planning problems of high complexity and with
significant flexibility demands.

2. Literature review and contribution

The state of the art of path planning algorithms for industrial robots
are summarized and discussed in this section. An emphasis is laid on
path planning methods which consider tolerances, process windows,
constraints and redundant DoF.

Note that this review focuses on path planning in joint space for
a given Cartesian tool path. This tool path may be designed manually
or be the result of an automatic path generation algorithm based on
the workpiece geometry, e.g. [14]. In many existing works, algorithms
tailored to an industrial process are proposed, e.g. spray painting [15,
16] or polishing [17]. Path planning algorithms are distinguished by
the underlying method, i.e. sampling based or optimization based,
which are discussed in the following. Additionally, the pathwise inverse
kinematics problem is addressed as a special form of the inverse kine-
matics problem. At the end of this section, the discussed methods are
compared and the main contribution of this work is presented.

2.1. Sampling-based path planners

A detailed survey of sampling-based path planners which system-
atically incorporate constraints is given in [18]. The most prominent
library of sampling-based path planners is the Open Motion Planning
Library (OMPL) [19], in which several sampling-based approaches are
included, such as Probabilistic Roadmap Methods (PRM) and Rapidly-
xploring Random Trees (RRT). As the main focus of those approaches
s solving point-to-point motion planning problems, the intermediate
artesian path cannot be provided beforehand. Furthermore, sampling-
ased path planners mostly require smoothing as a post-processing step
o remove redundant and jerky motions, see, e.g., [20]. Additionally,
ncluding multiple constraints, redundant DoF and tolerances in the
omputation of a joint-space path increases the problem size drastically,
hich becomes infeasible to solve.

The popular Descartes algorithm [21] is a semi-constrained offline
ath planner which considers tolerances. Therein, for every Cartesian
ath point, multiple inverse kinematic solutions are computed using
nverse kinematics solvers such as the Kinematics and Dynamics Library
2

KDL) [22] or Inverse Kinematics Fast (IKFast) [23]. Process tolerances
re considered by sampling the allowed tolerance band with an equidis-
ant grid, for which all corresponding inverse kinematic solutions are
omputed. Hence, the number of possible inverse kinematic solutions
or each path point increases, in particular if tolerances are allowed
or multiple DoF. This leads to high memory usage and high computa-
ion time while searching the best joint-space path in a graph search
ith the Dijkstra algorithm. In [24], an RRT-based planner is used

o compute collision-free paths without an explicit goal configuration.
nstead, a goal region is described by workspace goal criteria and a
ath with lowest tolerance utilization is computed. In general, the con-
ideration of multiple constraints and costs in sampling-based methods
s challenging, especially if optimal paths have to be found, see [25].
n [26], a sampling-based planner is introduced to solve point-to-point
roblems. The planner incorporates kinematic and dynamic constraints
n a framework to find optimal paths.

In many works, path planners tailored to a special industrial process
re designed, e.g. for welding applications in [10]. Therein, the redun-
ant process DoF of the tool is discretized and a collision-free path is
enerated by a modified RRT* algorithm. Another example is presented
n [9], where the planning for a complex welding path for a 6-DoF robot
s performed in two steps. First, the joint configurations of the start
nd end poses of the end-effector are determined. A pose comprises the
artesian position and orientation coordinates. Second, the continuous
obot motion between those configurations is computed. In this process,
he rotation around the welding torch is a redundant process DoF. This
oF is sampled with an equidistant grid and the corresponding joint
onfigurations are computed. If no solution of the inverse kinematics
roblem is found, a different inclination angle of the torch is used.
urthermore, the joint movement defines costs to be minimized by the
eam search algorithm while near-singular configurations of the robot
re avoided. The above path planners [9,10] sample the redundant DoF
nd therefore need to reduce the search space by sampling in order to
olve the planning problem.

.2. Optimization-based path planners

In optimization-based path planners, an optimization scheme is
mployed to plan feasible and locally or globally optimal joint-space
aths. Constraints can be incorporated systematically. A sequential
onvex optimization algorithm called Trajectory Optimization for Motion
lanning (Trajopt) is presented in [27]. The Trajopt algorithm guesses

one or multiple initial solutions for a trajectory and then optimizes
the joint-space path length while considering kinematic constraints.
Process tolerances are not taken into account by this algorithm. The
covariant Hamiltonian optimization for motion planning (CHOMP) algo-
ithm in [28] is used to find smooth collision-free trajectories and the
tochastic trajectory optimization for motion planning (STOMP) algorithm

in [29] is a gradient-free optimization with the possibility to include
constraints. The above path planners compute an intermediate path
between two points and therefore are suited for solving point-to-point
planning problems only.

Optimization-based approaches are capable of considering addi-
tional criteria for path planning, i.e. energy consumption [30,31],
time [32–34], time and jerk [35,36] and a combination of multiple
criteria [37]. The dynamic model of the robot is taken into account in,
e.g., [34,38]. Additionally, the path optimization can also be executed
in a post-processing step. For example, in [39] the joint-space path
length is minimized from an initial guess.

A robotic layup task is presented in [8] for a multi-robot scenario.
The specific process window for this task is utilized to generate robot
trajectories. In particular, the redundant process DoF of the roller tool
is discretized and an optimization-based approach is used to solve the
trajectory planning problem while considering process constraints and

avoiding singular configurations.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

p
a
w
o
t
j
s

s
c
i
i
e
j
t
o
t
t
t
b
s
a
c
i
p
m
i
s
c

c
p
i
a
o
p
p
f
a
s
w
a
t

2

i
i
a
w
s
b
o
e
(
o

f
w
f
a
p
p
m
m
c
w
l
f
m

i
n
c
t
b
p
a
w
F
e
t
p
o
p

R
a
p
D
t
o
i
w
v
p

m
t
i
f
p
i

3

m

2.3. Inverse kinematics and pathwise inverse kinematics

A general review of methods to compute the inverse kinematics
is given in [40]. In [41], a continuous multivariate inverse function
is described, which is used to find the global inverse kinematics of
redundant manipulators. The global inverse kinematics computes a
unique joint configuration for a given end-effector pose also for re-
dundant manipulators. The TRAC-Inverse Kinematics (TRAC-IK) solver,
roposed in [42], considers tolerances on each Cartesian dimension
nd improves the calculation times compared to KDL [22]. Another
idely used method to solve the inverse kinematics is to formulate an
ptimization problem, see, e.g., [43,44]. In [45], a genetic algorithm
o solve inverse kinematics problems is proposed, where different ob-
ectives of the manipulator are weighted in an optimization problem as
oft constraints.

Pathwise inverse kinematics refers to applying an inverse kinematics
cheme to a Cartesian end-effector path in order to find one or more
orresponding joint-space paths. Solving the pathwise inverse kinemat-
cs problem by computing the inverse kinematics for each path point
ndependently, in general leads to discontinuous joint-space paths. An
xample for an optimization-based scheme is presented in [46]. The tra-
ectory optimization of a redundant manipulator (TORM) in [46] computes
rajectories for given end-effector paths. A two-stage gradient descent
ptimization is used to minimize the position and orientation error of
he joint-space path w.r.t. the desired end-effector poses. Thereby, new
rajectories are generated repeatedly to avoid local minima, however,
he process properties of the underlying manufacturing process cannot
e considered systematically. Another work which is concerned with
olving pathwise inverse kinematics problems is given in [47], where
n anytime graph-based path planner minimizes a geometric task-space
riterion, the so-called Fréchet distance. This Fréchet distance can be
nterpreted as utilized process tolerance. In [48], the inverse kinematics
roblem is solved with geometric task-prioritization, if the desired
otion cannot be executed by the robot. In the path planner proposed

n [48], the tolerances of the desired geometric task are implemented as
oft constraints. Hence, no guarantees in terms of maximum deviations
an be given.

The online path planner Relaxed Inverse Kinematics (RelaxedIK) [49]
omputes continuous joint-space paths as a sequence of optimization
roblems, where the solution of the previous path point is used as
nitial guess for the subsequent optimization problem. The position
nd orientation deviations from the given path are weighted in the
bjective function as soft constraints. Based on RelaxedIK, the path
lanner proposed in [50] focuses on offline path planning and considers
rocess tolerances. Starting at multiple joint configurations for the
irst path point, continuous joint-space paths are computed, which
ccount for the tolerances of the end-effector pose. Although self colli-
ions are detected, no general collision avoidance for obstacles in the
orkspace is considered. In both works [49,50], singular configurations
re avoided, but it cannot be guaranteed that the resulting path adheres
o all tolerance bands and process windows.

.4. Comparison, contribution and outline

Sampling-based path planners are widely used for path planning of
ndustrial processes in spatially constrained environments. By consider-
ng (redundant) process DoF, the search space increases exponentially
nd cannot be covered sufficiently and smoothly using sampling. Path-
ise inverse kinematics solvers are based on the inverse kinematics

olution of robots, for which every (redundant) process DoF has to
e discretized to find continuous robot movements. In contrast, in
ptimization-based path planners these additional DoF can be consid-
red as continuous optimization variables and additional constraints
e.g. process windows and bands) and criteria (e.g. time or energy
3

ptimality) can be incorporated.
In this work, an optimization-based path planner with a general
ramework to systematically incorporate process tolerances, process
indows, constraints and redundant process DoF is proposed. In the

ollowing, industrial processes are considered which are described by
geometric manufacturing path on the workpiece and a set of process
roperties. The incorporation of these process properties into the path
lanning algorithm allows to deviate from the given exact Cartesian
anufacturing path in the allowed process DoF. This is suitable for
any applications including, e.g., spraying, grinding and welding. By

onsidering the process properties and thus by exploiting the process
indows and tolerance bands, the robot is able to realize a much

arger number of feasible manufacturing paths. In a second step, the
ound joint-space solutions are evaluated and the one with the best
anufacturing quality is chosen.

The main contribution of the proposed work is the systematic
ntegration of process properties in the optimization-based path plan-
ing algorithm as a general framework of equality and inequality
onstraints, which is not available in state-of-the-art path planners. In
his way, desired manufacturing process properties in the task space can
e guaranteed to hold while other DoF are allowed to vary within given
rocess windows or tolerance bands. Due to the optimization-based
pproach, no analytical inverse kinematics formulation is required,
hich is especially useful for kinematically redundant manipulators.
urthermore, analytical gradients of the objective function and all
quality and inequality constraints are used to significantly improve
he calculation time and convergence speed of the path planner. The
roposed path planner also incorporates collision avoidance meth-
ds, is able to plan through kinematic robot singularities and uses
arallelization on multiple CPU cores.

emark 1. It is worth mentioning that the proposed path planner is
lso advantageous for non-redundant robots performing non-redundant
rocesses. Even for non-redundant robots, like industrial robots with 6
oF and a typical kinematics, e.g., Kuka Cybertech KR8 R1620 [51],

he inverse kinematics is not unique and up to 16 different solutions are
btained for a given pose. Further non-uniqueness has to be considered,
f one or more axes have a large or infinite turning range, i.e. robots
ith axis ranges of more than ±360°. All possible solutions for the in-
erse kinematics can be handled with the proposed optimization-based
ath planner.

This paper is organized as follows. In Section 3, the notation and
athematical model of a general robot is introduced. Then, in Sec-

ion 4, manufacturing paths and process properties of a manufactur-
ng process are mathematically defined. The proposed path planning
ramework is described in detail in Section 5. In Section 6, the path
lanner is applied to two different manufacturing processes. The work
s concluded in Section 7.

. Mathematical model

In this section, the mathematical definitions of general robot kine-
atics are given. The forward kinematics of the end-effector frame 

w.r.t. the robot base frame  of a robot with 𝑛 DoF is given by, see,
e.g., [52]
[

𝐩
𝐨

]

= 𝐡(𝐪) , (1)

where the joint configuration 𝐪T =
[

𝑞1 ⋯ 𝑞𝑛
]

contains the generalized
coordinates of the robot, i.e. positions of prismatic joints and angles
of revolute joints. The vector on the left-hand side of (1) represents a
pose consisting of the Cartesian position vector 𝐩T =

[

𝑥 𝑦 𝑧
]

and
T [T]
the orientation expressed as unit quaternion 𝐨 = 𝜂 𝜺 , with the

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.
scalar part 𝜂 and the vector part 𝜺. Similarly, the pose (1) can also be
written as homogeneous transformation

𝐇
 =

[

𝐑
 𝐩
𝟎 1

]

, (2)

where 𝐑
 denotes the rotation matrix associated with the quaternion

𝐨 in (1). Note that the notation (⋅) refers to mathematical objects
describing the geometric relation of the frame  w.r.t. , expressed in
. The instantaneous velocity related to (1) of the end-effector frame
 w.r.t. the robot base frame  is given by, see [52]
[

𝐩̇
𝝎


]

=

[

𝐉,𝑣(𝐪)
𝐉,𝜔(𝐪)

]

𝐪̇ , (3)

with the geometric Jacobian 𝐉,𝑣 related to the linear velocity 𝐩̇, the
geometric Jacobian 𝐉,𝜔 related to the angular velocity 𝝎

 and the joint
velocity 𝐪̇.

4. Manufacturing process

In this work, a manufacturing process is specified by the manu-
facturing paths on the workpiece together with the process properties
which incorporate process DoF, redundant DoF, constraints, process
tolerances and process windows. These concepts are defined mathe-
matically in this section. Subsequently, the general collision detection
method Voronoi-clip (V-Clip) [53] is briefly introduced and collision
models in the robot environment are defined.

4.1. Manufacturing path

A manufacturing path is given as a sequence of poses 
 =

{𝐇
 ,𝑖, 𝑖 = 1,… , 𝑚}, where each pose 𝐇

 ,𝑖, 𝑖 = 1,… , 𝑚, describes the
manufacturing frame  w.r.t. the workpiece frame  , i.e. the desired
tool pose during process execution. Hence, the manufacturing process
is executed by moving the tool, described by the tool center point (TCP)
 , along the manufacturing path 

 within the allowed tolerance
bands and process windows and considering redundant process DoF.
The manufacturing paths are assumed to be given and may be gen-
erated using CAD or automatic path generation algorithms based on
the workpiece geometry. Note that the manufacturing path is assumed
to be sufficiently smooth to generate continuous joint-space paths.
Additionally, the spatial resolution is chosen based on the desired
accuracy of the manufacturing result.

4.2. Manufacturing tool

Let 𝐇
 denote the pose of the TCP frame  w.r.t. the workpiece

frame  . Depending on the manufacturing process, the tool may be
mounted on the end-effector of the robot while the workpiece is sta-
tionary or the tool may be stationary in the world frame  while the
workpiece is mounted on the end-effector. Hence, depending on the
mounting of the tool, the transformation 𝐇

 is specified differently, as
discussed in the following, see Fig. 1.

4.2.1. Tool on end-effector
When the tool is mounted on the end-effector, the pose of the TCP

frame  w.r.t. the end-effector frame  is given by the homogeneous
transformation 𝐇

 . Additionally, the stationary poses of the robot base
 and the workpiece  w.r.t. the world frame  are specified by 𝐇


and 𝐇

 , respectively. Consequently, the pose 𝐇
 of the manufacturing

system is computed in the form

𝐇
 (𝐪) = (𝐇

)−1𝐇
𝐇

(𝐪)𝐇

 , (4)

which may be understood as an augmented forward kinematics of the
4

tool  w.r.t. the workpiece  , see Fig. 1a.
Fig. 1. Kinematics of the robot: (a) Tool on end-effector, (b) Tool stationary.

4.2.2. Stationary tool
If the tool is stationary, the workpiece is mounted on the end-

effector flange. Thereby, the pose 𝐇
 of the manufacturing system is

𝐇
 (𝐪) = 𝐇

 (𝐇

(𝐪))

−1𝐇
 𝐇

 , (5)

utilizing the known geometric relations between the workpiece frame
 , the end-effector frame  , the TCP frame  , the world frame  and
the robot base frame , described by 𝐇

 , 𝐇
 and 𝐇

 , see Fig. 1b.

4.3. Process DoF and process properties

Many industrial processes allow for process tolerances or process
windows in one or more process DoF during process execution. Hence,
the tool frame  may deviate from the manufacturing frame  to
a certain predefined extent without deteriorating the quality of the
process. For example in a robotic ultrasonic cutting process, the po-
sition of the knife must follow the given manufacturing path exactly
while the knife tilt may vary within a certain process window, defined
by an orientation cone, see Fig. 2a. In contrast, in a spray painting
process, the distance to the surface of the spray object should stay
within a given tolerance band while the lateral position coordinates
must match the manufacturing frame  exactly. Furthermore, if a
rotationally symmetric spray jet is used, the manufacturing process
becomes invariant to the rotation of the spray jet around the surface
normal vector. Thus, in this case a redundant DoF is present in the
process, see Fig. 2b. The proposed path planner systematically con-
siders all process tolerances and process DoF. Taking this information
into account, feasible and optimal robot motions can be computed,
where otherwise no solution would be found. The process windows or
tolerance bands of the process DoF are specified by the minimum and
maximum allowed displacements, see Fig. 3a

𝐝min =
⎡

⎢

⎢

⎣

𝑑𝑥,min
𝑑𝑦,min
𝑑𝑧,min

⎤

⎥

⎥

⎦

, 𝐝max =
⎡

⎢

⎢

⎣

𝑑𝑥,max
𝑑𝑦,max
𝑑𝑧,max

⎤

⎥

⎥

⎦

(6)

and the minimum and maximum rotations in terms of roll–pitch–yaw
angles, see Fig. 3b

𝝓min =
⎡

⎢

⎢

⎣

𝜙𝑥,min
𝜙𝑦,min
𝜙𝑧,min

⎤

⎥

⎥

⎦

, 𝝓max =
⎡

⎢

⎢

⎣

𝜙𝑥,max
𝜙𝑦,max
𝜙𝑧,max

⎤

⎥

⎥

⎦

(7)

of the tool frame  w.r.t. the manufacturing frame . Note that the
simple (linear) box constraints (6) and (7) may also be replaced by
nonlinear constraints, e.g. circular or spherical distance constraints.

4.4. Collision avoidance

The proposed path planning framework incorporates the general
collision detection framework V-Clip [53], which is summarized in this
section. This framework is used to find the pair of globally closest

features of convex polyhedrons, of which the signed distance and also

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

c
a
u
m
t
c
b
m
p
r
c

5

f

D
S
j
t
a
p
t
r

i
t
i
f
p
s
t

5

p
d
a
g

𝐝

a

a

Fig. 2. Tolerances for manufacturing processes (highlighted in light blue): (a) cutting
process, (b) spray painting process.

Fig. 3. Tolerance bands and process windows: (a) displacements, (b) orientation
deviations of the tool frame  w.r.t. the manufacturing frame .

the analytical gradient is computed, see, e.g., [54]. The signed distance
and its gradient are utilized in the optimization algorithm in the next
section.

Each collision object in the environment is described as one polyhe-
dron, consisting of vertices, edges and faces. A feature is represented by
a single vertex, two vertices defining an edge or three vertices defining
a face. The V-Clip algorithm iteratively examines the neighboring fea-
tures until the pair of closest features is determined. Assuming that the
robot movement between two consecutive poses of the manufacturing
path 

 is small, the pair of closest features rarely changes. Hence,
the previously found pair is chosen as initial guess for the subsequent
path planning step. In this way, the pair of closest features is mostly
found in the first iteration of the algorithm.

With the V-Clip framework, arbitrary objects can be included in the
ollision avoidance, e.g. parts of the robot itself, the tool, the workpiece
nd the environment. The collision checks are then tailored to the man-
facturing process, the robot and its environment. If collisions between
ultiple objects have to be examined, the V-Clip algorithm is applied

o each pair of collision objects separately. Therefore, the number of
ollision checks can be easily reduced to lower the computation time
y examining only pairs of objects which are critical for the considered
anufacturing process. An example of a collision model for a drawing
rocess is shown in Fig. 4. In the depicted manufacturing process, the
obot’s wrist and the tool mounted on the end-effector are checked for
ollisions with the table and the box on the table.

. Optimization-based path planning

The proposed optimization-based path planning algorithm starts by
inding a discrete subset of all feasible robot starting configurations for
5

a

Fig. 4. Convex polyhedrons as collision objects are checked to avoid collisions from
the robot and the tool with the table and the box on the table.

the first manufacturing frame 𝐇
 ,1, considering the available process

oF, redundant DoF, process tolerances, windows and constraints.
tarting from the obtained initial configurations, the corresponding
oint-space paths are computed by sequentially solving an optimiza-
ion problem, taking into account the process properties and collision
voidance. Finally, the best joint-space path is selected and a time
arametrization is determined to obtain a dynamically feasible robot
rajectory. Note that the proposed path planner is deterministic, as no
andom samples are required to solve the path planning problem.

In this section, the components of the path planner are explained
n more detail. First, the starting configurations are discussed. Second,
he optimization problem and the sequential solution procedure are
ntroduced. Third, a variety of cost function terms and constraint
unctions are introduced, which can be combined and parametrized to
recisely describe the considered manufacturing process. Fourth, the
election process for the best joint-space path is detailed and finally,
he time parametrization of this path is explained.

.1. Starting configurations

By considering the process and the redundant DoF, as well as the
rocess tolerances and windows, a set of feasible initial tool poses are
erived from the first manufacturing frame 𝐇

 ,1. The process windows
nd tolerance bands defined in (6), (7) are sampled with an equidistant
rid. The vectors

𝐭 =
1

𝑑grid

(

𝐝max − 𝐝min
)

◦ 𝐭 + 𝐝min , (8)

𝝓𝐫 =
1

𝜙grid

(

𝝓max − 𝝓min
)

◦ 𝐫 + 𝝓min , (9)

denote the individual grid points and ◦ is the element-wise product,
also known as Hadamard product [55]. Thereby, 𝑑grid + 1 and 𝜙grid + 1
re the number of grid points and the vectors 𝐭T =

[

𝑡𝑥 𝑡𝑦 𝑡𝑧
]

and
𝐫T =

[

𝑟𝑥 𝑟𝑦 𝑟𝑧
]

are composed of the indices 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 = 0, 1,… , 𝑑grid
nd 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 = 0, 1,… , 𝜙grid. Note that the indices 𝐭 and 𝐫 in (8) and (9)
re vector-valued. Using every combination of the indices in 𝐭 and 𝐫,

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.



w
s


a
n
a
k
k
t
c
y



w
t
a
𝐪
s
o

k
l
d
p
a
e
n

5

o
o

𝐪

w

𝐪

w
j
m
s

w
v

l
c

w
c
𝐜
f
t
r
i
(
F
s
o
f
i
c
i
a
1

R

i.e. every sampled grid point, a set of initial frames  is derived from
the first manufacturing frame 𝐇

 ,1 in the form

=

{

𝐇
 ,1

[

𝐑𝛥(𝝓𝐫) 𝐝𝐭
𝟎 1

]

|

|

|

|

|

𝑡𝑥, 𝑡𝑦, 𝑡𝑧 = 0, 1,… , 𝑑grid
𝑟𝑥, 𝑟𝑦, 𝑟𝑧 = 0, 1,… , 𝜙grid

}

(10)

with the rotation matrix for the roll–pitch–yaw angles 𝝓T
𝐫 =

[

𝜙𝑥,𝑟𝑥 𝜙𝑦,𝑟𝑦 𝜙𝑧,𝑟𝑧

]

𝐑𝛥(𝝓) =
⎡

⎢

⎢

⎣

𝑐𝑥𝑐𝑦 𝑐𝑥𝑠𝑦𝑠𝑧 − 𝑠𝑥𝑐𝑧 𝑐𝑥𝑠𝑦𝑐𝑧 + 𝑠𝑥𝑠𝑧
𝑠𝑥𝑐𝑦 𝑠𝑥𝑠𝑦𝑠𝑧 + 𝑐𝑥𝑐𝑧 𝑠𝑥𝑠𝑦𝑐𝑧 − 𝑐𝑥𝑠𝑧
−𝑠𝑦 𝑐𝑦𝑠𝑧 𝑐𝑦𝑐𝑧

⎤

⎥

⎥

⎦

, (11)

here 𝑠𝑥 and 𝑐𝑥 denote abbreviations of the trigonometric functions
in(𝜙𝑥) and cos(𝜙𝑥), respectively, see [52].

Next, the discrete subset of all feasible joint-space configurations
𝑓 for the set of initial frames  in (10) is computed. This yields
total number of 𝑒𝑓 joint-space solutions, which are sequentially

umbered as 𝑓 = {𝐪𝑓,1,𝐪𝑓,2,… ,𝐪𝑓,𝑒𝑓 }. This set may be computed via
n analytical inverse kinematics (if present) or using numerical inverse
inematics solvers, e.g. TRAC-IK [42]. Note that the redundant DoF of
inematically redundant robots have to be sampled as well. To reduce
he number of initial joint configurations, the joint-space solutions
ontained in 𝑓 are filtered using a minimum-distance criterion. This
ields the reduced set of joint-space solutions 𝑔 as

𝑔 = {𝐪𝑔,1,𝐪𝑔,2,… ,𝐪𝑔,𝑒𝑔 }

=
{

𝐪𝑓,𝑖,𝐪𝑓,𝑗 ∈ 𝑓
|

|

|

𝑞dist <
‖

‖

‖

𝐪𝑓,𝑖 − 𝐪𝑓,𝑗
‖

‖

‖∞
, 𝑖, 𝑗 = 1,… , 𝑒𝑓

}

,
(12)

here 𝑞dist determines the minimum distance between any two solu-
ions in 𝑔 . In (12), ‖⋅‖∞ denotes the maximum norm of a vector
nd 𝑒𝑔 is the total number of solutions in 𝑔 . Note that with 𝐪𝑓,𝑖 and
𝑓,𝑗 satisfying the condition in (12), the joint configuration with the
mallest joint angle of axis 1 is used in 𝑔 due to the implementation
f the used Matlab function uniquetol.

Note that sampling the process windows and computing the inverse
inematics solutions only need to be performed with a low grid reso-
ution and only for the first manufacturing frame 𝐇

 ,1, which yields
ifferent joint-space solutions 𝑔 for the subsequent path planning
roblem. In contrast, sampling-based path planning algorithms require
large number of samples for each pose of the manufacturing path, see,
.g., the Descartes algorithm [21], which becomes infeasible for higher
umbers of DoF.

.2. Optimization problem

Starting from each joint-space solution 𝑔 from Section 5.1, a series
f optimization problems is solved sequentially, see Fig. 5. Each series
f optimization problems is given by

∗
𝑢,𝑖 = arg min

𝐪𝑢,𝑖∈R𝑛
𝑓 (𝐪𝑢,𝑖,𝐇

 ,𝑖) , 𝑖 = 1,… , 𝑚 (13a)

s.t. 𝐪min ≤ 𝐪𝑢,𝑖 ≤ 𝐪max (13b)

𝐜eq(𝐪𝑢,𝑖,𝐇
 ,𝑖) = 𝟎 (13c)

𝐜ineq(𝐪𝑢,𝑖,𝐇
 ,𝑖) ≤ 𝟎 , (13d)

ith the initial guess for the 𝑖-th optimization problem

𝑢,𝑖,0 =

{

𝐪𝑔,𝑢 𝑖 = 1
𝐪∗𝑢,𝑖−1 𝑖 > 1 ,

(14)

here 𝑢 = 1,… , 𝑒𝑔 selects the joint-space solution from 𝑔 . The optimal
oint configuration 𝐪∗𝑢,𝑖 for the specific path pose 𝐇

 ,𝑖 is found by
inimizing the objective function 𝑓 , which is detailed in the next
6

ection. Therefore, the interior-point method from the Matlab solver c
Fig. 5. Series of optimization problems starting from the initial guesses in 𝑔 obtained
from  in (10) to find the optimal joint-space path. In this example, the initial guess
𝐪𝑔,4 does not yield a complete continuous joint-space path.

fmincon is used, see, e.g., [56], which solves the corresponding problem,
cf. (13)
[

𝒒∗𝑢,𝑖 𝝈∗
]

= arg min
𝐪𝑢,𝑖∈R𝑛
𝝈∈R𝜅

𝑓 (𝐪𝑢,𝑖,𝐇
 ,𝑖) − 𝜇

𝜅
∑

𝜄=1
ln(𝜎𝜄) (15a)

s.t. 𝝈 ≥ 0 (15b)

𝐜eq(𝐪𝑢,𝑖,𝐇
 ,𝑖) = 𝟎 (15c)

⎡

⎢

⎢

⎣

𝐜ineq(𝐪𝑢,𝑖,𝐇
 ,𝑖)

𝐪min − 𝐪𝑢,𝑖
𝐪𝑢,𝑖 − 𝐪max

⎤

⎥

⎥

⎦

+ 𝝈 = 𝟎 , (15d)

ith the slack variable 𝝈, the dimension of the inequality constraints
ector 𝜅 = dim

(

[

𝐜Tineq 𝐪Tmin 𝐪Tmax

]T
)

and 𝜇 > 0, see [57,58]. The

ast term in (15a) are barrier functions to approximate the inequality
onstraints.

The process and redundant DoF and the process tolerances and
indows of the specific manufacturing process are formulated as soft

onstraints in 𝑓 and hard constraints using the equality constraints
eq and inequality constraints 𝐜ineq. A number of different objective
unctions and constraints are provided and explained in the next sec-
ion. Additionally, the upper and lower joint limits 𝐪max and 𝐪min,
espectively, are considered as inequality constraints in (13b). The
nitial guess 𝐪𝑢,𝑖,0 for each optimization problem in the sequence, see
14), is chosen as the solution 𝐪∗𝑢,𝑖−1 from the previous optimization.
or the first manufacturing frame 𝐇

 ,1, the joint-space solutions 𝑔
erve as initial guess for the optimization. To speed up the solution
f the optimization problem, the analytical gradient of the objective
unction and constraints are utilized. Note that the joint-space solutions
n 𝑔 are independent of each other. Hence, multiple joint-space paths
an be computed in parallel on a multi-core CPU, which significantly
mproves the computational performance. Furthermore, the constraints
nd objective function can be adapted for each path pose 𝐇

 ,𝑖, 𝑖 =
,… , 𝑚, since the optimization problem is solved in series.

emark 2. The solution space may further be increased by considering

ross connections between individual joint-space paths, e.g., from 𝑞1,1

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

S
u
t

5

p

𝛥

q

𝛥

I
f
a

𝑓

T

to 𝑞2,2 in Fig. 5, which are not taken into account in this work. This
could be implemented using a graph representation of the solution
space. Consequently, the individual solution paths depend from each
other, which makes a parallel computation impossible. Including cross
connections while preserving, at least to a certain extent, parallelism is
an interesting future research direction. Note that a similar path plan-
ning approach based on the analytical inverse kinematics is published
in [7].

5.3. Objective functions and constraints

With the proposed optimization-based path planning approach, the
objective functions and constraints are tailored to precisely describe the
considered manufacturing process and taking into account the process
properties. This way, individual Cartesian coordinates may be strictly
constrained while allowing tolerances in other coordinates.

In general, the objective function consists of 𝑝 cost terms 𝑓𝑗 , 𝑗 =
1,… , 𝑝 in the form

𝑓 (𝐪𝑢,𝑖,𝐇
 ,𝑖) =

𝑝
∑

𝑗=1
𝑓𝑗 (𝐪𝑢,𝑖,𝐇

 ,𝑖) (16)

and the equality and inequality constraints are also composed of differ-
ent components

𝐜eq =
⎡

⎢

⎢

⎣

𝐜eq,1
𝐜eq,2
⋮

⎤

⎥

⎥

⎦

, 𝐜ineq =
⎡

⎢

⎢

⎣

𝐜ineq,1
𝐜ineq,2
⋮

⎤

⎥

⎥

⎦

. (17)

ince the individual terms in (16)–(17) strongly depend on the man-
facturing process under consideration, the indices will be omitted in
he following to improve the clarity of presentation.

.3.1. Position deviation
The deviation 𝛥𝐩 of the actual tool position 𝐩 from the desired

osition 𝐩 , described in the manufacturing frame , is computed as

𝐩 =
⎡

⎢

⎢

⎣

𝛥𝑥
𝛥𝑦
𝛥𝑧

⎤

⎥

⎥

⎦

=
(

𝐑

)T (𝐩 − 𝐩 (𝐪)

)

, (18)

using the transformations from Section 4.2.
Depending on the considered manufacturing process, the position

deviation may appear as soft constraint in the objective function to
implement process tolerances

𝑓 = 1
2
𝛥𝐩T𝐀1𝛥𝐩 , (19)

with the positive semi-definite weighting matrix 𝐀1, as hard constraint
in the equality constraint to implement a strictly constrained process
DoF

𝐜eq = 𝛥𝐩 , (20)

or as inequality constraint to implement process windows

𝐜ineq =
[

𝐝min − 𝛥𝐩
𝛥𝐩 − 𝐝max

]

. (21)

The position deviation may also appear in both the objective function
(19) and the inequality constraint (21), which yields the implemen-
tation of tolerance bands. Note that instead of the complete vector
𝛥𝐩, its components 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 may be used individually as soft,
hard or inequality constraint. Fixing some entries using hard constraints
while considering the remaining entries as soft constraints is possible,
depending on the requirements of the manufacturing process.

The analytical gradient of (20) and (21) follow as
𝜕𝐜eq =

𝜕𝛥𝐩
= −

(

𝐑)T 𝐉 (𝐪) , (22)
7

𝜕𝐪 𝜕𝐪   ,𝑣
𝜕𝐜ineq
𝜕𝐪

=
⎡

⎢

⎢

⎣

− 𝜕𝛥𝐩
𝜕𝐪

𝜕𝛥𝐩
𝜕𝐪

⎤

⎥

⎥

⎦

, (23)

with the Jacobian 𝐉 ,𝑣(𝐪) related to the linear velocity of the tool frame
 w.r.t. the workpiece frame  . The gradient of (19) reads as
𝜕𝑓
𝜕𝐪

= 𝛥𝐩T𝐀1
𝜕𝛥𝐩
𝜕𝐪

. (24)

5.3.2. Orientation deviation
The orientation deviation 𝛥𝐑 = 𝐑

 (𝐑
 (𝐪))

T, described as unit
uaternion 𝛥𝐨, reads as

𝐨 =

[

𝛥𝜂

𝛥𝜺

]

= 𝐨 ⊗
(

𝐨
)−1

=

[

𝜂
𝜺

]

⊗

[

𝜂
−𝜺

]

=

[

𝜂 𝜂 +
(

𝜺
)T 𝜺

𝜂 𝜺

 − 𝜂 𝜺 − 𝜺 × 𝜺

]

,

(25)

where the operator ⊗ denotes the quaternion product. If the orientation
of the actual tool frame  exactly matches the orientation of the desired
manufacturing frame , the quaternion 𝛥𝐨 in (25) becomes 𝛥𝐨T =
[

1 𝟎
]

, see [52]. Thus, the orientation deviation is constructed as soft
constraint with the positive scalar weight 𝑎 as

𝑓 = 𝑎
2
(1 − 𝛥𝜂)2 . (26)

n (26), all orientation deviations are penalized equally. If the manu-
acturing process allows for different orientation tolerances w.r.t. each
xis, the soft constraint

= 1
2
𝛥𝜺T𝐀2𝛥𝜺 , (27)

with the positive semi-definite weighting matrix 𝐀2 is used. In
Appendix A.1 the cost terms in (26) and (27) for the orientation
deviation (25) are motivated and validated using mathematical and
geometric arguments.

The soft constraints (26) and (27) may also be implemented as hard
constraints in the form

𝑐eq = 1 − 𝛥𝜂 (28)

or

𝐜eq = 𝛥𝜺 , (29)

respectively. When using these hard constraints, rotations around cer-
tain axes can be restricted. Moreover, the inequality constraints

𝐜ineq =
[

𝜺min − 𝛥𝜺
𝛥𝜺 − 𝜺max

]

, (30)

can be employed, where 𝜺min and 𝜺max are computed using (25) from
the minimum and maximum orientation deviation defined in (7). Anal-
ogous to the position deviation in Section 5.3.1, only individual com-
ponents of the orientation error 𝛥𝜺 may be included in (27), (29) and
(30) by assembling the cost functions and constraints accordingly.

The gradients of the objective function terms (26) and (27) are
computed as
𝜕𝑓
𝜕𝐪

= −𝑎(1 − 𝛥𝜂)
𝜕𝛥𝜂
𝜕𝐪

(31)

and
𝜕𝑓
𝜕𝐪

= 𝛥𝜺T𝐀2
𝜕𝛥𝜺
𝜕𝐪

, (32)

respectively, using the gradients 𝜕𝛥𝜂
𝜕𝐪 and 𝜕𝛥𝜺

𝜕𝐪 found in Appendix A.2.
he gradient of the constraint (28) reads as
𝜕𝑐eq
𝜕𝐪

= −
𝜕𝛥𝜂
𝜕𝐪

(33)

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

d

c

𝑓

I
f

and the gradients of (29) and (30) yield
𝜕𝐜eq
𝜕𝐪

= 𝜕𝛥𝜺
𝜕𝐪

, (34)

𝜕𝐜ineq
𝜕𝐪

=
⎡

⎢

⎢

⎣

− 𝜕𝛥𝜺
𝜕𝐪

𝜕𝛥𝜺
𝜕𝐪

⎤

⎥

⎥

⎦

. (35)

5.3.3. Collision avoidance
The V-Clip algorithm [53] determines the pair of globally closest

features of two convex polyhedrons, for which the signed distance 𝑙 is
computed. The signed distance 𝑙 is positive, if two obstacles are at the
istance 𝑙 from each other and a negative distance 𝑙 describes obstacles

in collision. For every collision check 𝑘 = 1,… , 𝑏 between two objects,
the signed distances 𝑙𝑘(𝐪) of all feature pairs are utilized in the soft
onstraint as

= 1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

max(0, 𝑙1,min − 𝑙1)

max(0, 𝑙2,min − 𝑙2)

⋮

max(0, 𝑙𝑏,min − 𝑙𝑏)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

T

𝐁

⎡

⎢

⎢

⎢

⎢

⎣

max(0, 𝑙1,min − 𝑙1)

max(0, 𝑙2,min − 𝑙2)

⋮
max(0, 𝑙𝑏,min − 𝑙𝑏)

⎤

⎥

⎥

⎥

⎥

⎦

, (36)

with the positive semi-definite weighting matrix 𝐁 and the respective
minimum distances 𝑙𝑘,min. The signed distances 𝑙𝑘 also be used in
inequality constraints as

𝐜ineq =

⎡

⎢

⎢

⎢

⎢

⎣

−𝑙1
−𝑙2
⋮
−𝑙𝑏

⎤

⎥

⎥

⎥

⎥

⎦

(37)

to ensure that no collision occurs in the planned joint-space path.
Note that using both constraints (36) and (37) together improves the
convergence of the optimization problem (13) significantly.

The analytical gradient of (36) reads as

𝜕𝑓
𝜕𝐪

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

max(0, 𝑙1,min − 𝑙1)

max(0, 𝑙2,min − 𝑙2)

⋮

max(0, 𝑙𝑏,min − 𝑙𝑏)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

T

𝐁

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑙1
𝜕𝐪
𝜕𝑙2
𝜕𝐪

⋮
𝜕𝑙𝑏
𝜕𝐪

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (38)

n (38), the gradients of the signed distances 𝑙𝑘 are computed in the
orm

𝜕𝑙𝑘
𝜕𝐪

=
[(

𝜕𝑙𝑘
𝜕𝐯1

) (

𝜕𝑙𝑘
𝜕𝐯2

)

⋯
(

𝜕𝑙𝑘
𝜕𝐯𝑤

)]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐉1 ,𝑣(𝐪)

𝐉2 ,𝑣(𝐪)

⋮

𝐉𝑤 ,𝑣(𝐪)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (39)

where the vectors 𝐯ℎ, ℎ = 1,… , 𝑤, denote the positions of the vertices
ℎ, ℎ = 1,… , 𝑤 of the polyhedron and 𝐉ℎ ,𝑣(𝐪), ℎ = 1,… , 𝑤, are the
corresponding Jacobians related to the linear velocity. Note that only
the vertices defining the closest feature pair are required to compute
the gradient and therefore most of the entries in the left vector in (39)
are zero. The gradient of the inequality constraint (37) directly follows
from (39). Although the analytical gradient (39) is discontinuous if the
globally closest features change, this does not affect the performance
of the optimization algorithm (13) in practice.

5.3.4. Joint limits and path continuity
In order to obtain physically feasible robot motions, a joint-space

path must be sufficiently smooth and adhere to the joint limits. Hence,
to derive continuous joint-space paths, the objective function term

𝑓 = 1
2
(

𝐪 − 𝐪𝑢,𝑖,0
)T 𝐂

(

𝐪 − 𝐪𝑢,𝑖,0
)

, (40)

with the positive semi-definite weighting matrix 𝐂, is used to penalize
8

large joint movements. In (40), the joint configuration 𝐪𝑢,𝑖,0 is the initial
guess for the optimization of the 𝑖-th manufacturing frame 𝐇
 ,𝑖, see

(14). The corresponding analytical gradient reads as
𝜕𝑓
𝜕𝐪

=
(

𝐪 − 𝐪𝑢,𝑖,0
)T 𝐂 . (41)

Note that robot movements through kinematic singular points of the
robot are explicitly allowed with the proposed path planning frame-
work and are executable with standard controllers of an industrial robot
using joint-space control.

To compute feasible robot motions, the joint angles of the robot are
constrained in (13b) within their axes limits. To improve convergence,
joint angles are penalized as soft constraints with the objective function
term

𝑓 = 1
2
𝐪̃T𝐖𝐪̃ , 𝐪̃ = 𝐪 − 1

2
(

𝐪max + 𝐪min
)

(42)

and the corresponding gradient
𝜕𝑓
𝜕𝐪

= 𝐪̃T𝐖 . (43)

The diagonal matrix 𝐖 is chosen as

𝐖 = 𝑤
2

diag
(

𝐪max − 𝐪min
)−2 , (44)

where 𝐪Tmin =
[

𝑞1,min ⋯ 𝑞𝑛,min
]

and 𝐪Tmax =
[

𝑞1,max ⋯ 𝑞𝑛,max
]

denote the
mechanical joint limits of the robot and 𝑤 > 0 is a weighting parameter.

5.4. Optimal joint-space path

Multiple joint-space paths are generated by solving the sequence
of optimization problems (13) and starting from the 𝑒𝑔 different joint-
space solutions contained in 𝑔 . If a subproblem of a sequence does
not yield a feasible solution, the corresponding joint-space path is
discarded, see Fig. 5. To find the optimal joint-space path, the costs of
the objective function terms for the manufacturing path 

 are added
up with

𝑓 𝑢 =
𝑚
∑

𝑖=1

∑

𝑗∈𝐶
𝑓𝑗 (𝐪𝑢,𝑖,𝐇

 ,𝑖) , 𝑢 = 1,… , 𝑒𝑔 (45)

for each feasible joint-space path. By comparing the individual costs
𝑓 𝑢 of each feasible joint-space path 𝑢 = 1,… , 𝑒𝑔 , the optimal joint-space
path ∗ = {𝐪∗1 ,… ,𝐪∗𝑚} is found for the desired manufacturing path 

 .
Note that only a particular subset 𝐶 ⊂ {1,… , 𝑝} of objective function
terms may be used in (45) instead of all terms 𝑓𝑗 , 𝑗 = 1,… , 𝑝 from (16).
For example, the optimization problem (16) might consider all process
properties of the manufacturing process, collision avoidance and the
joint limits to yield feasible solutions for the desired manufacturing
path 

 . Then, the evaluation of the optimal joint-space path in (45)
might use a reduced subset 𝐶 which only contains the process prop-
erties and, hence, only considers the achieved manufacturing result.
Consequently, the best joint-space path ∗ is optimal regarding the
manufacturing quality and does not take the robot movement into
account.

Note that the weighting matrices 𝐀1, 𝐀2, 𝐁 and 𝐂 and the scalar
weights 𝑤 and 𝑎 introduced in the previous section have a strong impact
on the convergence behavior and the shape of the resulting joint-space
solution, in particular if the considered process exhibits a large number
of (redundant) process DoF, tolerances and windows.

5.5. Trajectory generation

The result of the planning algorithm is the optimal joint-space
path ∗ corresponding to the desired manufacturing path 

 . As a
final step, the joint-space path ∗ is time parametrized to compute a
piecewise trajectory 𝐪∗(𝑡) with the sample points (𝑡𝑖,𝐪∗𝑖), 𝑖 = 1,… , 𝑚.
The time stamps 𝑡𝑖 are derived from the Cartesian distance between
two consecutive sample points 𝐪∗𝑖−1 and 𝐪∗𝑖 with

𝑡𝑖 = 𝑡𝑖−1 +
‖

‖

‖

𝐩
(

𝐪∗𝑖
)

− 𝐩
(

𝐪∗𝑖−1
)

‖

‖

‖2 , 𝑖 = 1,… , 𝑚 . (46)

𝑝̇𝑑,𝑖

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.
Fig. 6. Manufacturing path 
 on the rabbit-shaped workpiece in the workpiece frame

 .

The desired path velocity is specified by 𝑝̇𝑑,𝑖 > 0, 𝑖 = 1,… , 𝑚, according
to the manufacturing process and ‖⋅‖2 denotes the Euclidean norm.

The optimal smooth joint-space trajectory 𝐪∗(𝑡) is generated by
computing piecewise cubic Hermite interpolating polynomials [59] for
the sample points (𝑡𝑖,𝐪∗𝑖), 𝑖 = 1,… , 𝑚. The obtained trajectory 𝐪∗(𝑡)
is then executed on the robot to perform the manufacturing process
considering the specified process properties.

6. Experimental results

In this section, the proposed path planning framework is applied to
two example applications with significantly different process proper-
ties. To this end, only the weighting matrices of the objective function
terms have to be adapted and the equality and inequality constraints
have to be adapted to precisely describe the respective manufacturing
process, see Section 5.

The first application is a drawing process, in which a marker with
rectangular nib is utilized to draw thin and thick lines on the surface of
the workpiece. The thickness of the lines depends on the orientation of
the marker w.r.t. the desired drawing path. In the second application,
a spraying process is demonstrated. The rotationally symmetric spray
nozzle is considered as redundant DoF in this process. The rabbit-
shaped workpiece and the manufacturing path 

 employed in both
applications are shown in Fig. 6. The total length of the meander-
shaped path is approximately 2.5m with 1024 given path poses. Note
that the 𝑧-axes of the manufacturing frames (blue) are normal to the
workpiece surface and that the manufacturing frames rotate w.r.t. the
surface normal vector along the manufacturing path.

6.1. Drawing process

In this process, a line specified by the desired manufacturing path
has to be drawn on a 3D-printed rabbit with a marker mounted on the
9

Fig. 7. Experimental setup for the drawing process after completing the process. The
coordinate systems and robot joints are annotated.

end-effector of an industrial robot. This experiment demonstrates an
industrial process with an end-effector mounted tool, see Section 4.2.1,
and a complex continuous manufacturing path. This process is repre-
sentative for similar industrial processes like, e.g. welding, grinding
or cutting. The drawing process was executed and validated in a
laboratory environment, see Fig. 7. Planning long continuous robot
motions with multiple constraints is challenging due to the restrictive
mechanical axes limits and the limited workspace of the robot.

6.1.1. Drawing process properties
The experimental setup of the drawing process is shown in Fig. 7.

The robot Kuka LBR iiwa 14 R820 is employed to draw a continuous
line specified by the manufacturing path on the surface of a stationary
rabbit-shaped workpiece with a marker with rectangular nib mounted
on the end-effector. To account for kinematic inaccuracies of the real
robot, the drawing tool is equipped with a passive compliance mecha-
nism comprising two linear springs. The rectangular nib allows to draw
different line thicknesses by rotating the marker around its normal
vector. To demonstrate the capabilities of the path planning framework
including collision avoidance, the blue collision object in Fig. 7 is
placed in front of the workpiece. Due to this blue object the robot
cannot reach certain sections of the manufacturing path 

 exactly
without collision, see 1⃝– 2⃝ in Fig. 8.

To perform the drawing process on the surface of the workpiece
the position of the nib has to exactly follow the positions of the
manufacturing path 

 in Fig. 6. In contrast, orientation deviations of
the marker from the surface normal in a certain range only marginally
degrade the quality of the drawn line and are therefore specified as
cone-shaped process tolerances, see Fig. 2a. Since the nib of the marker
is rectangular, a deviation from the desired rotation around the surface
normal changes the line thickness, which should be avoided. Therefore,
the tolerance band for the rotation around the 𝑧-axis is chosen more

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.
Table 1
Objective function terms, constraints and weights used for the drawing process.

Variables Equations Weights

Position deviation

𝑓 (𝛥𝐩) (19) 𝐀1 = 𝟎
𝐜eq(𝛥𝐩) (20) Enabled
𝐜ineq(𝛥𝐩) (21) Disabled

Orientation deviation

𝑓 (𝛥𝜂) (26) 𝑎 = 80
𝑓 (𝛥𝜺) (27) 𝐀2 = diag (1, 1, 30)
𝐜eq(𝛥𝜂) (28) Disabled
𝐜eq(𝛥𝜺) (29) Disabled
𝐜ineq(𝛥𝜺) (30) Enabled

Collision avoidance

𝑓 (𝑙𝑘) (36) 𝐁 = 103diag (1, 1, 4)
𝐜ineq(𝑙𝑘) (37) Enabled

Joint limits and path continuity

𝑓 (𝐪) (40) 𝐂 = diag (10, 10, 5, 5, 5, 5, 5)
𝑓 (𝐪) (42), (44) 𝑤 = 0.05

Robot Kuka LBR iiwa 14 R820 [60]

𝐪Tmax = −𝐪Tmin = [170° 120° 170° 120° 170° 120° 175°]

restrictively. These process properties for the position and orientation
are represented by tolerance bands in the form (see Fig. 3)

𝐝max = −𝐝min =
⎡

⎢

⎢

⎣

0m
0m
0m

⎤

⎥

⎥

⎦

, 𝝓max = −𝝓min =
⎡

⎢

⎢

⎣

40°
40°
20°

⎤

⎥

⎥

⎦

. (47)

By parametrizing the objective function and selecting the corre-
sponding equality and inequality constraints, the above process prop-
erties are systematically considered in the proposed optimization-based
path planner. Since no position deviation is allowed, the equality
constraint of the position deviation (20) is used and the correspond-
ing objective term (19) and inequality constraint (21) are omitted.
To allow for orientation deviations according to (47), the equality
constraints of the marker orientation (28) and (29) are disabled. The
deviation from the desired orientation of the manufacturing path 


is penalized with the objective term (26) to minimize the utilized
tolerances. Additionally, with the soft constraint (27), the deviations
of the different orientation coordinates are weighted according to the
allowed tolerances (47). Also the inequality constraint (30) is enabled
to guarantee that the tolerance bands from (47) are observed. More-
over, it is checked that there are no collisions of the marker and the
last robot link with the table and the blue collision object, see Fig. 4.
Therefore, the corresponding objective function (36) together with the
inequality constraint (37) are used to ensure a collision-free robot
movement. Finally, to obtain continuous joint movements, the objective
terms (40) and (42) are employed, with the robot joint limits 𝐪min and
𝐪max. Note that the inverse kinematics is implicitly solved by numerical
optimization.

The weights and parameters of the individual terms of the objective
function and constraints are chosen empirically and are summarized
in Table 1. The matrix 𝐀1 weights the position deviation (19), the
scalar 𝑎 and the matrix 𝐀2 the orientation deviation, see (26) and (27),
the matrix 𝐁 penalizes joint configurations near obstacles see (36), the
matrix 𝐂 weights joint movements according to (40), and the weight
𝑤 in (42), (44) penalizes joint angles near their axis limits. In general,
diagonal matrices are advantageous, as the number of parameters is
greatly reduced and couplings between the individual DoF are avoided.
In general, larger matrix entries lead to smaller errors in the respective
DoF. Depending on which term in the objective function is crucial for
the specific process, the individual weights are chosen larger or smaller.
10
Fig. 8. Side view of the manufacturing path 
 on the rabbit-shaped workpiece in

the workpiece frame  . The manufacturing poses marked with black dots can only be
reached by exploiting the process properties.

6.1.2. Experimental results of the drawing process
The position of the workpiece frame  relative to the robot base

frame  is computed with an optimization-based algorithm [7] to reach
as many manufacturing path poses in 

 as possible with the tool.
Nevertheless, more than 15% of the manufacturing poses in 

 from
Fig. 6 are only reachable by exploiting the process properties. These
points cannot be reached exactly in position and orientation due to
mechanical axes limits, the limited workspace of the robot and colliding
objects, i.e. the blue box and the table. These poses are shown in Fig. 8
as black dots.

Using the set of parameters given in Table 1 and described in
Section 6.1.1, all feasible joint-space solutions 𝑔 for the first frame
𝐇

 ,1, see Fig. 6, of the manufacturing path 
 are determined. Sub-

sequently, the series of optimization problems (13) is solved for every
starting configuration 𝑔 , yielding the optimal joint-space path ∗ by
evaluating (45). The same objective function terms as in the optimiza-
tion (13) are employed, which allows to reuse the already calculated
objective function terms for the evaluation, see Table 1. By applying
the time parametrization (46), the optimal joint-space trajectory 𝐪∗(𝑡)
is obtained and depicted in Fig. 9. The trajectories of the individual
joints 𝑞∗ℎ(𝑡), ℎ = 1,… , 𝑛 are normalized to the respective axes limits
𝐪min and 𝐪max. Overall, the available axes ranges of the robot joints
have to be utilized to a large extent in order to perform the drawing
process, which emphasizes the complexity of the task. In particular, the
trajectories of the axes 4, 6 and 7 occasionally reach their mechanical
axes limits. Additionally, the robot moves three times through a singu-
lar configuration, i.e. axis 2 passes through zero, see Fig. 9. The mean
calculation time of a single optimization problem from the series (13)
including collision checks is approximately 70ms on an Intel Core i7-
8700K in a single-core implementation. If all CPU cores are utilized,
the mean calculation time reduces to around 18ms, since multiple
optimization problems are solved in parallel. The total calculation time
of the path planning problem with 𝑒𝑔 = 6 starting configurations is
approximately 90 s. Note that the total calculation time depends on the
number of path poses 𝑚 in the given manufacturing path, the number

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.
Fig. 9. Optimal joint-space trajectory 𝐪∗(𝑡) for the drawing process. The trajectories of
the individual joints are normalized to their respective axes limits 𝐪min and 𝐪max.

of different starting configurations 𝑒𝑔 , the CPU and the number of
available CPU cores. Without collision checks, see Section 5.3.3, the
mean optimization time further reduces by a factor of 3. Note that the
path planning problem for the drawing process in this scenario is highly
constrained and many poses along the manufacturing path 

 are only
reachable by exploiting process tolerances. Therefore, most joint-space
solutions in 𝑔 do not lead to a complete and feasible joint-space path.

A video of the experimental result of the drawing process is shown
in www.acin.tuwien.ac.at/4adf/. The result of the drawing
process in Fig. 10 shows a good agreement with the desired manu-
facturing path 

 in Fig. 6. The sections of the path with the two
different desired line thicknesses can be easily distinguished. Note that
the experiment is executed without absolute calibration and without
feedback of the actual Cartesian end-effector position.

As shown in Fig. 8, a significant portion of the manufacturing path
poses from 

 is not exactly reachable with the tool mounted on
the end-effector. Hence, process tolerances have to be utilized to solve
the path planning problem and compute the optimal trajectory 𝐪∗(𝑡).
In Fig. 11, the orientation deviations of the TCP frame poses 𝐇

 (𝐪
∗)

from the desired manufacturing path 
 are presented. The maximum

values of the utilized process tolerances are below 30° for 𝜙𝑥 and 𝜙𝑦 and
below 10° for 𝜙𝑧, which results from the higher weighting of 𝜙𝑧 in (27),
see Table 1. The process tolerances are within the allowed tolerance
bands defined in (47).

The first path pose of the manufacturing path 𝐇
 ,1 is located near

the bottom of the workpiece, see Fig. 6. Moving with the marker from
the first path pose 𝐇

 ,1 towards 1⃝ in Fig. 8, the proposed path planner
uses tolerances to avoid collisions with the blue collision object and the
table. Also tolerances from the highly penalized rotation around the
11
Fig. 10. Result of the drawing process using the manufacturing path 
 shown in

Fig. 6.

surface normal vector are necessary due to collision avoidance and the
joint limit of axis 7, see Fig. 9. High usage of orientation tolerances is
also necessary at 𝑡 = 71 s located at 2⃝. At 2⃝, the robot motion cannot
be solved without the additional freedom provided by the tolerances
due to the blue collision object. Note that the surface normals at 2⃝
directly point towards the blue collision object, see Fig. 6. At 𝑡 =
105 s located at 3⃝, again high orientation tolerances are used. These
orientation tolerances result from moving multiple times through a
singular configuration, which is required to solve the path planning
problem in one continuous robot motion, see also Fig. 9. Because the
Cartesian position of the TCP frame 𝐇

 w.r.t. the manufacturing frame


 is implemented as equality constraint, see Table 1, the resulting
deviations of the position coordinates converge below the numerical
tolerance of the used optimization solver. The presented experiment
shows an accurate execution of the drawing process with the demanded
process quality based on the specified process properties. Only with
the help of the available tolerance bands, the continuous joint-space
trajectory 𝐪∗(𝑡) could be computed, which demonstrates the feasibility
of the proposed optimization-based path planning framework.

6.2. Spraying process

In this section, the proposed optimization-based path planning
framework is applied to a spraying process. In this process, the work-
piece is mounted on the end-effector of a robot and a stationary
spray nozzle is used as the tool which has to be moved along the
manufacturing path to perform the process. The spray jet is considered
rotationally symmetric, i.e. a rotation of the spray jet around the
spray direction does not affect the process quality and is therefore
considered as redundant process DoF. This property also appears in
other industrial processes like, e.g. robotic milling, drilling or laser
cutting. Although this spraying process differs significantly from the

https://www.acin.tuwien.ac.at/4adf/

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.
Fig. 11. Orientation tolerances of the TCP frame poses 𝐇
 (𝐪

∗) w.r.t. the desired
manufacturing path 

 at the drawing process.

Fig. 12. Setup for the spraying process in simulation. The coordinate systems and robot
joints are annotated.

drawing process in Section 6.1, the proposed path planner can be
easily adapted to the new process properties. Additionally, long and
complex spray paths are challenging path planning problems where the
available redundancy has to be exploited again to successfully compute
continuous joint-space paths for the process execution.

6.2.1. Spraying process properties
The simulation environment Simulink 3D Animation of the spraying

process is shown in Fig. 12 with the robot Kuka Cybertech KR8 R1620.
The rabbit-shaped workpiece mounted on the end-effector of the robot
is shown in green and the spray machine is depicted as yellow ob-
ject. The rotationally symmetric spray jet is blue and is considered
as redundant DoF in this process. To use collision avoidance from
Section 4.4 in the path planning, the spraying machine is embedded
in two box objects and collisions with the workpiece are checked.
Collisions between the robot and the spraying machine do not occur.

The desired manufacturing path 
 from Fig. 6 has to be followed

with the spray jet to perform the spray process on the rabbit-shaped
workpiece. Hence, the lateral position (𝑥- and 𝑦-direction) of the spray
jet has to follow the manufacturing path 

 exactly, while small
deviations along the surface normal vector (𝑧-direction) are allowed.
The latter only slightly degrades the process quality and is therefore
considered as process tolerance. Due to the rotationally symmetric
12
spray nozzle, this process has a redundant process DoF of the ori-
entation around the surface normal vector. In contrast, no rotational
deviations around the 𝑥- and 𝑦-axis are permitted to maintain a circular
spray deposit. The process DoF of the spraying process are visualized
in Fig. 2b. These process properties are represented by the tolerance
bands given by

𝐝max =
⎡

⎢

⎢

⎣

0m
0m

0.045m

⎤

⎥

⎥

⎦

, 𝐝min =
⎡

⎢

⎢

⎣

0m
0m

−0.055m

⎤

⎥

⎥

⎦

, (48a)

𝝓max = −𝝓min =
⎡

⎢

⎢

⎣

0°
0°
360°

⎤

⎥

⎥

⎦

. (48b)

Based on (48), the optimization problem (13) is tailored to the
spraying process by parametrizing the objective function terms and
adding the appropriate constraints. The equality constraint of the 𝑥-
and 𝑦-position deviation in (20) is enabled to precisely follow the given
manufacturing path 

 . Hence, the corresponding position inequality
constraints in (21) are disabled and the respective weights of the
objective function term (19) are zero. To use the process tolerances
along the 𝑧-direction of the manufacturing path 

 , the equality
constraint of the 𝑧-position deviation (20) is disabled. Instead, the
𝑧-position deviation is used in the objective function term (19) and
the corresponding inequality constraint (21) ensures compliance with
the defined tolerance band (48). Because no orientation deviation is
allowed around the 𝑥- and 𝑦-axis w.r.t. the manufacturing path 

 ,
the corresponding equality constraints in (28) are enabled and the
inequality constraints (30) and objective function terms (26) and (27)
are omitted. The redundant process DoF of the spray process, i.e. the
orientation around the 𝑧-axis, is implemented by setting the respec-
tive weight in (27) to zero and disabling the corresponding equality
constraints (28) and inequality constraints (30). Thereby, orientation
deviations around the 𝑧-axis are neither penalized in the optimization
problem (13) nor constrained in any way. Collision avoidance is consid-
ered between the rabbit-shaped workpiece and the spraying machine
with the objective function term (36) and the inequality constraint
(37). The objective function terms (40) and (42) are used to obtain
continuous joint movements for the robot. The objective function terms,
equality and inequality constraints for the spraying process are sum-
marized in Table 2. The individual weights are empirically chosen as
diagonal matrices according to the specific process and the robot used.

6.2.2. Simulation results of the spraying process
Similar to the drawing process, an optimization-based algorithm [7]

is used to compute the optimal relative position of the robot base frame
 w.r.t. to the stationary TCP frame  of the spray nozzle. The path
planner is parametrized for the spraying process with the objective
functions and constraints from Table 2. The series of optimization
problems is solved based on the joint-space solutions 𝑔 for the first
manufacturing path pose 𝐇

 ,1, see Fig. 6, which yields the optimal
joint-space path ∗. Note that for this process all considered objective
function terms in Table 2 are used to evaluate the optimal joint-space
path ∗ with (45). To obtain a uniform spray coating on the workpiece,
the joint-space trajectory 𝐪∗(𝑡) is computed with (46) with a constant
path velocity. The joint trajectory 𝐪∗(𝑡) is shown in Fig. 13, where the
individual joints 𝑞∗ℎ(𝑡), ℎ = 1,… , 𝑛 are normalized to the respective axes
limits 𝐪min and 𝐪max. The robot does not reach the mechanical axes
limits during the motion and continuously follows the manufacturing
path 

 . This is possible since the redundant DoF is considered and the
robot is able to move through a singular configuration at 𝑡 = 63 s, where
the joint angle of axis 5 reaches zero. For this application, the mean
optimization time on an Intel Core i7-8700K is approximately 36ms
in a single-core implementation and around 9ms using all cores. The
total calculation time is around 60 s with 𝑒𝑔 = 6 starting configurations.
These optimization times are lower compared to the drawing process,
which originates from the robot’s lower axis count and, hence, the

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

s

t
t


t

t
f
t
p
p
m
a

Table 2
Objective function terms, constraints and weights used for the spraying process.

Variables Equations Weights

Position deviation

𝑓 (𝛥𝐩) (19) 𝐀1 = diag (0, 0, 90)
𝑐eq,𝑥(𝛥𝑥) (20) Enabled
𝑐eq,𝑦(𝛥𝑦) (20) Enabled
𝑐eq,𝑧(𝛥𝑧) (20) Disabled
𝑐ineq,𝑥(𝛥𝑥) (21) Disabled
𝑐ineq,𝑦(𝛥𝑦) (21) Disabled
𝑐ineq,𝑧(𝛥𝑧) (21) Enabled

Orientation deviation

𝑓 (𝛥𝜂) (26) 𝑎 = 0
𝑓 (𝛥𝜺) (27) 𝐀2 = diag (0, 0, 0)
𝐜eq(𝛥𝜂) (28) Disabled
𝑐eq,𝑥(𝛥𝜀1) (28) Enabled
𝑐eq,𝑦(𝛥𝜀2) (28) Enabled
𝑐eq,𝑧(𝛥𝜀3) (28) Disabled
𝐜ineq(𝛥𝜺) (30) Disabled

Collision avoidance

𝑓 (𝑙𝑘) (36) 𝐁 = 104diag (1, 1)
𝐜ineq(𝑙𝑘) (37) Enabled

Joint limits and path continuity

𝑓 (𝐪) (40) 𝐂 = diag (5, 5, 5, 5, 5, 5)
𝑓 (𝐪) (42), (44) 𝑤 = 0.05

Robot Kuka Cybertech KR8 R1620 [51]

𝐪Tmin = −[170° 185° 137° 185° 120° 350°]
𝐪Tmax = [170° 65° 163° 185° 120° 350°]

reduction of the optimization variables, see (13). Furthermore, only
two collision checks at each optimization are required for the two boxes
surrounding the spraying machine. Without collision avoidance checks,
an additional 1.5 times reduction of the computing time is possible.
A video of the simulation result of the spraying process is shown in
www.acin.tuwien.ac.at/4adf/.

The path planner significantly exploits the redundant DoF of the
praying process, i.e. the rotation around the 𝑧-axis, and the tolerance

band of the 𝑧-position to compute a feasible and continuous robot
rajectory. In Fig. 14, the position and orientation deviations from
he TCP frame poses 𝐇

 (𝐪
∗) w.r.t. the desired manufacturing path


 are presented. Deviations of the 𝑥- and 𝑦-position are constrained

and converge below the numerical tolerance of the used optimization
solver. The tolerance band of the 𝑧-position is utilized only to a small
extent, cf. (48). The orientation deviation of the TCP frame poses
𝐇

 (𝐪
∗) w.r.t. the manufacturing path 

 around the 𝑥- and 𝑦-axis
are also constrained and are consistently below the optimizer tolerance.
In contrast, rotations around the 𝑧-axis of the spray direction, i.e. the
redundant DoF, are used extensively to generate a continuous joint-
space path ∗. This experiment shows that the proposed path planner
is capable of solving complex path planning problems for various
manufacturing processes with long paths by only adapting the objective
function terms and constraints based on the required process properties.

7. Conclusions

In this paper, a novel optimization-based path planning framework
for robots is proposed which systematically accounts for all process
properties (process tolerances, process windows, constraints, redundant
degrees of freedom (DoF)) of the specific manufacturing process and
includes a collision avoidance scheme. This allows to find solutions of
path planning problems for complex manufacturing paths which cannot
be solved with state-of-the-art concepts. By parametrizing the objective
function terms and selecting the appropriate equality and inequality
13

constraints, the underlying optimization problem can be easily tailored t
Fig. 13. Optimal joint-space trajectory 𝐪∗(𝑡) for the spraying process. The trajectories
of the individual joints are normalized to their respective axes limits 𝐪min and 𝐪max.

Fig. 14. Position and orientation tolerances of the TCP frame poses 𝐇
 (𝐪

∗(𝑡)) w.r.t.
he desired manufacturing path 

 for the spraying process.

o the specific needs of the considered manufacturing process. In a
irst step, the path planner computes multiple joint configurations for
he robot based on the pose of the first point on the manufacturing
ath. Starting from these joint-space solutions, series of optimization
roblems are solved, which are all independent of each other. This
akes it possible to perform a parallel execution of the path planning

lgorithm on a multi-core CPU. This measure significantly reduces
he computing time. Moreover, analytical gradients of the objective

https://www.acin.tuwien.ac.at/4adf/

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

H
t
d
c
a
a
o
p
q
b
j
t
v
n
A
r
a
r
d
f

p
h
r
c
t
w
b
s
e

C

w
t
B
t
M
t
a

D

c
i

D

A

I
𝛥
c
(

𝛥

function and of the constraints are provided to further improve the
convergence and curb the computing time of the optimization problem.
The proposed path planning framework also allows to move the robot
through kinematic singularities, which is often avoided in state-of-the-
art algorithms that rely on task-space controllers. To demonstrate the
feasibility of the proposed approach, a drawing and a spraying process
are considered. For the drawing process, the robot is equipped with
an end-effector which holds the marker to draw a predefined line on
the surface of a workpiece. The marker has a rectangular nib, with
which two different line thicknesses can be realized in the process
by rotating the marker around the surface normal direction by 90°.

owever, the orientation of the end-effector is allowed to deviate from
he surface normal direction within a specified tolerance band without
eteriorating the final drawing quality. For many other industrial pro-
esses, like welding or cutting, similar process properties can be defined
ccordingly. The drawing process was implemented experimentally on
KUKA LBR iiwa 14 R820. Particularly interesting is the fact that 15%
f the poses along the drawing path cannot be reached for the nominal
ath, but the drawing task could be successfully performed with high
uality and the desired line thickness in the corresponding segments
y exploiting the process tolerances. For the second application, a
oint-space path for a simulated spraying process was computed. In
his process, the rotation of the spray jet around the surface normal
ector is considered a redundant DoF and the distance of the spray
ozzle to the surface can vary within a predefined tolerance band.
gain, by taking advantage of the redundant DoF, a feasible complex
obot path could be planned with the proposed framework. These two
pplications demonstrate the versatility of the proposed collision-free
obotic path planning framework, which can be easily adjusted to
ifferent manufacturing processes and is able to systematically account
or process tolerances, process windows, and available DoF.

Future works will be concerned with further improving the com-
utation time for the path planning of long manufacturing paths with
igh resolution and multiple collision objects by using compiled algo-
ithms, different optimization solvers, e.g., [61], and more advanced
ollision avoidance concepts, e.g., [62]. Additionally, by incorporating
he dynamic model of the manipulator into the path planning frame-
ork, time-optimal or energy-efficient joint-space trajectories could
e obtained. Instead of solving the individual optimization problems
equentially, using graph-based or predictive methods could further
nhance the flexibility and the resulting optimal joint-space paths.

RediT authorship contribution statement

Thomas Weingartshofer: Conceptualization, Methodology, Soft-
are, Validation, Formal analysis, Investigation, Resources, Data cura-

ion, Writing – original draft, Writing – review & editing, Visualization.
ernhard Bischof: Conceptualization, Methodology, Software. Mar-
in Meiringer: Software. Christian Hartl-Nesic: Conceptualization,
ethodology, Writing – review & editing, Supervision, Project adminis-

ration. Andreas Kugi: Writing – review & editing, Supervision, Project
dministration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

ppendix
14
Fig. 15. Orientation deviations 𝛥𝐨 w.r.t. the dashed coordinate system in the origin
with rotations around (a) the 𝑧-axis, (b) the 𝑥- and 𝑦-axis.

A.1. Cost terms for orientation deviation

The relation between unit quaternions and the angle-axis represen-
tation with the vector 𝐫 and the rotation 𝜃 around 𝐫 is given by, see [52]

𝜂 = cos
(𝜃
2

)

and (49a)

𝜺 = 𝐫 sin
(𝜃
2

)

. (49b)

In the following two examples with rotations around one axis in
(50) and around two axes in (51) are shown, where the specific range
of rotation is chosen to clarify the visual presentation in Fig. 15. In
Fig. 15a, pure rotations around the 𝑧-axis w.r.t. the dashed coordinate
system are illustrated, which correspond to unit quaternions 𝛥𝐨 in the
form

𝛥𝐨 = 𝛥𝐨′
‖

‖

𝛥𝐨′‖
‖2

, 𝛥𝐨′ =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
0
𝜀3

⎤

⎥

⎥

⎥

⎥

⎦

, −0.15 ≤ 𝜀3 ≤ 0.15 . (50)

n (50), the first two entries of the vector part of the quaternion error
𝜺 are zero while the last entry is a small random number, which
orresponds to 𝐫T =

[

0 0 1
]

. Hence, unit quaternions in the form
50) represent pure rotations around the 𝑧-axis.

In contrast, quaternion errors in the form

𝐨 = 𝛥𝐨′
‖

‖

𝛥𝐨′‖
‖2

, 𝛥𝐨′ =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝜀1
𝜀2
0

⎤

⎥

⎥

⎥

⎥

⎦

, −0.15 ≤ 𝜀1 ≤ 0.15
−0.15 ≤ 𝜀2 ≤ 0.15

, (51)

have negligible rotations around the 𝑧-axis while the rotations around
the 𝑥- and 𝑦-axis are significant, see Fig. 15b. This example shows that
penalizing the individual components of 𝛥𝜺 in (27) using 𝐀2, minimizes
the rotation around the respective axis in 𝐫.

A.2. Gradients of unit quaternions

The time derivative of a unit quaternion is given by, see [52]

𝐨̇ =
[

𝜂̇
𝜺̇

]

= 1
2

[

0
𝝎

]

⊗
[

𝜂
𝜺

]

= 1
2

[

0 −𝝎T

𝝎 𝐒(𝝎)

] [

𝜂
𝜺

]

, (52)

where 𝝎T =
[

𝜔𝑥 𝜔𝑦 𝜔𝑧
]

is the angular velocity and 𝐒(𝝎) denotes
the skew matrix defined as, see [52]

𝐒(𝝎) =
⎡

⎢

⎢

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥

⎤

⎥

⎥

. (53)

⎣−𝜔𝑦 𝜔𝑥 0 ⎦

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.

E

Hence, the time derivative of the quaternion error (25) yields

d𝛥𝐨
d𝑡

=

[d𝛥𝜂
d𝑡
d𝛥𝜺
d𝑡

]

= 𝜕𝛥𝐨
𝜕𝐪

𝐪̇ =
⎡

⎢

⎢

⎣

𝜕𝛥𝜂
𝜕𝐪
𝜕𝛥𝜺
𝜕𝐪

⎤

⎥

⎥

⎦

𝐪̇

= 1
2

[

−
(

𝝎
 − 𝝎


)T 𝛥𝜺

(

𝝎
 − 𝝎


)

𝛥𝜂 +
(

𝝎
 + 𝝎


)

× 𝛥𝜺

]

.

(54)

liminating 𝐪̇ from (54) leads to

𝜕𝛥𝐨
𝜕𝐪

=
⎡

⎢

⎢

⎣

𝜕𝛥𝜂
𝜕𝐪
𝜕𝛥𝜺
𝜕𝐪

⎤

⎥

⎥

⎦

= 1
2

[

𝛥𝜺T𝐉 ,𝜔(𝐪)

−𝛥𝜂𝐉 ,𝜔(𝐪) − 𝐒(𝛥𝜺)𝐉 ,𝜔(𝐪)

]

. (55)

Thereby, the geometric Jacobian 𝐉 ,𝜔(𝐪) is related to the angular
velocity of the contact frame  , see (3), and due to a stationary
manufacturing path 

 the corresponding Jacobian 𝐉 ,𝜔 vanishes.

References

[1] International Federation of Robotics, World robotics 2020 report, 2020, URL
http://reparti.free.fr/robotics2000.pdf, Accessed on 1st July 2022.

[2] M.T. Fralix, From mass production to mass customization, J. Text. Apparel
Technol. Manage. 1 (2) (2001) 1–7, URL https://textiles.ncsu.edu/tatm/wp-
content/uploads/sites/4/2017/11/fralix_full.pdf, Accessed on 1st July 2022.

[3] W. Terkaj, T. Tolio, A. Valente, A Review on Manufacturing Flexibility, in:
Design of Flexible Production Systems, Springer, Berlin Heidelberg, ISBN:
978-3-540-85413-5, 2009, pp. 41–61.

[4] Z. Pan, J. Polden, N. Larkin, S.V. Duin, J. Norrish, Recent progress on program-
ming methods for industrial robots, Robot. Comput.-Integr. Manuf. 28 (2) (2012)
87–94, http://dx.doi.org/10.1016/j.rcim.2011.08.004.

[5] S. Lengagne, N. Ramdani, P. Fraisse, Planning and fast replanning safe motions
for humanoid robots, Trans. Robot. 27 (6) (2011) 1095–1106, http://dx.doi.org/
10.1109/tro.2011.2162998.

[6] N.C.N. Doan, W. Lin, Optimal robot placement with consideration of redundancy
problem for wrist-partitioned 6R articulated robots, Robot. Comput.-Integr.
Manuf. 48 (2017) 233–242, http://dx.doi.org/10.1016/j.rcim.2017.04.007.

[7] T. Weingartshofer, C. Hartl-Nesic, A. Kugi, Optimal TCP and robot base place-
ment for a set of complex continuous paths, in: International Conference on
Robotics and Automation, IEEE, Xi’an, 2021, pp. 9659–9665, http://dx.doi.org/
10.1109/icra48506.2021.9561900.

[8] R.K. Malhan, A.V. Shembekar, A.M. Kabir, P.M. Bhatt, B. Shah, S. Zanio, S.
Nutt, S.K. Gupta, Automated planning for robotic layup of composite prepreg,
Robot. Comput.-Integr. Manuf. 67 (2021) 102020, http://dx.doi.org/10.1016/j.
rcim.2020.102020.

[9] H. Fang, S. Ong, A. Nee, Robot path planning optimization for welding complex
joints, Int. J. Adv. Manuf. Technol. 90 (9) (2016) 3829–3839, http://dx.doi.org/
10.1007/s00170-016-9684-z.

[10] W. Gao, Q. Tang, J. Yao, Y. Yang, Automatic motion planning for complex
welding problems by considering angular redundancy, Robot. Comput.-Integr.
Manuf. 62 (2020) 101862, http://dx.doi.org/10.1016/j.rcim.2019.101862.

[11] Q. Wu, J. Lu, W. Zou, D. Xu, Path planning for surface inspection on a
robot-based scanning system, in: International Conference on Mechatronics and
Automation, IEEE, Beijing, 2015, pp. 2284–2289, http://dx.doi.org/10.1109/
icma.2015.7237842.

[12] F. Nagata, Y. Kusumoto, Y. Fujimoto, K. Watanabe, Robotic sanding system for
new designed furniture with free-formed surface, Robot. Comput.-Integr. Manuf.
23 (4) (2007) 371–379, http://dx.doi.org/10.1016/j.rcim.2006.04.004.

[13] N. Asakawa, K. Toda, Y. Takeuchi, Automation of chamfering by an industrial
robot for the case of hole on free-curved surface, Robot. Comput.-Integr. Manuf.
18 (5-6) (2002) 379–385, http://dx.doi.org/10.1016/s0736-5845(02)00006-6.

[14] W. Sheng, H. Chen, N. Xi, Y. Chen, Tool path planning for compound surfaces
in spray forming processes, Trans. Autom. Sci. Eng. 2 (3) (2005) 240–249,
http://dx.doi.org/10.1109/tase.2005.847739.

[15] H. Chen, T. Fuhlbrigge, X. Li, Automated industrial robot path planning for
spray painting process: A review, in: International Conference on Automation
Science and Engineering, IEEE, Arlington, 2008, pp. 522–527, http://dx.doi.org/
10.1109/coase.2008.4626515.

[16] Q. Yu, G. Wang, K. Chen, A robotic spraying path generation algorithm for
free-form surface based on constant coating overlapping width, in: International
Conference on Cyber Technology in Automation, Control, and Intelligent Systems,
IEEE, Shenyang, 2015, pp. 1045–1049, http://dx.doi.org/10.1109/cyber.2015.
7288089.

[17] A. Kharidege, D.T. Ting, Z. Yajun, A practical approach for automated polishing
system of free-form surface path generation based on industrial arm robot, Int.
J. Adv. Manuf. Technol. 93 (9) (2017) 3921–3934, http://dx.doi.org/10.1007/
s00170-017-0726-y.
15
[18] Z. Kingston, M. Moll, L.E. Kavraki, Sampling-based methods for motion planning
with constraints, Annu. Rev. Control Robot. Auton. Syst. 1 (2018) 159–185,
http://dx.doi.org/10.1146/annurev-control-060117-105226.

[19] I.A. Sucan, M. Moll, L.E. Kavraki, The open motion planning library,
Robot. Autom. Mag. 19 (4) (2012) 72–82, http://dx.doi.org/10.1109/mra.2012.
2205651.

[20] K. Hauser, V. Ng-Thow-Hing, Fast smoothing of manipulator trajectories using
optimal bounded-acceleration shortcuts, in: International Conference on Robotics
and Automation, IEEE, Anchorage, 2010, pp. 2493–2498, http://dx.doi.org/10.
1109/robot.2010.5509683.

[21] J.D. Maeyer, B. Moyaers, E. Demeester, Cartesian path planning for arc welding
robots: Evaluation of the descartes algorithm, in: International Conference on
Emerging Technologies and Factory Automation, IEEE, Limassol, 2017, pp. 1–8,
http://dx.doi.org/10.1109/etfa.2017.8247616.

[22] R. Smits, KDL: Kinematics and Dynamics Library, Orocos, 2022, URL http:
//www.orocos.org/kdl, Accessed on 1st July 2022.

[23] R. Diankov, Automated Construction of Robotic Manipulation Programs (Ph.D.
thesis), Carnegie Mellon University, The Robotics Institute, Pittsburgh, 2010,
URL http://www.programmingvision.com/rosen_diankov_thesis.pdf, Accessed on
1st July 2022.

[24] D. Bertram, J. Kuffner, R. Dillmann, T. Asfour, An integrated approach to inverse
kinematics and path planning for redundant manipulators, in: International
Conference on Robotics and Automation, IEEE, Orlando, 2006, pp. 1874–1879,
http://dx.doi.org/10.1109/robot.2006.1641979.

[25] M. Elbanhawi, M. Simic, Sampling-based robot motion planning: A review, IEEE
Access 2 (2014) 56–77, http://dx.doi.org/10.1109/access.2014.2302442.

[26] K. Hauser, Y. Zhou, Asymptotically optimal planning by feasible kinodynamic
planning in a state–cost space, Trans. Robot. 32 (6) (2016) 1431–1443, http:
//dx.doi.org/10.1109/tro.2016.2602363.

[27] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, P. Abbeel, Finding lo-
cally optimal, collision-free trajectories with sequential convex optimization,
in: Robotics: Science and Systems, Vol. IX, RSS, Berlin, 2013, pp. 1–10, http:
//dx.doi.org/10.15607/rss.2013.ix.031.

[28] N. Ratliff, M. Zucker, J.A. Bagnell, S. Srinivasa, CHOMP: Gradient optimization
techniques for efficient motion planning, in: International Conference on Robotics
and Automation, IEEE, Kobe, 2009, pp. 489–494, http://dx.doi.org/10.1109/
robot.2009.5152817.

[29] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, S. Schaal, STOMP: Stochastic
trajectory optimization for motion planning, in: International Conference on
Robotics and Automation, IEEE, Shanghai, 2011, pp. 4569–4574, http://dx.doi.
org/10.1109/icra.2011.5980280.

[30] N.C.N. Doan, P.Y. Tao, W. Lin, Optimal redundancy resolution for robotic arc
welding using modified particle swarm optimization, in: International Conference
on Advanced Intelligent Mechatronics, IEEE, Banff, 2016, pp. 554–559, http:
//dx.doi.org/10.1109/aim.2016.7576826.

[31] M. Gadaleta, M. Pellicciari, G. Berselli, Optimization of the energy consumption
of industrial robots for automatic code generation, Robot. Comput.-Integr. Manuf.
57 (2019) 452–464, http://dx.doi.org/10.1016/j.rcim.2018.12.020.

[32] C.G.L. Bianco, A. Piazzi, A genetic/interval approach to optimal trajectory
planning of industrial robots under torque constraints, in: European Control
Conference, IEEE, Karlsruhe, 1999, pp. 942–947, http://dx.doi.org/10.23919/
ecc.1999.7099428.

[33] I. Gentilini, K. Nagamatsu, K. Shimada, Cycle time based multi-goal path
optimization for redundant robotic systems, in: International Conference on
Intelligent Robots and Systems, IEEE, Tokyo, 2013, pp. 1786–1792, http://dx.
doi.org/10.1109/iros.2013.6696591.

[34] J. Kim, E.A. Croft, Online near time-optimal trajectory planning for industrial
robots, Robot. Comput.-Integr. Manuf. 58 (2019) 158–171, http://dx.doi.org/10.
1016/j.rcim.2019.02.009.

[35] A. Gasparetto, V. Zanotto, Optimal trajectory planning for industrial robots,
Adv. Eng. Softw. 41 (4) (2010) 548–556, http://dx.doi.org/10.1016/j.advengsoft.
2009.11.001.

[36] J. Huang, P. Hu, K. Wu, M. Zeng, Optimal time-jerk trajectory planning for
industrial robots, Mech. Mach. Theory 121 (2018) 530–544, http://dx.doi.org/
10.1016/j.mechmachtheory.2017.11.006.

[37] F. Rubio, C. Llopis-Albert, F. Valero, J.L. Suñer, Industrial robot efficient
trajectory generation without collision through the evolution of the optimal
trajectory, Robot. Auton. Syst. 86 (2016) 106–112, http://dx.doi.org/10.1016/j.
robot.2016.09.008.

[38] T. Chettibi, H. Lehtihet, M. Haddad, S. Hanchi, Minimum cost trajectory planning
for industrial robots, Eur. J. Mech. A Solids 23 (4) (2004) 703–715, http:
//dx.doi.org/10.1016/j.euromechsol.2004.02.006.

[39] J. Polden, Z. Pan, N. Larkin, S. van Duin, Adaptive partial shortcuts: Path
optimization for industrial robotics, J. Intell. Robot. Syst. 86 (1) (2016) 35–47,
http://dx.doi.org/10.1007/s10846-016-0437-x.

[40] A. Aristidou, J. Lasenby, Y. Chrysanthou, A. Shamir, Inverse kinematics tech-
niques in computer graphics: A survey, Comput. Graph. Forum 37 (6) (2017)
35–58, http://dx.doi.org/10.1111/cgf.13310.

http://reparti.free.fr/robotics2000.pdf
https://textiles.ncsu.edu/tatm/wp-content/uploads/sites/4/2017/11/fralix_full.pdf
https://textiles.ncsu.edu/tatm/wp-content/uploads/sites/4/2017/11/fralix_full.pdf
https://textiles.ncsu.edu/tatm/wp-content/uploads/sites/4/2017/11/fralix_full.pdf
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb3
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb3
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb3
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb3
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb3
http://dx.doi.org/10.1016/j.rcim.2011.08.004
http://dx.doi.org/10.1109/tro.2011.2162998
http://dx.doi.org/10.1109/tro.2011.2162998
http://dx.doi.org/10.1109/tro.2011.2162998
http://dx.doi.org/10.1016/j.rcim.2017.04.007
http://dx.doi.org/10.1109/icra48506.2021.9561900
http://dx.doi.org/10.1109/icra48506.2021.9561900
http://dx.doi.org/10.1109/icra48506.2021.9561900
http://dx.doi.org/10.1016/j.rcim.2020.102020
http://dx.doi.org/10.1016/j.rcim.2020.102020
http://dx.doi.org/10.1016/j.rcim.2020.102020
http://dx.doi.org/10.1007/s00170-016-9684-z
http://dx.doi.org/10.1007/s00170-016-9684-z
http://dx.doi.org/10.1007/s00170-016-9684-z
http://dx.doi.org/10.1016/j.rcim.2019.101862
http://dx.doi.org/10.1109/icma.2015.7237842
http://dx.doi.org/10.1109/icma.2015.7237842
http://dx.doi.org/10.1109/icma.2015.7237842
http://dx.doi.org/10.1016/j.rcim.2006.04.004
http://dx.doi.org/10.1016/s0736-5845(02)00006-6
http://dx.doi.org/10.1109/tase.2005.847739
http://dx.doi.org/10.1109/coase.2008.4626515
http://dx.doi.org/10.1109/coase.2008.4626515
http://dx.doi.org/10.1109/coase.2008.4626515
http://dx.doi.org/10.1109/cyber.2015.7288089
http://dx.doi.org/10.1109/cyber.2015.7288089
http://dx.doi.org/10.1109/cyber.2015.7288089
http://dx.doi.org/10.1007/s00170-017-0726-y
http://dx.doi.org/10.1007/s00170-017-0726-y
http://dx.doi.org/10.1007/s00170-017-0726-y
http://dx.doi.org/10.1146/annurev-control-060117-105226
http://dx.doi.org/10.1109/mra.2012.2205651
http://dx.doi.org/10.1109/mra.2012.2205651
http://dx.doi.org/10.1109/mra.2012.2205651
http://dx.doi.org/10.1109/robot.2010.5509683
http://dx.doi.org/10.1109/robot.2010.5509683
http://dx.doi.org/10.1109/robot.2010.5509683
http://dx.doi.org/10.1109/etfa.2017.8247616
http://www.orocos.org/kdl
http://www.orocos.org/kdl
http://www.orocos.org/kdl
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://dx.doi.org/10.1109/robot.2006.1641979
http://dx.doi.org/10.1109/access.2014.2302442
http://dx.doi.org/10.1109/tro.2016.2602363
http://dx.doi.org/10.1109/tro.2016.2602363
http://dx.doi.org/10.1109/tro.2016.2602363
http://dx.doi.org/10.15607/rss.2013.ix.031
http://dx.doi.org/10.15607/rss.2013.ix.031
http://dx.doi.org/10.15607/rss.2013.ix.031
http://dx.doi.org/10.1109/robot.2009.5152817
http://dx.doi.org/10.1109/robot.2009.5152817
http://dx.doi.org/10.1109/robot.2009.5152817
http://dx.doi.org/10.1109/icra.2011.5980280
http://dx.doi.org/10.1109/icra.2011.5980280
http://dx.doi.org/10.1109/icra.2011.5980280
http://dx.doi.org/10.1109/aim.2016.7576826
http://dx.doi.org/10.1109/aim.2016.7576826
http://dx.doi.org/10.1109/aim.2016.7576826
http://dx.doi.org/10.1016/j.rcim.2018.12.020
http://dx.doi.org/10.23919/ecc.1999.7099428
http://dx.doi.org/10.23919/ecc.1999.7099428
http://dx.doi.org/10.23919/ecc.1999.7099428
http://dx.doi.org/10.1109/iros.2013.6696591
http://dx.doi.org/10.1109/iros.2013.6696591
http://dx.doi.org/10.1109/iros.2013.6696591
http://dx.doi.org/10.1016/j.rcim.2019.02.009
http://dx.doi.org/10.1016/j.rcim.2019.02.009
http://dx.doi.org/10.1016/j.rcim.2019.02.009
http://dx.doi.org/10.1016/j.advengsoft.2009.11.001
http://dx.doi.org/10.1016/j.advengsoft.2009.11.001
http://dx.doi.org/10.1016/j.advengsoft.2009.11.001
http://dx.doi.org/10.1016/j.mechmachtheory.2017.11.006
http://dx.doi.org/10.1016/j.mechmachtheory.2017.11.006
http://dx.doi.org/10.1016/j.mechmachtheory.2017.11.006
http://dx.doi.org/10.1016/j.robot.2016.09.008
http://dx.doi.org/10.1016/j.robot.2016.09.008
http://dx.doi.org/10.1016/j.robot.2016.09.008
http://dx.doi.org/10.1016/j.euromechsol.2004.02.006
http://dx.doi.org/10.1016/j.euromechsol.2004.02.006
http://dx.doi.org/10.1016/j.euromechsol.2004.02.006
http://dx.doi.org/10.1007/s10846-016-0437-x
http://dx.doi.org/10.1111/cgf.13310

Robotics and Computer-Integrated Manufacturing 82 (2023) 102516T. Weingartshofer et al.
[41] K. Hauser, Continuous Pseudoinversion of a Multivariate Function: Appli-
cation to Global Redundancy Resolution, in: Algorithmic Foundations of
Robotics XII. Springer Proceedings in Advanced Robotics, Springer, Cham, ISBN:
978-3-030-43089-4, 2020, pp. 496–511.

[42] P. Beeson, B. Ames, TRAC-IK: An open-source library for improved solv-
ing of generic inverse kinematics, in: International Conference on Humanoid
Robots (Humanoids), IEEE, Seoul, 2015, pp. 928–935, http://dx.doi.org/10.
1109/humanoids.2015.7363472.

[43] K. Hauser, Learning the problem-optimum map: Analysis and application to
global optimization in robotics, Trans. Robot. 33 (1) (2017) 141–152, http:
//dx.doi.org/10.1109/tro.2016.2623345.

[44] L.-C. Wang, C. Chen, A combined optimization method for solving the inverse
kinematics problems of mechanical manipulators, IEEE Trans. Robot. Autom. 7
(4) (1991) 489–499, http://dx.doi.org/10.1109/70.86079.

[45] P. Ruppel, N. Hendrich, S. Starke, J. Zhang, Cost functions to specify full-
body motion and multi-goal manipulation tasks, in: International Conference on
Robotics and Automation, IEEE, Brisbane, 2018, pp. 3152–3159, http://dx.doi.
org/10.1109/icra.2018.8460799.

[46] M. Kang, H. Shin, D. Kim, S.-E. Yoon, TORM: Fast and accurate trajectory
optimization of redundant manipulator given an end-effector path, in: Interna-
tional Conference on Intelligent Robots and Systems, IEEE, Las Vegas, 2020, pp.
9417–9424, http://dx.doi.org/10.1109/iros45743.2020.9341358.

[47] R. Holladay, O. Salzman, S. Srinivasa, Minimizing task-space Fréchet error via
efficient incremental graph search, Robot. Autom. Lett. 4 (2) (2019) 1999–2006,
http://dx.doi.org/10.1109/lra.2019.2899668.

[48] M. Faroni, M. Beschi, N. Pedrocchi, A. Visioli, Predictive inverse kinematics
for redundant manipulators with task scaling and kinematic constraints, Trans.
Robot. 35 (1) (2019) 278–285, http://dx.doi.org/10.1109/tro.2018.2871439.

[49] D. Rakita, B. Mutlu, M. Gleicher, Relaxedik: Real-time synthesis of accurate and
feasible robot arm motion, in: Robotics: Science and Systems, Vol. XIV, RSS,
Pittsburgh, 2018, pp. 26–30, http://dx.doi.org/10.15607/rss.2018.xiv.043.
16
[50] P. Praveena, D. Rakita, B. Mutlu, M. Gleicher, User-guided offline synthesis of
robot arm motion from 6-DoF paths, in: International Conference on Robotics
and Automation, IEEE, Montreal, 2019, pp. 8825–8831, http://dx.doi.org/10.
1109/icra.2019.8793483.

[51] KUKA Deutschland GmbH, Spez KR CYBERTECH nano V2, 2018.
[52] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and

Control, first ed., Springer, London, ISBN: 978-1-84628-642-1, 2009.
[53] B. Mirtich, V-Clip: fast and robust polyhedral collision detection, Trans. Graph.

17 (3) (1998) 177–208, http://dx.doi.org/10.1145/285857.285860.
[54] H. Anton, C. Rorres, Elementary Linear Algebra, eleventh ed., Wiley, New Jersey,

ISBN: 978-1-119-62569-8, 2019.
[55] R.A. Horn, C.R. Johnson, Matrix Analysis, second ed., Cambridge University

Press, New York, ISBN: 978-0-521-83940-2, 2013.
[56] J. Nocedal, S. Wright, Numerical Optimization, second ed., in: Springer Series

in Operations Research and Financial Engineering, Springer, New York, ISBN:
978-0387-30303-1, 2006.

[57] R.H. Byrd, J.C. Gilbert, J. Nocedal, A trust region method based on interior point
techniques for nonlinear programming, Math. Program. 89 (1) (2000) 149–185,
http://dx.doi.org/10.1007/pl00011391.

[58] R. Waltz, J. Morales, J. Nocedal, D. Orban, An interior algorithm for nonlinear
optimization that combines line search and trust region steps, Math. Program.
107 (3) (2005) 391–408, http://dx.doi.org/10.1007/s10107-004-0560-5.

[59] F.N. Fritsch, R.E. Carlson, Monotone piecewise cubic interpolation, SIAM J.
Numer. Anal. 17 (2) (1980) 238–246, http://dx.doi.org/10.1137/0717021.

[60] KUKA Robot GmbH, BA LBR iiwa V5, 2015.
[61] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming, Math. Program. 106 (1)
(2005) 25–57, http://dx.doi.org/10.1007/s10107-004-0559-y.

[62] M. Montanari, N. Petrinic, OpenGJK for C, C# and Matlab: Reliable solutions to
distance queries between convex bodies in three-dimensional space, SoftwareX
7 (2018) 352–355, http://dx.doi.org/10.1016/j.softx.2018.10.002.

http://refhub.elsevier.com/S0736-5845(22)00198-3/sb41
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb41
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb41
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb41
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb41
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb41
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb41
http://dx.doi.org/10.1109/humanoids.2015.7363472
http://dx.doi.org/10.1109/humanoids.2015.7363472
http://dx.doi.org/10.1109/humanoids.2015.7363472
http://dx.doi.org/10.1109/tro.2016.2623345
http://dx.doi.org/10.1109/tro.2016.2623345
http://dx.doi.org/10.1109/tro.2016.2623345
http://dx.doi.org/10.1109/70.86079
http://dx.doi.org/10.1109/icra.2018.8460799
http://dx.doi.org/10.1109/icra.2018.8460799
http://dx.doi.org/10.1109/icra.2018.8460799
http://dx.doi.org/10.1109/iros45743.2020.9341358
http://dx.doi.org/10.1109/lra.2019.2899668
http://dx.doi.org/10.1109/tro.2018.2871439
http://dx.doi.org/10.15607/rss.2018.xiv.043
http://dx.doi.org/10.1109/icra.2019.8793483
http://dx.doi.org/10.1109/icra.2019.8793483
http://dx.doi.org/10.1109/icra.2019.8793483
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb51
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb52
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb52
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb52
http://dx.doi.org/10.1145/285857.285860
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb54
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb54
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb54
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb55
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb55
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb55
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb56
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb56
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb56
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb56
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb56
http://dx.doi.org/10.1007/pl00011391
http://dx.doi.org/10.1007/s10107-004-0560-5
http://dx.doi.org/10.1137/0717021
http://refhub.elsevier.com/S0736-5845(22)00198-3/sb60
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1016/j.softx.2018.10.002

	Optimization-based path planning framework for industrial manufacturing processes with complex continuous paths
	Introduction
	Literature Review and Contribution
	Sampling-based Path Planners
	Optimization-based Path Planners
	Inverse Kinematics and Pathwise Inverse Kinematics
	Comparison, Contribution and Outline

	Mathematical Model
	Manufacturing Process
	Manufacturing Path
	Manufacturing Tool
	Tool on end-effector
	Stationary tool

	Process DoF and Process Properties
	Collision Avoidance

	Optimization-Based Path Planning
	Starting Configurations
	Optimization Problem
	Objective Functions and Constraints
	Position Deviation
	Orientation Deviation
	Collision Avoidance
	Joint Limits and Path Continuity

	Optimal Joint-Space Path
	Trajectory Generation

	Experimental Results
	Drawing Process
	Drawing Process Properties
	Experimental Results of the Drawing Process

	Spraying Process
	Spraying Process Properties
	Simulation Results of the Spraying Process

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix
	Cost Terms for Orientation Deviation
	Gradients of Unit Quaternions

	References

