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Kurzfassung

Graphen bieten ein nützliches Modell für viele Probleme da sie es ermöglichen auf flexible
und effiziente Art die Datenstruktur zu abstrahieren. Um Gebrauch von den wachsenden
Mengen an Daten zu machen ist Klassifizierung eine essentielle Aufgabe die auf eine
Partitionierung der Daten in Ähnlichkeitsgruppen abzielt. Allerdings beinhalten viele
reale Netzwerke auch Verbindungen die Unähnlichkeiten beschreiben. In Sozialen Netz-
werken etwa können Nutzer ihre Sympathie oder Antipathie durch befreunden respektive
blockieren ausdrücken. Um diese gegensätzlichen Informationen effektiv zu nutzen ist
es nötig spezifische Algorithmen zu konstruieren, die auf vorzeichenbehafteten Graphen
arbeiten. Das Hauptaugenmerk der Forschung in der Vergangenheit lag auf dem Clus-
tern von vorzeichenlosen Graphen. Eine vielversprechende Methode des maschinellen
Lernens ist empirische Risikominimierung um die Clusterbeschriftung an die bekannten
Beschriftungen anzupassen. Um diesen beaufsichtigten Lernprozess zu unterstützen wird
ein zusätzliches Ziel hinzugefügt, welches den Algorithmus dazu bringen soll eine Cluster-
beschriftung zu generieren, die glatt über die Struktur des Graphen variiert. Es existieren
mehrere verschiedene Glattheitsmetriken die für solch eine unbeaufsichtigte Regulierung
eingesetzt werden können. Manche davon wurden auch auf vorzeichenbehaftete Graphen
erweitert.

In dieser Arbeit zielen wir darauf ab, zwei teilüberwachte Klassifizierungsalgorithmen zu
verbessern indem wir die totale Variation als Glattheitsmetrik auf vorzeichenbehafteten
Graphen einsetzen. Die totale Variation wurde in mehreren kürzlich entwickelten teilbe-
aufsichtigten Methoden eingesetzt und hat sich als effektive Zielfunktion herausgestellt.
Um die totale Variation wirkungsvoll mit klassischem maschinellen Lernen zu verbinden
machen wir Gebrauch von konvexer Optimierung. Insbesondere leiten wir zwei teilbe-
aufsichtigte Clusterzielfunktionen für vorzeichenbehaftete Graphen her und entwickeln
die iterativen Algorithmen um die Optimierungsprobleme effizient zu lösen. Wir prä-
sentieren eine Verhaltensanalyse der Parameter und vergleichen die Clusterperformanz
von unseren Methoden mit dem Stand der Technik. Zusätzliche numerische Experimente
auf synthetischen Datenmodellen sollen die Fähigkeit unserer Algorithmen, Informati-
on über Unähnlichkeit auszunutzen, beurteilen. Die Tests ergaben, dass Algorithmen,
welche Gebrauch von der totalen Variation machen, eine überlegene Clusterperformanz
aufweisen. Des Weiteren haben wir unsere Methoden auf Daten eines echten sozialen
Netzwerks eingesetzt. Unser Algorithmen haben dabei, trotz der widrigen Clusterstruktur,
zufriedenstellende Ergebnisse erzielt.
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Abstract

Graphs are a natural fit for modeling a multitude of problems as they are flexible and
efficient abstractions of complex datasets. To make use of the growing amounts of
data, clustering is an essential task that aims at partitioning the data into groups that
reflect similarity. However, many real world networks also contain links that describe
dissimilarity. In social networks for example users can associate themselves by befriending
or blocking each other, which expresses sympathy or antipathy, respectively. To effectively
utilize such opposing information in clustering tasks it is necessary to construct specific
algorithms that operate on signed graphs. The main focus of research in the past was
directed towards clustering on unsigned graphs. A promising machine learning method is
to deploy empirical risk minimization to fit the cluster labeling to a set of known labels.
To aid this supervised learning process an additional objective is added that should
incentivise the algorithm to produce cluster labelings that are smooth with respect to the
graph’s similarity structure. There exist several different smoothness metrics that can be
deployed in such an unsupervised regularization and some have also been extended to
signed graphs.

In this thesis we aim to improve two semi-supervised clustering algorithms by utilizing
the total variation as a smoothness metric on signed graphs. The total variation has been
deployed in several recent semi-supervised methods and has shown to be an effective
objective for graph clustering. To combine the total variation with classic machine
learning algorithms we make use of convex optimization procedures. In particular we
derive two semi-supervised clustering objectives for signed graphs and develop iterative
algorithms to efficiently solve the stated optimization problems. We provide an analysis
of the behavior of our algorithm’s parameters and compare their clustering performance
to state of the art methods. Additional numerical experiments are conducted on synthetic
data models to asses the ability of our novel algorithms to exploit dissimilarity information.
The tests revealed that algorithms which use the total variation indeed produce superior
clustering performance in both the unsigned and signed case. Furthermore, we employed
our methods on data derived from a real world social network. Our algorithms achieved
satisfactory results, despite the problem’s unfavorable cluster structure.
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CHAPTER 1
Introduction

Graphs are powerful and versatile models that can be employed for a multitude of
real world problems. Examples range from recommender systems for movie or product
databases over community detection in social networks to infrastructure analysis such
as railway or road congestion detection [LAH07] [LHK10] [LLDM09]. Modeling such
problems with graphs can help to exploit sparsity in the data structure and often allows
for local formulations that can lead to parallelizable algorithms. In the past, research
has been mainly focused on unsigned graphs which are able to encode information about
similarity or the absence thereof. Many datasets however, also contain a notion of
dissimilarity. For example likes and dislikes in movie recommendations or trust and
distrust in social communities. Signed graphs are able to encode such antagonistic
relations but the development of theories and tools to exploit these models is a topic of
ongoing research [DM20].

In any case, algorithms that perform complex tasks on graphs such as classification of
new data points, prediction of missing data attributes or ranking of data elements are
hard to designing using conventional programming methodologies. These circumstances
have propelled the field of machine learning which constitutes a data driven paradigm for
developing algorithms. Rather than coding a fixed procedure that performs a certain task
supervised learning focuses on developing algorithms that are able to learn a task from
training examples and feedback. However, to deploy supervised learning on sophisticated
large scale problems, huge amounts of labeled training examples are required [CSZ06].
A promising solution to restrain the growing need of expensive labeled data is semi-
supervised learning which aims to fuse the learning process with additional information
about unlabeled data. Employing information of unlabeled data requires the presence
of an inherent connection between the structure of the data and the target values. One
such assumption that proofed to be suitable in practice states that target values vary
smoothly with respect to the underlying data distribution.
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1. Introduction

In this thesis we will focus on the task of semi-supervised clustering on signed graphs.
Clustering is a fundamental task in data analysis and therefore relevant for any scientific
field that deals with large quantities of data [VL07]. In data analysis clustering is used to
discover grouping or connectivity patterns, it can also be embedded as preprocessing step
in more complex pipelines to filter inputs. There exist various ways to define clusters, on
unsigned graphs they are usually identified through densely connected subsets of nodes.
In the case of signed graphs clustering is often regarded from the standpoint of social
balance theory. In [Dav67] Davis defines a graph as k-balanced if there exists a clustering
into k partitions such that nodes within each partition are only connected via positive
edges and nodes from different partitions are only connected via negative edges. Our
aim is to cluster unbalanced graphs (eg. constructed from noisy data) by deploying the
total variation as a smoothness metric in combination with semi-supervised learning. For
this we assume the number of clusters k to be known in advance.

Pursuing the semi-supervised approach is of particular practical interest since it allows
to combine expensive and therefore modestly available labeled data with task inherent
domain knowledge. As a concrete example we can consider the detection of communities
of similar political partisanship. While conventional polls are laborious and therefore
usually only sample a small fraction of the public online social networks provide an
abundant amount of information about the relations between individuals. Thus combining
sparse training samples with powerful graphical models may provide the basis for an
effective algorithm to determine clusters of similar partisanship. Furthermore for tasks of
this kind it is crucial to utilize signed graphs in order to model strong opposing concepts
like ideological agree- or disagreement.

The core contribution of this work is the derivation of two semi-supervised clustering
algorithms for signed graphs. While we utilize classic empirical risk minimization to
incorporate prior labeling information in our algorithms we deviate from existing methods
as [GZW07] in that we choose the total variation as a smoothness metric. It has been
shown that the total variation is a tight continuous relaxation for the discrete clustering
problem on unsigned graphs [SB10]. Therefore we expect it to increase the clustering
performance when combined with existing semi-supervised methods. Furthermore we
present efficient implementations of the algorithms relying on the alternating direction
method of multipliers convex optimization scheme. In numerical experiments we analyze
the parameters of our algorithms and report their capabilities of effectively utilizing
dissimilarity information. Further experiments are conducted to compare the algorithms
accuracies with state of the art semi-supervised clustering methods on synthetic datasets.
We conclude by clustering a large scale signed graph obtained from an online social
network to demonstrate the algorithms capabilities on real world data.
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1.1. Notation

1.1 Notation
Throughout this thesis we adhere to the following notation:

• Italic letters denote scalars (eg. M , n)

• Lowercase bold letters denote vectors (eg. v)

• Lowercase letters with a subscript denote the entry of a vector at the position
indicated by the subscript (eg. vi represents the i-th entry of vector v)

• Uppercase bold letters denote matrices (eg. K)

• Uppercase letters with two letter subscripts denote an entry of the matrix at the
position indicated by the subscripts (eg. Kij represents the entry at row i and
column j of matrix K)

• Uppercase bold letters with subscripts containing a colon refer to row or column
slices of a matrix (eg. Ki: and K :j represent the i-th row and j-th column of
matrix K respectively)

• Italic letters which are followed by a list of arguments enclosed in parenthesis denote
scalar functions. Written in bold they denote a vector of scalar functions (eg. C (r),
f (x))

• Uppercase calligraphic letters denote sets or collections such as tuples (eg. L)

• The identity matrix of size N × N will be denoted IN and the vectors of size N
containing all ones or all zeros are denoted 1N and 0N respectively.

• The operator ⊗ denotes the Kronecker product and is used to succinctly formulate
block matrix constructions (eg. IN ⊗ A yields a matrix with N blocks of matrix A
on the diagonal).
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CHAPTER 2
Background

In this chapter we introduce the mathematical concepts used throughout the thesis.
Furthermore we summarize the key ideas of statistical learning theory to establish the
basis for the derivation of our methods. The last section is devoted to the convex
optimization algorithm that we utilize in our implementations.

2.1 Graphs

A graph G is a 3-tuple (V, E , W ) whose entries are the node set, edge set and the
weight matrix. The node set, sometimes referred to as the vertex set, is of the form
V = {v1, . . . , vN }. Unless explicitly stated otherwise the graphs we consider are undirected,
simple and contain no self-loops. The edge set is given by E ⊆ V × V. Thus the weight
matrix has the form W ∈ RN×N , where Wij is the weighting of the edge connecting
vertices vi and vj . If (vi, vj) ̸∈ E then Wij = 0.

Furthermore we can introduce signals x : V → R on the vertices of the graph. Such a
signal can be compactly represented by a vector x ∈ RN and multiple signals can be
aggregated into a graph signal matrix (e.g. X ∈ RN×M for the concatenation of M
graph signals). Graph signal processing (GSP) introduces the tools, like filtering and
sampling, to manipulate and analyze graph signals. Another key concept in GSP is the
graph Fourier transformation (GFT), which constitutes a mapping between the vertex
and spectral domain based on the eigendecomposition of the graph Laplacian [SNF+13].

5



2. Background

2.1.1 Laplacians
For a graph G with non-negative edge weights (i.e. Wij ≥ 0) its Laplacian matrix L is
defined as [KSL+10]

L = D − W ,

Dii =
N∑

j=0
Wij , Dij = 0 for i ̸= j.

(2.1)

The graph Laplacian is symmetric, positive-semidefinite and exhibits some interesting
properties about the underlying graph. For instance the multiplicity of the eigenvalue
zero indicates the number of connected components of the graph. Furthermore, [SNF+13]
directly interprets eigenvalues as the frequency corresponding to a signal that is defined
by the graph Laplacians eigenvectors. That is, Shuman et al. consider a signal to be
smooth over a graph if it "has similar values at neighboring vertices connected by an edge
with a large weight". This connectivity is encoded in the graph Laplacian and reflects
the decrease in smoothness for increasing eigenvalues.

For graphs that also possess negative edge weights Kunegis et al. [KSL+10] define the
signed Laplacian matrix based on a modified degree matrix

L̄ = D̄ − W ,

D̄ii =
N∑

j=0
|Wij |, D̄ij = 0 for i ̸= j.

(2.2)

The signed Laplacian is also symmetric and positive-semidefinite. Which can be directly
observed from the well known bilinear decomposition

∥x∥Lap = xT L̄x =
N∑

i=0

N∑
j=0

|Wij |(xi − Sijxj)2. (2.3)

Here, x = (x1, . . . , xN )T is a graph signal and S is the sign matrix of the graph weights
(i.e. Sij = sign(Wij)). For a connected graph the (non constant) signal x that minimizes
the quadratic form in (2.3) is given by the eigenvector corresponding to the second
smallest eigenvalue. This fact is used in spectral clustering to obtain graph partitions
[VL07]. Furthermore, from the perspective of GSP this suggests that smoothly varying
signals represent desirable cluster labelings. We will refer to (2.3) as Laplacian norm
albeit in general it is only a semi-norm.

In [DM20] the gradient operator for signed graphs is defined to be a mapping
∇G : RN → RN×N of the form

(∇Gx)ij = |Wij | 1
p (xi − Sijxj), (2.4)

with p ∈ {1, 2}. If we select p = 2 this allows the convenient representation of the bilinear
Laplacian form as the squared 2-norm of the graph gradient xT L̄x = ∥∇Gx∥2

2.

6



2.2. Learning Framework

2.1.2 Total Variation
Another metric that comes from image processing and has been extended to signals on
general graphs is the total variation. In the case of clustering on signed graphs the signed
total variation is defined by [DM20] as

∥x∥TV =
N∑

i=0

N∑
j=0

|Wij | max(0, xi − Sijxj). (2.5)

Similar to the Laplacian norm the total variation can be regarded as a metric for
smoothness. In contrast to the Laplacian norm it favors graph signals that are mostly
constant with sharp transitions. A very favorable representation of the signed total
variation was given by [DM20] via the signed graph gradient. For p = 1 this representation
is

∥x∥TV = ∥∇Gx∥+, (2.6)

where ∥X∥+ = ∑
ij max(0, Xij) is the right sided 1-norm or +-norm. In Chapter 3 we

will further review this representation and its application to semi-supervised learning.

2.2 Learning Framework
2.2.1 Supervised Learning
Given a training set of L input-label pairs {(xi, yi) : xi ∈ X , yi ∈ R} supervised learning
aims to find a function f ∗ : X → R that describes this input-label correspondences.
Furthermore the function f ∗ should also generalize well when applied to inputs that
are not contained in the training set. A common way to learn such a function is by
minimizing an empirical risk functional of the form

f ∗ = argmin
f

1
L

L∑
i=1

R(f (xi), yi), (2.7)

where R : R2 → R quantifies the loss incurred when f (xi) deviates from the correct
labeling yi. The choice of the loss function is part of the learning algorithm design and we
will review two popular versions later on in this thesis. To prevent the learning algorithm
from overfitting the function f ∗ to the training examples we need to impose constraints
on the complexity of the function. This is often enforced by introducing regularization
terms into the learning process. A general objective function for supervised learning
reads [SSB+02]

f ∗ = argmin
f

1
L

L∑
i=1

R(f (xi), yi) + λΩ(f (xi)), (2.8)

where Ω(·) is an arbitrary non-negative functional that encodes the intended complexity
constraints. The classification rule is given by sign(f (x)).

7



2. Background

There exist several different strategies to generalize supervised learning to the multi-class
setting [SSB+02]. The one-versus-rest approach for example learns M classifiers that
discriminate, as the name implies, each class from the remaining ones. Evaluation is
performed by selecting the classifier with the maximum output value. A beneficial
feature of the one-versus-rest approach is the possibility to form a confidence measure
by comparing the margin between the two largest outputs. The one-versus-one method
learns a classifier for each pair of classes, which amounts to a total of M(M − 1)/2
classifiers. Although the number of required classifiers grows quadratic in the number
of classes the individual problems are usually much smaller. Thus the overall learning
process may be faster than with the one-versus-rest method for certain problem settings.

Furthermore it is also possible to perform the risk minimization for multiple classes at
once, e.g., in [SSB+02] they derived a multi-class formulation for support vector machines.
In general we can extend the problem to simultaneously learn M classification functions
by introducing a multi-class risk functional R which considers the misclassification costs
of each labeled sample for all classes. Additionally it is required to adopt a sparse label
encoding to prevent the occurrence of asymmetric costs due to numerical differences
of the class labels. A possible multi-class risk functional for least squares could read
R(f (xi), yi) = ∑M

j=1(1 − δ(1 − yij))(fj(xi) − yij)2, where δ(x) is the discrete impulse
function that is 1 at 0 and 0 everywhere else. Furthermore, yi is a M -dimensional vector
that has an entry 1 at the index reflecting the class affiliation and all other entries are
− 1

M−1 . With the generic multi-class risk functional the supervised learning objective is
given by

f∗ = argmin
f

1
L

L∑
i=1

R(f(xi), yi) + λ
M∑

j=1
Ω(fj(xi)), (2.9)

where f = [f1, . . . , fM ]T is a vector of M classification functions. The classification rule
for the multi-class case is given by argmaxj fj(x).

2.2.2 Kernels
In machine learning kernels are a strong concept that provide various advantages for
the design of learning algorithms. In particular a kernel function k : X 2 → R allows the
utilization of the powerful linear algebra machinery, specifically inner products, for inputs
from an arbitrary feature space X . Another advantage is the possibility to implicitly
perform non-linear feature transforms on the input space and thus implement versatile yet
scalable algorithms. A popular choice of kernels are Gaussian radial basis functions (RBF
kernels). They provide a feature space mapping of infinite dimension with a smoothness
constraint on the learnable functions. The RBF kernel has the form

k(x, x′) = exp
(

−∥x − x′∥2

2κ2

)
(2.10)

where parameter κ > 0 controls the smoothness. Larger values of κ promote smoother
functions. An in depth theory of kernels and their application in machine learning can be

8



2.2. Learning Framework

found in [SSB+02]. The individual kernel function evaluations for all given samples can
be conveniently packed into the kernel matrix K with Kij = k(xi, xj). In the following
we will mostly use the matrix form and only resort to kernel function if we want to make
an explicit statement about the kernel or its properties.

When working with graphical models often the only information provided are pairwise
relations. Therefore it may not be straightforward to compute a similarity measure
between any two data elements. For example the RBF kernel requires the ability to
compute a distance between all elements of the feature space and thus can not be directly
applied on graphs. One possible way to solve this issue is to learn a Euclidean graph
embedding from the weight matrix. [CWWK20] give a comprehensive survey on graph
representation learning methods. Another option is the application of graph kernels
which are constructed from local operators only. In [KL02] Kondor and Lafferty introduce
diffusion kernels which utilize the Laplacian matrix to perform a discretized heat diffusion
process over the graph structure. The resulting kernel has the form

K = e−αL, (2.11)

where α ≥ 0 determines the spread of the diffusion kernel. Similar to the RBF kernel
entries in the heat diffusion kernel matrix represent a similarity measure between nodes.
In fact heat diffusion kernels are closely related to Gaussian kernels as shown in [KL02].
Albeit circumventing the need for additional representation learning heat diffusion kernels
come with some drawbacks. For example the matrix exponentiation is a computational
intensive operation that doesn’t scale very well to large graphs. Furthermore adding new
nodes to the graph requires recomputation of the whole kernel matrix.

We will now review the application of kernels in the supervised learning process. For
functions of a reproducing kernel Hilbert space Hk, which is determined through the
selected kernel k, we use the norm ∥.∥k as regularizer to obtain the following objective
[SSB+02]

f ∗ = argmin
f ∈Hk

1
L

L∑
i=1

R(f (xi), yi) + λ∥f ∥2
k. (2.12)

The representer theorem [SSB+02, Theorem 4.2] states that the minimizer f ∗ of this
problem is given by a linear combination of the respective kernel

f ∗(x) =
L∑

i=1
cik(xi, x) + b. (2.13)

This effectively reduces the problem of learning a function to learning a set of L coefficients
ci and a scalar bias term b.

2.2.3 Semi-supervised Learning
Semi-supervised learning grounds on the assumption that geometric properties of the
data convey some information about their labeling. For example inputs that are close in

9



2. Background

feature space might be more likely to belong to the same class rather than inputs that
are located far apart from each other. Such assumptions encode domain knowledge and
have to be carefully selected to fit the task and data of the specific problem. However, if
the assumption holds true, then we can utilize additional unlabeled samples to enhance
the learning algorithm.

The extension of the representer theorem in [ZG06] to include U unlabeled samples shows
that every objective function of the form

f ∗ = argmin
f ∈HK

1
L

L∑
i=1

R(f (xi), yi) + λ1∥f ∥2
k + λ2r(f , x1, . . . , xN ). (2.14)

This formulation extends the supervised framework with a regularization term r that
may depend on f as well as the labeled and unlabeled data. (2.14) is again minimized
by a linear combination of the kernel. In particular the minimizer is similar to that in
supervised learning except that it also takes into account all N = L + U data points

f ∗(x) =
N∑

i=1
cik(xi, x) + b. (2.15)

Although the regularization functional r can be of any form, it is usually beneficial to
restrict it to be convex for computational reasons. In Section 3.1 we introduce algorithms
that utilize this regularization to promote functions f ∗ that vary smoothly over similarity
graphs. In Chapter 4 we rely on this theoretic result to incorporate the total variation as
regularizer when formulating our algorithms.

The generalization of semi-supervised learning to the multi-class case can be achieved
in a similar as shown for supervised learning. In particular we again use the generic
multi-class risk functional and apply the regularization to all M classification functions.
The multi-class objective for semi-supervised learning can be stated as

f∗ = argmin
f

1
L

L∑
i=1

R(f(xi), yi) + λ
M∑

j=1
Ω(fj(xi)) + λ2

M∑
j=1

r(fj , x1, . . . , xN ). (2.16)

10



2.3. Alternating Direction Method of Multipliers

2.3 Alternating Direction Method of Multipliers
The alternating direction method of multipliers (ADMM) is an optimization algorithm
from the 1970s that has gained recent popularity due to its parallelizability and its
robust convergence properties [BPC+11]. The general idea behind ADMM is to split the
objective function in two primal parts whose augmented Lagrangians are alternatingly
minimized. The connection between the primal variables is established by updating the
dual variable which holds the constraints. Problems that are amenable to the application
of ADMM are of the form

min g(c) + h(d)
s.t. Ac + Bd = e,

(2.17)

where c ∈ RN and d ∈ RM are the primal variables, h and g are convex functions, and
the matrices A ∈ RP ×N , B ∈ RP ×M and the vector e ∈ RP encode an affine relation
between the primal variables. The iterative update steps of the augmented Lagrangians
of this formulation are given by

ct+1 := argmin
c

h(c) + ρ

2∥Ac + Bdt − e + ut∥2
2

dt+1 := argmin
d

g(d) + ρ

2∥Act+1 + Bd − e + ut∥2
2

ut+1 := ut + Act+1 + Bdt+1 − e,

(2.18)

with the dual variable u. With modest assumptions on g and h the ADDM algorithm
is guaranteed to converge for all ρ > 0, although achieving high accuracy results can
require a large amount of iterations. For many practical problems however, ADMM has
been found to produce reasonably accurate solutions within a few tens of iterations. As
a possible stopping criterion the following expression can be used

∥rt∥2 ≤ ϵprim ∧ ∥st∥2 ≤ ϵdual, (2.19)

with the primal and dual residuals r and s given by

rt = Act + Bdt − e,

st = ρAT B(dt − dt−1),
(2.20)

which can be related to the suboptimality of the current objective value. Heuristics for
the the stopping tolerances ϵprim and ϵdual are

ϵprim =
√

Pϵabs + ϵrel max (∥Act∥2, ∥Bdt∥2, ∥e∥2),
ϵdual =

√
Nϵabs + ϵrelρ∥AT ut∥2,

(2.21)

with ϵabs > 0 and ϵrel > 0.
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CHAPTER 3
State of the Art

Semi-supervised clustering on graphs, also called node classification, aims at finding a
node labeling which adheres to the underlying graph structure while taking into account
prior label information. In this chapter we will introduce state of the art algorithms for
semi-supervised clustering. We will focus on algorithms that operate on signed graphs.
However, we will also include seminal works for clustering on unsigned graphs.

For semi-supervised clustering we are given disjoint sets of labeled nodes for each class
Lm = {vi ∈ V : yi = m}. The union of all these sets is the label set L = UM

m=1 Lm with
|L| = L and the set of unlabeled nodes is U = V \ L with |U| = U . Usually it holds
that L ≪ U . The target is to estimate the labels for the U unsigned nodes. Since the
class labels are not ordinal it is generally beneficial to convert the integer labeling into
a one-hot encoding over the M classes. Thus a valid label matrix Y ∈ {0, 1}L×M has
exactly one entry of value 1 at the yi-th index of each row i. Most algorithms estimate a
real valued relaxation of the label matrix .X ∈ RN×M , which we will term class affiliation
matrix. The node labeling can be obtained from this matrix, e.g., by selecting the index
with the highest class affiliation estimate in each row of .X.

3.1 Manifold Regularization
Belkin et al. [BNS04] introduce manifold regularization in which they enhance classical
supervised learning algorithms such as regularized least squares (RLS) and support vector
machines (SVM) with information of unlabeled data. Their approach grounds on the
assumption that the data lives on a manifold and the true labeling should vary smoothly
across the underlying geometry of the data distribution. To construct an empirical
estimate of smoothness on manifolds they chose the discrete Laplace operator. Recall
from Section 2.1.1 that minimizing the quadratic form of the Laplacian induces the class
affiliation signal to vary smoothly over the weighted graph. Their objective function has

13



3. State of the Art

the form

min
f ∈Hk

1
L

L∑
i=1

R(f (xi), yi) + λ1∥f ∥2
k + λ2

N2 fT Lf , (3.1)

where f is a vector with f (xi), i ∈ {1, . . . , N}. The empirical risk functional R is either
chosen as the squared error or hinge loss for RLS or SVM, respectively. Since manifolds
have a local Euclidean structure, the kernel k can be chosen among classic kernels (e.g.
polynomial or Gaussian). This method is limited to unsigned graphs and binary clustering.
Nevertheless it can be generalized to multi-class settings with the standard one-vs-one or
one-vs-rest strategies for supervised classification algorithms.

In [GZW07] Goldberg et al. extended the manifold regularization framework to signed
graphs. For the case of binary clustering they simply propose to use the signed Laplacian
in the quadratic smoothness regularizer of (3.1). This straightforward adaptation for
incorporating dissimilarity however, does not convey to the multi-class setting. Therefore
a custom regularization term for dissimilarity edges is devised and combined with a
multi-class risk minimization functional. This custom regularization term inspired the
definition of the signed total variation and with that also the design of our objective
functions in Chapter 4. The multi-class objective function of [GZW07] is given by

min
f ∈Hk

1
L

L∑
i=1

R(f (xi), yi) + λ1

M∑
j=1

∥fj∥2
k + λ2

|D|
∑

(s,t)∈D
∥f (xs) + f (xt) − M−2

M−11∥+

s.t.
M∑

j=1
fj(xi) = 0, i = 1, . . . , N,

(3.2)

with D being the set of dissimilarity edges. Note that in this formulation f is a vector
of M separate classification functions. The class affiliation matrix can be obtained
via .Xij = fj(xi). The term M−2

M−11 is introduced to make the dissimilarity regularizer
comply with the sum to zero label encoding where labels yi are chosen such that the
entry corresponding to the affiliated class is 1 and all other entries are − 1

M−1 . We will
investigate this encoding in detail in the next chapter. Their regularizer however does not
take into account any similarity information. Furthermore both [BNS04] and [GZW07]
make use of convex regularization functionals in order to deploy standard quadratic
programming. Since the regularization term of (3.2) is not continuously differentiable it
has to be handled via constraints and slack variables. This causes the variables of the
quadratic optimization problem to scale with the number of negative edges in the graph.
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3.2. Total Variation Minimization

3.2 Total Variation Minimization
A straight forward objective for determining clusters in graph structured data is based on
separation by minimizing edge cuts [VL07]. In general however, this discrete clustering
approach leads to NP-hard problems and thus is intractable for most practically relevant
cases. This led researchers to focus on establishing tight convex relaxations for the
discrete clustering problems in order to utilize powerful linear algebra theory and (convex)
optimization solvers.
Bresson et al. [BLUVB13] derived a relaxation of the ratio cut problem that is based on
the total variation rather than the quadratic Laplacian form used in spectral clustering.
They argue that the total variation metric is more suited for tasks such as clustering as
it promotes the formation of larger constant signal areas with few but possibly sharp
transitions in between. In contrast to this desired indicator function like behavior the
Laplacian norm favors solutions that vary more gradually and thus possibly produces
indifferent affiliation signals at the boundary between clusters. Because minimizing the
total variation objective alone can lead to degenerate solutions (e.g., most nodes get
accumulated in one large cluster) they additionally precondition their algorithm to form
clusters of similar sizes. To include information about labeled data a hard constraint is
added which simply fixes the respective rows of the class affiliation matrix to equal the
indicator vectors of the corresponding classes. The resulting objective is a sum of ratios
of convex functions which they solve using a proximal splitting algorithm.
In [BDM18] and [BDHM19] a signed version of the total variation is proposed for binary
and multi-class clustering respectively. Recall from Section 2.1.2 the signed total variation
is a smoothness metric and can be related to min-cuts on signed graphs. Their basic
optimization objective has the form

min.X ∥ .X∥TV

s.t. .X ∈ Q.
(3.3)

With the constraint set Q enforcing the encoding and prior label information,

Q = { .X ∈ [−1, 1]N×M : Xij = 1, i ∈ Lj ,

Xij = −1, i ∈ L \ Lj ,∑M
j=1 Xij = −M + 2, i = 1, . . . , N}.

(3.4)

The signed total variation minimization can also be cast into the semi-supervised learning
framework from Section 2.2.3. If we consider the semi-supervised multi-class problem
with the signed total variation as regularizer we get

min
f ∈Hk

1
L

L∑
i=1

R(f (xi), yi) + λ1

M∑
j=1

∥fj∥2
k + λ2

M∑
j=1

∥fj∥TV

s.t.
M∑

j=1
fj(xi) = −M + 2, i = 1, . . . , N.

(3.5)
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Selecting the risk functional to be the characteristic function of the label vector R(f (xi), yi) =
Xyi

(f (xi)) with the identity kernel function, i.e, k(x, x′) = 1 if x = x′ and 0 else, yields
the same solutions as the original problem formulation of (3.4). The model complexity
constraints λ1

∑M
j=1 ∥fj∥2

k are not relevant in this problem setting since the characteristic
function requires any valid solutions to exactly match all labeled samples regardless,
hence λ1 can be set to 0.

As already mentioned earlier solely relying on the total variation can be detrimental
especially when only few labeled nodes are available. To alleviate this problem [BDHM19]
implement a regularization procedure which reinforces the weights of unlabeled nodes in
the similarity neighborhood of a labeled node. Furthermore they propose an automated
tuning scheme to determine a good set of regularization parameters. The resulting convex
optimization problem is solved using the ADMM algorithm (cf. Section 2.3) which allows
for a distributed implementation to handle large graph instances.

3.3 Diffuse Interface Methods
Another type of semi-supervised graph clustering algorithms is inspired by partial
differential equations from the field of material science. In particular the aim is to
minimize a discretized version of the Ginzburg-Landau functional which consists of a
smoothness and an encoding term that are connected via a diffuse interface scaling
parameter. More formally, in the case of two classes, Bertozzi et al. consider the objective

min
f

L∑
i=1

1
2(f (xi) − yi)2 + ϵ

2f T Lf + 1
4ϵ

N∑
i=1

(f (xi)2 − 1)2 (3.6)

and show that in the limit of the scaling parameter ϵ approaching zero this functional
converges to the total variation [BF12]. If we compare the Ginzburg-Landau functional
to the semi-supervised learning objective of (2.14) we can identify that they use the
squared loss as risk functional. Furthermore they do not introduce any model complexity
constraints but rather deploy two regularization terms that are coupled by the scaling
parameter ϵ. The first regularization term ∥f ∥Lap induces smoothness on the labeling
while the second term ∑N

i=1(f (xi)2 − 1)2 pulls the labels towards either −1 or 1. Their
extension to the multi-class case has the form

min
f

L∑
i=1

1
2(f (xi) − yi)2 + ϵ

2

M∑
j=1

∥fj∥Lap + 1
2ϵ

N∑
i=1

)( M∏
j=1

1
4∥f (xi) − ej∥2

1

)) , (3.7)

where M is the number of classes and ej is the j-th unit vector. The data fidelity and
smoothness terms are straightforward multi-class adaptions, only the second regularization
term has been modified to drive labels closer to the vertices of the Gibbs-simplex. Mercado
et al. [MBS19] extended this scheme to signed graphs by utilizing different combinations
of signed and unsigned Laplacians as smoothness metrics in the regularization term.
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CHAPTER 4
Semi-supervised learning with

Total Variation

In this chapter we present the derivation of our algorithms that utilize the total variation
as a regularizer to classic empirical risk minimization, i.e., we solve the problem

min
f ∈Hk

M∑
j=1

(
1
L

L∑
i=1

R(fj(xi), yi) + λ1∥fj∥2
k + λ2∥fj∥TV

)
. (4.1)

As we have seen in the previous chapter the approach of [BNS04] and its extension to the
signed multi-class case in [GZW07] attempt to find cluster affiliation functions that vary
smooth over the graph structure. In contrast to Laplacian regularizers the total variation
has the desired effect of forming indicator-function-like class affiliations as argued in
[BLUVB13]. The theoretic underpinning to solve the resulting optimization problem
is given by the extended representer theorem in [ZG06] which allows us to express the
minimizer as a linear combination of the kernel.

Because the total variation is not continuously differentiable we derive an appropriate
formulation based on variable separation in order to solve the optimization problem
with the ADMM algorithm introduced in Section 2.3. In particular we only require
the solutions of two separate minimization problems which form the subroutines of the
ADMM algorithm.

Semi-supervised multi-class clustering comes down to finding coefficients cm and a bias
term bm that form the m-th class affiliation estimate (cf. (2.15)). For convenience
we combine coefficients and bias into a single vector c̃m = [cT

m, bm]T and define the
corresponding extended kernel matrix as ~K = [K, 1]. Now the class affiliation estimate
for node xi and class m is given by fm(xi) = .Xim = ~Ki:c̃m.
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4.1 Total Variation with Kernels
Applying the representer theorem to the problem of (4.1) yields the objective

min
M∑

j=1

(
1
L

L∑
i=1

R(~Ki:c̃m, yi) + λ1∥~Ki:c̃m∥2
k + λ2∥~Ki:c̃m∥TV

)
. (4.2)

Recall from Section 2.1.2 that the signed total variation semi-norm can be expression via
the +-norm of the graph gradient. Since ADMM allows to separate variables that are
related via a linear operator this effectively reduces the total variation to the +-norm
of a proxy variable. Fortunately there exists a closed form solution for the augmented
Lagrangian of the +-norm. However, the TV-norm in (4.2) contains an additional kernel
map that has to be incorporated into the graph gradient operator to allow the effective
application of ADMM. In particular we require a linear operator for which the signed
graph gradient of the m-th class estimate has the form

(∇G .X :m)ij = |Wij |(~Ki:c̃m − Sij
~Kj:c̃m) = |Wij |(~Ki: − Sij

~Kj:)c̃m = (∇G ~K)ij c̃m. (4.3)

Therefore we define the signed graph gradient for the kernelized framework as

(∇G ~K)ij = |Wij |(~Ki: − Sij
~Kj:), (4.4)

which constitutes a mapping ∇G : RN×N+1 → RN2×N+1. This mapping allows us to
establish the connection between total variation and graph gradients for kernelized
methods

∥ .X :m∥TV = ∥~Kc̃m∥TV = ∥∇G ~Kc̃m∥+. (4.5)

4.2 Class encoding
We will adopt the class encoding of [GZW07] which is chosen according to the sum-to-zero
constraint. In particular the affiliation yi of node vi is reflected by the M -dimensional
vector label vector yi with all entries being − 1

M−1 except for a 1 at the m-th position.
This encoding however, can lead to a potentially harmful penalization of the objective
in the presence of dissimilarity edges. To showcase this problem we partition the edge
set into Esim and Edis which contain only similarity and dissimilarity edges respectively.
This allows us to decompose the total variation of the class affiliation matrix into

∥ .X∥TV =
∑

(i,j)∈Esim

|Wij |∥ .Xi: − .Xj:∥+ +
∑

(i,j)∈Edis

|Wij |∥ .Xi: + .Xj:∥+. (4.6)

If we now examine the two scenarios where .Xi: = .Xj: and .Xi: ̸= .Xj: for the similarity
case (for simplicity we neglect the edge weights in this analysis) we get

∥ .Xi: − .Xj:∥+ =
(

0 if .Xi: = .Xj:,
M

M−1 if .Xi: ̸= .Xj:.
(4.7)
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Minimizing this enforces similarity between the class affiliation of nodes vi and vj as
intended. However, for the dissimilarity case we have

∥ .Xi: + .Xj:∥+ =
(

2 if .Xi: = .Xj:,
2(M−2)

M−1 if .Xi: ̸= .Xj:.
(4.8)

For M > 2 this class encoding erroneously penalizes the case where the class affiliation
of nodes vi and vj do not equal. A solution to this issue proposed in [GZW07] is to
introduce a constant offset for the dissimilarity edges of the form

∥ .Xi: + .Xj: − M−2
M−11∥+ =

(
M

M−1 if .Xi: = .Xj:,

0 if .Xi: ̸= .Xj:.
(4.9)

The offset not only eliminates the issue with penalizing the desired case it also shifts
the intensity of penalization to match with the similarity case. We will show how to
incorporate this constant shift when deriving the ADMM update for the TV-norm at the
end of the next section.

4.3 Regularized Least Squares with Total Variation
Similarly to Goldberg et al. [GZW07] we start of with the regularized least squares
formulation and augment it with an additional regularization term. In our case we use
the total variation of the class estimates. This leads us to the following optimization
problem

min
f ∈Hk

1
L

L∑
i=1

∥f (xi) − yi)∥2
2 + λ1

M∑
j=1

∥fj∥2
k + λ2

M∑
j=1

∥fj∥TV

s.t.
M∑

j=1
fj(xi) = 0, i = 1, . . . , N.

(4.10)

Rewriting this in vectorized version and applying the representer theorem by expressing
the class affiliation estimate as linear combinations of the learnable coefficients and the
kernel matrix yields the convex optimization problem

min
M∑

m=1

(
1
L∥J ~Kc̃m − Y :m∥2

2 + λ1c̃T
mK̄c̃m + λ2∥~Kc̃m∥TV

)

s.t.
M∑

m=1

~Kc̃m = 0.

(4.11)

Without loss of generality we assume that the first L nodes are the labeled nodes. Thus
we introduce J as a short formulation for the first L rows of the N × N identity matrix.
Y is the L × M label matrix with all − 1

M−1 entries except for 1 at Yij if a label indicates
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4. Semi-supervised learning with Total Variation

that node i belongs to class j. Furthermore K̄ is the kernel matrix K with an additional
row and column of zeros appended to form a square (N + 1) × (N + 1) matrix.

To derive an ADMM admissible form we first incorporate the equality constraints into
the objective function and further apply identity (4.5) to the total variation. We have

min
M∑

m=1

(
1
L∥J ~Kc̃m − Y :m∥2

2 + λ1c̃T
mK̄c̃m + XQ( ~C) + λ2∥∇G ~Kc̃m∥+

)
, (4.12)

where XQ is the indicator function of the set Q = { ~C ∈ R(N+1)×M : ~K ~C1 = 0} which
contains all extended coefficients that meet the sum-to-zero constraint.

After introducing auxiliary variables Dm and the affine constraints that relate them to
the original coefficients the problem

min
M∑

m=1

(
1
L∥J(~Kc̃m − Y :m)∥2

2 + λ1c̃T
mK̄c̃m + XQ( ~C) + λ2∥Dm∥+

)
s.t. ∇G ~Kc̃m = Dm, m = 1 . . . M,

(4.13)

is in the desired form (cf. (2.17). This leads to the update steps

Ct+1 = argmin
C

1
L∥J(~KC − Y )∥2

F + λ1 tr(CT K̄C) + XQ(C) + ρ
2∥∇G ~KC − Dt + U t∥2

F,

Dt+1 = argmin
D

λ2∥D∥+ + ρ
2∥∇G ~KCt+1 − D + U t∥2

F,

(4.14)

for which we will now derive closed form solutions.

The C-update amounts to solving a quadratic function subject to affine constraints.
This problem can be minimized by solving the respective KKT system as described in
[BBV04]. To derive the solution we first introduce c as the vectorization of C in order
to cast the problem into the standard quadratic given by

min 1
2cT P c + qT c + r

s.t. Gc = h.
(4.15)

The matrices P ∈ R(N+1)M×(N+1)M , G ∈ RN×(N+1)M and vectors q ∈ R(N+1)M , h ∈ RN

are given by

P = IM ⊗
(

2
L

~KT
JT J ~K + 2λ1K̄

)
,

q =
(

IM ⊗
(

− 2
L

~KT
J

))
y,

G = 1T
M ⊗ ~K,

h = 0N .

(4.16)
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The KKT system of the augmented Lagrangian for the C-update has the form[
P + ρAT A GT

G 0

] [
c
ν

]
=

[
ρAT v − q

h

]
. (4.17)

Here ν represents the dual variable for the Lagrangian of the affine constraints. To
simplify the notation we introduced A = IM ⊗(∇G ~K) and v = d−u, with d and u being
the vectorizations of [D1, . . . , DM ] and the ADMM duals [U1, . . . , UM ] respectively.

Let S = P + ρAT A then the solution for c can be obtained via the Schur complement
(cf. [BBV04]) as

c = (S−1 − S−1GT (GS−1GT )−1GS−1)(ρAT v − q) − S−1GT (GS−1GT )−1h. (4.18)

Since S is block diagonal and all blocks are equal, solving for c requires inverting
two N × N matrices, which can be precomputed and cached. However the complete
factorization of the KKT system has no special form and can grow rather large. Therefore
we utilized a numeric linear algebra package that can store matrices in a spares format
to be able to perform the C-update even for large N .

The minimization of the augmented Lagrangian for the D-update results in the evaluation
of the proximal operator of the +-norm. As the norm consists of a separable sum of
maximum operations we can use the results for scalar proximal operators. According to
[CP11] (Table 2, ii) the solution is given by the element wise one-sided soft thresholding
operation with the argument V m = ∇G ~Kc̃m + Um for all m = 1 . . . M with

soft[
0,

λ2
ρ

](Vij) =

(..{..(
Vij if Vij < 0,

Vij − λ2
ρ if Vij > λ2

ρ ,

0 else.

(4.19)

To incorporate the constant shift for dissimilarity edges as described in (4.9) we can use
the translation rule for proximal operators [CP11] (Table 1, i). Thus we construct a
constant shift matrix ∆ that only targets the negative edges. The shift matrix is given
by

∆ij := |Wij |(1 − Sij)1
2

M−2
M−1 . (4.20)

The translation rule states to subtract ∆ prior to applying the one-sided soft thresholding
operation and adding it back to the result afterwards. With this we have derived all the
necessary update steps to apply the ADMM algorithm on regularized least squares with
total variation. A listing of the complete algorithm is given in Section 4.5.

4.4 Support Vector Machine with Total Variation
Again we start off with a similar formulation as presented in [GZW07] and augment it
with the total variation of the class estimates. For the SVM formulation we substitute the
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empirical risk functional of (4.1) with the hing-loss and arrive at the following problem

min
f ∈Hk

1
L

L∑
i=1

∥f (xi) − yi∥+ + λ1

M∑
j=1

∥fj∥2
k + λ2

M∑
j=1

∥fj∥TV

s.t.
M∑

j=1
fj(xi) = 0, i = 1, . . . , N.

(4.21)

Note that the multi-class SVM formulation used in [GZW07] only considers misclassifica-
tion costs, i.e., they exclude the +-norm terms where the yi entry equals 1. However, we
will also introduce a cost for deviations from the correct class labeling. This is not in
conformity with standard empirical risk minimization but it prevents us from having to
introduce a separate graph gradient for each of the M classes. With the additional cost
term and expansion of the total variation according to (4.5) the objective function reads

M∑
m=1

)( 1
L

∑
l∈L\Lm

(~K l:c̃m + 1
M−1)+ + 1

L

∑
l∈Lm

(~K l:c̃m − 1)+ + λ1c̃T
mK̄c̃m+

+λ2
∑

(i,j)∈E
|Wij |(~Ki:c̃m − Sij

~Kj:c̃m)+

)) .

(4.22)

We will now extend the original graph such that the hinge-loss terms of the labeled
nodes are generated by the graph gradient. This will effectively reduce the problem to a
similar structure as for RLS-TV and thus allows us to solve it using the variable update
procedure derived in the previous section.

4.4.1 Augmented Graph
First we introduce M anchor nodes that are connected to the labeled nodes. In particular
the m-th anchor node will be connected to all nodes within the label set that are affiliated
to class m (i.e., v ∈ Lm). The edges are weighted by 1

2λ2L to include the empirical risk
normalization and compensate for the regularization parameter of the TV term. So for
each labeled node vl the gradient of the extended graph will contain M additional terms
of the form 1

2λ2L(~K l: − ~Ka:) where va is the appropriate anchor node. Furthermore
due to the undirectedness of the graph the gradient also includes the M mirrored terms

1
2λ2L(~Ka: − ~K l:). Although the mirrored terms are not explicitly contained in the original
objective (4.22) they do not influence the solution since the sum-to-zero constraints
enforce a similar behavior anyways.

In order to fully resemble the SVM costs of (4.22) we need that ~Ka:c̃m = 1 if anchor node
va represents class m and ~Ka:c̃m = − 1

M−1 otherwise. This is achieved by introducing an
orthogonal extension of the kernel matrix

~K⊥ =
[
K 0 1
0 IM 0

]
. (4.23)
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Furthermore we need to extend the optimization coefficients C with additional anchor
coefficients in the following way

C∀ = M
M−1IM − 1

M−11, ~C⊥ =

[|] C

C∀

bT

]|] . (4.24)

Since the anchor coefficients C∀ have to be fixed during the optimization procedure we
introduce an additional constraint to keep them at their respective values. With the
augmented graph and the extended definitions for kernel and coefficients we are now in
the situation to rewrite the optimization problem as

min
M∑

m=1
λ1c̃T

mK̄c̃m + XQ( ~C) + XP( ~C) +
M∑

m=1
λ2∥~K⊥

c̃⊥
m∥TV, (4.25)

where X is the indicator function, Q = { ~C ∈ R(N+1)×M : ~K ~C1 = 0} is the set
of all coefficients that meet the sum-to-zero constraints and P = {[CT

1 , CT
2 , CT

3 ]T ∈
R(N+M+1)×M : C2 = C∀} denotes the set of coefficients whose anchors are fixed to the
values defined in (4.24). Separating the variables as in the previous section yields the
following ADMM-admissible formulation

min
M∑

m=1
λ1c̃T

mK̄c̃m + XQ( ~C) + XP( ~C∀) +
M∑

m=1
λ2∥Dm∥+

s.t. ∇G ~K⊥
c̃⊥

m = Dm, m = 1, . . . , M.

(4.26)

Besides the absence of the data fidelity term and the addition of constraint P this problem
has the same form as (4.13). This allows us to utilize the same update steps as presented
in (4.14) with only slight modifications.

Since set P contains only a single point it requires us to simply reset the anchor coefficients
to their specific values at each ADMM iteration. The absence of the data fidelity term
alters the upper-left matrix of the KKT system in (4.18). Therefore we have to set
P = IM ⊗ 2λ1K̄ and q = 0 for the C-update.

The D-update stays similar to that derived for RLS-TV in (4.19) except that it is
applied to the augmented graph G′ and the extended kernel matrix ~K⊥. With these
modifications we effectively reduced SVM-TV to the RLS-TV problem setting and can
adopt the ADMM update framework derived in Section 4.3.

4.5 Algorithm Summary
Algorithm 4.1 contains both the RLS-TV as well as the SVM-TV variant. For RLS-TV
the statements enclosed within parentheses have to be skipped. Recall from Section 2.3
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4. Semi-supervised learning with Total Variation

that we have to select the augmented Lagrangian parameter ρ and set appropriate
stopping tolerances. In the experiments we found that setting ρ = 1 and the tolerances
of the stopping rule (2.19) to ϵabs = 10−3 and ϵrel = 10−3 produces sufficiently accurate
solutions while converging within 50 iterations for most problem instances. We also
implemented the varying penalty strategy presented in [BPC+11] to speed up convergence.
This is not explicitly listed in Algorithm 4.1.

The bulk of Algorithm 4.1 is devoted to the initialization and construction of the KKT
system for the quadratic objective of the c̃m variables. In the loop the basic ADMM
scheme is applied (i.e., update primal variables C → update primal variables D →
update dual variables U). After the algorithm reaches the stopping criterion (2.19) or
the maximum number of iterations tmax is reached the final clustering can be obtained
by selecting the index of the largest entry of each row in the class affiliation matrix .X as
class label, i.e,

ŷi = argmax
m∈{1,...,M}

.Xim. (4.27)
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4.5. Algorithm Summary

Algorithm 4.1: RLS-TV (SVM-TV) algorithm
Data: G, K, Y , λ1, λ2
Result: .X

1 t ← 0 ρ ← 1
2 (SVM-TV: augment graph G as in Section 4.4.1)
3 (SVM-TV: extend kernel K as in (4.23))
4 P ← IM ⊗ ( 2

|L|K
T JK + 2λ1K)

5 q ← (IM ⊗ (− 2
|L|K

T J))y
6 G ← 1T

M ⊗ K
7 h ← 0
8 (SVM-TV: set P ← IM ⊗ 2λ1K and q ← 0)
9 KKT ← construct from P , q, G, h according to (4.17)

10 C0 = 0
11 (SVM-TV: set anchor coefficients of C as in (4.24))
12 D0 ← ∇GC0

13 U0 ← 0
14 while criterion (2.19) not satisfied do
15 Ct+1 ← KKT −1(ρ∇T

G (Dt − U t) − q)
16 (SVM-TV: enforce anchor coefficients in Ct+1 as in (4.24))
17 V ← ∇GCt+1 + U t

18 Dt+1 ← soft[0,λ2/ρ](V − ∆) + ∆
19 U t+1 ← U t + ∇GCt+1 − Dt+1

20 t ← t + 1
21 end
22 .X ← KCt
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CHAPTER 5
Experiments

In this chapter we perform numerical experiments to quantify the behavior of the
algorithms derived in Chapter 4 as well as to assess their accuracy in comparison to
existing state of the art algorithms. For a succinct presentation of the results we introduce
the following abbreviations. Our methods from Section 4.3 and Section 4.4 will be
termed RLS-TV and SVM-TV, respectively. The naming of the manifold regularization
algorithms from Belkin et. al [BNS04] is set to LapRLS and LapSVM. For the regularized
TV minimization algorithm of [BDHM19] we use TVMinReg and the unsigned TV
minimization algorithm of [BLUVB13] we term TVBresson.

For the evaluation we generate two-dimensional Euclidean data according to a two moon
and a multi spiral model. The formulation of the two moon model is taken from [BDM18]
and is based on randomly sampling a cluster label li ∈ {−1, 1} for each of the N nodes.
The coordinates of node vi are then computed as follows

xi =
(

li
2
0

)
+

(
cos ϕi

li sin ϕi

)
+ wi. (5.1)

Where ϕi ∼ U(0, π) is a random angle and wi ∼ N (0, σ2I) is two dimensional white
Gaussian noise. The multi spiral model for M clusters is given by [BDHM19] as

xi = 1
4

(
(M2ψi/π + 4) cos (ψi + li2π/M)
(M2ψi/π + 4) sin (ψi + li2π/M)

)
+ wi, (5.2)

where the cluster labels are randomly drawn from the set li ∈ {0, . . . , M − 1} and
ψi ∼ U(0, 4π/M) is again a random angle.

A graph is then constructed from these coordinates by connecting each node to its
k-nearest neighbors, hence the name KNN graph. In order to form an undirected graph
we take the maximum of the resulting adjacency matrix with its transpose. The weights of
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5. Experiments

the graph edges are determined by the distance between each pair of adjacent nodes. We
used the Gaussian weight function Wij = exp (−∥xi − xj∥2

2/(2κ2)) in our experiments.
Thus, for nodes that are close the weight approaches 1 in contrast to nodes that are far
apart where the weight is tending to 0. Graphs constructed in this fashion are similarity
graphs where the presence and strength of a connection represents closeness of the data
points in the feature space. Examples of synthetic similarity graphs derived from the two
moon and multi spiral model are depicted in Fig. 5.1.

(a) Two moon model (b) Multi spiral model

Figure 5.1: KNN graph examples

Throughout the experiments, if not explicitly stated otherwise, we fix the number of
nodes N = 500 and the number of clusters for the multi spiral model to M = 5. The
clusters of both models are of equal size. The number of neighbors for the KNN graphs
is fixed with k = 10. The parameter for the Gaussian weight function of the similarity
edges is set to κ = 0.6 and the noise variance is set to σ2 = 0.3. Sampling of labels is
performed such that at least one label per cluster is know and the remaining labels are
drawn uniformly among the clusters. Finally results are reported via mean error rates
that are calculated by dividing the number of all falsely estimated labels by the total
number of nodes and results are averaged over 100 Monte Carlo iterations.

5.1 Parameter Selection
To identify suitable parameters for the RLS-TV and SVM-TV algorithms we performed
a grid search over the regularization parameters λ1 and λ2. These experiments were
conducted on unsigned KNN graphs. The RBF kernel width was set to 0.6 in accordance
with the Gaussian edge weight parameter of the KNN graph. The search process was
performed on a logarithmic grid with 10p for p ∈ {−9, −8, . . . , 1}. We repeated the
parameter search for each model with |L| ∈ {M, 10M} labels and report the mean error
rate in Fig. 5.2.

28



5.1. Parameter Selection

Figure 5.2: Mean error rates for RLS-TV (left) and SVM-TV (right) averaged over 100
realizations of the two moon model with |L| ∈ {2, 20} and 100 realizations of the multi
spiral model with M = 5 classes and |L| ∈ {5, 50}, and the average over all of those cases
combined. For each combination of algorithm and model, the position with minimal error
rate is marked with the symbol ’X’.
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The last row of Fig. 5.2 shows the mean error rates over all model and label configurations
for RLS-TV and SVM-TV, respectively. For both algorithms the results contain a
uniform region of low error rate in the middle-right of the explored parameter space.
The size of the regions possibly indicate good generalization abilities for unseen problem
instances (e.g. different M and |L| settings). The parameters for RLS-TV and SVM-TV
are chosen such that the average mean error rate over all configurations is minimized,
which for both algorithms is given by λ1 = 10−5, λ2 = 10−3.

The parameters for the algorithms LapRLS and LapSVM were selected by the same grid
search procedure as described above. The only exception is that we had to set the RBF
kernel width to 0.1 to prevent numerical issues with the quadratic solver. The parameters
resulted in λ1 = 10−9, λ2 = 100 for LapRLS and λ1 = 10−8, λ2 = 10−2 for LapSVM.

For the TVMinReg algorithm the single parameter xmin is selected to be 0.9 as proposed
by the authors in [BDM18] and [BDHM19].

5.2 Comparison on Unsigned Graphs
To compare the different algorithms we report their mean error rate over increasing noise
variances in the data models. Fig. 5.3a and Fig. 5.3b show that the algorithms scale in a
comparable fashion for both cases. However, TVBresson outperforms its contendents by
a margin of about three percent on the two moon model and on the multi spiral model
it’s performance is in a close match with TVMinReg. In both experiments of Fig. 5.3 the
pure total variation minimization approaches show to fit the data best. This might be
due to their transductive methodology. In contrast to that the semi-supervised learning
methods attempt to learn a general function that mimics the dataset. This technique
is likely to fail when the variance in the data increases significantly and no additional
samples are provided to the algorithms.
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5.2. Comparison on Unsigned Graphs

(a) Results for two moon model

(b) Results for multi spiral model

Figure 5.3: Mean error rate for varying noise variances σ2 with two moon and multi
spiral model, |L| = 10.
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5.3 Signed Graphs

In this section we augment the KNN graphs with negatively weighted edges and examine
the ability of RLS-TV and SVM-TV to learn from dissimilarity information. In particular,
we use the same strategy as [GZW07], which is as follows: We introduce a set of
dissimilarity edges D which are sampled randomly by an oracle. The oracle chooses
vi and vj among different clusters and connects them with a negative edge of weight
Wij = −wdis. To prevent the propagation of label information by the oracle the selected
nodes mustn’t be contained in the label set (i.e. vi ̸∈ L ∧ vj ̸∈ L). Fig. 5.4 depicts
examples of KNN graphs that are augmented with |D| = 10 dissimilarity edges drawn in
red.

(a) Two moon model with dissimilarity (b) Multi spiral model with dissimilarity

Figure 5.4: KNN graph examples with ten dissimilarity edges

5.3.1 Effects of Dissimilarity Edges

As a first analysis we consider how the number of dissimilarity edges and their magnitude
affects the accuracy of RLS-TV and SVM-TV. Therefore we perform a logarithmic search
for wdis = 10p1 with p1 ∈ {−4, −3, . . . , 2} and |D| = 3p2 with p2 ∈ {0, . . . , 7}. For the
plots in Fig. 5.5 and Fig. 5.6 we set the number of known labels to |L| = 10 and increased
the noise variance of the models to σ2 = 0.5. The plots for the two moon and multi
spiral model are presented in Fig. 5.5 and Fig. 5.6 respectively. The surface plots show
how the mean error rates vary for different dissimilarity settings.
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5.3. Signed Graphs

Figure 5.5: Mean error rates for RLS-TV and SVM-TV over different combinations of
|D| and wdis on the two moon model.

The unsigned KNN graphs for two moon and multi spiral model contain around 3000
edges and the highest edge weights do not exceed 1. In light of this information it seems
reasonable that the minimum error rates are achieved for dissimilarity edge weights
with wdis = −1. According to the ridges in Fig. 5.5 and Fig. 5.6 dissimilarity edge
counts between 100 and 1000 yield good performance improvements. This suggests that
excessively increasing the weight or number of the negative edges might incur numerical
instabilities or diminish focus on similarity information. In the best cases the error
rate for RLS-TV and SVM-TV is about 2.5 times lower than in the absence of any
dissimilarity edges.

Figure 5.6: Mean error rates for RLS-TV and SVM-TV over different combinations of
|D| and wdis on the multi spiral model.
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(a) |D| = 0

(b) |D| = 100 with wdis = −1

Figure 5.7: Estimated class affiliation signals for two moon dataset to showcase dissim-
ilarity affecting RLS-TV. Green nodes are attributed to a wrong class and the purple
lines indicate ground truth signals.

While conducting the experiments we observed that introducing dissimilarity in the
models can impede the discrimination abilities of RLS-TV and SVM-TV. To quantify
this effect we plotted the complete class affiliation estimates for |D| = 0 and |D| = 100
with wdis = −1. Since the observations were similar for both algorithms we only include
the results for RLS-TV.

Fig. 5.7 shows how including dissimilarity information increases the accuracy of the
prediction (observe that Fig. 5.7a contains less green nodes than Fig. 5.7b). However,
it also has the effect of pulling the class estimate signal towards zero. In the case of
multiple classes, as shown in Fig. 5.8, this detrimental effect is even stronger.

Because the total variation constitutes a convex relaxation of the underlying discrete
problem a valid solution is obtained by setting all class estimate signals to zero. The
experiments suggest that the algorithms RLS-TV and SVM-TV are not able to fully
utilize additional dissimilarity information but rather introduce a trade off with similarity
information. Another possible explanation is that the classification functions are based
on RBF kernels which only register similarity information, therefore regularizing with
dissimilarity information could confuse the learning process through opposing incentives.
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(a) |D| = 0

(b) |D| = 100 with wdis = −1

Figure 5.8: Estimated class affiliation signals for multi spiral dataset to showcase dissim-
ilarity affecting RLS-TV. Green nodes are attributed to a wrong class and the purple
lines indicate ground truth signals.
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5.3.2 Parameter Validation
To validate our parameter selection of Section 5.1, which was based on unsigned graphs,
we conducted the same grid search procedure on signed graphs aswell. The aim of these
simulations is to evaluate if the previously selected parameters are still appropriate in
the presence of dissimilarity information. In Fig. 5.9 we can identify large regions of
low error rate in the middle left of all cases. This is very similar to the unsigned results.
Indeed, for RLS-TV we can identify the same optimal parameters as compared with
Fig. 5.2. Only the SVM-TV algorithm would benefit from reducing λ1 and λ2 by around
1% lower error rates. Nevertheless, it seems that our algorithms in combination with the
parameter selected in Section 5.1 are able to generalize to problems on signed graphs.

5.3.3 Comparison on Signed Graphs
To conclude our experiments on the effect of dissimilarity edges we perform the same
comparison as in Section 5.2 with signed KNN graphs. The plots in Fig. 5.10 show the
mean error rates for increasing noise variances on the two moon and multi spiral models
augmented with |D| = 100 dissimilarity edges of weight wdis = −1. Note that for the two
moon experiments we used the algorithms LapRLSd and LapSVMd from [GZW07] which
extend LapRLS and LapSVM with the signed Laplacian (cf. Chapter 3). For the multi
spiral model we did not use LapRLSd and LapSVMd because of their computational
complexity and only modest accuracy gains. The results for TVBresson are obtained on
the unsigned KNN graphs since this algorithm is not capable of exploiting dissimilarity
information.

For both data models in Fig. 5.10 we can observe that the additional information from
signed edges decreases the error rate of RLS-TV, SVM-TV and TVMinReg significantly
over all noise levels. The dissimilarity aware algorithms RLS-TV and TVMinReg even
outperform the best unsigned algorithm TVBresson in both experiments. The results
suggest that our algorithms are both comparable to state of the art semi-supervised
clustering methods on signed graphs.
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Figure 5.9: Mean error rates for RLS-TV (left) and SVM-TV (right) averaged over 100
realizations with |D| = 100 and wdis = −1 of the two moon model with |L| ∈ {2, 20} and
the multi spiral model with M = 5 classes and |L| ∈ {5, 50}, and the average over all of
those cases combined. For each combination of algorithm and model, the position with
minimal error rate is marked with the symbol ’X’.
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(a) Results for two moon model

(b) Results for multi spiral model

Figure 5.10: Mean error rate for varying noise variances σ2 with two moon and multi
spiral model, |L| = 10, |D| = 100 and wdis = −1.
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5.4 Wikipedia Elections
In this section we will apply our algorithms on a real-world data set. We consider the
Wikipedia adminship elections (wiki-Elec dataset) from [LHK10]. This dataset consists of
elections in which the Wikipedia community decides if a given user should be promoted
as administrator. To construct a signed graph from the elections we follow [MBS19]
where only users which have been up for voting are considered. Furthermore two users
are connected with an undirected edge if they appear in at least one common election.
The edge weight is set to 1 or −1 if the average of all votes between the two users
was supporting or opposing respectively. From the resulting signed network the largest
connected component is extracted and yields the final graph. In summary the graph has
2325 nodes (users) of which 52.6% have received the adminship status. The nodes are
connected by more than 100.000 edges of which around 77% are positively weighted. The
ground truth labels are established by the actual election results and are sampled in an
uniform random fashion by ensuring that at least one label per class is selected.

In order to assess the performance of our algorithms we clustered the wiki-Elec graph
for different amounts of known labels. The main parameters were kept as derived from
the parameter search in Section 5.1. However due to the lack of a Euclidean node
embedding we can not deploy the RBF kernel as in the previous experiments. Therefore
we used the heat diffusion kernel as presented in Section 2.2.2 with the parameter α = 1
arbitrarily selected. The resulting kernel matrix is densely populated and thus leads
to computational intensive processes. As we observed that convergence was slow while
increasing iterations did not substantially enhance accuracy, we reduced the stopping
tolerances of the ADMM algorithm to ϵabs = 10−2 and ϵrel = 10−2.

Figure 5.11: Weight matrix of Wikipedia Elections graph sorted by cluster labels, green
(red) cells represent positive (negative) weights.

Fig. 5.11 depicts visualizations of the graph’s weight matrix where the entries are sorted
according to example clusterings. The left most clustering is obtained by uniform
randomly sampling labels {0, 1} for each node. The middle clustering is obtained by
RLS-TV with |L| = 233. The right most clustering presents the actual election results.
It can be observed that the true clustering is quite unbalanced (i.e. it contains negative
edges within and positive edges across the clusters). Examining the result of RLS-TV it
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appears as though the algorithm forms an outlier cluster with generally very sparsely
connected nodes and an inlier cluster with strongly positive connected nodes.

We compare our results to the diffuse interface method of Mercado et al. [MBS19] which
we reviewed in Chapter 3. We selected their two best methods GL(LSN ) and GL(LAM ),
which utilize different combinations of signed and unsigned graph Laplacians. Table 5.1
reports the respective results of [MBS19, Table 2] which are averaged over 10 realizations
of randomly selected labels. The entries RLS-TV and SVM-TV in Table 5.1 report
the mean accuracies of our algorithms for varying percentages of labeled nodes over 100
Monte Carlo iterations. Note that the results in Table 5.1 are training set accuracies,
i.e., correct predicted unlabeled nodes divided by the total number of unlabeled nodes.
This metric emphasizes the improvement for increasing prior knowledge. Despite the
fact that the GL(LAM ) method outperforms our algorithms for all label configurations,
RLS-TV and SVM-TV yield accuracies of more than 84% for only 10% of labeled nodes.
Furthermore their improvement is scaling with additional labeled nodes in a comparable
fashion to GL(LSN ).

Algorithm \Labels 1% 5% 10% 15%
RLS-TV 0.811 0.813 0.841 0.849
SVM-TV 0.813 0.831 0.841 0.849
GL(LSN ) 0.806 0.842 0.851 0.852
GL(LAM ) 0.879 0.885 0.887 0.887

Table 5.1: Mean classification accuracies of the algorithms for different percentages of
labeled nodes on the wiki-Elec dataset.
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CHAPTER 6
Conclusion

In this thesis we reviewed the concepts of semi-supervised learning and its relation to
smoothness metrics on graphical models. Furthermore we presented state of the art
methods in which the total variation is used as a performant objective for clustering
on graphs. Hence, we proposed to utilize the total variation regularizer in empirical
risk minimization for clustering on signed graphs. To showcase the effectiveness of this
approach we developed the two algorithms RLS-TV and SVM-TV. We further employed a
variable separation scheme that allows us to formulate our convex optimization objectives
in an ADMM admissible form. The required numerical update procedures were derived
and the full algorithm implementation was presented.

In a collection of experiments on graphs derived from synthetic data models we showed
that combining the total variation with empirical risk minimization indeed leads to
superior results when compared with previous methods that rely on the quadratic
Laplacian form for regularization. We conducted experiments on unsigned and signed
KNN graphs to visualize parameter trade-offs and analyze detrimental effects of large
negative edge weights. The thorough tests showed that RLS-TV and SVM-TV exhibit
comparable accuracy with state of the art algorithms. We concluded the experiments
with clustering a signed graph obtained from real world dataset. Although our methods
retrieved qualitatively reasonable clusterings for the severely unbalanced social network
they could not outperform novel diffuse interface methods.

6.1 Future Work
During the work on this thesis we encountered several interesting questions for which we
could not find the capacity to thoroughly examine them. Therefore we present them in
the following as proposals for future research on the topic of semi-supervised clustering
on signed graphs.
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A major criterion of modern machine learning algorithms is scalability with the ever
growing amount of data. Although our implementations demonstrated to be capable of
handling large scale problems there remains space for improvement. In particular the
factorization of the KKT system constitutes a computationally intensive process. Since
ADMM is an iterative scheme relying on an approximate solution for the KKT system
(eg. through gradient descent methods) might decrease computational demands while
preserving sufficient over all accuracy of the results.

Our algorithms rely on the basic heuristic that each node should be assigned to the
cluster with the maximum entry in the estimated class affiliation matrix. A promising
method that borrows from spectral clustering is to view the rows of the class affiliation
matrix as Euclidean vectors and utilize a k-means algorithm to retrieve the final cluster
labeling. This approach might significantly boost clustering accuracy while incurring
only a marginal increase in computation.

Throughout the experiments we could not identify any significant performance differences
between RLS-TV and SVM-TV. It would be interesting to test if the support vector
implementation is beneficial for noisy sets of labels or for severely imbalanced clusters in
order to justify its slightly more complex structure.

Finally our formulated objectives do not incorporate constraints on the cluster sizes.
While introducing less bias to the learning process this can lead to degenerate solutions
especially in cases where only few labels are present. There exist several possible
regularization techniques in the literature to effectively overcome this issue. However,
merging such methods with our algorithms might not be a trivial task.
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