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Kurzfassung

Mithilfe von quantifizierten booleschen Formeln (QBFs) kénnen schwierige Probleme
aus Bereichen wie der formalen Verifikation und Planung in einer kurzen und préag-
nanten Weise dargestellt und beschrieben werden. Jedoch ist das Erfiillbarkeitsproblem
von quantifizierten booleschen Formeln (QSAT) ein PSPACE-vollstandiges und somit
ein schwieriges Problem. Eine weitere Generalisierung von QBF ist Dependency QBF.
DQBFs erlauben fiir jede existenzielle Variable eine explizite Spezifikation ihrer Abhén-
gigkeiten von universellen Variablen. Dadurch kénnen Probleme mit DQBFs in einer
noch priagnanteren Form dargestellt werden. Diese Ausdrucksstirke zieht jedoch ein
hoheres Komplexitétslevel mit sich. Das Erfiillbarkeitsproblem fiir DQBFs (DQSAT) ist
ein NEXPTIME-vollstidndiges Problem und damit noch schwieriger zu lésen als QSAT.
Durch die Komplexitat dieser Probleme ist die korrekte Implementierung bzw. die Kor-
rektheit der Ergebnisse von Solvern nicht automatisch garantiert. Um Gewissheit in die
Ergebnisse von Solvern zu bekommen, generieren diese daher zusétzlich Zertifikate. Ziel
der vorliegenden Arbeit ist es, die Korrektheit der Ergebnisse eines expansionsbasierten
Solvers fiir DQBF zu verifizieren. Wir implementieren ein Tracing-Modul in PEDANT,
welches die Ausgabe von QRAT Beweisen fiir unerfiillbare QBFs ermoglicht. Dadurch
kann die Unerfiillbarkeit von QBF Instanzen von QRAT-TRIM verifiziert werden. In
unseren Experimenten verwenden wir unerfiillbare Instanzen aus den PCNF Tracks
von QBFEVAL’19 und QBFEVAL’20. QRAT-TRIM kann unter Zuhilfenahme der von
PEDANT erstellten Zertifikate die Unerfiillbarkeit dieser QBFs bestitigen. Das Tracing
beeinflusst die Performance von PEDANT nicht nennenswert.
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Abstract

Quantified Boolean Formulas (QBFs) can be used to represent problems in areas like
formal verification and planning in a concise way. However, the satisfiability problem
of quantified Boolean Formulas (QSAT) is PSPACE-complete and thus believed to be
intractable in general. A further generalization of QBF is DQBF. In a dependency QBF
each existential variable has an explicitly stated dependency set, which is a subset of the
universal variables. The satisfiability problem of DQBFs is NEXPTIME-complete and
thus believed to be even harder than QSAT. Because of the complexity of these problems
the correct implementation of solvers, respectively the correctness of their output, is not
easily guaranteed. In order to create certainty in solvers’ results, they need to generate
certificates which can be used to verify the correctness of their results. The goal of the
present work is to verify the correctness of the results of an expansion-based solver for
DQBF. We implement a tracing module in PEDANT which allows the generation of QRAT
proofs for unsatisfiable QBFs. This allows the verification of unsatisfiable QBF instances
using QRAT-TRrRIM. We perform experiments with unsatisfiable instances from the PCNF
tracks of QBFEVAL’19 and QBFEVAL’20. Using the certificates created by PEDANT,
QRAT-TRIM can indeed confirm the unsatisfiability of these QBFs. Furthermore, tracing
does not deteriorate the performance of PEDANT.

ix
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CHAPTER

Introduction

Over the last few decades propositional satisfiability (SAT) solving has gained popularity
resulting in steady progress [H.IS19al BEHT20|. Conflict Driven Clause Learning
(CDCL) represents the state of the art algorithm in SAT solving [MSJPMO09|, which
allows modern solvers to handle input formulas with thousands of variables and millions
of clauses [MZ09]. Although the performance of modern solvers is remarkable, it does not
automatically guarantee the correctness of each concrete solver implementation. Often
SAT solvers implement non-trivial proof techniques which are hard to realize. Minor
errors can lead to unintentional behaviour of the designed algorithm which subsequently
might decide the satisfiability of an input formula incorrectly. For complex enough
formulas it is not possible to verify the result of a SAT solver afterwards, given just the
binary output (TRUE / FALSE). In order to prove the correctness of a result, additional
information in form of certificates is needed, which provide enough evidence for proving
the satisfiability of a formula. Given a satisfying assignment, one can easily certify a
satisfiable propositional formula. In contrast, proving the unsatisfiability of a propositional
formula is much harder. In these cases, the certificate needs to provide enough evidence
that there can not be an assignment of variables, such that the propositional formula is
satisfied. As an example, this can be done using a resolution proof. The SAT community
established DRAT [HHW13b| as a unified proof system allowing the certification of both

satisfiable and unsatisfiable formulas.

Although certificates allow a retrospective verification of the satisfiability of the corre-
sponding formulas using an external checker, it is not automatically guaranteed that the
checker is implemented correctly. However, typically it is easier to implement a checker
than implementing a solver. The de-facto standard checker utilized in the SAT community
is DRAT-TriM [WHH14| allowing the verification of DRAT proofs. DRAT-TRIM is
well tested and due its heavy usage in the community has gained a certain level of trust.
Furthermore there are checkers which are formally verified, such that their correctness
is guaranteed. For instance, GRAT |[Laml7] or LRAT provide a formally

1
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INTRODUCTION

verified checkers. Both approaches build upon the DRAT proof format and extend it by
adding additional information in order to simplify the validation algorithm. Although
DRAT-TrIM is highly optimized, the verification of DRAT proofs is quite expensive.
The simplification of the validation algorithm not only allows a faster proof checking but
also facilitates the formal verification of it.

The interest in SAT solving is partly due to the NP-completeness of the problem [Coo71].
As a result each problem in the complexity class NP can be transformed or reduced to the
SAT problem in polynomial time, such that an efficient algorithm for SAT also solves all
problems in NP efficiently. The complexity class NP consists of decision problems which
are decidable in polynomial time by a non-deterministic Turing machine. The research in
NP-complete problems also connect to the very famous problem whether P = NP. The
discovery of a polynomial time algorithm for an NP-complete problem would prove this
major unsolved problem. Although the general opinion tends towards NP being a proper
superset of P, this still remains open.

Regardless of the success and the effectiveness of SAT solvers, there are problems
which do not have a short encoding in propositional logic. This especially applies to
problems beyond NP. For these problems a more sophisticated encoding method like
QBF and DQBF can dramatically decrease the size of the encoding. The generalization
of propositional logic called Quantified Boolean Formulas (QBF) allows the explicit
quantification over truth values. It introduces the universal (V) as well as the existential (3)
quantification of propositional variables. The usage of Henkin quantifiers on
propositional variables further generalizes QBFs and results in Dependency Quantified
Boolean Formulas (DQBF). In contrast to propositional formulas, QBFs and DQBFs
allow a more succinct encoding of problems in fields like AT planning [Rin09], software

verification [Kro09] or electronic design automation [VIWM15].

The success achieved over the last decades in the field of SAT also inspired the research of
the generalized satisfiability problems QSAT and DQSAT. Despite the steady improvement
of decision procedures for QSAT and DQSAT, the anticipated performance gains compared
to SAT solving are yet to be seen. However, the breakthroughs in SAT solving in
the first place facilitated the progress in (D)QSAT solving. Nevertheless, it has been
shown that the QBF approach can outperform SAT on particularly bounded synthesis

problems [FERT17].

The generalized problems QSAT and DQSAT are complete problems in complexity
classes beyond NP. QSAT decides the satisfiability of QQuantified Boolean Formulas
(QBFs) and is known to be PSPACE-complete [SM73|, whereas the satisfiability problem
of DQBF (DQSAT) is even NEXPTIME-complete [BCJ14]. The problems contained in
PSPACE can be decided by a Turing machine with polynomial memory. Savitch’s Theo-
rem |Lip10| implies that the type of the Turing machine (deterministic / non-deterministic)
does not matter with respect to the memory consumption. A non-deterministic Turing
machine can be simulated by a deterministic Turing machine without significant more
memory space. However, although allowing non-determinism does not affect the space
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complexity, it might result in a higher time-complexity. Similar to P L NP, we still
have no answer whether P is a proper subset of PSPACE or they "collapse" into each

other (P Z PSPACE). In contrast, a fact that is known, is that NP is strictly contained in
NEXPTIME. The NEXPTIME complexity class is defined by all problems decidable by
a non-deterministic Turing machine in time 27 This means problems cannot even be
verified in polynomial time. Regardless of whether P = NP, the strict containment in of
NP in NEXPTIME implies the strict containment of P in NEXPTIME. Interestingly, by
showing EXPTIME # NEXPTIME it is possible to directly prove P # NP by a padding
argument [AB0I).

As we can see the research on these complete problems is strongly connected to major
unsolved problems and open questions in computer science. Although the research was not
able to answer those questions, it generated various practical implementations of decision
procedures for SAT/QSAT/DQSAT. Especially the breakthroughs and optimizations
in SAT solving have made modern SAT solvers a practically applicable tool despite its
exponential worst-case time complexity.

PSPACE = NPSPACE

Figure 1.1: Hierarchy of complexity classes

The goal of this thesis is to certify unsatisfiability of QBFs in PEDANT [RSS21]. PEDANT
is an expansion-based solver for DQBF which combines the extraction of propositional
definitions with Counter-Example Guided Inductive Synthesis (CEGIS) to construct a
candidate model. Currently, PEDANT is only able to provide certificates for satisfiable
DQBFs. In this thesis, we propose a certificate workflow based on the QRAT proof
format, which allows PEDANT to create QRAT certificates for unsatisfiable QBFs. This
is a step towards certifying unsatisfiable DQBFs in PEDANT. Although there already
exists a sound and complete refutational DQBF proof system called DQRAT [Bli20], the
lack of a proof checker makes an implementation of DQRAT in PEDANT pointless at
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1.

INTRODUCTION

the moment. The created QRAT certificates can be used to verify the unsatisfiability
of the input QBFs using a trusted external QRAT checker. Currently there is only
QRAT-TriM [HSB14a] for checking QRAT proofs.

This thesis is organized as follows. In Chapter 2| we provide an overview of basic notation.
Chapter 3|introduces the proof format QRAT followed by a basic explanation of PEDANT’s
decision procedure in Chapter 4. After that, Chapter 5 covers the proposed certificate
structure and Chapter |7| presents the results of our experimental evaluation. Chapter |8
summarizes important points and provides an outlook on future improvements of the
certification workflow for PEDANT.
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CHAPTER

Preliminaries

In this chapter we introduce some standard definitions and notations that we will use in
the subsequent chapters.

2.1 Propositional Formulas

Propositional logic, also known as sentential logic and statement logic, deals with
propositions and the connection of propositions using logical operators. A proposition
can be assigned a truth value. It either can be true or false. We further denote the
truth value true by TRUE and false by FALSE. The main concepts in propositional logic
are wvariables, literals, terms, clauses and formulas. A wvariable directly represents a
proposition and its domain equals {TRUE, FALSE} which maps to the truth values of a
proposition. A literal [ is either a variable x or the negation of a variable —z. A term
is a conjunction of literals (I1 Ala A ... Alp) and similar a clause is a disjunction of
literals (I; VI3 V...V ly). Terms, respectively clauses, can be identified as a set of literals

{l1,0s, ..., 1}

Definition 2.1.1 (Propositional Formulas). The set of propositional formulas [KL99] is
inductively defined as:

1. Propositional variables are propositional formulas.
2. The boolean constants T and L are propositional formulas.
3. If ¢ is a propositional formula, than —p is also a propositional formula.

4. If v1, @2 are propositional formulas, than (1 * p2) is also a propositional formula
for x being a binary operation symbol e.g V,N\,—, ...
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2.

PRELIMINARIES

Definition 2.1.2 (CNF). A propositional formula ¢ is in Conjunctive Normal Form
(CNF) if it is of the form ¢ = Cy A Cy A ... A Cy, where the C; are clauses.

Definition 2.1.3 (DNF). A propositional formula ¢ is in Disjunctive Normal Form
(DNF) if it is of the form ¢ =T\ VT2V ...V T, where the T; are terms.

Using Tseitin’s encoding [Tse70], each propositional formula can be transformed into a
satisfiability equivalent formula in Conjunctive Normal Form (CNF). The size of the
transformed formula grows linearly to the size of the input formula. This is a major
advantage compared to a naive transformation approach using De Morgan’s law and the
distributive property, which can result in an exponential blow up of the formula size.
The worst-case of the naive transformation approach can be observed by transforming a
propositional formula in DNF to its equivalent CNF representation.

YDNF = (al/\bl /\Cl)V(ag/\bg/\Ca)V(aaAbg /\(23)

P Naive = (alVa2Va3)/\(01Va2ng)/\(a1V0,2V03)/\(a1VbQVa3)/\
((1.1ngng)/\(GIVbQVCS)/\.../\(ClVCQVCS)

PTseitin = (—-al V =by V—e V :El) A ((11 \Y —|$1) A (bl A% —l::t?l) A (Cl A% —l::t?l) A
(—-ag V —=bg V —eg V :Eg) A ((12 \Y —|$2) A (bg A% —l::t?g) A (CQ A% —l::t?g) A
(—-a3 A% _|63 A% —C3 A% $3) A ((13 vV _|$3) A (bg v _I:I?g) A ((23 v _I:I?g) A
(:1?2 vV I vV _|$4) A (_|$2 A% $4) A (_l$3 vV $4) A
(:131 VaxygV —|$5) A (—ﬂ?] \Y :EE,) A (—-3:4 \Y 2’:5) A

(z5)
Figure 2.1: DNF to CNF Transformations

In Figure 2.1/ we can see that the number of clauses in @ygipe grows very fast with
respect to the number of literals in the terms and the number of terms in ¢pyF. In
the example @Ngive contains 33 = 27 clauses. If wpNF would contain 4 terms with 3
literals the number of clauses in @y ive Would be even 3* = 81. The Tseitin’s encoding
operates on the subformulas of the initial formula and introduces new variables for
them (). @Tseitin illustrates the satisfiability equivalent formula after applying Tseitin’s
transformation on @pNF.

Definition 2.1.4 (Variable Assignment). A variable assignment o is a function mapping
variables to truth values (TRUE, FALSE).

o : var(p) — {TRUE, FALSE}

A wvariable assignment is called complete if all variables of the formula ¢ are mapped
to a truth value. Respectively, if o misses some variable mappings, it is called a partial
assignment.
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2.2. Quantified Boolean Formulas

In the following sections we will use a set notation for the description of a variable
assignment. For example we write ¢ = {z,—y} for when the assignment o maps the
variable z to the truth value TRUE (denoted as o(x) = TRUE), respectively maps the
variable y to FALSE (denoted as o(y) = FALSE).

Additionally we are going to denote var(y) as the set of variables occurring in a for-
mula . Likewise this function is also used in combination with variable assignments.
var(o) denotes the set of variables for which the variable assighment o has a mapping.
Furthermore we are using var(l) to identify the variable present in a literal .

2.2 Quantified Boolean Formulas

Quantified Boolean Formulas (QBF) are an extension of propositional logic. The extension
introduces the possibility of explicit quantification over truth values. The addition of the
universal quantifier ¥ and the existential quantifier 9 not only extends the expressiveness
of formulas, but also allows the representation of problems in a concise way.

Definition 2.2.1 (QBF). The set of Quantified Boolean Formulas is inductively defined
as:

1. Propositional variables are QBFs.

2. The boolean constants T and 1L are QQBFs.

3. If ¢ is a QBF, than —yp is also a QBF.

4. If ©1,¢2 are QBF, than (p1 % p2) is also a QBF for x € {V,\,—, < }.

5. If ¢ is a QBF and x € var(y), than 3x.¢ and Vx.¢ are also QBFs.

We denote the set of universally quantified variables of a QBF & as Ug and the set of
existentially quantified variables as Eg.

Similar to propositional formulas, QBFs can also be in specific normal forms. An
important normal form of QBFs is the Prener Normal Form (PNF).

Definition 2.2.2 (Prenex Normal Form). A QBF in prenex normal form consists of

(a) a sequence of quantified variables Q = Q21 ... Qnxy, called quantifier prefix with
Q; € {V,3} and z; € var(p) at nesting level i

(b) a propositional formula ¢ called the matrix

Due to the linear ordering of the prefix by nesting level, we get that variables precede
other variables with higher nesting level (i.e. z; precedes z;1,). We write z; <¢ x; if
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®=Vzdydz . (zV-y)A(yV-z)A(-zVz)
—— ’

prefix matrix

Figure 2.2: QBF in PCNF

1<i<j<nandQ; #Qj. If the context is clear, we omitted the subscript for the
formula ®.

Variable occurrences are called bound, if the occurrences of this variable are included in
the scope of a quantified block of the corresponding variable. In a PNF the whole matrix
is in scope of all quantifications in the prefix. If a variable occurrence is not bound, it is
called free occurrence. We call a variable x of a formula ® free if there is a free occurrence
of z in ®. If a QBF does not contain any free variable, we call this formula closed. With
respect to a PNF, the prefix of a closed PNF needs to contain a quantification for each
variable z € var(y). In other words, for each variable z € var(yp) there must exist a
quantification Q;z; € Q such that x = x;.

Each QBF can be transformed into an equivalent (QBF in prenex normal form. Further,
due to the separation of matrix and prefix in a PNF, the matrix can be independently
represented in several different normal forms. If the matrix of a PNF is in Conjunctive
Normal Form it is called Prenex Conjunctive Normal Form (PCNF). We further consider
QBFs as closed and in prenex conjunctive normal form.

Definition 2.2.3 (Prenex Conjunctive Normal Form (PCNF)). A QBF @ is in prenex
conjunctive normal form if ® = Q. is in prenexr normal form (PNF) and its matriz ¢ is
in conjunctive normal form (CNF).

2.3 Dependency QBF

Dependency Quantified Boolean Formulas (DQBF) is a further generalization of QBF
and allows the explicit specification of the dependency sets of existential variables. Like
for QBFs we consider DQBFs in Prenex Conjunctive Normal Form (PCNF) which puts

the variable quantifications in front of a propositional formula in CNF.

Definition 2.3.1 (DQBF). In a DQBF in PCNF denoted as ® = Q. the matriz is a
propositional formula in CNF. The quantifier prefir Q ezplicitly encodes the dependency
sets of existential variables and is a sequence

Q =Vuy ... Vuydey(Dy) ... e (D)

where Up = {u1...un} and Eg = {e1...em} are again the sets of universally and
eristentially quantified variables. Additionally for 1 < i < m the dependency sets D; are
subsets of Ug and represent the dependencies of e;.
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2.4. QSAT

As we can see the prefix of a DQBF does not rely anymore on the order of the variable
quantifications. In general the quantifications in the prefix of a DQBF can be sorted in
any order but for the sake of readability and comprehensibility all universal quantifications
precede all existential quantifications. In a regular QBF the dependency sets D; are
given implicitly by the ordering of the prefix. This means the set D); contains all
universal variables u preceding the corresponding existential variable e;. To be precise
the dependency set of a existential variable ¢; is defined as D, = {u | u € Ug Au <3 €;}.

2.4 QSAT

The Satisfiability-Problem of quantified boolean formulas (QSAT) asks whether a given
QBF is satisfiable.

2.4.1 Evaluation of Propositional Formulas

In order to define the evaluation of quantified boolean formulas, we first need to define
a reduced evaluation function of propositional formulas. Our propositional evaluation
function does not need to take variables into account. This means we are only able to
evaluate the truth value of a propositional formula without any variables. Propositional
formulas of this kind only consist of boolean constants, negation and connectives.

Definition 2.4.1 (Evaluation of Propositional Formulas without Variables). The evalu-
ation of a propositional formula ¢ without variables, is done by recursively applying the
following rules:

1. if ¢ = T, then value(y) = TRUE
2. if o = L, then value(p) = FALSE
3. if ¢ = ~¢/, then value(y) = TRUE if value(y') = FALSE

4. ¢ =" *¢" and % is a binary connective in {\,V,=}, then value(y) = value(y') *
value(p")

Furthermore, we need the concept of variable substitution to define the evaluation of (QBFs.
When applying a variable substitution on a propositional formula ¢, all occurrences
of a variable z are replaced consistently by another variable, symbol or even whole
propositional formulas. In our case we only need the substitution of variables with
boolean constants (T, L). We denote these substitution operations as ¢[z/T| and ¢[z/L].
Figure 2.3 illustrates how the variable substitution works by giving simple examples.

Using variable substitution we can define the application of a variable assignment o
on a propositional formula ¢. ¢[o] denotes the propositional formula generated by
iterative substitution of variables with corresponding boolean constants with respect to
the variable assignment o. Each variable z for which a truth assignment is available
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¢ = (zVyVz)A(-zVy)A(-zV-z)
elz/T] = (TVyVz)A(=TVY A(=TV2)
ely/Ll] = (xVLVz)A(-zVL)A(-zV —2)

Figure 2.3: Variable Substitution Examples

in o gets consistently replaced either with T or L. If o(z) = TRUE the variable z gets
replaced with T, respectively if o(z) = FALSE the variable x gets replaced with L.

Definition 2.4.2 (Application of a Variable Assignment on a Propositional Formula).
Let ¢ be a propositional formula and let o be a variable assignment. Further let
f : {71RUE, FALSE} — {T, L} be a function mapping the truth value TRUE to T,
respectively FALSE to 1. The application of o on ¢ in terms of variable substitution is

defined as:

plo] = glz1/ f(o(z1), z2/ f(o(x2),...,zn/f(o(zn)] for z; € var(o)

For the sake of completeness we briefly define the evaluation of a propositional formula
with variables under a variable assignment o.

Definition 2.4.3 (Evaluation of Propositional Formulas under Variable Assignment).
The evaluation of a propositional formula ¢ under a variable assignment o, denoted as
value(p, o), can be defined the following way:

1. if plo] does not contain any variables, then value(p, o) = value(p[o])

2. otherwise value(yp, o) = |o]

A propositional formula ¢ is called satisfiable if there exists a truth assignment o,
such that value(p, o) = TRUE. Similarly, a propositional formula ¢ is called inconsis-
tent /unsatisfiable if all truth assignments o evaluate ¢ to FALSE.

In order to show the satisfiability of a propositional formula ¢ it is not always necessary
to find a truth assignment o that assigns all variables = € var(y) a truth value. For
showing satisfiability it is often sufficient to find a partial assignment which only covers
a subset X C var(yp). Evaluating a propositional formula upon a partial assignment
value(yp, o) might not result in a truth value but a new propositional formula ¢'. On
such occasions the new propositional formula ¢’ substituted all variable occurrences in
the original formula ¢ covered by the applied partial assignment with the corresponding
boolean constants. However, with respect to propositional formulas in conjunctive normal
form we can easily observe that it can be sufficient to find a partial assignment to evaluate
it to a truth value. First, a clause C = (I; VI3 V...V [,) under an assignment o is
satisfied if at least one literal [; is mapped in the assignment ¢ to the truth value TRUE.
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2.4. QSAT

In order to satisfy a propositional formula in conjunctive normal form all clauses need to
be satisfied. This means it is sufficient for an assignment to map at least one literal of all
clauses to TRUE. By extending Definition |2.4.3| by this rule it is possible to evaluate a
CNF to TRUE using only a partial assignment of variables.

2.4.2 Evaluation of QBFs

Using our reduced evaluation function on propositional formulas containing no variables
and variable substitutions, we are now able to define the evaluation of QBFs. The truth
value of a QBF can be determined by applying the following rules recursively.

Definition 2.4.4 (Evaluation of Quantified Boolean Formulas). Let ® = Q.¢ be a closed
QBF in prenex normal form.

1. if @ =3xQ, then value(®) = TRUE if value(Q .¢[z/T|) = TRUE or
value(Q'.¢[z/1]) = TRUE

2. if @ =VzQ, then value(®) = TRUE if value(Q .¢[z/T|) = TRUE and
value(Q'.¢[z/1]) = TRUE

3. if @ =0, then the matriz ¢ does not contain any variables and value(®) = value(yp)

In order to prove the satisfiability of a QBF @, it is not sufficient anymore to just provide
an assignment of the variables. We need a set of functions that describe the truth value
of existential variables with respect to the assignment of universal variables. For each
existentially quantified variable e; € E let fe, be a function representing the truth value
of e; with respect to the assignment of its dependency set D,,. In the case of a QBF those
sets D,, are the preceding universally quantified variables of the existentially quantified
variable e;.

Another way of picturing the evaluation of a QBF is using the idea of a two-player
game, where two players assign truth values to their variables. Player B, is the owner
of all universally quantified variables and player P5 is the owner of all existentially
quantified variables. The players pick the variables from left to right with respect to
the quantifier ordering in the prefix. At each turn of the game the player owning the
outermost unassigned variable assigns a truth value of their choice to the variable. At
the time of each truth value assignment the players can only see the already assigned
truth values of preceding variables. The goal of the universal player By is to falsify the
formula, respectively the goal of the existential player P5 is to satisfy the formula. If
a player is able to "win" the game by achieving its goal regardless of the opponent’s
choice of assignments, then this player has a so-called winning strategy. The winning
strategy of player P5 is called winning J-strategy and is equivalent to a satisfiability

model. According to the goal of the existential player, the formula needs to be satisfiable.
Analogously, if the universal player finds a winning strategy, the formula is unsatisfiable.

11
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2.4.3 Evaluation of DQBFs

The evaluation of a DQBF cannot be described in an intuitive way similar to the
evaluation of QBF. There is no general solution of finding an order to assign truth
values to variables due to explicitly stated dependency sets D;. In order to show the
satisfiability of a DQBF ® we need a satisfiability model, which generally speaking is
a set of boolean functions {fe,, fes;- - -, fen } satisfying the matrix of ® in combination
with any assignment of the universal variables.

Definition 2.4.5 (Satisfiability Model). Let ® = Q.¢ be a closed QBF in prenex normal
form with Eg = {ey,€a,...,en}. Let D, be the dependency set of the eristential variable
ei. For1l <i<mlet fo, = f(z1,22,...,2n) be a function which represent the truth
value of e; given a truth assignments of all variables in De, (here denoted as x1,...,zn).

Lets F(0) = {fe,(0D,,); fez(0D.,)s - - - » fem (0D, )} be a satisfiability model of ® for each

assignment o of universal variables u € Ug, such that o U F (o) satisfies the matriz .

A DQBF is TRUE if it has a model and FALSE otherwise.

2.5 Q-Resolution

Q-Resolution [BKF95, is an inference rule and a complete and sound technique
for showing the satisfiability of QBFs in PCNF. It is an extension of propositional
resolution [Rob65|, which is as well a complete and sound technique for showing the
satisfiability of propositional formulas in CNF.

Propositional resolution operates on a set of clauses and generates a new clause implied
by two clauses containing complementary literals.

Definition 2.5.1 (Propositional Resolution). Let ¢ be a CNF and let (C1 V z) and
(C2 V —z) be two clauses of the propositional formula ¢ with complementary literals of
the variable = .

C]V.TJ _I$VCQ
Ci1V(Cy

(resolution)

Resolving those clauses on pivot variable x yields a new clause C = C1 V Cy without the
variable x called the resolvent.

Because the resolvent C is a logical consequence of the inference’s premises (C V z) and
(C2V —z), the resolvent clause can be added to ¢ and produce a logically equivalent
formula ¢’ [Rob65]. A propositional formula is unsatisfiable if the empty clause can be
derived using resolution.

We further are using < as a symbol denoting the resolution operation.
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2.5. Q-Resolution

In order to lift resolution from propositional CNFs to QBFs in PCNF, the additional
quantifier prefix needs to be taken into account. In general there are two additional
properties necessary:

1. The pivot variable to perform resolution on must be existentially quantified.

2. There exists no Q-resolvent if the intended resolvent is a tautology.

Additionally the Q-Resolution proof system allows the removal of universally quantified
literals using Universal Reduction.

Definition 2.5.2 (Universal Reduction [BKE95]). Let ® = Q. be a QBF in PCNF and
let C=(uVIV...VI0,) be a clause in ¢ with u being universally quantified and l; < u
forall1<i<nandl; € Es.

(universal reduction)

_C
C\ {u}

The universal literal u can be safely removed from clause C' without changing the truth
value of ®, iff all existential literals e € C' precede u. The resulting clause C'\ {u} is
called the forall reduct.

A Q-resolution derivation is a sequence of clauses such that each clause is either contained
in the matrix or can be obtained by resolution or reduction on clauses appearing earlier
in the sequence. Similar to propositional resolution, those clauses obtained by applying
Q-resolution can be added to the matrix of ® without changing the satisfiability of
®. Therefore one can show, a QBF in PCNF is unsatisfiable iff there exists a deriva-
tion [BKE95] which contains the empty clause. A derivation containing the empty clause
is also called a refutation.

2.5.1 Q-Resolution Proof Example

Here we are going to present an example of a Q-resolution refutation. For this example
we are using the following unsatisfiable QBF":

® =VwdzdyVz.(~wVyVz)A(-wVz)A(-zV-yVz)

In case ® is indeed unsatisfiable we should be able to generate a g-resolution derivation
which contains the empty clause. In Figure 2.4 we illustrate an example refutation of the
stated QBF using the Q-resolution rules.

13
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—zV-yVz
(UR)

—wVyVz ~wVz -z V oy
— (UR) (RES)

—wVy —w V —y

(RES)

—w

(UR)
0

Figure 2.4: Q-Resolution Refutation

2.6 Expansion-based Proof System

Another sound and complete proof system is the expansion-based proof system VExp+Res.
This technique has been established for both QBF [IMS15] and DQBF [BBCT19]. Similar
to Q-resolution the VExp+Res proof system is composed of two parts by utilizing two
proof-rules. As the name of the proof system already indicates it uses expansion of
universally quantified variables as well as propositional resolution. The core idea of
VExp+Res is to first expand a QBF formula over universally quantified variables such
that only existentially quantifications are left. After the expansion the QBF formula can
be treated as a propositional formula and propositional resolution can be applied.

2.6.1 Expansion

The expansion of a QBF can be applied over universal quantified variables as well as
existential quantified variables. The basic principle of an expansion is to translate a
variable quantification to its equivalent encoding in propositional logic. Thereby the
semantics of the individual quantifiers (V,3) come into play. The expansion effectively
creates two copies of the formula ® in which the truth value of the expansion variable =
is fixed. One copy in which x = TRUE and another copy for x = FALSE. By conjoin-
ing/disjoining together these two copies we can implement the behaviour of the initial
quantification. At the expansion of a universally quantified variable both copies must be
satisfiable which is realizable by a conjunction. For existential expansions it is enough to
have at least one satisfiable copy which can be encoded using a disjunction. Formally the
applied formula transformations of the expansions can be described with the following
equivalences: (note that we are using the same on substitution based evaluation of QBFs
as defined in Section 2.4)

1. V2.8 = ®[z/ L] A ®[z/T]

2. 32.® = ®[z/ 1]V B[z/T]
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2.6. Expansion-based Proof System

By applying expansions we can observe two problems:

1. Applying either universal or existential expansion on a QBF in PCNF does not
preserve the prenex normal form. The application of universal expansion on
® = JxVy3z.¢p results in the formula & = Jz.(3z.¢[y/L]) A (Fz.¢[y/T]). Obviously
®’ is not in prenex normal form anymore.

2. Applying existential expansion does (a) not preserve the prenex normal form and
does (b) not even result in a CNF.

Because VExp+Res only considers expansions of universal variables we do not need
to go further into details of existential expansion. In order to resolve the issues with
universal expansion we need to re-establish the prenex normal form. In our example to
get from & = Jz.(3z.¢[y/L]) A (3z.¢[y/T]) to a valid PCNF again, the introduction of
new variables is required. In this example the creation of two copies of z are needed each
for one part of the expansion. The copy zY, respectively zY, represents the individual
truth assignment of z in the corresponding sub-QBF with respect of the assignment
of y = TRUE, respectively y = FALSE. After those modifications the final QBF in PCNF
is " = Jz32Y3V.0[y/ L][2/27]) A @[y/ T][z/2Y].

Although using universal expansions can eliminate universal quantifications, it comes
at the cost of the exponential growth of the matrix. In the worst case each expansion
effectively doubles the number of clauses in the QBF. However, it is sometimes possible
to avoid the worst case scenario by partially expanding the formula instead of a complete
expansion. For example in VzVy3z.(zVz)A(zV-z)A(yVz) it is sufficient to solely expand
 for the assignment FALSE. The expansion yields the copied clauses (1 Vz%) and (1L V—-2z7).
Semantically this results already in a conflict 2% A —=z% and no further expansions are
necessary in order to prove the unsatisfiability of the QBF. Modern expansion-based
solvers obviously try to utilize this technique for the sake of performance.

2.6.2 VExp+Res

The YExp+Res proof system makes use of the partial expansion technique as well as
propositional resolution. Like a QQ-resolution derivation, a derivation using VYExp+Res
is again a sequence of clauses. The clauses in this sequence are either contained in the
matrix or can be obtained using universal expansion or propositional resolution.

Because the clauses introduced by the axiom rule are part of the complete expansion of
the formula they can be added to the matrix without changing its satisfiability. A similar
argument regarding satisfiability of a QBF as presented for g-resolution derivations
applies to VExp+Res derivations. A QBF in PCNF is unsatisfiable iff there exists a
VExp+Res derivation which contains the empty clause [JMS15].

15
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2. PRELIMINARIES
(axiom rule)
{a"® | a€C Na€cFEs}
Using the axiom rule we can derive a new clause with new annotated literals. In order
to apply this rule the following requirements must hold:
1. C is a clause in the matrix of ¢
2. 7 is a complete universal assignment that falsifies every universal literal in C
3. 7(a) :={l € 7 | var(l) € D;}, where var(a) = ¢;
CiVvaT —z" vV C
L7 v C;B 2 (resolution)
This proof system allows propositional resolution over literals created and annotated
by the axiom rule.
Table 2.1: VExp+Res rules for DQBF
2.6.3 VExp+Res Proof Example
Here we are going to present an example of a YExp+Res refutation of the already
presented unsatisfiable QBF in the g-resolution proof example. Because we already have
proven the unsatisfiability of this formula using a g-resolution refutation, we know there
also must exist a derivation containing the empty clause using the VExp+Res proof
system. Below we illustrate a VExp+Res refutation.
¢ =VwdzIYyVz.(rwVyVz)A(—wVa)A(-zV-yVz)
(RES) —— (AX)
(RES)
0
Figure 2.5: VExp+Res Refutation
16
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2.6. Expansion-based Proof System

Note that each of the original matrix clauses is used in one of the three axiom lemmas
in this refutation. Conveniently, the same universal assignment can be applied in all
axiom lemmas. The complete universal assignment used is {w, —z}. Although the matrix
clause (-2 V =y V z) does not contain the universal variable w, the existentially quantified
variables  and y is annotated with w anyway because the axiom rule operates on a
complete universal assignment.

17
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CHAPTER

Introduction of QRAT

The Satisfiability Problem of propositional formulas (SAT) and QBFs (QSAT) are decision
problems. Decision problems are defined in a way, such that the problem question can be
answered with either yes or no. In this case SAT, respectively QSAT, ask whether a given
propositional formula, respectively QBF, is satisfiable. The main purpose of a certificate
is to provide evidence that the yes/no-answer of the problem is indeed correct. In other
word, by means of a certificate we can verify the satisfiability or unsatisfiability of a
given input formula. Because SAT is well known to be a NP-complete problem [CooT1],
we know the certificate size is polynomial bounded in the size of the problem instance.
Furthermore we know there must be a verification algorithm which time complexity is
also bounded by a polynomial in the size of the problem instance [KT06]. Therefore the
certificates of the SAT problem are rather easy to define. In order to certify a satisfiable
SAT instance, it is sufficient to provide a satisfying truth assignment of the variables
of the input formula. For example, it is easy to verify the satisfiability of the following
propositional formula in combination with the given truth assignment:

e=(xVyVz)A(-zVyVz)A(zV-2)A(-zV-y)A(zV-yVz)
o={z,~y,z}

Given an assignment o and a propositional formula in conjunctive normal form, checking
whether all clauses are satisfied can be done quite efficiently. In contrast to prove
unsatisfiable instances, the certificate needs to provide evidence, that there cannot be
a single assignment which satisfies the input formula. This evidence can be provided
by a resolution proof which also can be checked efficiently. In both cases, there is an
algorithm which can verify the result in polynomial time.

The verification of the output of the QSAT problem is significantly more complex than
the equivalent of propositional formulas. For certifying satisfiable QBFs it is not sufficient
anymore to provide just a satisfying assignment because of the introduction of quantifiers.
In order to prove the satisfiability of a QBF, we need so-called Skolem-functions which
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{ Instance ) Solver ———> SAT/UNSAT
{ Certificate »

Proof-Checker ———> valid/error

Figure 3.1: Certification Workflow

encode a strategy to set the existentially quantified variables (with respect to the
assignment of preceding universal variables) to satisfy the QBF. For invalid QBFs, a
certificate should answer the question, why there cannot be any satisfiability model,
ideally in a concise way. Similar to certificates of unsatisfiable propositional formulas,
the certification of invalid QBFs can also be done using resolution proofs (Q-Resolution).

3.1 Proof-Formats

Besides the previously mentioned methods for satisfiability certification, there are more
sophisticated proof formats for certifying the satisfiability of propositional formulas and
QBFs. The de-facto standard proof-format for propositional formula is DRAT [HHW13h]
(Deletion Resolution Asymmetric Tautology). Such agreement on certain proof-systems,
in order to validate the result of QBF-solvers, has not yet been established in the QSAT
community. However, the QSAT community has been discussing possible proof formats

for a long time [TBSTQO7]. One of the latest proof formats is QRAT [FISB14b| (Quantified
Resolution Asymmetric Tautology), which is an extension of DRAT.

3.2 DRAT

The standard proof format for propositional formulas relies on the addition and deletion
of redundant clauses. The basic idea behind this proof format is, given a CNF ¢, a
redundant clause C' can be added to ¢, respectively deleted from ¢, and preserve the
satisfiability, respectively unsatisfiability. The redundancy property that is applied in
DRAT is also eponymous for the name of DRAT. Redundancy is checked in DRAT using
the RAT property [HHW13a] (Resolution Asymmetric Tautology).
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3.2. DRAT

Definition 3.2.1 (Asymmetric Literal Addition (ALA) [HJBI10]). Let C be a clause and
let ¢ be a CNF. The clause ALA(p,C) is the unique clause obtained by applying the
following extension rule until fizpoint: if l1,...,lx € C and there is a clause (L V...V
L V1) € p\ {C} for some literal 1, let C := C U {l}.

Definition 3.2.2 (Asymmetric Tautology (AT)). Let C be a clause and let ¢ be a CNF.
The clause C has property AT with respect to ¢ iff ALA(p,C) is a tautology.

Unit-Propagation

Unit-propagation or Boolean Constraint Propagation (BCP) is the process of simplifying
a CNF ¢ based on unit clauses. A clause is unit if it contains exactly one literal. Because
in a CNF each clause needs to be satisfied, we know that this literal must be assigned
to TRUE. As a result if there is a unit clause (I) € ¢ we say BCP assigns the literal [ to
TRUE, respectively [ to FALSE. As a result we can remove the unit-clause and remove
all clauses which contain the literal [, because these clauses are already satisfied by the
literal I. Furthermore we can remove [ from all clauses, because [ can not contribute
anymore to satisfy any clause. This process is repeated until no unit clause can be found
anymore. The resulting formula is denoted as BCP(y). We say BCP derives a conflict if
it is possible to derive the empty clause () € BCP(p).

Calculating whether a clause C has property AT with respect to a CNF ¢ can also be
formulated in terms of unit-propagation (or boolean constraint propagation BCP). The
property AT is also known as Reverse Unit Propagation (RUP) .

Definition 3.2.3 (Reverse Unit Propagation (RUP)). ALA(p,C) is a tautology if
BCP((¢\ {C})UC) derives a conflict, where C denotes a set of unit clauses that falsify
all literals in C.

Definition 3.2.4 (Resolution Asymmetric Tautology (RAT)). A clause C' has property
RAT with respect to a CNF ¢ if there erists a literal l € C such that for all clauses
D € ¢ with | € D, each resolvent C >a D has property AT.

Notice that RAT property is a generalization of the AT property. A clause with property
AT with respect to a formula ¢, has also property RAT with respect to ¢.

v = (aVB)A(DBVec)A(=bV —c)
Car = (aV—c)
CRAT = (—-aV C)

Figure 3.2: Example illustrating AT /RAT property of a clause

With Figure 3.2 we want to demonstrate the AT and the RAT property. In order to show
Car having the AT property we can either calculate ALA(p,C47) or apply Reverse
Unit Propagation. When manually calculating ALA(p,C s47) we can apply the extension
rule twice before reaching a fixpoint. First we can use (a) € C with (a V b) € ¢ to reach

21
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Figure 3.3: Example DRAT Refutations

C = (aV —cV —b). The second and last application of the extension rule uses (-b) € C
with (b V —c) € ¢ to reach the fixpoint C' = (a V —¢V =bV ¢). The unique clause
ALA(p,Car) = (aV —cV —bV ¢) is a tautology and therefore Car has the AT property.
It is also easy to see that BCP((aVb) A (bV c) A (—bV —c) A (—a) A (c)) is able to derive
a conflict. For each literal in C'rar there is only one clause in ¢ to build the resolvent
with. For literal —a the resolvent is (bV ¢) and for literal ¢ the resolvent is (—a V —b).
Applying RUP on these resolvents both lead to conflicts and therefore Crat has the
RAT property on both —a as well as c.

A DRAT proof is a sequence of clause additions and clause deletions. The notation of a
DRAT proof is based on the DIMACS notation of a CNF, where clauses are represented
as a sequence of literals terminated by 0. In a DRAT proof the clause additions and
the clause deletions are represented as separate lines. A clause addition is like in the
DIMACS notation just a sequence of literals terminated by 0. Clause deletion statements
are additionally prefixed with the character "d". In Figure 3.3 we can see examples of a
CNF in DIMACS format and two DRAT proofs. Deletion informations are not necessary
for proving unsatisfiability but can speed up the verification process by reducing the

formula size [HHW13b].

Let ¢ be a CNF and let P = {Lo, L1,. .., Ljp} be a DRAT proof for ¢. Let L; = {p;, Ci}
be a representation of the i*! line of the DRAT proof P with p; being the prefix of the
line and C; being the corresponding clause of the line. Each line modifies a formula %,

by either adding or removing a clause, and thus generating a new formula (pf;l.
@ ifi=0
op=¢p \{Ci} ifpi="d"
¢ U{C;} otherwise

In order for a DRAT proof P to be a unsatisfiability certificate of a propositional formula
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3.3. QRAT

, all added clauses need to have the RAT property with respect to the current formula
¢'». Additionally P needs to end with the empty clause.

3.3 QRAT

As seen in definition 3.2.4, ALA and AT are sufficient for the definition of the RAT
property for propositional logic. In order to lift up the RAT property to QBFs, we need
to take quantifier dependencies into account which are captured by the notion of outer

clauses and outer resolvents [HSB14h]

Definition 3.3.1 (Outer Clause). Let C' be a clause occurring in a QBF ® = Q.¢.
The outer clause of C on literal | € C, denoted by O(®,C,l), is given by the clause
{k|keC, k<gl, k#1}.

Definition 3.3.2 (Outer Resolvent). Let C' be a clause with | € C and D a clause
occurring in a QBF ® = Q. with | € D. The outer resolvent of C with D on literal |
with respect to ®, denoted by R(®,C,D,l), is given by the clause O U (C'\ {l}) ifl € Us
and by O UC ifl € Eg assuming O = O(®, D,1).

Definition 3.3.3 (Quantified Resolution Asymmetric Tautology (QRAT)). Given a
QBF ® = Q.¢ and a clause C. Then C has QRAT on literal l € C' with respect to ® iff
it holds for all clauses D € ¢ withl € D that ALA(p, R) is a tautology for the outer
resolvent R = R(®,C, D, 1).

Given the QBF ® =Vz3ydz . CADAE withC = (zVy), D = (-xzVz) and E = (yV —z2)

we will illustrate the terms Outer Clause and Outer Resolvent:

o@®,Cyy) = (z) R(®,D,E,z) = (-xzVzVy)
o@,C,z) = 0 R(®,E,D,z) = (yV-zV-x)
0(®,C,z) = (zVy) R(®,(xVz),E,z) = (zVzVy)
O(®,E,-z) = (y) R(®,(zVz),D,x) = (2)

Constructing the outer resolvent is an asymmetric operation since R(®,D,FE,z) #
R(®,E,D,z). The clause F' = (zV z) has QRAT on z with respect to ®. The only clause
to build a resolvent with is F' (only clause with —z). The produced outer resolvent with
respect to @ is (zVzVy). Because ALA(CADAE, (zVzVy)) = (zV—-azVyV-yVzV-z)
is a tautology all conditions are satisfied for F having the QRAT property on literal z
with respect to ® and therefore can be added to ® without changing its satisfiability.

Similar to DRAT proofs, a QRAT-proof is also a sequence of clause additions, clause
deletions and, additionally, clause modifications [HSB14b|. The addition of a clause

having the QRAT or AT property with respect to a QBF & is denoted as QRATA.

QRAT supports the introduction of new variables. In this process the prefix of the QBF
has to be extended in order to maintain a closed (QBF. Generally speaking the newly
introduced variable can be placed at any position in the prefix. However QRAT places
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newly introduced variables in the innermost active existential quantifier block. Analog
the deletion of a clause having the QRAT or AT property with respect to a QBF & is
denoted as QRATE. By clause modifications we are considering the elimination of a
universally quantified literal out of a clause. This can be achieved by either using the
QRAT property or using ertended universal reduction. The former elimination method is
denoted as QRATU and is the removal of a universal literal [ from a clause C' which has
QRAT on [l with respect to a QBF ®. Extended universal reduction denoted as EUR
is based on resolution paths [VG11] and allows the removal of independent universal
variables.

Definition 3.3.4 (Inner Clause). Let C' be a clause occurring in a QBF ® = Q.p.
The inner clause of C on literal | € C, denoted by IT(®,C,1), is given by the clause
{k|keC, k=1VIi<gk}.

Definition 3.3.5 (Extended Universal Reduction (EUR)). Let C be a clause and let
® = Q.p be QBF. The clause £(®,C,1) is the unique clause obtained by applying repeatedly
the following extension rule until fixpoint:

C :=CUI(®,D,l) if exists k€ C, D € ¢ withk € D, k € Eg, andl <¢ k

Given a QBF ® = Q.o A{E} with a universal literal | € E such that | ¢ £(®, E,l). Then,

the removal of | from E is satisfiability preserving.

The notation of a QRAT-proof is an extension of the DRAT proof notation. The
representation of clause additions and clause deletions are directly inherited from DRAT
proofs. Additionally the QRAT-proof notation introduces a new prefix "u" for describing
clause modifications.

Again, each line of a QRAT-proof P = {Lg, L1, ..., Ljp} for a QBF ® = Q.9 modifies
the matrix % of a QBF and generates a new matrix (,of;rl. As in DRAT, L; = {p;, C;} is

the representation of the i*! line of the QRAT-proof P with p; being the prefix of the line
and Cj being the corresponding clause of the line. The first literal in C); is denoted as ;.

0 ifi—=0
i o5\ {Ci} if p; ="d"
P = i . woow
¢ \{CIu{Ci\{l:}} ifpi="u
o tu{c:) otherwise

For a QRAT-proof P to be a valid satisfaction proof for a QBF & = Q. the following
properties must hold:

1. Lines L; = {p;,C;} € P with p; = "d" (clause deletion) C; must have QRAT
property on [; with respect to ¢%. If ; is universally quantified ALA(p%,C;) must
be a tautology.
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2. The QRAT-proof must empty the matrix (go!,f' = 0).

The following properties must hold for a QRAT-proof P to be a refutation proof for a
QBF & = Q.¢:

1. The clauses C; of addition lines L; = {p;, C;} € P must have QRAT property on
l; with respect to @', If I; is universally quantified ALA(¢%5",C;) must be a
tautology.

2. Lines L; = {p;,C;} € P with p; = "u" (clause modification) /; must be universally
quantified. Additionally either C; must have QRAT property on l; with respect to
305;1 or [; can be removed using EUR.

3. The last line of the proof P must be an addition of the empty clause.

penf3 3 -1 -2 0 penf3 3 2 0
a 1 0 d 3 -1 0 a 1 0 d -2 -3 0
e 2 3 0 d -3 -2 0 e 2 3 0 1 0
1 2 0 d -2 -1 0 1 2 0 u 1 0
-1 3 0 d 2 1 0 1 3 0 0
2 -3 0 2 -3 0
(a) TRUE QBF with QRAT proof (b) FALSE QBF with QRAT refutation

Figure 3.4: QRAT Examples for QBFs in QDIMACS notation
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CHAPTER

Pedant - An Expansion-Based
DQBF Solver

The solver in which we implemented the generation of unsatisfiability certificates for
QBFs is PEpDANT |[RSS21|. PEDANT is a DQBF-solver which is a solver of a further
generalization of QBFs. Dependency Quantified Boolean Formulas (DQBF) is a further
generalization of QBF and allows the explicit specification of the dependency sets of
existential variables. This means in a DQBF it is possible to indicate, for each existential
variable, on which universal variables it depends. In a QQBF the dependency set of each
existential variable is implicitly determined by the prefix order. An existential variable e
depends on all preceding universal variables u < e.

Due to DQBF being a generalization of QBF, PEDANT can also be used as a decision
procedure for plain QBFs. We put the focus on implementing the QRAT proof-format
for unsatisfiable QBFs in PEDANT. This is motivated by the fact, that the certification
of unsatisfiable instances is currently a missing feature in PEDANT. There is already a
mechanism in PEDANT which allows an easy verification of satisfiable QBFs.

4.1 Decision Procedure

In order to understand the proposed certificate structure for unsatisfiable QBFs, we need
some basic understanding of the decision procedure of PEDANT itself. Generally speaking,
PEDANT utilizes a counter-example guided inductive synthesis (CEGIS) approach
by computing and incrementally refining candidate Skolem functions. The algorithm
starts off by trying to find definitions for existential variables with respect to their
dependency set. The found definitions can be used as candidate Skolem functions for the
corresponding variables, due to either the definitions being proper Skolem functions or
the input formula being unsatisfiable. Therefore, the algorithm does not change/refine
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the initially found functions. The incremental refinement is only applied on the candidate
functions of undefined variables. Initially the algorithm sets the candidate Skolem
function of undefined variables to some default value.

In order to do so, the algorithm checks in each iteration, whether the current candidate
model is indeed a model with respect to the current assignment of the arbiter variables
(which will be discussed later). If the current candidate model is indeed a model the
algorithm has determined that the input formula is TRUE. In case the current candidate
model is not valid, the algorithm can obtain a counterexample o. The algorithm then
proceeds to reduce the counterexample using assumption-based SAT solving [ES04]. This
means the algorithm checks the satisfiability of the matrix under ¢, which necessarily
leads the SAT solver to output UNSAT. Nevertheless, SAT solvers are very good at finding
compact explanations of conflicts. Core extraction yields a set of failed assumptions,
which will be used as a reduced counterexample, denoted by &.

Algorithm 4.1: PEDANT - An Expansion-Based DQBF Solver
1 Function SOLVE(®)

2 model <~ COMPUTEDEFINITIONS()

3 INITIALIZED EFAULTS (model)

4 arbiterFormula, arbiterAssignment <+ ()

5 loop

6 if cHECKMODEL (model, arbiterAssignment) then

7 ‘ return TRUE

8 o + GETCOUNTEREXAMPLE(model, arbiterAssignment)
9 & + GETCORE(model, o)
10 if HASFORCINGCLAUSE(G ) then

11 | ADDFORCINGCLAUSE(model, &)
12 failedArbiters < 6|4
13 for l€ 6| do

14 e?lpe ¢ GETARBITER(model, I, o|par(1))

15 failedArbiters < failedArbiters U e°lpe
16 blockingClause < CLAUSIFY (failedArbiters)

17 arbiterFormula <+ arbiterFormula U blockingClause
18 if arbiterFormula is satisfiable then

19 ‘ arbiter Assignment < GETMODEL(arbiterFormula)
20 else

21 ‘ return FALSE

In order to resolve the reduced counterexample, PEDANT deploys two repairing techniques.
Those techniques depend on the number of failed existential assumptions in the reduced
counterexample &.

If the reduced counterexample only contains a single existential variable e, the assignment
of e needs to be flipped under the universal assignment of its dependency set &|p,. To
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4.1. Decision Procedure

avoid the current counterexample in subsequent iterations, the algorithm is adding a
forcing clause to the current candidate model. The forcing clause is responsible to rule
out this exact assignment of variables leading to this conflict. A forcing clause represents
an implication that asserts that under the projection of & to D, the variable e must be
assigned to -6 (e).

If the counterexample contains multiple existential variables, the algorithm cannot know
a priori which existential variables in the counterexample need to be assigned differently.
However, at least one of them needs to be assigned differently. The second repair
mechanism introduces multiple clauses in order to get control over the assignments
of these existential variables under certain assignments of the arbiter variables. First,
PEDANT creates for each existential variable e in & a new auxiliary variable e?lPe. This
new arbiter variable e’IPe is then used in new arbiter clauses, which establish the
connection between the arbiter variable e?IPc and the associated existential variable
e. The introduced arbiter clauses linking arbiter variables and existential variables are
(e?1pe VV =g |p, V —e) and (=e?IPe V =g|p, V €). These clauses make sure that, under the
specific assignment o|p, the arbiter variable and the associated existential variable are
assigned to the same truth value. This means, by fixing the assignment for the arbiter
variable we can thus fix the assignment of the associated existential variable under the
assignment o|p, .

To avoid running into the same conflict again in subsequent iterations, PEDANT addi-
tionally adds a clause to the arbiter formula. This blocking clause contains not only the
negation of the assignment of all failed arbiter literals in & but also includes for each
existential literal in & the corresponding arbiter variable in opposite polarity (e"'De if
—e € &, respectively —e?lDe if e € §).

In the end the unsatisfiability of the input (D)QBF is confirmed by the unsatisfiability of
the arbiter formula. As long as the arbiter formula is satisfiable, the algorithm finds an
assignment of arbiter variables that deals with all encountered counterexamples. In case
the arbiter formula is unsatisfiable, all possible assignments of arbiter variables entail a
counterexample thus resulting in an unsatisfiable DQBF.

4.1.1 Connection to YExp+Res

The created arbiter variables which are linked to existential variables under a specific
dependency assignment pretty much follow the concept of annotated variables in the
VExp+Res proof system. Additionally, the arbiter formula consists of only clauses con-
taining just arbiter variables. In case of an unsatisfiable (D)QBF the corresponding
final arbiter formula has to be unsatisfiable. As a result it must be possible to find a
refutation using propositional resolution confirming the unsatisfiability of the final unsat-
isfiable arbiter formula. A resolution refutation over clauses containing arbiter variables
(annotated VExp+Res variables) is by definition a VExp+Res refutation. Although the
clauses in the arbiter formula are not directly derived from matrix clauses, they are
logically connected to them. Together with small modification this allows us to apply the

29



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4. PEDANT - AN EXPANSION-BASED DQBF SOLVER

30

simulation of VExp+Res using QRAT [KS19]. This enables us to generate valid QRAT
certificates for unsatisfiable QBFs which can be verified using QRAT-TRIM.

4.2 Example

In this section we are going to demonstrate the functionality of PEDANT by working out
the crucial steps and decisions taken when solving a specific DQBF. We will have a close
look at PEDANT solving the following unsatisfiable DQBF"

P = VH1VTLQE|€1(H1)362(UQ) . (—|u1 \Y 61) A (—-uz \Y 62) A (—-ul V—ug Ve V —lEQ)

PEDANT starts by initializing a default candidate model based on the initially found
definitions for existential variables. Because PEDANT is not able to find definitions for
the existential variables e; and es, it uses default functions for their initial candidate
model. In this case the candidate model would be:

F(0) ={ fe;(u1) = FALSE,  fe,(u2) = FALSE }

In the first iteration of PEDANT’s main loop the default candidate model gets rejected.
As a result a SAT solver is tasked to obtain a compact explanation for the default
candidate model not being a model for ®. Lets assume the first obtained counterexample
for this QBF would be 6, = {ul,ﬁel}. This causes the introduction of the forcing
clause (—u; V e;1) because 6, does only contain a single existentially quantified variable.

Additionally PEDANT adds arbiter and blocking clauses. First, a new arbiter variable e
gets created and linked to the existential variable e; with following clauses:

1. (ei"l V-oug V —-el)

2. (_,e“i"l Voo V 61)

These linking clauses ensure the consistent assignment of e; and e} under the assignment
o(u1) = TRUE.

Furthermore, PEDANT adds the clause (e]*) to the arbiter formula to avoid running again
into the same conflict derived in this iteration. In this case the addition of this clause to
the arbiter formula results in mapping €]* to TRUE in the arbiter assignment. Because
the arbiter formula is satisfiable a new candidate model is calculated like:

F(0) = { fer(u1) = w1, fep(ug) = FALSE }



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.2. Example

Assume the next counterexample derived by the SAT solver is 63 = {uy, —es}. Again,
because & does only cover one existential variable, PEDANT first adds the forcing
clause (—ug V e2) before applying the second conflict resolution strategy. A new arbiter
variable e5? gets created and linked to ez under the assignment o(u2) = TRUE with the
clauses:

1. (egz Vo —ug V —-eg)
2. (_lfl;m V —ug V 62)
To complete this step, PEDANT adds (e5?) to the arbiter formula and the arbiter as-

signment needs to be o = {e]’, e5?} to satisfy it. As such, the next candidate model
is:

F(o) ={ fe;(u1) = w1, fey(u2) =u2 }

Finally we reached the last iteration. Normally PEDANT would obtain the counterexample
b3 = { u1, ‘1.'32} which would lead to the addition of the empty clause to the arbiter formula
(which makes it trivially unsatisfiable).

—el! V —ey? ey’

(RES)

U
—|622

NE

(RES)

0

Figure 4.1: Refutation of Arbiter Formula

For demonstration purposes we continue the solving process with the counterexample
b3 = {ul,uz, €1, 82}. In this case no forcing clause can be added and PEDANT directly
continues with the addition of arbiter and blocking clauses. Because there are already
existing arbiter variables which can be reused in this case PEDANT just adds the blocking
clause (—e]! V —ey?) to the arbiter formula. As a consequence the arbiter formula gets
unsatisfiable as shown in the resolution proof in Figure 4.1.

The unsatisfiability of the arbiter formula indicates that there is no assignment of arbiter
variables and further no candidate model without entailing a counterexample. With this,
PEDANT reports that the input formula is unsatisfiable and terminates.
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CHAPTER

QRAT Certificates from
Expansion Proofs

The certificate structure which is proposed in this chapter closely follows the polynomial
time simulation of VExp+Res by QRAT [KS19).

The structure of the proposed QRAT certificates for unsatisfiable QBFs is composed
of multiple blocks. To be more precise, there are three major consecutive blocks, each
block containing relevant information for the refutation of an unsatisfiable QBF. The
first block includes information about applied pre-processing steps followed by a block
depicting the definitions of forcing and arbiter clauses. In the last block we are applying
some post-processing steps in order to create a valid refutation proof.

For illustration purposes of describing the certificate structure we are using the QBF
in Figure 5.1/ and the QRAT refutation in Figure 5.2/ as an example. The latter is also
providing a color-coded representation of the particular blocks.

penf55
e 2 5 0
a 4 1 0
e 3 0
1 2 5 0
1 -3 0
2 3 0
-2 3 0
3 4 0

Figure 5.1: Running example in QDIMACS encoding
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d 3 2 0
d -3 1 0
u 1 2 5 0 d 3 4 0
2 5 0 d -2 -3 0
d 2 5 0
1: 1 2 0 d -102 2 0
2: 2 1 0 d -3
3 u 1 2 0 d -2 102 0
4: 2 0 d 2 0
5: -3 0 d 2 5 0
6: 4 0 d 4 0
7: 102 -2 0
8: -102 2 0 u 1 102 -4 0O
9: 102 -4 1 O 102 -4 0
10 4 0 u 1 4 0
11 4 1 0 4 0
u -4 102 0
102 0
u 4 0
0

Figure 5.2: QRAT Refutation of QBF in Figure 5.1, QRAT-Blocks are highlighted with
colors, red=pre-processing, orange=definitions, green=post-processing, yellow=deletions,
blue=reductions

The following sections will give a more detailed explanation of each block of the proposed
QRAT certificate.

5.1 Pre-Processing

This block is responsible for the representation of all applied pre-processing techniques
upon a QBF before solving it. Generally speaking, this section could contain any pre-
processing technique which is representable using QRAT. However, since PEDANT is just
applying Universal Reduction beforehand, this block in our generated certificates is a list
of universal literal elimination statements.

Let C = (I, VI V...V1,) be a clause of a QBF ® with [,, being a universal literal such
that each existential literal e € C precedes l,. Using Universal Reduction the literal [,
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can be removed from C without changing the truth value of ®. This pre-processing
technique is represented in our QRAT-certificate using the following two lines:

wly Iy ... L, 0

We start with a clause modification line for eliminating the literal u out of clause C
followed by an explicit clause addition line for adding the reduced clause C' = C'\ {u}.
The clause modification line is safe because the universal quantified literal u can be
removed using Extended Universal Reduction.

In our QRAT Refutation Example, we do have such a Universal Reduction as part of
the applied pre-processing steps. More specifically, PEDANT is removing the universal
literal 1 from the clause 1 V 2V 5. The corresponding QRAT lines representing this
clause modification are:

S
[S1 0 oV ]
o >

One can see that the explicit clause addition of the reduced clause is redundant. According
to the QRAT definition, the reduced clause is already added to the matrix by the clause
modification line. We added this explicit clause addition line, to make life easier in the
post-processing block. These redundant lines are helping in keeping track of unnecessary
clauses, which we are going to delete in the post-processing block. For a more detailed
explanation, please have a look into Section /5.3,

5.2 Clause Definitions

The second block covers all important clause definitions. This block almost represents the
complete solving process of PEDANT by containing almost all auxiliary clauses created
by PEDANT. This includes the introduction of forcing clauses, as well as the handling of
arbiter clauses and blocking clauses. At this stage the direct addition of pure blocking
clauses in QRAT might not be valid QRAT additions. Instead we can only add blocking
clauses extended with a complete universal assignment (further details in Section |5.2.4).
In addition to that, this block also contains some reasoning about the soundness of the
addition of those auxiliary clauses in the form of DRAT proofs.

For each counterexample found by PEDANT, this block contains a corresponding SAT-
proof and the addition of either a forcing clause or some arbiter clauses. This block is
covered in the orange highlighted lines in our QRAT example in Figure 5.2.
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5.2.1 SAT-Proofs

An important part of the decision procedure of PEDANT is the iterative search for
counterexamples using a SAT-solver. Ideally, such a counterexample is a small assignment
of variables, such that the matrix is falsified. PEDANT is using this knowledge and is
introducing new forcing, arbiter and blocking clauses based on those counterexamples.
In order to verify the addition of those auxiliary clauses, we are using the DRAT proofs
outputted by the SAT-solver, which serve as a proof for the counterexample itself.

During the solving process, for each counterexample PEDANT collects a corresponding
proof in DRAT format which is the output of a SAT-solver. We include those DRAT
proofs in our QRAT-certificate. Our QRAT Refutation Example in Figure 5.2 contains
exactly three DRAT proofs in the orange highlighted block:

1. The first DRAT proof is just the first line.
2. The second DRAT proof are the lines 5 and 6.

3. The third DRAT proof is just line number 10.

For example, the counterexample derived by the SAT-solver and represented by the first
DRAT proof is 6 = {—1,—2}. By looking at the matrix we can easily see, that this
assignment combination is not able to satisfy all clauses and one of them needs to be
assigned differently. Because there is only one existential variable in this counterexample,
PEDANT repairs this conflict using a forcing clause (more details in Section 5.2.2).

We are aware that the RAT property of propositional formulas differs from the RAT
property of QBFs. However, we observed, that the generated DRAT proofs are merely
using the AT property in this use-case. Reverse Unit propagation does also apply in
QRAT, therefore we can safely include the outputs of the SAT-solver into our QRAT
certificate as a verification of the found counterexamples.

5.2.2 Forcing Clauses

If the reduced counterexample & is just containing a single existential variable e, PEDANT
adds a clause that forces e to the opposite polarity —&(e) under the (partial) universal
assignment in 6. Lets ly,,...,ly, be literals representing the assignment of the universal
variables contained in the reduced counterexample &. Further, lets [ be the literal
representation of the existential variable e with respect to . The clause which PEDANT
introduces is F' = (—le V =ly, V...V —ly,). Additionally, PEDANT restricts the set of
universal variables contained in F' to the dependency set of e, by removing those variables
using universal reduction.

In the solver, only the restricted clause is added. In the QRAT certificate we also need
to represent the reduction process. In general, it may requires multiple reduction steps
in the QRAT certificate. For illustration purposes, lets assume the variable [,,; is not in
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5.2. Clause Definitions

the dependency set of e. We therefore represent the addition of the forcing clause using
the following few lines:

lp —lyy —luy ... —lu, O
u o~y e —lyy ... —ly, 0
_Ie _I'HQ P _Iun 0

First we initially add the unrestricted forcing clause. Because the counterexample is
derived by the SAT solver and the corresponding DRAT proof is included in the QRAT
certificate beforehand, the addition of the unrestricted forcing clause is sound due to
having the AT property. To cover the actual added (restricted) forcing clause, we need to
apply universal reduction step-by-step because the clause modification line in QRAT only
supports the removal of a single universal literal at a time. Similar to the pre-processing
section, for each universal reduction we are adding a clause modification and a clause
addition line. The former is removing a universal literal from the clause F', the latter is
helping to keep track of unnecessary clauses. The same argument as in the pre-processing
section regarding the soundness applies here.

We can find the tracing of a forcing clause addition in the orange block of our QRAT
Refutation Example. This addition is covered by the lines 2-4:

=
| RS e ]
(==
o o

The corresponding counterexample derived beforehand by the SAT-solver is 6 = {—1, —2}.
In the context of QBF there must be a satisfying assignment of the formula with both -1
and 1 due to the universal quantification. In this case the polarity swap of the existential
variable is possible which is forced by the added forcing clause.

5.2.3 Arbiter Clauses

The more interesting part of the clause definition block is covering the introduction of
arbiter clauses. As we can see in the algorithm description of PEDANT, the unsatisfiability

of the input formula is merely determined by the unsatisfiability of the arbiter formula.

This formula consists of clauses containing only arbiter variables, which again are
defined in the introduced arbiter clauses. Those clauses are only created in case the
counterexamples contain more than a single existential variable.

In order to represent this mechanism using QRAT, we need to cover (a) the creation of new
arbiter variables, (b) the linking of arbiter variables to corresponding existential variables
using arbiter clauses and (c) the addition of clauses to the arbiter formula (described in
Section 5.2.4).
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For each existential variable e in the reduced counterexample, PEDANT creates a
(new) auxiliary variable e?lPe and two arbiter clauses A; = (elDe V —a|p, V —e)
and Ay = (—-e"lDE V —o|p, V €). This auxiliary variables represent the concept of
annotated variables in the VExp+Res proof system. Because QRAT allows the addition
of new variables, we can represent the addition of the new arbiter variable and the
introduction of the arbiter clauses together in one step. The arbiter clauses, which
contain the new arbiter variable, can just be added in QRAT using the following two
QRAT addition lines:

e’loe —glp, —e 0
—e%lbe —glp, e 0

Here, —c|p, denotes a list of literals representing the flipped universal assignment of
the dependency set of e. For illustration purposes, assume o|p, is {u1, ~u2,u3}. The

resulting QRAT lines would be:

U1,7u2,u3

e —u; uz —uz —e 0O

U1,7u2,u3

—e —up Uy —Ug e 0O

The addition of the first arbiter clause A; is sound, because this clause has the QRAT
property on the newly introduced arbiter variable e°/Pe. In general, every clause C' with
a new variable z can be safely added, because there is no other clause D to build the
outer resolvent with. Therefore the clause C has the QRAT property on literal z. Also
the second arbiter clause A; has the QRAT property on the newly introduced arbiter
variable €?IPe. At the time of the addition of As, the only clause to form the outer
resolvent with, is the before added clause A,. The outer resolvent of A5 with A; on
literal e°lpe is (e V —e) which obviously is a tautology. Therefore A; has the QRAT
property on literal —e?lDe

This process is also covered by our QRAT Refutation example at line 7 and 8. In
the example the arbiter variable e?/Pe is 102 and the existential variable e is 2. The
corresponding QRAT line representing the addition of A; is 102 -2 0, respectively
-102 2 0 for the addition of As.

5.2.4 Blocking Clauses

The unsatisfiability of the input formula is solely determined by the unsatisfiability of the
arbiter formula. After adding the arbiter clauses in the QRAT certificate, the addition
of the blocking clause added to the arbiter formula is still missing. Lets denote the
missing clause as B. At this point we can not directly add B in the QRAT certificate.
All variables contained in the blocking clause B are arbiter variables. By default we can
not automatically guarantee, that B does have the AT or QRAT property (on any literal)
and therefore might result in an invalid QRAT addition line. Instead we need to add B
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5.3. Post-Processing

together with the negation of the current complete universal assignment o|;;. We denote
the clause which we are tracing as By.

0| De, 9| De,
e, cee e —oly 0

A similar argument as the one for forcing clauses applies regarding the soundness of
this clause addition (B has the AT property). We can derive a conflict using reverse
unit propagation on the derived counterexample by the SAT solver and the arbiter
clauses. RUP starts off by creating By a set of unit clauses that falsify all literals in
By. Because By includes a negated complete universal assignment, By includes unit
clauses representing this complete universal assignment o|y. Further, By also contains
unit clauses falsifying all arbiter literals a; in By. For each of those unit clauses, there
exists an arbiter clause containing the arbiter variable in the other polarity as in the
unit clause. Those unit clauses can be used to remove not only the universal assignment
part —a|p, from all arbiter clauses, but also some arbiter variables from some arbiter
clauses. This results in additional unit clauses containing existential literals —e;. At
this point we have enough unit clauses to falsify the reduced counterexample &, which
obviously must lead to a conflict in RUP. This conflict tells us By has indeed the AT
property and can be safely added in the QRAT certificate at this point.

Unfortunately, we cannot remove the universal literals of By at the moment. However
we need to correctly represent the internal arbiter formula of PEDANT in the QRAT
certificate and this requires the derivation of the actual blocking clause B by eliminating
universal variables out of By. This can only be done in a post-processing block at the
end of the QRAT certificate once PEDANT finished solving and decided the formula to
be unsatisfiable [KS19].

The lines 9 and 11 (102 -4 1 0 and 4 1 0) in our QRAT Refutation Example represent
the addition of two unreduced blocking clauses.

5.3 Post-Processing

Once PEDANT has found the unsatisfiability of a formula, our so far generated QRAT
certificate is not a valid refutation proof yet. In order to create a valid refutation proof we
need to do some post-processing. As seen in Section 5.2.4, the current QRAT certificate
does not contain the same clauses as the solver has added to its arbiter formula. Instead
we needed to trace those clauses with additional universal literals in order to get a sound
QRAT addition line. The main purpose of this post-processing block is to resolve this
discrepancy by removing these universal literals using Extended Universal Reduction.

5.3.1 Delete Block

Let P; be the so far generated QRAT certificate with |P;| lines. Further let 7, represent
the matrix after applying all QRAT operations in P;. Before we can apply Extended
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Universal Reduction to those clauses, we need to eliminate all other clauses. As we can
see in the algorithm description of PEDANT, we can see that the unsatisfiability is merely
determined by the clauses added to the arbiter formula. This means we can delete all
remaining clauses, except the relevant By clauses, of ¢; because we don’t need them
anymore. This also contains clauses of the original matrix. Note that QRAT allows the
elimination of arbitrary clauses in a refutation proof. For each unnecessary clause, we
append a corresponding QRAT deletion line to P;. The yellow block in Figure 5.2 covers
the deletions of the no more needed clauses.

As mentioned in previous sections, we added a redundant QRAT addition line after each
QRAT modification line. In order to find those unnecessary clauses, we only need to
iterate over P; once, and find all added clauses, which are not already deleted. By adding
those redundant QRAT addition lines we make sure to catch all unnecessary clauses.
Otherwise we would need to compute 11 explicitly.

5.3.2 Reduction Block

After appending the QRAT deletion lines of unnecessary clauses we get a new QRAT
certificate, which we will denote as P,. At this point the matrix 1) consists only of By
clauses. In order to convert 15 to the internal arbiter formula we need to remove all
universal literals from the clauses in 15 by applying Extended Universal Reduction. The
removal of universal variables is done in reverse prefix order. Starting with the innermost
universal variable, we iteratively remove all occurrences of a variable from all clauses
before continuing with the elimination of the next universal variable. For each removal
we append a corresponding QRAT modification line to P;. This process is represented in

our QRAT Refutation example by the blue highlighted lines.

It remains to show that all the removal steps are valid Extended Universal Reduction
steps. In order to show this we need the concept of resolution paths [VG11].

uV...Vep b4 e V...Vea DI —ea2V...Vesz I —e3V...Vey
N g L g ., N g > . ,

1 Co Cs Cy

Figure 5.3: A resolution path from w to ey4

Definition 5.3.1 (Resolution Path [PSS19]). Let ® = QzQ.¢ be a QBF in PCNF. A
resolution path from ly to log in @ is a sequence m = Iy ...lop of literals satisfying the
following properties:

1. for alli e {1,...,k}, there is a C; € ¢ such that ly;_1,ls; € C;

2. foralli e {1,...,k}, var(lai_1) # var(ly;)

3. fO?” alli € {1? vk — ]_}, —lo; = 521;_’_1
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5.3. Post-Processing

Using resolutions paths, the validity of the Extended Universal Reduction steps is a
consequence of the following lemma:

Lemma 5.3.1 (Independence of Arbiter Literals [KS19]). If ® = Q. contains a
resolution path from a universal literal w to an existential literal e, then e must be an
arbiter literal such that the associated assignment o|p, falsifies u.

Proof. Suppose there exists a resolution path C1,...,C}, from u to e. We show by induc-
tion on the resolution path length n that e is an arbiter literal such that the associated
assignment o|p, falsifies u.

BASE CASE (n=1):

C contains both u and e. Because » contains only arbiter variables and universal
variables, e needs to be an arbiter literal a. Furthermore, looking at the construction of
the remaining clauses, the universal literals occur in the opposite polarity as contained
in the corresponding counterexample o. The universal literal © must precede e, other-
wise e would be trivially independent of u. Hence, the dependency set D, must contain
var(u). As a result a must have been created with respect to o|p, which clearly falsifies u.

INDUCTION STEP (n — 1 — n):

Let C1,...,Cy be a resolution path from u to e. We know that e € ), and that
Ci,...,Ch—1 is a resolution path from u to some existential literal e,—; such that
en—1 € Cp_1 and —e,_; € C,. By the induction hypothesis, e, 1 is an arbiter literal
such that the associated assignment o] De,_, falsifies u. Because —e,_; € C},, we know
that the counterexample o leading to the creation of Cj, must also falsify u. As a result,
e is also an arbiter literal such that the associated assignment o|p, falsifies u. U

We get from Lemma 5.3.1, that whenever we eliminate a universal literal u from a clause
C € 19, that each existential literal e € C' with u < e is independent of u (existential
literals preceding u are trivially independent of u). Each existential literal e € C' is an
arbiter literal a such that the associated assignment o|p_ falsifies u. Hence, there cannot
exist a resolution path from —u to both e or —e. If this would be the case Lemma |5.3.1

would tell us that e is an arbiter literal such that the associated assignment o|p, falsifies —u.

Given the independence from e of u, we know the removal of u using Extended Universal
Reduction is sound.

Since we are not introducing any new resolution paths by removing a universal literal,
Lemma [5.3.1| does apply not only for the first removal of an universal literal, but also for
the remaining elimination operations.

5.3.3 Arbiter Solver proof

Lets denote the QRAT certificate after removing all universal variables as P5. At this
point 13 is exactly the internal arbiter formula of PEDANT. This means, all universal
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variables are eliminated and there are only existential variables left. Due to having the
same instance as the arbiter solver determining the unsatisfiability of the QBF ®, we can
again append the DRAT proof of this SAT call.

In our QRAT Refutation example, PEDANT is able to find the empty clause as a blocking
clause. Therefore we do not need an additional DRAT proof for completing the refutation.
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CHAPTER

Implementation Detalils

In this chapter we are going to give a brief overview of the implementation of the
unsatisfiability tracing in PEDANT proposed in Chapter 5. Further, we would like to
mention some of the challenges we faced on the journey to valid QRAT certificates. We
believe that the readers might be interested in some details of the developed solution
and some might benefit from the insights and the knowledge we gathered along the way.

The core of our proposed tracing module is a newly created class responsible for the
creation of valid QRAT certificate files. Obviously, there is more to that and the proof
tracer class covers a larger area of responsibilities. In order to live up to its purpose and
allow PEDANT the creation of QRAT refutations for QBFs, the remit of the proof tracer
class can be summarized by the following four tasks:

1. Compliance of Tracing Configuration
2. Management of File-Pointers

3. Provision of Interface for Tracing-Operations

s

. Application of Post-Processing on Trace to complete VExp+Res Simulation

First of all we made the unsatisfiability tracing configurable. Via program arguments
of PEDANT it is possible to either activate or deactivate the QRAT tracing, as well
as the specification of the storage location of the final QRAT certificate. In case of a
deactivated QRAT tracing the proof tracer class gets still instantiated and used in the
decision procedure of PEDANT. However, the deactivation results in skipping all tracing
operations in the tracer class.

The creation of valid QRAT certificates requires the management of a total of 3 output
files. Two out of the three files are auxiliary files utilized during the solving process. The
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first temporary file is used for storing decisions and actions of PEDANT and conflicts
derived by a SAT solvers. In order to allow in the post-processing the identification of the
last conflict derivation by the arbiter solver, the corresponding resolution proof is written
to the second temporary file. The third and last file is designed to contain the final valid
QRAT certificate in the end. This last file allows the verification of unsatisfiable QBF
instances using QRAT-TRIM.

Using the interface of the proof tracer class PEDANT is able to record the main events of
solving a formula. It exposes functions for tracing (a) forcing clauses, (b) the definition
of arbiter variables using arbiter clauses, as well as (c) the blocking clauses together
with the negation of the corresponding complete universal assignment. In general these
functions simply transform the integer array representation used in PEDANT for clauses
and assignments to valid QRAT lines. For the purpose of tracing the modified blocking
clauses we augmented the QRAT format by introducing new individual lines. Those
specific lines should mark clauses which should be not deleted in the post-processing.

If PEDANT detects the unsatisfiability of a QBF it triggers the post-processing in the
tracing module. The post-processing takes the two auxiliary files as a input and generates
the final QRAT certificate. This step requires minor modifications on the trace together
with additional lines to complete the intended VExp+Res simulation.

6.1 File - Handling

In total the proof tracer class takes care of 3 file pointers altogether. Initially only the
auxiliary files are created and used until PEDANT determines the unsatisfiability of the
input formula. In this case the proof tracer class makes sure the writing on the auxiliary
files is completed before starting the post-processing and prepares to read in again the
contents of them. From this point we solely write to the final certificate file which is
created at the beginning of the post-processing.

Because PEDANT uses SAT solvers as sub-procedures and their conflict derivations are
needed in the final QRAT certificates we need to coordinate the output of the SAT solvers
to end up in the right auxiliary files. The SAT solvers used by PEDANT can as expected
produce DRAT proofs. Luckily, the main SAT solver (CaDiCaL [BFFH20|) can also
be parameterized with an already open file pointer and the DRAT proofs produced by
CaDiCal. automatically end up in the corresponding file without further assistance of
PEDANT.

We are using a second temporary file in order to identify the complete DRAT proof of the
last conflict derived by the arbiter solver. In the final QRAT certificate the last conflict
resolution is appended after the completion of the post-processing. Roughly speaking
the final QRAT certificate starts with the slightly modified contents of the first auxiliary
file followed by the additional QRAT lines generated in the post-processing. The QRAT
certificate is completed with the resolution proof of the second auxiliary file. In general
it would be possible to just use a single provisional file. For example the introduction of



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6.2. Challenges

special separation lines would allow to write all contents into one file and still would be
able to identify the needed parts in the post-processing. However, this would require a
more sophisticated parser for reading back in the content. We wanted to stay as close to
the official QRAT format in order to make use of a simple QRAT parser.

Figure 6.1: Structure of final QRAT certificate with respect to temporary files

Although write operations on the first auxiliary file are triggered both from PEDANT
and the external SAT solvers, the implementation of PEDANT does not allow a race
condition regarding write order. PEDANT is not doing anything in parallel while the
external SAT solvers are running. This means we can be sure the SAT solver’s DRAT
proof of the conflict derivation is already present in the file when PEDANT takes actions
on the derived conflict.

6.2 Challenges

During the development phase of the unsatisfiability tracing we encountered some
problems which challenged us to find clever solutions in order to create a valid certification
workflow for unsatisfiable QBFs.

A problem we faced in the development of the proposed QRAT certificate structure
concerns the elimination order of universal variables in the reduction block. As you can
see in Section 5.3.2 we are eliminating the universal variables from all remaining clauses
in reverse prefix order. By proofing Lemma |5.3.1| we showed that all remaining existential
(arbiter) literals are independent of all universal variables. As a result it theoretically
should be possible to eliminate universal variable in any desired order. However, this
led to some certificates which could not be verified using QRAT-TriM. We discovered
QRAT-TRIM uses a different definition of resolution paths. According to Definition 3.3.5
the resolution paths are created using just existential literals as connectors. QRAT-TRIM
also uses universal literals as path connectors resulting in a larger dependency set. With
regard of the Extended Universal Reduction definition, this dependency set can contain
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false-positives such that QRAT-TRIM might not be able to confirm the soundness of
certain Extended Universal Reduction statements. As a result, the verification of certain
certificates might fail. By eliminating universal variables in reversed prefix order we can
force QRAT-TRIM to just use existential variables for building resolution paths. Lets
assume u is the rightmost universal variable in the prefix which we want to eliminate.
It is not possible to find another universal variable u; such that u < uy. Otherwise u;
would be the rightmost universal variable which we would be eliminating first. As a
consequence there are only existential literals e left such that u < e and QRAT-TRIM
can utilize for building resolution paths. By forcing QRAT-TRIM to use only existential
literals for building resolution paths, our Lemma |5.3.1| applies and the corresponding
reduction lines can be verified.

At the point we were able to create valid QRAT certificates which are verifiable using
QRAT-TRIM we were puzzled of the running-time performance of some instances. In
the evaluation of our solution we determine the impact of our tracing module on the
performance of PEDANT.

Proof Size
2500s

o
@ 800MB

2000s| @ 1600MB L

. °
1500s . 3200MB

tracing

1000s A

_____________ G e e e ._._._._._....:!__..
so0s.  ——

05 | _n,...-n:‘ .

Os 100s 200s 300s 400s 500s 600s
no tracing

Figure 6.2: Former runtime impact of tracing module with respect to certificate size

We spotted some instances which were significantly slower with the unsatisfiability tracing
enabled. Furthermore the size of the corresponding QRAT certificates generated by
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6.3. Future Improvements

the tracing module were quite big. We first figured this comes down to the masses of
IO-operations we are generating in the post-processing. However, not long after we
discovered an instance with a much bigger QRAT certificate which performed well with
unsatisfiability tracing enabled. After profiling the tracing module we found the true
cause of the performance loss. At one point in the post-processing we delete all clauses
which are not needed anymore. In general at this point we would like to keep only
blocking clauses. In other words we iterated over all so far traced clauses and checked
whether this clause is a blocking clause. In order to be able to compare the integer array
representations we sorted each clause producing most of the overhead. To get rid of this
piece of code we already annotated blocking clauses in the first temporary file. Those
annotations allow the effective deletion of unnecessary clauses. Instead of a quadratic
worst-case runtime we were able to eliminate those clauses in linear time.

By looking at Figure 6.2| we find instances which are faster with the unsatisfiability
tracing. This unintuitive behaviour should not be possible because pure logically we only
can only add something to the runtime of PEDANT with the new tracing module. This
discrepancy was a result of inconsistent solver runs on the cluster. It seems PEDANT is
not totally deterministic on different machines. Through different implementations of
hash-functions PEDANT can produce different runs on different machines. This is most
likely the case in our example.

6.3 Future Improvements

We analyzed the generated QRAT certificates and observed PEDANT is occasionally able
to derive the empty clause as a blocking clause. However, according to the VExp+Res
simulation we are first adding the negation of the complete universal assignment as
a clause before starting the post-processing. In this case the post-processing could
be omitted and the empty clause can be derived in QRAT using Extended Universal
Reduction on the corresponding clause. The premise for this to work is that QRAT-TRrIM
uses the resolution path definition as stated in Definition |3.3.5. By using only existential
literals as path connectors it would be possible to directly resolve the empty blocking
clause in QRAT without the complete post-processing. With the current implementation
of resolution paths in QRAT-TRIM the complete post-processing is needed in order to
create a by QRAT-TRIM verifiable certificate. By skipping the post-processing we would
dramatically decrease the final QRAT certificate size, reduce the performance impact
on PEDANT and facilitate a faster verification by QRAT-TRIM because of fewer QRAT
lines.

Another point which can be addressed is the handling of universal assignments in the
reduction of blocking clauses (see Section 5.3.2). Currently we store for each blocking
clause the corresponding complete universal assignment in a dictionary in the proof tracer
class. As it is implemented now this additional data is used to determine what literals
should be removed from a clause. A similar approach to annotating blocking clauses in
the temporary file could eliminate the additional storage dictionary. In order to work the
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annotation not only need to identify the universal assignment, but also need to encode
the prefix order. By doing so, the post-processing could theoretically be completely
separated from PEDANT and realized as an individual program.
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CHAPTER

Experimental Evaluation

We extended PEDANT by adding an implementation of the certificate generation proposed
in the previous section. To get an understanding of the overhead introduced and how
the certificate generation affects the performance of PEDANT, we first evaluated PEDANT
without tracing on a standard QBF benchmark set with a time limit of 600 seconds.
The benchmark set we used for the evaluation were the instances from the PCNF tracks
of QBFEVAL’19 and QBFEVAL’20. By doing this we got a set of 52 unsatisfiable
instances which are solvable by PEDANT within the imposed time limit. Because our
goal was to certify unsatisfiability in PEDANT we can obviously neglect solvable instance
which are satisfiable and just focus on unsatisfiable instances. We used the performance
results without tracing on those unsatisfiable instances as a baseline to compare to the
performance of PEDANT with unsatisfiability tracing enabled. The experiments were
performed on a cluster with AMD EPYC 7402 processors at 2.8 GHz running a 64-bit
distribution of Linux.

The data presented in this section is a result of performing the experiment multiple times
and taking the average. We let PEDANT solve each instance 5 times in each configuration
(with/without tracing) and took the arithmetic mean.

In Figure [7.1| we can see a comparison of the measured runtimes of PEDANT on the
previously defined set of 52 unsatisfiable instances. In general we can see that all instances
lie in proximity of the diagonal indicating that in general the QRAT tracing does not
have a huge performance impact. However we can see a trend, the longer an instance is
taking to solve, the more the QRAT tracing impacts the performance. A deeper look
into individual runs reveals that the majority of the produced overhead is added by the
post-processing of the unsatisfiability tracing. As described in Section 5.3, the post-
processing is responsible to trace the deletion of all unnecessary clauses and the reduction
of By to the correct blocking clauses. If we take a look at the generated certificates, this
block makes up the majority of the QRAT proof. This is because QRAT allows only
the elimination of a single universal literal at a time. We see a blowup of certificate size
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Figure 7.1: Runtime impact of proof tracing

with respect to the number of universal variables and the number of blocking clauses.
To remove all universal literals from all clauses in By we need |Us| x |By| reduction
steps. As a result we can say that, the more (blocking) clauses PEDANT is deriving, the
more resources the post-processing is consuming. Most of the time PEDANT derives more
clauses at long running instances compared to short running instances. This explains
why the QRAT tracing has a greater impact on long running instances. In Table 7.1
we illustrate the runtime impact of the unsatisfiability tracing for each individual test
instance.

The memory utilization of both solving variants was as expected across all instances. In
Figure 7.2 we can see a uniform memory utilization with and without tracing. This is
a result of the implementation of the certificate generation. We do not need to store a
significant amount of additional data in order to generate the unsatisfiability certificate.
Most of the QRAT lines directly trigger a file operation.
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Table 7.1: Runtime Impact of Tracing per QBF Instance

Instance Reference | Tracing | Delta
ite-b13-fixpoint-1 1.12 s 1.06 s | -0.06 s
small-synabs-fixpoint-3 0.65 s 0.66s | 0.01s
trueque__query71_1344n 0.07 s 0.08s | 0.01ls
falsequ__query64_ 1344n 0.08 s 0.09s | 0.01s
falsequ__query60__1344n 0.09 s 0.10s | 0.01s
falsequ__query71_1344n 0.11 s 0.15s | 0.04s
trueque__query60_1344n 0.13 s 0.19s | 0.06s
trueque__query64_1344n 0.18 s 026s| 0.08s
s00838_PR_6_90 8.22 s 8.64s | 042s
s01423 PR _4 75 7.82 s 8.26s | 044s
s01423 PR_4 90 6.61 s 7.08s | 047s
itc-b13-fixpoint-2 10.22 s 10.70 s | 0.48 s
incrementer-encO06-nonuniform-depth-5 9.46 s 10.07s | 0.61s
cache-coherence-3-fixpoint-1 13.72 s 14.65s | 0.93s
axquery_ query42_1344n 5.22 s 6.24s | 1.02s
small-synabs-fixpoint-10 7.94 s 941s | 147s
ethernet-fixpoint-1 22.05 s 23.54s | 149s
axquery_ query7l_1344n 8.87s 1037s | 1.50s
exquery__query42_ 1344n 6.93 s 854s| 16ls
nxquery_ query7l_1344n 6.68 s 852s | 184s
s05378_PR_4_ 90 21.72 s 23.69s | 197s
cache-coherence-3-fixpoint-2 58.26 s 60.25s | 1.99s
exquery__query64_1344n 7.50 s 96ls | 211s
cache-coherence-2-fixpoint-2 26.80 s 31.00s | 4.20s
exquery__query7l_1344n 24.27 s 28.90s | 4.63s
nxquery__query42_1344n 25.66 s 30.33s | 4.67s
s09234_PR_9 90 26.79 s 31.56s | 4.77s
stmt19_83_412 35.43 s 40.84s | 541s
stmt41_160_235 27.24 s 32.77s | 5.53s
nxquery__query64_1344n 27.00 s 33.84s | 6.84s
neclaftp4001 23.61 s 31.25s | 764s
stmt21_181_ 369 54.45 s 62.31s | 7.86s
stmt29_ 226_ 376 58.64 s 68.04s | 9.40s
small-pipeline-fixpoint-1 38.63 s 51.75s | 13.12 s
stmt21_310_360 105.65s | 127.27s | 21.62 s
arbiter-05-comp-error01-gbf-hardness-depth-8 10243 s | 125.11s | 22.68 s
ntrivil_query71_1344n 128.12s | 153.80s | 25.68 s
stmt19_313 412 111.85s | 138.55s | 26.70 s
klieber2017¢-084-21-t1 336.28 s | 364.03s | 27.75 s
trivial _query71_1344n 153.49s | 181.62s | 28.13 s
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7. EXPERIMENTAL EVALUATION
Continuation of Table [7.1
Instance Reference | Tracing | Delta
trivial__query60__1344n 208.57s | 244.10s | 35.53 s
k_branch_p-10 134.80s | 172.24s | 37.44 s
ntrivil_query42_1344n 264.20s | 303.48s | 39.28 s
small-pipeline-fixpoint-2 224.15s | 266.03s | 41.88 s
trivial__query64_ 1344n 146.69s | 19344 s | 46.75 s
k_branch_p-12 326.56 s | 374.64s | 48.08 s
ntrivil _query64_ 1344n 167.78 s | 216.90s | 49.12 s
gttt_2 1 001020_4x4 torus_w 311.34s | 361.74s | 50.40 s
stmt39_ 285 335 168.24 s | 219.55s | 51.31 s
gttt_2 2 000111_4x4 torus_w 285.45s | 337.12s | 51.67 s
k_branch_p-11 216.85s | 268.60s | 51.75 s
stmt32_329_ 378 146.21 s | 200.63 s | 54.42 s
arbiter-06-comp-error01-gbf-hardness-depth-11 415.04s | 474.15s | 59.11 s
stmt52 295 394 153.03 s | 213.55s | 60.52 s
End of Table 7.1
Furthermore, we are interested in the time taken in the verification process of those
instances we collected and solved previously. The verification tool we used is QRAT-TRIM
[HSB14al. For the verification processes we used a time limit of 1800 seconds.
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no tracing
Figure 7.2: Memory Utilization Pjigur(? 7.3: Certificate size and verifica-
tion time
All except two of our generated certificates could be verified on the cluster within the
imposed time limit. However, we managed to verify those two instances by manually
increasing the time limit of QRAT-TRIM on a desktop machine. We increased the time
limit to 9000 seconds and verified those instances in 4057 and 2028 seconds. With this,
all instances could be verified and we can conclude that we are indeed generating valid
QRAT certificates which certify the unsatisfiability of an input QBF.
In Figure 7.3 we can see the correlation of the certificate size and the amount of time
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needed to verify the corresponding certificate. The larger a certificate is, the longer
QRAT-TRIM is running in order to verify it.

Evaluation of QRAT Tracing on DQBF Instances
With the future goal of certifying unsatisfiable DQBF instances in mind, we analysed the

impact of the in PEDANT implemented (QBF unsatisfiability tracing on DQBF instances.

In other words we are interested how the implemented unsatisfiability tracing performs
on DQBF instances as well as when solving unsatisfiable QBF instances. We performed
this experiment under the assumption that a future unsatisfiability tracing for DQBFs
will not substantially differ from the implemented unsatisfiability tracing for QBFs. In
fact, we believe this is just a matter of switching the underlying proof-format from QRAT
to its corresponding generalization for DQBF [BIi20].
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Figure 7.4: Runtime impact of proof tracing on DQBF Instances in Log Scale

In this experiment we used the same technique as before. We first evaluated PEDANT on
DQBEF instances from the DQBF track of QBFEVAL’20 with a time limit of 600 seconds
to get a performance baseline to compare against. This yielded 145 unsatisfiable instances
which were solvable by PEDANT within the imposed time limit. For these unsatisfiable
instances we are interested in the runtime impact of the unsatisfiability tracing. Similar
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7. EXPERIMENTAL EVALUATION

to the QBF experiment, we performed the experiment on DQBF 5 times and took the

arithmetic mean of the measurements.

In Figure 7.4 we can see the direct comparison of the measured runtimes of the runs with

and without unsatisfiability tracing. Table 7.2 again shows the mean runtimes data for

each of the 145 instances.

In principle we got similar results as in the QBF experiment. All instances lie in

close proximity of the diagonal. This means the unsatisfiability tracing also does not

significantly deteriorate the performance of PEDANT when solving DQBF instances. With

this we feel confident that certifying unsatisfiable DQBFs in PEDANT can be done at a

reasonably small overhead.

Table 7.2: Runtime Impact of Tracing per DQBF Instance
Instance Reference | Tracing | Delta
crn._ 11 99 u.cenf 42892 s | 363.55s | -65.37 s
tentrup__amba_ decomposed__decode_ environment__ 16 74.05 s 58.36 s | -15.69 s
tentrup_ load__balancer_system_ 4 101.19 s 88.54s | -12.65 s
tentrup_ lilydemo19__environment_ 4 55.28 s 46.69s | -859s
marg3x3add8ch.shuffled-as.sat03-1448.cnf 21.58 s 19.14s | -2.44s
marg3x3add8.shuffled-as.sat03-1449.cnf 12.09 s 10.53s | -1.56s
scholl terml.blif 0.20 1.00 3 2 henkin 5.80 s 474s | -1.06s
tentrup_ 1t12dbal3__environment_ 8 36.65 s 35.65s | -1.00s
scholl terml.blif 0.10 _1.00 5 1 henkin 3.73 s 327s | -0.46s
battleship-6-9-unsat.cnf 4.28 s 3.84s | -044s
scholl__comp.blif 0.20_0.20_0_3 henkin 5.39 s 501s | -0.38s
scholl terml.blif 0.60 1.00 5 1 henkin 3.70 s 341s | -0.29s
scholl C499.blif 0.60_1.00 1 2 henkin 9.27 s 898s | -0.29s
scholl terml.blif 0.10 _1.00 5 3 henkin 3.83 s 3.54s | -0.29s
scholl C499.blif 0.20_1.00_3 3 henkin 1.91s 1.71s | -0.20s
scholl terml.blif 0.50 1.00 9 2 henkin 2.98 s 279s | -0.19s
scholl terml.blif 0.20 1.00 5 3 henkin 3.79 s 3.61ls| -0.18s
scholl__comp.blif 0.10_0.10_0_2 henkin 0.86 s 0.73s | -0.13s
scholl C432.blif 0.40_1.00_1 2 henkin 2.86 s 2.75s | -0.11s
scholl terml.blif 0.50 1.00 5 3 henkin 3.74 s 3.64s | -0.10s
scholl terml.blif 0.60 1.00 9 1 henkin 2.00 s 1.90s | -0.10s
scholl C432.blif 0.50_1.00_3 3 henkin 0.85 s 0.78s | -0.07s
scholl__comp.blif 0.10_0.10_0_3 henkin 0.55 s 0.49s | -0.06s
scholl C499.blif 0.10_1.00_4 2 henkin 2.70 s 264s | -0.06s
scholl terml.blif 0.60 1.00 3 1 henkin 2.53 s 248s | -0.05s
scholl terml.blif 0.10 _1.00 5 2 henkin 2.49 s 245s | -0.04s
battleship-5-8-unsat.cnf 0.99 s 095s | -0.04s
scholl C432.blif 0.10_1.00_7 3 henkin 0.79 s 0.77s | -0.02s
scholl terml.blif 0.60 1.00 3 3 henkin 2.39 s 2.39 s 0.00 s
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Continuation of Table 7.2

Instance Reference | Tracing | Delta
scholl terml.blif 0.20 1.00 3 1 henkin 2.37s 2.37s 0.00 s
scholl z4ml.blif 0.30_0.10_2 1 henkin 0.07 s 0.08 s 0.01 s
scholl z4ml.blif 0.50 1.00 7 3 henkin 0.06 s 0.07 s 0.01 s
scholl__comp.blif 0.10_1.00_2_3_ henkin 0.31s 0.32s 0.01 s
bloem_ unrealizable 0.02 s 0.03 s 0.01 s
scholl__C499.blif 0.10_1.00_7_1_ henkin 1.34 s 1.35s 0.01s
scholl z4ml.blif 0.10_0.20 1 2 henkin 0.03 s 0.05 s 0.02 s
bloem_sh u_ o 0.03 s 0.05 s 0.02 s
scholl z4ml.blif 0.10_1.00 1 3 henkin 0.03 s 0.05 s 0.02 s
scholl z4ml.blif 0.10_0.50_ 2 3 henkin 0.05 s 0.06 s 0.01 s
scholl z4ml.blif 0.10_0.10_2 3 henkin 0.05 s 0.07 s 0.02 s
scholl z4ml.blif 0.30_1.00 1 3 henkin 0.03 s 0.05 s 0.02 s
scholl__comp.blif 0.10_1.00_5_2_henkin 0.25 s 0.27s 0.02 s
scholl z4ml.blif 0.20 _1.00_0_3 henkin 0.04 s 0.05 s 0.01 s
scholl z4ml.blif 0.20 _0.20 2 2 henkin 0.05 s 0.08 s 0.03 s
scholl z4ml.blif 0.30_0.10_1 2 henkin 0.07 s 0.10s 0.03 s
scholl__comp.blif 0.10_0.50_0_3_ henkin 1.57 s 1.60 s 0.03 s
scholl__comp.blif 0.10_1.00_4_1_ henkin 0.27 s 0.30 s 0.03 s
scholl terml.blif 0.20 1.00 5 2 henkin 2.70 s 274 s 0.04 s
scholl__comp.blif 0.50_1.00_2_2_henkin 0.26 s 0.30 s 0.04 s
scholl__comp.blif 0.20_0.20_2_2_henkin 0.36 s 0.40 s 0.04 s
scholl__comp.blif 0.10_1.00_9_3_ henkin 0.27 s 0.32s 0.05 s
scholl__comp.blif 0.10_1.00_0_1_ henkin 0.26 s 0.32s 0.06 s
scholl z4ml.blif 0.50 _0.10_2 2 henkin 0.31s 0.37s 0.06 s
scholl__comp.blif 0.10_0.20_1_3_ henkin 0.30 s 0.36 s 0.06 s
scholl__comp.blif 0.20_0.50_2_3_ henkin 0.31s 0.37s 0.06 s
scholl__comp.blif 0.10_0.20_2_1_ henkin 0.49 s 0.56 s 0.07 s
scholl__comp.blif 0.30_0.50_2_1_henkin 0.46 s 0.54 s 0.08 s
scholl__C499.blif 0.10_1.00_7_2_ henkin 2.16 s 2.24 s 0.08 s
scholl__comp.blif 0.60_1.00_9_ 2 henkin 0.29 s 0.37s 0.08 s
scholl__comp.blif 0.10_0.50_1_3_ henkin 0.27 s 0.37s 0.10 s
scholl__comp.blif 0.20_1.00_5_1_ henkin 3.41 s 3.51s 0.10 s
scholl__comp.blif 0.10_1.00_4_2_henkin 0.29 s 042 s 0.13 s
scholl__comp.blif 0.10_1.00_2_1_ henkin 0.36 s 0.52s 0.16 s
scholl z4ml.blif 0.50 _0.10_2 3 henkin 0.32 s 0.49 s 0.17 s
tentrup_ round_ robin__ arbiter_ system_ 1 6.93 s 7.10 s 0.17 s
scholl__C499.blif 0.20_1.00_7_2_ henkin 1.88 s 2.08 s 0.20 s
scholl terml.blif 0.50 1.00 3 1 henkin 2.37s 259 s 0.22 s
tentrup_ pec_ multiplexer 1_8 1.09 s 1.33 s 0.24 s
tentrup_ pec_ multiplexer 1_4 1.50 s 1.74 s 0.24 s
tentrup_ pec_ multiplexer 1_ 26 1.37 s 1.63 s 0.26 s
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7. EXPERIMENTAL EVALUATION
Continuation of Table |7.2
Instance Reference | Tracing | Delta
tentrup_ pec_ multiplexer_1_ 11 1.31 s 1.59 s 0.28 s
tentrup_ pec_ multiplexer_1_ 2 1.29 s 1.57s 0.28 s
scholl C499.blif 0.50_1.00 8 1 henkin 2.46 s 2.74 s 0.28 s
scholl C499.blif 0.10_1.00_9 2 henkin 3.23 s 3.56 s 0.33 s
tentrup_ pec_ multiplexer 450 1.34 s 1.73 s 0.39 s
tentrup_ pec_ multiplexer_5_ 11 1.29 s 1.72 s 0.43 s
scholl__comp.blif 0.50_1.00_5_1_henkin 3.12 s 3.57s 0.45 s
tentrup_ pec_ multiplier_1_10 1.47 s 1.92 s 0.45 s
tentrup_ pec_ multiplexer_5_ 2 2.66 s 3.13s 0.47 s
tentrup_ pec_ multiplexer 6_ 84 1.42 s 1.89 s 0.47 s
tentrup_ pec_ multiplexer_3_6 2.33 s 2.84s 0.51s
tentrup_ pec_ multiplexer 2 2 1.29 s 1.82 s 0.53 s
tentrup_ pec_ multiplexer 3 30 1.38 s 1.92 s 0.54 s
php-010-008.shuffled-as.sat05-1171.cnf 2.00 s 2.56 s 0.56 s
scholl__comp.blif 0.50_1.00_9_1_henkin 2.80 s 3.36 s 0.56 s
tentrup_ pec_ multiplier_ 1_ 20 1.57 s 213 s 0.56 s
tentrup_ pec_ multiplier_3 3 1.79 s 2.38 s 0.59 s
tentrup_ pec_ multiplier_3 4 1.78 s 2.39 s 0.61 s
scholl__comp.blif 0.60_1.00_4_1_ henkin 10.72 s 11.34 s 0.62 s
tentrup_ pec_ multiplier_1_11 1.61 s 2.26 s 0.65 s
tentrup_ pec_ multiplier_1_9 1.48 s 213 s 0.65 s
tentrup_ pec_ multiplexer 512 2.49 s 3.20 s 0.71s
tentrup_ pec_ multiplier_3_ 2 1.87s 2.60 s 0.73 s
tentrup__pec_ multiplier_1_ 30 1.59 s 2.34 s 0.75 s
tentrup_ pec_ multiplier_ 4 14 1.42 s 2.18 s 0.76 s
tentrup_ pec_look ahead arbiter_3 12 292 s 3.70 s 0.78 s
tentrup_ pec_ multiplexer 5_17 3.07 s 3.87s 0.80 s
tentrup_ pec_look ahead arbiter_2 24 3.19 s 4.07s 0.88 s
tentrup__pec_ look_ahead_ arbiter_ 8_ 4 3.19 s 414 s 0.95 s
tentrup__pec_ look_ahead_ arbiter_3_3 2.87 s 3.85s 0.98 s
tentrup_ pec_ multiplexer_6_ 51 5.56 s 6.59 s 1.03 s
tentrup_ pec_ multiplier_ 5_ 91 3.65 s 472 s 1.07 s
tentrup_ pec_look ahead arbiter_1_14 3.19 s 4.26 s 1.07 s
tentrup_ pec_ multiplier_ 5_ 81 3.70 s 478 s 1.08 s
tentrup__pec_ multiplexer_ 10_ 41 8.42 s 9.50 s 1.08 s
tentrup_ pec_look ahead arbiter_5_ 10 3.45 s 454 s 1.09 s
tentrup_ pec_ look_ ahead_arbiter_ 1_ 11 3.12 s 424 s 1.12 s
tentrup_ pec_ multiplier_ 713 513 s 6.25 s 1.12 s
tentrup__pec_ look_ahead_ arbiter_ 1_2 2.82s 3.96 s 1.14 s
tentrup__pec_ look_ ahead_ arbiter_5_3 3.21 s 442 s 1.21 s
tentrup_ pec_look ahead arbiter_5 12 3.13 s 4.37s 1.24 s
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Continuation of Table 7.2

Instance Reference | Tracing | Delta
tentrup_ pec_ multiplexer 8 59 6.28 s 7.52 s 1.24 s
tentrup__pec_ look_ahead_ arbiter_ 8 11 3.03 s 427 s 1.24 s
tentrup__pec_ look_ahead_ arbiter_5_5 2.99 s 4.26 s 1.27 s
tentrup__pec_ look_ahead_ arbiter_ 6_70 2.95 s 423 s 1.28 s
tentrup__pec_ multiplier_ 7_ 87 4.74 s 6.06 s 1.32 s
tentrup__pec_ look_ahead_ arbiter_7_9 3.39 s 474 s 1.35s
tentrup__pec_ look_ahead_ arbiter_6_12 3.41 s 477 s 1.36 s
tentrup__pec_ look_ahead_ arbiter_7_22 2.90 s 427 s 1.37 s
tentrup__pec_ look_ahead_ arbiter_1_ 35 2.83 s 421 s 1.38 s
tentrup__pec_ look_ahead_ arbiter_ 10_2 3.20 s 458 s 1.38 s
tentrup__pec_ look_ahead_ arbiter_3 15 3.02 s 444 s 1.42 s
tentrup__pec_ look_ahead_ arbiter_2 4 2.94 s 444 s 1.50 s
tentrup__pec_ look_ahead_ arbiter_6_ 2 2.86 s 438 s 1.52 s
tentrup__pec_ look_ahead_ arbiter_ 6_ 93 3.04 s 4.67 s 1.63 s
tentrup__pec_ look_ahead_ arbiter_5_ 2 2.75 s 439 s 1.64 s
tentrup__pec_ look_ahead_ arbiter_ 6_ 40 2.75 s 444 s 1.69 s
tentrup__pec_ look_ ahead_ arbiter_5_1 3.25 s 497 s 1.72 s
tentrup__pec_ look_ahead_ arbiter_9_ 8 3.72 s 5.46 s 1.74 s
tentrup_ 1t12dba_ alpha_environment_ 8 49.26 s 51.11 s 1.85 s
tentrup__pec_ look_ahead_ arbiter_9_ 36 3.12 s 498 s 1.86 s
tentrup__pec_adder_n_ bit_3_1 4.02 s 5.89 s 1.87s
tentrup_ prioritized_ arbiter_ environment_ 4 37.22 s 39.15 s 1.93 s
tentrup__pec_adder_n_ bit_4_4 3.76 s 6.16 s 2.40 s
tentrup_ pec_adder_n_ bit_1_35 3.88 s 6.33 s 2.45 s
tentrup__pec_adder_n_ bit_4_11 4.31 s 6.78 s 247 s
tentrup_ pec_adder_n_ bit_2_10 3.38 s 5.90 s 2.52 s
tentrup__pec_adder_n_ bit_5_90 4.43 s 6.96 s 2.53 s
tentrup__pec_adder_n_ bit_ 10_ 32 7.33 s 9.92 s 2.59 s
tentrup_ pec_adder_n_ bit_3_ 38 4.05 s 6.64 s 2.59 s
tentrup_ pec_adder_n_ bit_7_ 26 6.31 s 9.15s 2.84 s
urquhart3_ 25bis.shuffled.cnf 11.02 s 15.88 s 4.86 s
x1_40.shuffled.cnf 40.17 s 47.43 s 7.26 s
tentrup__genbuf2_ system_ 4 219.49s | 238.26s | 18.77s
battleship-7-12-unsat.cnf 376.20s | 399.61s | 2341s

End of Table |7.2
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CHAPTER

Conclusion & Future Work

We presented a workflow to certify unsatisfiability of QBFs in the DQBF solver PEDANT
using QRAT. With this, we made an important step towards a general certification
mechanism in PEDANT for unsatisfiable DQBFs. We used the fact that QRAT simulates
the expansion-based proof system VExp+Res [IMS15]. Our proposed QRAT certificate
structure closely follows the polynomial time simulation of VExp+Res [KS19]. Our
experiments on unsatisfiable QBF instances from the PCNF tracks of QBFEVAL’19
and QBFEVAL’20 showed that we can successfully verify unsatisfiable QBF instances
with our generated certificates using the checker QRAT-TRriM [HSB14a]. We found that
the majority of lines in our generated proofs are QRAT modification lemmas utilizing
Extended Universal Reduction which are added in the post-processing. This bottleneck
is a result of the definition of QRAT itself, which allows the elimination of just a single
variable. In our case this leads to a quadratic blowup of lines with respect to the number
of universal variables and the number of clauses to eliminate universal variables from.

One of the next steps in this project could be the full implementation of the QRAT format.
This means, that all results of PEDANT could be certified using QRAT. In this step we
concentrated on certifying just unsatisfiable QBF using QRAT. However, the QRAT
format would also have the potential to certify satisfiable QBFs. By additionally certifying
satisfiable QBFs using QRAT, we would create a consistent certification workflow.

Because PEDANT is a DQBF solver, certifying unsatisfiable QBFs using QRAT is a
step into the right direction but ultimately not the final goal. In a DQBF solver it
would be necessary to certify unsatisfiable DQBFs. There is already a sound and
complete refutational DQBF proof system called DQRAT [BIli20] which lifts QRAT to
DQBF. Similar to QRAT, DQRAT also simulates the expansion-based DQBF proof
system VExp+Res [IMS15]. We believe that the generation of DQRAT certificates for
unsatisfiable DQBFs would not substantially differ from the current generation of QRAT
certificates. However, there is no DQRAT checker at the moment such that the generated
DQRAT certificates could be verified.
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8. ConcLusioN & FuTurRe WORK

Further, we could also address the lack of a DQRAT checker. In order to provide a suitable
checker we could either build a DQRAT checker from scratch or lift up QRAT-TRIM to
DQRAT.
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