
10

Hardness Characterisations and Size-Width Lower Bounds
for QBF Resolution∗

OLAF BEYERSDORFF, Friedrich-Schiller-Universität Jena, Germany

JOSHUA BLINKHORN, Friedrich-Schiller-Universität Jena, Germany

MEENA MAHAJAN, The Institute of Mathematical Sciences, HBNI, Chennai, India

TOMÁŠ PEITL, TU Wien, Austria

We provide a tight characterisation of proof size in resolution for quantified Boolean formulas (QBF) via circuit
complexity. Such a characterisation was previously obtained for a hierarchy of QBF Frege systems [16], but

leaving open the most important case of QBF resolution. Different from the Frege case, our characterisation
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with. Our decision list model is well suited to compute countermodels for QBFs. Our characterisation works

for both Q-Resolution and QU-Resolution.
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of term decision lists; this may be of independent interest.
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1 INTRODUCTION
Proof complexity is a field at the intersection of logic and complexity that studies the difficulty

of proving formal theorems, where difficulty of proving is associated with the size of proofs

in different proof calculi. Obtaining lower bounds to the size of proofs is the central and most

challenging goal in proof complexity, and the endeavour bears tight relations to central questions

in computational complexity [24, 35] and first-order logic [5, 23]. In addition to this foundational

quest, proof complexity has become the main theoretical tool for the analysis of powerful SAT

solvers that routinely solve huge industrial instances of the NP-complete SAT problem [19, 41, 49].
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Many conceptually different proof systems have been studied, but the resolution system [17, 45]

– operating on clauses and using just one rule – has received by far the greatest attention. This

is because resolution is a foundational system from the theoretical point of view [46], but also

because resolution (and its subsystems) underpin modern SAT solving [19, 41], whereby lower

bounds on resolution proof size provide lower bounds on solving time.

In the past two decades, researchers have tried to lift the successes of SAT solving and proposi-

tional proof complexity to even more computationally challenging settings, with quantified Boolean
formulas (QBF) receiving key attention. As a PSPACE-complete problem, QBF widely generalises

SAT and encompasses the polynomial hierarchy, a source of many practical problems [26, 34, 40]

that are efficiently tackled by modern QBF solvers. As in the propositional case, QBF resolution

systems play a key role in understanding the efficiency and limits of current solving. Arguably,

the simplest QBF resolution system is QU-Res, augmenting propositional resolution by just one

universal reduction rule [27, 33].

There is a long-standing belief in the proof complexity community (cf. [3]) that there exist

strong connections between the logical problem of determining the size of the shortest proof for a

given formula (proof size bounds) and the complexity problem of finding small circuits for explicit

functions corresponding to the formula (circuit bounds).

While such a formal connection has so far appeared elusive for central propositional proof

systems such as resolution or Frege systems, some connections are known, for example between

algebraic proof systems and algebraic circuit complexity [28]. Arguably, the clearest such con-

nection has been shown in the QBF domain, between the hierarchy of QBF Frege systems and

the corresponding circuit classes. For QBF Frege (where lines are propositional formulas, i.e. NC1

circuits) the connection manifests as follows: there are QBFs that require superpolynomial-size

proofs in QBF Frege if, and only if, there are functions requiring superpolynomial-size NC1
circuits

or there are propositional formulas requiring superpolynomial-size propositional Frege proofs [16].

This characterisation unites central problems from circuit complexity (NC1
lower bounds) with

central problems from proof complexity (Frege lower bounds). However, such a connection has

remained open for resolution systems (either QBF or propositional), which are of prime importance,

theoretically and practically.

1.1 Our contributions
A. CharacterisingQU-Res hardness on bounded alternation.We obtain a tight characterisation
of QU-Res hardness in terms of circuit lower bounds. More precisely, we show that a sequence of

QBFs 𝑄𝑛 of bounded quantifier complexity requires superpolynomial QU-Res proofs if and only if

each countermodel for 𝑄𝑛 requires superpolynomial circuit size (in a natural circuit model defined

on decision lists as explained below) or if 𝑄𝑛 exhibits propositional resolution hardness (defined in

a precise sense, Theorem 4.18). We thus identify a dichotomy for QU-Res hardness: it either rests on
circuit lower bounds or on propositional resolution lower bounds. We note that the second case is

inevitable: each propositional resolution lower bound (e.g. for the pigeonhole principle [29]) can be

easily turned into a QU-Res lower bound. The surprising insight is that ‘genuine QBF hardness’ (cf.
[14, 20]) can be completely characterised by circuit hardness.

Our result is best obtained in a model of QBF systems that ‘filters out’ propositional hardness

(the second case above). For this we use the model of oracle QBF proof systems defined in [14],

which employs an NP oracle to perform arbitrary propositional entailments in one inference step.

For example, in the oracle system QUNP
- Res, propositional resolution derivations of arbitrary size

can be performed in just one step. The use of an NP oracle in QUNP
- Res is akin to the use of SAT

solvers as oracles in QBF solving [39].
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The hardness characterisation we obtain for QUNP
- Res is in terms of unified decision lists (UDL).

This is a natural adaptation of the classical model of decision lists [44], which computes functions

{0, 1}𝑛 → {0, 1}, to multi-output functions {0, 1}𝑛 → {0, 1}𝑚 . Our first main result (Theorem 4.2)

shows that for bounded-alternation QBFs, proof size in QUNP
- Res is polynomially related to the size

of UDLs computing countermodels of the QBF.

Technically, this result is shown via two simulations. The first efficiently extracts UDLs from

QUNP
- Res proofs (Theorem 4.5). Single-output decision lists have been used before to extract winning

strategies for QBFs [2, 8, 10]. Here we show that winning strategies can also be extracted via multi-

output decision lists, and these can be combined via a direct product construction (Definition 4.3) into

one single UDL that computes the countermodel. We argue that representing the countermodel by

just one function (computed by the UDL) is quite natural. However, it differs from the conventional

approach, which represents the countermodel as a collection of Herbrand functions, one for each

universal variable.

The second simulation turns a UDL into aQUNP
- Res refutation (Theorem 4.11). This is conceptually

novel, as – to the best of our knowledge – the efficient construction of proofs from countermodels

has not been considered before. In the course of the simulation, we obtain a normal form for proofs

via the entailment sequence associated with a UDL (Definition 4.8). Inference steps in this entailment

sequence also allow us to pinpoint sources for propositional hardness that arise when replacing

NP oracle calls with actual resolution derivations. This way we obtain the dichotomy for QU-Res
explained above (Theorem 4.18).

B. QU-Resolution and Q-Resolution.While QU-Res is arguably the simplest QBF resolution

system from a logical perspective (it just adds the universal reduction rule to propositional resolu-

tion), there are other QBF resolution systems that better correspond to ideas in QBF solving. A core

system among these is Q-Resolution (Q-Res), which is also historically the first QBF resolution

system [33]. Q-Res is a restriction of QU-Res in which resolution pivots must be existential. This

corresponds to techniques in QCDCL solving [38] (even though Q-Res does not capture QCDCL
precisely [31]).

The system QU-Res is exponentially stronger than Q-Res [27], the separation provided by the

prominent KBKF𝑛 formulas [33]. These formulas use unbounded quantifier alternations, and indeed,

we show that every separation must be of this form. We obtain the surprising result that Q-Res
and QU-Res are polynomially equivalent on QBFs of bounded quantifier alternation (Theorem 5.4).

This simulation is shown by a direct construction.

As a consequence, our hardness characterisation in terms of UDLs transfers directly to Q-Res
(Corollary 5.6).

C. Size and width for QBF Resolution. Our new connection between QBF resolution and UDLs

not only provides a tight characterisation of QBF resolution hardness, it also paves the way towards

a powerful lower-bound method. We show that lower bounds on resolution width – defined as the

(existential) size of the largest clause in the proof – directly imply lower bounds for proof size. The

celebrated result of Ben-Sasson &Wigderson [4] provides such a size-width result for propositional

resolution. Indeed, the vast majority of resolution hardness results are nowadays shown via this

method.

Here we provide the first size-width result for QBF (Theorem 6.2). In a nutshell it says that each

short QU-Res proof can be transformed into a narrow proof, where a proof is narrow if it does not

contain a clause with many existential literals. What is perhaps most surprising is that the authors

of [12, 22] have previously ruled out a similar size-width result for Q-Res and QU-Res. Not only
did they show that the proof method of [4] does not lift to QBF, they also provided concrete QBF

counterexamples to their size-width relation.
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Two ingredients are required for Theorem 6.2: our UDL characterisation of proofs; and a size-

width transfer for decision lists. The second ingredient, a decision-list size-width relation indeed

already exists in the literature, due to Bshouty [18, repeated here as Lemma 6.3]. While this would

suffice to obtain superpolynomial lower bounds on proof size, by careful analysis, essentially

replicating the proof of the size-width transfer for resolution of Ben-Sasson and Wigderson [4,

Theorem 3.5] for decision lists, we are able to improve Bshouty’s result and shave off a factor of

log𝑛 (Lemmas 6.4 and 6.5). Thanks to this improvement, we obtain a size-width result for QU-Res
(indeed even for the model of QUNP

- Res, yielding stronger size lower bounds) which can deliver

exponential QU-Res lower bounds of the form exp(𝛺 (𝑛)) compared to exp(𝛺 (𝑛/log𝑛)) obtained
by using Bshouty’s original result (here 𝑛 is the number of existential variables).

1

Our result is not a mere QBF replication of Ben-Sasson & Wigderson’s result [4]. There are two

crucial differences. First, in contrast to [4] our size-width result does not depend on the initial

width of the formula. This makes the technique easier to apply and avoids the need for Tseitin

transformations, which are often required in the propositional domain [4]. Second, our size bound

depends on the number of quantifier alternations of the QBF. Crucially, the counterexamples of

[12, 22] use unbounded alternations, thus ruling out the relation of [4], but not contradicting our

Theorem 6.2.

D. Unification of previous lower-bound techniques. Our hardness characterisation in terms of

UDLs together with the size-width method encompasses and extends previous lower bound methods
for QBF resolution. In addition to lifted propositional techniques [11, 13], there exist two genuine
QBF techniques: strategy extraction [8, 9] and the size-cost-capacity technique [6]. These techniques

are orthogonal in the sense that each yields hardness results that cannot be shown by the other.

Here we demonstrate that UDL hardness captures both.

In the strategy extraction method [8, 9], lower bounds are shown by extracting strategies in terms

of a collection of single-output decision lists, which can be turned into bounded-depth circuits.

The authors of [8, 9] then construct QBFs with a single universal variable whose unique Herbrand

function is hard to compute by bounded-depth circuits (such as the parity function [30]). Such

functions are also hard for UDLs (Section 4.5). Moreover, we show that width bounds for QBFs

based on the parity and majority functions are easy to obtain (Section 6.2). We thus elegantly reprove
previous hardness results for parity and majority formulas [8, 9] with our technique, without the

need to import substantial circuit complexity results [30, 43, 47].

The size-cost-capacity technique [6] establishes hardness for QBFs where countermodels might

be easy to compute by single-output decision lists, but must have large range. The large range

immediately implies large UDLs (Section 4.5), hence again we can show the hardness results with

our new technique. We illustrate this with the equality formulas (Theorem 6.7).

Organisation. The remainder of this article is organised as follows. In Section 2 we review notions

from logic. Section 3 introduces our UDL model and explains how UDLs compute countermodels.

In Section 4 we show our characterisation of QU-Res proof size by UDL size, which is extended to

Q-Res in Section 5. Section 6 contains the size-width relation together with a number of applications.

We conclude in Section 7 with a discussion and open problems.

1
The conference version of this paper [7] only states such subexponential lower bounds of the form exp(𝛺 (𝑛/log𝑛) ) .
Here we improve this to truly exponential lower bounds by showing a strengthening of Bshouty’s result and an improved

size-width relation for QU-Res.
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2 PRELIMINARIES

Propositional logic. V is a countable set of Boolean variables. A literal is a variable 𝑧 in V or its

negation 𝑧, with var(𝑧) = var(𝑧) = 𝑧. The literals 𝑧 and 𝑧 are complementary. For any literal 𝑎, the

complementary literal is denoted 𝑎.

A clause is a disjunction 𝑐 := 𝑎1 ∨ · · · ∨ 𝑎𝑘 of pairwise non-complementary literals, with

vars(𝑐) := {var(𝑎𝑖 ) : 𝑖 ∈ [𝑘]}. We often remove the disjunction symbols from a written clause, for

example we write 𝑧1𝑧2𝑧3 for 𝑧1 ∨ 𝑧2 ∨ 𝑧3. Given a set 𝑍 of Boolean variables, 𝑐↾𝑍 is the disjunction

of literals 𝑎 appearing in 𝑐 with var(𝑎) ∈ 𝑍 .

A conjunctive normal form formula (CNF) is a conjunction 𝐹 := 𝑐1 ∧ · · · ∧ 𝑐𝑘 of clauses, with

vars(𝐹 ) := ⋃𝑘
𝑖=1 vars(𝑐𝑖 ).

A term is a finite conjunction 𝑡 := 𝑎1 ∧ · · · ∧ 𝑎𝑘 of non-complementary literals, with vars(𝑡) :=
{var(𝑎𝑖 ) : 𝑖 ∈ [𝑘]}. 𝑡↾𝑍 is defined similarly as for clauses. The negation of 𝑡 is the clause 𝑡 :=

𝑎1 ∨ · · · ∨ 𝑎𝑘 . The negation of a clause 𝑐 is the unique term 𝑐 whose negation is 𝑐 . The width of a

clause or term is the number of its literals.

An assignment 𝜏 to a set 𝑍 of Boolean variables is a function from 𝑍 into the set of Boolean
constants {0, 1}. The set of all assignments to 𝑍 is denoted {0, 1}𝑍 . A partial assignment to 𝑍 is

an assignment to a subset of 𝑍 . We often represent assignments as terms, as there is a natural

one-one correspondence between the two. The term 𝑡 with vars(𝑡) = 𝑍 represents the assignment

𝜏 : 𝑍 → {0, 1} which maps 𝑧 ∈ 𝑍 to 0 if, and only if, 𝑧 is a conjunct in 𝑡 .

The restriction of a literal, clause, CNF or term 𝜙 by 𝜏 , denoted 𝜙 [𝜏], is the result of substituting
each variable 𝑧 in𝑍 by 𝜏 (𝑧), followed by applying the standard simplifications for Boolean constants,

i.e. 0 ↦→ 1, 1 ↦→ 0, 𝑐 ∨ 0 ↦→ 𝑐 , 𝑐 ∨ 1 ↦→ 1, 𝑡 ∧ 1 ↦→ 𝑡 , and 𝑡 ∧ 0 ↦→ 0. We say that 𝜏 satisfies 𝜙 when

𝜙 [𝜏] = 1, and falsifies 𝜙 when 𝜙 [𝜏] = 0.

Otherwise, a formula, and substitution of formulas for variables, is defined in the standard way

for propositional logic (cf. [48]). A formula 𝐹 entails another formula 𝐺 (written 𝐹 ⊨ 𝐺) when
every assignment to vars(𝐹 ) ∪ vars(𝐺) satisfying 𝐹 also satisfies𝐺 . Formulas 𝐹 and𝐺 are logically
equivalent (written 𝐹 ≡ 𝐺) when they entail one another.

Quantified Boolean formulas. A quantified Boolean formula (QBF) 𝑄 of alternation depth 𝑑 is a

formula of the form 𝑃 · 𝐹 , where 𝑃 := ∃𝑋1∀𝑈1 · · · ∃𝑋𝑑∀𝑈𝑑∃𝑋𝑑+1 is called the quantifier prefix and 𝐹

is a CNF called the matrix.2 The 𝑋𝑖 , 𝑈𝑖 are pairwise-disjoint sets of Boolean variables called the

blocks of 𝑄 .
The sets vars∃ (𝑄) :=

⋃𝑑+1
𝑖=1 𝑋𝑖 and vars∀ (𝑄) :=

⋃𝑑
𝑖=1𝑈𝑖 are referred to as the existential variables

and universal variables of 𝑄 , respectively, and their union vars(𝑄) as the variables of 𝑄 . We

say that an assignment 𝜏 to a set 𝑍 ⊆ vars(𝑄) is existential if 𝑍 ⊆ vars∃ (𝑄), and universal if
𝑍 ⊆ vars∀ (𝑄). Given two variables 𝑧, 𝑧′ in vars(𝑄), we say that 𝑧 is left of 𝑧′ (written 𝑧 <𝑃 𝑧′)
when 𝑧 belongs to a block quantified before that of 𝑧′. We deal only with closed QBFs, i.e. those for

which vars(𝐹 ) ⊆ vars(𝑄). The restriction of 𝑄 by an assignment 𝜏 is 𝑄 [𝜏] := 𝑃 [𝜏] · 𝐹 [𝜏], where
𝑃 [𝜏] is obtained from 𝑃 by deleting each variable in vars(𝜏) (along with its quantifier).

A set of QBFs has bounded alternation if each has alternation depth at most 𝑑 , for some constant 𝑑 .

QBF resolution proof systems. We work with refutational QBF proof systems, i.e. systems

proving the falsity of a given QBF. We call a refutational QBF proof system P sound when there

is no P-refutation of a true QBF, and complete when every false QBF has a P-refutation. Given
two refutational QBF proof systems P and Q , we say that P p-simulates Q (written Q ≤𝑝 P) when
there exists a polynomial-time computable translation mapping Q-refutations into P-refutations,

2
Note that our definition of alternation depth differs slightly from the usual way of counting alternations, by counting only

alternations from universal to existential blocks, effectively counting the number of universal blocks.
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while preserving the refuted QBF [24]; we say that P p-simulates Q on bounded alternation if the

translation of a Q-refutation 𝜋 runs in time𝑂 ( |𝜋 | 𝑓 (𝑑 ) ) for some computable function 𝑓 , where 𝑑 is

the alternation depth of the formula refuted by 𝜋 (in other words, in polynomial time whenever

we restrict ourselves to formulas of bounded alternation, though possibly not in polynomial time

on all QBFs). We say that P and Q are p-equivalent (written P ≡𝑝 Q) when they p-simulate one

another; and analogously for bounded alternation.

QU-Resolution (QU-Res) is the QBF analogue of propositional resolution [17, 45], defined as

follows.

Definition 2.1 (QU-Res [27, 33]). A QU-Res derivation from a QBF 𝑃 · 𝐹 is a sequence of clauses

𝜋 := 𝑐1, . . . , 𝑐𝑠 in which each 𝑐𝑖 is derived by one of the following rules:

• Axiom: 𝑐𝑖 is a clause in the matrix 𝐹 ;

• Resolution: 𝑐𝑖 = 𝑎 ∨ 𝑏, where 𝑐𝑟 = 𝑎 ∨ 𝑧 and 𝑐𝑠 = 𝑏 ∨ 𝑧 for some 𝑟, 𝑠 < 𝑖 and variable 𝑧.

• Weakening: 𝑐𝑖 = 𝑐𝑟 ∨ 𝑏 for some 𝑟 < 𝑖 and clause 𝑏.

• Universal reduction: 𝑐𝑖 = 𝑐𝑟 [𝜇] for some 𝑟 < 𝑖 and some universal assignment 𝜇 with

vars∃ (𝑐𝑟 ) <𝑃 vars(𝜇).3

The size of 𝜋 is |𝜋 | = 𝑠 , and 𝜋 is a refutation when 𝑐𝑠 = ⊥. We say that a clause is fully universal,
if it can be reduced to the empty clause ⊥, i.e. if it consists of universal variables only.

The axiom, resolution and weakening rules together are propositionally implicationally complete;
that is, if 𝐹 ⊨ 𝑐 , then there exists a derivation of 𝑐 from 𝐹 . The refutational QBF proof system

QUNP
- Res allows any such correct propositional implication to be derived in a single step, eliminating

all hardness due to propositional resolution.
4

Definition 2.2 (QUNP
- Res [14]). QUNP

- Res is defined as for QU-Res, except that the resolution and

weakening rules are replaced by the following single rule, which requests that 𝑐𝑖 be implied by the

clauses derived earlier:

• Σ1-rule:
∧𝑖−1

𝑗=1 𝑐 𝑗 ⊨ 𝑐𝑖 .

We can assume that there are no postponed reductions; universal variables are reduced as soon as

the reduction is permitted. Corollary 1 in [1] establishes that postponing reductions does not shorten

proofs in QU-Res. For the oracle system QUNP
- Res too, postponed reductions can be eliminated

with at most polynomial size blow-up as follows: let Π = 𝑐1, 𝑐2, . . . , 𝑐𝑡 be a QUNP
- Res refutation.

Construct the sequence Π′ = 𝑑1, 𝑒1, 𝑑2, 𝑒2, . . . , 𝑑𝑡 , 𝑒𝑡 where each 𝑒𝑖 is obtained from 𝑑𝑖 by applying all

enabled reductions, and if 𝑐𝑖 is obtained by reduction on 𝑐 𝑗 , then 𝑑𝑖 = 𝑒 𝑗 (and hence 𝑒𝑖 = 𝑒 𝑗 as well),

otherwise 𝑑𝑖 = 𝑐𝑖 . Inductively, we see that each 𝑑𝑖 and 𝑒𝑖 is a subclause of 𝑐𝑖 . Hence if
∧𝑖−1

𝑗=1 𝑐 𝑗 ⊨ 𝑐𝑖 ,

then

∧𝑖−1
𝑗=1 (𝑑 𝑗 ∧ 𝑒 𝑗 ) ⊨ 𝑐𝑖 . Thus Π′

is also a QUNP
- Res refutation, with no postponed reductions. If Π

has 𝐴, 𝑅, 𝐸 axiom, reduction, and entailment steps respectively, then Π′
has 𝐴 axiom steps, at most

𝐸 entailment steps, and at most 𝐴 + 𝐸 reduction steps.

In the following, we will assume that any universal reduction step is due to a total assignment

to exactly one block, i.e. vars(𝜇) = 𝑈 𝑗 for some 𝑗 ∈ {1, . . . , 𝑑}. This restriction simplifies some of

the arguments, while maintaining a p-equivalent proof system. Since more than one block may be

reducible at some stage, the proof size can indeed blow up, though only by a factor 𝑑 ; we simply

reduce all reducible blocks one by one rather than at once.

3
Some definitions of QU-Res disallow deriving tautological clauses [33]. The definition of universal reduction chosen here

eliminates this restriction.

4
Note that proofs in QUNP

- Res cannot necessarily be checked in polynomial time, hence QUNP
- Res is not a proof system in

the sense of [24], but conforms to our definition of proof system above (cf. also [15] for a formal definition of oracle proof

systems).
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3 COUNTERMODELS AS DECISION LISTS
A countermodel witnesses the falsity of a QBF. In the literature, countermodels are usually defined

in one of two equivalent ways (under various names): either as a collection of functions, one

for each universal variable (called here distributed countermodel), or as a single function (unified
countermodel). In this section, we recall the definitions of distributed and unified countermodels.

We show that distributed countermodels represented by term decision lists are unsuitable for

characterising hardness in QUNP
- Res (Subsection 3.1) and propose a model for multi-output term

decision lists which serves as a natural representation for unified countermodels (Subsection 3.2).

3.1 Distributed countermodels
A distributed countermodel defines a set of formulas which, when substituted for the universal

variables, leaves the matrix unsatisfiable. In order to respect the variable dependencies imposed by

the order of quantification, each function must depend only on the preceding existential variables.
5

Definition 3.1 (distributed countermodel). Let 𝑄 be a QBF with vars∀ (𝑄) = 𝑢1, . . . , 𝑢𝑚 , and let 𝐷𝑖

denote the union of the existential blocks preceding𝑢𝑖 in the prefix. A distributed countermodel for𝑄
is a collection of functions {𝑓𝑖 }𝑖∈[𝑚] of the form 𝑓𝑖 : {0, 1}𝐷𝑖 → {0, 1}, such that the substitution of

formula representations of 𝑓1, . . . , 𝑓𝑚 for the universal variables𝑢1, . . . , 𝑢𝑚 in 𝐹 yields an unsatisfiable

formula.

We illustrate this concept with the equality formulas, which we will use as a running example.

Definition 3.2 (equality [6]). The 𝑛th equality formula is

𝑄EQ
𝑛 := ∃𝑥1 · · · 𝑥𝑛∀𝑢1 · · ·𝑢𝑛∃𝑧1 · · · 𝑧𝑛 · (𝑧1 ∨ · · · ∨ 𝑧𝑛) ∧

𝑛∧
𝑖=1

(
(𝑥𝑖 ∨ 𝑢𝑖 ∨ 𝑧𝑖 ) ∧ (𝑥𝑖 ∨ 𝑢𝑖 ∨ 𝑧𝑖 )

)
.

Example 3.3. The 𝑛th equality formula has the unique distributed countermodel {𝑓𝑖 }𝑖∈[𝑛] , where
𝑓𝑖 : {0, 1}𝑋 → {0, 1}

𝜏 ↦→
{
0 if 𝜏 (𝑥𝑖 ) = 0 ,

1 if 𝜏 (𝑥𝑖 ) = 1 ,

where 𝑋 = {𝑥1, . . . , 𝑥𝑛}. Here, each function 𝑓𝑖 is represented by the atomic formula 𝑥𝑖 . It is easy to

see that substituting each 𝑢𝑖 for 𝑥𝑖 in the matrix of 𝑄EQ
𝑛 yields an unsatisfiable formula. ■

Particularly in the context of strategy extraction, whereby one translates QBF refutations into

countermodels, it is quite natural to represent a distributed countermodel as a set of term decision

lists, one for each individual function [8]. Let us recall the traditional definition of a term decision

list.

Definition 3.4 (decision list [44]). Given a set 𝑋 of variables, a decision list is a sequence of pairs
𝐿 := (𝜀1, 𝑏1), . . . , (𝜀𝑠 , 𝑏𝑠 ) where

• the 𝜀𝑖 are terms with vars(𝜀𝑖 ) ⊆ 𝑋 and

∨𝑠
𝑖=1 𝜀𝑖 ≡ ⊤,

• the 𝑏𝑖 are Boolean constants, i.e. 0 or 1.

𝐿 computes the function from {0, 1}𝑋 into {0, 1}mapping 𝜏 to 𝑏𝑖 , where 𝑖 is the least natural number

for which 𝜏 satisfies 𝜀𝑖 . The size of 𝐿, denoted by |𝐿 |, is 𝑠 .
5
Preceding universals can also be included as dependencies (cf. [8]), producing a potentially stronger model.
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As far as characterisingQU-Res hardness is concerned, the problem with this computation model

– distributed countermodels represented as decision lists – is that it is too strong, even for bounded

alternation depth. For example, the distributed countermodel {𝑓𝑖 }𝑖∈[𝑛] from Example 3.3 can be

computed by 𝑛 constant-size decision lists, namely

𝐿𝑖 := (𝑥𝑖 , 𝑢𝑖 ), (𝑥𝑖 , 𝑢𝑖 ) , 𝑖 ∈ [𝑛] ,
but the equality formulas require exponential-size QUNP

- Res refutations [6].

3.2 Unified countermodels
Aunified countermodel is a single functionwhich simultaneously represents the individual functions
of a distributed countermodel. Formally, there are two differences. First, the output of the function

is not a {0, 1} value, but a total assignment to the universal variables, giving a {0, 1} value for each
universal variable. Second, the prefix dependencies, which are implicit in the function signatures

of a distributed countermodel, must be explicitly enforced.

Definition 3.5 (unified countermodel). Let 𝑄 := 𝑃 · 𝐹 be a QBF of alternation depth 𝑑 . A unified
countermodel for 𝑄 is a function 𝑓 : {0, 1}vars∃ (𝑄 ) → {0, 1}vars∀ (𝑄 )

satisfying two conditions:

(a) for each 𝜏 ∈ dom(𝑓 ), 𝜏 ∧ 𝑓 (𝜏) falsifies 𝐹 ;
(b) for each 𝜏, 𝜌 ∈ dom(𝑓 ) and each 𝑖 ∈ [𝑑], if 𝜏, 𝜌 agree on the first 𝑖 existential blocks, then

𝑓 (𝜏), 𝑓 (𝜌) agree on the first 𝑖 universal blocks.

Example 3.6. The 𝑛th equality formula has the unique unified countermodel

𝑓EQ : {0, 1}𝑋 → {0, 1}𝑈

where 𝑋 = {𝑥1, . . . , 𝑥𝑛}, 𝑈 = {𝑢1, . . . , 𝑢𝑛}, and 𝑓EQ (𝜏) : 𝑈 → {0, 1} is the assignment mapping

each 𝑢𝑖 to 𝜏 (𝑥𝑖 ). It is easy to see that 𝑓EQ is a single-function representation of the distributed

countermodel from Example 3.3, and readily verified that conditions (a) and (b) of Definition 3.5

are satisfied. ■

In order to represent a unified countermodel as a decision list, we specify a new format to allow

simultaneous output for multiple Boolean variables. This is achieved in the most natural way,

specifying a term over the universal variables which represents the desired output assignment.

Definition 3.7 (multi-output decision list). Given sets 𝑋 and𝑈 of Boolean variables, amulti-output
term decision list (MDL) is a sequence of pairs 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) where

• the 𝜀𝑖 are terms with vars(𝜀𝑖 ) ⊆ 𝑋 and

∨𝑠
𝑖=1 𝜀𝑖 ≡ ⊤,

• the 𝜇𝑖 are terms with vars(𝜇𝑖 ) = 𝑈 .

𝐿 computes the function from {0, 1}𝑋 into {0, 1}𝑈 mapping 𝜏 to 𝜇𝑖 , where 𝑖 is the least natural

number for which 𝜏 satisfies 𝜀𝑖 . The size of 𝐿, denoted by |𝐿 |, is 𝑠 ; we call 𝜀1, . . . , 𝜀𝑠 the input terms
of 𝐿, and 𝜇1, . . . , 𝜇𝑠 the output terms of 𝐿. The input width of 𝐿 is the maximum width of any of its

input terms.

Definition 3.8 (unified decision list). An MDL computing a unified countermodel for a QBF 𝑄 is

called a unified decision list (UDL) for 𝑄 .

Without ambiguity, we will use the same symbol (e.g. 𝐿) to represent both the UDL and its

computed function.

Note that the insistence on a single function suitably reduces the strength of the computational

model, in terms of representation size. For example, UDLs for the equality formulas must have

exponential size, matching the exponential-size QUNP
- Res refutations. This is due to the fact that
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the range of the unique unified countermodel, which is the complete set of universal assignments,

has cardinality 2
𝑛
.

Obviously, this holds generally. Since every entry of a UDL produces exactly one output, there

must be at least as many entries in the UDL as there are different outputs in the countermodel.

Hence the minimal range cardinality of a unified countermodel for a QBF 𝑄 is a lower bound to

the size of a UDL for 𝑄 .

4 CHARACTERISING HARDNESS IN QU-Res ON BOUNDED ALTERNATION
In this section, we demonstrate that UDLs have exactly the right strength to characterise QUNP

- Res
refutation size on bounded alternation QBFs. For this, we cast UDLs as a refutational QBF proof

system.

Definition 4.1 (UDL). A UDL-refutation of a QBF 𝑄 is a UDL 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) for 𝑄 . The

size of the UDL-refutation 𝐿 is the size |𝐿 | = 𝑠 of 𝐿 as a UDL.

Our central result is the following.

Theorem 4.2. QUNP
- Res ≡𝑝 UDL on bounded-alternation QBFs.

The two individual p-simulations are shown in Subsection 4.1 (Corollary 4.6) and Subsection 4.2

(Corollary 4.12). In Subsection 4.3 we demonstrate that the equivalence cannot be extended to

unbounded alternation depth.

In Subsection 4.4 we characterise bounded-alternation hardness in QU-Res, insofar as superpoly-
nomial QU-Res lower bounds come either from large UDLs or from an embedded propositional

resolution lower bound. Finally, in Subsection 4.5, we discuss how UDL lower bounds encompass

both the strategy extraction [8, 9] and size-cost techniques for QU-Res [6].

4.1 From QUNP-Res to unified decision lists
In this subsection, we show an efficient transformation from QUNP

- Res refutations into unified

decision lists. The transformation is a two-step process.

In the first step,we transform the refutation 𝜋 into a collection of multi-output term decision lists,

each of which computes the countermodel for just a single universal block, based on assignments

to all previous blocks (including previous universal blocks). This constitutes a modification of

the strategy extraction procedure from [2, 9], which works per universal variable, rather than per

universal block. The size of each of the lists we obtain this way is bounded by the size |𝜋 | of the
refutation, and their number is equal to the alternation depth 𝑑 of the refuted formula.

In the second step, we transform the collection into a single unified decision list, substituting all

dependence on universal variables with their own decision lists and merging the entire collection.

This involves taking a kind of ‘direct product’ of multi-output term decision lists (defined shortly),

the size of which is the product of the sizes of the operands. Thus, with 𝑑 lists of size at most |𝜋 |,
we obtain a UDL of size at most |𝜋 |𝑑 , which is a polynomial quantity as long as alternation depth 𝑑

remains bounded.

In the rest of this subsection, we prove this formally. We turn first to the definition of our

direct-product-like operation; the full transformation is described in Theorem 4.5 and its proof.

Definition 4.3 (direct product). Let𝑋1,𝑈1,𝑋2 and𝑈2 be pairwise-disjoint sets of Boolean variables,

and let 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) and 𝑀 := (𝛿1, 𝜈1), . . . , (𝛿𝑡 , 𝜈𝑡 ) be multi-output term decision lists

with

vars(𝜀𝑖 ) ⊆ 𝑋1 and vars(𝜇𝑖 ) = 𝑈1 , for 𝑖 ∈ [𝑠] ,
vars(𝛿 𝑗 ) ⊆ 𝑋1 ∪𝑈1 ∪ 𝑋2 and vars(𝜈 𝑗 ) = 𝑈2 , for 𝑗 ∈ [𝑡] .
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The direct product 𝐿 ×𝑀 is the decision list

(𝜀1 ∧ 𝛿1 [𝜇1] , 𝜇1 ∧ 𝜈1), . . . , (𝜀𝑠 ∧ 𝛿1 [𝜇𝑠 ] , 𝜇𝑠 ∧ 𝜈1) ,
...

(𝜀1 ∧ 𝛿𝑡 [𝜇1] , 𝜇1 ∧ 𝜈𝑡 ), . . . , (𝜀𝑠 ∧ 𝛿𝑡 [𝜇𝑠 ] , 𝜇𝑠 ∧ 𝜈𝑡 ) .

The direct product 𝐿×𝑀 computes a function based on𝑀 , which first queries 𝐿 for the assignment

to 𝑈1. Informally, the 𝑈1 variables in𝑀 are substituted for the function computed by 𝐿, while 𝑈1 is

moved from the domain to the codomain. This is stated formally as follows.

Proposition 4.4. Let 𝑋1,𝑈1, 𝑋2 and𝑈2 be pairwise-disjoint Boolean variable sets, and let 𝐿 and𝑀
be multi-output decision lists computing 𝐿 : {0, 1}𝑋1 → {0, 1}𝑈1 and𝑀 : {0, 1}𝑋1∪𝑈1∪𝑋2 → {0, 1}𝑈2 .
Then 𝐿 ×𝑀 computes the function

𝐿 ×𝑀 : {0, 1}𝑋1∪𝑋2 → {0, 1}𝑈1∪𝑈2

𝜏 ↦→ 𝐿(𝜏↾𝑋1
) ∧𝑀 (𝜏 ∧ 𝐿(𝜏↾𝑋1

)) .

Proof. Let 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ), 𝑀 := (𝛿1, 𝜈1), . . . , (𝛿𝑡 , 𝜈𝑡 ). Let 𝜏 ∈ {0, 1}𝑋1∪𝑋2
, and let 𝑎 and

𝑏 be the least natural numbers such that 𝜏↾𝑋1
satisfies 𝜀𝑎 and 𝜏 satisfies 𝛿𝑏 [𝜇𝑎]. By definition of

decision list (Definition 3.7),

(𝐿 ×𝑀) (𝜏) = 𝜇𝑎 ∧ 𝜈𝑏 .

Clearly, 𝐿(𝜏↾𝑋1
) = 𝜇𝑎 by definition of decision list, therefore 𝜏 ∧ 𝐿(𝜏↾𝑋1

) = 𝜏 ∧ 𝜇𝑎 . Aiming for

contradiction, suppose that𝑀 (𝜏 ∧ 𝜇𝑎) ≠ 𝜈𝑏 . Since 𝜏 satisfies 𝛿𝑏 [𝜇𝑎], 𝜏 ∧ 𝜇𝑎 satisfies 𝛿𝑏 . Therefore

𝜏 ∧ 𝜇𝑎 satisfies some 𝛿𝑏′ with 𝑏
′ < 𝑏. It follows that 𝜏 satisfies 𝛿𝑏′ [𝜇𝑎], contradicting the minimality

of 𝑏. □

Note that the size of a direct product is indeed the product of the sizes of the original decision

lists.

Theorem 4.5. A QUNP
- Res refutation 𝜋 of a QBF 𝑄 of alternation depth 𝑑 can be transformed into

a UDL 𝑡 (𝜋) for 𝑄 , where |𝑡 (𝜋) | ≤ |𝜋 |𝑑 . The transformation 𝑡 is computable in time 𝑂 ( |𝜋 |𝑑 ).

Proof. Let𝑄 := 𝑃 := ∃𝑋1∀𝑈1 · · · ∃𝑋𝑑∀𝑈𝑑∃𝑋𝑑+1 · 𝐹 be a QBF, and let 𝜋 := 𝑐1, . . . , 𝑐𝑠 be aQU
NP
- Res

refutation of𝑄 . We assume without loss of generality that each universal reduction step in 𝜋 is due

to a total assignment to a single universal block (as discussed in the preliminaries).

For each 𝑖 ∈ [𝑑] and 𝑗 ∈ [𝑠 + 1], we define a collection of multi-output term decision lists

recursively as follows: 𝐿𝑠+1𝑖 := (⊤, 𝛼𝑖 ), where 𝛼𝑖 is some fixed assignment to𝑈𝑖 ; for each 𝑗 ∈ [𝑠],

𝐿
𝑗

𝑖
:=

{
(𝑐 𝑗 , 𝜇), 𝐿 𝑗+1

𝑖
if 𝑐 𝑗 was derived by universal reduction due to 𝜇 ∈ {0, 1}𝑈𝑖

,

𝐿
𝑗+1
𝑖

otherwise.

The intuition behind these lists is the same as in the original strategy-extraction algorithm [2].

𝐿
𝑗

𝑖
approximate 𝐿1𝑖 , which finds the first clause of 𝜋 which was derived by universal reduction

and is falsified by the input assignment, and sets the assignment to the 𝑖-th universal block to

match the reduction assignment 𝜇 – the meaning of the reduction assignment is exactly that it

should be picked if the reduced clause is falsified. Because of how earlier clauses imply later clauses

in the proof, if we identify the first reduction step whose conclusion is falsified and match its

reduction assignment, we ultimately obtain that axioms restricted by the combined assignment

under consideration jointly imply the empty clause; and that can only happen if one of the axioms

is already falsified. It then remains to merge all these lists together to obtain a single UDL. We now

show how this is done formally.
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By backwards induction on 𝑗 ∈ [𝑠 + 1], we show that the combined direct product of these lists

𝐿 𝑗
:= 𝐿

𝑗

1
×

(
𝐿
𝑗

2
× · · · ×

(
𝐿
𝑗

𝑑−1 × 𝐿
𝑗

𝑑

)
· · ·

)
is a UDL for 𝑃 · 𝐹 ∧ ∧𝑗−1

𝑘=1
𝑐𝑘 . We therefore prove the theorem, i.e. that 𝐿1 is a UDL for 𝑄 of size at

most |𝜋 |𝑑 , that can clearly be constructed in time 𝑂 ( |𝜋 |𝑑 ).
It is clear by construction that each 𝐿

𝑗

𝑖
computes a function

𝐿
𝑗

𝑖
: {0, 1}𝑋1∪···∪𝑋𝑖∪𝑈1∪···∪𝑈𝑖−1 → {0, 1}𝑈𝑖 .

Hence, by definition of direct product (Definition 4.3), 𝐿 𝑗
computes a function

𝐿 𝑗
: {0, 1}vars∃ (𝑄 ) → {0, 1}vars∀ (𝑄 )

satisfying condition (b) for a unified countermodel (Definition 3.5). It remains to show that condition

(a) is satisfied; that is, for each 𝜏 ∈ {0, 1}vars∃ (𝑄 )
, we must show that 𝜏 ∧ 𝐿 𝑗 (𝜏) falsifies 𝐹 ∧∧𝑗−1

𝑘=1
𝑐𝑘 .

Base case 𝑗 = 𝑠 + 1. Since 𝑐𝑠 is the empty clause, 𝜏 ∧ 𝐿𝑠+1 (𝜏) always falsifies 𝐹 ∧ ∧𝑠
𝑘=1

𝑐𝑘 .

Inductive step 𝑗 ∈ [𝑠]. We consider two cases, based on how 𝑐 𝑗 was derived.

Suppose that 𝑐 𝑗 was introduced as an axiom, or derived by the Σ1-rule. In either case, 𝐿 𝑗 = 𝐿 𝑗+1

and 𝐹 ∧∧𝑗−1
𝑘=1

𝑐𝑘 ⊨ 𝑐 𝑗 . By the inductive hypothesis we know that 𝜏 ∧ 𝐿 𝑗+1 (𝜏) falsifies 𝐹 ∧∧𝑗

𝑘=1
𝑐𝑘 . It

follows that 𝜏 ∧ 𝐿 𝑗 (𝜏) falsifies 𝐹 ∧ ∧𝑗−1
𝑘=1

𝑐𝑘 .

On the other hand, suppose that 𝑐 𝑗 was derived by universal reduction from 𝑐𝑟 due to the

assignment 𝜇 ∈ 𝑈𝑖 . In this case, 𝐿
𝑗

𝑘
= 𝐿

𝑗+1
𝑘

for each 𝑘 ≠ 𝑖 . We consider two cases.

(a) Suppose that 𝜏∧𝐿 𝑗+1 (𝜏) falsifies 𝑐 𝑗 . Consider the direct product of lists up to, but not including
𝐿
𝑗

𝑖
, namely

𝑀 𝑗
:= 𝐿

𝑗

1
×

(
𝐿
𝑗

2
× · · · ×

(
𝐿
𝑗

𝑖−2 × 𝐿
𝑗

𝑖−1

)
· · ·

)
,

and let 𝐷𝑖 and 𝐷𝑖−1 denote the union of existential blocks preceding𝑈𝑖 and𝑈𝑖−1 respectively.
It is easy to see that

𝜏↾𝐷𝑖
∧𝑀 𝑗 (𝜏↾𝐷𝑖−1 ) satisfies 𝑐 𝑗 ,

from which it follows that

𝐿𝑖𝑗
(
𝜏↾𝐷𝑖

∧𝑀 𝑗 (𝜏↾𝐷𝑖−1 )
)
= 𝜇 .

As a result, 𝐿 𝑗 (𝜏) extends 𝜇. Therefore 𝜏 ∧ 𝐿 𝑗 (𝜏) falsifies 𝑐𝑟 , which belongs to 𝐹 ∧ ∧𝑗−1
𝑘=1

𝑐𝑘 .

(b) On the other hand, suppose that 𝜏 ∧ 𝐿 𝑗+1 (𝜏) satisfies 𝑐 𝑗 . Then the addition of (𝑐 𝑗 , 𝜇) to 𝐿 𝑗+1
𝑖

has no effect on 𝐿 𝑗+1
, so that 𝐿 𝑗 (𝜏) = 𝐿 𝑗+1 (𝜏). Hence 𝜏 ∧ 𝐿 𝑗 (𝜏) falsifies 𝐹 ∧ ∧𝑗−1

𝑘=1
𝑐𝑘 by the

inductive hypothesis.

□

Corollary 4.6. QUNP
- Res ≤𝑝 UDL on bounded alternation.

4.2 From unified decision lists to QUNP-Res
In this subsection, we show an efficient translation from UDLs back into QUNP

- Res refutations. The
transformation uses a notion of restriction for UDLs.

Definition 4.7 (restriction of a UDL). Given an assignment 𝛼 and a multi-output decision list

𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ), the restriction of 𝐿 by 𝛼 is

𝐿 [𝛼] := (𝜀1 [𝛼] , 𝜇1 [𝛼]), . . . , (𝜀𝑠 [𝛼] , 𝜇𝑠 [𝛼]) .
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The entailment sequence. We summarise our method as follows: we transform a UDL 𝐿 for

a QBF 𝑄 into a sequence of clauses E(𝐿). Each clause in the sequence is entailed by 𝑄 and the
universal reduction of the previous clauses in the sequence. The final clause is fully universal, yielding
a refutation. We refer to the sequence E(𝐿) as the entailment sequence for 𝐿.
First, some extra notation and nomenclature. Given a clause 𝑏 and a sequence of clauses 𝜋 :=

𝑐1, . . . , 𝑐𝑠 , we define

𝑏 ⊗ 𝜋 := 𝑏 ∨ 𝑐1, . . . , 𝑏 ∨ 𝑐𝑠 .

Given a UDL 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) for a QBF 𝑄 and block 𝑍 of 𝑄 , the 𝑍 -component of (𝜀𝑖 , 𝜇𝑖 ) is
(𝜀𝑖 ∧ 𝜇𝑖 )↾𝑍 .
Also, we note the following: without loss of generality we can assume that rightmost existential

variables (on which no universal variable can depend) do not appear in a UDL. That is, given a QBF

with prefix

𝑃 := ∃𝑋1∀𝑈1 · · · ∃𝑋𝑑∀𝑈𝑑∃𝑋𝑑+1 ,

the𝑋𝑑+1-components in any UDL for𝑄 can be deleted while preserving the computed countermodel.

This is an easy consequence of condition (b) in the definition of unified countermodel (Definition 3.5).

Definition 4.8 (entailment sequence). Given a UDL 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) for a QBF 𝑄 , the

entailment sequence E(𝐿) is defined recursively on the alternation depth 𝑑 of 𝑄 .

• if 𝑑 = 1, E(𝐿) := 𝜀1 ∨ 𝜇1, . . . , 𝜀𝑠 ∨ 𝜇𝑠 ,

• if 𝑑 ≥ 2, for each 𝑖 ∈ [𝑠] define 𝐿𝑖 as the list obtained from 𝐿 by replacing the first 𝑖 − 1

existential terms by their 𝑋1 components, and setting all 𝑈1 components to 𝜇𝑖↾𝑈1
. We define

E(𝐿) as the sequence 𝜋1, . . . , 𝜋𝑠 , where
𝜋𝑖 := (𝜀𝑖↾𝑋1

∨ 𝜇𝑖↾𝑈1
) ⊗ E(𝐿𝑖

[
𝜀𝑖↾𝑋1

∧ 𝜇𝑖↾𝑈1

]
) .

The size of E(𝐿), denoted |E(𝐿) |, is the number of clauses in the sequence; the existential width of

E(𝐿) is the maximum number of existential literals in any of its clauses.

As an exercise to absorb the definition better, let us prove the following lemma about the size

and the width of entailment sequences, which will come in handy later.

Lemma 4.9. Let 𝐿 be a UDL for a QBF 𝑄 of alternation depth 𝑑 . Then |E(𝐿) | ≤ |𝐿 |𝑑 and the width
of E(𝐿) is at most 𝑑 times the width of 𝐿.

Proof. Both parts follow by induction on 𝑑 ; the difference comes from how the two attributes

aggregate over ⊗ and concatenation of sequences: size multiplies, while width adds up. □

The intuition behind the construction of the entailment sequence, in particular when the alter-

nation depth exceeds 1, is not obvious. We will elaborate upon this later. For now, the important

property is the fulfilment of Lemma 4.10. For a clause 𝑐 of a QBF 𝑄 = 𝑃 · 𝐹 we take the assignment

𝜈 : {𝑢 ∈ vars∀ (𝑐) : vars∃ (𝑐) <𝑃 𝑢} → {0, 1} which maps 𝑢 to 1 if, and only if, 𝑢 is in 𝑐𝑖 , i.e. the

assignment that reduces every universal literal that can be reduced, and we write red(𝑐) := 𝑐 [𝜈]
for the clause obtained from 𝑐 by ‘maximum reduction.’

Lemma 4.10. Let 𝐿 be a unified decision list for a QBF 𝑄 := 𝑃 · 𝐹 , and let E(𝐿) = 𝑐1, . . . , 𝑐𝑟 . Then 𝑐𝑟
is fully universal, and, for each 𝑖 ∈ [𝑟 ],

𝐹 ∧
𝑖−1∧
𝑗=1

red(𝑐 𝑗 ) ⊨ 𝑐𝑖 .

We defer the proof of this lemma to the end of the subsection. The entailment of each clause

by the universal reduction of its predecessors (in conjunction with the matrix 𝐹 ) gives rise to a

straightforward QUNP
- Res refutation.
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Theorem 4.11. A UDL 𝐿 for a QBF 𝑄 of alternation depth 𝑑 can be transformed into a QUNP
- Res

refutation 𝑡 (𝐿) for 𝑄 , where |𝑡 (𝐿) | ≤ 𝑂 ( |𝐿 |𝑑 ). The transformation 𝑡 is computable in time 𝑂 ( |𝐿 |𝑑 ).
Proof. Let E(𝐿) = 𝑐1, . . . , 𝑐𝑟 . By Lemma 4.10, the sequence 𝜋 , consisting of the clauses of the

matrix of 𝑄 followed by

𝑐1, red(𝑐1), . . . , 𝑐𝑟 , red(𝑐𝑟 ) ,
is a QUNP

- Res refutation of 𝑄 , and by Lemma 4.9 𝑟 ≤ |𝐿 |𝑑 . By a simple induction on alternation

depth 𝑑 , one verifies that 𝜋 can be constructed in time 𝑂 (𝑟 ). □

Corollary 4.12. UDL ≤𝑝 QUNP
- Res on bounded alternation.

Intuition and example. TheQUNP
- Res refutation obtained from a UDL 𝐿 consists of the entailment

sequence interleaved with reduction steps. The clauses in the entailment sequence are intended to

witness the fact that 𝐿 is indeed a UDL for the formula, i.e., the lines in the entailment sequence

describe the correctness of the outputs produced in the lines of the UDL (this is the intuition

behind Lemma 4.10). The QUNP
- Res proof constructed from the entailment sequence can then be

understood as a formal proof of correctness of the UDL. Note that we start with a correct UDL, but

the entailment sequence models this correctness formally within QUNP
- Res.

For this, the idea is to ‘unpack’ the countermodel represented by 𝐿 into its round-by-round

responses in the 2-player game corresponding to the standard QBF semantics. Each 𝐿𝑖 as defined,

upon suitable restriction, is a UDL for the formula 𝑄𝑖 defined in the formal proof below; 𝑄𝑖 is the

restriction of the formula obtained after one round of the game (an existential player move followed

by a universal player move), where the restriction leads the UDL computation to line 𝑖 or later.

Recursively obtaining QUNP
- Res proofs for each 𝑄𝑖 from the corresponding 𝐿𝑖 , the combination

into a single proof expresses the fact that the 𝑖th refutation should be used on partial assignments

inconsistent with the first 𝑖 − 1 lines of 𝐿; this is achieved by the direct product operation.

In the simplest case, with alternation depth 𝑑 = 1, the entailment sequence is composed merely

of the negations of the combined existential and universal terms in the UDL (i.e. 𝜀𝑖 ∨ 𝜇𝑖 ). The

universal reduction of each clause is merely 𝜀𝑖 , the negation of the corresponding existential term.

In this case, the fact that each clause is entailed by the universal reductions of its predecessors in

conjunction with the matrix (Lemma 4.10) follows straightforwardly from the definition of UDL.

In fact, in this case the entailments stated in Lemma 4.10 can be easily seen to exactly model the

correctness of the outputs produced in each line of the UDL.

This forms the base case for a general argument by induction, when the alternation depth exceeds

1. In the entailment sequence definition, the lists 𝐿𝑖 are defined so that 𝐿𝑖
[
𝜀𝑖↾𝑋1

∧ 𝜇𝑖↾𝑈1

]
is a UDL

for the QBF (
𝑃 · 𝐹 ∧

𝑖−1∧
𝑘=1

𝑐𝑘↾𝑋1

) [
𝜀𝑖↾𝑋1

∧ 𝜇𝑖↾𝑈1

]
. (1)

Note that each of the negated 𝑋1-components 𝑐𝑘↾𝑋1
is the universal reduction of a clause already

appearing in E(𝐿) before 𝜋𝑖 . This is not obvious; it relies on the fact that the final clause of each

E(𝐿𝑘
[
𝜀𝑘↾𝑋1

∧ 𝜇𝑘↾𝑈1

]
) is fully universal.

The addition of these negated 𝑋1-components to the matrix is the reason why the first 𝑖 − 1

existential terms in 𝐿𝑖 are replaced by their 𝑋1 components. Assignments satisfying the 𝑖 th term

are guaranteed to falsify one of these clauses. One might suspect that the first 𝑖 − 1 lines could

be removed altogether, somewhat simplifying the definition of E(𝐿). Unfortunately, it is not clear
that such a construction would produce a UDL for the QBF in (1). The assignments satisfying the

removed lines are distributed arbitrarily across the remaining ones, so that the computed function

may not satisfy the proper dependencies (condition (b) of Definition 3.5).
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Note that the 𝑈1-components in 𝐿𝑖 are set uniformly to 𝜇𝑖↾𝑈1
merely so that restriction by that

assignment deletes them all.

Construction of the entailment sequence, along with the corresponding QUNP
- Res refutation, is

illustrated by the following example.

Example 4.13. We will construct an entailment sequence for the QBF

∃𝑥1∀𝑢1∃𝑧1∃𝑥2∀𝑢2∃𝑧2 · 𝑥1𝑢1𝑧1 ∧ 𝑥1𝑢1𝑧1 ∧ 𝑥2𝑢2𝑧2 ∧ 𝑥2𝑢2𝑧2 ∧ 𝑧1𝑧2 .

This QBF is 𝑄 INT
2
, the second instance of the interleaved equality family, which we will meet in the

following subsection. We write the blocks of 𝑄 INT
2

as follows: 𝑋1 := {𝑥1}, 𝑈1 := {𝑢1}, 𝑋2 := {𝑧1, 𝑥2},
𝑈2 := {𝑢2}, and 𝑋3 := {𝑧2}. Note that the alternation depth of 𝑄 INT

2
is 2.

Similar to the original equality formulas, a unified countermodel for this QBF sets each𝑢𝑖 equal to

the corresponding 𝑥𝑖 , with the values of the 𝑧𝑖 essentially ignored. This countermodel is computed

by the following UDL 𝐿:

(𝑥1 ∧ 𝑥2, 𝑢1 ∧ 𝑢2), (𝑥1 ∧ 𝑥2, 𝑢1 ∧ 𝑢2), (𝑥2, 𝑢1 ∧ 𝑢2), (⊤, 𝑢1 ∧ 𝑢2).

We now construct the entailment sequence E(𝐿). First we obtain the lists 𝐿1, 𝐿2, 𝐿3, 𝐿4 and their

appropriate restrictions. These restrictions are easily transformed (they have alternation depth 1),

and pieced together to obtain the complete entailment sequence.

𝐿1 is obtained from 𝐿 by replacing each 𝑈1-component by the 𝑈1-component of the first line,

namely the term 𝑢1. So the restriction of 𝐿1 by the 𝑋1- and 𝑈1-components of the first line, namely

the assignment 𝑥1 ∧ 𝑢1, is

(𝑥2, 𝑢2), (𝑥2, 𝑢2), (𝑥2, 𝑢2), (⊤, 𝑢2) .
Since the final two lines are redundant, this simplifies to 𝐿1 [𝑥1 ∧ 𝑢1] = (𝑥2, 𝑢2), (⊤, 𝑢2). Hence we
have

E(𝐿1 [𝑥1 ∧ 𝑢1]) = 𝑥2𝑢2, 𝑢2 ,

𝜋1 = 𝑥1𝑢1 ⊗ E(𝐿1 [𝑥1 ∧ 𝑢1])
= 𝑥1𝑢1𝑥2𝑢2, 𝑥1𝑢1𝑢2 .

𝐿2 is obtained from 𝐿 by replacing the first existential term by its𝑋1-component 𝑥1, then replacing

each𝑈1-component by the𝑈1-component of the second line, namely the term 𝑢1:

(𝑥1, 𝑢1 ∧ 𝑢2), (𝑥1 ∧ 𝑥2, 𝑢1 ∧ 𝑢2), (𝑥2, 𝑢1 ∧ 𝑢2), (⊤, 𝑢1 ∧ 𝑢2) .

Restriction of 𝐿2 by the 𝑋1- and𝑈1-components of the second line, namely 𝑥1 ∧ 𝑢1, yields

(⊤, 𝑢2), (𝑥2, 𝑢2), (𝑥2, 𝑢2), (⊤, 𝑢2) .

Every line except the first is redundant, so this simplifies to 𝐿2 [𝑥1 ∧ 𝑢1] = (⊤, 𝑢2). In this case we

get

E(𝐿2 [𝑥1 ∧ 𝑢1]) = 𝑢2 ,

𝜋2 = 𝑥1𝑢1 ⊗ E(𝐿2 [𝑥1 ∧ 𝑢1])
= 𝑥1𝑢1𝑢2 .

Continuing in this way for 𝐿3 and 𝐿4, one verifies that

𝐿3 [𝑢1] = 𝐿4 [𝑢1] = (𝑥1, 𝑢2), (𝑥2, 𝑢2), (⊤, 𝑢2) ,
𝜋3 = 𝜋4 = 𝑥1𝑢1𝑢2, 𝑢1𝑥2𝑢2, 𝑢1𝑢2 .

The fact that 𝜋3 = 𝜋4 is coincidental (note that the 𝑋1-components of the third and fourth lines are

both empty, and both𝑈1-components are 𝑢1).
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Piecing together the 𝜋𝑖 , the entailment sequence for 𝐿 is

E(𝐿) = 𝜋1, 𝜋2, 𝜋3, 𝜋4
= 𝑥1𝑢1𝑥2𝑢2, 𝑥1𝑢1𝑢2, 𝑥1𝑢1𝑢2, 𝑥1𝑢1𝑢2, 𝑢1𝑥2𝑢2, 𝑢1𝑢2,

𝑥1𝑢1𝑢2, 𝑢1𝑥2𝑢2, 𝑢1𝑢2 .

We can now illustrate how the entailment sequence gives rise to a QUNP
- Res refutation. In fact,

several clauses in this particular entailment sequence are superfluous and can be ignored, so we

work with the subsequence

𝑥1𝑢1𝑥2𝑢2, 𝑥1𝑢1𝑢2, 𝑢1𝑥2𝑢2, 𝑢1𝑢2 .

The essential point is that each clause in the sequence is entailed by the matrix of𝑄 INT
2

in conjunction

with the universal reduction of the preceding clauses. For example, the first clause is entailed by

the matrix of 𝑄 INT
2

alone; in fact

𝑥1𝑢1𝑧1 ∧ 𝑥2𝑢2𝑧2 ∧ 𝑧1𝑧2 ⊨ 𝑥1𝑢1𝑥2𝑢2 .

An easy way to verify this is to construct a resolution derivation:

𝑥1𝑢1𝑧1 𝑧1𝑧2

𝑥1𝑢1𝑧2 𝑥2𝑢2𝑧2

𝑥1𝑢1𝑥2𝑢2

The second clause in the sequence is entailed by the matrix of 𝑄 INT
2

and the universal reduction

of the first clause (𝑥1𝑢1𝑥2):

𝑥1𝑢1𝑧1 ∧ 𝑥2𝑢2𝑧2 ∧ 𝑧1𝑧2 ∧ 𝑥1𝑢1𝑥2 ⊨ 𝑥1𝑢1𝑢2 .

Again, we can verify this with a resolution derivation:

𝑥2𝑢2𝑧2 𝑥1𝑢1𝑥2

𝑥1𝑢1𝑢2𝑧2 𝑧1𝑧2

𝑥1𝑢1𝑢2𝑧1 𝑥1𝑢1𝑧1

𝑥1𝑢1𝑢2

Similarly the third clause is entailed by the matrix and the universal reductions of the first two

clauses (strictly, only the reduction of the second (𝑥1) is required)

𝑥1𝑢1𝑧1 ∧ 𝑥2𝑢2𝑧2 ∧ 𝑧1𝑧2 ∧ 𝑥1 ⊨ 𝑢1𝑥2𝑢2 ,

and the pattern continues for the final clause:

𝑥1𝑢1𝑧1 ∧ 𝑥2𝑢2𝑧2 ∧ 𝑧1𝑧2 ∧ 𝑥1 ∧ 𝑢1𝑥2 ⊨ 𝑢1𝑢2 .

Resolution derivations verifying these steps can be found easily.

Each individual entailment can be derived immediately using the Σ1-rule. As the final clause

𝑢1𝑢2 is fully universal, its universal reduction is the empty clause, yielding a refutation of 𝑄 INT
2
. ■

Proof of Lemma 4.10. Let 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ), and let

𝑃 := ∃𝑋1∀𝑈1 · · · ∃𝑋𝑑∀𝑈𝑑∃𝑋𝑑+1 .

Without loss of generality, we can assume that the 𝑋𝑑+1-components of 𝐿 are all empty, and that

the final existential term is ⊤. We proceed by induction on the alternation depth 𝑑 of 𝑄 . Let 𝑖 ∈ [𝑟 ].
Base case 𝑑 = 1. In this case 𝑟 = 𝑠 , 𝑐𝑖 = 𝜀𝑖 ∨ 𝜇𝑖 , and red(𝑐𝑖 ) = 𝜀𝑖 . Let 𝜏 be a total assignment

falsifying 𝜀𝑖 ∨ 𝜇𝑖 . If the existential part 𝜏∃ satisfies

∨𝑖−1
𝑘=1

𝜀𝑘 , then it falsifies

𝑖−1∧
𝑘=1

𝜀𝑘 =

𝑖−1∧
𝑘=1

red(𝑐𝑘 ) .
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Otherwise, since 𝜏∃ satisfies 𝜀𝑖 , and the universal part 𝜏∀ is equal to 𝜇𝑖 , 𝜏 falsifies 𝐹 by definition of

countermodel. Since 𝜀𝑠 = ⊤, 𝑐𝑠 = ⊥ ∨ 𝜇𝑠 is fully universal.

Inductive step 𝑑 ≥ 2. For each 𝑗 ∈ [𝑠], we put
𝛼 𝑗 := 𝜀 𝑗↾𝑋1

∧ 𝜇 𝑗↾𝑈1
,

and claim that 𝐿 𝑗

[
𝛼 𝑗

]
is a unified decision list for

𝑄 𝑗 := 𝑃
[
𝛼 𝑗

]
·
(
𝐹 ∧

𝑗−1∧
𝑘=1

𝜀𝑘↾𝑋1

) [
𝛼 𝑗

]
,

which is a QBF of alternation depth 𝑑 − 1. We prove the claim later.

Let 𝑝 and 𝑞 be natural numbers such that

𝑐𝑖 = 𝜀𝑝↾𝑋1
∨ 𝜇𝑝↾𝑈1

∨ 𝑏𝑞

where E(𝐿𝑝
[
𝛼𝑝

]
) = 𝑏1, . . . , 𝑏𝑠𝑝 . By the inductive hypothesis,(

𝐹 ∧
𝑝−1∧
𝑘=1

𝜀𝑘↾𝑋1

) [
𝛼𝑝

]
∧

𝑞−1∧
𝑘=1

red(𝑏𝑘 ) ⊨ 𝑏𝑞 ,

from which it follows that

𝐹 ∧
𝑝−1∧
𝑘=1

𝜀𝑘↾𝑋1
∧

𝑞−1∧
𝑘=1

red(𝜀𝑝↾𝑋1
∨ 𝜇𝑝↾𝑈1

∨ 𝑏𝑘 ) (2)

entails 𝜀𝑝↾𝑋1
∨ 𝜇𝑝↾𝑈1

∨ 𝑏𝑞 = 𝑐𝑖 .

We show that each conjunct in (2) besides 𝐹 is red(𝑐) for some 𝑐 appearing in E(𝐿) before 𝑐𝑖 . For
each 𝑘 ∈ [𝑞 − 1], the clause 𝜀𝑝↾𝑋1

∨ 𝜇𝑝↾𝑈1
∨ 𝑏𝑘 appears in E(𝐿) before 𝑐𝑖 by definition. For each

𝑘 ∈ [𝑝 − 1],
𝜀𝑘↾𝑋1

= red(𝜀𝑘↾𝑋1
∨ 𝜇𝑘↾𝑈1

∨ 𝑓𝑘 )
where 𝑓𝑘 is the final clause of E(𝐿𝑘 [𝛼𝑘 ]), which is fully universal by the inductive hypothesis, and

the clause 𝜀𝑘↾𝑋1
∨ 𝜇𝑘↾𝑈1

∨ 𝑓𝑘 appears in 𝐿 before 𝑐𝑖 .

Since 𝜀𝑠 = ⊤, 𝑐𝑟 = ⊥ ∨ 𝜇𝑠↾𝑈1
∨ 𝑓𝑠 is fully universal. This completes the inductive step.

Proof of claim. Fixing 𝑗 ∈ [𝑠], we show that 𝐿 𝑗

[
𝛼 𝑗

]
computes a unified countermodel for 𝑄 𝑗 by

checking both conditions in Definition 3.5.

(a) Let 𝜏 ∈ {0, 1}vars∃ (𝑄 𝑗 )
, and let

𝜎 := 𝜀 𝑗 ∧ 𝜏↾
vars(𝜏)\vars(𝜀 𝑗 ) .

If 𝜏 falsifies

∧𝑗−1
𝑘=1

𝜀 𝑗↾𝑋1

[
𝛼 𝑗

]
, then 𝜏 ∧ 𝐿 𝑗

[
𝛼 𝑗

]
(𝜏) already falsifies the matrix of 𝑄 𝑗 , so we

assume otherwise. Then 𝐿(𝜎) = 𝜇 𝑗 , and since 𝜀 𝑗↾𝑋1
∧ 𝜏 agrees with 𝜎 on 𝑋1, 𝐿(𝜀 𝑗↾𝑋1

∧ 𝜏)
agrees with 𝜇 𝑗 on𝑈1. It follows that

𝐿(𝜀 𝑗↾𝑋1
∧ 𝜏) = 𝜇 𝑗↾𝑈1

∧ 𝐿 𝑗

[
𝛼 𝑗

]
(𝜏) ,

whereby 𝛼 𝑗 ∧ 𝜏 ∧ 𝐿 𝑗

[
𝛼 𝑗

]
(𝜏) falsifies 𝐹 , by definition of countermodel. Hence 𝜏 ∧ 𝐿 𝑗

[
𝛼 𝑗

]
(𝜏)

falsifies 𝐹
[
𝛼 𝑗

]
, and therefore falsifies the matrix of 𝑄 𝑗 .

(b) Let 𝜏, 𝜌 ∈ {0, 1}vars∃ (𝑄 𝑗 )
, and suppose that 𝜏 and 𝜌 agree on the first 𝑟 existential blocks of

𝑄 𝑗 for some 𝑟 ∈ [𝑑 − 1]. Since 𝜏 and 𝜌 agree on 𝑋1 in particular, if either of them satisfies∧𝑗−1
𝑘=1

𝜀𝑘↾𝑋1

[
𝛼 𝑗

]
, then we have 𝐿 𝑗

[
𝛼 𝑗

]
(𝜏) = 𝐿 𝑗

[
𝛼 𝑗

]
(𝜌) satisfying the condition trivially, so

we assume otherwise. Notice that 𝐿 𝑗

[
𝛼 𝑗

]
(𝜏) is 𝐿(𝜀 𝑗↾𝑋1

∧𝜏) with the𝑈1-component removed,

and likewise for 𝜌 . Since 𝜀 𝑗↾𝑋1
∧𝜏 and 𝜀 𝑗↾𝑋1

∧ 𝜌 agree on the first 𝑟 + 1 existential blocks of𝑄 ,
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𝐿(𝜀 𝑗↾𝑋1
∧ 𝜏) and 𝐿(𝜀 𝑗↾𝑋1

∧ 𝜌) agree on the first 𝑟 + 1 universal blocks of 𝑄 , thus 𝐿 𝑗

[
𝛼 𝑗

]
(𝜏)

and 𝐿 𝑗

[
𝛼 𝑗

]
(𝜌) agree on the first 𝑟 universal blocks of 𝑄 𝑗 .

□

4.3 Unbounded alternation
Theorem 4.2 does not extend to QBFs in general; UDLs prove to be too weak for QBFs of unbounded

alternation depth. To show this, we consider a version of the equality formulas with an unbounded,

‘interleaved’ prefix.

Definition 4.14 (interleaved equality). The 𝑛th interleaved equality formula 𝑄 INT
𝑛 is obtained from

𝑄EQ
𝑛 by replacing the prefix with ∃𝑥1∀𝑢1∃𝑧1 · · · ∃𝑥𝑛∀𝑢𝑛∃𝑧𝑛 .

Recall that the countermodel range for the original equality formulas is the complete set of

universal assignments. In fact, this remains true under the interleaved prefix.

Proposition 4.15. If 𝑓 is a unified countermodel for 𝑄 INT
𝑛 , then rng(𝑓 ) = {0, 1}𝑈 , where 𝑈 =

{𝑢1, . . . , 𝑢𝑛}.

Proof. The idea of the proof is to show that any countermodel must copy the value of 𝑥𝑖 into 𝑢𝑖 .

Because with the interleaved prefix 𝑢𝑖 additionally has access to the values of 𝑧 𝑗 for 𝑗 < 𝑖 , we must

rule out a larger number of candidate countermodels, which requires some attention to technical

detail. The formal proof follows.

For each 𝑖 ∈ [𝑛], let 𝐷𝑖 denote the existential variables appearing before 𝑢𝑖 in the prefix of 𝑄 INT
𝑛 .

We show that the range of any countermodel for 𝑄 INT
𝑛 is {0, 1}𝑈 , and the proposition follows.

Let 𝑓 be a countermodel for 𝑄 INT
𝑛 , and let 𝜇 be an arbitrary total assignment to the universal

variables. We prove that 𝜇 = 𝑓 (𝜀), where

𝜀 (𝑥𝑖 ) :=

{
0 if 𝜇 (𝑢𝑖 ) = 0

1 if 𝜇 (𝑢𝑖 ) = 1

, for 𝑖 ∈ [𝑛] ,

𝜀 (𝑧𝑖 ) := 1 , for 𝑖 ∈ [𝑛] .
Aiming for contradiction, let 𝑗 be the least natural number for which 𝑓 (𝜀)↾{𝑢 𝑗 } ≠ 𝜇↾{𝑢 𝑗 } . The

matrix of 𝑄 INT
𝑛 [𝜀↾𝐷 𝑗

] is

𝑎𝑧 𝑗 ∧ 𝑧 𝑗 · · · 𝑧𝑛 ∧
𝑛∧

𝑖=𝑗+1
(𝑥𝑖𝑢𝑖𝑧𝑖 ∧ 𝑥𝑖𝑢𝑖𝑧𝑖 )

where 𝑎 is the literal represented by the assignment 𝑓 (𝜀)↾{𝑢 𝑗 } . This matrix is satisfied by the

assignment

𝑓 (𝜀)↾{𝑢 𝑗 } ∧ 𝑧 𝑗 ∧ 𝑧 𝑗+1 ∧ · · · ∧ 𝑧𝑛 .

Now, let 𝛿 be any total existential assignment that extends

𝜀↾𝐷 𝑗
∧ 𝑧 𝑗 ∧ 𝑧 𝑗+1 ∧ · · · ∧ 𝑧𝑛 .

Since 𝜀 and 𝛿 agree on 𝐷 𝑗 , the assignments 𝑓 (𝜀)↾{𝑢 𝑗 } and 𝑓 (𝛿)↾{𝑢 𝑗 } are identical. It follows that
the assignment 𝛿 ∪ 𝑓 (𝛿) satisfies the matrix of 𝑄 INT

𝑛 , contradicting the fact that 𝑓 is a countermodel

for 𝑄 INT
𝑛 . □

As a consequence, the interleaved equality family requires UDLs of exponential size. However,

they also admit short QU-Res refutations. As shown in Figure 1, 𝑄 INT
𝑛 can be reduced to 𝑄 INT

𝑛−1 in a

constant-size derivation.

Proposition 4.16. The interleaved equality formulas admit linear-size QU-Res refutations.
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{𝑧1, . . . , 𝑧𝑛}{𝑥𝑛, 𝑢𝑛, 𝑧𝑛} {𝑥𝑛, 𝑢𝑛, 𝑧𝑛}

{𝑧1, . . . , 𝑧𝑛−1, 𝑥𝑛, 𝑢𝑛} {𝑧1, . . . , 𝑧𝑛−1, 𝑥𝑛, 𝑢𝑛}

{𝑧1, . . . , 𝑧𝑛−1, 𝑥𝑛} {𝑧1, . . . , 𝑧𝑛−1, 𝑥𝑛}

{𝑧1, . . . , 𝑧𝑛−1}{𝑥𝑛−1, 𝑢𝑛−1, 𝑧𝑛−1} {𝑥𝑛−1, 𝑢𝑛−1, 𝑧𝑛−1}

Fig. 1. First portion of a QU-Res refutation of 𝑄 INT
𝑛 .

Thus distributed decision lists are unsuitable for characterising QUNP
- Res refutation size when

the alternation depth is unbounded.

Corollary 4.17. QUNP
- Res ≰𝑝 UDL on unbounded alternation.

4.4 Characterisation of hardness for QU-Res on bounded alternation
If we consider only families of bounded alternation QBFs, given the equivalence between UDLs

and the oracle system QUNP
- Res (Theorem 4.2), there can be only two reasons for hardness in the

classical system QU-Res: either
(a) the family requires large UDLs, or

(b) the family harbours propositional resolution hardness.

The main question here is regarding case (b), and what it really means for a QBF family to ‘harbour’

propositional hardness. In fact, we can give a precise answer: for every family of small UDLs, some

steps in the entailment sequences are hard for resolution. This gives rise to a hard sequence of

unsatisfiable CNFs for each small family of UDLs.

The result, stated in the following theorem, is a complete characterisation of QU-Res hardness
(on bounded alternation), analogous to the hardness characterisations for Frege+∀red and EF+∀red
from [16].

Theorem 4.18. Given a bounded-alternation QBF family {𝑃𝑛 · 𝐹𝑛}𝑛∈N requiring superpolynomial-
size QU-Res refutations, either

(a) {𝑃 · 𝐹 }𝑛∈N requires superpolynomial-size UDLs, or
(b) for each family of polynomial-size UDLs {𝐿𝑛}𝑛∈N for 𝑃𝑛 · 𝐹𝑛 with entailment sequences E(𝐿𝑛) =

𝑐𝑛
1
, . . . , 𝑐𝑛𝑟𝑛 , there exist natural numbers 𝑖𝑛 ∈ [𝑟𝑛] such that the CNF family{(

𝐹𝑛 ∧
𝑖𝑛−1∧
𝑘=1

red(𝑐𝑛
𝑘
)
) [

𝑐𝑛
𝑖𝑛

]}
𝑛∈N

requires superpolynomial-size resolution refutations.

Proof. For 𝑛 ∈ N and 𝑖𝑛 ∈ [𝑟𝑛], we put

𝜙𝑖𝑛 :=

(
𝐹𝑛 ∧

𝑖𝑛−1∧
𝑘=1

red(𝑐𝑛
𝑘
)
) [

𝑐𝑛
𝑖𝑛

]
.

Note that 𝜙𝑖𝑛 is unsatisfiable by Lemma 4.10.

Suppose now that neither condition (a) nor condition (b) holds. Then there exist polynomials

𝑝 (𝑛), 𝑞(𝑛) and a family of UDLs {𝐿𝑛}𝑛∈N with |𝐿𝑛 | ≤ 𝑝 (𝑛) and with entailment sequences E(𝐿𝑛) =
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𝑐𝑛
1
, . . . , 𝑐𝑛𝑟𝑛 , such that for all 𝑖𝑛 ∈ [𝑟𝑛] the CNFs 𝜙𝑖𝑛 have resolution refutations of size at most 𝑞(𝑛).

Let 𝑖𝑛 ∈ [𝑟𝑛].
By assumption, the alternation depth of each 𝑃𝑛 · 𝐹𝑛 is bounded above by a constant 𝑑 , and so

Lemma 4.9 provides the bound |E(𝐿𝑛) | = 𝑟𝑛 ≤ 𝑝 (𝑛)𝑑 . Given an arbitrary CNF 𝐺 and clause 𝑏, it is

easy to see that a resolution refutation 𝜋 of𝐺 [𝑏] can be transformed into a resolution derivation of

𝑏 from𝐺 of size |𝜋 | +1 (it may be necessary to add a weakening step). Hence, there exist derivations

of 𝑐𝑛𝑖𝑛 from 𝐹𝑛 ∧ ∧𝑖𝑛−1
𝑘=1

red(𝑐𝑛
𝑘
) of size 𝑞′ (𝑛) = 𝑞(𝑛) + 1.

Now, beginning with the axiom clauses 𝐹𝑛 , and successively deriving and reducing the clauses

in E(𝐿𝑛), we obtain QU-Res refutations of 𝑃𝑛 · 𝐹𝑛 of size 𝑂 ( |𝑃𝑛 · 𝐹𝑛 | + 𝑝 (𝑛)𝑑𝑞′ (𝑛)). Hence 𝑃𝑛 · 𝐹𝑛
has polynomial-size QU-Res refutations. □

4.5 Unification of lower-bound techniques
The two main existing lower-bound techniques for resolution-based QBF proof systems are strategy
extraction [8, 9] and size-cost-capacity [6]. As far as proof-size lower bounds for bounded-alternation

QBFs are concerned, our hardness characterisation (Theorem 4.18) encompasses both.

Indeed, the exact lower bounds for all known bounded-alternation hardness results (all of which

have alternation depth 1) can be shown as the result of a UDL lower bound. For QBFs with a single

universal block, we have the following immediate corollary to Theorems 4.5 and 4.11.

Corollary 4.19. Let {𝑄𝑛}𝑛∈N be a QBF family of alternation depth 1. Then the following are
equivalent statements:

• {𝑄𝑛}𝑛∈N admits UDLs of size 𝑂 (𝑠 (𝑛));
• {𝑄𝑛}𝑛∈N admits QUNP

- Res refutations of size 𝑂 (𝑠 (𝑛)).

Lower bounds by strategy extraction. In [8, 9], a general method was exhibited for forming a

QBF 𝑄 𝑓 whose unique countermodel is a given Boolean function 𝑓 . Proof-size lower bounds were

shown via strategy extraction, instantiating the function 𝑓 by PARITY [9, Thm. 14], MAJORITY [8,

Cor. 5.7] and SIPSER𝑑 [8, Cor. 5.12], and importing known hardness results for these functions from

circuit complexity [30, 43, 47]. In all three cases, the resulting QBF family has a single universal

variable, and the imported circuit lower bound holds also for UDLs. As such, all three lower bounds

for QUNP
- Res follow from Corollary 4.19.

Lower bounds by size-cost-capacity. A largely orthogonal technique was proposed in [6]. Here

it was shown that the so-called cost of a QBF is an absolute lower bound on its QUNP
- Res refutation

size.
6

In fact, for alternation depth 1, the cost of a QBF is equal to the minimal cardinality of coun-

termodel range, which in turn is a trivial lower bound on UDL size. As such, the lower bounds

for equality [6, Thm. 3.5] and random QBFs [6, Thm. 7.9], both of which have alternation depth 1,

follow from Corollary 4.19 once the exponential countermodel-range lower bound is established.

5 EQUIVALENCE OF QU-Res AND Q-Res ON BOUNDED ALTERNATION
The natural follow-up question, prompted by our work in Section 4, is whether our results also hold

for Q-Resolution (QU-Res without universal pivots). In particular, does the UDL characterisation

(Theorem 4.2) continue to hold? In this section, we show that the answer is yes. An immediate

corollary is that QNP
- Res and QUNP

- Res are p-equivalent on bounded-alternation QBFs.

Perhaps the most obvious approach would be to show that our transformations betweenQUNP
- Res

and UDL go through without resolution on universal pivots. However, we choose another approach.

6
This is actually shown in the proof of Theorem 4.5. The cost of𝑄 is equal to the maximum, over the individual lists 𝐿𝑖 , of

the minimal list size (cf. [6]).
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We show directly that QNP
- Res is equivalent to QUNP

- Res, and therefore to UDL. This approach
throws up a further interesting result, namely that the classical systems Q-Res and QU-Res are
also p-equivalent on bounded alternation.

Definitions of Q-Res and QNP-Res. Q-Res is identical to QU-Res, except that resolution pivots

must be existential variables.

Definition 5.1 (Q-Res [33]). A Q-Res derivation from a QBF 𝑃 · 𝐹 is a sequence of clauses

𝜋 := 𝑐1, . . . , 𝑐𝑠 in which each 𝑐𝑖 is derived by one of the following rules:

• Axiom: 𝑐𝑖 is a clause in the matrix 𝐹 ;

• ∃-Resolution: 𝑐𝑖 = 𝑎 ∨𝑏, where 𝑐𝑟 = 𝑎 ∨𝑥 and 𝑐𝑠 = 𝑏 ∨𝑥 for some 𝑟, 𝑠 < 𝑖 and some existential

variable 𝑥 .

• Weakening: 𝑐𝑖 = 𝑐𝑟 ∨ 𝑏 for some 𝑟 < 𝑖 and clause 𝑏.

• Universal reduction: 𝑐𝑖 = 𝑐𝑟 [𝜇] for some 𝑟 < 𝑖 and some universal assignment 𝜇 with

vars∃ (𝑐𝑟 ) <𝑃 vars(𝜇).
The size of 𝜋 is |𝜋 | = 𝑠 , and 𝜋 is a refutation when 𝑐𝑠 = ⊥.

For the oracle version ofQ-Res, we want to specify a rule which allows a propositional derivation
to be collapsed into a single inference. This is complicated by the fact that Q-Res is not proposi-
tionally implicationally complete; that is, from 𝐹 ⊨ 𝑐 it does not follow that 𝑐 can be derived from

𝐹 using the axiom, ∃-resolution and weakening rules. As such we do not reuse the Σ1-rule from

QUNP
- Res, but rather define a new version capturing the insistence on existential pivots.

Definition 5.2 (QNP
- Res). QNP

- Res is defined as Q-Res, except that the resolution and weakening

rules are replaced by the following rule:

• Σ∃
1
-rule: For some 𝐺 ⊆ {𝑐1, . . . , 𝑐𝑖−1},

(a)

∧
𝑏∈𝐺 𝑏∃ ⊨ 𝑐∃𝑖 , and

(b) for each 𝑏 ∈ 𝐺 , 𝑏∀ is a subclause of 𝑐∀
𝑖
,

where 𝑐∃ and 𝑐∀ denote the existential and universal subclauses of any clause 𝑐 .

Equivalences on bounded alternation depth. Both of the p-equivalences that we want to show

can be proved constructively, and the essential observation is the following: all of the universal

resolutions from a single block can be removed from a QU-Res refutation in quadratic time.

It is also important that the number of universal reduction steps grows only quadratically during

the transformation. We denote the number of universal reduction steps in a refutation 𝜋 by |𝜋 |∀ .

Lemma 5.3. Let 𝜋 be a QU-Res refutation of a QBF 𝑄 of alternation depth 𝑑 . For each 𝑖 ∈ [𝑑], 𝜋
can be transformed into a refutation 𝑡 (𝜋) of 𝑄 with |𝑡 (𝜋) | = 𝑂 ( |𝜋 |2) and |𝑡 (𝜋) |∀ = 𝑂 ( |𝜋 |2∀) in which
there are no resolutions on the 𝑖 th universal block. The transformation is computable in time 𝑂 ( |𝜋 |2).

Proof. Let 𝑐1, . . . , 𝑐𝑠 be a QU-Res refutation of a QBF ∃𝑋1∀𝑈1 · · · ∃𝑋𝑑∀𝑈𝑑∃𝑋𝑑+1 · 𝐹 , and let

𝑖 ∈ [𝑑]. We describe the transformation 𝑡 recursively on the number 𝑟 of𝑈𝑖 reductions in 𝜋 .

If 𝑟 = 0, we obtain 𝑡 (𝜋) from 𝜋 by removing all𝑈𝑖 resolutions in the following way: we delete all

clauses containing a positive 𝑈𝑖 literal, and add the empty clause at the end of the refutation. The

negative𝑈𝑖 literals, which are no longer resolved away, accumulate through the refutation, and are

removed at the conclusion by the addition of a single universal reduction step (hence the addition

of the empty clause).

If 𝑟 ≥ 1, we find the first 𝑈𝑖 reduction step 𝑐 𝑗 appearing in 𝜋 , and consider the subderivation

𝜋 𝑗 ending in 𝑐 𝑗 . Suppose that the antecedent of 𝑐 𝑗 is 𝑐 𝑗 ∨ 𝑅. Now we remove all 𝑈𝑖 resolutions

from 𝜋 𝑗 , obtaining a new sequence 𝜋 ′
𝑗 , as follows: for each 𝑈𝑖 literal in 𝑅, we remove all clauses
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containing the complementary literal; for each variable in 𝑈𝑖 not appearing in 𝑅, we remove all

clauses containing the positive literal. Once again, all 𝑈𝑖 literals that are no longer resolved away

accumulate through the derivation, and are universally reduced at the conclusion. Then we define

𝑡 (𝜋) := 𝜋 ′
𝑗 , 𝑡 (𝜋 ′), where 𝜋 ′

is identical to 𝜋 , except that 𝑐 𝑗 is introduced as an axiom, rather than

derived by universal reduction.

It is clear that |𝑡 (𝜋) | = 𝑂 ( |𝜋 |2) and |𝑡 (𝜋) |∀ = 𝑂 ( |𝜋 |2∀), and that 𝑡 can be computed in time

𝑂 ( |𝜋 |2). It remains to prove that 𝑡 (𝜋) is a valid QU-Res refutation of 𝑄 with no𝑈𝑖 resolutions. We

do this by induction on 𝑟 .

The base case 𝑟 = 0 is clear. For the inductive step 𝑟 ≥ 1, it is clear that 𝜋 ′
𝑗 is a valid QU-Res

derivation of 𝑐 𝑗 with no𝑈𝑖 resolutions. Since 𝜋
′
is a QU-Res refutation of 𝑃 · 𝐹 ∧ 𝑐 𝑗 with 𝑟 − 1 𝑈𝑖

reductions, 𝑡 (𝜋 ′) is a valid QU-Res refutation of 𝑃 · 𝐹 ∧ 𝑐 𝑗 with no𝑈𝑖 resolutions, by the inductive

hypothesis. The inductive step follows, as 𝑐 𝑗 is the conclusion of 𝜋 ′
𝑗 . □

Now we show the p-equivalence of the classical systems, which is an easy consequence of

Lemma 5.3.

Theorem 5.4. Q-Res ≡𝑝 QU-Res on bounded alternation.

Proof. Since QU-Res trivially p-simulates Q-Res, we need only show the reverse simulation.

By repeated application of Lemma 5.3, QU-Res refutations 𝜋 of QBFs of alternation depth 𝑑 can

be transformed into Q-Res refutations of size 𝑂 ( |𝜋 |2𝑑 ) in time 𝑂 ( |𝜋 |2𝑑 ). Hence Q-Res p-simulates

QU-Res when 𝑑 is bounded above by a constant. □

Next, we show the p-equivalence of the oracle systems.

Theorem 5.5. QNP
- Res ≡𝑝 QUNP

- Res on bounded alternation.

Proof. QUNP
- Res trivially p-simulates QNP

- Res, so we need only show the reverse simulation.

Let 𝜋 be a QUNP
- Res refutation of a QBF 𝑄 of alternation depth 𝑑 . We transform 𝜋 into a QNP

- Res
refutation 𝑡 (𝜋) of size 𝑂 ( |𝜋 |2𝑑 ).
Since resolution is implicationally complete, whenever the Σ1-rule is applied, the consequent

can be derived by resolution from the antecedents. Hence we can obtain a QU-Res refutation 𝜋0
from 𝜋 by replacing each entailment step with a resolution derivation. Moreover, |𝜋0 |∀ = |𝜋 |∀ .

Next we remove the universal resolution steps from 𝜋0 by applying Lemma 5.3 for each 𝑖 ∈ [𝑑].
We obtain a Q-Res refutation 𝜋1 with |𝜋1 |∀ = 𝑂 ( |𝜋 |2𝑑∀ ).

Finally, we transform 𝜋1 into a QNP
- Res refutation 𝑡 (𝜋) as follows. Call a clause in 𝜋1 surplus if it

is neither an axiom, nor the conclusion, nor the antecedent of a reduction step. We obtain 𝑡 (𝜋)
from 𝜋1 by deleting all surplus clauses.

To see that 𝑡 (𝜋) is indeed a QUNP
- Res refutation, observe that the removal of surplus clauses from

the antecedents preserves ∃-entailment steps (realised by the Σ∃
1
-rule), since surplus clauses are

already ∃-entailed by the preceding clauses. As 𝑡 (𝜋) contains only axioms, reduction steps, and

antecedents of reduction steps, its size is at most

|𝑄 | + 2( |𝜋1 |∀) = |𝑄 | +𝑂 ( |𝜋 |2𝑑 ) .

Assuming without loss of generality that |𝑄 | ≤ |𝜋 |, we have |𝑡 (𝜋) | = 𝑂 ( |𝜋 |2𝑑 ). □

As a corollary of Theorems 4.2 and 5.5, UDLs characterise QNP
- Res refutation size on bounded

QBFs.

Corollary 5.6. QNP
- Res ≡𝑝 UDL on bounded alternation.
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Unbounded alternation depth. The equivalences in Theorems 5.4 and 5.5 cannot be extended to

QBFs in general. The former case is ruled out by the fact that Q-Res does not simulate QU-Res [27],
the separation being shown by the QBFs {KBKF𝑛}𝑛∈N introduced by Kleine Büning, Karpinski and

Flögel [33], which have unbounded alternation depth. Indeed, Theorem 5.4 shows that any such

constructive separation must be due to a QBF family with unbounded alternation.

The latter case is ruled out by the same QBFs. It is clear that the exponential Q-Res lower
bound for KBKF𝑛 [10, 33] is due to exponentially many universal reduction steps (see the proof by

size-cost in [6]), giving rise to an exponential lower bound for QNP
- Res. The existence of short (i.e.

polynomial-size) QUNP
- Res refutations follows from the existence of short QU-Res refutations. So

QNP
- Res does not simulate QUNP

- Res on unbounded alternation.

6 SIZE-WIDTH FOR QBF RESOLUTION
The seminal paper of Ben-Sasson and Wigderson [4] introduced the celebrated size-width relations,

equationswhich show that short resolution refutationsmust also be narrow. This powerful technique
allows resolution size lower bounds to be obtained via width lower bounds, the point being that

width lower bounds are often much easier to show.

Let us first recall the size-width relation for (general) resolution.
7
The width of a clause is the

number of literals it contains, and the width of a resolution refutation is the maximal width of a

clause in the sequence. The initial width of a CNF is the maximal width amongst its clauses.

Theorem 6.1 ([4]). Let 𝐹 be a CNF with 𝑛 variables, let𝑤 (𝐹 ) denote the initial width of 𝐹 , and let
𝑠 (𝐹 ⊢ ⊥) and 𝑤 (𝐹 ⊢ ⊥) denote the minimal size and minimal width of a resolution refutation of 𝐹 .
Then

𝑠 (𝐹 ⊢ ⊥) = exp

(
𝛺

(
(𝑤 (𝐹 ⊢ ⊥) −𝑤 (𝐹 ))2

𝑛

))
.

Size-width is arguably the main lower-bound technique for propositional resolution, and its

applicability to QBFs has already been investigated [12, 22]. Unfortunately, only negative results

were obtained, ruling out the exact relations of Ben-Sasson and Wigderson for various width

measures.

In this section, we use the connection to UDLs to show the first positive results, and we apply

our new size-width relation to reprove some superpolynomial lower bounds.

6.1 A size-width relation for QUNP-Res
Previous work [12] considered two natural width measures for QBF refutations:

(a) the standard notion of width, i.e. the maximal number of literals appearing in a single clause;

(b) existential width, i.e. the maximal number of existential literals appearing in a single clause.

We argue that the correct measure of width for a QUNP
- Res refutation is existential width with the

axiom clauses not considered. Thus, we define the existential width of a QUNP
- Res refutation as the

maximal number of existential literals appearing in a non-axiom clause.
8
With this definition of

existential width, the following size-width relation holds.

Theorem 6.2. Let 𝑄 = ∃𝑋1∀𝑈1 · · · ∃𝑋𝑑∀𝑈𝑑∃𝑋𝑑+1 · 𝐹 be a QBF of alternation depth 𝑑 , let 𝜈 :=∑𝑑
𝑖=1 |𝑋𝑖 | (i.e. the number of existential variables excluding those in the last block), and let 𝑠 (𝐹 ⊢ ⊥)

7
There is a separate relation for tree-like resolution [4].

8
With this definition, the width of an axiom clause 𝑐 implicitly enters the calculation of the width of a proof in case there is

a universal reduction step performed on 𝑐 .
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and𝑤∃ (𝐹 ⊢ ⊥) denote the minimal size and minimal existential width of a QUNP
- Res refutation of 𝑄 .

Then

𝑠 (𝐹 ⊢ ⊥) = exp

(
𝛺

(
(𝑤∃ (𝑄 ⊢ ⊥))2

𝑑3𝜈

))
.

Before we proceed to prove Theorem 6.2, a couple of remarks are in order, by way of comparison

with the original relation of Ben-Sasson and Wigderson [4].

The first notable difference is the absence of an initial width term, and the related switch from

counting the total number of variables 𝑛, to the number 𝜈 of existential variables outside the last

block. These both arise from the fact that we apply our narrowing transformation (Lemma 6.5)

to UDLs, and those have no concept of initial width; and never even see the variables from the

last block. In a way, this highlights that the variables from the last block, and in particular Tseitin

variables, are irrelevant for hardness in QUNP
- Res. Ignoring the last block will turn out crucial later,

when proving the lower bound for the majority formulas (Corollary 6.11).

The second obvious difference is in the denominator of the exponent. Here we incur a factor

of 𝑑3, related to alternation depth. Hence our relation works best when the alternation depth is

bounded, or at least grows very modestly. In Subsection 6.3, we show that in this kind of size-width

relation some dependence on the alternation depth is unavoidable.

Note that Theorem 6.2 is not a direct generalization of Theorem 6.1; the propositional case in

Theorem 6.2 would have to be obtained by setting 𝑑 = 0, in which case 𝜈 = 0 as well, and in fact

𝑤∃ (𝑄 ⊢ ⊥) = 0 too, because every propositional formula can be refuted in one 0-width QUNP
- Res

step. Thus, we would obtain a meaningless expression containing zeros in both the numerator and

the denominator. We also note that the straightforward generalisation of Theorem 6.1 to QBFs does

not hold as shown in earlier work [12, 22] (cf. the discussion in Section 6.3).

Proof of the QBF size-width relation. We prove Theorem 6.2 via a transformation fromQUNP
- Res

to UDL and back. A central step in the transformation is based on an adaptation of the following

Lemma of Bshouty [18]. It states a size-width relation for (single-output) term decision list. Here,

the width of a decision list is the maximal width of a term in the list.

Lemma 6.3 ([18]). Let 𝑓 : {0, 1}𝑍 → {0, 1} be a function, where 𝑍 is a set of 𝑛 Boolean variables.
If 𝑓 is computed by a decision list of size 𝑠 , then it is also computed by a decision list of width
𝑂 (

√︁
𝑛 log𝑛 log 𝑠).

However, UDLs are multi-output term decision lists, so we need to generalise this result for

multiple outputs. This is actually quite straightforward, and we could simply copy Bshouty’s proof

to obtain a generalized version of the lemma for MDLs.
9
However, we take a different approach,

and prove an MDL version of Lemma 6.3 following the proof of Ben-Sasson and Wigderson of

the size-width transfer for resolution [4, Theorem 3.5]. In this way we obtain a better bound than

in Lemma 6.3, by a factor of log𝑛. As a corollary, we obtain a strengthened version of Bshouty’s

lemma for ordinary decision lists as well.

We split the proof into two parts: Lemma 6.4 states the narrowing transformation of MDLs for

arbitrary target width (under appropriate conditions), and Lemma 6.5 plugs in the right parameters

to get the optimal bound, resulting in a strengthening of Bshouty’s Lemma 6.3.

Recall that the input width of an MDL is defined as the maximal width of an input term in the list.

Lemma 6.4. ∀𝑑 ≥ 0 ∀𝑛 ≥ 0 ∀𝑏 ≥ 0 if an MDL 𝐿 on 𝑛 input variables has fewer than 𝑎(𝑛,𝑑)𝑏 terms
of input width greater than 𝑑 , then it can be transformed into an equivalent MDL𝑀 of input width at
most 𝑑 + 𝑏, where 𝑎(𝑛,𝑑) = (1 − 𝑑

2𝑛
)−1.

9
We have done this in the conference version of this paper [7].
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Proof. We prove the statement for every 𝑑 by double induction on 𝑛 and 𝑏. Let 𝑑 ≥ 0 be fixed.

For an MDL 𝐿, let 𝐿★
𝑑
denote the set of fat terms of 𝐿, i.e. those of (input) width greater than 𝑑 .

The base case 𝑏 = 0 is trivial, as the condition |𝐿★
𝑑
| < 𝑎(𝑛,𝑑)𝑏 = 1 ensures that 𝐿 already has

width at most 𝑑 + 𝑏 = 𝑑 . Similarly, the base case 𝑛 ≤ 𝑑 is also trivial, as the width of a term cannot

be larger than the number of variables.

For the inductive step, consider an MDL 𝐿 for which |𝐿★
𝑑
| < 𝑎(𝑛,𝑑)𝑏 . Since the number of

occurrences of literals in the terms of 𝐿★
𝑑
is greater than 𝑑 |𝐿★

𝑑
| and there are 2𝑛 literals, by the

pigeonhole principle there is a literal 𝑐 which occurs in more than 𝑑 |𝐿★
𝑑
|/2𝑛 terms of 𝐿★

𝑑
. Therefore,

the list 𝐿↾𝑐 has fewer than

|𝐿★
𝑑
| −

𝑑 |𝐿★
𝑑
|

2𝑛
=

|𝐿★
𝑑
|

𝑎(𝑛,𝑑)
fat terms. In other words,��(𝐿↾𝑐 )★𝑑 �� < |𝐿★

𝑑
|

𝑎(𝑛,𝑑) < 𝑎(𝑛,𝑑)𝑏−1 < 𝑎(𝑛 − 1, 𝑑)𝑏−1 .

Thus, by the induction hypothesis, 𝐿↾𝑐 can be transformed into an equivalent MDL 𝐿1 of width at

most 𝑑 + 𝑏 − 1. On the other hand, the list 𝐿↾𝑐 has 𝑛 − 1 variables, and it holds that

| (𝐿↾𝑐 )★𝑑 | ≤ |𝐿★
𝑑
| < 𝑎(𝑛,𝑑)𝑏 < 𝑎(𝑛 − 1, 𝑑)𝑏 ,

so by the induction hypothesis it can be transformed into an equivalent list 𝐿2 of width at most

𝑑 + 𝑏.
Now consider the list𝑀 which consists of 𝑐 ⊗ 𝐿1 followed by 𝐿2. Because 𝐿1 is equivalent to 𝐿↾𝑐

and 𝐿2 is equivalent to 𝐿↾𝑐 ,𝑀 is equivalent to 𝐿. The width of𝑀 is at most 𝑑 + 𝑏. □

The next lemma both improves Bshouty’s lemma and generalises it from decision lists to MDLs.

Lemma 6.5. Let 𝑓 be a multi-output Boolean function. with 𝑛 input variables. If 𝑓 is computed by
an MDL of size 𝑠 , then it is also computed by an MDL of input width 𝑂 (

√︁
𝑛 log 𝑠).

Proof. We will apply Lemma 6.4 with 𝑑 = 𝑏 =

⌈√
2𝑛 ln 𝑠

⌉
.
10
Let 𝑎 := 𝑎(𝑛,𝑑). We will show that

𝑠 < 𝑎𝑏 , which allows us to use Lemma 6.4 to obtain the statement. By ln(1 + 𝑥) ≤ 𝑥 we have

ln𝑎 = − ln

(
1 − 𝑑

2𝑛

)
≥ 𝑑

2𝑛

and hence

log𝑎 𝑠 =
ln 𝑠

ln𝑎
≤ 2𝑛 ln 𝑠

𝑑
<
√
2𝑛 ln 𝑠 < 𝑏.

□

We may now proceed to prove Theorem 6.2, applying Lemma 6.5 to UDLs. In the context of

UDLs, since their input variables are the existential variables of a QBF, we speak of existential width
when referring to their input width.

10
To be irritatingly pedantic, note that 𝑑 > 0, and 𝑎 > 1, as long as 𝑛 > 0 and 𝑠 > 1. The remaining case is when the

MDL computes a constant and has width 0 anyway. Also, note that

√
2𝑛 ln 𝑠 < 𝑑 (the inequality is strict) because 𝑒 is a

transcendental number. Of course, neither of this has any bearing on the asymptotics.
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Proof. Let 𝑄 = ∃𝑋1∀𝑈1 · · · ∃𝑋𝑑∀𝑈𝑑∃𝑋𝑑+1 · 𝐹 be a QBF of alternation depth 𝑑 , let 𝑋 :=
⋃𝑑

𝑖=1𝑋𝑖 ,

𝜈 := |𝑋 |, and let 𝜋 be a shortest QUNP
- Res refutation of 𝑄 , i.e. 𝑠 (𝑄 ⊢ ⊥) = |𝜋 |. By Theorem 4.5, 𝜋 can

be transformed into a UDL 𝐿 of size at most |𝜋 |𝑑 . Since 𝐿 only uses the variables from 𝑋 as input

variables, by Lemma 6.5, 𝐿 can be transformed into a UDL𝑀 of existential width

𝑤∃ (𝑀) = 𝑂

(√︃
𝜈 log( |𝜋 |𝑑 )

)
= 𝑂

(√︁
𝑑𝜈 log |𝜋 |

)
.

From Lemma 4.9 it follows that the QUNP
- Res refutation 𝜌 of 𝑄 based on E(𝑀) (i.e. 𝑡 (𝑀) as

described in the proof of Theorem 4.11) has existential width at most 𝑑 ·𝑤∃ (𝑀). Therefore

𝑤∃ (𝑄 ⊢ ⊥) = 𝑂

(
𝑑 ·

√︁
𝑑𝜈 log |𝜋 |

)
,

and solving for |𝜋 | yields the theorem statement. □

6.2 QUNP-Res lower bounds by size-width
We illustrate the application of the QBF size-width relation by reproving three exponential QU-Res
lower bounds from the literature.

A useful feature of our translation via UDLs is that UDL width lower bounds imply QUNP
- Res

width lower bounds. Indeed, it is readily verified that the translation in Theorem 4.11 (from UDL to

QUNP
- Res) preserves existential width when the alternation depth is 1.

Proposition 6.6. A UDL for a QBF 𝑄 of alternation depth 1 can be transformed into a QUNP
- Res

refutation of 𝑄 with no increase in existential width.

In the forthcoming examples, linear lower bounds on the existential width of UDLs can be shown

with relative ease, whereby application of Proposition 6.6 and Theorem 6.2 yields a size lower

bound of exp(𝛺 (𝑛)). This is in contrast to the application of size-width relations for propositional

resolution, where showing width lower bounds still entails quite some work (cf. [4]).

The equality family. We first show that UDLs for the equality formulas require linear existential

width.

Theorem 6.7. Any UDL for 𝑄EQ
𝑛 has existential width 𝑛.

Proof. Let 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) be a UDL for 𝑄EQ
𝑛 , and note that 𝐿 computes the unique

countermodel

𝑓EQ : {0, 1}𝑋 → {0, 1}𝑈
𝜏 ↦→ 𝑓EQ (𝜏) ,

where 𝑋 = {𝑥1, . . . , 𝑥𝑛}, 𝑈 = {𝑢1, . . . , 𝑢𝑛}, and 𝑓EQ (𝜏) (𝑢𝑖 ) = 𝜏 (𝑥𝑖 ) for each 𝑖 ∈ [𝑛]. Note that the
countermodel 𝑓EQ amounts to setting each 𝑢𝑖 = 𝑥𝑖 .

Aiming for contradiction, suppose that 𝐿 has existential width𝑤 < 𝑛. In particular, 𝜀1 is a term

of width less than 𝑛, so there exists some variable 𝑥𝑖 that does not appear in 𝜀1. It follows that there

exist two assignments 𝜏, 𝜌 ∈ {0, 1}𝑋 , both of which satisfy 𝜀1, with 𝜏 (𝑥𝑖 ) ≠ 𝜌 (𝑥𝑖 ). We deduce that

𝑓EQ (𝜏) = 𝑓EQ (𝜌), but also that 𝜏 (𝑥𝑖 ) ≠ 𝜌 (𝑥𝑖 ), in contradiction with the definition of 𝑓EQ . □

The parity family. Arguing along the same lines, we obtain a linear lower bound on the existential

width of UDLs for the parity formulas.
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Definition 6.8 (parity [9]). The 𝑛th parity formula is

𝑄PAR
𝑛 := ∃𝑥1 · · · 𝑥𝑛∀𝑢∃𝑧1 · · · 𝑧𝑛 · (𝑥1 ∨ 𝑧1) ∧ (𝑥1 ∨ 𝑧1) ∧

(𝑢 ∨ 𝑧𝑛) ∧ (𝑢 ∨ 𝑧𝑛) ∧
𝑛−1∧
𝑖=1

⊕(𝑥𝑖+1, 𝑧𝑖 , 𝑧𝑖+1) ,

where ⊕(𝑥𝑖+1, 𝑧𝑖 , 𝑧𝑖+1) consists of the four clauses
(𝑥𝑖+1 ∨ 𝑧𝑖 ∨ 𝑧𝑖+1) ∧ (𝑥𝑖+1 ∨ 𝑧𝑖 ∨ 𝑧𝑖+1) ∧
(𝑥𝑖+1 ∨ 𝑧𝑖 ∨ 𝑧𝑖+1) ∧ (𝑥𝑖+1 ∨ 𝑧𝑖 ∨ 𝑧𝑖+1) .

Theorem 6.9. Any UDL for 𝑄PAR
𝑛 has existential width 𝑛.

Proof. Let 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) be a UDL for 𝑄PAR
𝑛 , and note that 𝐿 computes the unique

countermodel

𝑓PAR : {0, 1}𝑋 → {0, 1}{𝑢}
𝜏 ↦→

(
𝑢 ↦→

(
Σ𝑛𝑖=1𝜏 (𝑥𝑖 )

)
(mod 2)

)
,

where 𝑋 = {𝑥1, . . . , 𝑥𝑛}, which amounts to 𝑢 = 𝑥1 ⊕ · · · ⊕ 𝑥𝑛 .

Similarly as for equality, if the width of 𝜀1 is strictly less than 𝑛, then there exist two assignments

𝜏, 𝜌 ∈ {0, 1}𝑋 , both of which satisfy 𝜀1, and which disagree only at some variable 𝑥𝑖 . It follows that

𝑓PAR (𝜏) = 𝑓PAR (𝜌), and also that(
Σ𝑛𝑖=1𝜏 (𝑥𝑖 )

)
(mod 2) ≠

(
Σ𝑛𝑖=1𝜌 (𝑥𝑖 )

)
(mod 2) ,

contradicting the definition of the function 𝑓PAR. □

The majority family. The majority functionMAJ is defined as

MAJ(𝑥1, . . . , 𝑥𝑛) =
⌊
1

2

+
(
Σ𝑛𝑖=1𝑥𝑖

)
− 1/2

𝑛

⌋
.

For each 𝑛 ∈ N, let 𝑄MAJ
𝑛 := ∃𝑥1 · · · 𝑥𝑛∀𝑢∃𝑧1 · · · 𝑧𝑚 · 𝐹𝑛 denote a polynomial-size QBF whose unique

countermodel 𝑓MAJ amounts to 𝑢 = MAJ(𝑥1, . . . , 𝑥𝑛); that is,
𝑓MAJ : {0, 1}𝑋 → {0, 1}{𝑢}

𝜏 ↦→
(
𝑢 ↦→ MAJ(𝜏 (𝑥1), . . . , 𝜏 (𝑥𝑛))

)
,

where 𝑋 = {𝑥1, . . . , 𝑥𝑛} (for an explicit construction of such formulas, see [8]). We can show

straightforwardly that UDLs for {𝑄MAJ
𝑛 }𝑛∈N also require linear existential width.

Theorem 6.10. Any UDL for 𝑄MAJ
𝑛 has existential width at least 𝑛

2
.

Proof. Let 𝐿 := (𝜀1, 𝜇1), . . . , (𝜀𝑠 , 𝜇𝑠 ) be a UDL for 𝑄
MAJ
𝑛 . If the width of 𝜀1 is strictly less than

𝑛
2
,

then there exist two assignments 𝜏, 𝜌 ∈ {0, 1}𝑋 , both of which satisfy 𝜀1, such that

MAJ
(
𝜏 (𝑥1), . . . , 𝜏 (𝑥𝑛)

)
≠ MAJ

(
𝜌 (𝑥1), . . . , 𝜌 (𝑥𝑛)

)
.

We reach a contradiction, since 𝐿(𝜏) = 𝐿(𝜌), implying that 𝐿 does not compute the unique counter-

model 𝑓MAJ. □

Application. Application of Proposition 6.6 and Theorem 6.2 gives the following refutation-size

lower bounds.

Corollary 6.11. {𝑄EQ
𝑛 }𝑛∈N, {𝑄PAR

𝑛 }𝑛∈N, and {𝑄MAJ
𝑛 }𝑛∈N require QUNP

- Res refutations of size 2𝛺 (𝑛) .

Proof. For each of the three families we have that the number 𝜈 of existential variables outside

the last block is 𝑛. With 𝑑 = 1, Theorem 6.2 gives the result. □

ACM Trans. Comput. Logic, Vol. 24, No. 2, Article 10. Publication date: January 2023.



Hardness Characterisations and Size-Width Lower Bounds for QBF Resolution 10:27

Wenote that, in contrast to the original hardness proofs for the parity andmajority families [8, 10],

we obtained Corollary 6.11 without importing any lower bounds from circuit complexity. Also note

that the majority formulas may have a quadratic number of variables in the last block [8], and if

those were counted in Theorem 6.2, we would not obtain anything; thanks to ignoring them, the

argument goes through smoothly.

6.3 Relation to previous work
As it was shown in [12, 22] that the propositional size-width relations (Theorem 6.1) do not lift to

Q-Res or QU-Res, it is worthwhile taking a moment to see how those results are consistent with

our size-width relation (Theorem 6.2).

The authors of [12, 22] showed that the ‘existential-width analogue’ of the propositional size-

width relation, namely

𝑠 (𝑄 ⊢ ⊥) = exp

(
𝛺

(
(𝑤∃ (𝑄 ⊢ ⊥) −𝑤∃ (𝑄))2

𝑛

))
, (3)

does not hold in Q-Res or QU-Res. In particular, there exist QBFs {𝜙𝑛}𝑛∈N (based on formulas

from [32]) that

• have a linear number of variables: |vars(𝜙𝑛) | = 𝑂 (𝑛);
• have constant initial existential width:𝑤∃ (𝜙𝑛) = 𝑂 (1);
• require QU-Res refutations of linear existential width:𝑤∃ (𝜙𝑛 ⊢ ⊥) = 𝛺 (𝑛):
• admit QU-Res refutations of polynomial size: 𝑠 (𝜙𝑛 ⊢ ⊥) = 𝑛𝑂 (1)

.

The QBFs {𝜙𝑛}𝑛∈N clearly violate (3). However, no contradiction follows from Theorem 6.2. Since

{𝜙𝑛}𝑛∈N are unbounded alternation QBFs, the 𝑛th instance having alternation depth 𝑛, Theorem 6.2

yields only a constant lower bound.

We can parameterize the expression in Theorem 6.2 by replacing the fixed exponent of 𝑑3 with a

variable 𝑐 as follows:

𝑠 (𝐹 ⊢ ⊥) = exp

(
𝛺

(
(𝑤∃ (𝑄 ⊢ ⊥))2

𝑑𝑐𝜈

))
.

It is clear that the smaller the 𝑐 , the better the bound, and thus we can ask: what is 𝑐∗ = min 𝑐 such

that the theorem still holds? Theorem 6.2 implies 𝑐∗ ≤ 3, while the formulas {𝜙𝑛}𝑛∈N described

above show 𝑐∗ ≥ 1, and by extension that the dependence on 𝑑 cannot be removed, at least in this

form. We leave closing the gap as an open problem for future work.

7 CONCLUSIONS
It is interesting to compare our characterisation of QBF resolution hardness with the characterisation

of QBF Frege systems [16]. There the authors show a direct correspondence between C-Frege
(where lines in the system are C-circuits) and the circuit class C, e.g. hardness in QBF NC1

-Frege

is characterised by NC1
hardness. This is not the case in our results here. Resolution works with

CNFs, i.e. formulas of depth 2. By a result of Krause [36], the complexity of decision lists (and hence

of UDLs) is strictly intermediate between depth-2 and depth-3 circuits. Hence in QBF resolution,

our circuit model is strictly stronger than the model we use to represent the formulas. This partly
explains why ideas from [8, 16] do not suffice to characterise QBF resolution [14]. In addition to

finding the right circuit model of UDLs, new technical ideas (such as the entailment sequence) are

needed.

It is also clear from our results that UDLs do not characterise QU-Res hardness for QBFs of
unbounded quantifier complexity. While QBFs of bounded quantification succinctly represent all

problems from the polynomial hierarchy, which covers most applications of modern QBF solving

and is prominently represented in QBF evaluation benchmarks [37, 42], we leave open the question

ACM Trans. Comput. Logic, Vol. 24, No. 2, Article 10. Publication date: January 2023.
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of finding the right computational model to characterise QBF resolution for unbounded quantifier

complexity.
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