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1. Introduction and Short Description: 

 
Science is racing against time to stop 
global warming. Since the Kyoto protocol 
[1], published in the mid-90s, climate 
policy was set in motion. Different 
protocols, the most common ones being 
the Paris agreement [2] in 2015 and the 
renewable energy directive [3] (RED) in 
2009 of the European Union with a recast 
in 2018 [4], have evolved. According to 
the Paris agreement, the climate change is 
to hold significantly below 2°C. Experts 
are not sure if this goal is still achievable. 
[5] In all agreements it is clearly stated, 

that significant reduction of GHGs has to 
occur in order to achieve CO2 neutrality 
eventually. This ambitious goal can only 
be achieved if all feasible sources for 
renewable energy production are 
exploited. 
 
From this point of view, the concept of 
biofuel production via the bioCRACK 
process and subsequent 
hydrodeoxygenation (HDO) of liquid 
phase pyrolysis (LPP) oil with synthesis 
gas (syngas) from renewable feed has been 
developed (Figure 1).  
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Figure 1: Combined biofuel production route 



It combines two major pathways for 
biomass liquefaction: indirect liquefaction 
through gasification [6] with subsequent 
synthesis and direct liquefaction through 
pyrolysis [7] and HDO. 
 
In the bioCRACK process [8], biomass is 
liquefied through pyrolysis in a heavy oil 
refinery stream; whereas non-polar 
biomass fragments are then dissolved in 
the heat carrier oil and polar biomass 
constituents build up LPP oil together with 
the water of reaction. The heat carrier oil, 
which is also partly cracked during this 
process, is afterwards upgraded in existing 
refinery units. LPP oil needs a more 
extensive upgrade such as HDO. 
 
In order to replace fossil hydrogen and 
prevent extensive gas cleaning concepts, 
LPP oil was subsequently hydrotreated 
with a hydrogen rich synthesis gas, 
produced via sorption enhanced 
reforming (SER) [9], by making use of 
the water-gas shift (WGS) reaction. The 
combined biofuel production concept of 
LPP and SER is shown in Figure 1. 
 
 
 
 
 

2. Process design and methodology 
 
Liquid phase pyrolysis was performed in 
the bioCRACK pilot plant, which was 
designed for a maximum throughput of 
100 kg/h biomass. 
Gasification was carried out in a 100 kWth 
dual fluidized bed (DFB) steam 
gasification reactor in technical scale. 
The HDO experiments were performed in 
a lab scale plug flow reactor with a 
throughput of 10 g/h LPP oil, equivalent to 
a liquid hourly space velocity of 0.5 h-1, at 
350°C and 120 bar. The reaction was 
catalyzed heterogeneously with a sulfided 
metal oxide catalyst. 
 
3. Results and Discussion 
 
For HDO, a test gas bomb with the 
composition of the SER produced syngas, 
as shown in Table 1, was used.  
Table 1: Composition of the syngas test gas bomb 

Product gas composition Test gas bomb 
H2 [vol%db] 70.5 
CO [vol%db] 8 
CO2 [vol%db] 5.5 
CH4 [vol%db] 14 
C2H4 [vol%db] 1 
C2H6 [vol%db] 1 

 

 
Figure 2: Gas phase composition of HDO inlet (syngas) and outlet gas 
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Figure 3: Boiling range of the HDO syngas product compared to HDO with pure hydrogen as well as diesel 

In Figure 2, the composition of the HDO 
inlet gas phase is compared with the HDO 
outlet gas phase. In the first 8 hours, pure 
hydrogen, which was used for sulfidation, 
was replaced by syngas. Afterwards, a 
stable outlet gas phase composition was 
achieved. CO was nearly fully converted 
into CO2 with a stoichiometric factor of 
one, Methane was not converted. The net 
hydrogen content decreased slightly 
Thus, a product with close to diesel 
properties, comparable to HDO with pure 
hydrogen, was produced, which reflects in 
the boiling range in Figure 3. 
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