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Abstract

Quality by Design is a life-cycle paradigm used by regulators to encourage pharmaceutical
companies to consider product quality from the earliest development stages. The objective
is to identify and document relationships between critical process parameters and product
quality attributes via risk assessments and experimental results before validating for com-
mercial manufacturing. This methodology has steadily gained traction over the last decade
and applied statistical tools are increasingly leveraged to reach these goals quantitatively.

Nonetheless, significant gaps remain between the methodological intent and the current
state-of-the-art practices. For example, during the identification of critical process elements,
latent variables have largely been overlooked due to over-reliance on process knowledge and
the absence of relevant extraction and multivariate methods. Subsequent risk assessments
and data-driven models are siloed in the individual process steps (unit operations) and are
not linked to the patient-relevant outcome: drug substance specifications. Lastly, there is an
absence of data feedback loops between the above procedures and the manufacturing data
in the commercial life-cycle.

This thesis addresses the above gaps via improvements and applications of an integrated
process model; a framework centered on concatenating unit operation models and propa-
gating error via Monte Carlo simulations. To realize this potential, novel procedures were
first designed to uncover latent bioprocess variables via extraction and multivariate analysis.
Once in place, an innovative Monte Carlo-based application was developed that establishes
intermediate acceptance criteria for quality attributes via parameter sensitivity analysis. A
further simulation procedure was created which, when combined with linearization tech-
niques, enables the determination of parameter proven acceptable ranges and links these
quantitatively to risk assessment severity rankings. Lastly, the integrated process model
was substantially improved and inserted architecturally into manufacturing data feedback
loops, enabling the model to react in real time to process conditions. The totality of these
innovations depicts a major industry objective: a bioprocess digital twin.

Leveraging the developments in this thesis, the proposed integrated process model now
quantitatively links process parameters and quality attributes to patient-relevant outcomes.
Moreover, it does so with a technology that can iteratively adapt to new manufacturing data,
ensuring that it accompanies the process throughout its life-cycle, and thereby establishes an
engine for a digital twin. Thus, with holistic process quality as a central goal, the industry
will be able to better fulfill both the intention and the potential of the Quality by Design
paradigm.
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Kurzfassung

"Quality by Design" ist das Paradigma, das von pharmazeutischen Aufsichtsbehörden verwen-
det wird, um Wissenschaftler zu verpflichten, die Produktqualität in den frühesten Design-
und Entwicklungsphasen zu berücksichtigen. Diese Konzepte, die in mehreren kritischen
Richtlinien zum Ausdruck kommen, wurden in den letzten zehn Jahren kontinuierlich in
das Denken der Industrie integriert. Angewandtes statistisches Design und Analyse sind eine
Hauptkomponente dieser Anforderungen, die verwendet werden, um Beziehungen zwischen
Prozessparametern und den Produkteigenschaften zu quantifizieren.

Trotz dieser Verbesserungen sind die Lücken zwischen der Absicht der Quality by Design-
Methodik und dem aktuellen Stand der Technik deutlich geworden. Die grundlegende
Definition der kritischen Prozesselemente basiert immer noch weitgehend auf Prozesswissen,
wobei latente Elemente in Ermangelung fortschrittlicher multivariater Verfahren übersehen
werden. Qualitative Risikobewertungen und statistische Prozessschrittsmodelle sind nicht di-
rekt mit dem Endergebnis verknüpft, nämlich den Spezifikationen der Arzneimittelsubstanz.
Diese sind stellvertretend für die Auswirkungen auf den Patienten.

Diese Arbeit beabsichtigt daher, ein fortschrittliches integriertes Prozessmodell zu entwick-
eln, das als digitale Bioprozess-Zwillingsmaschine dienen kann, die die Erfüllung von
Qualitätszielen durch Design ermöglicht. Dieses Ziel wurde erreicht und die innovativen
Applikationen decken die latente Prozessvariablen auf, legen Zwischenakzeptanzkriterien
fest, definieren Kontrollstrategien und verknüpfen sie sogar quantitativ mit Risikobewer-
tungsrankings. Schließlich wurde das integrierte Prozessmodell selbst in Rückkopplungss-
chleifen der Herstelldaten integriert, wodurch das Modell in Echtzeit auf Prozessbedingungen
reagieren konnte. Dieses Echtzeitmodell führt zu einem plausiblen digitalen Zwilling des
Bioprozesses.

Die Implementierung eines digitalen Zwillings stellt einen neuen Meilenstein in der Kom-
merzialisierung von Bioprozessen dar. Mit der Qualität und der Wirkung auf den Patienten
als zentrales Ziel und mit dem ganzheitlichen Prozess im Fokus kann die Industrie möglicher-
weise die Absicht und das Potenzial des Quality-by-Design-Paradigmas erfüllen.
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Part I

Introduction





Introduction & Motivation 1
„Progress in modifying our concept of control has been

and will be comparatively slow. In the first place, it
requires the application of certain modern physical
concepts; and in the second place it requires the
application of statistical methods which up to the
present time have been for the most part, left
undisturbed in the journal in which they appeared

— Walter Shewhart„All chance systems of causes are not alike in the sense
that they enable us to predict the future in terms of
the past.

— Walter Shewart
-Postulate 1-

1.1 Background

When Joseph Juran formulated the concept of Quality by Design (QbD) for industry in
the early 1990s, the novelty of his framework was its prodding of product developers to
consider quality even as early as the design phase [17, 51]. Juran’s principle criticism of
the prevailing paradigm was that quality was considered primarily an ’a posteriori’ concern.
That is, the quality of the product could be inferred by successful quality testing at the
finished product stage. Failures during quality testing lead to excess product discards, but
otherwise do not call the process or product into question. This methodology is sometimes
referred to as "testing into quality." In Juran’s vision, quality should be a concern at least
as important as product effectiveness. And in pursuit of this, development should employ
resources to consider quality as early on as possible [19].

Naturally when the product has an impact on the health and well-being of its consumer,
quality takes on a more urgent role than even Juran may have originally expressed [53].
Nowhere is this more evident than in the pharmaceutical industry, whose medical products
ipso facto impact patient health. It is all the more so for biopharmaceutical products, most
of which are administered parenterally and thus have a maximally direct effect on the
patient’s health. It is little wonder then that the US Food and Drug Administration (FDA),
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Fig. 1.1.: Simplified swim lane diagrams of (bottom) the FDA Validations 2011 Process
Validation: General Principles and Practices document [36] and the (top) QbD
methodology per ICQ Q8 [1]. Key milestones, such as the control strategy,
discussed in this dissertation are shown in bold green boxes. Despite minor
differences, the two are nearly identical approaches. Broadly summarized: first
define the critical attributes of a process, then define the parameters that affect
them and finally, build a control strategy for these parameters

through the work of Azaj Hussain and others, as well as the European Medecins Agency
(EMA), took up this concept and heavily promoted the QbD framework [43]. It has been an
incremental and iterative ongoing process, boosted first by the 2002 Pharmaceutical Current
Good Manufacturing Practice (cGMP) for the 21st Century Initiative [39] and in much more
detail by the publishing of the International Conference on Harmonization (ICH) documents.
The ICH guidelines outline a regulatory application system based expansively on the QbD
concepts [53].

In recent years, QbD has become an established framework for biopharmaceutical devel-
opment, with numerous articles highlighting systematic advances [40, 26, 46]. Regulatory
authorities have translated the principles of QbD into industry language: concepts such
as quality product profiles, risk assessment, risk management, and control strategies have
become common parlance. The underlying philosophy of these translations appears in nu-
merous research articles (in addition to Juran’s writings), but was primarily codified in the
2011 FDA Validation Guidelines [36], supported by the ICH guidelines. The latter explicitly
states that quality cannot be tested into products; quality should be built by design" [1].

If embedding the concepts in the industry language is critical for buy-in, establishing clear
deliverables is critical for compliance [29, 9]. In particular, processes steps may often be
depicted by quantitative mathematical models, and thus the QbD milestones should also be
defined quantitatively and achieved through data from experiments or manufacturing. This
serves the purpose of augmenting the existing paradigm of excessive reliance on human
knowledge or expertise. While expertise is, of course, paramount to development work, such
knowledge is easily lost or forgotten, not easily replaced, and occasionally prone to hubris
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and error [38, 34, 50, 48]. Data is therefore the foundation of knowledge management and,
by extension, the quality structure.

And in defining data-driven definitions of these concepts, the regulatory authorities ran
quickly into several issues plaguing the biopharmaceutical sector. Foremost is the need for a
stringent and structured approach to data driven experimental design and analysis in order
to adequately prove quality in the development stages. Statistically underpinned design
and analysis predate QbD by half a century. However, these tools were seldom applied
in pharmaceutical development before the 1970s [43]. Even then, biopharmaceutical
manufacturers have been slow to implement these principles, even as late as the new
century [5]. This is in large part because biopharmaceuticals are extremely expensive to
develop and thus the experimental resources are always very limited [31]. Nonetheless,
even this hurdle has been incrementally overcome in the last decade due to increasingly
clever designs, more accessible statistical tools, and greater buy-in from the regulators and
management [4, 22].

Additional challenges arise from the regulatory introduction of the statistical process control
concept found throughout the guidelines; paraphrased as "The process is the product [18,
51]." In other words, if the process is not under control across all process steps (or unit
operations), no amount of quality testing performed at the final product step is sufficient to
prove the overall quality of the product. Both the bioprocess and the resulting bioproducts
are highly complex, requiring numerous interacting steps, and are often relatively poorly
understood [10]. Therefore, at each critical step of the process, a procedure must be
followed which assesses risk and then later proves control of the steps via monitoring the
quality attributes [36]. This heightened control of the individual unit operation has been
well discussed and translated into industry logic through the QbD methodology.

In summary, much progress has been made in the biopharmaceutical industry over the
last 30 years. QbD concepts of pre-defined quality goals have been accepted. Statistical
modeling has become a standard part of characterization. Methods of statistical process
control methods have been investigated. With all these tools as a baseline, and the challenges
still being faced, it becomes vital to revisit the original goals of QbD per ICH, FDA, and
EMA guidelines and reassess how these may be derived as data-driven deliverables. Upon
closer inspection, it becomes clear that our measures are not holistically answering the
questions Juran sought to answer at the beginning of this journey. In the next chapter, we will
describe these issues through three prisms of general methodological gaps: control strategy
deficiencies, insufficient process knowledge management, and the absence of real-time
solutions.

1.1 Background 5



1.2 Problem Statement

1.2.1 Methodological Gaps

Despite the encouraging trends in the industry described above, persistent gaps appear
between the intended deliverables and the actual output of state-of-the-art procedures,
vis-á-vis the intent of the Quality by Design framework.

Firstly, the definition of controllable parameters is still under-explored. The established
risk management approach requires the definition of critical process parameters (CPPs);
those controllable factors which have an impact on critical quality attributes (CQAs) [1].
While many of these factors are straightforward, such as pH, temperature, or pressure,
numerous other descriptors of the process remain latent within the increasingly vast sources
of input data. Specifically, important process parameters may be a combination of multiple
factors, or extractable only from time series data. Currently, such data sources are often
prohibitively complicated, or require too many resources, to routinely extract and model
these variables [41, 31, 32, 33]. This leads to missing key insights into the behavior or the
process.

Secondly, bioprocesses are generally divided into numerous unit operations, unconnected
in development to each other and the greater process chain. Indeed, the foundation of all
quantitative applications of QbD methodology is the unit operation model. That is, current
best practice models are generally mathematical models of these individual process steps
in all three process segments: upstream processing (cell culture and harvest), downstream
processing (purification), and formulation [12]. These models are generally data-driven and
statistically underpinned, but of course, may also be mechanistic or hybrid for a given unit
operation [47]. Critically, however, there are very few connections from these unit operations
to the final drug product. Methods which attempt to make this connection include, amongst
others, flowsheet models, most common in traditional pharmaceutical processes, which
connect outputs of one unit operation to inputs of another, but without concentrating on
maintaining CQA quality across all unit operations [27]. Bayesian approaches have also
been proposed, though not yet widely implemented, which would allow combining models
as informed prior distributions in order to present a posterior distribution, from which the
subsequent unit operation’s prior distribution could be sampled. However, these proposals
do not describe a way to handle extrapolations [30].

An integrated process model (IPM) framework has been described in 2017, which proposes
concatenating regression models to predict quality holistically across the process chain. This
is achieved by describing the relationship between CQA pool values (outputs) at a given
unit operation and the subsequent unit operations’s CQA load values (input) as a means of
linking unit operations. The IPM has an elegant and simple inferential backbone, allowing
easy interpretation for regulatory submission. Nonetheless, it also has similar limitations
to those described above [52]. While being the preferred framework for holistic process
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Fig. 1.2.: An example of a univariate control strategy (PAR) plot. The model of the two
factors (pH and conductivity) is shown against a response, including a tolerance
interval (dotted line) and local intermediate acceptance criteria (red). Wherever
the model plus tolerance interval intersects this threshold marks the end of the
proven acceptable ranges. This definition is problematic in that it does not connect
to downstream UOs and chooses acceptance criteria only relevant to the current
UO and not the drug substance specifications

predictions, the IPM, as originally proposed, has a complex and algebraically sub-optimal
data model and has no described link to a real-time environment.

The following sections explore the specific QbD objectives impacted by the above described
gaps in technology and methodology. Control strategies procedures are lacking linkage
to final drug substance, to manufacturing scale, and to statistically important data(1.2.2).
Process knowledge and risk assessments are missing not only this link to final drug substance,
but also lack quantitative feedback loops to each other(1.2.3). Finally, lack of real time
adaptation of the above two topics leads to risk of quality loss and opportunity(1.2.4).

1.2.2 Control Strategies

The process control strategy’s primary goal is to "describe and justify how in-process con-
trols..., intermediates... contribute to the final product quality [1]." That is, monitoring of
the intermediate steps of the process should prove consistent quality at the patient-impacting
drug substance step. ICHQ11 further reinforces this issue by clearly saying that a control
strategy must ensure that the drug substance CQAs are "within the appropriate range limit
or distribution," in the described unit operation. The implication is that, while we can most
easily control the last unit operation before drug substance, we should be able to describe
the relationship of these variables to the final CQAs at any upstream unit operation [2].

1.2 Problem Statement 7



As described above, in practice, the control strategies are set for each of the unit operations
individually. This answers questions about the statistical control of that given unit operation,
but it does not answer the fundamental question posed by the guideline: does the process
impact the CQAs (i.e. patient impact), which are assessed at drug substance? Current
control strategies may able to describe the local impact, but are disconnected from the Drug
Substance specifications.

The primary reason for this disconnect is the statistical complexity and resources required
to model the impact of CPPs on CQAs across multiple unit operations, each with its own
unique set of potential model terms. In a given model, the number of terms (and thus
degrees of freedom) needed for the full model equation expands linearly with the number of
main effects and more exponentially with increasing higher order effects1. Adding multiple
unit operations will cause the interaction effects to explode. Linkage studies have therefore
often been seen as a proxy for true inter-unit operation multivariate statistics, wherein CPPs
are adjusted in a given unit operation and the responses are measured only in later unit
operations. However, these ignore the interactions entirely and would thus also quickly fall
prey to the lack of available resources to effectively gain sufficient degrees of freedom to
model inter-unit operation interactions [23].

Secondly, these control strategies do not address Scale of the process in the holistic goals
of the FDA process validation guidelines. The FDA seeks to have validation be linear from
development through to commercial manufacturing. In practice, there is a significant
disconnect between the scale of the data sources in the different steps. For example, during
process characterization (Stage I), most of the experimental data is generated at lab-scale.
It is with this small mock-up of the industrial process that design spaces are explored and
control strategies set [12]. This data typically does not include any large, commercial scale
data at all, even if there likely exists at least minimal data from this scale. This leaves out
critical information and may ignore scale offsets.

Conversely, in the commercial continued process verification stage (Stage III), the control
strategy is executed solely at manufacturing scale, and importantly, is only updated with
further manufacturing scale data. This data, being mostly at set point, is not as informative
as the original characterization data. But, in our experience, this original design space
exploration data is never included in the control strategy updates. Indeed to our knowledge,
holistic use of large and small-scale data at all points in the validation life-cycle is not
common practice and is therefore missing out on key insights, in spite of some efforts to pull
these sources together [34].

Reasons for this range from operational to compliance related. Much has to do with
the simple availability of development and manufacturing data in a combined central
repository [11]. But above all the mixing of GMP data from manufacturing with potentially
non-GMP data at small-scale, is often seen as an excessive compliance risk. Thus it is
perceived that non-GMP and manufacturing data not mix [6]

1more specifically, in the classic ’response surface model’ wherein interactions and quadratic effects of
the main effects are considered, the increase in terms is 2n + n(n−1)

2 when considering maximally
2-factor interactions and 2n + n3−n

6 if considering 3-factor interactions.
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1.2.3 Process Knowledge and Risk Assessment

The lack of a translation of quantitative relationships into codified process knowledge is
another major gap in realizing the full QbD methodological. Quantified process knowledge
can be defined here as the model-described relationship of the interactions by and between
process parameters on patient quality. That is, these relationships are fitted and then
converted to knowledge that can be stored and further applied [14, 49]. By this reasoning,
such a repository of process knowledge could be as simple as the collection of regression
analyses between independent variables (CPPs and their interactions) and independent
variables (CQAs) per unit operation.

However, in practice, the primary repository for process knowledge is populated by process
risk assessments [20, 3]. Risk assessments are generally performed as a variation of a Failure
Mode and Effect Analysis (FMEA) or equivalent semi-quantitative evaluation of quality risk,
generally measured by a discrete ranking scale. In brief, risk assessments evaluate and assign
a rank to the impact of a process parameter’s deviation from set point on the measured
CQAs. Process parameters that have risks rated higher than a certain predefined threshold
are assigned the designation CPP and require a control strategy. This rating is evaluated by
expertise (and literature if possible) on the categories of severity, frequency, and detectability
of the deviation [16].

It is important to note that in current standard practice, data does not quantitatively affect
the rankings, but rather influences the expert discussion around the ranking [25]. This lack
of a direct or quantitative relationship between data and risk rankings is a source of current
research in the industry. Several articles have been successful in putting forth procedures
to establish this relationship, but none of these address the linkage between the current
unit operation and subsequent unit operations. Instead, risk rankings are dependent on
assessing the quantitative impact against the intermediate acceptance criteria in the current
unit operation. This is in turn reliant on the justification of the intermediate acceptance
criteria as proxy for drug substance [42, 25, 24, 13]. Therefore, even cutting-edge methods
of linking data to risk assessments are insufficiently connecting these to patient impact.

Inadequate process knowledge, even if quantitative, can have a direct effect on process
control. If the risk assessment is the principal form of documenting process knowledge, the
control strategy may be seen as the application of this process knowledge towards upholding
quality. And if the control strategy is too wide (e.g. insufficient data to tighten ranges), it
could be subject to regulatory push-back as being insufficiently stringent in keeping statistical
control of the process. Worse, if the process knowledge leads to too-tight a control strategy
(e.g. few data points are randomly too close together), the Out-of-Specification (OOS) and
discard rates will increase. This represents both a lack and a loss of process knowledge
leveraged in the commercial manufacturing process.

1.2 Problem Statement 9



1.2.4 Real Time Applications

The QbD methodology is meant to describe living documents, which can therefore be con-
sidered life-cycle companions. Hence these process knowledge repositories must be updated
with new data [15]. This is most clearly seen in the establishment of the Continued Process
Verification Plan (CPV) in Stage III (commercial manufacturing) of the FDA guidelines. Stage
III governs the confirmation that the process consistently remains in a validated state of
quality. CPV is performed through a series of iterative formal quality evaluations (i.e. yearly
or other regular intervals) as well as more frequent and flexible statistical trending and
monitoring plans. Ideally, this should be done in real-time as the data is produced. However,
in practice, this is virtually never performed as such, since many of the data collecting
systems require hours, days, or even weeks to generate the pertinent results [8].

This lack of timely updating of the process information can be categorized in the following
ways. First, deviations to the process, in particular those which may have a quality impact,
must be investigated in a timely manner as required by the regulators [36]. Exactly how
’timely’ is left to the manufacturers to defend, but quality investigations must be thorough
and therefore lag behind the actual decision-making vis-á-vis whether to proceed or abort the
process [45]. This has the obvious effect that the comprehensive results of any investigation
risk not being used to mitigate the current batch, either because the process was provisionally
accepted and the process was continued, or because the process was subsequently aborted.
In either case, both the quality and business case are clearly at an advantage if the results of
deviation investigations can be immediately applied to the QbD methods. Such a rapid risk
mitigation tool would lead to both quality and business improvements.

Secondly, on the opposite end of investigative outcomes, CPV is also recommended to look
for data indicative of optimizations [36]. However, such process optimization often occurs
long after discovery. Seeming to the understand this probability, the FDA makes a subtle,
but important, implication within the guidelines. CPV-discovered improvements should
be those which can be implemented without a major change to the process, otherwise,
they would require a post-approval change notification (a lengthy and expensive regulatory
process). This implication is further supported by an even subtler one. CPV plans monitor
processes running at set point, given variation in the Normal Operation Range (NOR, a
generally submitted parameter value [37]). That is, optimizations within this design space
should already be permissible to change with minimal notification to the authorities (of
course, provided characterization has proven this range acceptable [37]). In summary, CPV
should seek optimizations and improvements that may be rapidly implemented with minimal
regulatory oversight.

Nonetheless, this is rarely done in practice, as the CPV plan is typically only reviewed at
intervals conducive to analytics and statistical analysis. That is, results are only interpreted
after sufficient results have been obtained to provide adequate power for an augmented
analysis [21]. While periodic updating of the QbD deliverables is in any case essential for
regulatory reporting, this only occurs long after the batch in question could be improved.
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Optimizations of individual batches, within the submitted design space and linked to drug
substance quality, should ideally be available for immediate implementation.

More generally, process knowledge (for use in both risk mitigation and process optimization)
is not reliably placed in a central repository at rapid intervals. ICHQ8 encourages the
inclusion of all data-driven process knowledge to be included in the iterations of the CPV
protocol. However, the frequency of these changes is not sufficiently fast – certainly not in
real time – and additionally the data behind these proposed changes are not centralized
in a format that can be easily assessed. The underlying reason stems from misaligned
data structures and nomenclature between development and manufacturing, hybrid paper-
electronic solutions which increase effort, and a general suspicion of combining data from
sources with different levels of data quality [44] as described in 1.2.3. All this leads to a
lack of timely updating of process knowledge and equally infrequent optimization and risk
mitigation.

In summary, much progress has been made in establishing QbD as the governing principle
for bioprocess knowledge and life cycle management. Nonetheless, under-explored process
parameters, silo unit operation models, and challenges in creating holistic process models
inhibit the realization of the original Quality-by-Design goals. This is most clearly mani-
fested in the QbD concepts around control strategies, process knowledge, and real-time
feedback loops. There is significant room for innovations that would better attain QbD goals.
Improvement in these categories would see a system fully realized to attain the principles
laid out in Juran’s (and the regulators’) vision.

1.3 Why Now

Enabling a critical review of the current QbD practices first required substantial implementa-
tion of basic concepts. And indeed, many advances have been made in recent years with
regard to model-based approaches to development deliverables. Much of the improve-
ments described in section 1.1 have been supported by the increasing presence of applied
statisticians and data scientists in the marketplace and even more so by the availability of
standard software tools [41]. However, as described above, advancing the QbD aims requires
statistical and data management methods currently not well established in the industry.
For example, most of the process knowledge is being held in silos per unit operation. And
the current inability of standard software, to manage complex model chains has ultimately
created a natural ceiling for the realization of concatenated unit operation models.

In recent years, however, this ceiling looks more likely to be breached. With the increasing
openness to statistically powerful programming languages such as Python and R, customiz-
able computational applied statistics have become more accessible to process engineers and
scientists. These tools can significantly reduce the cost of development for latent variable
detection algorithms and advanced regression analyses. Thus the barrier of entry for the
exploration of unit operation model linkages across full processes has been lowered [41].

1.3 Why Now 11



Moreover, the data itself has also only in recent years become available for such analysis.
Data lakes, warehouses, and historians have become an increasing part of the IT architecture
of biopharma companies. For the first time, these systems offer both access to comprehensive
datasets as well as the ability to contextualize them in meaningful process order; all of which
was nearly unobtainable a decade ago [44].

Finally, increasing computational power has rendered even standard laptop machines able
to fit more complex models or to search more complex design spaces. Such computational
power is required as more process parameters are being investigated and the degrees of
freedom are increasing accordingly. Furthermore, once models are in place, extensive
simulation procedures are now available, allowing the integrated propagation of error
through random variation (and, implicitly, the acceptance of statistical uncertainty). Without
the constraint of reserving super-computer time to perform analyses and simulations, the
barrier of entry for design space exploration has been reduced[44].

With flexible programming frameworks available, computational power increased, and
the acceptance of multivariate statistics heightened, the most daunting hurdles towards
innovation become surmountable. It is a clear moment for a step forward that can answer
the questions that most truly correspond to Juran’s vision of quality.

1.4 Goal of this Thesis

The goal of this thesis is to demonstrate that leveraging combined architectural and statistical
innovations of an advanced IPM technology will lead not only to more technically rigorous
and precise simulations, but will also support the establishment of QbD deliverables that are
based on holistic process data, represent patient quality throughout the process, and run in
real-time as an asset to a digital twin.

This demonstration seeks to include the following innovations:

• a novel latent feature extraction for more relevant CPP modeling (3.1).

• an improved, statistically more rigorous data model for the IPM (3.4).

• innovative IPM applications (i.e. Monte Carlo-based parameter sensitivity analyses)
to directly produce QbD deliverables (3.2 and 3.3).

• a framework to deploy the IPM as a digital asset described, which would depict the
first holistic bioprocess digital twin (3.4).

12 Chapter 1 Introduction & Motivation



Fig. 1.3.: Levels of objectives within this dissertation:(A)Interpret QbD methodology maxi-
mally to patient interest, (B)establish innovations at key data-driven points in the
QbD methodology (C) per unit operation, (D) based on results at drug substance,
which are key to patient safety, and (E) produce a deployable digital twin to
maintain all the above. The key innovations correspond to manuscripts 1-4,
respectively in this dissertation)
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Results, Findings &
Achievements

2

„"What matters, however, are not so much the
individual bits, but the successive patterns into which
you arrange them, then break them up and rearrange
them.”

— Arthur Koestler

„Constant systems of chance do exist in nature

— Walter Shewhart
-Postulate 2-

2.1 Thesis Structure

This thesis is comprised of four peer-reviewed and published manuscripts. The following
chapter will shortly describe the findings and achievements of each of the manuscripts, and
then subsequently in section chapter 3 the published manuscripts are included in full.
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2.2 Findings and Achievements

2.2.1 Multivariate Worflow for Latent Parameters

State of the Art & Problem Statement

In the course of a project to establish a CPV workflow in the Fill & Finish (FF) process segment
of a biopharmaceutical product on the market, several challenges were noted pertaining
to establishing QbD relationships between CPPs and CQAs. Firstly, a lyophilization and
filtration step series produced data mostly found in multiple time series and multidimensional
data. This led manufacturing scientists to, at best, only leverage univariate assessments of
unfolded data, which may overlook domain-relevant CPP features. This is partly due to the
lack of procedures in the literature to explore these latent variables within this segment of
bioprocessing. Secondly, this exploration was generally given less priority, due to the focus
on drug substance specifications, which are evaluated one step prior to FF. That is, operators
had invested less time in these unit operations, as long as the primary CQAs met specification
at drug substance and then, in reduced form, at packaging several steps downstream. The
likelihood may be high that conform specifications at drug substance will remain so through

24 Chapter 2 Results, Findings & Achievements



finalization of drug product, but nonetheless does not conform to the intent of the QbD
methodologies.

Findings

Within the project, we developed an innovative domain-relevant procedure to automate the
exploration of FF multi-dimensional and time series data starting from the data alignment
phase. While contextualizing the different data sources, a single batch object was created
and, using process expertise, a series of dynamic phase procedures were described that allow
more relevant extraction of potentially critical parameters for further exploration. Finally,
a robust PCA was established to check for further sources within multivariate variation.
Once implemented as a single procedure, the outcome is a list of newly defined potentially
critical parameters that can be immediately trended, monitored, and further investigated at
a multivariate level.

Christopher Taylor’s Contribution

As project lead, I supervised the development of the algorithms and procedures, managed
the case study, and contributed to the writing and review of the publication.

Publication

Pretzner, Barbara, Christopher Taylor, Filip Dorozinski, Michael Dekner, Andreas Liebminger,
and Christoph Herwig. “Multivariate Monitoring Workflow for Formulation, Fill and Finish
Processes.” Bioengineering 7, no. 2 (June 3, 2020): 50. https://doi.org/10.3390/bioengineering7020050.

2.2.2 QbD Milestones Applications via IPM

State of the Art & Problem Statement

Despite the increasingly common application of process models towards development
goals, most models are maximally applied to a singular unit operation. Furthermore, their
conclusions are not concatenated out to the drug substance specifications. Two QbD goals are
of particular interest here: the severity ranking of a risk assessment and the establishment of
a control strategy. The severity ranking of a given CPP on a CQA is usually evaluated solely
by process expertise. This assessment should be evaluated on the parameter deviation’s final
patient impact (i.e. at specifications) but in practice is performed based on their influence in
the given unit operation. Control strategies define the range within which a CPP does not
have a critical impact on a CQA. This range is submitted as a proven acceptable range (PAR)
to the authorities as the acceptable manufacturing range. As with the risk assessment, the
PAR is nearly always established within the context of a single UO.

Findings

Leveraging the original IPM technology, two innovative procedures were established to
propagate conclusions at the unit operation out to drug substance. For the control strategy, a
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parameter sensitivity analysis (PSA) was successfully proposed that uses Monte Carlo simula-
tions to survey the whole of a given CPPs investigated range, resulting in the relationship of
the Out-of-Specification (OOS) rate across the full CPPs range. This is used to set the PAR at
the point at which an unacceptable percentage of lots may not conform to specifications. The
risk assessment builds on the parameter sensitivity analysis with an additional linearization
technique to compare slopes of OOS percentages to a customizable rubric of risk assessment
severity scores. After adopting the rubric to the company risk assessment procedure, the
severity rankings can be directly calculated from the IPM PSA.

Thus, both the PAR and the risk assessment severity rankings will be based on propagated
impact at drug substance. This procedure can be very simply automated via the IPM.

Christopher Taylor’s Contribution

I designed and implemented the risk assessment PSA linearization technique and conducted
the case study. I wrote the manuscript with inputs from the co-authors. As project lead, I
supervised the development and implementation of all described innovations.

Publication

Taylor, Christopher, Lukas Marschall, Marco Kunzelmann, Michael Richter, Frederik Rudolph,
Judith Vajda, Beate Presser, Thomas Zahel, Joey Studts, and Christoph Herwig. “Integrated
Process Model Applications Linking Bioprocess Development to Quality by Design Mile-
stones.” Bioengineering 8, no. 11 (October 24, 2021): 156. https://doi.org/10.3390/bioengineering8110156.

2.2.3 Specification-Driven Acceptance Criteris

State of the Art & Problem Statement

Control strategies at the individual unit operation cannot use drug substance specifications
directly as intermediate acceptance criteria. For one, this may not be an appropriate range
for a given CQA at that unit operation. Secondly, this effectively leads back to the testing-
into quality issue that QbD tends to solve. Nonetheless, CQA results are generated at the
individual unit operation and must be assessed against some threshold to ensure that they
are keeping with the expected quality. Classically, these acceptance criteria are generated
by 3 multiples of the existing data set’s standard deviation without any further connection
to downstream steps. Standard methods to create this connection are based on spiking
studies, which are difficult to perform and run into sample matrix issues. Monte Carlo
simulations have also been proposed to find worst-case scenarios given the known functional
relationship. However, none of these approaches are able to directly link intermediate
acceptance criteria to the drug substance specifications.

Findings

After establishing a definition of the term ’intermediate acceptance criteria’ based on reg-
ulatory guidelines, we explored and discussed a QbD-based redefinition of the wording
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’intended use.’ Based on this definition, we are able to establish a procedure that leverages
the IPM and MC simulations to assay the limits of a given load material on subsequent unit
operations. A range of feasible load material values are defined per unit operation and
the full range is assessed by simulations propagated out to drug substance, generating an
OOS percentage. Intermediate acceptance criteria are drawn from the point at which an
unacceptable percentage of OOS is simulated. This procedure can be easily automated and
acceptance criteria can be quickly established across all unit operations; all directly linked to
the process capability of meeting specifications.

Christopher Taylor’s Contribution

I designed the acceptance criteria functionality, including the definition of acceptance
criteria leading to the defined procedure. I performed all statistical modeling, and drafted
the manuscript. Lukas Marschall and I contributed equally to this research.

Publication

Marschall, Lukas, Christopher Taylor, Thomas Zahel, Marco Kunzelmann, Alexander Wieden-
mann, Beate Presser, Joey Studts, and Christoph Herwig. “Specification-Driven Acceptance
Criteria for Validation of Biopharmaceutical Processes.” Frontiers in Bioengineering and
Biotechnology 10 (September 23, 2022): 1010583. https://doi.org/10.3389/fbioe.2022.1010583.

2.2.4 Integrated Process Model 2.0

State of the Art & Problem Statement

Numerous advances have now been made in linking unit operation models and applying
them to various outcomes of process development. Nonetheless, most of these are still under-
exploring the definitions proposed by QbD and the regulatory guidelines. Reasons for this
include statistical issues of combining data sets, overlooking variance in error propagation,
and insufficient ability to link results throughout the process.

The IPM itself in its originally proposed form has shown over time to require innovation.
The combination of two models from two regressions is mathematically suboptimal and
overlooks scale effects. Other scale-dependent effects were not described in the original
publication. And in the case of simulations that run outside of the explored data range, no
extrapolation mechanism has been implemented (even a very conservative one).

Furthermore, none of these approaches has yet proposed a full real-time digital asset for
potential implementation as a digital twin. The final step of producing holistic models
that correspond truly to the regulatory requirements is to insert these models into the
manufacturing architecture as a companion to life cycle management in real time.

Findings

An IPM technology was described that was based on the original IPM concept of linking UOs
via load and pool CQA values. However, the data model was simplified, describing rather a
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single matrix and regression model rather than two separate models. This model is more
robust and addresses scale differences directly. Procedures for scale-dependent variables
were established. A conservative extrapolation procedure was developed, which, despite the
challenges of extrapolation in a data-driven environment, works within the risk management
systems described by the authorities and allows baseline assumptions to be made regarding
the control strategies.

Finally, a real-time framework is described for the IPM that allows model establishment,
feedback loop, and instantaneous simulation of new conditions within a database containing
relevant manufacturing data. This should provide a plausible digital asset for a bioprocess
digital twin.

Christopher Taylor’s Contribution

As project lead, I lead the conceptualization of the innovations, developed the scale-
dependent variable procedure, described a real-time use case, performed the case study, and
drafted the manuscript.

Publication

Taylor, Christopher, Barbara Pretzner, Thomas Zahel, and Christoph Herwig. 2022. "Archi-
tectural and Technological Improvements to Integrated Bioprocess Models towards Real-Time
Applications" Bioengineering 9, no. 10 (October 9, 2022): 534. https://doi.org/10.3390/bioengineering9100534
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Abstract: Process monitoring is a critical task in ensuring the consistent quality of the final drug
product in biopharmaceutical formulation, fill, and finish (FFF) processes. Data generated during FFF
monitoring includes multiple time series and high-dimensional data, which is typically investigated
in a limited way and rarely examined with multivariate data analysis (MVDA) tools to optimally
distinguish between normal and abnormal observations. Data alignment, data cleaning and correct
feature extraction of time series of various FFF sources are resource-intensive tasks, but nonetheless
they are crucial for further data analysis. Furthermore, most commercial statistical software programs
offer only nonrobust MVDA, rendering the identification of multivariate outliers error-prone. To
solve this issue, we aimed to develop a novel, automated, multivariate process monitoring workflow
for FFF processes, which is able to robustly identify root causes in process-relevant FFF features. We
demonstrate the successful implementation of algorithms capable of data alignment and cleaning of
time-series data from various FFF data sources, followed by the interconnection of the time-series
data with process-relevant phase settings, thus enabling the seamless extraction of process-relevant
features. This workflow allows the introduction of efficient, high-dimensional monitoring in FFF for
a daily work-routine as well as for continued process verification (CPV).

Keywords: multivariate monitoring; CPV; formulation; fill finish process; data science; time-series
analysis; feature extraction

1. Introduction

In 2011, the Food and Drug Administration (FDA) published a guideline that emphasizes
the importance of undertaking continued process verification (CPV) in biopharmaceutical
manufacturing as an integral and final part of the process validation lifecycle [1] within the Quality by
Design (QbD) approach. CPV ensures that the product quality and process performance stays in control
throughout the commercial part of the product life cycle. The core element of a CPV plan is the control
and monitoring strategy of certain critical process parameters (CPPs) and critical quality attributes
(CQAs), as well as the method for analyzing the collected data. The FDA stresses that the collected data
should be evaluated with appropriate statistical process control technology, but leaves the selection of
a concrete monitoring strategy and statistical tools to the individual developer. In the biopharmaceutical
industry, most manufacturers use simple out-of-specification or univariate trending charts to show

Bioengineering 2020, 7, 50; doi:10.3390/bioengineering7020050 www.mdpi.com/journal/bioengineering
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their control over their process [2,3]. While classic biopharma process segments, namely upstream
and downstream processing resulting in the drug substance, typically have established CPV plans
leading into validation, when it comes to advanced control technologies, formulation, fill, and finish
(FFF) is often deprioritized [4]. Therefore, current and well-described CPV or monitoring plans for
FFF are very difficult to find in the literature. This last unit operation is needed to turn the purified
drug substance into a final dosage form, applicable for the market [5]. Freezing of the purified protein
bulk, thawing of the bulk, formulation, sterile filtration, filling and on occasion lyophilization are
the common steps within FFF to obtain a safe, stable, final product, ready to be transported. Although
the FFF process is chemically and biologically more straightforward than a fermentation process, any
variation in FFF can influence the stability, safety or final dosage form of the product [5,6].

Current process monitoring strategies in biopharmaceutical FFF steps are generally limited to
a univariate assessment of two distinct and separate data sources:

• single-point data (called “feature data”) from intermediates or from Quality Database (QDB) testing
(see Figure 1, State of the Art, QDB Data—Univariate Assessment). Examples: lyophilization
duration, sterile filtration hold time, amount of various formulation buffer ingredients, etc.

• time-series data during the individual unit operations (see Figure 1, State of the Art,
Lyophilization/Filtration Data—Univariate Assessment). Examples: online measurement of
product temperature over process time, online measurement of pressure during lyophilization
over process time, etc.

Figure 1. Comparison of workflows for process monitoring in formulation, fill, and finish (FFF)
processes with respect to filtration, lyophilization and quality database (QDB) data. Compared to
the current workflow, the proposed workflow examines the different FFF data sources in more detail,
harmonizes the data sources to one single batch object, allowing the analysis of the data in a broader
context, and uses their key feature data to perform multivariate analysis. All intermediate steps in
the proposed workflow are automated and applicable on further FFF QDB data.

This univariate control strategy is often insufficient to uncover root cause variation related to
interactions between these data types in a multivariate space, as D.C. Montgomery already stated in
1991 [7]. Moreover, time-series data can give an additional deep insight on how the process actually
performs in certain states or phases [8].
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Most FFF control strategies only use very rudimentarily extracted time-series features such as
the length, maximum, or minimum value of time-series data, overlooking the information hidden in
time-series patterns [9–11]. One method to analyze a time-series in more detail, is to unfold the signal
along its time-points and then use the data as input for multivariate data analysis (MVDA) [12]. In
fermentation or in chemical engineering, the in-depth analysis of time series is established by analyzing
the process with Fourier transform near-infrared spectroscopy and evaluating the data in conjunction
with principal component analysis (PCA) and partial least squares regression [13,14]. Another method
is to identify certain patterns by dividing the signal into smaller phases to enable advanced feature
extraction. The advantage here is that only process-relevant information will be further analyzed with
MVDA [15].

Although the identification of patterns is easily performed by the human eye, the analysis of several
time-series patterns can be extremely time intensive and failure-prone, if not done automatically [9].
Today’s program languages, e.g., Python, offer a great variety of machine learning algorithms or neural
networks (NN), which may be used for pattern recognition. Most of these data science tools demand
a huge training dataset. In areas such as biology, genomics or biopharmaceutical manufacturing, it
often occurs that the observed data holds a higher number of features p than number of observations
N, also known as the p >>N problem. This high-dimensionality of the data often leads to problems
when applying NN or machine learning algorithms [16,17].

Deeper insight to the process is not limited to the extraction of advanced features from
the time-series data, but can be extended to the subsequent calculation of supplementary key
performance indicators, which may also be subjected to MVDA [15]. Suarez-Zuluaga et al. showed
in an upstream process case study how a basic, dynamic phase-setting algorithm, followed by key
performance indicator extraction and MVDA accelerated the development of their process [18].

In order to establish MVDA for FFF in a CPV plan, the input dataset must be in a certain shape
and must also be easily accessible, which is rarely the case in commercial manufacturing [19]. Usually,
the data collected from the various monitoring equipment for individual unit operations of the FFF
process is rarely stored in the same place and is often not aligned with each other, which results in
a highly time-consuming task of establishing an analytical MVDA dataset.

This paper presents a novel, holistic, multivariate process monitoring strategy, combining
the individual FFF data sources via time-series feature extraction using a dynamic phase-setting
approach. The assessment of the power of this new method takes place on real biopharmaceutical
manufacturing data and is compared to historical data evaluations that occurred based on traditional
process monitoring strategies. The goal is herein to establish a multivariate, automated FFF process
monitoring workflow, which uses all existing FFF data (time-series and QDB data), makes use
of process-relevant time-series patterns, and is followed by robust principal component analysis
(ROBPCA) to detect lots which perform atypically related to reference lots. This approach should ease
and accelerate the identification of abnormal behavior within the FFF process and point to root causes
for this via parameter loadings. The roadmap to realize this goal can be described in the following
steps:

1. Assign the available data to the corresponding lots (see Figure 1, Proposed Workflow, Data
Alignment).

2. Enhance the quality of information by reducing interference signals within the time series (see
Figure 1, Proposed Workflow, Data Cleaning).

3. Identify process-relevant characteristics of the time-series pattern and leverage for further feature
extraction (see Figure 1, Proposed Workflow, Dynamic Phase Setting).

4. Create an analytical data set based on the extracted features and combine with already available
features (see Figure 1, Proposed Workflow, Feature Extraction).

5. Perform robust principal component analysis to assess the data set in step 6 (see Figure 1, Proposed
Workflow, Multivariate Analysis).
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2. Materials and Methods

2.1. Data

The analytical data set for our innovative CPV approach was derived from an industrial FFF
process of a parenteral biopharmaceutical therapy, which is stored in a liquid phase. This data consisted
of 58 lots and was compiled from three different FFF data sources, as shown in Table 1.

Table 1. Overview of the quality data, sterile filtration (SF) and lyophilization (LP) data sources,
including their data content, abbreviation and unit.

Quality Data Sterile Filtration Lyophilization

Data Type Feature Time-series Time-series

Description Abbr. Description Abbr. Unit Description Abbr. Unit

Monitored
Output

CQA data of
bulk drug

substance (BDS)

CQA
data

Temperature
of product SF1 (◦C) Inlet

temperature LP1 (◦C)

Time stamps of
start and end of
sterile filtration

and
lyophilization

Time
stamps

Applied
pressure SF2 (bar) Outlet

temperature LP2 (◦C)

Weight of
unfiltered
product

SF3 (kg) Chamber
vacuum 1 LP3 (bar)

Chamber
vacuum 2 LP4 (bar)

Temperature
of liquid
nitrogen

LP5 (◦C)

Condenser
pressure LP6 (bar)

Condenser
vacuum LP7 (bar)

2.2. Software

The commercially available software inCyght® Web version 2019.08 (Exputec GmbH, Vienna,
Austria) and Python 3.5 (Python Software Foundation, https://www.python.org/) was used for data
preprocessing, algorithm development, and multivariate data analysis. The statistical software JMP®

(SAS Institute, USA) was used for MVDA result comparison.

2.3. Statistical Methods

Robust principal component analysis (ROBPCA) [20] was performed for MVDA. In contrast to
the conventional PCA [21], the ROBPCA is less influenced by outlying observations and can recover
principal components of a data matrix even though its entries might be sparse to a certain extent.
The ROBPCA analysis allows the evaluation of whether observations are more or less similar to each
other in the multivariate space, by plotting the orthogonal distance against the score distance. A high
value in the score distance means that the observation does obey the multivariate model, but certain
variables have a higher or lower value compared to the average of the other observations. A high value
in the orthogonal distance indicates that the observation does not follow the multivariate model and
shows a different correlation. The contribution of the score and orthogonal distance of each observation
allows the identification of which variables are responsible for the observed abnormality.
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3. Results

3.1. Step 1: Data Alignment

The current state of data management within FFF describes the following procedure: measure
various process parameters from all FFF process steps with different monitoring equipment and
store the collected data on the monitoring equipment’s databases [19]. Interfaces, which enable us to
harmonize and align the data between the different sources, without requiring major manual input, are
rarely available. Some data harmonization usually takes place offline by manually adding certain CQA
data to a quality database (QDB), which usually contains intermediate data from each FFF process step.
However, the CQA data does not cover all the information, which is available within the time series.

This decentralized data management makes further multivariate data analysis effectively
inaccessible. Furthermore, some systems—such as in this case the sterile filtration and lyophilization
equipment—do not contextualize the collected data to any specific corresponding lot (i.e., what
differentiates one lot to another is not defined within the data collection system), which makes the raw
data impossible to be used for any further multivariate analysis.

In contrast to the state of the art, where every process signal is preprocessed and aligned separately
(see Figure 1), we present an automated workflow, where every FFF data source is aligned and
contextualized to a unique batch object within the inCyght database. By merging all available FFF data
independently of their source or format into batch objects, a comprehensive insight of the data for each
lot is given, which is a necessity to facilitate an automated multivariate CPV workflow.

To realize the harmonization of the various data origins, the data sources must be linked to each
other. The most straightforward procedure is to use the lot name as linkage. However, as in the case of
the sterile filtration data, no lot name was available, since the data was continuously recorded resulting
in one continues time series over months. In this case we used timestamps, stored in the QDB which
provided information when each lot was filtrated, to contextualize the filtration data to the batch
objects. We developed a robust interface in Python, which automatically uploads all FFF data to
inCyght, as shown in Figure 2.

Figure 2. Scheme of the data alignment, showing the workflow and the individual contents of the data
sources. All available data are stored in a batch object within the inCyght data base (IDB). The data
alignment from various data sources to one batch object can.

3.2. Step 2: Data Cleaning

The outcome of any analysis, machine learning, or the phase-setting algorithms in the following
chapters, is strongly influenced by the quality of the data [22]. Real-world data is never ideal from
the analytical perspective and consists of the real signal and accompanying noise. The two main
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sources for noise are random noise and interference signals. Random noise is usually introduced by
measurement tools such as sensors, whereas interference signals are commonly caused by equipment
failure or operator error. To enhance the quality of the data, the signal-to-noise ratio (SNR) must
be maximized. A common tool to enhance the SNR is the application of filters such as median or
Savitzky–Golay [23]. However, the application of the wrong filter might lead to loss of data quality.
Furthermore, strong interference signals might not be reduced nor removed by the usage of filters,
instead leading to false-positive alerts, if not removed before the MVDA. In order to preprocess the data
correctly, it is important to understand which errors may exist and to what extent they might affect
the data, using domain knowledge. Different data-cleaning algorithms for each data source were
developed to enhance the quality of the data accordingly, as described in the following paragraphs.

The QDB data included only CQA data and time stamps (Table 1) and was not further preprocessed.
The SNR of the lyophilization data was already sufficient, where further filter application would
possibly lead to information loss.

Data from the sterile filtration included anomalies that did not affect the product quality, but
might affect the results of the MVDA and therefore need to be removed. At the end of the filtration,
the pressure increases, leading to a high peak at the end of SF2 (SF—sterile filtration), as shown in
Figure 3A. Those high peaks are typical within the process, but not relevant for data analysis in this
approach. Therefore, the data-cleaning algorithm was adjusted to remove the last slope from SF2, as
shown in Figure 3B.

Figure 3. Data cleaning algorithm applied on signal SF2. The raw SF2 signals of various lots (different
colors) are depicted in (A), whereas the high peak at the end of the process time is not relevant
for monitoring and needs to be removed to enhance the performance for multivariate data analysis
(MVDA). In (B), the corrected SF2 signal is depicted after the cleaning algorithm was applied.

SF3 is used to track the progress of the filtration and therefore should slowly decrease over time.
However, SF3 showed pronounced peaks during the process, which were identified to be caused by
manufacturing personnel stepping on the scale, as shown in Figure 4A. As these events are not linked
to the manufacturing process, these occurrences have no impact to the quality of the product. However,
these interferences have a negative influence on the data quality. Since the overall slope in SF3 can
be expected to be very low, peaks with high slopes could be easily removed by the data-cleaning
algorithm, as seen in Figure 4B.
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Figure 4. Data-cleaning algorithm applied on signal SF3. The raw SF3 signals of various lots (different
colors) are depicted in (A), whereas the high peaks within the signal are caused due to stepping on
the scale. These peaks have no further process-relevant information content and therefore need to
be removed to enhance the performance for MVDA. In (B), the corrected SF3 signal is depicted after
the cleaning algorithm was applied.

3.3. Step 3: Dynamic Phase Setting

3.3.1. General

Time-series data are frequently used for control charts or other univariate monitoring tools, whereas
only the maximum or minimum value or the length of the signal are commonly used for further
analysis in the biopharmaceutical industry. Although the pattern of a time series explains the behavior
of a process in greater detail, it is usually overlooked when it comes to FFF monitoring plans.

Most statistical analysis and monitoring tools require a two-dimensional data set. Since time-series
data is a three-dimensional data format (batches (N) × variables (K) × time (J)), the data has to be
dimensionally rearranged into a two-way matrix structure; this process is also called “unfolding”. One
possibility is to unfold the data based on every single time point, resulting in N·J × K matrix. This
kind of unfolding leads to a dataset with many features which are not necessarily process-relevant and
might lead to a higher demand of data storage [24,25]. Another possibility is to separate the time series
into phases, based on process expert knowledge, e.g., cooling or heating phases within the temperature
signal. Certain features (e.g., median, mean, min, and max value) of this phase and signal can
be subsequently extracted, which are more valuable for monitoring than time-dependent features.
Therefore, we developed novel phase-setting algorithms, specific for FFF data, which enable automated
phase setting in the data.

3.3.2. Step Signal Phase Settings Algorithms

FFF data often occur as rectangular or step signals. This is caused by the stepwise adjustment of
the pH, pressure, or temperature within the FFF process, which has an immediate effect on the system.
This results in time-series data, most of which consist only of plateaus and sharp slopes, which may be
divided algorithmically into phases.

The starting point of a slope can be determined by searching for a value within the signal, where
the difference of neighboring data is above 0 in the y-direction. The end point of the slope is reached,
when the change of the neighboring points in the y-direction is 0.

slopestart = abs(yt − yt+i) > 0 (1)

slopeend = abs(yt − yt+i) = 0 (2)

Like any other signal, the stepwise signal might contain some noise, as stated in subchapter Step
2: Data Cleaning. This could result in misidentification of slopes, since the noise could randomly
indicate a gradient or plateau. In this workflow, we used several methods to tackle this problem. First,
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if the signal-to-noise ratio is estimable, a certain threshold for equation 1 and 2 can be chosen, instead
of assuming a change of 0.

slopestart = abs(yt − yt+i) > threshold value (3)

slopeend = abs(yt − yt+i) ≤ threshold value (4)

The threshold was set based on the standard deviation of the noise within the individual time-series
data and was verified for practical relevance by the process experts. However, the noise might not
always be estimable or unaffected by outliers, which again would result in the wrong phase setting.
Such false identifications can be reduced by taking the duration of the slope and plateaus into account.
If the minimum or maximum duration of the plateaus or slopes is assessable (derivable from FFF
standard operation procedures or by consultation with the process expert), the current slope or plateau
duration can be checked to determine if it meets the criterion of the expected length of the duration. If
the criterion is not fulfilled, the current proposal for the end of the slope or plateau is discarded and
the algorithm searches for the next best guess, as illustrated in Figure 5.

Figure 5. Flowchart of the step signal phase settings algorithm. The algorithm starts with an initial
threshold value and an estimated phase duration range. If the algorithm detects a phase (slope or
plateau) the algorithm stops and sets the phase accordingly. However, if the algorithm detects a phase
before or after the estimated phase duration, the threshold value is raised or reduced, respectively.
After that the algorithm starts again with the changed threshold value.

Based on this approach, 97% of the phases were correctly identified, which was verified by an
expert from the FFF facility.

3.3.3. Intertwined Phase Settings Algorithms

Not all time-series data can be divided into slopes or plateaus only, or lead to process-relevant
features. Depending on the observed signal, other states might be of interest, but cannot be
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algorithmically divided into phases with only one input time series, since the pattern of interest
results from the combination of several signals.

Thus, a principle advantage of having centralized and aligned data is that the information from
the individual time-series signals can be combined to enable process-relevant phase setting. As an
example, the process engineers wanted to monitor the LP4 signal from lyophilization in more detail,
by dividing the signal into four phases, to identify any deviations within the lots, as seen in Figure 6.

Figure 6. Example results for lot #2 of the intertwined phase setting method. The LP-Phases 1–4 are
shown as filled rectangles in different grey colors. The normalized signal of LP3 is shown in orange,
the normalized signal of LP4 is shown in green and the normalized signal of LP1 is shown in red.

For this approach the LP1, LP3 and LP4 signal (LP—lyophilization) were used. The detailed
phase-setting conditions for this algorithm are described in Table 2.

Table 2. Condition description on how the four phases LP-Phase 1-4 were set. The phases were set
accordingly to the “run order”.

Phase Name Condition Run Order

LP-Phase 1
Starts with the beginning of LP4 signal.

Ends with the start of LP-Phase 2.
2

LP-Phase 2

First timestamp, where the difference between LP3 and LP4
is below 20%.

Ends with the increasing slope of LP1.

1

LP-Phase 3

Starts with the end of LP-Phase 2.

Ends when LP4 has the same value as at the beginning of
LP-Phase 2, within certain time range.

3

LP-Phase 4
Starts with the end of LP-Phase 3.

Ends with end of LP4.
4

3.4. Step 4: Feature Extraction

After the phases were set, the mean, maximum, and minimum value were extracted. Furthermore,
the residuals of the slope and the standard deviation of the plateau phases were calculated. Moreover,
the duration of the LP Phases described in the Section 3.3.3. Intertwined Phase Settings Algorithms
were extracted.
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All extracted features, as well as the features from the QDB data, were joined in a feature matrix,
as schematically shown in Figure 7. The feature extraction resulted in 130 new variables, making a total
in 252 variables (including 122 QDB features). Features without variance within the lots were removed
from the feature matrix, resulting in 208 features per lot in total for further robust PCA analysis (see
Supplementary Materials).

Figure 7. Schematic workflow of feature extraction. After the time-series data of SF and LP are
separated into phases, various features are extracted (shown as F1, F2, . . . , Fn-1, Fn) from the data per
lot and summarized in an overall feature matrix. Furthermore, the features of the QDB data are added
to the feature matrix. The resulting feature matrix is ready for to be further processed by MVDA.

3.5. Step 5: Multivariate Analysis

Since there was no CPV plan in place as of the start of this project, which would have specified
any normal operating ranges for the multivariate space, we looked to identify batches that differ from
the majority by certain features. This allows us to detect differences within the batches that might
remain undiscovered in the univariate space. The robust PCA weighs all 252 features and 58 lots
equally, making all features and lots equally important. As described and developed by M. Hubert
et al., it is important to distinguish between regular and abnormal observations. Therefore a robust
score distance (SDi) and an orthogonal distance (ODi) for each observation is calculated respective to
the Mahalanobis distance [26,27]. This calculation is followed by plotting the distances on the y-axis
and x-axis for each observation (blue points), as shown in Figure 8 [20]. The plot is divided by a cutoff
line (black dashed line) in two yellow, one red, and one green quadrant to differentiate between outliers
and normal observations. The cutoff values for the vertical and horizontal line are both 97.5% (97.5%
quantile of a chi-squared distribution), again following the calculation developed by M. Hubert et
al. If the lots observe the multivariate model, they are located in the green quadrant. However, if
the observation is identified as an orthogonal or score outlier, it is found in the left-top yellow quadrant
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or right-bottom yellow quadrant, respectively. When a lot is identified as both a score and orthogonal
outlier, it is located in the red/orange quadrant [20].

Figure 8. Outlier plot showing all 58 lots (blue points) with their associated scores and orthogonal
distance. Additionally, the 97.5% tolerance intervals are indicated as dashed lines, which separate
the plot in four differently colored quadrants. Observations in the green quadrant obey the multivariate
model, whereas observations in the yellow quadrants indicate orthogonal (upper-left) or score distance
(lower-right) outliers. Observations in the yellow quadrants, but close to the 97.5% TI, can be considered
as moderate outliers (green circles). The red quadrant includes lots which are suspicious in both
directions. Lot #22, shown as encircled in orange, is identified as most prominent outlier within
the score distance. Lot #54, shown encircled in red, is closest to the model mean (0,0). No score and
orthogonal outlier were observed. The robust principal component analysis (ROBPCA) was built with
21 principal components and explains 80.88% of the variance.

The majority of lots are found in the green quadrant, indicating good multivariate model for
the majority of the observations. Furthermore, there are no lots, which are identified as both score
and orthogonal outliers, which may be indicative of a stable process. Nonetheless, eight lots are
noteworthy in their score distance, of which seven lots are moderately outlying, whereas lot #22 is
the most prominent representative of this group and can be assumed to be an outlier, as seen in Figure 8.

In order to discover the underlying root cause for lot #22 abnormality in the score distance,
the contribution plot may be applied. This plot displays the contribution of each variable to the score
distance of the observation to the model plane. Variables which have a significant contribution to
a lot’s score distance from the model mean have large values in the bar plot. As seen in Figure 9
a strong pattern for #22 is identified, which is not observed for lot #54 (the lot closest to the center of
the proposed model). Of note, the extracted plateau features from variable LP1 and LP2 show a very
striking behavior in the scores direction (see “LP1” and “LP2”, respectively, Figure 9). Additionally,
a CQA feature from the QDB data exhibits the highest contribution in the score distance for lot #22,
shown in Figure 9. as “QDB-1”. These features explain the distance of lot #22 to the model mean in
the outlier plot and therefore may be prioritized for further investigation.
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Figure 9. Contribution plot in the scores direction, showing which feature data (x-axis) has most impact
to the contribution (y-axis) for the outlier lot and the lot closest to the center of the model. All 252
variables of lot #22 (orange bars) and lot #54 (red bars) are depicted. A strong pattern for lot #22 is
identified, which is nonexistent in lot #54. Of particular note is ‘QDB-1’ and the extracted plateau
features from variable LP1 and LP2, which exhibit a high contribution (≤52) and lead to the outlying
score of lot #22.

When comparing the LP2 signal of lot #22 with lot #54, it also becomes clear that the LP2 signal of
lot #22 has a ~30% higher noise in the slopes and plateaus as the reference lot, as shown in Figure 10.
Using state-of-the-art methods for monitoring in FFF, this noise had been undetected so far.

Figure 10. Segment of the LP2 signal (red line) over the process time of lot #22 (A) and lot #54 (B).
The colored rectangles represent the individual phases for LP2, discussed in chapter 3.3.2. Step signal
phase settings algorithms divide the signal into plateaus and slopes. The LP2 signal in (A) has a ~30%
higher noise level than the LP2 signal in (B), which led to the high score distance in the robust PCA, as
shown in Figure 8.
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4. Discussion

Our presented workflow clearly demonstrates that our approach is capable of achieving
the intended purpose of monitoring process-relevant abnormalities in high dimensional FFF data and
pinpointing potential root causes, whereas conventional monitoring procedures would have overlooked
these abnormalities. The approach represents the first workflow wherein FFF data, regardless of
data type, is comprehensively and algorithmically aligned, extracted, and analyzed in a centralized
monitoring system.

Data alignment is the first essential and indispensable step when carrying out multivariate analysis
on data from various sources. Yet data alignment is still a big obstacle in biopharma and its solution
strongly depends on the individual manufacturer [19]. After data alignment and cleaning, we reduce
the data dimension by separating the time-series data into phases, where various features are extracted.
It is important to note that process expert knowledge is required to decide which phases should be set
and which features should be extracted to ensure that all significant production information is being
monitored [28]. This is the differentiating factor to the often-used unfolding process, which does not
take this process knowledge into account and thus leaves analysis purely in the hands of the data
analytical tool.

Lastly, the resulting overall feature matrix requires statistical know-how to robustly identify any
multivariate outlier in the data. The following subchapters discuss the applied phase setting and
outlier detection in greater detail and compares them to the state of the art.

4.1. Phase Setting

Time-series data includes valuable information, but are often not looked at closely, since analysis
is not straight forward as with tabular data records. To apply any statistical tool to the time series for
analysis, the data dimension has to be reduced. Commonly, the signals are often unfolded variable-
or batch-wise on every single time point [24]. This results in a dataset with many features, which
are not necessarily important for process monitoring. Therefore, we present a time-series dimension
reduction, where the signals are divided in phases, followed by feature extraction based on process
expert knowledge.

The method for phase setting strongly depends on the shape of the signal, as well as on the sample
size. In FFF time series, data from lyophilization and filtration processes from lot to lot are very similar
and mainly consists of slopes and plateaus. Therefore, we were able to use fixed thresholds for phase
setting, whereas the value of the thresholds can be easily evaluated with the help of process knowledge.
However, one drawback of this method is, that these thresholds are very rigid and unexpected changes
within the process might lead to failed phase settings. Machine learning algorithms, such has random
forest could improve the robustness of our proposed phase-settings algorithms [29]. Unfortunately, as
with most machine learning algorithms, success depends strongly on N to p ratio, that is, the quality and
size of the training data set, which is rarely the case in real biopharma manufacturing processes [30].

4.2. Outlier Detection

The identification of abnormal observations within the monitored data is the most critical aspect
of CPV. As in engineering or genetics, the data of biotechnological processes are high-dimensional.
However, extreme values within the data can be easily identified by scatter or boxplots when analyzing
the data in one dimension. The univariate analysis of a multivariate dataset ignores completely
the orthogonal relation between the observations. Therefore, we highly recommend using MDVA for
high-dimensional data to identify possible multivariate outliers. One of the most popular statistical
tools is PCA, which helps to understand high-dimensional data better and to identify which variables
have most effect on the variations within the data. This method tries to explain the covariance by
the means of principal components (PC), which are linear combinations of the variables. The PCA
can be used not only to determine latent variables in the data but also to identify outliers. Despite its
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popularity, one drawback of the classical PCA (CPCA) is that it is highly sensitive to outliers, resulting
in a disturbed multivariate model leading to false interpretations, as shown by M. Hubert et al. and V.
Todorov et al. [20,31]. Hence, we strongly recommend robust methods, as ROBPCA, when trying to
identify outliers. However, the ROBPCA method uses a hard 97.5% cutoff value to distinguish between
normal and abnormal observations. P. Filzmoser developed an adaptive method to estimate the cutoff
value based on the data structure and sample size, which could further improve the outlier detection
results of ROBPCA [32].

Other statistical software such as JMP® offer the possibility to analyze the data with CPCA and
use the Hotelling T2 test and the distance to the model in the X-data (DModX) plot to identify possible
outliers, as depicted in Figure 11.. After analyzing the final feature matrix with the Hoteling T2 test
and normalized DModX plot four outliers in the score distance and nine outliers in the orthogonal
distance were detected, respectively. Lot #22 was also identified as outlier in the Hotelling T2 test, but
its outlyingness was not as pronounced as in ROBPCA compared to the other lots. The identification
of the other outliers, identified by CPCA (see Table 3) was not reasonable, since we were not able to
identify any reason for their distance-to-model-center when looking at the feature matrix. The false
positive outliers might be derived from the fragile multivariate model influenced by the outlier, since
CPCA is a nonrobust method.

Figure 11. A classical principal components’ analysis (CPCA) was performed on the final feature matrix
in JMP®. As with ROBPCA, 21 principal components were used for analysis. The Hotelling T2 test (A)
and normalized DModX plot (B) were implemented in this software for multivariate outlier detection.
The Hotelling T2 plot is used to identify outlying batches in the score direction, if a batch exceeds
the red line, representing the 95% confidence interval (CI) of the model population, the batch can be
assumed to be an outlier, whereas batches above the green line (median of the model population) can be
considered as moderate outlier. The DModX plot is used to identify outlying batches in the orthogonal
direction, if a batch exceeds the red line, representing the 95% CI of the model population, the batch
can be assumed to be a moderate outlier. Outliers in both tests are marked as red circles.

Table 3. Comparison of CPCA and ROBPCA in terms of outlier identification.

Score Distance Orthogonal Distance

Moderate Outlier Outlier Moderate Outlier Outlier

CPCA 6 4 - 9
ROBPCA 7 1 1 0

5. Conclusions

We have shown that the presented multivariate FFF monitoring workflow presents a uniquely
holistic centralization of all FFF data, while robustly detecting data abnormalities, which have been
undiscovered with the current state-of-art methods. These alignment methods have consistently been
underused, since data alignment and cleaning are resource-intensive tasks, if not done in an automated
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fashion. Furthermore, the classical PCA, established in most statistical software, is not ideal for outlier
detection, leading to false-positive results.

We have successfully shown that the workflow is highly automatable through Python scripts
and can be therefore used in CPV plans or in daily process-monitoring routines. By using automated
phase-setting methods, followed by the extraction of process-relevant features and subsequent robust
PCA analysis, multivariate data abnormalities can be easily identified at a glance. Once implemented,
this should be easily executable by process engineers and related experts.

Once the requirements are fulfilled, such as sufficient data management and the agreement on
certain phase definitions and threshold settings, process experts are able to robustly identify multivariate
outliers in their FFF monitoring data with our developed algorithms in inCyght®. The developed
algorithms could be further improved by using supervised machine learning methods for faster and
more accurate threshold setting.

Supplementary Materials: The feature matrix is available online at http://www.mdpi.com/2306-5354/7/2/50/s1.
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Abstract: Maximizing the value of each available data point in bioprocess development is essential
in order to reduce the time-to-market, lower the number of expensive wet-lab experiments, and
maximize process understanding. Advanced in silico methods are increasingly being investigated
to accomplish these goals. Within this contribution, we propose a novel integrated process model
procedure to maximize the use of development data to optimize the Stage 1 process validation work
flow. We generate an integrated process model based on available data and apply two innovative
Monte Carlo simulation-based parameter sensitivity analysis linearization techniques to automate
two quality by design activities: determining risk assessment severity rankings and establishing
preliminary control strategies for critical process parameters. These procedures are assessed in a case
study for proof of concept on a candidate monoclonal antibody bioprocess after process development,
but prior to process characterization. The evaluation was successful in returning results that were
used to support Stage I process validation milestones and demonstrated the potential to reduce
the investigated parameters by up to 24% in process characterization, while simultaneously setting
up a strategy for iterative updates of risk assessments and process controls throughout the process
life-cycle to ensure a robust and efficient drug supply.

Keywords: digital twin; QbD; integrated process model; statistical modelling; bioprocess; control
strategy; FMEA; severity rankings; development; risk assessment; DoE

1. Introduction

State-of-the-art bioprocess development seeks a balance between reducing time to
market, while satisfying the regulatory requirements as described by the American Food
and Drug Administration’s proposed validation cycle [1]. These guidelines require exten-
sive process understanding to provide sufficient control in order to ensure that later process
changes, whether for scale-up, optimization, or trouble-shooting, do not lead to substan-
tially different product attributes [2]. Generating sufficient data to ensure this process
control in situations of potentially unknown variability requires significant experimental
resources and time.

An emphasis on the implementation of models as early as possible in process devel-
opment could potentially save constrained resources and maximize process understanding.
In silico process models can also create a baseline upon which late-phase characterization
is augmented, ensuring that all data is used at all stages of development, and that all data
generated supports process knowledge and control at the most critical steps. Additionally,
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connecting these potentially separate data sources and models would enable the iterative
improvement of holistic process understanding as described by quality by design (QbD,
Figure 1) [3]. For ease of terminology, development data refers here to all data generated
prior to process characterization studies (PCSs).

Figure 1. Example of a standard characterization workflow (left) vs. the proposed IPM-based
workflow (right). Three aspects are of note. First, an algorithmic link between development and
PCS can iteratively add data to an integrated process model. Second, the baseline FMEA severity
ranking and preliminary control strategy are statistically underpinned. Third, since the FMEA and
preliminary control strategy results are automatically generated in parallel, it removes linear effort in
task completion. These activities then supplement the process performance qualification (PPQ) and
continued process verification (CPV) stages of validation.

In particular, two deliverables from the FDA QbD framework (i.e., Stage I Process
Design) could be significantly supported by quantitatively leveraging models from devel-
opment:

• Risk assessment, often in the form of a failure mode and effects analysis (FMEA),
which are conducted by process experts in order to assess relationships between
potential critical process parameters (pCPPs) and critical quality attributes (CQAs),
which then are iteratively reinforced by subject matter expertise and experimental
results;

• Preliminary control strategy establishment for the CPPs by determining the CPPs’
proven acceptable range (PAR) for all CQAs.

One promising technology in this field is the integrated process model—an in silico
depiction of the entire process chain, where relatively sparse unit operation data can
nonetheless be statistically fitted for use in an overarching model. The unit operations are
modelled individually. These models are then connected by using the output (dependent
variable) of one model as input (independent variable) for the subsequent model, forming
the integrated process model [4]. Critically for bioprocesses, the relationships between
the unit operations are to be depicted in the overall model so that these applications’
predictions can be propagated out to drug substance, rather than being limited to the
individual unit operation. That is, the impact of even the first unit operation’s process
parameters can be modelled in silico onto the CQAs at drug substance.

Within this collaboration, we present novel IPM applications, leveraging only existing
pre-process characterization data to (1) algorithmically establish risk assessment severity
rankings, thereby determining CPPs, while also (2) generating PARs for those CPPs. The
presented approach provides a concrete link between existing development data and pro-
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cess characterization, and potentially removes subjectivity where data-driven conclusions
are otherwise challenging.

1.1. Risk Assessment Severity

Risk assessments such as the FMEA are perhaps the QbD deliverable most sensitive
to the quality and quantity of available data, as they must overcome certain numerical [5]
and psychological challenges [6]. Specifically, critical impact or severity on a CQA by a
process parameter (which leads to the CPP designation) is determined through discussion
and process expertise within the perspective of a single unit operation [7]. Rankings are
revisited iteratively throughout the product life cycle.

Inclusion of all available data in the risk assessment via models creates the benefit of a
more quantitative approach to process understanding. A number of complex procedures
to quantify these rankings have been proposed and discussed in recent years [8–10]. While
all of these methods contribute to the improved modelling of risk, these methods generally
do not include the link between each of the unit operations in order to connect conclusions
to the final impact on drug substance.

Thus, we seek to establish a quantitative and automated determination of the FMEA
severity rankings, based on a model of the available data, that assesses all pCPPs’ impact
on drug substance, irrespective of that parameter’s unit operation, by propagating impact
through the entire process flow. We then look to algorithmically assign the severity ranking
via a linearization of modelled pCPP impact on the drug substance out-of-acceptance
(OOA) likelihood against a predefined critical limit.

1.2. Preliminary Control Strategy

The control strategy is the final manufacturing goal after designating a parameter
as a CPP and is typically preliminarily established before process validation Stage II
(Process Performance Qualification). A control strategy is any system designed to ensure
that CPPs remain in a constant state of control that is required to ensure quality during
manufacturing [11]. An essential metric for control strategies is the proven acceptable
range (PAR): the range for a CPP within which all CQAs consistently remain within
acceptance criteria, while all other parameters stay at set point or within normal operating
variation [12].

Djuris provides an overview of available tools and techniques used to achieve this
milestone [13]. Most of the approaches used for classifying pCPPs into critical and non-
critical designations compare them by their potential impact on quality attributes and
the likelihood to cause a result exceeding predefined limits [14,15]. The determination of
control ranges is often made based on statistical models, where the limits are defined for
the input parameters in such a way that the response variables meet predefined limits [16].
In assessments of process repeatability, parameters to be monitored are also compared
against predefined acceptable ranges [17].

All these approaches have in common that they are highly dependent on which
quality attribute results are acceptable. For the last unit operation before drug substance,
specification limits (if available) can be directly applied; however, for intermediate process
steps the assignment of acceptable ranges becomes a challenge, as it is not known which
quality attribute levels are acceptable. An improvement would therefore be to use linked
data across all unit operations to determine all intermediate ranges.

Eon Duval aims to solve this by linking the statistical models of individual unit
operations, feeding the output of the previous unit operation as load into the subsequent
unit operation [18]. As input concentrations, they use the worst-case prediction within the
normal operating range. This approach has some drawbacks:

• For each CPP, there exists a worst-case condition for each response. The worst case for
CQA 1 might not be the worst case for CQA 2.



Bioengineering 2021, 8, 156 4 of 16

• The worst case is not the most likely condition. Processes are usually performed at
set point conditions and the normal operating ranges represent the uncontrollable
variation, meaning that the most probable condition is the set point.

• For the uncertainty of the model predictions, the lower or upper 95% confidence
interval is used as a worst case. This does not take into account that the most likely
prediction is the model mean at set point.

• The models are only based on small-scale data and manufacturing data is not consid-
ered.

Peterson pointed out that for setting up control ranges (i.e., design space), uncertainty
in the model prediction needs to be taken into account [19]. Additionally, the uncertainty
around the process parameters (i.e., normal operating range) needs to be taken into account
as well [20].

To our knowledge, the IPM covers all of the aspects discussed above [21]. We aim to
leverage this methodology to set up a control strategy that considers the linkage between
unit operations and the uncertainty around process parameter set points [21].

In this collaboration, we will present the following applied techniques with the above
goals in mind:

• Create an IPM by concatenating development generated statistical models, thereby
establishing an in silico version of the process [21].

• Assess risk assessment severity rankings by application of an IPM parameter sensi-
tivity analysis and rank linearization algorithm that quantifies the behavior of each
parameter with regard to its OOA probability, and compares this against a predefined
critical OOA rate, assigning an FMEA severity ranking based on the impact at drug
substance.

• Propose PAR limits per CPP and CQA by detecting increases in simulated drug
substance OOA results across the CPP screening range and assigning a cut-off repre-
sentative of a predefined acceptable OOA probability.

Finally, we present the above as a proof-of-concept case study using a candidate
monoclonal antibody process provided by Boehringer Ingelheim to assess the results of the
above procedures.

2. Materials and Methods
2.1. Candidate Process for Case Study

For the applications in this case study, in a collaboration with Boehringer Ingelheim in
Biberach, Germany, data sets stemming from development and pre-PCS studies were made
available for a candidate monoclonal antibody that depicts a potential platform bioprocess.
For this process, the following aspects were relevant to the IPM:

• Eight downstream unit operations, consisting of a capture step (CAP), an acid treat-
ment step (AT), an anion exchange chromatography step (AEX), and a cation exchange
chromatography step (CEX), for which process development activities were carried-
out. Additional data exists at set point for the following unit operations: depth
filtration (DF), ultra-diafiltration (UFDF), viral filtration (VF), and the resulting drug
substance (DS).

• DoE-based ordinary least square models, which were fitted, discussed, and selected
with subject matter experts before inclusion in the IPM. The experiments were carried
out in small-scale systems representative of the manufacturing scale. Subject matter
experts evaluated the suitability of these systems prior to experimentation. Model
variable selection was based on a standard procedure of selecting the model with
lowest Akaike information criterion, and the following diagnostics were then assessed
for model significance: R2

adj, Q2, RMSE, and partial p-values, as well as the model
residuals. All selected models were then discussed with the process experts for process
plausibility before acceptance. Acceptable regression models were found for the unit
operations CAP, AT, AEX, and CEX.
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• Manufacturing data for specific clearance models and yield/clearance calculations
as required for the unit operation linkage described elsewhere for all unit operations
from two industrial scales [21]:

� Two manufacturing-scale runs;
� Three pilot-scale runs.

• Four CQAs typical of monoclonal antibody products, depicting three impurities
(CQA1imp, CQA2imp, CQA3imp) and one desired product attribute (CQA1prod):

� Each of the above CQAs has an acceptance limit at drug substance in place.

2.2. Data for the Integrated Process Model

The IPM technology used here is described in detail elsewhere [21]. Regression models
that depict the performance of a unit operation as a function of its process parameters were
fitted to the four described responses’ specific clearance (SC). Briefly, specific clearance is
used here as a general term for the specific, non-volumetric increase or decrease of a CQA,
although a desirable product trait may also be accurately described as yield. This term
enables a cross-unit operation transfer of the output units as seen in Equation (1) below:

SC = PP·βPP + β0 + ε (1)

where SC is a vector of the measured specific clearances, PP is a (n * p) matrix of the process
parameter settings of each DoE run, βPP is the regression coefficient, and β0 is the intercept.
These models will be referred to as DoE models in the following.

Additionally, unifactorial regression models describing the specific clearance per-
formance of a unit operation as a function of the specific load concentration (SLC in
Equation (2)) onto pool specific concentration were calculated similarly, providing the link
between unit operations. These models will be referred to as load models in the following.

SC = SLC·βSLC + β0 + ε (2)

For cases where a DoE model and a load model were both available for a unit opera-
tion, the results of the prediction were combined according to Equation (3). The predicted
clearance at the sampled process parameter settings was corrected by the change in clear-
ance due to a change in SLC.

ŜCi = ŜC(PPi) · ŜC(SLCi)

ŜC
�
SLCDoE

� (3)

where ŜC(PPi) is the expected clearance at the process parameter settings for the current
simulation cycle, ŜC

�
SLCDoE

�
is the expected clearance at the mean SLC from the DoE

runs, and ŜC(SLCi) is the expected clearance at the SLC of the current simulation cycle.
The starting concentration for each CQA was assumed to be normally distributed.

The mean and standard deviation were estimated from manufacturing-scale runs.
For the case study described, all identified and applied models are summarized as a

heat map in Table 1 and again in greater detail in the supplemental information Tables S1
and S2. The underlying assumption is that during the subsequent simulations, sampled
prediction variation will be depicted in proportion to the RMSE and should generally
correspond to the standard deviation of any reproducible (i.e., set point) runs.
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Table 1. Summary of models used for Monte Carlo simulation. DoE models are multiple linear
regression models from statistically underpinned designs. SC models are single-factor linear regres-
sion models of load to specific clearance. If both types of model were available, ‘Both’ is marked in
the table.

Unit Operation CQA1imp CQA2imp CQA3imp CQA1product

CAP DoE DoE DoE

AT Both DoE DoE DoE

DF SC Model

AEX DoE Both Both DoE

CEX Both DoE DoE DoE

VF

UFDF SC Model SC Model

2.3. Parameter Sensitivity Analysis

The parameter sensitivity analysis (PSA) is a specialized application of the IPM Monte
Carlo simulation [21]. The PSA assesses how the change of each parameter across the
full investigated screening range influences OOA events at drug substance. For each
process parameter per unit operation for which there was a statistical model, the PSA was
conducted per the following procedure:

The individual process parameter’s experimental screening range was divided into
10 equidistant points, referred to as grids, with 10 being the grid size for this study.

At start of the simulation, the parameter was fixed at the grid point at the lowest end
of the screening range.

All other process parameters were allowed to vary around their set point within
the described normal operating ranges. The process parameters were assumed to be
normally distributed with the set point being the mean and the normal operating range
being ±3 standard deviations.

The full Monte Carlo simulation was performed 1000 times at the above conditions
for each CQA. An average OOA (%) result was recorded for each CQA, based on a prede-
termined acceptance limit.

The individual CPP was then fixed to the next grid and the cycle was re-performed.
Once all grids in the grid size were simulated, the %OOA result was plotted across

the screening range.
OOA probability per CQA was calculated according to Equations (4) and (5) below.

While the calculation of OOA percent likelihood could further be optimized to include
non-parametric procedures for the selected statistical models, the normality assumption at
the drug substance level largely applies.

OOA = P(X ≤ Lower Spec Limit ∪ X ≥ Upper Spec Limit) (4)

where X is a normal random variable, N
�

x, s∗2
�

, where s* is the upper one-sided confidence
limit of the standard deviation.

s∗ = s·
�

n − 1
χ2(γ, n − 1)

(5)

The upper confidence interval of the standard deviation was used as an estimate of
precision in order to allow for a fair comparison between the OOA rate between observed
large-scale data and in silico runs. The sample size of the available large-scale data was
very small compared to the runs generated in silico.

PSA results can be plotted in various ways. The individual CQA results can be plotted
against an overlay of all CPPs with scaled and centered parameter screening ranges, with
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the goal of rapidly determining the most impacting parameters. Conversely, the results
can be plotted per CPP against all CQAs. The CPP-based plot is useful for determining
a control strategy (described in the next chapter), while the CQA plot allows for quick
interpretation of focal points for each CQA during the process. The suggested procedure
would be to first identify CQAs strongly impacted by certain CPPs (i.e., plot by CQA) and
then to drill down into the CPP-based plots.

Here, we additionally describe an innovative plotting overlay for all CPPs per CQA,
referred to as ‘relative screening range’: a plot of a combination of standard data coding,
but fixed to the manufacturing set point. The rescaling of the data is generally standardized
on a −1,1 scale, but in this case it was additionally allowed to shift such that the set point
always represented 0. This implies that in the most extreme case where the upper/lower
limit of the screening range also represented the set point, the screening range was coded
−2 to 0 (or 0,2). Equation (6) is as follows for each point in the screening range:

xi
 =
xi − xsp
xmax−xmin

2

(6)

where xi



is the rescaled value of the ith value of parameter x, xi is the original ith value
of parameter x, xsp is the manufacturing set point of the parameter corresponding to
x, and xmin and xmax are the minimum and maximum points of the screening range for
parameter x.

This not only makes it possible to quickly see the magnitude with which parameters
impact any number of CQAs, but also to see where the set point lies with regard to the
explored range, giving an indication of where there may be room for the restriction or
expansion of parameter ranges.

3. Results

The development process data provided by Boehringer Ingelheim were successfully
used to create an IPM consisting of specific clearance and multi-linear regression models
for all four CQAs, to be simulated across seven unit operations.

To implement the proposed novel procedure, the following activities were executed,
as described below: (1) IPM plausibility check and confirmation as an adequate model
collection, (2) automated generation of risk assessment severity rankings leading to CPP
designation, and (3) generation of the preliminary control strategy PAR settings for the
CPPs.

3.1. IPM Plausibility Check

The quality of each OLS model contained and concatenated within the IPM was
previously individually assessed based on R2

adj, Q2, RMSE, p-values, and residual analysis.
The linking of the models and the results of the Monte Carlo simulation were additionally
checked visually by 1000 cycles executed under the manufacturing conditions (i.e., set
point for all parameters with sampling from a normal distribution around the set point).
A check of the actual data to the simulated data was performed, and the predicted in silico
OOA results were compared to the observed OOA results.

Given the sparsity of manufacturing data at this stage of development, the simulated
data corresponded adequately well to the existing manufacturing runs, and this repository
of data can be seen as a baseline data set that may be used to proceed with further IPM
applications (see example in Figure 2 below; remaining plots in the supplementary material,
Figures S1–S3).
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Figure 2. IPM trending plot for 1000 simulations (upper subplot) compared to real data performed (lower subplot) for a
CQA impurity. The unit operation order is in descending order in the legend. One can clearly see the descent towards the
final drug substance result. The simulation distributions align well with the sparse manufacturing data and the predicted
OOA is slightly less than the predicted OOA incidence based on a normal distribution around the real manufacturing data.

3.2. Automated Generation of FMEA Severity Rankings

Upon completion of the PSA simulation, the results were used for the FMEA severity
ranking linearization. This procedure describes the ratio of the slope of simulated CQA
OOA results to a predefined critical frequency of OOA results. A critical effect slope
is defined here as the maximum allowable effect of the pCPP on the CQA between the
manufacturing set point and the edge of the screening range (in units %OOA).

3.2.1. Critical Effect Slope Determination

First, the critical effect is depicted as the slope between half the screening range
(i.e., set point to the edge of screening range) and the intersection with a predefined
critical frequency of OOA results. Here a limit of 5% allowable OOA results was chosen,
corresponding to a population outside 2 standard deviations of the normally distributed
results for a given CQA. This 5% limit was determined with the subject matter experts and
the underlying risk management system.

Specifically, starting from the mean simulated value at the manufacturing set point,
out to the intersection of the screening range (x-axis) and the critical effect (5% OOA, y-axis),
a line was fit and subsequent slope was calculated. This was performed twice, on both
sides of the manufacturing set point. Once established, these lines represent the maximum
allowable severity of the pCPP impact on a CQA. These slopes are hereafter referred to as
the ‘critical slopes’ (see Figure 3 as well as Equation (7)).

mcritical e f f ect =
OOASR,5% − OOASP

CPPSR − CPPSP
(7)
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where mcritical effect is the critical slope, OOA is the out-of-acceptance result as a percentage,
SR is the screening range limit (max or min), SR,5% is the intersection of the screening
range and 5% OOA, and SP is the set point.

Figure 3. Example of FMEA linearization procedure. The shaded area represents the currently
proposed manufacturing range.

3.2.2. CQA Slope Determination

The CQA slope was fit in a similar manner, but based only on the simulated data for
the CQA in question (see Figure 3). A line was fit between the results of the simulation at
the set point value and the simulated mean value at the screening range limit. This slope
was also calculated and repeated for both sides of the set point. Once established, these
slopes represent the simulated relationship between the pCPP and the CQA in the OOA
results. This slope’s relationship to the critical slope is essential to quantify how close it
is to an unacceptable impact. These slopes are referred to as CQA slopes in Equation (8)
below:

mcqa =
OOASR − OOASP
CPPSR − CPPSP

(8)

where mcqa is the CQA slope, OOA is the out-of-acceptance result as a percentage, and SP
is the set point.

3.2.3. FMEA Ranking Algorithm

Once both the critical slope and the CQA slope were determined, the two slopes were
compared as a ratio, with the critical slope being the reference slope and the CQA slope
being calculated as a % reference value in Equation (9) below:

%re f =
mcqa

mcritical e f f ect
∗ 100 (9)

The calculation was performed twice, once for each side of the screening range.
The ‘worst-case’ slope of the two was chosen for the ranking. This %ref value was then
compared to a classification rubric to determine the corresponding FMEA severity value
(Table 2). As a baseline, any CQA slope equal to or larger than the critical slope must by
design correspond to the highest severity ranking.

The FMEA ranking was determined using the agreed-upon rubric (Table 2), based on
an internal company 10-point FMEA severity ranking scale. Other ranking scales may be
used as well.
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Table 2. FMEA ranking algorithm.

% Reference FMEA Ranking

≥0.8 10
0.5–0.8 7
0.3–0.5 3

<0.3 1

As a case study of the linearization methodology, the risk rankings of two selected
process parameters that were already assessed in a current best-practices FMEA process
(selected by process experts for proof of concept) were algorithmically assessed in the IPM
and the results were compared.

The risk rankings from the FMEA expert team and the risk rankings from the IPM
application are compared in Figure 4. The results and rankings of the process-expertise-
based FMEA evaluation were not made available before the completion of IPM in order to
avoid any form of bias. Both the FMEA team and the IPM severity ranking agree that the
parameter AT_pH should be considered critical. The IPM results also generally agree with
the expert assessment of the CAP_Residence Time as a non-critical parameter.

Figure 4. Results of the algorithmic setting of the FMEA severity ranking per CQA. The FMEA
team bar represents the current process-expertise-based ranking with the granularity of final ranking
for the worst-case CQAs. The IPM ranking assesses each of the CQAs against the 2 parameters in
question. As CPPs are classified as ranking 10, AT_pH will be considered a CPP in both assessments,
whereas CAP_Residence Time will be considered a PP. While both methods agree with the final
ranking, there is a difference in the assessment of CAP_Residence Time, with the FMEA team ranking
this as a more critical parameter than the PSA.

3.2.4. Preliminary Control Strategy Setting Procedure

In establishing the control strategy, the ICH Q8(R2) guideline provides a description of
the proven acceptable range that could be translated to a quantitative description that may
then be used to establish a control strategy using the PSA. According to the ICH, a proven
acceptable range is ‘A characterized range of a process parameter for which operation
within this range, while keeping other parameters constant, will result in producing a
material meeting relevant quality criteria.’

We defined the PAR for each process parameter as the range where CQA results were
within acceptance limits at drug substance at a certain probability level. Therefore, we
first defined the critical level (i.e., the out-of-acceptance probability) that the manufacturer
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is willing to accept. Again, we defined this as 5% out-of-acceptance results (roughly
equivalent to accepting 2 standard deviations of the population distribution).

CQA OOA probability results are plotted across the screening range. Once the CQAs
were identified as having high areas of risk, that is, the OOA >5% limit was crossed (see
Figure 5), the PAR was set to the point at which 5% was intersected. This was iterated
through all CQAs for all pCPPs and the most restrictive of the PARs was chosen as the
ultimate PAR limit.

Figure 5. Relative screening range of CQA1imp for all tested potential CPPs. The set point was coded to zero and the design
space varied between −2 and 2 based on where the set point lies.

The CPP-based PSA plots can be used for easy interpretation of the above procedure.
In Figure 6, the behavior of all CQAs is shown across the full screening range for a given
CPP. A line is drawn as each of the CQAs crosses the 5% threshold, and the final PAR is the
most restrictive range. Lastly, areas of the screening range within PAR are in grey. Fifteen
pCPPs were assessed in this manner. The control strategy plot for AT_pH is depicted
below. Further plots can be found in the supplementary information per CPPs in Table 3
(Figures S4–S7).

Table 3. Summary overview of automated results for PAR setting by PSA.

Unit Operation Process Parameter Proposed Control Range (If Any) Justification of PAR

AT pH AT Restriction Low CQA4prod, CQA1imp,
CQA3imp

CEX
Conductivity Restriction High CQA1imp, CQA2imp,

CQA3imp

Load Density Restriction High CQA1imp
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Figure 6. PSA plot for AT_pH. The impact of the 4 CQAs is depicted as a behavior across the screening range. The proposed
control range is highlighted in grey. Note that AT is the second unit operation in process order, but the plots depict the
impact on DS results.

Table 3 presents the generalized results for the PSA study, with regards to setting up a
control strategy. The initially proposed manufacturing control range was either acceptable
across the entire screening range, or only a subset of the original manufacturing control
range was found to be acceptable; that is, a restriction on either higher or lower end is
proposed. In this case, the impacted CQA is listed and plotted in the supplementary
information (Figures S7–S9).

4. Discussion

The novel linkage of development data to the PCS QbD milestones of risk assessment
severity ranking and preliminary control strategy establishment was proven feasible within
the case study data provided by Boehringer Ingelheim. These models now improve
characterization workflows by reducing FMEA subjectivity and decreasing required PCS
resources as described below.

4.1. Automated FMEA Severity Ranking Linearization

In comparing the novel IPM FMEA result to the current best practice methods of
FMEA ranking via process expertise, there are two aspects of the ranking that are of interest
to compare:

− The overall FMEA severity ranking;
− The CQA(s) most likely to be impacted by the pCPP.

As can be seen in Figure 4, an identical overall CPP designation was generated between
the IPM FMEA ranking and the current state-of-the-art experience-based FMEA ranking.
Both evaluations assign critical and non-critical designations in the same manner for both
process parameters. The FMEA team ranked the CAP_Residence Time as more critical
than did the PSA algorithm, but both agreed that it should not be identified as a CPP. An
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advantage of the novel procedure is that it produced similar results, but is not dependent on
long discussions or the availability of experts, nor is it subject to other challenges discussed
in the introduction. Nonetheless, targeted discussions may be used if there is uncertainty
about the PSA ranking, while still reducing the time consumed and focusing discussions
on key findings.

The IPM method additionally generates risk rankings for all CQAs for each pCPP.
Though this leads to the same ultimate conclusion as other methods (as in any case, the
worst-case CQA ranking is taken as the final ranking), evaluating each process parameter
with the individual CQAs has the advantage that it provides a more detailed and distin-
guished picture that adds to process knowledge. Here, it is of interest that two separate
CQAs were severely impacted by AT_pH; this is considered to be a novel observation.

This granularity makes it so that, in the ensuing process characterization experiments,
not all CQAs may need to be investigated at every unit operation, saving analytical costs.
If a CPP is determined to not impact any investigated CQAs, it can be feasibly excluded
from experiments in the PCS, reducing experimental cost. With the data-driven statistical
evaluation of the parameters, there is a clear and easily describable justification for control
of the parameter, and therefore the exclusion of the additional wet-lab work. Both provide
a potentially substantial reduction in characterization effort.

Moreover, the IPM procedure provides a quantitative logic and result at the drug
substance level that can be documented and visualized to demonstrate the data-driven
impact of CPPs on CQAs. The ability to both quantify and visually display the full process
relationships based on models significantly improves the understanding, justification
of control, and ultimate acceptance by regulatory authorities in submission, while also
removing some elements of subjectivity from risk-based decisions.

The analytical set here is small and therefore serves only as a proof of concept for
the algorithm, and a full comparison of all investigated pCPPs would provide a better
justification for the use of an automated severity risk assessment. Secondly, the IPM does
not remove subjectivity completely. The screening range, as well as the predetermined
critical limit (i.e., 5%), may include subjectivity.

Nonetheless, the ability to integrate the full process dataset into an automated ranking
system provides improved detail, rationale, and less subjectivity, while potentially saving
on future resources and increasing process control.

4.2. PSA Established Control Strategy

The IPM control strategy improves on current model-based PAR strategies by using a
variation sampling technique that simulates the realities of manufacturing at scale, while
concurrently establishing the PAR based on the results at drug substances, rather than at
the individually modeled unit operations.

The simulation of the process parameters, sampled from within a normal distribution
around the parameter set point, allows parameter settings to be simulated that are both
more realistic (not simply worst case), and allows factors to interact in a multivariate space.

Furthermore, determining PAR on the results at drug substance also allows this
variation to propagate throughout the process, delivering an accurate depiction of a process
parameter’s impact on the final product.

One additional underlying benefit is that the technology used here is still based on
standard ordinary least square models, which are well established and already being used
in the determination of PAR settings (Burdick et al. 2017), thus reducing the effort required
to make the logical case for the concatenation of the models in an IPM as well as the
adequacy of the resulting proposed PAR limits (which are also later verified by the process
performance qualification) in regulatory submissions.

Through the effective use of development data and the implementation of the models
described here, a primary control strategy can be established, which will allow the devel-
opment team to focus characterization studies only on areas where significant variability
exists or on parameters that show a high level of uncertainty, thus allowing for clear justifi-



Bioengineering 2021, 8, 156 14 of 16

cations of control for all parameters and a reduced workload for process characterization—
normally the largest work package for Stage I process validation.

This methodology is of course only as good as the models upon which it is built, and
they are in turn dependent on the experimental conditions in development. As time and
costs are a major constraint in pre-PCS studies, this could be a limitation to the efficacy of
the proposed methods (e.g., screening designs are used instead of response surface designs).
These results may nonetheless provide the basis for an iterative development road map,
leading to the prioritization of targeted CQAs and CPPs in process characterization.

In this feasibility study, fifteen parameters were successfully modelled in the IPM, of
which two were removed from later PCS studies. Thirteen remaining parameters that were
then committed to PCS experiments represented 24% of all experimentally assessed charac-
terization parameters. Thus, without further detailed quantitative assessment, it can be
stated broadly that up to 24% of the PCS study parameters could be saved by applying the
above-discussed approach, instead of using additional resources. This cost savings, along
with the data-driven and graphical justification of control, combine to form a powerful
tool to both reduce costs and simultaneously increase process understanding—normally a
paradigm that has the opposite correlation.

5. Conclusions

Leveraging development data to create in silico IPM models improves upon current
best practices by enabling faster establishment of QbD deliverables of risk assessment
rankings and preliminary control strategies, ultimately leading to less future experimental
effort based on better understanding of the available data, thus leading to significantly
better process understanding and control.

A promising next step in this research would be to attempt to automate other standard
FMEA rankings (e.g., occurrence or detectability) using an adjusted concept. For example,
it could be possible to simulate occurrence results by estimating the capability values of
the IPM simulated distributions. The ultimate goal in this work would be to generate the
entire FMEA by using the IPM in development.

These approaches are limited in that they require the presence of data. Further research
may therefore investigate the establishment of a multiple-product encompassing ‘platform’
IPM, which can serve as a starting point for the first-iteration FMEAs, which could point to
the most probable CPPs based on knowledge from previous projects.

For future applications such as process monitoring, the IPM can be updated with new
in-process manufacturing data. The IPM can then be used to predict the out-of-specification
probability of the currently running campaign. If this probability is undesirably high, the
model can then be used to propose changes in process parameter set points to lower the
out-of-specification probability to acceptable levels. This constant update with data and
feedback into the system could turn the IPM into a category of digital twin [21].

With the continuous exploration of advanced in silico process models, development
data should increasingly be seen as a vital basis for IPMs. The technology presented here
fully demonstrates the power of applying statistical tools to maximize the knowledge
gained from the available data and how focused and efficient knowledge management can
be used to invert the paradigm of increased process understanding being associated with
increased development costs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bioengineering8110156/s1. Table S1: Overview of identified models based on DoE data.
Table S2: Overview of specific clearance models. Figures S1–S3: Simulation trend plots. Figures S4–S6:
PSA CQA plots. Figures S7–S9: PSA CPP plots.
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Intermediate acceptance criteria are the foundation for developing control

strategies in process validation stage 1 in the pharmaceutical industry. At drug

substance or product level such intermediate acceptance criteria for quality are

available and referred to as specification limits. However, it often remains a

challenge to define acceptance criteria for intermediate process steps. Available

guidelines underpin the importance of intermediate acceptance criteria,

because they are an integral part for setting up a control strategy for the

manufacturing process. The guidelines recommend to base the definition of

acceptance criteria on the entirety of process knowledge. Nevertheless, the

guidelines remain unclear on how to derive such limits. Within this contribution

we aim to present a sound data science methodology for the definition of

intermediate acceptance criteria by putting the guidelines recommendations

into practice (ICH Q6B, 1999). By using an integrated process model approach,

we leverage manufacturing data and experimental data from small scale to

derive intermediate acceptance criteria. The novelty of this approach is that the

acceptance criteria are based on pre-defined out-of-specification probabilities,

while also considering manufacturing variability in process parameters. In a case

study we compare this methodology to a conventional +/- 3 standard

deviations (3SD) approach and demonstrate that the presented methodology

is superior to conventional approaches and provides a solid line of reasoning for

justifying them in audits and regulatory submission.

KEYWORDS

integrated process model, statistical modelling, bioprocess, control strategy,
acceptance criteria, specification limits, process validation, DOE

1 Introduction

Process Validation for the pharmaceutical industry is “the collection and evaluation

of data, from the process design stage throughout production, which establishes

scientific evidence that a process is capable of consistently delivering quality

products.” (FDA, 2011). This involves a series of activities taking place over the life
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cycle of the product and process. The goal of process validation

is to set-up and maintain a control strategy that enables the

process to continuously deliver product quality. This desired

quality is defined by the quality target profile (QTPP) of a

product (ICH Q8, 2009, S. 8) and acceptable quality limits are

defined by drug substance and drug product specification

limits. The final gate keeper for the market release of

product from a manufacturing process are the drug product

specification limits for each of the individual attributes of the

QTPP, referred to as Critical Quality Attributes (CQAs).

Amongst other goals, a control strategy aims to control

3 types of parameters: process parameters (CPPs), material

attributes (CMAs) and the quality attributes themselves

(Burdick et al., 2017). In process design, depicting phase 1 of

process validation, process parameters and material attributes are

assessed and investigated (FDA, 2011). Their impact on product

quality and process performance is studied and quantified in

experiments. Dependent on the observed effects on product

quality, appropriate control ranges are defined for process

parameters and quality attributes. Most commonly, each

process step (or unit operation) is investigated individually.

However, to define the control ranges of CPPs and CMAs, it

is important to know which quality attribute levels are acceptable

at each process step (Jiang et al., 2010).

In ICH Q6B, an acceptance criterion is defined as “An

internal (in-house) value used to assess the consistency of the

process at less critical steps.” (ICH Q6B, 1999, S. 6). Within this

contribution, we focus on acceptance criteria for CQAs at

intermediate process steps (Figure 1). Hence, we refer to

these limits as intermediate acceptance criteria. They

describe which quality levels each unit operation has to

deliver, whereas the drug substance or product specification

limits describe, which quality levels the process has to

ultimately deliver before product release.

Without knowing which quality levels are acceptable at each

process step, it is difficult to set up control ranges for CPPs and

CMAs at the respective process steps. As managing the risk to

quality is regarded to be the ultimate goal (ICH, 2005), deriving

these limits is crucial for the success of a process validation

project. EMA-FDA, also requires acceptance criteria for CPPs

and CQAs to be part of the process validation protocol

(European Commission, 2015). Per these guidelines, the

acceptance criteria should be based on development data or

documented process knowledge. If the measurement of quality

attributes in the process are part of the control strategy (as in-

process controls), intermediate acceptance criteria (iACs) are

required and solid rationales should be provided for their

establishment.

There are currently multiple methods to derive iACs for

quality attributes.

One solution to define iACs is by performing wet-lab spiking

studies. This is an approach commonly applied in virus clearance

studies (Darling, 1993). EMA also explicitly mentions spiking

experiments to demonstrate the clearance capacity of

downstream unit operations for host-cell relate impurities

(EMA/CHMP/BWP/187338/2014, 2016). However, finding the

correct spike material is difficult, as care has to be taken that the

sample matrix is not completely altered by other components

contained in the spiking material and correctly represents the

material in the naturally occurring process.

Acceptance criteria may also be calculated based on data

collected at set-point conditions. They can be calculated by

applying +/- 3 standard deviations (3SD) of the existing data,

or statistical intervals based on an assumed underlying

distribution (e.g. tolerance intervals). These approaches do not

account for variability around process parameters and don’t

provide a linkage to drug substance specifications (Seely et al.,

2003; Orchard, 2006; Wang et al., 2007). Moreover, both

approaches heavily rely on the observed variance. Higher

variation leads to wider acceptance criteria and lower

variation to tighter limits. Both approaches reward poor

process control and punish good process control. Moreover,

the mentioned methods are focused on individual unit

operations only.

Another approach linking knowledge across multiple unit

operations is described by Montes (Montes, 2012). They compare

methods to estimate the to-be-expected variance at each process

step. One of the discussed approaches is to apply variance

transmission. The variance for e.g. process step 3 is calculated

by applying error propagation using the known regression

models for process steps 1 to 3. The estimated variance is

used to calculate tolerance intervals. The worst case side of

the tolerance interval (in the case of a two-sided interval) is

FIGURE 1
Drug substance specifications define the quality limits that
must be achieved before product release. However, these are only
assessed at the final unit operation. There is no standardized
methodology for assessing the first unit operation’s impact
on the drug substance (yellow line) nor is there a standardized
method for linking any derived intermediate acceptance criteria
with the final drug substance specifications.
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then used as acceptance criteria for the respective step. This

approach leverages the knowledge of known functional

relationships. The defined acceptance criteria give information

on the possible worst case of a process at the observed variance.

However, they don’t give any information how likely it is to meet

drug substance criteria.

Monte Carlo approaches have been applied to the definition

of specification limits (Burdick et al., 2017). Burdick et al. used

the approach to calculate the final distribution of a drug product

quality attribute after several storage steps and suggested to use

the calculated distribution to derive specification limits.

Ideally, iACs share the following characteristics:

•) iACs should provide a link to drug substance or product

limits: the likelihood or probability of meeting drug substance

specifications while staying within the intermediate

acceptance criteria.

•) iAC derivation should consider the uncertainty around

process parameters and material attributes

Within this contribution, we build upon the concept on

integrated process modelling as described by Zahel et al.

(Zahel et al., 2017). In an integrated process model (IPM),

each unit operation is described by a multilinear regression

model where the performance (clearance or purification

capability) is the dependent variable and the input of the

previous unit operation as well as the process parameters act

as independent variables. These models are built with large scale

data from manufacturing and small scale data from process

characterization studies.

The models are concatenated by using the predicted output

of a unit operation as input for the subsequent unit operation.

Using Monte Carlo simulation, random variability caused by

process parameters can be incorporated into the modeled process

(Zahel et al., 2017). IPMs can be used to predict the out-of-

specification probability for a given set of process parameter set-

points. Another application is to set up a control strategy for

process parameters by defining proven acceptable ranges (Taylor

et al., 2021).

FIGURE 2
(A) One of the current best practices approaches. Control strategies are set up for each unit operation individually. The defined acceptance
criteria are not linked to drug substance specifications. (B) Themethodology described in this contribution links iACs to drug substance specification
limits using an integrated process modelling approach. Each unit operation is described by one ore multiple multilinear regression models built with
large scale data from manufacturing and small scale data from process characterization studies. The models are concatenated by using the
predicted output of a unit operation as input for the subsequent unit operation. By doing so, acceptance criteria can be based on drug substance
limits. The in-silico linking of unit operations has also been discussed in other contributions (Montes, 2012; Burdick et al., 2017)
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Within this contribution, we aim to derive iACs that ensure a pre-

defined out-of-specification probability. These specification-driven

ranges enable the set up of a control strategy that prevents failed

batches at highest possible manufacturing flexibility. The novelty of

this approach is that the acceptance criteria are based on pre-defined

out-of-specification probabilities, while also considering

manufacturing variability in process parameters (Figure 2).

The manuscript is structured in two parts. First the developed

method is described. In a second step the developed method is

applied to a real world case study and compared to a

conventional approach.

2 Methods and materials

2.1 Candidate process for case study

For the case study, a monoclonal antibody (mAb) production

process in mammalian cell culture was provided by Boehringer

Ingelheim in Biberach, Germany. The model depicts the downstream

process segment of the drug substance manufacturing process.

The downstream process consists of 9 unit operations. The first

step is the pool of the harvested fermentation broth (UO 1), the second

step is a chromatographic capture step (UO 2), followed by a viral

inactivation (UO 3), depth filtration (UO 4), two chromatographic

steps (UO 5, UO 6), a viral filtration (UO 7), another chromatographic

step (UO 8) and ultra-and diafiltration (UO 9).

Three quality attributes defined as CQAs were modelled. One

product-related impurity (UP-SEC Aggregates) and one host-

related impurity (HCP ELISA) that need to be cleared by the

downstream process and one parameter, purity (UP-SEC

Monomer), that should be increased.

2.2 Data for the integrated process model

For the capture chromatography, the virus inactivation and

the anion exchange chromatography one-factor-at-a-time

(OFAT) studies were performed. For the cation exchange

chromatography 2 factors were investigated in a design of

experiments (DoE) approach. One factor was varied in

5 levels and the second factor in 3 levels. One center-point

was performed. The design is able to resolve main effects and

quadratic effects. For the hydrophobic interaction

chromatography 3 factors were investigated in a face-centered

central composite design with 3 center points. The design is able

to resolve main effects, two-factor interactions and quadratic

effects. All experimental studies were performed in small scale.

The available data for each unit operation is summarized in

Table 1.

2.3 Calculation of performance indicators

Clearance parameters were calculated for each impurity (i)

according to Eq. 1, where i is the specific impurity concentration,

i.e. units per mg product, in load or pool of the respective process

step.

SCi � Specific Clearancei � iload
ipool

For product quantity and purity attributes, yields were

calculated according to Eq. 2, where i is the product amount

or percentage of desired isoform in load or pool of the respective

process step.

TABLE 1 Available data sets, process parameters, and monitored critical quality attributes (CQAs) for each unit operation included in the IPM.

Unit Operation Available datasets PPs varied in DoEs Monitored CQAs

Harvest 10 Manufacturing Runs (2 kl) Load Pool Temperature HCP ELISA

Capture Chromatography 5 OFAT Runs (3L), 10 Manufacturing
Runs (2 kl)

HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Virus Inactivation 5 OFAT Runs (3L), 10 Manufacturing
Runs (2 kl)

Stirrer Speed HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Depth Filtration 10 Manufacturing Runs (2 kl) - HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Anion Exchange (AEX)
Chromatography

4 OFAT Runs (3L), 10 Manufacturing
Runs (2 kl)

Equilibration_pH HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Cation Exchange (CEX)
Chromatography

11 DoE Runs (3L), 10 Manufacturing
Runs (2 kl)

Elutions buffer Cond, Elutions buffer pH HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Viral Filtration 10 Manufacturing Runs (2 kl) - UP-SEC Aggregates, UP-SEC
Monomer

Hydrophobic Interaction (HIC)
Chromatography

17 DoE Runs (3L), 10 Manufacturing
Runs (2 kl)

Loading Pool_pH, Loading Pool_Conductivity,
Loading Pool_Temperature

UP-SEC Aggregates, UP-SEC
Monomer

Ultra- and Diafiltration 10 Manufacturing Runs (2 kl) - UP-SEC Aggregates, UP-SEC
Monomer
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Yi � Yieldi � ipool
iload

Eq. 2

2.4 Modelling the individual unit
operations

Ordinary least squares (OLS) regression was used for

statistical analysis. Scale was treated as fixed effect. As

dependent variables, clearances and yields were used. A

clearance represents the ratio of two assumed-to-be

normally distributed random variables. Therefore, a

clearance is not normally distributed. After analysis of the

residuals it was decided to log-transformed the responses

prior to modelling. All independent variables were scaled

between -1 and 1 according to Goos and Jones (Goos &

Jones, 2011). The independent variable (response) was

neither scaled nor centered. For the analysis of the DoEs, a

best subset variable selection was applied using a p-value

threshold for the partial t-statistic of 0.1. The threshold of

0.1 was chosen as opposed to the commonly applied threshold

of 0.05 to minimize the risk of overlooking potentially critical

process parameters. A strong heredity principle was followed

i.e. if a two-factor interaction is included in the model, the

main effects of both factors involved in the interaction are

included in the model as well (even if the main effects are not

significant with the chosen threshold). To ensure model

adequacy, a thorough analysis of the model residuals is

performed to check whether any of the assumptions for

regression analysis are violated. i.e. the model errors are

statistically independent, of constant variance, and

normally distributed.

The unit operations were described by the specific clearance

or yield for a given quality attribute. Clearances were used to

describe the performance of the respective unit operation.

Specific clearances are clearances calculated from impurity

concentrations that are normalized to the amount of total

product. This harbors the advantage that the values are

independent of the scale and total volume. The specific

clearances and yields were described by OLS models or

observed mean values (in the absence of OLS models) with

their respective calculated uncertainty. Models describing the

FIGURE 3
Variance of the median response and the mean absolute deviation (MAD) over the number of cycles used in the Monte Carlo simulation for all
responses. The results were mean centered for visualization purposes. No severe changes in variance of the median prediction and the prediction
variance were observed. Therefore, it was not expected that an increase in the number of simulation cycles improves the accuracy of the model
predictions.
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specific clearance as a function of process parameters are

termed “DoE Model” and were derived from small scale

experiments. Models describing the specification clearance as

function of the input material are termed “SC Model” and were

derived from manufacturing data. If neither a DoE model nor a

SC model was available, the specific clearances were described

by fitting a normal distribution to the available

manufacturing data.

If more than one OLS model was available for a unit

operation, both models were used to describe the unit

operation. As the specific impurity loading concentration was

not included as a factor in the DoE, interaction effects between

factors investigated in the DoE and the specific impurity loading

concentration were assumed not to be expected.

The linkage of DoE models and specific clearance models was

performed as described elsewhere (Zahel et al., 2017). The

combination of DoE model and load model predictions was

performed according to Eq. 3, where �SCi denotes the specific

clearance predicted from DoE model, �SCi(PPi) denotes the

specific clearance predicted from the process parameters,�SC(SLCi) denotes the specific clearance predicted from the

specific clearance model using the input concentration from

the simulation (SLCi) and �SC(SLCDoE) denotes the specific

clearance predicted from the specific clearance model using

the concentration of the starting material of the DoE

(SLCDoE). The runs of a DoE were performed with the same

starting material. The DoE model is valid for the concentration of

the starting material used in the DoE. Therefore, the change in

specific clearance from the DoE start concentration to the

simulation input concentration was used as correction factor.

�SCi � �SC(PPi) ·
�SC(SLCi)�SC�SLCDoE�

Eq. 3

2.5 Linkage of unit operations using the
integrated process modelling technology

The IPM technology applied in this contribution is described in

detail elsewhere (Zahel et al., 2017). The principle behind the IPM is

to concatenate models describing the CQA values of individual unit

operation together in order to predict the CQA distribution at each

intermediate unit operation and ultimately at drug substance.

To account for error propagation during this concatenation,

a Monte Carlo simulation is performed in the following way:

A pre-defined number of runs through 9 unit operations are

simulated for each response, each using a set of different process

parameter values drawn randomly from the their normal

operating range represented by a normal distribution. Only

set-point values of process parameters were available at the

time of analysis. Without loss of generality of the approach,

the coefficient of variation of each parameter was assumed to be

3%. The technical realization of the normal operating range is

given in the results section.

The impact of the number of Monte Carlo runs on the variance

of the mean prediction and the prediction variance was

investigated for all investigated responses. The results are

shown in Figure 3. The impact of the number of simulation

runs on the results was investigated in a range from 50 to

1200 simulations. No severe changes in variance of the median

prediction and the prediction variance were observed. For that

reason, 800 simulation runs were chosen for the subsequent

parameter sensitivity analysis. This number leads to simulation

cycles that can be conducted in a reasonable amount of time.

Unit operation performances are modelled as a function of

process parameters (using OLS) and have some variance

associated with them. Using this information, an uncertainty

interval is defined around the mean prediction representing the

uncertainty of the model prediction. Without loss of generality,

95% prediction intervals were chosen for the IPM. That is, for

TABLE 2 Summary of models used for modelling each unit operation and each CQA. Models describing the specific clearance as function of process
parameters are termed “DoE Model”. Models describing the specification clearance as function of the input material are termed “SC Model”. If
neither a functional relationship of specific clearance on process parameters nor on the input material was found, the unit operation was described
by the specific clearance observed in manufacturing, termed “Manufacturing SC”.

HCP ELISA UP-SEC monomer UP-SEC aggregates
HCCF

Capture DoE Model+SC Model Manufacturing SC Manufacturing SC

Virus Inactivation Manufacturing SC

Depth Filtration SC Model SC Model SC Model

AEX SC Model SC Model

CEX DoE Model DoE Model+SC Model DoE Model

Viral Filtration Manufacturing SC Manufacturing SC

HIC SC Model DoE Model

UFDF Manufacturing SC

Bulk SC-Model Manufacturing SC
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each simulated run, a response value is drawn randomly from

this uncertainty interval around the mean.

Using the predicted clearance of a unit operation and the

available load concentration, the pool concentration is calculated.

Special consideration is given to the simulated load values

that fall outside the range of the observed load values used to

train the model. Similar to Zahel et al., no extrapolation of

clearances outside of the observed load models was

performed (Zahel et al.). If simulated load values outside

fall outside of the range, the clearance of the unit operation

was assumed to be constant. For impurities (CQAs that need

to be decreased), this approach might underestimate the

clearance for load values higher than the observed range

used to fit the models. This is considered more

conservative from a risk based approach. For load values

lower than the observed range the clearance might be

overestimated. For setting up acceptance criteria the load

values are gradually increased for each unit operation. For

that reason, this case was not observed. For purities (CQAs

that need to be increased) the signs need to be reversed.

The overall result of the Monte Carlo simulation with varying

process parameters is a distribution for a specific CQA in the pool

of the last unit operation, i.e. in drug substance. This distribution

may be used to verify OOS event probabilities, given process

parameter and model variability.

2.6 Calculation of OOS events

The number of out-of-specification events was calculated

according to Taylor et al. (Taylor et al., 2021). A normal

distribution was fit to the data. The OOS probability was

defined by the area under the curve that lies beyond the drug

substance specification limit. The parameters of the normal

distribution were the arithmetic mean and the upper 80%

confidence interval of the standard deviation. The upper

confidence of the standard deviation was used to provide a

fair comparison between the simulated runs and the real

manufacturing runs, because of the large difference in sample

sizes (800 simulated runs vs. 10 manufacturing runs).

FIGURE 4
Comparison of distributions of the simulation to 10 large scale manufacturing runs for the CQAHCP ELISA. The upper plot shows the simulated
data based on 1000 simulations performed at set-point conditions. The lower plot shows the data from 9 large scale runs. Due to the large value
range of this CQA the values were logarithmically scaled for visualization purposes.
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3 Results

3.1 Description of the integrated process
model

A pre-requisite of setting up an IPM is that the quality

attributes to be modelled are measured both as input and

output of the unit operations under investigation. Due to data

availability, the IPM for HCP ELISA was set up from unit

operation 1 to unit operation 6. For UP-SEC Aggregates and

UP-SEC Monomer the integrated process model was set up from

unit operation 2 to unit operation 9. Table 2 outlines how the unit

operations were modelled for each CQA.

3.2 Definition of the NOR

For modeling the process parameters, the definition for the

NOR as outlined by FDA and EMA is followed.

“The NOR describes a region around the target operating

conditions that contain common operational variability

(variability that can’t always be controlled)” (EMA/213746/

2017, o. J.).

For the purpose of the ensuing analysis, we aim to provide a

technical realization of this definition. To our knowledge no

mathematical description of the normal operating range has been

given so far.

Without loss of generality, this operational variability is

assumed to be caused by experimental errors stemming from

several independent, uncontrollable sources. Therefore, it is

sufficient to assume that continuous process parameter values

follow a normal distribution (with the target operating value

(set-point) being the most probable one (mean of the

distribution)). This holds true for any targeted continuous

process parameter value. For parameters that are controlled in

such a way the NOR follows a normal distribution described

by two parameters (mean and standard deviation). For

parameters that don’t need to meet a target, but are

allowed to stay within a range according to manufacturing

batch records other distributions might be applicable (such as

uniform distributions, poisson distributions or truncated

normal distributions).

Each process parameter value has a certain probability of

being observed associated with it; the set-point is the most

probable value. The process parameter distribution follows a

normal distribution around the set-point. The normal operating

FIGURE 5
Comparison of distributions of the simulation to 10 large scale manufacturing runs for the CQA UP-SEC Aggregates. The upper plot shows the
simulated data based on 1000 simulations performed at set-point conditions. The lower plot shows the data from 9 large scale runs.
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range (NOR) of a process parameter is then defined as the lower

and upper boundary of the distribution covering a pre-defined

area under the curve (e.g. +/- 3 standard deviations around the

set-point). The values within the NOR are normally distributed

(and not uniformly distributed). Following this definition, the

normal operating range is a function of the applied set-points and

is subject to change in the case the process parameter set-point is

changed.

As a consequence, the results of the integrated process model

are only valid if the process is controlled at target conditions

including the uncertainty (NOR) around it, that is, whereat all

PPs are kept at set-point and the process variability (i.e. standard

deviation) does not increase.

3.3 Plausibility check of the integrated
process model

Each individual OLS model was assessed individually based

on model statistics R2, Q2, p-values, and RMSE as described in

the material method section. The quality of the simulation with

the concatenated models was assessed by comparing the

predictions of the IPM with actually performed manufacturing

runs at target conditions. Additionally, the predicted OOS rate

was compared to the OOS rate calculated from the

manufacturing runs.

The results are shown in Figure 4–Figure 6. The span of the bar in

the histograms was normalized in a way that the sum of all bin areas

equals 1 (i.e., the area of each bar corresponds to the probability that

an event falls into that bin). For that reason, the height of the bars (i.e.,

the probability densities) between the simulated values and the real

data might differ, but the integrals equal 1. Therefore, the y values in

these plots are not relevant for comparing the simulation with the real

data. For all investigated CQAs, the simulated distributions fit quite

well to the available manufacturing data. The predicted OOS

probabilities (given in the plot titles) are in the same range as the

OOS calculated from the manufacturing data. Based on these results

the set-up model framework is regarded as fit for the application of

setting up acceptance criteria.

The definition of the Acceptance Criteria in ICH Q6B was

followed. The statement “considered acceptable for it intended

use” is interpreted in the following way: The drug substance

material is considered acceptable for its intended use, if it

conforms to the drug substance specification limits.

FIGURE 6
Comparison of distributions of the simulation to 10 large scale manufacturing runs for the CQA UP-SEC Monomer. The upper plot shows the
simulated data based on 1000 simulations performed at set-point conditions. The lower plot shows the data from 9 large scale runs.
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3.4 Definition and calculation of
intermediate criteria

Following the outlined definition, the intermediate acceptance

criteria will be defined by performing a parameter sensitivity analysis

(PSA) within the IPM simulation framework. It will be assessed how

a change in CQA load values in an intermediate unit operation

affects out-of-specification (OOS) events at drug substance level.

For each CQA, the PSA was conducted as follows:

1) The screening range for the PSA was calculated from available

manufacturing data. A range of plus/minus 10 standard

deviations around the observed mean in the pool of the

unit operation was calculated. The screening range was

divided into 15 equidistant segments. If this resulted in

negative values, the screening range was decreased by

limiting it to positive values only.

2) The CQA’s pool value of the UO, for which the acceptance

criteria are calculated, (= load value of the next UO) is set to a

fixed value.

3) An IPM Monte Carlo simulation consisting of 800 simulated

runs was performed according to the description in section

3.1.2, where all process parameters are randomly drawn from

their normal operating range.

4) The number of OOS results for the CQA and a corresponding

OOS probability is calculated.

5. Steps 2-5 are repeated for each of the screening range

segments defined in step 1.

6) The intermediate acceptance criteria is then defined by the

CQA pool concentration that results in the pre-defined OOS

probability.

The procedure is then repeated for each CQA in each UO. An

illustration of this procedure is given in Figure 7.

FIGURE 7
Illustration of the procedure to derive intermediate acceptance criteria: The CQA pool value at unit operation 3 is increased in discrete steps. At
each step a Monte Carlo simulation is performed. With each step, the CQA distribution at DSmoves towards the drug substance limit (DSL). The pool
value, where a predefined fraction of the CQA distribution lies outside the DSL (out-of-specification probability), will define the iAC.
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For the case study an OOS probability of 5% was defined as

threshold.

3.5 Case study–Comparison of
approaches for setting up acceptance
criteria

Figure 8 shows the results of the PSA to determine the

intermediate acceptance criteria or UP-SEC Monomer in unit

operation 2. For each data point, i.e. for a specific CQA pool

value, CQA distributions at DS are predicted, and the probability

to generate an out of-specification (OOS) limit is calculated. The

OOS probability is then plotted as a function of the pool value.

With each step the CQA distribution at drug substance moves

towards the specification limit, increasing the risk of OOS events.

At a 5% OOS probability, the proposed upper iAC for UP-SEC

Monomer at unit operation 2 is 96.71% for the lower

specification limit of 98%.

This procedure was followed for all unit operations and all

CQAs under investigation. The corresponding plots are provided

in the appendix.

In the case study the IPM derived acceptance criteria were

compared to acceptance criteria based on + - three standard

deviations. For all three responses only 1-sided specification

criteria were defined. For this reason, the IPM derived

acceptance criteria are also 1-sided. For impurities (HCP

ELISA and UP-SEC Aggregates) an upper limit was defined

and for purities (UP-SEC Monomer) a lower limit was

defined.

Due to the large value range of HCP ELISA, the values

were logarithmically scaled for visualization purposes (Figure

9). For HCP ELISA, the IPM derived acceptance criteria were

higher than the upper three standard deviation limits in all

investigated unit operations. Especially in the first four unit

operations the three standard deviation derived limits are

much tighter than the IPM derived limits. Runs that fall

outside the 3SD limit might still exhibit an acceptable out-of-

specification probability. If these 3SD limits are applied, it

might lead to the issue that alerts are raised unnecessarily.

Except for unit operation 7 at the last five unit operations no

data was available for HCP ELISA. At unit operation 7 CQA

measurements are available, however they all represent one

value: the limit of quantification. For that reason no standard

deviation could be calculated and integrated process

modeling could not be applied. The intermediate

acceptance criteria were therefore set equal to the drug

substance specification limits. This approach relies on the

assumption that the impurity does not increase in these unit

operations.

FIGURE 8
Out-of-specification probability at drug substance for various theoretical UP-SEC Monomer pool values in unit operation 2. Intermediate
acceptance criteria are defined, as the CQA’s pool value, for which the out-of-specification probability equals a critical threshold, here 5%.
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For UP-SEC Aggregates the IPM derived acceptance criteria

were higher than the upper three standard deviation limits in all

investigated unit operations (Figure 10). As described for the

previous CQA if 3SD limits are applied, it might lead to the issue

that alerts are raised unnecessarily.

For UP-SEC Monomer the IPM derived acceptance criteria

lie close to the observed manufacturing values in unit operations

1 to 4 (Figure 11). For unit operation 2 a manufacturing run falls

even below the acceptance criteria, although it still meets the final

drug substance specification limit. The definition of the

intermediate acceptance criteria is based on a probabilistic

approach, i.e. at the intermediate acceptance criterion, there is

a certain probability (here 5%) that the CQA does not meet drug

substance specification limits. Consequently, even if a

manufacturing run is close to the proposed intermediate

acceptance criteria, this does not necessarily lead to the run

being out of specification at DS. If it lies exactly at the

intermediate acceptance limit, there is still a 95% probability

that the run is within the specification limit.

Additionally, the lower limit of the three standard deviation

derived ranges is lower than the IPM derived acceptance criteria

for the first four unit operations. Based on the results of the IPM

this means that the out of specification probability is larger than

5% at these limits. For unit operation 3 the lower 3 SD limit is

97.1%. At this value the IPM yields a 14.9% out of specification

probability. If 100 runs were close to the lower 3 SD limit

14.9 runs would not meet the specification criteria at drug

substance.

4 Discussion

Many contributions elaborate on methods to set up control

strategies for process parameters (e.g. design space) (Abu-Absi

et al., 2010; Jiang et al., 2010). A prerequisite for that is the

knowledge, which levels of quality attributes are acceptable.

Acceptance criteria serve as backbone for a proper control

strategy on process parameters and material attributes. Often

irrespective of the control strategy methodology, the reader is left

alone in setting up acceptance criteria. Additionally EMA

requires acceptance criteria for CPPs and CQAs to be part of

the process validation protocol, which should be based on

FIGURE 9
Graphical representation of the intermediate acceptance criteria (blue line) across the entire downstream process for the response HCP ELISA.
Available large scale, manufacturing data per batch (circles) and three standard deviation ranges (grey lines) are given as well. The shown iACs at DS
are the DS specification limits. Due to the large value range of this HCP ELISA the values were logarithmically scaled for visualization purposes. Except
for unit operation 7 at the last five unit operations the intermediate acceptance criteria were set equal to the drug substance specification limits.
At unit operation 7 CQA measurements are available, however they all represent one value: the limit of quantification. For that reason no standard
deviation could be calculated and integrated process modeling could not be applied.
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development data or documented process knowledge (European

Commission 2015). However, here no specific guidance is

provided to derive such limits.

Within this contribution we refined the definition of acceptance

criteria by ICH Q6B by further specifying the term “for intended

use” to having a link to final specification limits used for drug

substance release (ICH Q6B, 1999). Additionally, we presented a

methodology to calculate intermediate acceptance criteria based on

drug substance specification limits and considers uncertainty

around process parameters.

It should be emphasized that IPM derived acceptance criteria

are only valid for a defined set of process parameter conditions.

This means that if acceptance criteria were defined based on

manufacturing runs at set-point conditions, they are only valid

for runs that are performed at set-point. In the case of process

changes, intermediate acceptance criteria need to be revised. This

not only applies to the method presented in this contribution, but

also applies to other approaches that rely on historic

manufacturing data such as approaches that rely on min -max

ranges. +/- 3 standard deviations, or statistical intervals (Seely

et al., 2003; Orchard, 2006; Wang et al., 2007). Approaches that

include data where variance was purposefully introduced into

process parameters, as done in process development or process

characterization studies, offer the advantage that the established

models can easily be used to calculate acceptance criteria for the

new process set-points without the need of acquiring new data

(Montes, 2012; Burdick et al., 2017). Updating the acceptance

criteria is in line with ICH Q8, which states that acceptance

criteria can be updated in the case new process knowledge is

available (ICH Q8 (R2), 2009, S. 8). Whereas ICH Q8 states that

they should be updated in the case new process knowledge is

available, we want to emphasize that they also need to be updated

if process changes are implemented (e.g. process parameter set-

points).

In this contribution we used OLS regression models to

describe the individual unit operations. At the time of the case

study the experimental work has already been conducted. The

performed OFATs and DoEs were designed to be analyzed

using OLS regression. This technique is the standard method

for the analysis of DoEs. Care has to be taken, when

extrapolation beyond the training range is performed.

However, the described methodology for setting up

acceptance criteria is not limited to OLS models. If

mechanistic models are available model-based DoE

approaches could be applied and the functional relationship

between quality attributes and process parameters could be

FIGURE 10
Graphical representation of the intermediate acceptance criteria (blue line) across the entire downstream process for the response UP-SEC
Aggregates. Available large scale, manufacturing data per batch (circles) and three standard deviation derived ranges (grey lines) are given as well.
The shown iACs at DS are the DS specification limits.
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FIGURE 12
Specification-driven acceptance criteria provide a solid line of reasoning and enable robust control strategies for process parameters.

FIGURE 11
Graphical representation of the intermediate acceptance criteria (blue line) across the entire downstream process for the response UP-SEC
Monomer. Available large scale, manufacturing data per batch (circles) and 3 standard deviation ranges (grey lines) are given as well. The shown iACs
at DS are the DS specification limits.
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described by purely mechanistic or hybrid models (Kroll et al.,

2017; Nold et al., 2021). For model-based approaches

capturing the prediction uncertainty is not straight-forward

and novel methods to do so are discussed in scientific

literature (Briskot et al., 2019). However, an in-depth

comparison of modelling approaches is beyond the scope of

this contribution.

In addition to suitable data, the presented method requires

knowledge in programming or scripting languages to

concatenate the individual OLS models and perform the

Monte Carlo simulations. In contrast, to that the 3SD

approach can easily be applied in table calculation

programs like MS Excel. Despite the complex knowledge

required, we believe that the benefit of being able to

leverage all available process knowledge in the form of

statistical models in the integrated process model outweighs

the increased analysis effort. Additionally, setting up

integrated process models can be automated dependent on

the digital maturity of the companies. If quality data and

process parameter values are automatically collected in a

centralized system the process of setting up an integrated

process model can be facilitated.

The available guidelines encourage basing the definition of limits

on the entirety of process knowledge. ICH Q6E states “In this

respect, limits are justified based on critical information gained from

the entire process spanning the period from early development

through commercial scale production.” (ICH Q6B, 1999). ICH

Q8 further emphasizes the fact that it should be justified how in-

process controls contribute to the final product quality (ICH Q8

(R2), 2009, S. 8). ICH Q11 states that links between process and

quality is needed (ICH, 2012, S. 11). The above approach puts the

guidelines recommendations into practice. It combines the

knowledge from small scale studies and manufacturing runs.

Functional relationships of quality and process parameters are

included. The results are based on drug substance specification

criteria. Following the principle of the control strategy lifecycle as

outlined in ICH Q8, acceptance criteria can be updated using the

IPM as new knowledge is available (ICH Q8 (R2), 2009, S. 8).

The presented IPM approach models independently from

each other. Hence, it relies on the assumption that there are no

interactions between the studies quality attributes. This could be

addressed by studying various CQA starting concentrations in

wet-lab experiments and modelling CQAs as function of other

CQAs. In that way multivariate range can be set up that not only

consider multivariate dependencies on process parameters but

also on other CQAs.

Currently most specifications are based on process variability and

not patient-driven. We’d like to see future work that focuses on how to

define drug substance/product specifications that are based on patient

response (safety and efficacy). In order to achieve this, manufacturing

data should be linked to data from the clinic. Additionally, the

quantity and quality of the data is important.

The aforementioned aspects of the IPM derived acceptance

criteria provide a solid line of reasoning for justification in audits as

they are built on the total amount of available evidence, while using

already well established modelling techniques (i.e. OLS). The

described methodology enables the definition of acceptance

criteria based on the probability of reaching the specification

limits. We therefore firmly support using specification-driven

acceptance criteria form a solid base for activities in setting up

control strategies (Figure 12). The IPM derived acceptance criteria

may prove to be an excellent foundation for the establishment of

patient centric specifications as correlations between product

attributes and clinical outcomes are made.
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Abstract: Integrated or holistic process models may serve as the engine of a digital asset in a multistep-
process digital twin. Concatenated individual-unit operation models are effective at propagating
errors over an entire process, but are nonetheless limited in certain aspects of recent applications that
prevent their deployment as a plausible digital asset, particularly regarding bioprocess development
requirements. Sequential critical quality attribute tests along the process chain that form output–input
(i.e., pool-to-load) relationships, are impacted by nonaligned design spaces at different scales and by
simulation distribution challenges. Limited development experiments also inhibit the exploration of
the overall design space, particularly regarding the propagation of extreme noncontrolled parameter
values. In this contribution, bioprocess requirements are used as the framework to improve integrated
process models by introducing a simplified data model for multiunit operation processes, increasing
statistical robustness, adding a new simulation flow for scale-dependent variables, and describing a
novel algorithm for extrapolation in a data-driven environment. Lastly, architectural and procedural
requirements for a deployed digital twin are described, and a real-time workflow is proposed, thus
providing a final framework for a digital asset in bioprocessing along the full product life cycle.

Keywords: integrated process model; digital twin; Pharma 4.0; bioprocess; control strategy; upstream;
downstream; real time; holistic model; data science

1. Introduction
1.1. Background of Integrated Process Models

In recent years, bioprocess research & development has been seeking to speed up
the time to market through the advanced analytical modeling of development data. Of
particular focus is the ability to predict final drug quality with minimal data input. One
promising technology is integrated process models (IPMs, also referred to as holistic
models). These are in silico model frameworks of multistep processes used to perform
simulations that predict the behavior and outcome of a full process chain [1,2]. A digital
twin (DT) is effectively an extension of this technology, which feeds the resulting output
data back into the model in real time [3]. The key components in building a DT are the
physical asset (i.e., the process), the digital asset (DA, i.e., the model), and the bidirectional
connectivity between them to exchange data and enable a control loop [4]. This concept
was mentioned as early as 2003, but has been receiving increasing attention in industry in
recent years, not least in the pharmaceutical and biotechnology sectors [1,5–9]; extensive
descriptions can be read elsewhere [10]. With IPMs serving as the DA component to a
DT, the industrial potential is clear. By leveraging a digital copy of the process where
simulations replace physical experiments limited only by computational power, process
success can be maximized, and failures may be swiftly mitigated. For bioprocesses and
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bioproduct lifecycles, an IPM can substantially shorten development and improve quality
both in terms of speed to market and manufacturing success rates [1,11,12].

Modeling individual process steps or unit operations (UOs) in succession have a
long history, starting from simple linkage studies [13–15]. However, until recently, few
comprehensive frameworks had been established in biopharma development. In 2017,
a baseline IPM technology was proposed (IPM 1.0) to serve as a bioprocess ‘life cycle
companion’ with the potential to be a DA. In this framework, the bioprocess is constructed
by concatenating individual UO models in a central repository that statistically depicts
the entire process in the correct process order [16]. Each model represents a single UO
with process parameters (PPs) as input factors and critical quality attributes (CQAs) as
responses. Once established, the model serves as a “mirror” to the physical asset [10].
Monte Carlo (MC) applications are then leveraged to simulate the propagation of error
across the process on the basis of the variation in input factors and subsequent responses.
The final simulation result is obtained at drug substance.

IPM 1.0 was trained primarily on specific clearance measurements in characterization
data at a small scale – usually performed within a Design of Experiment (DoE) – and in the
limited available large-scale (LS) manufacturing data, though the framework also accepted
mechanistic and hybrid models. The two scales were fitted into separate matrices and
combined to create a single output prediction per variable. This two-matrix system has
the disadvantage that the two models require a secondary mathematical step to combine
the results. This both leaves any scale offset unaddressed and results in a non-normally
distributed result during simulation due to the multiplication and division of the random
variables. Equation (1) defines the j-th CQA’s predicted specific clearance ( ˆSC) as a ratio of
the SLCl (large-scale) and mean SLCDoE (small-scale) results, at a given process parameter
setting (ŜC(PPi)).

ŜCj = ŜC(PPi)× ŜC(SLCl)

ŜC
�
SLCDoE

� (1)

In the population of simulated values where these terms are both normal distributions,
the resulting simulated SCj distribution is Cauchy distribution. Furthermore, this ratio
is multiplied by the predicted PPs specific clearance (ŜC(PPi)). The final distribution is,
therefore, a product distribution that is proportional to, but not per se, a normal distribution.
This relationship can potentially give a less precise estimator of the final resulting simulated
distributions and be biased versus a normally distributed predicted result [17].

IPM 1.0 also addressed only non-scale-dependent variables, such as those representing
specific clearances, as mentioned above. This is useful in establishing the technology, as
all the responses are easily linked with identical units across all UOs. This method also
circumvents the issue of modeling volumes that are usually difficult to model since they are
controlled by manufacturing and organization considerations. As a consequence, however,
this limits the modeling of key process attributes such as Yield or Product Amount, which is
of particular business interest.

1.2. State of the Art for Holistic Bioprocess Models

Since the introduction of IPM 1.0, additional MC applications have been introduced
that target specific regulatory deliverables. These include estimating out-of-specification
(OOS) results, defining control strategy elements such as proven acceptable ranges (PARs),
and linking sensitivity analyses to quality-by-design (QbD) milestones [11].

Recent alternative approaches have also been studied with the goal of both compre-
hensively describing the process chain and meeting regulatory submission requirements.

Flowsheet models have been proposed for small-molecule pharmaceuticals that, while
very similar to the IPM 1.0, differ in the selection of linkage variables used to concatenate the
UOs. In one recent case study, using models based on first principles, output responses were
directly translated into input variables for the subsequent UO’s mechanistic model [18].
This approach has the flexibility that response variables do not necessarily need to be
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simulated across all UOs. Indeed, certain responses may be modeled only for use as an
input factor in a different response’s model, with all pathways leading to a potentially
different final output CQA. This permits modeling flexibility, where each response is not
necessarily assayed across all UOs. In bioprocess applications, it is of particular importance
to consider a mechanism for estimating parameter and model uncertainty in the prediction,
as heightened variation is inherent to the biosystem and significantly impacts the precision
of the predictions [19].

Toolboxes of hybrid modeling techniques have recently been proposed that allow
for maximally parsing relevant values at different scales. In one instance, an upstream
UO was assessed at four different scales, with a sequential procedure for analyzing the
multidimensional data to proceed with each subsequent experiment in a pathway opti-
mized to reduce experimental load. This harbors the advantage of directly addressing
the quantitative and qualitative differences of scale, and works towards a holistic process
evaluation. It is efficient to combine the scales (as opposed to modeling them separately)
for three reasons: the degrees of freedom increase, the manufacturing design space is more
accurately represented, and the scale offsets can be measured directly. Nonetheless, the
framework still needs to offer a linkage between the different UOs in order to address the
ultimate impact on CQAs at drug substance [20].

This linkage has recently been assessed in a Bayesian framework for concatenating
UOs. Here, the outcomes of potentially multiple models (or one model trained on boot-
strapped data) are leveraged as uninformed prior distributions and, using Markov chain
MC algorithms, are transformed into a posterior distribution. Random sampling from
this distribution is used for the transfer to subsequent UOs. One advantage here is the
combination of multiple models per UO, which may be useful in creating more robust
predictive outcomes, especially in data-poor environments [21]. One consideration to
add to this framework is the prediction of extreme model outputs. Such values are likely
outside the training dataset range, but are probabilistically inevitable. This is particularly
important for the variable with the most impact on the linkage between UO models. In
case of an extreme linkage value, a de facto extrapolation occurs in the second UO, which
is highly discouraged in data-driven environments. In any future manufacturing state,
potentially extreme results and their impact on subsequent UOs should be considered
on risk management grounds. This extrapolation is not performed at the moment in any
data-driven holistic process model of which we are aware.

Lastly, to the best of our knowledge, none of these recent bioprocess use cases proposes
an integrated real-time application, particularly in commercial manufacturing where the
effects of PP deviations in an ongoing process can be simulated onto final drug substance
specifications. Such a prediction would provide actionable information to optimize or
mitigate process outcomes. Enabling this application would have the potential to increase
the process success rate and shorten the time to market. The collection of these innovations
would provide a robust platform on which to build a real-time simulation, prediction,
and feedback loop. Such a technology would ultimately provide bioprocesses with a
plausible DT.

1.3. Suggested Improvements

Each of the recent approaches has significant advantages within the context of biopro-
cess development requirements. This contribution aims to leverage them collectively to
establish a novel IPM that solves numerous challenges in one framework:

• Simplification and improvement of the IPM 1.0 two-matrix procedure.
• Combination of manufacturing- and development-scale data.
• Establishment of scale-dependent variable procedure.
• Improvement of model uncertainty intervals.
• Creation of an extrapolation procedure for non-controllable parameters.
• Description of a real-time DA application.
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This contribution proposes building the above improvements on the conceptual back-
bone of IPM 1.0. The resulting technology would lead to a plausible DA for a bioprocess
development DT. Computational comparison with previous approaches is not within scope
here, as the primary goal is to create a framework that combines all the above improve-
ments.

Figure 1 compares the above-discussed limitations with the proposed innovations.
The top model shows the structure of the IPM 1.0, whereas the lower model depicts the
proposed innovations (IPM 2.0) to be discussed in this collaboration.

Figure 1. (top) Original IPM technological process flow (IPM 1.0). (bottom) Proposed collection of
IPM innovations (IPM 2.0). IPM 2.0 differs from IPM 1.0 in the following improved areas: (a) robust
and simplified data model, (b) addition of scale-dependent responses, (c) conservative extrapolation
procedure for multiple linear regression (MLR) models, and (d) real-time feedback loop (depicted as
a red line).

2. Materials and Methods
2.1. Software

The IPM was developed with commercially available software PAS-X Savvy 2022.01
(Körber Pharma Austria GmbH, Vienna, Austria). This software uses Python 3.79 as a base
(Python Software Foundation, available online: https://www.python.org/, accessed on
20 January 2022). The procedures below were built onto the framework of the IPM 1.0.

2.2. Data

A case study was prepared with an industry partner to assess the proposed procedures
as a proof of concept. A recombinant protein production process in a mammalian cell
culture was provided that had been developed and characterized with a limited number
of at-scale manufacturing runs. The model contains one primary upstream UO and seven
downstream UOs, followed by final results at drug substance.

The downstream process consists of the following UOs: a chemostat bioreactor (UO1),
followed by a filtration step (UO2), a concentration step (UO3), a virus inactivation step
(UO4), a capture chromatography step (UO 5), filtration (UO6), and two polishing chro-
matography steps (UO7 and UO8).

The primary response for the case study is Step Yield, as it best leverages and displays
the proposed innovations, further discussed in the Results section.

The available statistical models for each UO are summarized in Table 1 and are
characterized in more detail in Table S1. PP is a model built upon process parameters,



Bioengineering 2022, 9, 534 5 of 15

but not including an input load value. A Step Yield model is only missing from UO4, as
no statistically significant model was found. The raw data for Step Yield for each UO are
described in Table S2.

Table 1. Model availability for Step Yield.

UO Step Yield

UO1 Starting UO
UO2 PP
UO3 PP
UO4 No model found
UO5 PP
UO6 PP
UO7 PP
UO8 PP

2.3. IPM Data Model

This collaboration builds on the IPM 1.0 technology, adapting the general concept of
combining a lab-scale model with manufacturing process data. The lab scale provides the
bulk of the investigated design space, and the manufacturing data provides the primary
UO linkage. IPM 1.0 proposes a two-matrix system based on scale-independent variables
(specific clearances, SC, downstream).

The two required data matrices are the following: a standard p × n matrix (where
p is the number of parameters and n is the number of runs) of small-scale DoE data that
explore the investigated design space. Many DoEs, in our experience, are modeled in the
individual UO and have no connection to the previous UO. The large-scale data matrix
is a 1 × n matrix with the only factor being the incoming specific load of a given CQA to
be regressed against the output CQA. This depicts a de facto transfer function between
UOs [2].

Equation (2) defines the specific load clearance model (SLC) of the j-th CQA as the i-th
UO’s pool values in percentage (%) divided with the i-th UO’s load density (which itself is
load divided by column volume CV).

SLCj =

�CQAj,i load
CV

�
CQAj,i pool

(2)

The combination of the two models occurs only during the simulation phase and
proceeds according to Equation (1).

3. Results
3.1. Data Model

A simpler and more robust data model can be established, given the availability of
certain additional information about the scale and starting material. All scale data can be
combined in a single matrix and subsequently fitted by a single model provided that two
new columns are also added: Scale and CQAload.

Scale is treated as a fixed categorical factor, thereby having the benefit of capturing any
scale offsets within the model. In addition to providing this important scale comparison as a
simple regression coefficient, the Scale | Large level can be selected as the prediction setting
during the MC procedure, thus always simulating under manufacturing-scale conditions.

CQAload refers to the pool value of the CQA from its precursor UO. That is, the starting
material value for any given CQA is used to model its impact on the pool CQA (CQApool)
in the current UO. This factor does not refer to Load Concentration (i.e., the desired molecule
amount over volume) or Load Density (i.e., the desired molecule over resin volume/filter
area) necessarily, but rather each CQA’s own starting material. The upshot is the creation
of an individual factor matrix X for each CQA, as seen sorted by color in Figure 2.
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Figure 2. Proposed data model for the IPM. Small-scale DoE data (greyscale boxes, top) and large-
scale manufacturing data (colored boxes, bottom) are in the same matrix with an added categorical
scale factor. Each modeled CQA has a unique additional factor called CQAload, which is the CQApool

value from the previous UO.

The regression is now described in Equation (3): the predicted CQA (ŷi) is generated
by model intercept β0 plus all investigated factors (xi) and their respective coefficients (βi)
plus the error term (ε). The two non-PP terms (CQAload and Scale) provide the linkage of
the model to both manufacturing scale and the subsequent UO. Architecturally, the process
consists of statistical model objects representing the UO models. This permits a simple
modular build-up of the full model and replacement upon refitting with new data.

ŷi = β0 + βloadxload + βscalexscale + β1x1 + . . . βnxn + ε (3)

When performing MC simulations, CQAload serves as the mathematical link between
the precursor and current UOs. If the CQAload is nonsignificant in the regression model,
there is no mathematical link between the UOs for that CQA.

3.2. Extrapolation Procedure

In the above case, there is likely, nonetheless, a point at which the relationship is
indeed quantifiable even if it is outside the investigated design space. Guarding against
overlooking such a relationship requires extrapolation. As discussed, for data-driven
models, extrapolation is discouraged in the absence of established first principles or process
knowledge, since data alone is agnostic to behavior outside the observed data [22]. DoEs
purposefully vary PPs outside typically observed manufacturing ranges. However, this
space is limited by resources and knowledge. Additionally, not all PP can be specifically
controlled, such as the CQAload, which contains propagated variation from all previous UOs.
It is generally assumed that CQAload has a quantifiable influence on the CQA value in the
following UO (CQApool), even if not detectable in the design space. Without a mechanism
to account for this uncertainty, the DA can only predict within already observed data.

Naive extrapolation of a data-driven model is indeed associated with extreme statisti-
cal uncertainty [23], but extrapolation may be constrained by conservative process-based
assumptions that allow for a reasonable worst-case assessment of the quantified relation-
ships [24]. Specifically for bioprocesses, this constraint must be at least severe enough
to satisfy risk management in bioprocess development. Therefore, a linear stepwise ex-
trapolation strategy for the simulation of CQAload values is proposed here. This strategy
differs depending on whether the CQA is categorized as impurity or purity and whether
the simulated value is below or above observed measured values as depicted in Figure 3.



Bioengineering 2022, 9, 534 7 of 15

Figure 3. Visualization of CQApool value correction strategy for (A) purities and (B) impurities. (A) If
the simulated CQAload value is beyond the investigated load range (grey area), but below the maximal
observed value of CQApool, then CQAload is purified up to the maximal CQApool value at most, as
depicted by the green dashed line. If, on the other hand, the simulated CQAload value already exceeds
the maximal observed CQApool value, no further purification takes place, and the CQAload value
equals the CQApool value, indicated by the green solid line. Conversely, if the simulated CQAload

value is below the investigated load range, then no purification takes place, and CQAload corresponds
to the CQApool value, visualized by the orange solid line. (B) The correction of the impurity CQApool

values follows the same strategy as for the purities, only exactly reversed.

3.2.1. Purities (Best at Max)
Above the Observed Load Range

If the simulated CQAload value ( ˆloadi) is above the observed load range (max(load)) but
below the observed maximal CQApool value (ymax), the resulting simulated CQApool value
(ŷi) is corrected by the CQAload value coefficient (βload) multiplied by the offset between
the maximal observed load range and the simulated CQAload value, as shown in Equation
(4), depicted as the green dashed line in Figure 3A. This is a conservative assumption that
ensures that no further purification occurs when CQAload values are purer than those in the
pool. Thus, CQApool values are constrained to the maximal observed CQApool value.

ŷi,corrected = ŷi + βload ∗
�

max(load)− ˆloadi

�
(4)

If the simulated load value exceeds the observed CQApool value, the excess load is
added to the corrected CQApool value (ŷi,corrected), as described in Equation (5). That is, the
CQAload value is simply passed through to the pool and no further clearance takes place,
depicted as the green solid line in Figure 3A. It was assumed that the purity no longer
decreased, and that a 1:1 propagation occurred.

ŷi,corrected = ŷi,corrected +
��� ˆloadi

���− |ymax| (5)

Below the Observed Load Range

If the simulated CQAload value is below the investigated load range, no purification
takes place, as visualized by the orange solid line in Figure 3A. This conservative correction,
as described in Equation (6), results in the CQAload value not being purified, and the same
concentration arriving in the pool.

ŷi,corrected = ŷi + (1 − βload) ∗ ˆ(loadi − min(load)) (6)
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3.2.2. Impurities (Best at Min)
Above the Observed Load Range

For impurities, the conservative approach follows that no clearance occurs if the simu-
lated CQAload values are above the investigated load ranges, as described by Equation (7)
and depicted by the orange solid line in Figure 3B.

ŷi,corrected = ŷi + (1 − βload) ∗ ˆ(loadi − max(load)) (7)

Below the Observed Load Range

If the simulated CQAload is below the investigated load range, but not below the
observed minimal CQApool value, the simulated CQApool value is forced to the minimal
observed CQApool value, as visualized as the green dashed line in Figure 3B.

ŷi,corrected = ŷi + βload ∗
�

min(load)− ˆloadi

�
(8)

If the simulated CQAload value is below the minimal observed CQApool value, the
CQAload value is passed to the pool without any clearance, as described and depicted as a
green solid line in Figure 3B.

ŷi,corrected = ŷi,corrected +
��� ˆloadi

���− |ymax| (9)

3.3. Uncertainty Intervals

Where implemented, process models (including the IPM 1.0) tend to estimate un-
certainty by sampling the confidence interval of the individual models. These intervals
determine the uncertainty of the model mean, but are not optimized for predicting manu-
facturing data over many batches. Therefore, tolerance intervals were added as the default
prediction setting for the IPM 2.0 data model on the basis of an established fixed-effect re-
gression model implementation [25]. As such, both the confidence and the future coverage
of the prediction are considered in the total variation, which, to the best of our knowledge,
is not currently used in any equivalent integrated process model.

3.4. Scale-Dependent Variable Simulation Procedure

IPM 1.0 did not describe the modeling and simulation of responses other than specific
clearances, which have scale-independent units that do not change over the UOs. To test
the feasibility of an alternative pathway for nonspecific or scale-dependent variables, we
propose modeling the product amount at the end of the upstream process (i.e., Harvest)
and then adjusting via the individual UOs to simulate Step Yields without requiring the
separate modeling of volumetric changes. This entails partially removing the response from
the process model chain while still retaining the impact by process parameters. CQAload is
replaced by a variable that was only modified by the model output and is assayed through
as much of the process as possible; in this case, Global Yield. The procedure is below and
is generalizable to any variable that has a component (i.e., Volume) not described in the
process models themselves.

As seen in Figure 4, the yield may be seen as a combination of Step Yield and Global
Yield. The proposed procedure during the IPM MC simulations is as follows:

1. Concentration at harvest converted Product Amount to amount either by a known fixed
volume or by sampling a distribution of feasible volumes.

2. Product Amount becomes the first downstream UO pool value.
3. Step Yields are fitted in the individual UO data, unconnected to the precursor UO, as

per Equation (10).
4. Step Yield is multiplied by the current Product Amount, and a new Product Amount

is calculated.
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5. The new Product Amount remains outside the model loop and is adjusted by the
subsequent UO Step Yield predictions.

6. In addition to modifying Product Amount, a new attribute is produced: Global Yield,
which is the current UO’s Product Amount divided by the original harvest Product
Amount (Equation (11)).

7. The above process repeats until drug substance and a final Global Yield is produced,
defined as the ratio of the final Product Amount to the original (max) Product Amount.

Step Yieldi =
Amounti

Amounti−1
(10)

Global Yieldi =
Amounti
Amount0

(11)

Figure 4. Step and Global Yield procedure as a model for scale-dependent variables. Product Amount is
determined from upstream processing and considered to be 100%. All subsequent Step Yields may be
removed from the linkage of UOs. Step Yields modify Product Amount by percentage recovery, which
in turn modifies the Global Yield, which is updated after each UO towards a final Global Yield metric
at DS.

Defining the acceptance criteria for Global Yield allows for the establishment of inter-
mediate acceptance criteria for Step Yields via parameter sensitivity analysis. While this
result does not produce a final Product Concentration per se, the final Product Amount may
be modified by final volume adjustments as needed to arrive at a concentration.

3.5. Feasibility Case Study Results

A proof of concept was performed using the dataset shared by an industry partner
described in the Methods section. This case study evaluates Step Yield to show the feasi-
bility of the above-mentioned improvements. The Step Yield IPM was built successfully,
containing all UO models. For each UO in the IPM chain, a Step Yieldload (i.e., the Step Yield
from the precursor UO) design space was determined and divided into equidistant points
called grids. The grid size covers a proposed range of likely Step Yields from the precursor
UO, purposefully chosen to be outside the observed Step Yield ranges. The holistic process
was then simulated at each grid per UO. With each simulation, the process was allowed to
culminate at DS, and the final result was compared to a Global Yield OOS limit determined
by a process expert. After repeating the simulation 200 times per grid size, a final %OOS
value was obtained.

The results are shown in Figures 5 and 6. In Figure 5, the simulated Step Yields and
their respective OOS results (%) are shown, which include extrapolated Step Yields (no OOS
was observed in the data). For most UOs, there exists an incoming Step Yield at which the
OOS rate starts to steeply rise, i.e., the Global Yield specification is no longer attainable.
Process experts were then able to fix the Step Yield acceptance criteria to the point at which
the OOS increase passes 5%.
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Figure 5. Parameter sensitivity analysis for Step Yield per UO. The y axis shows the proportion of
OOS results based on the global yield drug substance specification, which is based on simulated
incoming step yields per UO. Step yield results were extrapolated 10−20% outside the currently
observed results to test the feasibility of the extrapolation procedure.

Figure 6. Parallel coordinate plot with results of parameter sensitivity analysis for the establishment of
intermediate acceptance criteria for the Step Yield. Available manufacturing data are shown in various
colors sampled from several campaigns/scales. The proposed intermediate acceptance criteria are
marked in dark gray. Acceptance criteria were automatically generated across all intermediate UOs
via the likelihood of meeting DS specifications predetermined by process experts.

In Figure 6, all observed data are plotted against the results of the above IPM-derived
intermediate acceptance criteria. The acceptance criteria show a risk of increased OOS in
the penultimate UO, which the process experts investigated and confirmed as a limitation
of the current process. Subsequent actions were taken to adjust the process parameters to
meet this new limit. The results were confirmed by process experts to be used in support of
the final intermediate acceptance limit establishment.

There are instances of Step Yields with results >100%. Discussions were held with the
subject-matter experts, and these artifacts stemmed from variation within the analytical
method, i.e., variation in the load and pool values where both results were near 100%. The
plot may also indicate high fluctuations of Step Yields between UOs. However, these results
should be interpreted as independent of the precursor Step Yields. Since Step Yields always
have a starting load amount of 100%, it is not unexpected to have large differences in mean
yield in different UOs.
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Thus, leveraging a Global Yield DS specification and all the improvements described
above, plausible practical results were generated leading to adequate Step Yield intermediate
acceptance criteria.

4. Discussion
4.1. Data Model

The simplification from the original two-matrix procedure into a single matrix aims to
better meet the bioprocess development need of extracting data from differing scales. Scale
is assayable directly in the same model where design space and UO linkage are fit. The
manufacturing-based univariate model is replaced with a multivariate model, reducing the
overall error term, since varying PPs are controlled.

The single matrix of course also reduces effort in compiling the data for a DA. Other
than the addition of the individual CQAload, the matrix requires only the necessary pre-
processing for standard DoE-based regression analyses [26]. Moreover, it represents an
improvement on classic linkage studies where multiple UOs must be modeled as one unit.
Here, UOs may be modeled fully separately with no matrix overlap [27] while maintaining
the CQA linkage. This simplicity also protects against data entry errors between the scales.
Lastly, the data model provides normally distributed results since there is no longer a
potential for product or Cauchy distributions due to the manipulation of the two models.

Newly arising higher-order terms may also be of interest, such as the interaction
between Scale and PPs, which would give insight into the behavioral changes between scales
rather than a simple offset. This could be used to significantly strengthen the conclusion
of scale-down model qualifications, which are normally univariate. However, additional
degrees of freedom are required for these terms, and, given the generally minor range of
process parameter variables at a set point, the likelihood of an unfavorable correlation
structure or even a singular matrix increases. Cost–benefit analysis should be undertaken
before adding further terms.

There are further limitations to the current procedure that must be carefully considered.
The two additional factors that were added to the matrix (i.e., Scale and CQAload) are often
not explored factors in original DoEs. Specifically, this information is often available, but
was not included in the original design. The reassessment of appropriate design metrics
(i.e., correlation, aliasing, power) is, therefore, required to ensure that the regression may
still be performed. Less often, CQAload is not tested at all. In this case, it is not possible for
the data model to populate without additional context. Therefore, it is strongly advisable
to include these factors a priori in statistically underpinned designs or minimally assess
the data environment before beginning to fit models.

4.2. Extrapolation Procedure

The extrapolation procedure is a useful tool in bioprocess characterization since it
allows for decision making within a risk management framework, even in the absence
of data. The worst case defined in this procedure can allow for useful inferences about
the edges of the system. Practically, it allows for conservative intermediate acceptance
criteria and parameter limits to be provisionally established; these limits must otherwise be
constrained within the current UO’s observed data range.

Furthermore, this extrapolation procedure can be used as a stress test for subsequent
UOs. Upon generating an extreme value, all subsequent UOs may process much more
extreme input variables than those in their observed training data. Some of these UOs
were physically designed to manage these unexpectedly high values and thus produce
models that can easily purify excess material. Thus, one of two outcomes may be observed.
Unexplored edges of the system show weaknesses in downstream steps. If worst-case
results are easily managed in subsequent UOs, further experimental effort may be reduced
as the risk of OOS is lessened.

The primary limitation is that the physical behavior of the process under extreme
values is not known, and the system may react differently to the extrapolation assumptions.
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While this procedure utilizes worst-case assumptions, thereby leaning on patient safety,
these strict assumptions may nonetheless not hold upon fitting new data.

4.3. Scale-Dependent Variables

Simulating scale-dependent variables holistically over the process expands the appli-
cation of the IPM to variables describing product quantity or process performance. The
upshot is side stepping complexities arising in those variables having a volume component
(or any component) that is controlled in a way that is not simple to define in a procedure
or algorithm.

One operational disadvantage, in our experience, is that a lack of procedural strict-
ness (such as in the case of a CQA dilution or concentration) is occasionally leveraged
by operators towards increased manufacturing flexibility or buffer in achieving scale-
independent results. In certain cases, this flexibility is preferred in operations; thus, the
buy-in to this procedure may be dependent on the management’s view of quality or yield
outcome favorability.

4.4. Digital Environment and Real-Time Applications

Each complex step in bioprocess manufacturing potentially impacts the quality of
the final product, yet state-of-the-art practices focus on the static outputs of individual
UOs rather than on a holistic process model, particularly with regard to potential real-
time applications [1,4,28–31]. Having so far discussed the innovative improvements to
the IPM technology, it is now important to better define the framework for real-time
DA deployment.

As previously discussed, by simplifying the data format, individual UO models can
now easily be refitted by updating the single data matrix; thus, new predictions can be
seamlessly conducted. With the physical process holistically depicted in silico and with
a simple procedure to update the models, there needs only to be a framework for the
feedback loop in real time.

Figure 7 shows a proposed graphical user interface for an IPM depicting the UOs in
the upper half of the plot and the resulting predictions of the CQAs across the UOs in the
lower half. A real-time workflow should proceed as follows:

The process begins at UO1 and ends at UO5, as shown in the upper half of Figure 7.
At the start of the process, when no UO has been executed, the prediction of the resulting
CQAs is based on sampling a most likely setting (i.e., normal distribution around the set
point) of the PPs for each UO based on the variation of the large scale training dataset. This
PP uncertainty maximally propagates through the prediction of the resulting CQAs. As
the process progresses, however, and the actual PP settings are fed into the IPM (either
manually or by automated import using API interfaces), these PP values become fixed
points rather than distributions. Subsequent CQA predictions naturally become more
accurate. By the last UO, the accuracy of the predictions should equal the accuracy of the
individual UO model.

Figure 7 is, therefore, a snapshot of the process at a given time. The process is currently
at UO3, and the uncertainty of the PP from UO1 to UO3 was set to 0, as the PP values are
already known. These settings are immediately used to repredict the CQAs, creating a
feedback loop and allowing for a reaction to the new conditions. If, for example, a PP is
performed outside the normal operating ranges (shown as the orange bar at UO3 for PP4
in the plot), the effects of these PP settings are immediately shown in the lower half of the
plot, where the new probability of the CQA conforming to drug substance specifications
(depicted as red line) can be seen.
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Figure 7. Proposed control panel for IPM use in a real-time environment. Process parameters may
be controlled manually or through targeted APIs to either create a prediction around the process
parameter (set point plus expected normal operating variation) or to bring in the discrete value
when the PP setting is known. Predictions via MC simulations around the chance of specification
conformity can be updated immediately. Refitting the models may also be performed in real time or
at regular intervals.

This real-time prediction combined with the previously mentioned improvements
allows for the probability of an OOS event to be calculated ahead of time and enables
countermeasures to be taken as necessary. Furthermore, because predictions of scale-
dependent process performance characteristics are now also included, the IPM can be used
not only as a development tool for setting up an evaluating control strategy, but also as a
manufacturing companion to optimize the process in terms of performance and quality.

5. Conclusions

The combined improvements of this IPM represent substantial progress in the devel-
opment of a bioprocess DA. The original framework’s conceptual advantages were kept
while simplifying utilization, and expanding the scope, statistical rigor, applicability, and
quality and business objectives.

As a real-time DA, the IPM allows for simulations during which PP settings can be
quickly and seamlessly updated at the moment when new data are observed. Moreover, as
further data become available, they may be immediately added via APIs from data sources
to refit the model object. This provides the feedback loop both for observed parameter
settings and model refitting, crucially enabling the IPM to function as a true DA within a
DT concept.

Nonetheless, a substantial part of the improvements relies on the consistent testing of
starting material CQAs, which is not universally performed. Thus, to gain benefits, more
investment is needed in ensuring as comprehensive a testing plan as possible. While this
does not need to be exhaustive, an adequate testing strategy should be built to provide
sufficient CQA data at critical junctures to adequately profit from this procedure.

Further development should also be considered here. As this data model increasingly
combines large- and small-scale data in the same data matrix, we see particular interest
in the investigation of differences in scale behavior, offset, and variances where current
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scale- down model qualifications are limited. The ease of comparing scales may motivate
manufacturing managers to perform runs at the edge of normal operating ranges to gain
insight into interaction effects with PPs while avoiding the risk of OOS results.

Moreover, the IPM technology could be used not only as a tool for control strategy
development and deviation management, but also for planning experiments. For example,
simulated spiking studies could be used to show which experiments would be needed to
identify design space adaptations to decrease the OOS probability in a data-driven manner.

Ultimately, a holistic DA for a simple and robust bioprocess digital twin is eminently
feasible and should continue to mature as an essential modeling tool in bioprocess develop-
ment and manufacturing.
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Conclusion 4
„We live in a world of frightful givens. It is given that

you behave like this, given that you will care about
that. No one thinks about the givens.

— Ian Malcolm
Jurassic Park„Assignable causes of variation may be found and

eliminated

— Walter Shewhart
-Postulate 3-

4.1 Summary

The innovations developed within this thesis broadly confirm that substantial progress
towards originally defined QbD goals is realistic and, in fact, already integrable in the
industry. Furthermore, there is generally adequate architecture in place in the industry that
will enable rapid deployment of these tools in the form of an increasingly mature bioprocess
digital twin technology.

To enable the above described innovations, wide spread availability of infrastructure within
which the development scientist can establish modeling practices must be present. As
mentioned in the background, most project partners already had access to standard sta-
tistical software such as SAS JMP or MODDE, which shows willingness to accept models
as fundamental to development work. Significantly more important, however, is the wide
availability and acceptance of statistical programming languages such as Python, in which
the innovations described were developed. The acceptance of these tools allows a flexi-
bility of innovation and ease of positioning the procedures within larger IT environments.
That is, while a statistical software may produce models which are then described in a
report, the model objects from a python class may be integrated into the back-end of an IT
manufacturing solution, as described in 3.4.

Cultural acceptance, not only of the statistical models, but also of the level of abstraction
required to interpret the Monte Carlo simulations running over the entire process model, led
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to a buy-in of the results that may not have been present even a few years ago. Understanding
that the models produced interpretable, inferential results per unit operation, which simply
are transferred to the next model may have assisted in creating this buy-in, as in 3.2
and 3.3. Paradoxically, one could speculate that the proliferation of black-box machine
learning algorithms, which very rarely allows insight into the inner working of the model,
leads to an acceptance of the IPM, as long as the individual unit operation models are
able to be understood inferentially. Furthermore, the proposed user interface for running
the simulations as piloted in 3.4 along with reasonably user-friendly processing speeds,
()whereby even computationally heavy Monte Carlos simulations were completed in a few
seconds), lead to an ease of use for non-data scientists.

With these IT and cultural enablers in place, this thesis proves the following major ad-
vances:

The ability to successfully utilize algorithmic and procedural tools to increase both scope
of variable type and data source type is eminently achievable. Where the current standard
is to look for scalar data from direct or simple, derived measurements to serve as process
inputs, it has now been shown that domain specific latent variables can also be easily and
automatically extracted to be monitored as CPPs. These new variables can then be added
directly to the risk management system. Furthermore, the importance of these variables can
be detected through robust multivariate analyses like PCA, attached directly to the extraction
procedure. Increased acceptance of latent, multivariate processes by our project partners as
well as the ease of use of procedures such as ROBPCA greatly assists in the success of the
innovation and leads to further systematic use in manufacturing.

The IPM can then build upon this more complete variable set and implement these into new
applications that directly target QbD goals. Relationships to product specifications can now
be mathematically defined. Using PSAs, this definition allows for a targeted simulation back-
calculation to determine intermediate acceptance criteria. A similar PSA structure enables
the determination of the PAR of the CPPs and additionally transforms this information into
risk assessment severity rankings. Ultimately, the majority of QbD deliverables are improved
via these procedures; risk rankings, intermediate acceptance criteria, and control strategies
represent the bulk of the QbD workflow in Stage I process validation. The existing 2017 IPM
framework was essential to the establishment of these applications, but also shined light on
where the structure could be improved.

Finally, we show that we can centralize the above components into a repository that can be
easily managed and updated. This places the totality of the IPM and its applications directly
within an architecture that can be used in manufacturing as a digital asset of a digital twin.
Ensuring consistent and real-time product quality results at drug substance, and then feeding
these results back into the model, is at the heart of the potential of a digital twin. And with
these incremental improvements, the IPM now may be seen as a mature digital asset in
both development and manufacturing, to be further used for process optimization and risk
mitigation, all in real-time.
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Fig. 4.1.: Achievements of this dissertation: (1)uncovered latent variables within the pro-
cess potentially having critical quality impact, (2) established applications of risk
assessment rankings and control strategy deliverables within the integrated pro-
cess model framework, and (3) developed a procedure to determine intermediate
acceptance criteria within the same holistic framework. Finally, (4) improved the
framework itself which connects the process holistically at each unit operation
and bases all results on drug substance, while deploying this in a feedback loop
in manufacturing

This thesis, therefore, shows that the industry can realistically take a large step toward the
creation and leveraging of bioprocesses digital twins for the entire life cycle as defined in
QbD.
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Impact 5
The innovations in this thesis have two separate impacts on the different stages of the bio-
process lifecycle: the methods of development and the technology powering the methods.

The primary methods developed in the course of this thesis impact Stage 1 and Stage 3 of the
FDA Validation Lifecycle. Bioprocess development (Stage 1) modeling is strengthened in its
ability to produce QbD milestones based on drug substance via the IPM. That is, the current
standard state-of-the-art statistically underpinned analysis centered on the unit operation
can now be refocused as an integrated part of a centralized model. Such a mentality shift
emphasizes that individual analyses will never be as useful as the analysis within the holistic
process. Even the experimental designs may consider the integrated process model impact
before any experimental run table is generated (see 6). Thus, from the earliest development
stages, the scientist must consider the holistic model of the commercial process; exactly as
QbD intended.

Commercial manufacturing (Stage 3), in turn, can now receive the completed IPM, (refit
with any late-stage development and validation data) for use in process optimization and
risk mitigation. All further experimental and manufacturing results should now be seen
within the context of the IPM. This leads to another mentality shift: manufacturers can
target and execute runs with specific manufacturing conditions that will statistically benefit
the IPM to a maximum (see 6).

The technological impact is a shift in the way the multilinear regression matrices are
considered and then built. That is, the IPM data structure has been simplified into a single
data matrix, which now directly confronts scale issues and unit operation linkages with
minimal additional complexity. Including the scale-linkage will allow scale-down model
equivalence testing to potentially take place entirely within the existing factor matrix, with
no need for additional runs. The addition of individual CQA load values helps contextualize
holistic development decision-making, including where and when to test CQAs. For example,
sampling plans should be better targeted to CQAs at their critical steps and precursors. This
linkage impacts the general design strategy in development. If the modeling approaches
are eminently utilizable, there is no reason not to design the characterization without the
multi-step process in mind. This will ensure, even in the absence of a full IPM, a minimum
of linkage to other unit operations in the process. Such a modeling structure will strengthen
holistic results.

These innovations simplify the technical realization of the QbD milestones; how increasing
use of simulations aligns mathematically and definitionally with QbD. That is, if the metrics
required by regulatory authorities are able to be translated into mathematical definitions,
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which are de facto described in the equations of the simulation applications, a virtual straight
line can be made from the concept of QbD through the ICH and FDA guidelines to validation
outputs.

These approaches then further establish the central use of Monte Carlo-based applications
as a standard of integrated process simulation procedures. As bioprocesses are subject
to high amounts of natural variation, it goes that a simulation procedure with focus on
the propagation of error would be the primary tool used in risk management procedures.
The successful use of several Monte Carlo methods within this dissertation should serve to
reinforce this point.

It is our hope that both the methodological and technological impact of this thesis assists
in forming a paradigm shift in how we reach QbD deliverables larger than the sum of the
individual applications. Overall our design and technology in development now centers
increasingly around what quality means to the patient impact.
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Outlook 6
Much progress has been made in the applications of IPM technology; nonetheless, it is not
yet the standard approach in bioprocess development. Significant effort is still required to
make these approaches a mainstay in the industry. This thesis shines a light on the following
principle areas that must still be investigated.

Discovering latent variables in multivariate datasets is becoming increasingly established.
However, the design of the extraction algorithms and the dynamic process phases they rely
on, are highly specific to the individual process. Improvements in platform processing, or
minimally a generalized dynamic model of latent variable extraction, would help bring in-
formative priors into new development projects. Dynamic phase robustness could be further
improved upon by machine learning techniques such as random forest where detection of
latency is more determined by prediction outcome rather than with inference.

Multivariate tools are increasingly common, but are still limited to use by advanced statistics
users or pure statisticians. Ease of use of these methods is therefore critical. ROBPCA was
used successfully in our contribution, but is largely only accessible to users with experience
in the programming frameworks. Utilization of such tools may be straightforward, but still
requires implementation in the architecture of choice with a simple user interface. The risk
of course is that these tools go unused in the absence of statistical experts. Usability and
error-proofing must be considered practically to gain maximum benefit from these advanced
techniques.

Risk rankings were successfully evaluated using data-driven IPMs, but only for the severity
ranking. QbD theory also suggests assessing frequency and detectability of failure modes.
Further research could mathematically define these rankings and link them to the IPM.
This brings up a further, larger point: there is an interesting gap that could also be filled
between risk assessments and the outcomes of development data. In his work in 2021,
Borchert described a rudimentary IPM that could establish models based purely on the risk
rankings (i.e. severity and frequency) as defined by process experts. This is effectively a
model built on the quantification of risk rankings alone [7]. Linking this work with the
linear transformation of IPM data into risk rankings could provide an interesting feedback
loop. In essence, one could start an IPM without any data (as is the case in most early
development phases), which leads to improvements in the factor selection at a given unit
operation in process characterization. Then, upon generating data, the rankings would
be revised as in 3.2. A feedback loop would then iteratively replace each risk-based unit
operation model in the IPM with the model based on a data model, once available, creating
an entirely IPM based development. Such a feedback loop would allow a focus on drug
substance specifications from the earliest stage of development through to validation.
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Of course, the IPM is, by design, not limited to statistical models. Mechanistic models could
certainly be added to the framework, similar to the flowsheet models described in 1.2.2. The
framework allows for any model object that has inputs from the process as well as an output
which can be fed into the subsequent unit operation model. In quality applications such as
those described in 3.2 and 3.3, this is the load and pool quality attribute itself. Therefore,
an interesting area of further development would be to describe this pool-load relationship
mechanistically for quality attributes, of which we have seen relatively few. Of course,
perhaps the most promising area is rather hybrid models, wherein a relationship is partially
described by the data and partly by a mechanistic relationship. This could promisingly bring
the best of both mechanistic and statistical worlds into the IPM.

A well-defined IPM would likely save experimental effort as well. We see that the IPM also
has the potential to drive the selection of future experiments. The beginnings of research
have started here, in what is called the integrated or holistic process design [35]. Such
an algorithm would take available IPM data to optimize the next experiment or series of
experiments. This could be seen as analogous to model-based DoE designs [28], but with a
holistic perspective, always centering on drug substance specifications.

Concentrating on drug substance specifications: one final important area that developed
through this work was the importance of understanding the true meaning of a drug sub-
stance specification. QbD theory well defines how this should be determined conceptually;
specifications should be set to the point outside of which the CQAs have an impact on
patient safety. In practice, however, there is very little literature in the field regarding the
quantification of these limits vis-a-vis patient impact other than toxicology studies (which are
not performed for every CQA). Moreover, even in the presence of toxicological studies, often
significantly tighter limits are required by regulators since process control has a statistical
meaning outside of pure patient pharmacology. An important field of research here would
be to continue to establish specifications with true meaning for patient safety. This would
create clearer and more interpretable meaning to the outcome of bioprocess development
and further connect QbD with practical outcomes.

6.1 Conclusion

QbD deliverables, as defined by the ICH guidelines and FDA Validation guidelines, have
been well established, but not used to the full extent of the definition of ensuring quality
at the point of patient impact. As shown in this thesis, utilizing an improved integrated
process model, QbD deliverables may be achieved to a more rigorous definitional standard
and with increasing ease of implementation. Furthermore, once in place, these IPMs
can support a digital twin and fulfill the potential, long sought, in the holistic control of
biopharmaceuticals.
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Supplemental Data and Plots 
Linking Bioprocess Development to Quality‐by‐Design Milestones via Digital Twin Applications 
 

Model tables 

Table S1: Overview of identified models based on DoE data. AIC was used as a primary identifier of selected model. R2, Q2, RMSE, 
and p‐values, as well as residual analysis, were used alongside process expertise to determine acceptance of the model within 
the IPM. All residual variation is accounted for within the prediction interval of the simulated values within the IPM.  (+) indicates 
positive coefficient and (‐) indicates negative coefficient.   

Unit Op Blinded Response Model R2 Q2 RMSE P Parameters 

CA
P 

CQA1prod Main SCX Quadratic 0.45 0.34 1.119 0.019 

(‐) Load Density 

(+) Load Density2 

(‐) Residence Time 

CQA1imp BPG Linear 0.24 0.11 0.229 0.011 (+) Residence Time 

CQA2imp HMW SEC Quadratic 0.67 0.57 0.309 0.0001 
(‐) Load Density 

(+) Load Density2 

AT
 

CQA1prod Main SCX Interaction/Quadratic 0.85 0.55 0.016 0.0001 

(‐) Concentration  

(+) pH AT   

(‐) Hold Time AT   

(+) Concentration * pH AT  

(‐) Concentration * Hold AT 

(+) pH AT * Hold AT   

(‐) pH AT2  

CQA1imp BPG Interaction/Quadratic 0.94 0.92 0.04 0.0001 

(‐) Concentration  

(+) pH AT   

(‐) Hold Time AT 

(+) Neutr. pH 

(+) Concentration * pH AT  

(‐) Concentration * Neutr. pH  

(+) pH AT * Hold AT   

(‐) pH AT2  

(+) Hold AT2 

CQA2imp HMW SEC Interaction/Quadratic 0.92 0.89 0.672 0.0001 

(‐) Concentration  

(+) pH AT   

(‐) Hold Time AT   

(+) Neutr. Hold Time 

(‐) pH AT * Neutr. Hold  

(+) Concentration2 

(+) Hold AT2 

(+) Neutr. Hold 2 

CQA3imp LMW SEC Interaction/Quadratic 0.43 0.12 0.031 0.0087 

(‐) Concentration  

(+) pH AT   

(‐) Hold Time AT   

(+) Neutr. Hold Time 

(‐) Neutr. pH  

(‐) Concentration * pH AT  

(‐) Hold AT2 

(+) Neutr. pH2 

(‐) Concentration2 
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Unit Op Blinded Response Model R2 Q2 RMSE P Parameters 

AE
X 

CQA1prod Main SCX Interaction 0.77 0.68 0.01 0.0001 

(‐) Load Density 

(‐) Equil. pH 

(+) Load Density * Equil pH   

(‐) Equil. pH2 

CQA1imp BPG Quadratic 0.53 0.43 0.103 0.002 
(+) Equil. pH 

(+) Equil. pH2 

CQA2imp HMW SEC Quadratic 0.65 0.17 0.067 0.0001 

(+) Equil. pH 

(‐) Equil. Conductivity 

(+) Equil. pH2 

CQA3imp LMW SEC Quadratic 0.54 0.41 0.037 0.0005 

(+) Equil. pH 

(‐) Equil. Conductivity 

(+) Equil. Conductivity2 

CE
X 

CQA1prod Main SCX 
Interaction 
/ 
Quadratic  

0.76 0.64 0.001 0.0001 

(+) Elu. Conductivity  

(+) Load Density  

(+) Load Conductivity 

(+) Load / Elu. pH 

(‐) Elu. Cond. * Load / Elu. pH 

(+) Load Cond. 2 

(‐) Load / Elu. pH2 

CQA1imp BPG 
Interaction 
/ 
Quadratic 

0.77 0.65 0.068 0.0001 

(‐) Elu. Conductivity 

 (‐) Load Density  

(‐) Load / Elu. pH 

(+) Elu. Cond. * Load Density  

(+) Elu. Cond. * Load / Elu. pH 

(+) Elu Cond.2 

CQA2imp HMW SEC Linear 0.33 0.22 0.598 0.0005 
(‐) Elu. Conductivity 

(‐) Load / Elu. pH 

CQA3imp LMW SEC Quadratic 0.4 0.31 0.434 0.0007 

(‐) Elu. Conductivity 

(+) Load Conductivity 

(+) Load / Elu. pH 

(‐) Load Cond.2 
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Table S2: Overview of models showing a correlation between specific CQA clearances and CQA load (load models). (+) indicates a 
positive regression line between clearance and load, whereas (‐) indicates a negative regression line between clearance and load 

 

Unit Operation CQA R2 Effect 
AT CQA1imp 0.75 (+) 

AEX CQA2imp 0.76 (+) 
CQA3imp 0.70 (‐) 

DF CQA3imp 0.76 (+) 
CEX CQA1imp 0.73 (‐) 

UFDF CQA1imp 0.95 (‐) 
CQA2imp 0.95 (+) 
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Simulation Trend Plots 

For all plots below, 1000 runs were simulated over the full process(top) and plotted against the sum of existing real 
manufacturing data (bottom) as well as the Out‐of‐Acceptance limit (red). Additionally, given only this information, a PPK result 
is given for OOA, that is, how likely given the normal distribution around the real and simulated data would be OOA at drug 
substance, which can be used as a comparative diagnostic of IPM quality. 

 
Figure S1: Simulation trend plot for CQA1prod  
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Figure S2: Simulation trend plot for CQA1imp 
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Figure S3: Simulation trend plot for CQA3imp 
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PSA CQA Plots 

For all plots below, 1000 simulations per grid point were performed over the full process. The results in OOA are plotted across 
the relative screening range.  The screening range is depicted such that 0 is always the set point condition and the remaining 
screening ranges are coded between ‐2, 2.  

 

 
Figure S4: CQA1imp CQA PSA plot 
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Figure S5: CQA2imp CQA PSA plot 
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Figure S6: CQA3imp CQA PSA plot 
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PSA CPP Plots 

For all plots below, 1000 simulations per grid point were performed over the full process. The results in OOA are plotted across 
the individual CPP range.  The area is grey is excluded from the proposed manufacturing PAR range.  

 

Figure S7: CEX_Load Density CPP PSA plot 

  



Supplemental Data and Plots 
Linking Bioprocess Development to Quality‐by‐Design Milestones via Digital Twin Applications 
 

 
Figure S8: CEX_Load Density CPP PSA Plot 

 

 
Figure S9: CEX_Elu. Conductivity CPP PSA plot 
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Supplementary Material
Table 1: Overview of models describing the specific clearance as a function of process 
parameters. R2, Q2, and p-values, as well as residual analysis, were used alongside process 
expertise to determine acceptance of the model within the IPM. 

Unit 
Operation CQA Adj. R2 Q2 p-value (F-

Statistic)
No of 
Obs Parameters

Capture HCP ELISA 0.633 0.427 0.0674 5 Const (-1.30e-17), Load Pool Temperature 
(8.51e-0.1)

CEX HCP ELISA 0.913 0.868 2.36E-05 11
Const (-2.637e-16), Elution Buffer pH (-
8.397e-01), Elution Buffer Cond (-4.745e-
01)

CEX UP-SEC Aggregates 0.985 0.954 2.70E-07 11

Const (-1.665e-16), Elution Buffer pH (-
7.616e-01), Elution Buffer Cond (-5.822e-
01), Elution Buffer pH*Elution Buffer Cond 
(-2.521e-01)

CEX UP-SEC Monomer 0.996 0.987 1.14E-06 11

Const (0.246), Elution Buffer pH (-0.644), 
Elution Buffer Cond (-0.571), Elution Buffer 
pH*Elution Buffer Cond (-0.444), Elution 
Buffer pH^2 (-0.179), Elution Buffer 
Cond^2 (-0.092)

HIC UP-SEC Aggregates 0.453 0.321 0.00572 17 Const (-7.494e-16), Loading Pool pH (-
5.001e-01), Loading Pool Temp (5.188e-01)
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Table 2: Overview of models describing the specification clearance as function of the input 
material. R2, Q2, and p-values, as well as residual analysis, were used alongside process 
expertise to determine acceptance of the model within the IPM.  

Unit 
Operation CQA Adj. R2 Q2 p-value (F-

Statistic)
No of 
Obs Parameters

Capture HCP ELISA 0.424 0.427 0.0246 10 Const (4.921), HCP ELISA
(0.000003)

Depth 
Filtration HCP ELISA 0.892 0.869 7.78E-05 9 Const (-1.429), HCP ELISA

(0.00438)

Depth 
Filtration

UP-SEC 
Aggregates 0.706 0.565 0.0028 9 Const (-0.973), UP-SEC 

Aggregate (0.712)

Depth 
Filtration

UP-SEC 
Monomer 0.487 0.352 0.0219 9 Const (-0.857), UP-SEC 

Monomer (-0.00874)

AEX HCP ELISA 0.835 0.691 0.000136 10 Const (0.233), HCP ELISA
(0.00614)

AEX UP-SEC 
Aggregates 0.699 0.65 0.000119 14 Const (-0.368), UP-SEC 

Aggregate (0.268)

CEX UP-SEC 
Monomer 0.845 0.812 2.10E-06 14 Const (0.358), UP-SEC 

Monomer (-0.00353)

HIC UP-SEC 
Monomer 0.362 0.205 0.0387 10 Const (0.651), UP-SEC 

Monomer (-0.00655)

Bulk UP-SEC 
Monomer 0.472 0.36 0.00397 14 Const (-1.033), UP-SEC 

Monomer (0.0104)

Table 3: Specific clearances were calculated by fitting a normal distribution to the available 
manufacturing data. 

Unit Operation CQA Mean Std No of Obs
Virus Inactivation HCP ELISA 0.131 0.636 9

Virus Inactivation UP-SEC 
Aggregates 0.103 0.196 9

Virus Inactivation UP-SEC 
Monomer 0.00198 0.0029 9

Viral Filtration UP-SEC 
Aggregates -0.00243 0.0932 14

Viral Filtration UP-SEC 
Monomer -0.000249 0.000769 14



3

UFDF UP-SEC 
Monomer -0.00103 0.000491 10

Bulk UP-SEC 
Aggregates -0.282 0.223 14



A.3 A3 Supporting Information: Architectural &
Technological Improvements to Integrated
Bioprocess Models towards Real-Time Applications

A.3 A3 Supporting Information: Architectural & Technological
Improvements to Integrated Bioprocess Models towards

Real-Time Applications

127



Supplemental Data and Plots
Integrated Bioprocess Model: Improvements, Case Study and Real Time Application

Supplementary Models & Data

Architectural & Technological Improvements to Integrated Bioprocess Models towards Real-Time 
Applications

Table S1: Overview of identified models based on DoE data. AIC was used as a primary identifier of selected model. R2, Q2, 
RMSE, and p-values, as well as residual analysis, were used alongside process expertise to determine acceptance of the model 
within the IPM. All residual variation is accounted for within the prediction interval of the simulated values within the IPM.  (+) 
indicates positive coefficient and (-) indicates negative coefficient.  (cat) indicates a categorical effect, for which there are multiple 
levels, with either (+) or (-) coefficients from the intercept 

Response Unit Op Model R2 Q2 RMSE P Parameters

Step Yield

UO1 Starting UO (100%) - - - - -

UO2 Linear 0.96 0.92 5.25 <0.0001 (cat)   Campaign
UO3

Linear 0.47 0.38 5.39 <0.0001 (cat)   Campaign

UO4 No model found - - - - -

UO5 Quadratic Interaction 0.72 0.59 8.44 <0.0001

(+) parameter1

(-) parameter12

(+) parameter2

(+) parameter3

(+) parameter2*parameter3

UO6 Quadratic 0.26 0.15 10.98 0.0066

(cat) Campaign

(+) parameter1

(+) parameter12

UO7 Quadratic 0.17 0.06 5.82 0.0193
(-) parameter1

(+) parameter12

UO8 Quadratic 0.33 0.14 10.63 0.0007

(cat)  Campaign

(-) parameter1

(+) paramter2

(-) paramter22
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Table S2: Step Yield Data sampled from different campaigns/scales. Missing data were discussed with process experts and 
confirmed before model fitting. DoE Data not included in order to compare data against expected manufacturing data.

Batch
Step Yield 

UO1 UO2 UO3 UO4 UO5 UO6 UO7 UO8
C1 Batch1 100 90.7 87.1 95.7 87.5
C1 Batch2 100 93.4 91.0 98.7 78.0 52.1 50.5 93.4
C1 Batch3 100 103.8 87.2 91.8 82.8 89.3 61.4 90.4
C1 Batch4 100 98.0 88.0 90.5 93.1 93.8 52.7 83.1
C1 Batch5 100 96.2 81.2 93.5 90.7 66.9 62.4 80.4
C1 Batch6 100 93.4 85.0 97.2 89.8 92.0 53.9 81.9
C1 Batch7 100 90.6 83.6 96.3 91.2 86.2 52.6 89.8
C1 Batch8 100 96.7 78.6 97.7 84.0 88.4 56.5 86.6
C1 Batch9 100 88.0 92.5 91.1 87.1 89.0 55.2 86.6
C1 Batch10 100 98.2 86.4 95.3 74.5 76.0 56.0 83.4
C1 Batch11 100 86.0 94.1 94.5 73.1 79.7 53.6 81.2
C1 Batch12 100 90.9 76.0 96.1 69.6 74.3 59.2 91.5
C2 Batch1 100 106.6 83.7 102.1 82.9 96.4 58.7 73.4
C2 Batch2 100 108.8 81.1 99.9 62.8 83.0 58.6 77.1
C2 Batch3 100 100.3 78.8 104.6 76.3 119.4 42.7 82.8
C2 Batch4 100 98.2 74.5 112.2 69.8 90.7 57.0 81.4
C2 Batch5 100 90.4 98.9 79.2 88.9 82.2
C2 Batch6 100 108.5 76.0 83.8 81.9 93.9 39.2 72.6
C3 Batch1 100 88.8 100.6 79.0 89.9 64.4 80.2
C3 Batch2 100 94.7 92.6 83.5 88.5 59.0 90.3
C3 Batch3 100 90.8 97.2 83.1 82.6 50.3 61.9
C3 Batch4 100 85.4 99.2 83.2 89.7 46.6 105.6
C3 Batch5 100 89.0 97.6 116.0 60.7 45.8
C4 Batch1 100 80.1 93.2 100.2 81.0 96.9 63.1 75.4
C4 Batch2 100 100.1 99.4 90.3 81.4 88.8 56.0 86.5
C4 Batch3 100 95.1 99.7 89.4 84.1 95.3 55.9 75.7
C4 Batch4 100 91.3 101.2 87.5 91.6 96.5 59.3 53.9
C4 Batch5 100 89.5 93.6 100.4 87.3 102.1 55.0 83.9
C4 Batch6 100 92.5 99.5 106.5 79.3 100.7 50.9 72.8
C4 Batch7 100 93.5 101.3 91.3 91.1 94.2 61.4 74.3
C4 Batch8 100 92.0 93.7 102.6 81.3 78.6 65.2 68.9
C4 Batch9 100 97.4 93.7 100.5 81.0 102.9 54.9 81.6
C4 Batch10 100 94.0 104.3 91.2 87.6 99.8 56.9 78.2
C4 Batch11 100 95.6 88.8 94.9 89.5 93.7 53.1 85.0
C4 Batch12 100 101.1 97.5 90.9 83.6 92.9 54.8 98.9
C4 Batch13 100 94.4 95.6 93.3 81.2 101.9 55.8 78.8
C4 Batch14 100 94.9 91.9 111.3 73.4 86.4 61.6 72.8
C4 Batch15 100 99.4 94.9 101.1 73.8 75.9 66.1 89.0
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