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Abstract

The upcoming climate change as well as the resulting environmental problems pose
serious challenges for mankind. This can be addressed in the field of biotechnology,
for example, through the utilization of renewable precursors and waste materials. The
majority of bioprocesses utilize first generation food crops as feedstock, limiting the
availability of food for a steadily growing world population. Second generation raw
materials, especially lignocellulosic biomass, could overcome these problems, by intro-
ducing circular economy and sustainability.

The European Union (EU) project iFermenter, to which this thesis contributes, is
dealing with the biotechnological utilization of a waste product of the paper industry.
The lignocellulosic byproduct spent sulfite liquor (SSL) is available in large quanti-
ties all over the world. However, a broad sugar pallet and inhibitors in the medium
complicate application in industrial scale and limit the choice of microorganisms. One
microorganism, that is capable of facing these challenges, is Corynebacterium glutam-
icum. However, in previous studies, only 5 - 10 % SSL in combination with a complex
media was used for fermentation, which decreased the profitability and its contribu-
tion to sustainability. In this thesis, a recombinant C. glutamicum strain is used to
utilize SSL as the sole carbon source for the production of pediocin PA-1, a high-value
peptide with a specific activity against Listeria monocytogenes. Thereby, the optimal
production conditions have to be identified, which is achieved in this work by investi-
gating the limitation or excess of media components and by modeling of the biological
behavior of the cells. For this purpose, the influence of SSL, nitrogen and phosphate
availability on growth and pediocin titer in the induction phase was investigated via
a Design of Experiment (DoE) approach. In order check if the obtained data can be
further used in a model, the reliability was verified by assessing the elemental and
electron balances. Finally, following these results, a mechanistic model was developed
to identify the underlying mechanisms of the bacterium.

In this study, it was shown that the phosphate concentration has a significant in-
fluence on the pediocin titer in the reaction broth. With lower phosphate availability,
higher pediocin titer were observed. In contrast, no significant influence of the DoE
factors on growth was detected. One reason for this could be the fact that growth was
considerably reduced in the induction phase.
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The carbon and DoR balance meet the set acceptance criterion of ± 10 % recovery
which demonstrates the fundamentals of both balances for SSL. However, the nitrogen
and phosphorus balance did not meet this criterion and therefore, the corresponding
data is not reliable and could not be further used. A model was established which is
capable of accurately describing the uptake of the sugars mannose and xylose in batch
but failed to predict the states biomass, glucose and acetate due to the high variability
of the initial biomass. Moreover, the model accurately described the growth and
uptake of mannose, xylose and acetate in fed-batch. However, the goal of identifying
the underlying mechanisms of the product formation could not be reached due to the
lack of a more precise analytical method.

In summary, it was shown that the phosphate concentration is an important factor
for pediocin production by C. glutamicum on SSL. Furthermore, a mechanistic model
was established that can accurately describe key parameters in the induced fed-batch.
However, in order to improve the modeling of pediocin formation, a more precise
method of determination needs to be developed in the future.
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1 Introduction

1.1 General Field of Study
The earliest evidence of carried out bioprocesses by mankind date back to around
9000 B.C in China with the production of fermented beverages [1]. Over the centuries,
various techniques have been developed to enhance and understand bioprocesses: se-
lection of advantageous features, crossbreeding, DNA sequencing, non-directed mu-
tagenesis, and now directed genome editing, most recently with the development of
CRISPR/Cas9 in 2012 [2, 3]. These developments led to the rapid growth of biotech-
nology into a multi-billion dollar market, with further increases forecasted [4]. The
different types of biotechnology, green, red and white, produce a broad palette of
products from low-value food ferments or bulk chemicals over to high-value pharma-
ceuticals [5, 6].
The primary goal of industrial bioprocesses is to produce a high titer of the targeted
product as inexpensively and quickly as possible and with the required product quality
consistently [7]. In the pharmaceutical industry, the quality requirements of the prod-
ucts have been successively increased. However, since the process conditions can only
be changed within rigid limits, fluctuating raw material quality, for example, leads
to difficulties in maintaining the demanded quality [8]. Additionally, varying require-
ments and evaluation criteria are necessary for accession to different drug markets,
prolonging and increasing the cost of the development process [9].

International Conference of Harmonization (ICH) was founded with the goal to har-
monize the guidelines and requirements for pharmaceutical product registration to set
global standards for quality, efficacy and safety [10]. The introduction of Quality by
Design (QbD) shifts quality control from the final product to integrating quality into
the process. The risk-based approach describes the design, analysis and control of
critical process parameters (CPP) and critical material attributes (CMA) as well as
critical quality attributes (CQA) in order to ensure product quality as well as enabling
an adjustable and robust process [11]. The CQAs such as physical, (micro-) biological
or chemical characteristics have a direct effect on the product. They have to be kept
within a certain limit or range to ensure the required quality. Further, the CPPs and
CMAs, for example, temperature or pH and particle size, have a direct impact on the
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1.1. GENERAL FIELD OF STUDY

CQAs and should therefore be monitored or controlled throughout the process [12].
Design of experiment (DoE) and/or mathematic models are used to link the CPPs,
CMAs and CQAs together within the design space in which the desired product qual-
ity can be provided within the boundaries of the space [9]. Movement within the
design space is not considered as a change, which would require new approval by the
authorities, and therefore, process adjustments can be carried out in order to respond
to fluctuating raw material quality [12]. This gained flexibility allows a design and set
up of a control strategy based on the obtained knowledge of the design space to ensure
the product quality by controlling the CPPs based on the current CMAs in order to
ensure constant CQAs [9]. Instead of performing excessive offline analysis, product
quality is ensured by real-time release testing based on online process data [12].
Model-based approaches are used in all areas of pharmaceutical biotechnology, for ex-
ample, experimental or process design, monitoring, predicting the dynamic behavior
of the process or control, and therefore have the potential for a significant contribution
to this field [13].

Modeling

Modeling in biotechnology is the generation and validation of mathematical repre-
sentations which are capable of describing a bioprocess behavior or specific aspects
of it [14]. The formulation of the model objective is a crucial step in the creation
of a model and has to include the target values and the corresponding acceptance
criteria [13]:

i) Model identification: The goal of model identification is to find and calibrate a
model which can describe the relevant process observations. A complete understand-
ing of the process can not be achieved, however, a certain process behavior can be
described [15]. Model predictions are calculated based on input variables and mapped
to real data. Depending on the deviations between these data, the hypothesis of the
model is either disproved or confirmed [16]. Thereby, mechanistic can be identified as
well as process observations and regulations of the cell can be understood [15].

ii) Off-line use: A validated model can be used to characterize strains. Thereby,
the physiological model parameters are derived by fitting the model prediction to the
observed growth curves, allowing a comparison of different strains [17]. DoE methods
are used for systematic experiment planning and to obtain knowledge about the in-
teractions of factors. Model-based approaches can be applied in order to reduce the
amounts of experiments performed by reduction of the boundary values [18].

iii) Real-time use: Soft sensors and model predictive control (MPC) are widely ap-
plied for the real-time application of models in bioprocesses. Soft sensors are based
on the first principle and use available online data such as off-gas composition or reac-
tor inflows for monitoring or feedback control [19]. Process variables are determined
which can not be directly measured or with a certain time delay, for example, specific
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1.1. GENERAL FIELD OF STUDY

substrate uptake rates or biomass concentrations [20]. MPCs are used to predict the
dynamic behavior of the process, determine the optimal operating points, and calcu-
late the necessary control actions for the manipulatable variables, based on measured
real-time data [21]. The system uses online data for recalculation which is performed
in a defined interval or by specified process characteristics in order to react to pro-
cess deviations. Therefore, the computations must be performed in real-time, which
requires robust and fast algorithms [13].

In general, models are distinguished between two types: Mechanistic models are based
on physical and biochemical principles [22]. These models require prior knowledge
about the relationships and experimental data, however, they provide a transparent
explanation of the observations. Problematic are non-identifiable parameters and es-
pecially the complexity of mechanisms of microorganisms which can only be simplified
by the model and not fully described [23].
Data-driven models, on the other hand, describe relationships between input and out-
put variables based on data sets with functions without a biological basis. Therefore,
the model can only operate within the scope of the available data material, however,
less prior knowledge is needed for setting up the model [23]. Data-driven models can
only predict the mechanistic behavior of the process without providing an explanation
of the underlying mechanism [24].

Analyzing the experimental data is an important task in order to generate a model
which is capable of reflecting adequately the dynamic behavior of a bioprocess. Be-
sides the evaluation of measurement inaccuracies and process-related influences, the
reliability of the data for chemical processes can be determined by the evaluation of
the elemental and electron balances [25]. Depending on which state variables are of
interest for the implementation in the model, the corresponding balances, for example,
carbon, nitrogen, sulfur or phosphorus balances, have to meet an acceptance criteria.
A generated model has to be thoroughly tested if it reflects adequately the dynamic
behavior of the process. Thereby, the simulated data of the model is compared to
the experimental data and the model deviation is calculated [14]. Depending on the
objective of the model, a predefined degree of fit is specified at which a successful
validation of the model is given, for example, a normalized root mean square error
(NRMSE) below 10 % [26] or 15 % [27].

Second Generation Feedstock

Recently, due to environmental problems, climate change and public pressure, the
reduction of the dependency on fossil resources and instead the usage of renewable
feedstocks are gaining more and more importance. Biorefinery processes address these
challenges with the ability to utilize renewable feedstocks in order to produce (bulk-)
chemicals, biofuels or energy and thus have the potential to introduce sustainability
and cost-efficiency to industrial scale processes [2, 28]. The first generation of these
bioprocesses uses food crops such as corn, grains, sugar beets or canola oil as en-
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1.1. GENERAL FIELD OF STUDY

ergy sources, limiting the availability of food for the world’s population. These raw
materials are expensive and account significantly towards the price of the product,
which is one of the major drawbacks in establishing profitability to bioprocesses and
therefore, limits their scope of application. Additionally, biofuel production of first
generation feedstock relies on government subsidies to maintain competitiveness and
thus, is questioned to displace fossil resources [29].

These issues resulted in an increased interest in the usage of second generation raw
materials for bioprocess application. Annually, about 150 billion tons of total biomass,
combining both land and aquatic, are produced on earth, whereby food production only
accounts for approximately 1.25 %, leaving a huge potential untapped [30]. These re-
maining broad range of non-food organic matter, such as wood- or agricultural residues,
energy crops or lignocellulosic biomass, are usually thermally recycled, decayed or used
in bioprocesses mainly to produce bulk chemicals (for example ethanol) [31].
However, this worldwide available feedstock could be used in sustainable processes as
an alternative to fossil resources and could therefore serve as an important contributor
in order to reduce greenhouse gas emission [32]. Additionally, the utilization of second
generation feedstocks is in line with the European Union´s (EU) bioeconomy strat-
egy "Innovation for Sustainable Growth", which aims to create a Green Europe and
shape a target circular economy by 2030 [33]. Challenges include the availability of
biomass throughout the year as well as the supply chain, fluctuating composition of the
feedstock, process development, technical maturity and scale-up, which complicate a
broad implementation [34]. A steadily increasing amount of second generation biomass
is processed by the paper industry, generating large quantities of waste streams with
unexploited capacity for bioprocesses [35, 36].

Spent Sulfite Liquor

In 2021, CEPI (Confederation of European Paper Industries) member countries uti-
lized 112.3 million metric tons of wood for the production of 37 million tons of pulp [35].
There are mainly two chemical processes for pulp production: the Kraft process with a
pre-extraction step and the acid sulfite process [37]. In the sulfite process, wood chips
are delignified by cooking with acid sulfite/bisulfite salts resulting in solid cellulose,
further used as pulp, and the pulp mill effluent, spent sulfite liquor (SSL). Cooking
chemicals are regenerated in a recovery boiler and the remaining organic matter is
typically incinerated to produce heat and power [38]. Nevertheless, the industrial
waste stream has the potential to be a highly valuable feedstock for bioprocesses due
to the huge availability of high quantities (approximately 90 billion liters worldwide,
1993) [36], cost-saving potential of raw materials and usage as a renewable substrate
for circular economy [39]. The lignocellulosic waste stream media contains organic
acids such as acetate as well as various fermentable sugar monomers, derived directly
from the hydrolysis of hemicellulose without further pretreatment. Depending on the
type of wood used for the sulfite process, the sugar composition varies significantly.
Softwood leads to higher ratios of hexoses, mainly mannose and glucose [40]. In con-
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1.1. GENERAL FIELD OF STUDY

trast, hardwood mostly yields the pentose sugar xylose, which accounts for up to 50 %
of the total sugar in hardwood SSL [41]. This led to increased research work for organ-
isms capable of metabolizing xylose in the waste media for ethanol production [41, 42].
In addition to the problems of varying sugar composition, SSL contains a multitude of
inhibitory compounds, for example, organic acids, furfural, 5-hydroxymethylfurfural
(HMF), phenols, and lignosulfonates. Various pretreatment methods were developed
to either extract and further process compounds (for example: lignin- [43], phenolic
components [44] and fermentable sugars) or to reduce undesired components and tox-
icity (for example filtration [45], over-liming [46] or steam stripping [47]). However,
raising the number of process steps will increase the plant complexity and maintenance
as well as the cost of the final product and should be kept to a bare minimum if feasible,
in order to obtain economic efficiency [48]. High particle background complicates the
development of inline sensors for sugar and biomass determination as well as offline
biomass measurements with dry cell weight (DCW) and optical density at 600 nm
(OD600) [49, 50]. A fourier-transform infrared spectroscopy (FTIR) method was de-
veloped to detect the individual sugar concentrations of glucose, mannose and xylose
by online measurements in a secondary feed-tank which allows to react to fluctuating
raw material and to take actions to maintain optimal process conditions [51]. For
estimating the biomass in the reaction broth, cell counting as well as flow cytometry
are possible alternatives [49, 50].

In summary, chemicals produced from SSL have to compensate for the economic dis-
advantages associated with the development and operation of the rather complex bio-
processes on the waste media, as well as the otherwise generated energy from thermal
incineration in pulp mills [52].

Modeling of Spent Sulfite Liquor

The development of models for bioprocesses with second generation raw materials is
an important task to ensure broad application in industry. Although a number of
publications examined the growth and production conditions of yeasts and bacteria on
SSL, only a few addressed the development of kinetic models.

Inhibition of growth in SSL through the inhibitory compounds has been accounted
for by general terms considering the SSL concentration in the reaction broth [53, 54]
as well as by inhibitor-specific terms with the respective inhibitor concentration and
inhibition constant [55]. The comparison of SSL with synthetic medium with the
same sugar concentration with Saccharomyces cerevisiae showed that similar model
parameters could be calculated. However, an inhibition term was introduced due to
the inhibitors in the SSL which lead to a reduction of maximum growth rates and
therefore, increased process time [55]. Individual sugar uptake rates and correspond-
ing biomass yields of Corynebacterium glutamicum have been described for glucose,
mannose and xylose [53, 56, 57, 58]. In these studies, the complex minimal medium
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1.1. GENERAL FIELD OF STUDY

CGXII supplemented with 5 - 10 % (v/v) SSL has been used as a carbon source. How-
ever, the rather expensive complex media imposes an economic burden for up-scaled
industrial processes. Further, an online monitoring strategy for biomass concentration
and growth of C. glutamicum based on off-gas has been implemented for a batch and
fed-batch cultivation [56].

Corynebacterium glutamicum

C. glutamicum is a non-pathogenic, facultative anaerobic, gram-positive bacterium
that is very important for white biotechnology as a workhorse [59]. Especially for
the production of the amino acids L-glutamate and L-lysine, the bacterium has been
widely used in industrial scale for several decades [60]. Besides the production of
platform chemicals and amino acids, C. glutamicum is further used for the recombinant
production of over 70 compounds, including high-value proteins and peptides [61, 62].

First generation feedstocks such as sugarcane molasses, beet molasses or starch hy-
drolysates are typically processed as raw material depending on which carbon source
is locally available [63]. Rather than utilizing these expensive food crops, the second
generation of feedstocks, especially lignocellulosic biomass, for example, SSL, has the
potential to serve as a renewable and cost-efficient raw material for fermentation with
C. glutamicum. Simultaneous uptake of the most abundant sugars, glucose, mannose
and xylose, is crucial for commercial application of the usage of SSL. The wild type
of C. glutamicum is not capable to process xylose. However, genetically modified
strains have been developed that are capable of a simultaneous uptake of glucose and
xylose [64]. Furthermore, genetic modification of genes responsible for mannose up-
take and catabolic pathway showed an improvement in mannose utilization as well as
an achievement of a simultaneous uptake of mannose and glucose [65]. Several other
advantages are a lipid-rich cell membrane, which increases the robustness of the bacte-
ria [66], as well as tolerance against organic acids and aromatic media compounds [67].
In addition, C. glutamicum is capable of detoxifying furfural, a byproduct of lignocel-
lulosic hydrolyzation which normally causes difficulties in its usage as a raw material
for bioprocesses [68]. As a gram-positive bacterium, C. glutamicum has tremendous
potential for secretory protein production due to the possibility of a direct release into
the media and minimal protease activity [69, 70].

In summary, C. glutamicum is a promising candidate for the utilization of lignocellu-
losic waste materials. Moreover, introducing high-value products could further improve
profitability and therefore, ensure an economical industrial process.

Bacteriocin

Antibiotics in clinical settings were a major breakthrough in modern medicine. Un-
fortunately, mis- and over-usage in livestock farming as well as in the treatment of
diseases lead to a dramatic increase of antibiotic-resistant bacteria [71]. Additionally,
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the discovery of antibiotics has declined since its peak in the mid-1950s, leading to the
current antimicrobial resistance crisis [72].

A promising solution for the problem could be the replacement of antibiotics with bac-
teriocins, which occur in a broad range of bacteria, gram-positive and gram-negative,
as well as archaea [73]. Bacteriocins are bioactive peptides or proteins which are non-
detrimental for humans [74]. They are synthesized ribosomally and have antimicrobial
activity against bacteria even at low concentration ranges (nanomolar range) [75].
Mostly, bacteriocins have a narrow range of action, advantageous in the competition
for the same ecological niche with closely related organisms to the producer strain [76].
The mode of action is through growth inhibition or direct killing of the cells by tar-
geting either cell membrane or cell functions [77, 78]. The producing cells possess
immunity to the self-produced bacteriocin through a specific immunity protein [79].
Bacteriocin from lactic acid bacteria (LAB) draw special interest from the food indus-
try due to the fact that these bacteria and their metabolites are generally recognized
as safe (GRAS) [76]. For example, the bacteriocin nisin from Lactococcus lactis has
the approval of the US Food and Drug Administration (FDA) as well as the European
food safety agency (EFSA) and is used in several countries as a natural food preser-
vative [80, 81]. Bacteriocins are used in a so-called hurdle technology for food safety
and preservation: Different, mitigating approaches (involving physical, physicochem-
ical and/or microbial steps), insufficient on their own, can in combination control or
eliminate foodborne pathogens in food products and production [82, 83]. The phar-
maceutical application of bacteriocins is limited by its production in natural producers
growing on expensive, complex media, low production titers as well as high purification
costs, which results in being sold as semi-purified preparations [84, 85, 86]. Therefore,
the recombinant production of bacteriocins in microorganisms, capable of growing on
low-cost and potentially renewable culture media, could increase economic viability
and thus lead to broader uses.

Pediocin

Pediocin PA-1 belongs to class IIa bacteriocins [74]. PA-1 are small, heat-stable but
oxygen-sensitive peptides produced by Pediococcus spp. [87, 88]. PA-1 possesses a
highly specific activity against Listeria monocytogenes, a foodborne pathogen capable
of surviving low pH, low temperatures and high somitic pressure, which is a particular
threat against pregnant women, older people, immunosuppressed and infants [89, 90].
With a hospitalization rate of 92 % and a mortality rate of approximately 20 %,
listeriosis, caused by the organism, is a serious threat [91]. Pediocin could provide
an adequate prevention in food production systems as well as a potential alternative
to antibiotic treatment of Listeria infections [92]. The recombinant production of pe-
diocin could improve the product titer and purity of the product, using correspondingly
less expensive precursors compared to the natural producer. Secondly, pediocin is a
high-value product that could enable the usage of SSL as a feedstock beyond ethanol
production [93].
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1.2 Goals of this Study

Problem Statement

The utilization of the lignocellulosic waste product SSL in biotechnology enables the
introduction of sustainability and circular economy. However, industrial application
beyond ethanol production is hampered by inhibitors in the medium, the complex sugar
composition and fluctuations of the material. One microorganism which is capable
of facing these drawbacks is C. glutamicum. The shift to high-value products, for
example, pediocin PA-1, could further enhance the profitability of using SSL as a
feedstock. Thereby, the optimal process conditions have yet to be identified. For
example, preliminary tests indicated that lower phosphate concentrations favor the
pediocin PA-1 formation.
Current process and model developments of C. glutamicum utilize a mixture of SSL
with complex media which compromises the economics of industrial scale production.
This underlines the demand to develop processes that use SSL as the sole carbon
source.

Novelty of the Approach

This work aims to develop and examine the feasibility of a process of C. glutamicum
producing pediocin PA-1 with SSL as the sole carbon source without the addition
of complex media or other additives. Furthermore, the elemental balances should be
conducted to assess the reliability of the data as well as to examine if the fundamentals
for SSL are valid. The experiments should be designed to identify the optimal process
parameters by examining the impact of the sugar, phosphate and nitrogen availability
on growth and product formation of the bacterium. Models of the bacterium growing
on complex media with SSL addition are well established. In this contribution, the
models are adapted to the current experiments with the goal to identify and reveal the
biological mechanistics of the cell.

Goals of the study

The main objective of this work is to optimize pediocin titer in a bioprocess of C.
glutamicum utilizing SSL as the sole carbon source by

i) checking the reliability of the experimental data and the fundamentals of bal-
ancing on SSL through assessing the elemental balance with an acceptance criterion
of 10 % [26].

ii) Upon validation, the influence of SSL, nitrogen and phosphate availability on
growth and product formation in the induction phase is determined.

iii) Subsequently, a model is set up and adapted to the performed experiments in
order to identify the underlying model of the process observations (biomass, sugars,
acetate and pediocin). The model should be validated by examining the time-resolved
values, observed vs. predicted plots and an NRMSE of less than 15 % [27].
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2 Materials and Methods

2.1 Strain
For this study, the engineered strain Corynebacterium glutamicum CR099::U pXMJ19-
pedACD, provided by the university of Ulm, was used [86]. C. glutamicum CR099 is a
descendant of the wildtype C. glutamicum ATCC 13032 in which insertion sequences
and prophages were deleted [94], resulting in increased genome- and plasmid stabil-
ity [95]. C. glutamicum CR099 displays resistance against pediocin PA-1 with no
affection on growth at 2 µg mL−1 and no growth restriction up to 12.5 µg mL−1 [86].
pedACDCg is ligated to the pXMJ19 vector under a T7-promoter, which is induce-
able with Isopropyl-β-D-1-thiogalactopyranoside (IPTG). The expressed compound is
equivalent to pediocin PA-1 in size and mass with activity against Listeria monocy-
togenes and Listeria innocua [86]. The synthetic pedACDCg operon consists of three
genes: the structural gene pedA encodes for the precursor of pediocin PA-1, pedC and
pedD for proteins which are required for processing, cleavage and segregation of the
bacteriocin [96]. Additionally, genes for xylose metabolization (pEKEx3-xylAB) and
enhanced mannose uptake (pVWEx1-manA) are introduced into the genome of the
engineered strain compared to a similar strain in [56] with the genes on plasmids.

2.2 Raw material
SSL was sourced from Borregaard (Sarpsborg, Norway). Three different batches were
used for this study whereby the concentration ranges are shown in table 2.1. Analysis
of the SSL used for this study showed that the media supplies most of the nutrients
required for bacterial growth except a source for nitrogen and phosphate. Additionally,
the media contains high levels of Ca2+. Preliminary tests showed that the amount of
phosphate required for bacterial growth lead to precipitation in the media. One reason
for this could be the formation of Ca3(PO4)2. Therefore, the necessary quantities of
nitrogen and phosphate were provided by external feeding of urea and KH2PO4.
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2.3. EXPERIMENTAL PLAN

Table 2.1: Substrate concentration range of the SSL batches used for this study

Glucose [g/L] Mannose [g/L] Xylose [g/L] Acetate [g/L]

43 - 46 138 - 183 60 - 65 6.1 - 6.7

2.3 Experimental Plan
In order to determine the effects of SSL, nitrogen, and phosphate on cell growth
and pediocin titer, experiments consisting of a batch followed by an induced two-feed
system were carried out. The batch phase was performed with the same conditions for
each experiment. The required amount of nitrogen and phosphate for this phase were
supplemented by an initial volume and a nitrogen/phosphate feed (NP) consisting of
urea and KH2PO4. In fed-batch, various concentrations of nitrogen, phosphate and
SSL were supplied externally with an exponential feed ramp of µ = 0.03 h−1 over a
time period of 30 - 32 h respectively. These conditions were selected to correspond to
a 3-factor 2-level full factorial DoE with a triplicate center point (Figure 2.2). The
response values growth and pediocin titer were examined in this design. The following
factors and boundaries were applied, whereby nC/nN and nC/nP correspond to the
ratio of the amount of carbon to nitrogen and phosphates, respectively:

i) cSSL (Levels: 25 %; 37.5 %; 50 %)

ii) nC/nN (Levels: 1/5; 1/7.5; 1/10)

iii) nC/nP (Levels: 1/15; 1/30; 1/45)

The boundaries were chosen in order to investigate different influences of the factors.
The limits (25 % SSL, 1/5 nC/nN and 1/15 nC/nP ) were set according to the condi-
tions in the batch phase. For the upper limit of SSL, the concentration was doubled
which results in more available sugars for the cells but at the same time an increased
concentration of inhibitory compounds. The sugar to nitrogen ratio was lowered in
order to examine the impact on growth. Previous experiments indicated a higher
product titer when performing a fed-batch with an exponential feed ramp, but with
constant feeding of NP. This leads to less available nitrogen and phosphate over the
course of the process for the proliferating cells. In order to investigate this hypothesis,
the ratio of sugar to phosphate was divided into thirds in order to severely limit the
available phosphates for the cells.
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2.4. CULTIVATION

Run Order SSL [%] nC/nN nC/nP

1 50 5 45
2 37.5 7.5 30
3 25 10 45
4 25 5 15
5 25 5 45
6 37.5 7.5 30
7 50 10 15
8 50 5 15
9 25 10 15
10 37.5 7.5 30
11 50 10 45

Table 2.2: Overview of the DoE conditions.

2.4 Cultivation

Preculture

C. glutamicum CR099::U pXMJ19-pedACD glycerol cryo-stock (stored at -80 °C) was
streaked onto 2TY-agar plates (Tryptone 16 g L−1; yeast extract 10 g L−1; NaCl
5 g L−1; chloramphenicol (CM) 12 µg mL−1 ; agar agar 18 g L−1), incubated [30 °C ;
48 h] and stored at 4 °C for further usage. 2 x 12.5 mL 2TY in 15 mL reaction tubes
were inoculated with single colonies of the agar plate and incubated [30 °C; 230 rpm;
24 h]. The preculture was transferred to 1 L shake flasks containing 225 mL 2TY
and 25 mL SSL with 100 g L−1 3-(N-morpholino)propanesulfonic acid (MOPS) and
incubated [30 °C; 230 rpm; 24 h].

Reactor setup

The cultivation experiments were performed with a stirred bioreactor system (Labfors
5, Infors, Switzerland) with a maximum working volume of 3.5 L. pH was monitored
with a potentiometric pH sensor (Hamilton, Switzerland) and controlled at 7.0 by the
addition of 2.5 M KOH and 2.5 M H2SO4. Dissolved oxygen (dO) was measured with
a dO probe (Hamilton, Switzerland) and maintained above the setpoint with 0.3 vvm
and an adaption of stirrer speed (400 to 1200 rpm). The O2 and CO2 fractions of
the exhaust gas were analyzed with an off-gas analyzer (BlueInOne Cell, BlueSens
gas sensor GmbH, Germany). Samples (approximately 25 - 35 mL) were taken every
3 hours automatically by an auto sampler (custom-made by the research group) and
stored at 4 °C until analysis. A visualization of the experimental setup is shown in
figure 2.1.
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2.4. CULTIVATION

Figure 2.1: Experimental setup of the batch/fed-batch fermentation. SSL, NP feed,
acid and base were supplied via external feeding. The aeration was per-
formed with air and the offgas was analyzed externally. Samples were taken
every 3 h and analyzed for sugar, biomass and product concentration.

Batch

1 L 25 % SSL, supplemented with 10 mL L−1 antifoam (20 % polypropylene glycol) and
12 µg mL−1 CM, was used as carbon source for the batch phase of the fermentation.
20 mL of NP feed (112.5 g L−1 urea and 170 g L−1 KH2PO4) were added as an initial
bolus shot. An appropriate inoculation volume (approximately 50 - 65 mL) was chosen
to achieve an initial OD600 of 1 - 1.2 in the reactor which is equal to approximately
0.23 - 0.28 g L−1. The dO setpoint was set to 30 % and NP feed (112.5 g L−1

urea and 170 g L−1 KH2PO4) was fed over 12.5 h (94 mL; V̇ = 7.5 mL/h). At the
beginning of a process of C. glutamicum on SSL, the bacterium detoxifies inhibitors in
the SSL which leads to a phase with strongly reduced growth [68]. The end of batch,
approximately after 26 h, was detected with a corresponding drop of the CO2 and dO
signal, indicating a drop of metabolic activity.

Fed-batch

Depending on the experiment performed, different concentrations of 1.5 L SSL and
220 mL NP feed were prepared according to the experimental plan (Section 2.3).
10 mL L−1 antifoam, 12 µg mL−1 CM and 47.67 µg mL−1 IPTG were supplemented
to the SSL. For the highest KH2PO4 concentrations (experiments 7 and 8), the feed
volume as well as the feed rate were doubled to ensure solubility. In order to induce the
process, 47.67 µg mL−1 IPTG were added to the reaction broth. Afterwards, the feeds
SSL (V̇0 = 30 mL/h; µ = 0.03 h−1; 30 - 32 h) and NP ( V̇0 = 30 mL/h; µ = 0.03 h−1;
30 - 32 h) were started and the dO setpoint was lowered to 15 %.
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2.5. SAMPLES

2.5 Samples
DCW measurements were conducted by centrifugation (12,000 g, 10 min, 4 °C) of
3 x 1.8 mL culture broth, whereby the supernatant was used for the analysis the
sugars, organic acids and pediocin. The precipitate was dried at 120 °C for 72 h and
gravimetrically determined in order to track the amount of precipitate throughout
the process. Pre-tests showed that the biomass concentration can not be determined
via OD600 or DCW measurements due to precipitation formed in the reaction broth.
However, biomass concentration was determined by measuring the fluorescence and
estimating the value against a standard (C. glutamicum CR099::U pXMJ19-pedACD
cultivated in 2TY; biomass measurement via DCW). Therefore, 1 mL cultivation broth
was centrifuged (3200 rpm, 10 min, 4 °C), the cell pellet was washed, resuspended
with 1 mL 0.9 % saline solution and relative fluorescence units (RFU) were measured
(excitation 280/10 nm; Emission: 340/20 nm) with a plate reader (Infinite M200 PRO,
TECAN, Switzerland).

For sugar analysis, particle-free reaction broth was diluted 1:20 and measured with high
performance liquid chromatography (HPLC UltiMate 3000, Thermo Fisher, USA) with
a lead column (Nucleogel Sugar Pb, Macherey-Nagel GmbH, Germany). Therefore,
a flow rate of 0.4 mL/min deionized water at a temperature of 79 °C and detection
via a refractive index detector (RI-100, Shodex, USA) was applied. Acetate, gluta-
mate, lactate, ammonia and phosphate concentrations of the broth were determined
via a photometric analysis of enzymatic reactions (Cedex Bio HT Analyzer, Roche,
Switzerland) of the supernatant.

The bacteriocin activity of the particle-free reaction broth was examined with a stan-
dard microtiter plate assay according to [86] with the indicator strain L. monocytogenes
EGDe/pNZ44. Pediocin concentrations were determined by comparison of a two-fold
dilution series of the reaction broth with a pediocin standard in 96 well plates in which
at least 50 % growth inhibition of the indicator bacteria occurs (The biomass concen-
tration was detected via OD600 with a plate reader (Infinite M200 PRO, TECAN,
Switzerland)). Therefore, a multiple of 0.5 of the applied standard can be detected by
the assay.

2.6 Data Analysis
The data of the experiments were collected by the process information management
software Lucculus (Securecell, Switzerland). Data evaluation and modeling were car-
ried out with Matlab 2022a (Mathworks, USA). MODE 11 (Umetrics, Sweden) was
used for the assessment of the DoE.

14



2.6. DATA ANALYSIS

Respiratory rates

The oxygen uptake rate (OUR), carbon evolution rate (CER) and respiratory quotient
(RQ) were calculated with formula 2.1 - 2.3.

rO2
= OUR = − V̇in · ( xO2,Air − rinert · xO2,Offgas )

MV

�
mol

h

�
(2.1)

rCO2 = CER =
V̇in · ( rinert · xCO2,Offgas − xCO2,Air )

MV

�
mol

h

�
(2.2)

RQ =
CER

OUR

�
-
�

(2.3)

Volumetric and specific rates

The volumetric rate was determined with formula 2.4 and the specific rates with for-
mula 2.5.

ri =
∆ci

VR ·∆t

�
gi
Lh

�
(2.4)

qi =
ri
cX

�
gi

gXh

�
(2.5)

Estimation of sample Volume

A sample was taken every 3 h, resulting in an average of 24 samples per process. As-
suming a volume of approximately 30 mL per sample, this amounts to 720 mL that
were withdrawn over the time course of the process. With a batch volume of 1 L
and a fed-batch volume of 1.5 L, this would result in a total loss of approximately
30 % reactor volume and would have therefore a substantial influence on the process
evaluation, especially the elemental balances. The taken reaction broth volume, con-
sisting of discarded waste and sample, varied between the processes and no uniform
sample volume could be determined. Therefore, each sample volume was calculated
individually. The reactor volume before and after the sampling time was interpolated
in order to include volume increase due to feeding. Sample volume was determined by
calculation of the difference of the interpolations at the sample time point, illustrated
in figure 2.2.
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2.6. DATA ANALYSIS

Figure 2.2: Estimation of the sample volume by interpolation of the reactor volume
before and after the sample. The sample volume is determined by calcu-
lating the difference between the two interpolations at the sample time.

Elemental Balance

The balances were calculated according to the general equation of the reaction (equa-
tion 2.6). The sugars (glucose, mannose, xylose) and organic acids (acetate, lactate
and glutamate) were summarized as SSL. The volume loss due to sampling is taken
into account as the variable sample. The elemental biomass composition from C. glu-
tamicum in the exponential growth phase was adopted from [56]. As a simplification,
this composition was further used for the calculation of the induced phase, since the
biomass content is low compared to the overall quantities present in the taken sam-
ples. The biomass has a molecular weight of 27.78 g Cmol−1 with an average elemental
composition of:

C1H1.832N0.176O0.615P0.0157S0.0033K0.0005Mg0.0005Ca0.0058Na0.0267Cl0.0034
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2.7. MODEL-ANALYSIS

Pre-tests showed that a precipitate is formed throughout the process which consists
of biomass and other unknown components. With the introduction of Ca3(PO4)2 as a
secondary component of the DCW, the P-balance could be improved compared to the
balance without this simplification.

O2 + SSL + urea + PO4 −→
CO2 + SSL + urea + NH3 + PO4 + X + sample

(2.6)

The balance ratio (equation 2.7) indicates how accurate the elemental balance is at a
given sample time point, whereby a value of 1 reflects perfect balancing and a low de-
viation throughout all processes good robustness. In order to implement the examined
balance into the model, it has to meet the set critical acceptance criterion of 10 %.

rbalance =

�k
i=1 nprodukt,i�l
j=1 nsource,j

(2.7)

2.7 Model-Analysis
The mechanistic model as well as the model analyzing scripts were programmed in
Matlab 2022a. The model parameters were estimated using an algorithm based on log
likelihood (l) (equation 2.8) with the sample size n, the variance σ, the sample entry
xi and the mean of the sample entries xi. The log likelihood was calculated for each
sample entry individually (n = 1). As an optimization criterion (Θ̂), the minimization
of the mean of the negative log likelihood (equation 2.9) of the estimated and observed
model states were applied, following the same setup as in [97].

l = −n

2
· ln (2π)− n

2
· ln �

σ2
	− 1

2σ2
(xi − xi) (2.8)

Θ̂ = arg min ( mean (−l)) (2.9)

Tuning of the parameters was performed by applying subsets of the parameters to the
algorithm. According to [98], poor identifiability of the parameter subset is given when
the collinearity index γK is greater than 15.
Important for the estimation of the process parameters is an appropriate error range
of the states to tell the model how far the real value can deviate from the measuring
point. This allows the model to account for measurement uncertainty and improve the
fit to relevant data, rather than relying on data that in reality has high measurement
noise [99]. The possible value range and measured error range of the states are shown
in table 2.3. The high error of pediocin measurement originates from the applied assay
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2.7. MODEL-ANALYSIS

which can only detect the component in a dilution series, whereby the next higher value
is double whereas the lower one is half of the measured value resulting in an error of
+100/-50 %.

Table 2.3: Value and error range of states

Value range Error range

Biomass 0.23 - 3 g/L 0.3 g/L

Glucose 0 - 17.3 g/L 0.5 g/L

Mannose 0 - 61.7 g/L 0.5 g/L

Xylose 0 - 24.5 g/L 0.5 g/L

Acetate 0 - 2.8 g/L 10 mg/L [100]

Pediocin 0 - 4 µg/mL +100/-50 % [86]

For the analysis of the model, different approaches were applied: The model states of
single experiments were simulated and compared with the experimental data. Multiple
experiments were evaluated with observed vs. predicted plots and by the calculation
of the NRMSE (equation 2.10) of the model states of all samples as well as the corre-
sponding standard deviations in order to assess the performance of the model and the
reproducibility.

NRMSE =

��
(ŷ−yi)
n

mean (y)
(2.10)
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3 Results and Discussion

In this chapter, the results of the conducted processes are shown. First, the concen-
tration profile of relevant process states, the evaluation of gas rates as well as the
specific rates of an exemplary process, elemental balances and the DoE results are
presented. Second, the applied mechanistic model kinetics and differential equations
are shown as well as the model analysis for batch and fed-batch separately, consisting
of time-resolved values of a single process, observed vs. predicted plots and NRMSE
analysis.

3.1 Process Evaluation

3.1.1 Concentration Profile
Important process states throughout an exemplary process are shown in figure 3.1. The
biomass concentration of 0.25 g L−1 at the beginning of the process corresponds to the
calculated concentration through the applied inoculum. The concentration increases
slightly to about 0.5 g L−1 after 9.5 h and with a following, faster increase to 1.4 g L−1

until the end of the batch. In fed-batch, the biomass concentration decreases until the
end of the process. In the batch phase, the cells grow exponentially. However, growth
is reduced in the induced fed-batch due to the metabolic burden of product formation,
leading to dilution due to increasing reactor volume.

The glucose concentration decreases in the batch phase to approximately 3 g L−1. The
end of batch was predefined as a complete uptake of glucose by the bacteria which was
considered as a drop in the CER signal. However, the concentration plot shows that
glucose is still remaining in the reaction broth when the feeding was started. One
reason for this could be the complete consumption of acetate leading to a reduction
of CER. In fed-batch the glucose concentration increases till the end of feeding due
to overfeeding and decreases in the phasing out phase of the process. Mannose and
xylose concentrations decrease in batch by the uptake through the cells. In fed-batch,
both sugar concentrations in the reaction broth increase due to overfeeding. After the
end of feeding, the concentrations decrease.
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3.1. PROCESS EVALUATION
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3.1. PROCESS EVALUATION

The acetate concentration is around 1.75 g L−1 until approximately 12 h process time
and afterwards, the organic acid is completely utilized by the cells over a time period
of 12 h. This indicates that the acetate uptake is inhibited in the beginning of the
process. In fed-batch, the acetate concentration levels off to around 0.05 - 0.1 g L−1

with a slight increase to the end of the feeding phase. The evaluation of all performed
experiments showed, that the acetate concentrations increase in the fed-batch when a
DoE factor of 37.5 and 50 % SSL were applied, which was caused by overfeeding of
the bacteria with the waste media.

The pediocin titer increase after approximately 5 h in the induced fed-batch phase
to approximately 1.58 µg mL−1. At around 48 h the concentration decreases to
0.8 µg mL−1 and after 6 h increases to 1.58 µg mL−1 forming a step formation. After
the end of feeding, the pediocin concentration remains at 1.58 µg mL−1. The decrease
of the titer is caused by measurement inaccuracies due to the high error rates of the
assay. The maximum level of pediocin in the reaction broth is reached after approx-
imately 12 h fed-batch. In order to increase the space-time yield and save resources
in industrial production, a reduction of the fed-batch time is beneficial if the maxi-
mum product concentration can be maintained. However, to determine this maximum,
more accurate measurement methods are necessary, for example, a HPLC method or
an enzyme-linked immunosorbent assay (ELISA). Furthermore, an adequate prediction
tool is advantageous in order to determine the time to stop the fermentation.

3.1.2 Respiratory Rates
The respiratory rates of an exemplary process are shown in figure 3.2. In general, only a
low OUR and CER are observed in the initial phase of the process. After about 12 h,
the rates increase/decrease exponentially which coincides with the onset of acetate
uptake (section 3.1.1). Respiratory rates drop at approximately 22 h, which was
assumed to be complete consumption of glucose whereas complete uptake of acetates
occurred during this period. Therefore, the end-of-batch criterion needs to be re-
evaluated, for example, whether a second drop is visible in the rates due to complete
glucose uptake or implementation of a rapid glucose measurement method such as
CEDEX or blood glucose meter.

The feeding was started at approximately 26 h process time which leads to an in-
crease/decrease of the respiratory rates. As the fed-batch progresses, the rates de-
crease slightly, caused by a decreasing biomass concentration in the reaction broth.
After the end of feeding, the rates drop and decrease till the end of the process due
to reduced substrate availability. In fed-batch, the RQ stabilizes at a constant level of
approximately 1.3, indicating a stable metabolic activity of the bacteria.
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3.1. PROCESS EVALUATION

3.1.3 Specific Rates
The specific rates and the corresponding concentrations of an example process are
displayed in figure 3.3 - 3.6. It is seen in figure 3.3, that the biomass concentration
increases sharply until the end of the batch. The specific growth rates are at approxi-
mately 0.06 h−1 and decrease at the end of the batch. The significant negative specific
growth rate of -0.55 h−1 immediately before the start of the fed-batch derives from
the drop in biomass concentration which is caused by an outlier of the biomass deter-
mination. As reported in [68], the maximum specific growth rate of C. glutamicum
ATCC13032 is reduced under aerobic conditions in the presence of furfural. Further,
the bacterium is capable of the detoxification of furfural [68]. Depending on the fur-
fural concentration in the SSL, the specific growth rate is therefore reduced at the
beginning of the process and rises throughout the detoxification. However, the specific
growth rates were not significantly reduced in the early stages of all conducted ex-
periments. Since the furfural concentration of the SSL is not available, measurements
should be carried out in order to assess a possible growth reduction. In the fed-batch,
the specific growth rates are low leading to a decrease in the biomass concentration in
the reaction broth due to dilution. The growth is substantially reduced compared to
the early stages of the process and does not meet the applied growth rate of 0.03 h−1

of the exponential feed ramp. This reduced growth is caused by the metabolic burden
of protein overexpression in the induction phase [101].

Figure 3.3: Specific growth rate and biomass concentration over process time.
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3.1. PROCESS EVALUATION

As seen in figure 3.4, the glucose concentration decreases exponentially until the end
of batch due to the increasing biomass. The specific substrate uptake rate are at
approximately 0.35 g g−1 h−1 in the beginning of the process and decrease after around
10 h process time to 0.15 g g−1 h−1. Afterwards, the specific rate increase to a
maximum of approximately 0.95 g g−1 h−1 at end of batch. One reason for this could
be that the acetate uptake inhibits the glucose uptake, leading to increased glucose
uptake rates when acetate is completely consumed at approximately 24 h process time.
In fed-batch, the specific uptake rate steadily decreases. One reason for this could be
that the pediocin titer in the reaction broth increases in the fed-batch.

Figure 3.4: Specific glucose uptake rate and glucose concentration over process time.

Mannose and xylose concentrations (figure 3.5 - 3.6) decrease steadily in the batch
phase, increase in the fed-batch due to overfeeding and decrease after the end of
feeding. The corresponding uptake rates decrease until the end of batch. In fed-
batch, the rate fluctuates to negative values which are caused by inaccuracies in the
HPLC sugar measurements. Therefore, it can not be assessed whether the specific
rates remain constant or decrease towards the end of the fed-batch.
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3.1. PROCESS EVALUATION

Figure 3.5: Specific mannose uptake rate and mannose concentration over process time.

Figure 3.6: Specific xylose uptake rate and xylose concentration over process time.
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3.1. PROCESS EVALUATION

The acetate concentration and specific uptake rate are displayed in figure 3.7. The
uptake rate is low at the beginning of the batch, indicating an inhibition of the uptake.
The specific rate peaks at approximately 22 h leading to the complete consumption
of acetate in the reaction broth. In fed-batch the uptake rate levels off to around
0.9 g g−1 h−1 on average.

Figure 3.7: Specific acetate uptake rate and acetate concentration over process time.

It is shown in figure 3.8 that the specific pediocin production rate fluctuates into
negative values caused by the decrease of the determined titer. These shifting rates
and concentrations complicate the identification of the underlying product formation
mechanisms as well as model parameter estimation and analysis in a model.
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3.1. PROCESS EVALUATION

Figure 3.8: Specific pediocin formation rate and pediocin concentration over process
time.

3.1.4 Elemental Balance
The conservation law applies to the elemental and electron balances of the bioreactor
and is a prerequisite for using the corresponding states of the element in a model. Since
this thesis investigates the influence of C, N, and P on the process, the corresponding
balances are examined to investigate their applicability to the model. Additionally, the
degree of reduction (DoR) was further investigated to determine whether any unknown
or unmeasured components of the SSL are oxidized in significant quantities during the
process. The ratios of the balances are addressed for the evaluation of reliability,
whether they meet the acceptance criterion of 10 %. For the nitrogen balance, 3
different measurements were considered and for the phosphate balance 4. On the
other hand, 11 different influencing factors are measured for carbon and DoR. For
each measurement, there is a corresponding error rate which complicates successful
balancing. The results of the elemental balance calculation are shown in figure 3.9 -
3.12 with an exemplary experiment at the top and boxplot distribution of all the
experiments at the bottom. The bar chart corresponds to the measured values of
each sample individually whereas the black line represents the sum of the element or
electrons provided to the system at the given time. Since the individual sample times
of overall performed experiments do not differ significantly, boxplots were calculated
over the ratios of all conducted processes for each sample respectively.
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3.1. PROCESS EVALUATION

Figure 3.9: Elemental balance of carbon with an example plot of a single experiment
(top) and boxplot distribution calculated over all experiments (bottom).
The sample points are displayed with their individual, measured compo-
sition. The theoretical, total amount over the course of the process is
represented as a black line.
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It can be seen in figure 3.9, that the total quantity of measured carbon in batch meets
the amount supplied to the system, indicating that the carbon can be traced. In the
fed-batch phase, the measurements slightly underestimate the provided carbon. The
boxplots show that the ratios between the first and third quartiles lie in between the
acceptance criterion of ± 10 %, representing 50 % of the ratios of the corresponding
samples. Three of the fourth quartiles of the ratios exceed the upper limit of 110 %,
indicating an overestimation of the supplied carbon. For the remaining samples, 75 %
of the ratios meet the acceptance criterion. Outliers and minimum values are present
below 90 % indicating an underestimation of these experiments.

It is shown in the nitrogen balance in figure 3.10 that the element can not be traced
throughout the exemplary process. In batch, the measured nitrogen meet the supplied
quantities in half of the samples. However, in fed-batch phase, the measured nitrogen
differs significantly from the provided nitrogen. Evaluation of overall experiments
showed that ammonia concentration is low in samples that deviate significantly from
the target value. One reason for this could be the volatilization of ammonia and
loss through the exhaust gases[102]. Influence factors of the volatilization are stirrer
speed and aeration rates which were controlled adaptively in order to keep the dO
value at 30 % in batch and 15 % in fed-batch. The boxplot diagram shows that
the ratio between the measurements and the supplied nitrogen deviates successively
from the target value of 1 over the process time indicating a systematical error in the
measurements of nitrogen. The interquartile range is high during the batch phase with
the highest at approximately 16 h process time and levels of to around 20 - 40 % in fed-
batch. One reason for the high variance in the batch phase between the processes could
be the dynamic behavior of the bacteria at the beginning of the processes. This leads
to varying adjustments of stirrer speed and aeration rates, which results in different
volatilization of ammonia from experiment to experiment.

The phosphorus balance is displayed in figure 3.11. As described in section 2.6, a non-
biomass precipitate is formed in the reaction broth. As a simplification, Ca3(PO4)2
was introduced as a secondary compound together with biomass for DCW measure-
ments. The data of the exemplary process show, that with this assumption the samples
constantly overestimate the supplied phosphorus throughout the process. This indi-
cates a systematic error in the calculation of the phosphorus balance. In contrast,
the balance without precipitation (light gray) as well as lower quantities of removed
phosphorus through the samples (dark gray) decreases until the end of the process and
not showing a constant error of the calculation. It is shown in the boxplot diagram
that phosphorus is significantly overestimated and does not meet the acceptance level.
A high interquartile range is seen for the first four samples. Afterwards, the interquar-
tile range is between 140 - 170 %. As the ratios are constantly overestimated and
the deviation is low, there is a systematical error in the calculation of the phosphorus
balance. One reason for this could be the precipitation of other compounds in addition
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Figure 3.10: Elemental balance of nitrogen with an example plot of a single experiment
(top) and boxplot distribution calculated over all experiments (bottom).
The sample points are displayed with their individual, measured compo-
sition. The theoretical, total amount over the course of the process is
represented as a black line.
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Figure 3.11: Elemental balance of phosphorus with an example plot of a single ex-
periment (top) and boxplot distribution calculated over all experiments
(bottom). The sample points are displayed with their individual, mea-
sured composition. The theoretical, total amount over the course of the
process is represented as a black line.
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to Ca3(PO4)2, for example, forming of solid Ca2SO4 caused by the addition of sulfuric
acid for pH control. Further analysis of experimental data showed that a weight con-
tent of approximately 50 % of Ca3(PO4)2 of the non-biomass DCW would lead to an
improvement of the P-balance. In order to check this hypothesis, an elemental analysis
of the precipitation should be conducted in order to determine the composition of the
precipitate.

It can be seen in figure 3.12, that the results of the DoR-balance are consistent with
the results of the C-balance (figure 3.9). The quantities of electrons meet the amount
supplied in batch and underestimate it in fed-batch. In the boxplots, the first and
third quartiles lie in between ± 10 %. One maximum value exceeds the upper limit,
indicating that the remaining 75 % samples fulfill the acceptance criterion. Outliers
and minimum values are present below the criterion of 90 %.

The mean of the ratios throughout the single experiments and the corresponding de-
viations are shown in table 3.1.
The single experiments of the carbon balance meet the acceptance criterion. However,
experiment number 4 is at the lower limit with a high deviation, indicating problems
with the measurement of the carbon content for this process. For the remaining ex-
periments, the carbon balance lies in the critical acceptance criterion with a deviation
of less than 10 %. Therefore, the experimental data which are considered in the C-
balance are reliable and can be further used for a model.
For the nitrogen balance, the experiments underestimate the nitrogen content in the
samples. The mean values differ significantly from the acceptance criterion with a
high deviation. The acceptance criteria can not be met using the existing setup and
measurements. Therefore, the data is not reliable with the available measurements
and the states can not be included in a model. In order to eliminate the systematic
error and to improve the nitrogen balance, an ammonia analyzer could be installed
along with the CO2 and O2 off-gas analyzers to measure the ammonia loss through
the exhaust gases.
The experiments of the P-balance overestimate the phosphorus quantities in the sam-
ples significantly, with the exception of experiment 9, where the content is slightly
underestimated. Further, the standard deviation ranges from ±10 - 49 % which indi-
cates low robustness of the calculation.
The DoR-balance of the single experiments meets the acceptance criterion. However,
the mean ratio of experiment number 4 is below 0.9 with a high deviation which cor-
relates to the outliers in the boxplots. The DoR balance underlines the results of
the C-balance and the reliability of the corresponding experimental data. Further, no
significant quantities of additional, not-measured compounds are oxidized.
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Figure 3.12: Electron balance with an example plot of a single experiment (top) and
boxplot distribution calculated over all experiments (bottom). The sam-
ple points are displayed with their individual, measured composition. The
theoretical, total amount over the course of the process is represented as
a black line.
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Table 3.1: Mean and deviation of the balance ratios of the individual experiments.

Exp. no C-Balance N-Balance P-Balance DoR-Balance

1 0.94 ± 0.05 0.53 ± 0.37 1.65 ± 0.26 0.95 ± 0.05
2 1.03 ± 0.03 0.72 ± 0.35 1.47 ± 0.16 1.00 ± 0.03
3 1.01 ± 0.06 0.42 ± 0.41 1.60 ± 0.35 0.96 ± 0.08
4 0.90 ± 0.07 0.48 ± 0.27 1.44 ± 0.14 0.86 ± 0.08
5 1.02 ± 0.04 0.29 ± 0.20 1.39 ± 0.05 0.99 ± 0.04
6 0.97 ± 0.04 0.57 ± 0.28 1.82 ± 0.24 0.97 ± 0.04
7 1.00 ± 0.02 0.49 ± 0.37 1.69 ± 0.16 0.99 ± 0.03
8 0.99 ± 0.05 0.23 ± 0.23 1.38 ± 0.10 0.95 ± 0.06
9 0.96 ± 0.04 0.30 ± 0.22 0.87 ± 0.12 0.96 ± 0.04
10 1.01 ± 0.04 0.56 ± 0.35 1.90 ± 0.31 0.99 ± 0.04
11 0.97 ± 0.02 0.65 ± 0.46 1.87 ± 0.49 0.95 ± 0.02

Summarized, except for experiment 4, the ratios of the C- and DoR-balance fulfill the
acceptance criteria of ± 10 %. Therefore, the balances are reliable and the correspond-
ing states can be further used for implementation in the model. Since the inclusion
of the experimental data of experiment 4 leads to statistical outliers, it could be con-
sidered to repeat the measurements or the whole experiment. The nitrogen balance
underestimates the measured nitrogen significantly due to the volatilization of ammo-
nia through the exhaust gases. For the phosphorus balance, the simplification of the
DCW with the secondary compound Ca3(PO4)2 improves the balance compared to the
calculation without this assumption. However, the amount of phosphorus is overesti-
mated constantly, indicating a systematic error. Therefore, an elemental analysis of
the precipitation should be conducted. With the current measurements and assump-
tions, the nitrogen and phosphorus balances do not meet the acceptance criterion and
the experimental data is therefore insufficient to be implemented in a model.
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3.1.5 Design of Experiment
The values of the different experiments for the DoE are shown in figure 3.2. The
mean of the specific growth rate and pediocin concentration were used as response
values for growth and product titer. Additionally, the first sample of the fed-batch
was excluded from the calculation in order to avoid possible effects of the uninduced
phase, for example, the specific growth rates of the beginning of the fed-batch are
higher compared to the remaining fed-batch. For the response value biomass growth,
different setups (mean/max; biomass concentration/specific growth rates) have been
tested. For the pediocin titer, the values are on fixed levels with a corresponding high
error range due to the nature of the pediocin assay (Section 2.7). Therefore, the mean
value of the titer was used for the DoE in order to compensate for a possibly too-high
measured maximum concentration.

Table 3.2: Factors and Response of DoE.

Run Order SSL [%] nC/nN nC/nP µ [ gX
gXh ] cP [ µg

mL ]

1 50 5 45 0.015 1.18
2 37.5 7.5 30 0.012 0.04
3 25 10 45 0.014 2.09
4 25 5 15 0.001 0.12
5 25 5 45 0.011 0.54
6 37.5 7.5 30 0.018 0.00
7 50 10 15 0.009 0.00
8 50 5 15 0.018 0.19
9 25 10 15 0.014 0.50
10 37.5 7.5 30 0.015 0.06
11 50 10 45 0.019 0.64

For the response value growth, no significant model term was found by the DoE.
However, for the response value pediocin concentration, the DoE indicates a significant
impact of the applied phosphate concentration of the NP feed in the fed-batch. The
model statistics, summary of fit (SoF) and analysis of variance (ANOVA), of the
response values are shown in table 3.3.

As the model fit (R2) of the response value growth is below 0.5, the model has a
low significance, indicating that the independent variables do not correlate with the
dependent variable. Predictability (Q2) measures the predictive power of the model.
A value below 0.10 indicates that the model is not significant. Model validity indicates
that the model is appropriate and that there are no significant model problems, for
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example, outliers, transformation problems or an incorrect model. The reproducibility
bar reflects the variation of the replicates and has to be above 0.5 for a good model.
The upper F-test evaluates the regression model if it fits the data as well as a model
without the independent variables. The probability value (p-value) of 0.15 does not
meet the significance level of 0.05, indicating that the independent variables are not
statistically significant for the response value growth. The p-value of lack of fit is
above the significance level of 0.05, which indicates that the variation between the
actual data and the fitted model is not significant. Since no significant model terms
were found for the response value growth, further evaluation plots are not shown.

For the response value pediocin titer, a quadratic model term was included as it re-
sulted in a significant improvement of the model (figure 3.13). The DoE would have to
be expanded to a face-centered DoE for validation of this assumption. However, this
hypothesis is examined in the model in which the product formation is described. An
R2 of 0.76 indicates that the independent variables correlate with the pediocin concen-
tration. Q2 has a value above 0.5 which reflects a good model and the model validity
shows that there are no significant model problems. Additionally, the reproducibility
of 0.95 indicates a good model. The p-value of the regression of 0.003 is below the
significance level of 0.05, indicating that the applied model provides a better fit to
the data than a model without the independent variables. For lack of fit, a p-value of
0.117 was determined which is greater than the significance level of 0.05.

Table 3.3: DoE model statistics

µ cP Reliable model

Summary of fit

R2 0.21 0.76 > 0.50

Q2 0.05 0.66 > 0.10

Model validity 0.61 0.46 > 0.25

Reproducibility 0.74 0.95 > 0.50

ANOVA

p-value (Regression) 0.15 0.003 < 0.05

p-value (Lack of fit) 0.21 0.117 > 0.05
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For the response value pediocin concentration, the DoE indicates a significant impact
of the model terms 1/P and 1/P*1/P on the product titer (figure 3.13). The quadratic
term is larger than the non-square term indicating a higher significance. The lower
the applied phosphate concentration of the NP feed in the fed-batch, the higher the
pediocin titer in the reaction broth within the value range of nC/nP of 1:15 - 1:45.

Figure 3.13: The coefficient plot of the response value pediocin shows a significant
impact of the model terms 1/P and 1/P*1/P on the product titer.

The replicate plot (figure 3.15) shows that the replicates have a small variability com-
pared to the overall variability of the experiments, indicating that they do not deviate
significantly from each other.

The residual normal probability plot (figure 3.14) displays if the residuals of the ob-
tained data are normally distributed noise. The ideal outcome is that the experiments
are on a straight line and points outside should be checked for outliers. Experiments 6
and 9 deviate from the remaining experiments. However, the model validity is above
0.25 and the p-value of the lack of fit is above the significance level of 0.05 (table 3.3),
indicating that there are no outliers or other significant model problems.
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Figure 3.14: The replicates have a small variability compared to the overall variability.
The replicates do not significantly deviate from each other.

Figure 3.15: The residual plot of the response value pediocin titer indicates that ex-
periments 6 and 9 could be outliers.
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The contour plot of the predicted response values (figure 3.16) shows the influence of
the factor nC/nP on the product titer. The maximum is located at 1/45 at the edge of
the factor range, indicating that the optimum of the pediocin production was not cov-
ered by the boundaries. Therefore, the DoE should be shifted toward higher phosphate
limitation in order to investigate the optimal conditions for pediocin production. The
applied levels of SSL and nitrogen have no impact on the product titer, indicating that
the applied quantities are sufficient for product formation. However, lower quantities
of the precursors with consistent pediocin rates would increase economic viability in
industrial production, making an examination of lower concentrations of the factors
attractive for further investigations.

Figure 3.16: The contour plot shows that the highest product titers are observed with
nC/nP of 1:45. This maximum concentration is located at the edge of the
DoE, which indicates that the optimum of the factor on the titer is not
covered by the boundaries of the DoE.

Summarized, the factors of the DoE have no significant effect on the growth in the
fed-batch. Growth rates are substantially reduced in the induced phase compared to
the batch phase (Section 3.1.3). Consequently, optimizing the overall growth rates
in fed-batch has a minor impact on the biomass concentration. Therefore, the batch
conditions should be further investigated in order to increase the starting biomass in
fed-batch or to increase the space-time yield by reducing the duration of the batch.
However, an uninduced fed-batch with a feed ramp of µmax would be another alter-
native in order to increase the biomass. The factor nC/nP has a significant influence
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on the pediocin formation and therefore, the phosphate concentration state should be
implemented in the pediocin formation mechanistics of the model. Since the P-balance
does not meet the required acceptance criteria (section 3.1.4), this state must not be
adopted. However, a simplification can be met by using the factor nC/nP as a constant
over the fed-batch time and neglecting the mechanistics of phosphate uptake as well
as precipitation formation.

3.2 Model Evaluation
The mechanistic model used in this study was based on the model described in [56] and
adapted to the performed experiments. As discussed in section 3.1.3, the physiological
properties of the bacterium change in the induced fed-batch. In order to simplify the
model structure, batch and fed-batch were analyzed separately. The experimental data
was split and two different model parameter sets were fitted by the algorithm as well
as analyzed for overall model fit. The batches were executed with identical conditions
and should therefore show a similar progression in contrast to the fed-batches, in which
varying feeding concentrations were applied. As a simplification, the C-sources were
designated with S1 - S4 (glucose, mannose, xylose and acetate) the biomass with X
and pediocin with P to enhance readability.

Specific Rates and Growth Kinetics

The specific substrate uptake rates of glucose, mannose, xylose and acetate (qi) are
shown in equation 3.1 - 3.4. The uptake rates were implemented using Monod kinetics
with the substrate concentration (Si), the half-velocity constant (Ki) and the maximum
specific uptake rate (qi,max). For mannose and xylose, a mixed inhibition term of the
respective other sugar and glucose was introduced. An inhibition phase of the acetate
uptake occurred in all conducted experiments. Therefore, a term for the inhibition
phase was included according to [103]. The inhibition term tInh was determined by a
drop of the dO signal of 3 % from the maximum value.

qS1 = qS1,max · S1

S1 + K1
(3.1)

qS2 = qS2,max · S2

S2 + KS2

KS1
S1 + KS2

KS3
S3 +KS2

(3.2)

qS3 = qS3,max · S3

S3 + KS3

KS1
S1 + KS3

KS2
S2 +KS3

(3.3)

qS4 = qS4,max · S4

S4 + K4
·
�
1− e

− t
tInh

�
(3.4)
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The Biomass growth (equation 3.5) is a combination of the individual sugar uptake
rates and the respective yields (YX/Si

).

µ = qS1 · YX/S1 + qS2 · YX/S2 + qS3 · YX/S3 + qS4 · YX/S4 (3.5)

The pediocin formation was described with a substrate inhibition kinetics. It is calcu-
lated with an induction term to differentiate between induced and non-induced phase,
the maximum product formation rate (qP,max), the carbon to phosphate ratio (nC/nP )
and the maximum molar phosphate to carbon ratio (nC/P,max).

qP = Induction · qPmax ·
�
1− nC/P,max

nC/nP



·
�
1− nC/P,max

nC/nP


2

(3.6)

Differential equations

The differential equations of a fed-batch mode in an ideal stirrered tank reactor are
shown in equation 3.7 - 3.10. These functions describe the changes of the reactor
volume (VR) and the concentration of the biomass (X), the substrates (Si) and the
product (P) over time with the substrate inflow V̇in, the dilution rate D and the
corresponding reaction rates. In order to account for the product inactivation due to
the oxygen sensitivity of pediocin [88], an oxidation rate term (qdO) was included. In
batch, V̇in is 0 and D is influenced by the inflow of acid and base.

dVR

dt
= V̇in (3.7)

dX

dt
= X · (µ+D) (3.8)

dcSi

dt
=

V̇Si,in

VR
· cSi,in −D · cSi

+ qS ·X (3.9)

dcP
dt

= −cP · (D + qdO) + qP ·X (3.10)

Model Parameters

The model parameters were estimated with an algorithm minimizing the negative log
likelihood (section 2.7) and the fitted parameters of batch and fed-batch are shown
in table 3.4. The model parameters of batch and fed-batch differ from each other.
The maximum substrate uptake rates of glucose and acetate are higher compared to
batch. In contrast the uptake rates of mannose and xylose are lower. In fed-batch the
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biomass yields of the individual sugars are significantly lower than in batch, due to
the increased metabolic burden by the product formation.

Table 3.4: Model parameters of batch

Parameter Batch Fed-batch Unit

Substrate

Uptake Rates

qS1,max 0.265 0.389 g g−1 h−1

qS2,max 0.248 0.122 g g−1 h−1

qS3,max 0.154 0.082 g g−1 h−1

qS4,max 0.101 0.281 g g−1 h−1

Yields

YX/S1 0.250 0.058 g g−1

YX/S2 0.204 0.141 g g−1

YX/S3 0.225 0.071 g g−1

YX/S4 0.038 0.006 g g−1

Half Velocity

Constants

KS1 0.005 0.075 g L−1

KS2 0.528 0.697 g L−1

KS3 1.774 0.717 g L−1

KS4 0.001 0.216 g L−1

Product specific

Parameters

qP,max - 2.800 µg g−1 h−1

cPO4,max - 0.035 Pmol Cmol−1

qdO - 0.080 µg µg−1 h−1
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Model fit - Batch

The results of the time-resolved states (biomass, glucose, mannose, xylose and acetate)
of the exemplary process are shown in figure 3.17.
The model accurately predicts the biomass concentrations (top left) in the early stages
of the process with a deviation of 0.06 g L−1 until approximately 10 h process time.
Afterwards, the increase of the biomass is not valued by the model, resulting in an
underestimation of 0.33 g L−1 on average for the samples 5 - 8. However, in the last
sample, the estimated concentration meets the experimental data.
For the state glucose (top right), the course of the concentration is accurately predicted
with a deviation of approximately 1.1 g L−1. The decrease of the concentrations of the
sugars mannose (middle left) and xylose (middle right) is accurately predicted with a
deviation of about 0.92 g L−1 by the model.

Figure 3.17: The measured values (circles) and the predicted values (blue line) of
the time-resolved state´s biomass and glucose (top), mannose and xy-
lose (middle) and acetate (bottom) of an exemplary process in batch.

For acetate (bottom), the model predicts an uptake over a longer time period compared
to the experimental data. One reason for this is a stronger inhibition of the uptake of
the organic acid, resulting in the onset of the uptake at a later point in the process
compared to the model description. The specific uptake rate is higher leading to faster
consumption of acetate. However, in this time-area only a few measurement points
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are given. Furthermore, as the measurement procedure in CEDEX is not designed to
measure samples with SSL background, the method could give falsified results at a
lower concentration area. In order to check this hypothesis, SSL from the end of the
fermentation could be separated from the cell mass and spiked with different acetate
concentrations. Acetate measurements could subsequently rule out the influence of an
SSL background. However, due to limited time, these experiments were not performed.

The observed vs. predicted plots of the batch are displayed in figure 3.18. Every batch
was executed with identical conditions. However, the starting biomass concentrations
as well as the inhibitor- and sugar concentrations in the SSL deviate from experiment
to experiment. In addition to biological variability, divergent behavior of the individ-
ual experiments is expected leading to scattering in the observed vs. predicted plots.

At around 0.23 - 0.6 g L−1, the biomass concentration (top left) is accurately predicted.
With higher biomass, an increased scattering is observed with an underestimation of
most of the samples. However, some samples between approximately 0.6 - 1.6 g L−1

are overpredicted by the model leading to difficulties fitting the model data to the
experimental data by the algorithm. This indicates that the model can not predict
the variability in the results based on the slightly different inputs at the start of the
batch.
For the state glucose (top middle), the model underestimates the concentration be-
tween 4 - 10 g L−1 leading to a high scattering in the observed vs. predicted plot.
In the lower concentration areas, the model underestimates the uptake of the sugar
for some experiments. However, for these experiments, the biomass concentration is
underpredicted by the model. For example in experiment 4, the concentration is under-
predicted in the concentration area of approximately 1.1 - 2.6 g L−1. As the biomass
concentration has a major impact on the total uptake of the substrates, inaccuracies
in the prediction influence the other states significantly. For mannose (top right) and
xylose (bottom left), the model can accurately describe the uptake of the sugars with
a deviation of approximately 0.78 and 0.36 g L−1 on average.
For the observed vs. predicted plot of acetate (bottom right), two areas are seen: Be-
tween approximately 1 and 1.7 - g L−1, the uptake of the organic acid is overpredicted
by the model except for 3 experiments. However, at 0 - 0.1 g L−1, the model overesti-
mates the concentration in the samples. One reason for this could be that the method
has problems at low concentrations by hitting a limit of detection (LoD), which is
indicated by only 5 measurement points in between 0.1 - 0.9 g L−1. In contrast, the
organic acid uptake could be high, resulting in few samples in this range. Therefore,
as a next step, the LoD should be tested as described in the discussion of the time-
resolved states of the batch or the sample time could be substantially reduced in the
area of the uptake.

44



3.2. MODEL EVALUATION

F
ig

ur
e

3.
18

:T
he

pr
ed

ic
te

d
va

lu
es

on
th

e
y-

ax
is

pl
ot

te
d

ag
ai

ns
t

th
e

ob
se

rv
ed

va
lu

es
on

th
e

x-
ax

is
fo

r
al

lp
er

fo
rm

ed
sa

m
pl

es
du

ri
ng

th
e

ba
tc

h
of

al
le

xp
er

im
en

ts
.

T
he

ob
se

rv
ed

va
lu

es
ar

e
on

th
e

x-
ax

is
an

d
th

e
pr

ed
ic

te
d

on
es

on
th

e
y-

ax
is

.
A

pe
rf

ec
t

pr
ed

ic
ti

on
is

re
fle

ct
ed

by
th

e
x

=
y

lin
e.

45



3.2. MODEL EVALUATION

The NRMSE values with the corresponding standard deviations of the states biomass,
glucose, mannose, xylose and acetate in batch are shown in table 3.5. The error rate
of biomass is at approximately 30 % with a standard deviation of 10 %. One reason
for this is the high variability of the initial biomass, caused by the low concentration
area and the high error range of the measurement. Furthermore, biomass prediction
inaccuracies have a large impact on the other states. In order to improve the overall
prediction power of the model, the error margin of the measurement could be reduced
or the starting biomass increased.
For the state glucose, the NRMSE is at 16.60 % with a deviation of 8.4 % which is
above the acceptance criterion of 15 %. As stated in the discussion of the observed
vs. predicted plots, the inaccuracies of the biomass prediction influence the glucose
significantly.
As the error rates of mannose (2.68 %) and xylose (3.28 %) meet the acceptance
criterion of 15 %, these states can be accurately predicted by the model. Furthermore,
the standard deviation is at approximately 1 %, indicating that the model has a high
prediction quality and robustness for the prediction.
For acetate, the error rate is at approximately 32 % with a standard deviation of 13 %,
indicating problems of the model predicting this state or measurement problems.

Table 3.5: NRMSE and the corresponding standard deviation of the states biomass,
glucose, mannose, xylose, acetate and in batch.

Biomass Glucose Mannose Xylose Acetate

NRMSE (in %) 29.99 16.60 2.68 3.28 31.83

StDev of NRMSE 10.01 8.41 0.92 1.01 13.09

Summarized, the model can accurately predict the sugars mannose and xylose in the
batch phase. However, the model fails for predicting the state biomass in the higher
concentration area. Further, the prediction of the biomass concentration has a major
impact on the glucose prediction with an NRMSE of 16.60 % which is above the
acceptance criterion. For the organic acid acetate, measurement errors may be present
in lower concentration ranges which complicates the modeling of this state.
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Model fit - Fed-batch

The time-resolved states of the exemplary process during the fed-batch are shown in
figure 3.19.

Figure 3.19: The measured values (circles) and the predicted values (blue line) of
the time-resolved state´s biomass and glucose (top), mannose and xy-
lose (middle) as well as acetate and pediocin (bottom) of an exemplary
process in fed-batch.

Cell growth is low in the induced phase and the dilution of the biomass concentration
(top left) is accurately predicted by the model with a deviation of 0.07 g L−1 on
average. For the state glucose (top right), the sugar has not been fully utilized in the
batch phase as seen in sample 1. The model underestimates the uptake throughout
the process but meets the concentration in the end of the fed-batch. For the sugars
mannose (middle left) and xylose (middle right), the model can accurately predict the
concentrations with a deviation of 1.62 g L−1 and 0.81 g L−1 on average.
For the state acetate (bottom left), the measured concentrations are at low levels
at approximately 0 - 0.2 g L−1 which is accurately predicted by the model with a
deviation of approximately 0.03 g L−1 on average.
As seen for pediocin (bottom right), the concentration increases in the beginning of
fed-batch. Afterwards, the titer remains stable between 0.8 - 1.6 µg ml−1. One reason
for this could be that the induction effects are diminishing in the later stages of the
process which could be caused by a decrease of the IPTG concentration in the reaction
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broth or habituation of the cells to IPTG. The model estimates an earlier formation of
the product in the exemplary process. The operon pedACD encodes for the precursor
of pediocin and proteins which are responsible for processing, cleavage and segregation
(Section 2.1). The time from the start of the induction over to the accumulation of the
protein in the reaction broth, therefore, causes a shift of the later measured increase
to the simulation data. In order to represent this delayed accumulation in the model,
an inhibition term could be integrated into the specific rate, similar to acetate. After
approximately 35 h process time, the predicted pediocin concentration is within the
error range of the measurement.

The observed vs. predicted plots of the fed-batch are shown in figure 3.20. The biomass
content of the samples (top left) scatters within the measurement error of 0.17 g L−1,
reflecting an accurate prediction by the model.
Low glucose concentrations (top middle) can be accurately predicted by the model
as well as higher concentrations of process 2. However, higher measured glucose con-
centrations are either over- or underpredicted, resulting in a high scattering. These
experiments correlate to SSL concentrations of 37.5 % or 50 %, indicating problems
of the model prediction with the higher boundaries of the factor.
For mannose (top right) and xylose (bottom left), the measured values can be accu-
ratly predicted by the model within a scattering range. For experiment 6, the model
underpredicts the concentrations significantly. Further, for xylose, one process is sig-
nificantly overestimated and deviate from the target value, the 45° line.
With the exception of 3 samples, the acetate measurement values (bottom middle) are
within concentrations of less than 150 mg L−1. These low concentrations have only a
minor effect on growth or the prediction of the other states lowering the importance
of the state on the overall model prediction.
For pediocin (bottom right), the two-fold dilution series detection method of the assay
is seen as a doubling of the concentrations within an experiment. Two different stan-
dard concentrations were used for the determination of the pediocin concentration.
Therefore, two different concentration profiles are seen in the observed vs. predicted
plot. The order of the samples within an experiment with formed pediocin can be
assessed by a successive increase in the predicted value. For example in experiment
3, the last measured values are at approximately 3.2 µg mL−1. A high scattering is
observed in the plot with an under- and overestimation of the pediocin concentra-
tion. The step formation of the determined titers as well as the high error rate of the
measurements complicates the modeling of the state and identification of the product
formation mechanisms of the bacteria.
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3.2. MODEL EVALUATION

The NRMSE values with the corresponding standard deviations of the states biomass,
glucose, mannose, xylose, acetate and pediocin in fed-batch are shown in table 3.6.
The state biomass meets the acceptance criterion of less than 15 % which indicates an
accurate prediction. Further, the standard deviation 4.80 % is low, reflecting a good
robustness.
For glucose, the error rate is at approximately 57 ± 26 %, which reflects a low prediction
quality and reproducibility of the model for this state. In contrast, the NRMSE values
of 4.78 and 6.89 % of the sugars mannose and xylose meet the acceptance criterion.
Additionally, the low standard deviation indicates a high reproducibility of the model
for this states.
For acetate, the NRMSE is at approximately 56 %. However, the NRMSE does not
reflect the importance of the state on the model and the other states. As seen in the
observed vs. predicted plots, the values are in a low concentration area. This results
in a high calculated NRMSE due to dividing by the mean value (Section 2.7). In
contrast, the RMSE is at approximately 32.8 mg L−1 for the given data.
The high error of the pediocin prediction is caused by the inaccuracy of the assay.
Therefore, no assessment of the prediction performance can be concluded.

Table 3.6: NRMSE and the corresponding standard deviation of the states biomass,
glucose, mannose, xylose, acetate and pediocin in fed-batch.

Biomass Glucose Mannose Xylose Acetate Pediocin

NRMSE (in %) 12.54 57.38 4.78 6.89 55.79 98.18

StDev of NRMSE 4.80 25.61 2.94 3.76 20.84 69.32

Summarized, the model can accurately predict biomass growth and the sugars mannose
and xylose in fed-batch. However, the model fails to predict the states glucose and
acetate, whereby acetate has only a minor impact on the overall model prediction due
to the low concentration area. For the state pediocin, the model can predict the titers
within the error range. The measurement assay does not provide values with a high
precision which hinders an assessment of the prediction quality.
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3.3. COMPARISON TO LITERATURE

3.3 Comparison to Literature
Current process and model developments of C. glutamicum were based on complex
media with an addition of 5 - 10 % SSL as a carbon source [53, 56, 57, 58]. However,
it could be shown that processes based on pure SSL without the addition of complex
media or other additives can be carried out. This enhances the economics and reduces
the operational effort of future industrial bioprocesses utilizing the waste stream media.

Balancing is an important tool to assess the consistency and reliability of the data or
to reveal non-accounted components which are present in significant quantities [25].
However, as far as known, this elemental approach has not been conducted for SSL
as the sole carbon source in bioprocesses. It has been demonstrated in this work
that the fundamentals of carbon and DoR balances work for the waste stream media
with a deviation of ± 10 %. This ensures a complete coverage of the most important
influencing factors of processes based on SSL by measuring the biomass content, CO2

and O2 in the exhaust gas, sugars via HPLC and the organic acids via CEDEX.

An increase of the production rates are reported in literature for various of products
under phosphate limiting conditions in different expression hosts, for example, bacte-
ria [104, 105] or unicellular eukaryotes [106, 107]. The results of this study indicate that
there is a similar behavior of the strain C. glutamicum CR099::U pXMJ19-pedACD
for the production of pediocin PA-1.
In contrast, phosphate limiting conditions are reported to substantially reduce the
growth of C. glutamicum in CGXII medium [108, 109]. On the other hand, higher
sugar and nitrogen concentrations in the reaction broth are reported to have a bene-
ficial affect on the growth of the cells [110]. However, the DoE showed no significant
impact of these factors on the cell growth of the bacteria. This is due to the low growth
rates in the induction phase caused by the increased metabolic burden on the cells for
the formation of the product [101].

Model development of processes with C. glutamicum utilizing complex media with SSL
addition could be successfully adapted to the performed experiments [53, 56, 57, 58].
Compared to the biomass yields from these processes, the yields of the batch are
significant reduced to about half. One reason for this could be that another strain
was used in this study. Besides the genes for the formation of pediocin PA-1, the
strain has the genes for improved mannose and xylose uptake integrated into the
genome rather than on plasmids which affects the physiology. Additionally, the growth
of C. glutamicum is substantially reduced in the presence of furfural, an inhibitory
compound of SSL [68]. As higher SSL concentrations were used in this work compared
to the other studies, this would lead to decreased growth. Additionally, in models the
inhibition is accounted for by inhibitory terms [53, 54]. However, the implementation
of these terms showed no enhancement of the model with the given data.
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3.3. COMPARISON TO LITERATURE

As in the induced fed-batch the behavior of the cells deviated significantly from the
batch, 2 different parameter sets were estimated. In fed-batch, the estimated YX/Si

parameters are substantially reduced compared to batch. One reason for this could be
that the metabolic burden for the production of pediocin is affecting the growth rate
in this phase [101].
Models of continuous processes of C. glutamicum based on complex media supple-
mented with SSL reached an NRMSE value below the acceptance criterion of 15 % for
the states biomass, glucose, mannose and xylose [53, 58]. In contrast, the developed
model in this work could met the criterion for mannose and xylose in batch as well as
biomass, mannose and xylose in fed-batch. In the batch, the measured biomass mea-
surements are affected by a high variability which impacts the correct prediction. For
glucose, these inaccuracies of the biomass estimation influences the sugar estimation
significantly, which hinders an accurate prediction of the state.
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4 Conclusion and Outlook

Prior to this work, experiments of C. glutamicum on complex media supplemented
with 5 - 10 % SSL were performed. Based on these experiments, the major goal of
this study was to optimize the pediocin PA-1 titer of a bioprocess of C. glutamicum
CR099::U pXMJ19-pedACD on SSL as the sole carbon source. It was demonstrated
that the processes can be carried out without the need for complex media and the sup-
plementation of trace elements or other additives except for a nitrogen and phosphate
source. Comparable titers were obtained with a corresponding more economical and
environmentally friendly process.

The central tasks of the thesis were as follows:
i) The experimental data should be assessed by examining the elemental (carbon,

nitrogen and phosphorus) and electron balance.
ii) Based on a DoE approach, the influence of different SSL, nitrogen and phos-

phate availability on the product titer and on growth in the induction phase should
be investigated.

iii) A mechanistic model should be set up based on the obtained knowledge in
order to identify and model the underlying biological mechanisms of the cell.

Elemental Balance

The reliability of the experimental data was assessed by evaluating the elemental and
electron balances over the course of the process. It was investigated, whether the
corresponding ratios met the critical acceptance criterion of 10 %. Except for one
experiment, the carbon and DoR balance met this criterion. Therefore it can be
concluded, that no unknown components in the SSL were consumed or secreted as
well as oxidized in significant amounts by the bacteria.
The nitrogen balance, however, showed that significant quantities of the elements
were not recovered. The most likely explanation for this is that ammonia vitalizes
through the exhaust gases, which leads to a significant underestimation of the nitrogen
content. For the phosphorus balance, a simplification was met by the introduction
of Ca3(PO)4 as a secondary component of the non-biomass DCW. The conducted
calculation overestimates the quantities of phosphorus in the samples constantly, which
indicates a systematic error. As the measured experimental data does not describe the
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distribution of nitrogen and phosphorus within the reactor sufficiently, the data is not
reliable and can not be implemented in the model. Therefore, a simplification was
met for the description of the pediocin PA-1 formation by introducing the carbon to
phosphate feed ratio as a constant over the fed-batch time.

Design of Experiment

The DoE showed no significant correlation of the factors on the growth of the bacterium
during the induction phase. However, the phosphate concentration has a significant
impact on the product titer in the reaction broth. It can be concluded that a reduction
of phosphate availability for the cells in the induction phase favors the pediocin PA-1
formation of the bacterium. The maximum product titer was observed at the edge
of the DoE, implying that the optimal production conditions were not covered by
the design space. As the factors SSL and nitrogen have no influence on growth and
pediocin PA-1 titer, the factors can be kept at the minimum values of the examined
boundaries to ensure maximum economic viability.

Mechanistic Model

A mechanistic model was set up based on the studies of the experiments with a com-
bination of complex media and SSL. For the verification of the model, an acceptance
criterion of 15 % of the NRMSE values was set. In batch, the model was capable
to accurately predict the uptake of mannose and xylose with an NRMSE of 2.68 and
3.28 %. However, the model failed to accurately simulate the biomass due to the high
variability of the initial biomass concentration and the error range of the measurement.
The NRMSE of glucose is 16.60 % and does not meet the acceptance criterion, which is
caused by the significant impact of the inaccurate biomass prediction on the state. For
acetate, measurement errors may be present in the lower concentration ranges which
complicates the correct prediction and verification in batch.
In contrast, the model accurately predicted the growth of the bacterium in fed-batch
as well as the sugar uptake of mannose and xylose throughout the processes. For glu-
cose, the error rate is at approximately 57 % which reflects a low prediction quality
for this state. An NRMSE of approximately 56 % was observed for acetate which was
caused by the low concentrations range of organic acid. However, the NRMSE does
not reflect the importance of the state as it has only a minor impact on the model
and on the other states. Due to the inaccuracy of the assay for the determination of
the pediocin PA-1 concentration, there is a high error margin of the predicted values,
which complicates the identification as well as the verification of the correct mechanism
of the product formation.

Summary and Outlook

It can be concluded that a process using C. glutamicum for the recomibant production
of pediocin PA-1 on SSL could be successfully developed, which underlines the gen-
eral feasibility of bioprocesses using SSL as a substrate. Furthermore, the carbon and
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electron balance met the set acceptance criterion, which demonstrates that the funda-
mentals of balancing are valid for SSL. Additionally, it was shown that one potential
screw to increase pediocin PA-1 titer in the process is the phosphate availability of the
cells in the induction phase. In contrast, no significant impact was found of the factors
on growth. Moreover, the models based on SSL in combination with complex media
could be adapted to the performed experiments. The model was capable to predict
observations mannose and xylose in batch as well as the growth, mannose, xylose and
acetate in fed-batch.

One key factor to increase the profitability of the process is to enhance the pediocin
PA-1 titer by finding the optimal process conditions. As the DoE did not capture
the optimum of the pediocin PA-1 concentration, the boundaries of the design space
should therefore be shifted to higher phosphate limitation. In order to increase the
space-time yield of the process, the batch conditions could be further investigated
to find the optimal growth conditions of the bacteria and to reduce the batch time.
In contrast, an uninduced fed-batch would be another alternative for increasing the
biomass concentration before the induction. In order to improve the overall batch
prediction of the model, the variability of the initial biomass concentration has to be
lowered by either increasing the starting biomass or reducing the error margin of the
measurement. Acetate measurement may have problems in the lower concentration
ranges which should be investigated by spiking acetate in SSL samples. Due to the na-
ture of the pediocin assay and the corresponding inaccuracies, an accurate description
of the pediocin formation and validation is difficult. This underlines the need for a new
analytical technique, for example, HPLC or ELISA, in order to obtain more precise
concentration values. Additionally, the specific product formation rate of the model
is based on a simplification of the phosphate term since the phosphorus balance does
not meet the critical acceptance criteria. As this simplification is unable to address a
change in phosphate availability during the process, the discrepancies in the P-balance
should be examined by analyzing the elemental composition of the precipitate.

With the increasing challenges posed by climate change, it is becoming more and more
important to rethink the concepts of sustainability and resource friendliness. The
biotechnology industry is a sector that can contribute significantly to this field. Cur-
rently, the cultivation of microorganisms is still mainly based on food crops. However,
in terms of economically and ecologically sustainable process management, the trend
is moving towards second generation feedstocks. The iFermenter project, to which
this study contributes, aims to recycle the waste stream media SSL from the paper
industry by the production of high-value bacteriocins with C. glutamicum. As a next
step toward an industrial application, the bench-scale processes performed in this the-
sis should be upscaled and carried out in a pilot plant, which is currently in progress.
The process could next be connected to the paper processing industry to recycle a
significant amount of generated waste and introduce circular economy. Moreover, the
process could act as a basis for the development of further high-value products.
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