
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Software Complexity of a
Monadic Style in Object-Oriented

Programming

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Julian Kotrba, BSc

Matrikelnummer 01427123

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Wien, 26. August 2020

Julian Kotrba Franz Puntigam

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Software Complexity of a
Monadic Style in Object-Oriented

Programming

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Julian Kotrba, BSc

Registration Number 01427123

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Vienna, 26th August, 2020

Julian Kotrba Franz Puntigam

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Julian Kotrba, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. August 2020

Julian Kotrba

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während meines
Studiums aber auch im speziellen während der Anfertigung der vorliegenden Arbeit
gefördert und immer unterstützt haben. Spezieller Dank gilt dabei meiner Lebenspartnerin,
meiner Familie und meinen engsten Freundinnen und Freunden.

Besonderer Dank gilt auch Herrn Professor Puntigam für die fachkundige Unterstützung
und die lehrreichen Diskussionen, welche mich immer in die richtige Richtung gelenkt
und meinen Horizont erweitert haben.

Zu guter Letzt bedanke ich mich bei meinen Eltern, welche mir nicht nur das Studium
ermöglichten, sondern auch stets an mich glaubten und mich dadurch bestärkten.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

At this point, I would like to thank everyone who encouraged and always supported me
during my studies, but also especially during the preparation of this thesis. In particular,
I wish to acknowledge the ongoing support of my life partner, my family and my closest
friends.

My sincere appreciation also belongs to my supervisor Professor Puntigam for his expert
support and the instructive discussions, which have always guided me in the right direction
and have broadened my horizons.

Last but not least, I would like to thank my parents, who not only made it possible for
me to study, but also always believed in me and thereby strengthened me.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Über die letzten Jahre hinweg konnte ein Trend in der Entwicklung von Multiparadigmen-
Programmiersprachen und der Erweiterung von Programmiersprachen mit Features aus
anderen Programmiersprachen oder Programmierparadigmen festgestellt werden.

Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen der Verwendung eines Kon-
zeptes aus der funktionalen Programmierung, welches im Bereich der objektorientierten
Programmierung angewendet wird. Im speziellen wurde die praktische Auswirkung eines
monadischen Programmierstiles in der Datenzugriffsschicht auf die Softwarekomplexität
in einer bestehenden, in Java programmierten, Android Anwendungssoftware untersucht.
Die Ergebnisse wurden durch Messung der Komplexitätsmetriken Non-Comment Lines
of Code, Cyclomatic Complexity und Halstead Difficulty vor und nach dem Umschreiben
von Teilen des Quellcodes ermittelt.

Um sicherzustellen, dass Komplexitätsänderungen nach dem Umschreiben des Quellcodes
auf den monadischen Programmierstil zurückzuführen sind, um eine hohe Reproduzierbar-
keit erreichen und mögliche Verzerrungen der Ergebnisse minimieren zu können, wurde
zusätzlich im Rahmen dieser Arbeit ein umfangreiches Regelwerk für den Umschreibungs-
prozess definiert. Teile des Quellcodes wurden folglich unter Einhaltung dieser definierten
Regeln adaptiert.

Bei der Bewertung der Gesamtergebnisse konnte eine Diskrepanz zwischen den verwen-
deten Metriken zur Messung der Komplexität festgestellt werden. Eine detailliertere
Analyse zeigte jedoch, dass unter bestimmten Umständen eine deutliche Verringerung
(Verbesserung) der Komplexität erreicht werden konnte. Liegen diese Umstände nicht
vor, wurde teilweise eine deutliche Verschlechterung beziehungsweise ein Gleichbleiben
der Komplexität erzielt.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

In recent years, a trend in developing multi-paradigm programming languages and the
extension of programming languages with features from other programming languages or
programming paradigms has been observed.

This thesis researches the impact of the usage of a concept from the functional pro-
gramming paradigm in the field of object-oriented programming. In particular, the
practical impact of a monadic programming style in the data access layer on the software
complexity of an Android application software programmed in Java was examined. The
results were determined by the measurement of the complexity metrics Lines Of Code,
Cyclomatic Complexity and Halstead Difficulty before and after rewriting parts of the
source code.

To ensure that changes in software complexity after rewriting the source code can be
attributed to the monadic programming style, to achieve a high level of reproducibility
and to minimize rewriting bias, an extensive set of rules for the rewriting process was
also defined. The rewriting of parts of the source code was then conducted in compliance
with the established rules.

The evaluation of the overall results showed a disconnect between the used software
complexity metrics. However, a detailed analysis showed that under certain circumstances,
a significant reduction (improvement) of the software complexity could be achieved.
Otherwise, the software complexity remained unchanged or has significantly increased.

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation & Problem Statement . 1
1.2 Aim of the Work . 3
1.3 State of the Art . 3
1.4 Methodological Approach . 4
1.5 Structure of the Work . 5

2 Programming Paradigms 7
2.1 Introduction . 7
2.2 Object-oriented Programming . 9
2.3 Functional Programming . 13

3 Monads 19
3.1 Background . 19
3.2 Definition . 20
3.3 Types of Monads . 22

4 Software Complexity 35
4.1 Introduction . 35
4.2 Software Complexity Metrics . 36
4.3 Summary . 46

5 Evaluation 47
5.1 Evaluation Project . 47
5.2 Relevant Tools . 48
5.3 Identifying Query and Command Methods 49
5.4 Complexity Measurement . 50
5.5 Rewrite Rules . 50

xv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.6 Rewrite Approach . 55
5.7 Verification . 56

6 Results 59
6.1 General Results . 59
6.2 Detailed Analysis . 60
6.3 Discussion . 70

7 Conclusion & Future Work 75

A Additional Results 77

List of Figures 83

List of Tables 85

List of Code 87

Bibliography 89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

1.1 Motivation & Problem Statement

In 1958, the first functional programming language, called LISP, was invented by John
McCarthy [Tur13]. 60 years later, the functional programming paradigm and its tech-
niques are still getting a lot of attention in the software engineering and programming
language communities, although it is considered to be more challenging to learn than
the object-oriented programming paradigm [KY17]. Reasons for this hype include that a
functional programming style makes a program more robust and functional programs are
easier to test compared to imperative ones [Hin09]. Conversely, the use of object-oriented
programming techniques helps to improve the understandability of complex systems,
since the abstract or concrete design of objects is often closely related to things in the
real world [SM17]. Due to the close design of the software to the real world, problems
can be detected early in the design phase, hence long-term maintainability and revising
work can be reduced [SM17].

Both paradigms provide their own benefits when used, but it is also possible to use
multiple programming paradigms. For example, it is popular to include functional
programming constructs into non-functional programming languages or to create pro-
gramming languages that build upon the concepts of multiple paradigms [Nar09, PSG12].
The programming language Scala, for instance, allows programmers to use the techniques
from both worlds, while Java is located more on the imperative side, but still provides
support for some functional programming features. Since the introduction of Java 8 it
has been possible to use lambda expressions through functional interfaces. Functional
interfaces also allow one to create higher-order functions (i.e. functions which take one
or more functions as parameters or return a function as a result). Another supported
functional programming feature in Java is the Optional class. Optionals are used to
express the absence of values and have the advantage, that safer code can be created
[TMM18]. The underlying theory is based on Monads, which have their origins in cate-

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

gory theory. Monads are type constructors that abstract sequential computations. In
the paper [Nag19], Gergely Nagy found an advantage in using a monadic structure for
error handling. In particular, he showed that using a monadic way to handle errors
has a positive impact on the complexity of the source code [Nag19]. Because of a tight
relationship between software maintainability and complexity, writing low-complexity
software makes the codebase more maintainable and therefore helps to cope with the
requirements in a fast-paced environment [TSZ09].

Another common software engineering technique to improve software maintainability is
called Separation of concerns (SoC). SoC divides source code into logical and reusable
parts. For example, the implementation of the use case of borrowing a book from a
library could be divided into different services. An AccountService, a BookService and a
LibraryService, where the AccountService is responsible for managing library users, the
BookService for managing all the books in the library (e.g. rental statuses of books) and
the LibraryService for taking care of the whole rental process (e.g. check account ⇒
check book status ⇒ rent book). Each of the services provides one or more methods to
communicate with the instance. These methods can be roughly divided into methods that
return a result and methods that perform a task. BookService#borrowBook, for example,
is a command method, while AccountService#getAccount is a query method. In literature,
the strict separation between those two kinds of methods is known as the Command-Query
Separation (CQS) principle [Mey88]. By definition, query methods return results, but
are not allowed to change the state of objects, while command methods are allowed to
change the state of objects, but must not return results [Mey88]. In the previous example,
the LibraryService depends on the other two services. In case of a new book rental,
methods of the dependencies will be called sequentially (e.g. AccountService#getAccount
⇒ BookService#checkBook ⇒ BookService#borrowBook), taking possible errors into
account. The sequential execution in this example could also be expressed with monadic
composition.

Due to the fact, that the use of monadic structures can reduce complexity [Nag19]
and that the usage of query and command methods like in the previous example could
be expressed with monadic composition, this work analyzes the impacts of monadic
methods (i.e. methods returning monadic structures) of the data access layer on software
complexity.

It is important to mention that the definition of command methods is relaxed for
quantitative analysis, so that it is allowed to return values. There are two reasons for this:
First, it is common in Java to return values from command methods in the data access
layer of the project. For example, the insert method in a database service often returns
the inserted object or the ID of the inserted object. Second, the rewritten monadic
version of a command method must return a monad, so that it can be called a monadic
method.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Aim of the Work

1.2 Aim of the Work

The use of the functional or object-oriented programming paradigm offers paradigm-
specific advantages. However, the simultaneous use of several paradigms provides ad-
ditional benefits [TMM18, Nar09, PSG12]. This work researches the impacts of using
properties coming from the functional programming paradigm in a mainstream object-
oriented programming language. More precisely, the impact of the usage of monadic query
and command methods of the data access layer on software complexity was examined.

Starting from this aim, the following research question can be derived: What practical

impact does the usage of monadic query and command methods of the data

access layer in application software have on software complexity, using the

mainstream object-oriented programming language Java? This question can be
further broken down into the following sub-questions:

• Can the software complexity be reduced by using monadic query and command
methods?

• How do the different results of the complexity metrics relate to each other? (e.g.
do all results say ‘complexity decreased/increased’?)

The overall aim of this thesis is to draw conclusions about the correlation between
a monadic programming style in an object-oriented programming language and the
complexity of the underlying source code.

1.3 State of the Art

The book Programming Languages: Principles and Paradigms [GM10] and the paper
Concepts and paradigms of object-oriented programming [Weg90] provide fundamental
and still up-to-date knowledge about programming paradigms, including functional
and object-oriented programming. In his work [Pet18], Tomas Petricek gives a broad
understanding of the history of Monads and explains different perspectives regarding this
subject. Teatro et al. demonstrate how to compactly implement Monads in C++, an
object-oriented programming language [TMM18].

Regarding the key question of this work, the paper Comparing software complexity of
monadic error handling and using exceptions [Nag19] shows that using monadic structures
for error handling has a positive impact on software complexity. Based on these results,
this work examines whether the usage of monadic query and command methods in a
mainstream object-oriented programming language can achieve the same results.

The complexity measurement is done by using three different techniques to measure
software complexity. Two of the techniques are based on research papers, while one is a
trivial metric. The trivial metric is called Non-Comment Lines of Code (NCLOC) and
works by counting the source lines of code (leaving out comment and blank lines). The

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

second technique is called Cyclomatic Complexity and was first introduced in the paper A
Complexity Measure [McC76]. The third and final technique was developed by Maurice
Howard Halstead and presented in the book Elements of software science [Hal77].

1.4 Methodological Approach

1. Literature Review

The search for relevant papers and journals was conducted by a backward and
forward reference search based on the core literature. Additionally, various search
engines like IEEE Xplore1, ACM Digital Library2 and SpringerLink3 were used to
find related papers. The collected literature served as a theoretical basis for the
practical part of this thesis.

2. Selection of a Java-based Open Source Software (OSS) Project

Next, an appropriate project for the quantitative analysis needed to be selected.
The restrictions for the selection were that the project must fall under the category
of an application software and must be written in the mainstream object-oriented
programming language Java. Furthermore, no monadic structures are allowed to
be used in the selected project and there also has to be a data access layer. The
open-source Android application software OpenKeychain4 met these restrictions
and was therefore chosen for the study.

Regarding the search for an OSS project, GitHub5 was used as a platform.

3. Rewrite Rules

To make the rewriting process transparent and replicable, as well as keeping the
rewriting bias as small as possible and maintaining objectivity, an extensive set of
rules for the rewriting process was created.

4. Monadic Programming Style

Following the definition of the rewrite rules and the selection of a project, query
and command methods of the data access layer were identified and then rewritten
in a monadic programming style. Source code which uses the rewritten methods
had to be rewritten as well to make the project compile again. All code changes
were made in compliance with the established set of rules for the rewrite process.
Furthermore, software tests were run regularly and a code review was conducted to
minimize programming mistakes.

1https://ieeexplore.ieee.org/Xplore/home.jsp
2https://dl.acm.org/
3https://link.springer.com/
4https://www.openkeychain.org/
5https://github.com/

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://link.springer.com/
https://www.openkeychain.org/
https://github.com/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.5. Structure of the Work

5. Evaluation

This thesis uses a quantitative evaluation approach. Before changes to the source
code were made, the complexity metrics NCLOC, Cyclomatic Complexity [McC76]
and Halstead Difficulty [Hal77] were collected for all methods. After applying
a monadic style to query and command methods in the data access layer and
refactoring the places of use of those methods, the complexity metrics were collected
again for the resulting code. Then the results for all modified methods were
compared and conclusions were drawn.

1.5 Structure of the Work

Following this chapter, which has given a general overview of this thesis, programming
paradigms are explained. In particular, the chapter Programming Paradigms deals with
the object-oriented and the functional programming paradigm (see Chapter 2).

Based on the explanation of the function programming, the history and common use
cases of monads are covered in detail in Chapter 3.

Chapter 4 first gives an introduction to software complexity. Following the introduction,
five different metrics and metric sets for measuring software complexity are discussed.

After explaining the required basic knowledge, the necessary information for the evaluation
is described in Chapter 5. This information includes the tools used, the presentation of a
set of rules for the rewriting process, the procedure of the rewriting process and how it is
ensured that as few mistakes as possible are made during the rewriting process.

Chapter 6 presents the results that were obtained from the rewriting of parts of the
source code. First, the results are generally analyzed and then interpreted in detail. This
chapter ends with a discussion about the results.

The last chapter concludes with a summary of the key findings and gives an outlook
towards future research (see Chapter 7).

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Programming Paradigms

This chapter first gives a brief introduction to programming paradigms in general, followed
by a detailed explanation of the programming paradigms relevant to this work, namely
the object-oriented and functional programming paradigm. For each paradigm, a brief
review of the background is given and fundamental concepts are explained.

2.1 Introduction

The word paradigm has its origin in the Greek language and can be described as a pattern
or a model [Pre20]. In the context of programming, paradigms are a categorization
of different styles of programming. Some commonly known programming paradigms
are imperative programming, object-oriented programming, functional programming
and logic programming, whereby the last two can be summarized under the paradigm
declarative programming [GM10].

Imperative programming is a programming style closely related to how computers work
[GM10, Weg90]. The computation for solving a specific problem consists of a sequential
execution of steps, which lead to the solution of the problem. While executing these
steps, the program state is modified. In summary, imperative programming is about how
something is computed. The how is expressed by the step-by-step execution. In contrast,
declarative programming has a close relation to mathematics and logic and is about what
is to be computed [Weg90].

Two code listings are used to illustrate the difference between the imperative (how) and
the declarative (what) programming approach. Both listings show a program for counting
string occurrences in a list of strings. Listing 2.1 shows an imperative implementation of
the countOcc method, written in the programming language Java, while Listing 2.2 is
written in a declarative programming style using the functional programming language
Haskell.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Programming Paradigms

Listing 2.1: Imperative countOcc

int countOcc (S t r ing item , Lis t<Str ing> s t r i n g s) {
int count = 0 ;
for (S t r ing l i n e : s t r i n g s) {

i f (item . equa l s (l i n e)) {
count++;

}
}
return count ;

}

Listing 2.2: Declarative countOcc

f i l t e r S : : (String −> Bool) −> [String] −> [String]
f i l t e r S _ [] = []
f i l t e r S f (x : xs)

| f x = x : f i l t e r S f xs
| otherwise = f i l t e r S f xs

lengthS : : [String] −> Int
l engthS [] = 0
lengthS (x : xs) = 1 + lengthS xs

countOcc s = lengthS . f i l t e r (== s)

In the imperative implementation, an integer variable indicating the occurrence count
of the passed string is first created. The passed list of strings is then explicitly iterated.
Within the loop, it is checked whether elements of the list are equal to the passed string.
If this is the case, the count variable gets incremented by one. After the iteration, the
occurrence count gets returned. This step by step approach corresponds to the how or
the imperative approach.

On the other hand, the declarative version defines the function countOcc by composing
the two functions filterS and lengthS. Both functions show a naive implementation, which
is strongly based on the Haskell Prelude1 implementation. The filterS function filters
the list so that it only contains elements matching the passed string. After filtering the
list, the resulting list is passed to the lengthS function, which calculates and returns the
number of elements in the filtered list. In the declarative version of countOcc, the call
of the filterS function abstracts away how the list is filtered. This example reflects the
behavior of the what or the declarative approach. The declarative version of the countOcc
function can also be described as referentially transparent (see Section 2.3.3) [Hud89].

Object-oriented programming is a technique that uses objects and the communication
between objects to perform computation (this is one of several different views [Nob09]).

1https://www.haskell.org/onlinereport/standard-prelude.html

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.haskell.org/onlinereport/standard-prelude.html

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Object-oriented Programming

In functional programming, the basic approach for writing programs is to apply functions
to arguments [Hug89]. In contrast, problem-solving in the logic programming paradigm
is based on using logical deductions [GM10].

The paradigms object-oriented programming (see Section 2.2) and functional programming
(see Section 2.3) are explained in detail in the following sections. In contrast, the
imperative and logic programming paradigm is not considered further, since the work in
this thesis mainly builds upon the concepts of object-oriented and functional programming.

2.2 Object-oriented Programming

2.2.1 Background

In the early 1960s, Ivan Sutherland developed a system called Sketchpad, which was
the first system using an object-oriented programming style [Ren82]. However, the term
object-oriented has its roots in the time of the development of the programming system
Smalltalk [Ren82]. The programming language itself is heavily influenced by Alan Kay’s
programming language called FLEX (Flexible Extendable Language), which in turn
is based on the Simula programming language [Ren82]. Simula was the first language
that introduced the concepts of classes, objects and inheritance [Weg90]. Classes and
objects lay the foundation for the concepts of encapsulation, inheritance, subtypes and
dynamic dispatch. These concepts are of fundamental importance for the object-oriented
programming paradigm and are therefore explained in detail in the terminology section
(see Section 2.2.2) [GM10]. After Smalltalk was invented around 1970, the language
quickly gained popularity and was very successful, also in a commercial way [GM10].
Later, in the mid-1980s, the programming language C++ was released and in 1992,
the team led by Jim Gosling introduced the first version of Java [KF19]. Nowadays,
object-oriented programming is one of the best-known programming paradigms and
according to the TIOBE2 index of the year 2018, seven out of the ten highest ranked
programming languages support object-oriented programming techniques [AYK19].

2.2.2 Terminology & Fundamental Concepts

James Noble quotes three different views on the object-oriented programming paradigm
in his paper [Nob09]. The first view states that object-oriented programming is about
modeling. The second view describes an object-oriented system as a structure, consisting
of objects sending messages to each other. The third view defines object-oriented
programming by its supporting techniques like data abstraction, polymorphism and
inheritance. James Noble describes object-oriented programming as a combination of
all three views [Nob09]. The concepts of objects, classes, encapsulation, inheritance,
subtyping and dynamic dispatching form the basis for these views. However, the concept
of classes is not essential to the object-oriented paradigm [GM10]. In order to explain the

2https://www.tiobe.com/tiobe-index/

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tiobe.com/tiobe-index/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Programming Paradigms

object-oriented programming paradigm as a whole, this section covers the fundamental
principles on which object-oriented programming is based.

Object

The term object can be described as a container that encapsulates a certain state by
using so-called instance variables and provides an interface (not to be confused with Java
interfaces) for manipulating and accessing this state [Weg90, GM10]. Communication
via the interface is accomplished by calling methods which are also referred to as member
functions. s [GM10]. In the Smalltalk world, calling methods is also referred to as sending
a message to an object.

Class

A class is a structure which describes how the state and the communication interface of
an object look like. This description is used as a template for creating objects [Weg90].
In Java, a particular description of a member variable consists of a name, a type, and a
visibility modifier, while the description of a method consists of a name, a signature, a
visibility modifier and an implementation [GM10]. The class itself also has a name, a
visibility modifier and a constructor (method for creating objects). Listing 2.3 shows a
simple Java class representing a name of a person. The name consists of a first and a
surname, which is stored in two instance variables.

Listing 2.3: A class written in Java

public class Name {
private St r ing f i rstName ;
private St r ing surname ;

public Name(St r ing f irstName , S t r ing surname) {
this . f i r stName = firstName ;
this . surname = surname ;

}

public St r ing getFirstName () {
return this . f i r stName ;

}

public void setFirstName (St r ing f i rstName) {
this . f i r stName = firstName ;

}

public St r ing getSurname () {
return this . surname ;

}

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Object-oriented Programming

public void setSurname (St r ing surname) {
this . surname = surname ;

}

public St r ing getFullName () {
return this . f i r stName + " ␣ " + this . surname ;

}
}

The member functions getFirstName, getSurname and getFullName can be used to read
the current state while the member functions setFirstName and setSurname are used to
change the state of an object. For creating a new Java object in memory (an instance),
the new keyword is used. In particular, Listing 2.4 shows how the instantiation of the
Name class (see Listing 2.3) is done.

Listing 2.4: Instantiation of the Name class

Name name = new Name(" Jane " , "Doe ") ;

The constructor of the Name class is used to initialize the two member variables fistName
and surname. After the instantiation, the newly created variable name is an instance of
the Name class.

Listing 4.1 shows another example for a Java class. This class provides the public method
buildName, which creates and returns a Name object from a passed string. No parameters
are required to instantiate the class.

Encapsulation

The concept of encapsulation is about wrapping each value “in an encapsulation (its type)
which provides the operations that manipulate it” [GM10, p. 265]. Information hiding
then enables making certain data or operations invisible to the outside world [GM10].
Access to the data or operations is enabled through a defined interface (e.g. methods;
not to be confused with Java interfaces).

In Java, information hiding is accomplished through visibility modifiers. In the Name
class example from the previous section (see Listing 2.3), the two instance variables are
hidden from the outside world using the private visibility modifier. The public methods
allow the instance variables to be read and updated.

Subtyping

Subtyping is a form of polymorphism, particularly inclusion polymorphism, and describes
a relation between classes [CW85]. A definition of whether a type is a subtype of another
type can be found in the Liskov Substitution Principle, formulated in 1994 by Barbara

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Programming Paradigms

Liskov and Jeannette Wing. The Liskov Substitution Principle defines the subtype
relation as follows:

“Let φ(z) be a property provable about objects x of type T. Then φ(y)
should be true for objects y of type S where S is a subtype of T." [LW94,
p. 1812]

In other words, a type S is a subtype of a type T, if and only if an object of type S can
be used where an object of type T is expected [LW94].

Listing 2.5, for instance, creates a class TitledName, which is a subtype of the previously
created Name class (see Listing 2.3). As a result, any method expecting objects of
the type Name is also accepting objects of the type TitledName. This works because
instances of TitledName also contain all members of the Name class [GM10]. Furthermore,
non-private methods from the parent class can be redefined in the subclass, which is also
known as method overwriting [GM10]. Listing 2.5 overwrites the getFullName method
from the parent class.

Listing 2.5: Subtype of the Name class

public class TitledName extends Name {
private St r ing preNominalLetters ;

public TitledName (St r ing preNominalLetters ,
S t r ing f irstName , S t r ing surname) {

super (f irstName , surname) ;
this . preNominalLetters = preNominalLetters ;

}

@Override
public St r ing getFullName () {

return preNominalLetters + " ␣ " + super . getFullName () ;
}

}

Inheritance

Inheritance is a concept that deals with code reusability and sharing behavior. For
example, if one class is a subclass of another one (superclass) and the subclass does
not overwrite any of the methods from the superclass, then the subclass inherits all of
the instance variables and methods from the superclass [GM10]. This means that the
subclass can also use all inherited properties, which are defined as non-private in the
superclass. In the previous example, in which the class TitledName (see Listing 2.5) is
a subtype of the class Name (see Listing 2.3), the TitledName class inherits all of the

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Functional Programming

methods, except for getFullName, from the superclass. One could now ask about the
difference between inheritance and subtyping. Gabbrielli et al. say that subtyping is
about using an object in other contexts, while inheritance is about the possibility of
reusing object manipulating code [GM10].

Dynamic Dispatch

The dynamic dispatch technique is responsible for choosing to call the correct method
of an object [GM10]. In the previous section about subtyping (see Section 2.2.2), the
term method overwriting was introduced. If a method is overwritten, there theoretically
exist two or more versions of the same method [GM10]. Dynamic dispatch performs its
task by calling the method of an object’s dynamic type. The dynamic type corresponds
to the type which an object has during runtime and not the type of the reference to an
object [GM10]. Listing 2.6 exemplifies this by using the previously defined classes Name
(see Listing 2.3) and TitledName (see Listing 2.5). In this example, two objects with
the static type Name are created. However, the variable n2 refers to an object with the
dynamic type TitledName. When the method getFullName is called on both objects,
each invokes the method of its dynamic type. This technique is considered the heart of
the object-oriented programming paradigm [GM10].

Listing 2.6: Dynamic Dispatch

Name n1 = new Name(" John " , "Doe ") ;
Name n2 = new TitledName ("Dr . " , " Jane " , "Doe ") ;

System . out . p r i n t l n (n1 . getFullName ()) ; // John Doe
System . out . p r i n t l n (n2 . getFullName ()) ; // Dr . Jane Doe

2.3 Functional Programming

2.3.1 Background

The origin of the functional programming paradigm reaches back to the 1930s due to its
strong influence from the lambda calculus, which is often referred to as the first functional
language [Hud89]. The lambda calculus was invented by Alonzo Church and can be
described as a formal system for computation using functions. In 1958, about 30 years
later, the programming language LISP (short for List Processing) was invented by John
McCarthy [Tur13].

LISP was the first functional programming language, but its relationship to the lambda
calculation was rather small [Hud89]. At first, LISP was based on Kleene’s theory
of first-order recursive functions, but over time all versions were based on Church’s
lambda calculus [Tur13]. Between LISP and the development of the still well-known
functional programming language Haskell in 1987, several other functional programming
languages were devised. Examples include ISWIM (If you See What I Mean), APL (A

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Programming Paradigms

Programming Language), FP (Functional Programming), ML (Meta Language) and
Miranda [Hud89, Tur13]. ISWIM, for instance, introduced let and where clauses [Hud89],
which are still used in programming languages like Haskell. The FP programming
language, “which came after APL, was certainly influenced by the APL philosophy”
[Hud89, p. 372] and was very influential for the functional programming paradigm due to
John Backus’ Turing Award lecture Can programming be liberated from the von Neumann
style? [Hud89]. Around the same time, the programming language ML, which was
considered “the most practical functional language at the time it appeared” [Hud89,
p. 374], was also under development. Two years before the development of Haskell started,
the lazy and pure functional programming language Miranda was released and had a
commercial success [Tur13]. In 1990, Haskell 1.0 was released. Despite the success of the
language Miranda, Haskell gained the upper hand a few years later [Pey07]. This can be
attributed to the fact that Haskell is free for commercial use [Pey07]. Moreover, Haskell
is a feature-rich and purely functional programming language with design influences
reaching from ISWIM to Miranda [Hud89].

The following sections explain the fundamental concepts of the functional programming
paradigm (see Section 2.3.3) in more detail. Due to its strong influence on the functional
programming paradigm, the lambda calculus is explained separately (see Section 2.3.2).

2.3.2 Lambda Calculus

This section provides a deeper understanding of the lambda calculus, but in order to
remain within the scope of this work, only the untyped lambda calculus is discussed in
the following. Furthermore, the whole section and all of the presented formulas are based
on the paper [Hud89].

The lambda calculus was developed by Alonzo Church in the 1930s and is an abstract
model that uses function abstraction and application for computation. The syntax of
the lambda calculus is defined by a set of lambda expressions (Exp) consisting of three
parts. The first part is simple names, called identifiers (Id). The second part has the
form (e1 e2) and is called an application. e1 and e2 are also expressions themselves
(e1, e2 ∈ Exp). Specifically, e1 is a function and e2 is an argument that is applied to
the function. The last type of expressions are abstractions. They have the form λx.e
and represent functions, where x is a formal parameter (x ∈ Id) and e is the body of a
function (e ∈ Exp). Evaluation of lambda calculus expressions happens through applying
rewrite rules, which are based on substitution. The basic substitution is written as
[e1/x]e2, which means that e1 replaces x in e2. To avoid name conflicts, x must occur
free in e2. The notion of free variables for expressions is defined as follows:

fv(x) = {x} where x ∈ Id

fv(e1 e2) = fv(e1) ∪ fv(e2)

fv(λx.e) = fv(e) \ {x}

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Functional Programming

These rules can be used to define the substitution rules for all expressions in the lambda
calculus:

[e/x1]x2 =

{
e, if x1 = x2

x2, otherwise

[e1/x](e2 e3) = ([e1/x]e2)([e1/x]e3)

[e1/x1](λx2.e2) =





λx2.e2, if x1 = x2

λx2.[e1/x1]e2, if x1 6= x2 and x1 /∈ fv(e1)

λx3.[e1/x1]([x3/x2]e2), otherwise, x3 6= x1, x3 6= x2 and x3 /∈ fv(e1) ∪ fv(e2)

Using the substitution rules as a base, the lambda calculus rewrite rules are defined as
follows:

α-conversion

λx1.e ⇐⇒ λx2.[x2/x1]e, where x2 /∈ fv(e)

The α-conversion states that x1 can be substituted with x2, if x2 does not occur free in
e. Basically, the α-conversion expresses the renaming of formal parameters. Listing 2.7
shows an example of the α-conversion in Haskell syntax. The lambda expressions stored
in the variables f1 and f2 do not differ, except for the names of the formal parameters.
They are also called lambda equivalent [GM10].

Listing 2.7: α-conversion example

f 1 = \x −> x
f2 = \y −> y

β-conversion

(λx.e1)e2 ⇐⇒ [e2/x]e1

The second rewrite rule is called β-conversion. This rule describes the application of
arguments to functions. Specifically, the rule says that the application of the argument
e2 to the lambda expression equals the lambda expression e1, where x is replaced by e2.
The Haskell example in Listing 2.8 illustrates the β-conversion by providing a function f,
which shows the equivalence between the left and the right side of the β-conversion.

Listing 2.8: β-conversion example

f a = (\x −> x + x) a == a + a

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Programming Paradigms

η-conversion

λx.(e x) ⇐⇒ e, if x /∈ fv(e)

In the η-conversion, the abstraction on the left side has another application (e x) in its
function body. So if a parameter a is applied to the abstraction, it is directly passed on
to the lambda expression in the function body. If x does not occur free in e, then the
abstraction itself is equal to the lambda expression inside the function body. Listing 2.9
shows an example for the η-conversion.

Listing 2.9: η-conversion example

y = \x −> x
f a = (\x −> (y x)) a == y a

Fixpoint Theorem

The fixpoint theorem implies that “every lambda expression e has a fixpoint e′ such that

(e e′)
*

⇐⇒ e′.” [Hud89, p. 366]. The symbol
*

⇐⇒ expresses intraconvertibility, which means
that the left expression can be derived from the right side and the right expression from
the left side by applying applying zero or more α-, β-, η-conversions. The message of this
theorem is that “any recursive function may be written nonrecursively” [Hud89, p. 366].
The lambda calculus uses this theorem to simulate recursion [Hud89].

2.3.3 Fundamental Concepts

The functional programming paradigm is a subcategory of the declarative programming
paradigm [GM10]. Unlike in imperative languages, no implicit state exists in declarative
programming languages [Hud89, GM10]. In (pure) functional programming, the program
state is handled explicitly using the “underlying model of computation” [Hud89, p. 361],
the function. “Higher-order functions and recursion are the basic ingredients of this
stateless computational model.” [GM10, p. 334].

Functions

A function in the sense of mathematics is a mapping of values in a set A to values in a
set B, which is often written as f : A → B. Functional programming is based on the
application of functions, where pure functions behave like functions from mathematics
[Hug89]. A pure function is a function without side effects (e.g. modifying the value of a
variable) where it is always returned the same result for the same argument. [Pey07]. If
functions are pure, they are also referred to as referentially transparent, which means that
variables or expressions can be replaced by their values or results [Hug89]. Referential
transparency also opens up the possibility of equational reasoning about programs [Hud89].
Paul Hudak refers to this pure programming style as “the hallmark of the functional
programming paradigm”[Hud89, p. 362].

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Functional Programming

Recursion

Recursion in the context of functions is the existence of a function call to the same
function within the function body [GM10]. This concept is one of the fundamental
concepts in stateless computation, hence it can be used to handle state explicitly [GM10].
The Haskell recursion example (see Listing 2.10) shows a naive implementation of the
Haskell Prelude function length called countElems. In this example, the recursive helper
function countElemsHelper carries the count state by calling itself with the previous
count (c) plus one and the list tail until the passed list is empty.

Listing 2.10: Recursion example

countElems xs = countElemsHelper 0 xs
where

countElemsHelper c [] = c
countElemsHelper c (x : xs) = countElemsHelper (c+1) xs

Higher-Order Functions

The term higher-order function defines a function, which takes one or more functions as
an argument and/or returns a function as a result. They are another fundamental concept
for stateless computation [GM10] and can be used to improve modularity [Hud89]. The
map function of the Haskell Prelude is a well-known and widely used example for a
higher-order function. The function has the type map :: (a → b) → [a] → [b] and returns
a new list by applying the passed function ((a → b)) to each element of the passed list
([a]).

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Monads

3.1 Background

The last chapter introduced the basics of functional programming (see Section 2.3).
Furthermore, the term pure function was explained. The programming languages Miranda
and Haskell, for instance, are pure languages. In Haskell, monads are used to integrate
side effects such as network requests and keyboard input handling into the language
[Wad93].

The concept of monads was introduced in 1958 and originates from category theory, a
subcategory of mathematics [Pet18]. A monad in the mathematical sense is referred to
as a triple, triad, standard construction or fundamental construction and is described by
the triple (T, η, µ) on a category C [Rot86]. In category theory, a functor is a mapping
from one category C into another category D, written as functor F : C → D [Rot86].
The T in the triple is a functor which is a mapping from the category C into the same
category C: T : C → C, called endofunctor [Rot86]. The symbols η and µ are two
natural transformations where η transforms the identity of C and µ transforms T ◦ T to
the endofunctor T [Rot86].

Eugenio Moggi and Philip Wadler introduced the term monad to computer science. Moggi
used it in the area of the semantics of programming languages and logical reasoning, while
Wadler first used it as a tool for programmers [Pet18]. In 1990, Philip Wadler defined
a monad as an object wrapper M , called an operator, consisting of the three functions
map :: (x → y) → (M x → M y), unit :: x → M x and join :: M(M x) → M x,
which satisfy specific laws [Wad90] (see Section 3.2.1).

In the paper Monads for functional programming, the same author defines monads as “a
triple (M, unit, ⋆) consisting of a type constructor M and two operations of the given
polymorphic types” [Wad93, p. 239]. It is stated that unit is defined as the previous
definition and ⋆ is defined as ⋆ :: M a → (a → M b) → M b [Wad93]. However, both

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Monads

definitions are equal since m ⋆ k = join(map k m) [Wad93, Pet18]. The following of this
work specifically relates to the second definition since it is the one commonly used today.
Furthermore, the ⋆ function is often referred to as bind and is defined by Haskell as the
infix operator >>=. The unit operation is in Haskell named return. In the following, the
name bind is preferred in writing and for code examples, the infix operator >>= is used.

3.2 Definition

A type constructor is a constructor that takes zero or more types as an argument and
returns a new type [HPF99]. A type constructor with zero type arguments is called a
nullary type constructor [HPF99]. For example, the Haskell data type Bool is a nullary
type constructor with the two value constructors True and False. Listing 3.1 shows
another example of a nullary type constructor. On the other hand, a constructor taking
one type parameter is called a unary type constructor.

Listing 3.1: Nullary type constructor

data Tetromino = I | O | T | J | L | S | Z

In the world of computer science, a monad is defined by a unary type constructor M and
the two functions unit and bind with the following signatures [Wad93]:

unit :: a → M a (3.1)

bind :: M a → (a → M b) → M b (3.2)

The unit function (see 3.1) takes a value of the type a and returns a monad Ma which
wraps the passed value of the type a. The function bind (see 3.2) is used to transform
values wrapped inside a monad by applying the passed function of the type a → M b to
the value wrapped inside the monad of the type M a. Both of the operations have to
satisfy the laws Left Identity, Right Identity and Associativity, which are explained in the
following subsection.

3.2.1 Monad Laws

Left Unit

(unit a) >>= f = f a (3.3)

Equation 3.3 shows the definition of the Left Unit or Left Identity law [Wad93]. This law
stipulates that if a value a gets wrapped into a monad using the function unit and then
transformed by applying the bind function with a function f, the result must be equal to
the application of f to a. The code example in Listing 3.2 shows how it can be verified if
this law holds for specific values in Haskell. If, for example, the check function is called

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Definition

with the dup function from the same code listing and the value 2, True is returned as a
result. In practice, monad laws can be tested with value generators.

The example in Listing 3.2 uses the built-in Maybe monad. For now, it is just essential to
know that the type Maybe is a monad in Haskell. Later (see Section 3.3), the behavior of
Maybe and other types of monads is discussed in detail.

Listing 3.2: Left identity law example

check f a = ((return a) >>= f) == f a
dup = \x −> Just (x ∗ x)

Right Unit

m >>= unit = m (3.4)

The Right Unit or Right Identity law, defined in Equation 3.4 [Wad93], shows that calling
the bind operation with a monad m and the unit function as parameters must return
the monad m itself as a result. From this, it can be said that if unit is applied to a
value inside a monad, the value must only be wrapped into a monad again. Hence, the
operation unit does not change the monad m. Listing 3.3 illustrates this law by showing
a function for checking if the law holds for a monadic value in Haskell. If the function
check from Listing 3.3 is called with the value Just 1 or Nothing, True is returned as a
result again.

Listing 3.3: Right identity law example

check m = (m >>= return) == m

Associativity

m >>= (\x → f x >>= g) = (m >>= f) >>= g (3.5)

In mathematics, a binary operation ◦ is called associative if and only if a◦(b◦c) = (a◦b)◦c
holds [GM10]. The associativity law must also apply to the operator bind, as Equation
3.5 shows. From this, it follows that “the order of parentheses in such a computation is
irrelevant” [Wad93, p. 243]. The following code example (see Listing 3.4) shows again how
it can be checked if the associativity law holds for specific values in Haskell. For example,
when calling the function check with the value Just 2 or Nothing for the parameter m, f1
for the parameter f and f2 for the parameter g, the function returns True.

Listing 3.4: Associativity law example

f 1 = \x −> Just (x ∗ 2)
f 2 = \y −> Just (y ∗ 4)

check m f g = (m >>= (\x −> f x >>= g)) == ((m >>= f) >>= g)

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Monads

3.3 Types of Monads

There exist many different types of monads. This section emphasizes fundamental and
widely used monads and explains them in detail. Each monad section is structured in the
following way: First, a brief introduction is given. Second, it is shown how the monad
can be implemented. Unless otherwise stated, the programming language Haskell is
used. If monad instances are declared in Haskell, applicative and functor instances must
also be declared. For convenience, however, the application and functor instances are
omitted. Based on the implementation, examples are given and use cases of the monad
are discussed.

3.3.1 Identity Monad

Introduction

A monad in its simplest form is known as the Identity monad [Wad93]. The unit
operator is equal to the identity function, which is defined as f(x) = x [Wad93, GM10].
The function bind does nothing other than applying the function to the value (e.g.
m >>= k = k a) [Wad93]. In literature, the monad itself, type M a = a, is defined by a
type constructor that returns the passed type as a result [Wad93].

Implementation

As stated before (see Section 3.3.1), in literature, the identity monad is defined as a
parameterized type synonym for an arbitrary type a. In Haskell, however, it is not
possible to define a monad instance from such types. Listing 3.5 shows what a possible
implementation could look like in Haskell.

Listing 3.5: Identity monad implementation

newtype Id a = Id a

instance Monad Id where
return = Id
(Id x) >>= f = f x

First, the unary type constructor Id, with one nullary value constructor, is declared. In
this definition, a value of the passed type a gets wrapped in Id. The declaration of the
monad instance starts in the following source line and implements the functions return
and >>= (bind). return is defined by return = Id, which is a shorter writing style for
return x = Id x. The bind operation simply applies the function to the unwrapped value
x.

Usage

The Identity monad has limited practical relevance, but a possible application is the
use as a monad transformer base case [Jon95]. A monad transformer is another type

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Types of Monads

constructor that can be used to combine two different monads [Jon95]. For example, the
Haskell package transformers1 defines the reader monad by reusing the corresponding
monad transformer StateT combined with the identity monad (see Listing 3.6) [GP01].

Listing 3.6: Reader monad declaration using transformer

type Reader r = ReaderT r Id en t i t y

Another possible application is the use in functions, where monadic arguments are
expected. Consider a function with the signature “intComputation :: Monad m =>m
Int −> m Int −> m Int” in Haskell syntax. This function takes two monadic integer
values and returns a monadic integer, which is the product of the passed values. Due
to the monadic values, the function intComputation can be reused in different ways.
For example, it can be called with values wrapped in an IO monad. This opens up the
possibility of printing debug messages to the standard output. If one simply wants to
perform the computation on integer values, the identity monad can be used. Listing 3.7
illustrates both of the mentioned use cases of the intComputation function.

Listing 3.7: Identity monad use case

debuggableVal x = do
putStrLn $ "Debug : ␣ va l ␣=␣ " ++ (show x)
return x

intComputation : : Monad m => m Int −> m Int −> m Int
intComputation m1 m2 = (∗) <$> m1 <∗> m2

runId = intComputation (Id 5) (Id 3)
runDebug = intComputation (debuggableVal 5) (debuggableVal 3)

3.3.2 Exception Monad

Introduction

The second monad to be introduced is called the Exception monad. This monad is
used for computations that either return a value or fail with an exception [Wad93]. In
particular, this monad wraps either a result with the type of a passed type parameter
or an exception with the type of a fixed or passed type parameter. The unit function’s
implementation forwards the passed parameter to the value constructor which defines a
successful computation. This is equal to the unit implementation of the Identity monad.
On the other hand, bind cannot be implemented like in the Identity monad. This is due
to the two value constructors of the Exception monad data type since the check for all
possible Exception monad values must be exhaustive. In other words, bind must handle
the failure case as well as the successful case of the passed monad. As stated at the
beginning of this section, the failure case Exception monad wraps either an exception of

1https://hackage.haskell.org/package/transformers

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://hackage.haskell.org/package/transformers

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Monads

the type of a fixed or passed type parameter. For example, the paper [Wad93] defines
the type of the exception as String, while the official Haskell Wikipedia defines it with
an extra type parameter [Has20]. In the following of this work, the latter approach is
used because it offers better flexibility compared to a fixed type.

Implementation

Based on the introduction of the Exception monad, the data type is named ResultOrError
and consists of two type constructors, e and a, and two value constructors, Return and
Raise. The naming of the value constructors is adopted by [Wad93]. In Haskell, the type
of Exception monad is called Either, which offers better flexibility since the naming also
allows two different success values to be held [The01a].

The first line in Listing 3.8 defines the new type ResultOrError. For example, the
expression “Return 'a'” constructs a value of the type ResultOrError e Char, while the
expression “Raise "404"” constructs an error-indicating value of the type ResultOrError
[Char] a.

Listing 3.8: Exception monad implementation

data ResultOrError e a = Raise e | Return a

instance Monad (ResultOrError e) where
return = Return
(>>=) (Raise e r r) _ = Raise e r r
(>>=) (Return x) f = f x

As already mentioned in the introduction of this monad, the return operation wraps the
passed value in the successful value constructor Return. In bind, pattern matching checks
for both possible values of the passed monad. If the value is indicating an error (Raise
err), the passed function is ignored and a failure value with the same exception value
err of the passed monad gets returned. In case of a passed successful value Return x,
the passed function gets applied to the unpacked value x. The result of the function
application is also the result of bind.

Usage

Exception monads can be used to deal with errors in computations in a pure way [Nag19].
This monad is particularly useful, if the specific reason for failure in computation is of
importance, since it can be embedded in the ResultOrError data type. Consider the
head function from the Haskell Prelude2. For non-empty lists, this function returns the
first element of the list. If an empty list is passed, the function prints an error and
terminates the program [HPF99]. This function can also be implemented safely using
the ResultOrError data type (see Listing 3.9).

2https://www.haskell.org/onlinereport/standard-prelude.html

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.haskell.org/onlinereport/standard-prelude.html

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Types of Monads

Listing 3.9: Safe head function using the Exception monad

safeHead : : [a] −> ResultOrError String a
safeHead [] = Raise " L i s t ␣must␣not␣be␣empty "
safeHead (x : xs) = Return x

Instead of printing an error and terminating the program for empty lists, the function
safeHead returns the value constructor Raise with a string message argument. Pattern
matching can be used to react to the returned failure. Since ResultOrError is also a
monad, chaining multiple computations with the same ResultOrError type together or
passing this type to a function that expects a monad is possible.

Consider the use case of parsing two strings in JavaScript Object Notation (JSON) format
and returning a tuple of both successfully parsed JSONs. In case of a parsing error,
the failure reason should be returned. Also, consider the function parseJson with the
signature String → ResultOrError Exception Json as given. This function tries to
create a JSON value out of a passed string. If the parsing is successful, the value of the
type Json gets wrapped in the Return value constructor. Otherwise, Raise with the reason
for the failure is returned. For keeping the code examples short, the implementation of
parseJson Json and Exception is omitted. For the implementation of the use case, the
monadic operation bind can be used. Listing 3.10 shows a naive implementation.

Listing 3.10: Parse JSON use case

data Json = . . .

parseJson : : String −> (ResultOrError String Json)
parseJson s = . . .

jsonUseCase1 s1 s2 =
(parseJson s1) >>= \ j1 −>

(parseJson s2) >>= \ j2 −>
return (j1 , j 2)

If one of the parseJson computations fails, the whole use case computation returns the
value constructor Raise with a value of the type Exception. This code example can also be
written more concisely since the programming language Haskell provides syntactic sugar
for sequential computations using monads [Pet18]. Listing 3.11 shows the refactored
version using the do notation.

Listing 3.11: Parse JSON use case with do notation

data Json = . . .

parseJson : : String −> (ResultOrError String Json)
parseJson s = . . .

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Monads

jsonUseCase2 s1 s2 = do
j 1 <− parseJson s1
j2 <− parseJson s2
return (j1 , j 2)

Because ResultOrError is also a monad, a value of this type can also be passed to the
previously defined function intComputation (see Listing 3.7). If both of the passed values
are equal to the value constructor Return, the product of both integers is wrapped into
a monad again and returned. In case one of the passed monads has the error state, an
error gets returned.

3.3.3 Maybe Monad

Introduction

The previous section introduced and described the Exception monad, with which error
messages of any type can be wrapped (see Section 3.3.2). The function safeHead in
the code example of the previous section shows how the introduced type can be used
(see Listing 3.9). In this code example, the function returns Raise "List must not be
empty" if the passed list does not contain any elements. Otherwise, the head element
gets returned. The only thing that can go wrong is that the passed list does not contain
any elements. One may now claim that returning an error state with a specific error
message is unnecessary because, in the event of an error, the reason is always the same.
This is where the Maybe monad comes into play.

In contrast to the Exception monad, the Maybe monad consists of a successful state,
usually referred to as Just, and an error state, which contains no information about the
error and is often referred to as Nothing [Wad90, Jon95]. The data type itself is often
named as Maybe [Wad90, Jon95].

Implementation

An implementation of the Maybe monad can be achieved in a similar way to the Exception
monad (see Listing 3.8). In the data type declaration, the only difference is that the type
constructor accepts only one type argument, whereas the value constructor that indicates
the error does not accept any arguments. The monad instance declaration also adapts the
different constructors. Listing 3.12 shows the implementation using the common naming
as described in the introduction (see Section 3.3.3). The implementation and declaration
of the Maybe data type and the monad instance in this work equals the declaration and
implementation in Haskell [The01b].

Listing 3.12: Maybe monad implementation

data Maybe a = Nothing | Just a

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Types of Monads

instance Monad Maybe where
return = Just
(>>=) (Just x) f = f x
(>>=) Nothing _ = Nothing

Usage

All of the examples from the previous section about the usage of Exception monads (see
Section 3.3.2) can be adopted almost effortlessly for the Maybe monad. For example,
Listing 3.13 shows the implementation of the safeHead function, which now returns the
type Maybe a instead of ResultOrError String a.

Listing 3.13: Safe head function using the Maybe monad

safeHead : : [a] −> Maybe a
safeHead [] = Nothing
safeHead (x : xs) = Just x

In the example of the JSON use case, only the parseJson function needs to be changed.
After changing the signature from parseJson to String → Maybe Json, the jsonUseCase
function continues to work without any changes, since the do notation works with any
monad [Pet18]. The updated JSON use case is presented in Listing 3.14.

Listing 3.14: Parse JSON use case with do notation

data Json = . . .

parseJson : : String −> Maybe Json
parseJson s = . . .

jsonUseCase s1 s2 = do
j 1 <− parseJson s1
j2 <− parseJson s2
return (j1 , j 2)

3.3.4 List Monad

Introduction

A List monad is a monad instance, declared on the list type. In Haskell, for instance, the
list of characters [’x’, ’y’, ’z’] is a simpler representation of ’x’:(’y’:(’z’:[])) [HPF99]. The
list type is built into the Haskell language, but the Glasgow Haskell Compiler declares
it as the unary type constructor “data [] a = [] | a : [a]” [The09]. In this data type
declaration, [] represents the empty list while : is a right associative infix operator that
adds the left argument to the first position of the right list argument [HPF99].

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Monads

When the list monad instance is declared, the functions unit and bind must be imple-
mented. The list monad’s unit function puts the received element into a list, i.e. a
list containing a single item is returned. The function bind is defined by the signature
[a] → (a → [b]) → [b] and applies the passed function to each of the elements, but also
flattens the result to conform with the type of the function [Wad93].

Implementation

In Haskell, the List monad declaration is directly defined on the built-in list type [a],
where a can be substituted by an arbitrary type. For example, the list [’x’,’y’,’z’] has
the type [Char]. For illustration purposes, the List monad instance in this section is
declared on a newly created list type. The custom list type declaration is implemented as
in [Hug89], however the names cons and nil were already used in the LISP programming
language for the same purposes [HPF99]. The source code line 1 in Listing 3.15 declares
the list type named List, which is either the nullary value constructor Nil or the binary
value constructor Cons. Nil represents the empty list, while Cons consists of an element
with the type argument’s type and another recursively defined List a. Three different
lists of the type List Char are shown from source code lines 3 to 5 to give an example
on how lists can be constructed using the new type. In each line, the subsequent inline
comment shows the analog list with the built-in Haskell list type. The declaration of the
list monad begins with line 7. As in source line 4, the return function also returns a list
with a single element.

In the >>= operation, a Nil parameter is handled the same as the Nothing parameter
of the Maybe type (see Listing 3.12). The function parameter is ignored (in Haskell
expressed by “_”) and the same value constructor that represents an empty value is
returned. However, the second case to be handled is implemented differently compared
to the Maybe monad. The reason for this is that the function f must be applied to
every element in the List monad. Otherwise, the right identity and associativity monad
law would be violated (see Equation 3.4 and 3.5). At line 10, >>= applies the passed
function to the first element of the list and then calls itself recursively with the rest
of the list. All single results are lists themselves, but to match the function signature
of bind, the operator (<>) concatenates the single lists. The operator (<>) is defined
in the semigroup class and defines an associative binary operation [The01c]. In the
instance declaration for the type List a, this operator receives two lists and returns their
concatenation. The declaration is omitted. In this section, any reference to a source code
line without an explicit specification of the related listing refers to Listing 3.15.

Listing 3.15: List monad implementation

1 data List a = Ni l | Cons a (List a)
2
3 l 1 = Ni l : : List Char −− []
4 l 2 = Cons 'x ' Ni l −− [' x ']
5 l 3 = Cons 'x ' (Cons 'y ' (Cons ' z ' Ni l)) −− [' x ' , ' y ' , ' z ']
6

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Types of Monads

7 instance Monad List where
8 return x = Cons x Ni l
9 (>>=) Ni l _ = Ni l
10 (>>=) (Cons x xs) f = (<>) (f x) ((>>=) xs f)

Usage

Compared to the Maybe monad, the List monad holds multiple elements of the same
type. A call to the function bind means that this function is applied to every element.
Consider the functions replicateL and showL, which are replicas of the Haskell functions
replicate and show. replicateL takes a replicate factor i and the element x to replicate and
returns a List a containing the element x i times, while show creates a list of characters
(List Char) out of a passed element. By using the monad’s bind function, these functions
can be executed sequentially (see Listing 3.16).

Listing 3.16: List monad usage

r e p l i c a t eL : : Int −> a −> List a
r ep l i c a t eL i x = . . .

showL : : a −> List Char
showL x = . . .

l = Cons 1 (Cons 2 (Cons 3 Ni l))
l >>= (r ep l i c a t eL) >>= showL −− Cons '1 ' (Cons '1 ' (Cons '2 ' (

Cons '2 ' (Cons '3 ' (Cons '3 ' Ni l)))))

Analogously, this example can also be written with the built-in list type and the Haskell
functions for replicateL and showL (see Listing 3.17). However, the output of both
functions is different, since Haskell provides syntactic sugar for the type [Char], which
is the same as the type String [HPF99]. Strings can be defined by writing characters
within quotation marks and can be used interchangeably with the type [Char].

Listing 3.17: [a] monad usage

l = [1 , 2 , 3]
l >>= (replicate 2) >>= show −− "112233"

3.3.5 State Monad

Introduction

In chapter 2, the differences between the imperative and declarative programming
paradigm were explained and furthermore, it was mentioned that no implicit states exist
in declarative programming [Hud89]. As a consequence, state must be handled explicitly.
With pure functional programming languages, state can be handled by passing it around

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Monads

functions (see Section 2.3.3) [Wad90]. However, passing around the state can be tedious
and error-prone [Wad93, Wad90]. The state monad provides an abstraction for passing
around parameters [Wad90].

A key difference between the previously introduced monads and the State monad is
that the State monad not just wraps a passed type a, but a function with the signature
State → (a, State). This function takes a state and returns a tuple, which contains a
value of type a (e.g. a computed pseudo-random number) and a state of the type State
(e.g. a pseudo-random number generator) [Wad93]. In summary, the State monad offers
a way to perform state-based computations.

Implementation

The naming and implementation of the State monad in this section is heavily inspired by
[Wad93]. However, the newly introduced State monad type uses a second type constructor
argument s for specifying the type of the state. In Listing 3.18, the first line declares a
new type called State. The unary value constructor S (short for State) takes a function
of the type s → (a, s), which can be accessed via the accessor execState. After the type
declaration, the monad instance is declared for State s. Since the monadic value wraps a
function, the return operation must also return the same monadic value that wraps a
function with an identical signature. In short, return wraps a function that takes a state
of type s and puts it into a tuple with the value passed to return [Wad93].

The bind function receives a monad State s a, which wraps a function m that takes a
state of type s and produces a tuple of the type (a,s) and a function k, which takes
a value of type a and produces a monad of the type State s b. At first, the lambda
expression with the formal parameter s0 is wrapped inside the value constructor S. In
this lambda expression, the function m is first applied to the formal parameter, which
results in a value a and a new state s1. To receive a type (b,s), which must be the result
of the lambda expression, the state function of the application of k to a is extracted
and then applied to the state s1. Finally, the lambda expression has the type s → (b, s).
[Wad93]

Furthermore, two helper functions fetch and assign are defined. fetch is a wrapped
function that puts a received state s into a 2-tuple containing s two times. assign, on the
other hand, receives a state s and returns a wrapped function that puts s in its returned
2-tuple. These functions can be used to read and update a state. The functionality of
the state monad and the helper functions is exemplified in the following section.

Listing 3.18: State monad implementation

newtype State s a = S { execState : : s −> (a , s) }

instance Monad (State s) where
return x = S $ \ s0 −> (x , s0)
(>>=) (S m) k = S $ \ s0 −>

l et

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Types of Monads

(a , s1) = m s0
in execState (k a) s1

f e t ch : : State s s
f e t ch = S (\ s −> (s , s))

a s s i gn : : s −> State s ()
a s s i gn s = S (_ −> (() , s))

Usage

To finally combine everything about the State monad into an example, a simple game
simulation is used in this section. The example’s game state consists of an integer score and
the StdGen pseudo-random number generator from the Haskell package System.Random
(see Listing 3.19 line 1-4). Each time a pseudo-random number is generated, the generator
returns the generated number and a new instance of a generator [The01d]. The next time
a number is generated, the new instance must be used to generate a new pseudo-random
number. Otherwise, the same number as before will be generated. In this game, each
round a dice is rolled and the result is added to the score.

The function rollDice (see Listing 3.19 line 8-14) is responsible for generating a new
pseudo-random number and updating the generator. First, the current stated is fetched
using the previously defined fetch function. Then the generator is extracted and an
integer number between [1,6] is generated. Following the generation, the pseudo-number
generator is updated in the game state using the function assign. At the end of the
function, the result of the generation is wrapped and returned.

The second function updatePoints (see Listing 3.19 line 16-21) is used to update the
points of the game state accordingly. This is done by fetching the state followed by a
state update using assign and the passed integer parameter.

For making a turn in the game, both functions can be executed sequentially using
the monad’s bind operation. However, to execute the whole function composition, the
function of the State monad must be applied to an initial state (defined in Listing 3.19
line 6). run (see Listing 3.19 line 29) can be used to extract and apply the function for a
turn to the initial state. The result is a 2-tuple where the second value is the updated
state after a turn.

In all functions except run, the explicit passing of the game state is hidden in the State
monad State.

Listing 3.19: State monad example

1 data GameState = GameState
2 { po in t s : : Int
3 , genera tor : : StdGen
4 } deriving Show

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Monads

5
6 initGameState = GameState 0 (mkStdGen 0)
7
8 r o l lD i c e : : State GameState Int
9 r o l lD i c e = do
10 s t a t e <− f e t ch
11 l et gen = generator s t a t e
12 l et (r , gen ') = randomR (1 , 6) gen
13 a s s i gn (s t a t e { generato r = gen ' })
14 return r
15
16 updatePoints : : Int −> State GameState ()
17 updatePoints c = do
18 s t a t e <− f e t ch
19 l et cur r entPo int s = po in t s s t a t e
20 a s s i gn (s t a t e { po in t s = cur rentPo in t s + c })
21 return ()
22
23 turn : : State GameState ()
24 turn = r o l lD i c e >>= updatePoints
25
26 run = execState turn initGameState

3.3.6 Reader Monad

The state Reader monad is a subset of the State monad [Wad93] and is used to pass around
an enclosing environment [Jon95]. Unlike in the State monad, the passed environment
(or state) is only read and not updated. This behavior is also reflected in the data type
and monad declaration. The value constructor R wraps a function which does not return
a tuple with a state as in the State monad, but only returns a type a. For example,
the environment can consist of a database connection or other dependencies that are
required in computations. Listing 3.20 shows the implementation of the Reader monad.
However, a detailed explanation is omitted since the implementation is largely covered in
the section on the State monad (see Section 3.3.5).

The function return receives a parameter x and wraps a function that only returns the
passed parameter x. The formal parameter, which represents the environment or the state,
is ignored. The main difference in bind is that the application of m to the environment e
does just return a single value a.

Listing 3.20: Reader monad implementation

newtype Reader s a = R { execState : : s −> a }

instance Monad (Reader s) where

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Types of Monads

return x = R $ \e −> x
(>>=) (R m) k = R $ \e −>

l et
a = m e

in execState (k a) e

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Software Complexity

4.1 Introduction

Already in the year 1985, the maintenance stage of the software development life cycle
was considered the most expensive activity [YC85] and still, about 30 years later, “it is
proven that the cost, time, and effort required for maintenance is very high” [CMSR17,
p. 767]. The use of quality metrics during the development life cycle can positively impact
the maintainability of the overall system [YC85].

A metric is defined by the IEEE standard glossary of software engineering terminology as
a “quantitative measure of the degree to which a system, component, or process possesses
a given attribute” [IEE90, p. 47-48]. In the field of software engineering, the more specific
term software quality metric is defined similarly as follows: “A function whose inputs are
software data and whose output is a single numerical value that can be interpreted as
the degree to which software possesses a given attribute that affects its quality” [IEE98,
p. 3].

Software complexity is tightly coupled to the maintainability of a software system [TSZ09].
Complexity in terms of software engineering is defined by “the degree to which a system
or component has a design or implementation that is difficult to understand and verify”
[IEE90, p. 18]. It follows that the software complexity metric is a quantitative measure
of the degree of how difficult software can be understood. Harrison et al. also relate
software complexity to the measure of how well software systems can be understood
and how easy they are to work with [HMKD82]. Furthermore, they also claim that
the understandability, modifiability and testability of the software are subcategories
of maintainability that are impacted by software complexity [HMKD82]. Therefore,
reducing software complexity can result in better software maintainability.

In the year 1990, “more than two hundred software complexity measures” [Zus91, p. 2]
have been introduced. Well-known metrics include the Lines of Code metric, Cyclomatic

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Complexity

Complexity, Halstead Complexity Measures, C&K Method and MOOD Method, while the
latter two are complexity metric sets used for object-oriented programming languages
[Zus91, TSZ09]. The quantitative analysis of this work uses the Lines of Code metric,
Cyclomatic Complexity and Halstead Difficulty. To give a better overview, all of the
above-mentioned metrics are discussed in the following section (see Section 4.2).

4.2 Software Complexity Metrics

4.2.1 Lines Of Code (LOC)

The Lines Of Code metric was one of the most discussed metrics [Zus91] and is considered
as “one of the most widely used sizing metrics in industry” [BM14, p. 1]. Initially, this
metric was used for measuring the programming progress [TSZ09]. However, the metric
is also viewed as a complexity metric because an increasing number of LOC of a software
system also increases the complexity of this system [BM14].

Various definitions exist: For example, Conte et al. define the LOC metric in their book
Software Engineering Metrics and Models as follows:

“A line of code is any line of program text that is not a comment or blank line,
regardless of the number of statements or fragments of statements on the line.
This specifically includes all lines containing program headers, declarations,
and executable and nonexecutable statements.” [CDS86, p. 35]

The IEEE Standard for Software Productivity Metrics [IEE93] divides this metric into
logical source statements (LSS) and physical source statements (PSS), where LSS counts
executable, data declaration, compiler directive and comment source statements while
PSS counts the lines of code or the number of nonblank lines. PSS is further divided
into Non-Comment Lines of Code (NCLOC) and comment lines [IEE93]. NCLOC is
defined by “lines of software that contain either executable, data declaration, or compiler
directive source statements” [IEE93, p. 7]. In contrast, comment lines are defined as
“lines that contain only comment source statements” [IEE93, p. 7].

In this thesis, the NCLOC metric is used for the quantitative analysis. If the NCLOC
metric is now calculated for the source code of Listing 4.1, the result is NCLOC = 8.

Listing 4.1: Example for the NCLOC metric

public class NameService {

public NameService () {

}

/∗∗

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Software Complexity Metrics

∗ Bui lds a { @link Name} from a S t r ing
∗
∗ @param nameString The s t r i n g con ta in ing the name . The {

@code nameString } must have the f o l l o w i n g format : "
f irs tName lastName "

∗ @return Returns a { @link Name} o b j e c t c rea t ed from the
passed s t r i n g {@code nameString }

∗/
public Name buildName (St r ing nameString) {

St r ing [] s p l i t S t r i n g = nameString . s p l i t (" ␣ ") ;
return new Name(s p l i t S t r i n g [0] , s p l i t S t r i n g [1]) ;

}
}

4.2.2 Cyclomatic Complexity

This section about the Cyclomatic Complexity measure is based on the fundamental
paper where it was originally defined: A Complexity Measure [McC76].

In 1976, Thomas J. McCabe first introduced the complexity metric Cyclomatic Complexity.
This complexity measure is based on the number of paths in the graphical representation
of a program (control-flow graph) [McC76]. To overcome the problem with infinite paths,
this approach considers just “basic paths” [McC76, p. 308], with which theoretically all
paths can be created by combination. In particular, the following formula is used for
calculating the metric (see Equation 4.1). The equation consists of the variables e, n and
p, where e stands for the number of edges, n is the number of vertices and p reflects the
number of connected components.

v(G) = e − n + 2p (4.1)

McCabe defines six properties of the cyclomatic complexity metric. The first property
states that the Cyclomatic Complexity is always one or greater than one (v(G) ≥ 1).
A cyclomatic complexity of 1 corresponds to a sequential control-flow graph without
branches or one path, as property four says. Even a sequential control-flow graph
with an arbitrary number of nodes has a Cyclomatic Complexity of one. As already
described above, the second property states that the Cyclomatic Complexity “v(G) is the
maximum number of linearly independent paths in G; it is the size of a basis set” [McC76,
p. 309]. The third property defines that adding or deleting function statements does not
affect the cyclomatic complexity. Property five indicates that adding a new edge to the
control-flow graph adds 1 to previous cyclomatic complexity. Property six contains that
the Cyclomatic Complexity can only be influenced by the structure of decisions of the
control-flow graph.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Complexity

In the following, two examples are given for the calculation of the Cyclomatic Complexity.
Both examples are based on the examples in the paper [TSZ09] and consist of two different
implementations of a method, which calculates the highest of three different numbers
(see Listing 4.2 and 4.3). For each implementation, the corresponding control-flow graph
is shown (see Figure 4.1a and 4.1b).

Listing 4.2: max implementation 1

int max(int x , y , z) {
i f (x > y) {

i f (x > z) {
return x ;

} else {
return z ;

}
} else {

i f (y > z) {
return y ;

} else {
return z ;

}
}

}

Listing 4.3: max implementation 2

int max(int x , int y , int z) {
i f (x > y && y > z) {

return x ;
} else i f (y > z && z > x) {

return y ;
} else {

return z ;
}

}

Based on the control-flow graph, the Cyclomatic Complexity can be calculated using
the previously presented formula (see Equation 4.1). The control-flow graph 4.1a, which
represents the program in Listing 4.2 has eight nodes (n = 8), ten edges (e = 10) and one
consists of a single component (p = 1). Using the formula 4.1, this results in a cyclomatic
complexity of v(G) = 10 − 8 + 2 = 4.

On the other hand, the control-flow graph 4.1b of the program 4.3 has nine nodes (n = 9),
twelve edges (e = 12) and also one component (p = 1). This results in a cyclomatic
complexity of v(G) = 12 − 9 + 2 = 5, which differs by 1 from the other implementation
4.1a.

However, both results are considered as well structured [McC76]. In the paper [McC76], 10
has been set as the upper bound for the Cyclomatic Complexity of a module. Summarized
it can be said that the Cyclomatic Complexity describes the complexity of the structure
of a program based on the underlying control-flow graph.

4.2.3 Halstead Complexity Measures

In 1977, about one year after Thomas J. McCabe introduced the Cyclomatic Complexity
(see Section 4.2.2), Maurice H. Halstead introduced the Halstead complexity measures in

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Software Complexity Metrics

(a) Control-flow graph of Listing 4.2 (b) Control-flow graph of Listing 4.3

Figure 4.1: Control-flow graphs

his work Elements of Software Science [Hal77]. If not stated otherwise, his book [Hal77]
is used as the main reference for all of the following formulas and explanations.

All of the measures are based on the number of operators and operands of the program.
Before explaining the different metrics in detail, a basic set of required metrics must
be defined. η1 is the number of unique or distinct operators and η2 is the number of
unique or distinct operands. The variables N1 and N2 are the corresponding total usage
numbers of η1 and η2.

Based on the set of basic metrics, the particular measures of the Halstead complexity
measures can be defined.

Program Length

The program length can be calculated by adding N1 and N2: N = N1 + N2. Equation
4.2 can be used to calculate an approximation of the program length.

N̂ = η1 ∗ log2(η1) + η2 ∗ log2(η2) (4.2)

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Complexity

Program Volume

The program volume is a language-independent sizing metric. With this metric, it is
possible to measure the size changes of an algorithm that has been translated from one
programming language to another in a quantitative way. For calculating the program
volume, the program length and the total vocabulary η (η = η1 + η2) is needed. The
metric can then be calculated as shown in Equation 4.3.

V = N ∗ log2 η (4.3)

Program Level

Program level or the level of an implementation is a metric, which “emphasizes that
growth in volume leads to a lower level of the program” [Abr10, p. 156]. On the other
hand, a lower program volume (see Program Volume) leads to a higher program level,
with the maximum being 1. This metric is defined by the division of the potential Volume
V ∗ with the program volume V : V = V ∗

V
. The potential volume V ∗ is the volume of a

program with “the most succinct form in which an algorithm could ever be expressed”
[Hal77, p. 20] (for a detailed explanation see [Hal77]). In the absence of V ∗, however,
the approximation formula shown in Equation 4.4 may also be used interchangeably in
many cases.

L̂ =
2

η1
∗

η2

N2
(4.4)

In addition to the program level, also the language level exits. However, an explanation
of this metric is omitted for the sake of brevity.

Intelligence Content

Based on the program level and the program volume, the intelligence content can be
defined as follows: I = L̂ ∗ V . This metric answers the question “of how much is said in
a program” [Hal77, p. 32].

Program Difficulty

Halstead defines the difficulty of understanding a program (D) as the division of 1 by
the program level L (see Program Level): D = 1

L
. Since 1 is the maximum value for the

program level and “values close to 1 are considered to be well written” [Abr10, p. 156] it
is implied that 1 is the minimum value for D and therefore the optimal value.

Programming Effort

The idea of the programming effort is restricted to “the mental activity required to
reduce a preconceived algorithm to an actual implementation in a language in which the

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Software Complexity Metrics

implementor (writer) is fluent” [Hal77, p. 46] and can therefore be calculated using the
previously defined metrics program volume (see section 4.2.3) and program level (see
Program Level) or program difficulty (see Program Difficulty). Equation 4.5 shows the
calculation.

E =
V

L
= V ∗ D (4.5)

The estimated programming time can now be calculated by the division of the pro-
gramming effort and the Stroud number S (see [Hal77] for a detailed explanation):
T̂ = E

S
.

4.2.4 C&K Method

Shyam R. Chidamber and Chris F. Kemerer introduced six new metrics in their paper A
Metrics Suite for Object Oriented Design in 1994 [CK94], which later became known by
the name C&K metrics method [TSZ09]. Compared to the previously described metrics
NCLOC (see Section 4.2.1), Cyclomatic Complexity (see Section 4.2.2) and the Halstead
Complexity Measures (see Section 4.2.3), the C&K metrics method consists of metrics
designed for object-oriented systems. These metrics statically “measure the complexity
in the design of classes” [CK94, p. 477].

The general idea of the C&K metrics method is to support the software development
process. However, considered in more detail, the usage of the metrics of the C&K metrics
method can, for instance, help to ensure consistency between the architecture and the
structure of the application and to find areas with a high complexity [CK94]. The six
metrics are described below.

C&K Method Metrics

Weighted Methods Per Class (WMC) The WMC metric describes the complexity
of a class [CK94]. To calculate this metric, all complexity values (c1, ..., cn) of the methods
(m1, ..., mn) of a class must be summed up. Equation 4.6 shows the mathematical
description of the calculation. The paper [CK94] does not further specify how the
complexity is calculated “in order to allow for the most general application of this metric”
[CK94, p. 482].

WMC =
n∑

i=1

ci (4.6)

Consider the Name class declaration from the previous chapter about the object-oriented
programming paradigm (see Listing 2.3). The WMC of this class is 6, assuming that the
Cyclomatic Complexity (see Section 4.2.2) is used for calculating the complexity and the
constructor is counted as a method. Since there are no branches in any of the methods of

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Complexity

the class, each method has a complexity value of 1. In this example, the WMC is equal
to the number of methods (n).

This metric can be used to gain insight into the complexity of an application at class-level.
The WMC metric positively correlates with the programming effort and has a negative
correlation with the maintainability of the class because a high WMC means that the
class has many complex methods and is therefore less maintainable [CK94].

Depth of Inheritance Tree (DIT) As the name already indicates, this metric directly
corresponds to the inheritance depth of a class. The authors of [CK94] claim that the
number of methods in a class harms the complexity of the class since the more methods
are available, the more complex it will be to predict the behavior of the class [CK94].
Furthermore, the design complexity is affected by the number of methods[CK94]. The
DIT metric measures the depth of the inheritance tree because in an inheritance tree,
“the deeper a class is in the hierarchy, the greater the number of methods it is likely to
inherit” [CK94, p. 483].

Considering the Name class (see Listing 2.3) from a previous chapter (see Chapter 2)
again, the DIT is 1 because it does not inherit from any other class. However, when
analyzing the class TitledName (see Listing 2.5), the DIT increases by one (DIT = 2)
because this class inherits from the Name class (see Listing 2.3).

Number of Children (NOC) NOC refers to the number of direct subclasses of a
class [CK94]. The viewpoints for this metric, taken from [CK94], are explained in the
following: First, the more classes (children) inherit from a class (parent), the higher is
the reusability. The second viewpoint states that a high NOC could indicate improper
abstraction or incorrect use of subclassing. The third and final viewpoint states that the
NOC metric can be used as an indicator of the need to test classes (e.g. a high NOC
indicates prominent classes).

Analyzing the Name class (see Listing 2.3) leads to a NOC of 1 because Name has one
subclass: TitledName (see Listing 2.5). Creating another subclass of the Name class
would result in a NOC of 2.

Coupling between object classes (CBO) The CBO metric is defined as: “CBO for
a class is a count of the number of other classes to which it is coupled” [CK94, p. 486].
A coupling between two classes exists, if instance variables and/or methods of one of the
classes (see Section 2.2.2) are used in the other class [CK94].

A high CBO negatively impacts the modularity and maintainability of a system and also
negatively affects the required test effort [CK94].

The NameService class (see Listing 4.1) from the LOC section (see Section 4.2.1) has a
CBO = 1 because it uses the Name class constructor (see Listing 2.3; the constructor is
counted as a method).

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Software Complexity Metrics

Response For a Class (RFC) The RFC metric is equal to the number of elements
(cardinality) in a response set (RS) of a class: |RS| [CK94]. The RS of a class C is a set
containing all n methods of C (m1, ..., mn) combined with all methods that are called in
the methods m1 to mn [CK94]. A large RFC value negatively impacts the overall and
testing complexity of a class.

An RFC calculation for the NameService class (see Listing 4.1) results in 4. This is due
to the two methods NameService and buildName and two called methods split and Name
in buildName (a constructor is considered a method).

Lack of Cohesion in Methods (LCOM) The last of the six metrics defined in the
C&K Method Metrics is called Lack of Cohesion in Methods (LCOM) and is defined as
the following equation (see Equation 4.7) shows. All of the definitions regarding LCOM
are directly taken from [CK94].

LOCM =

{
|P | − |Q|, if |P | > |Q|

0, otherwise
(4.7)

A class C consists of instance variables and n methods (m1, ..., mn). The set {Ii} is a
set that contains all of the used instance variables in the method mi. For each of the
n methods, one set exists: {I1}, ..., {In}. P is then defined as P = {(Ii, Ij)|Ii ∩ Ij = 0},
while Q is defined as Q = {(Ii, Ij)|Ii ∩ Ij 6= 0}.

In other words, “the LCOM value provides a measure of the relative disparate nature of
methods in the class” [CK94, p. 489]. A high LCOM indicates a hight cohesion between
the methods of a class, which in turn “promotes encapsulation” [CK94, p. 489]. A low
cohesion negatively impacts complexity and could also indicate that the class should be
redesigned [CK94].

Consider the following example, taken from [CK94], where {I1} = {a, b, c, d, e}, {I2} =
{a, b, e} and {I3} = {x, y, z}. In this example, a class consists of three methods
(m1, m2, m3), where method m1 uses the instance variables a to e, method m2 uses
a, b and e and method m3 uses x, y and z. The following set intersections can be made:
{I1} ∩ {I2} = {a, b, e}, {I1} ∩ {I3} = {} and {I2} ∩ {I3} = {}. The LCOM metric is
calculated by subtracting the number of non-empty intersections from the number of
empty intersections: LCOM = 2 − 1 = 1.

4.2.5 MOOD

Similar to the C&K Method Metrics, in 1994, Fernando Brito e Abreu and Rogério
Carapuça proposed the MOOD (Metrics for Object Oriented Design) metrics set, originally
consisting of eight metrics for object-oriented systems [AC94]. They claim “that the
MOOD metrics (except the Reuse Factor) can be combined to obtain a generic OO
software system complexity metric” [AC94, p. 8].

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Complexity

Seven criteria were defined, used as a starting point for the proposed metrics (see [AC94]
for a detailed description and the motivation behind them). The eight metrics are Method
Inheritance Factor (MIF), Attribute Inheritance Factor (AIF), Coupling Factor (COF),
Clustering Factor (CLF), Polymorphism Factor (PF), Method Hiding Factor (MHF),
Attribute Hiding Factor (AHF) and Reuse Factor (RF). However, the RF will be skipped
due to the above-mentioned fact and also because the RF is not included in the set for
obtaining a generic complexity metric for object-oriented software systems. Therefore,
the following section is structured in object-oriented concepts and within each, the related
metrics are briefly explained. The descriptions of the single metrics and all the formulas
are based on the original paper [AC94].

MOOD Metrics

Encapsulation and Information Hiding Related Both metrics, MHF and AHF,
are related to the object-oriented programming concept of encapsulation and information
hiding (see Section 2.2.2). Md(Ci) is a function which returns the number of all methods,
the number of visible methods (Mv(Ci)) plus the number of hidden methods (Mh(Ci)),
for a specific class Ci: Md(Ci) = Mv(Ci) + Mh(Ci).

The calculated value for the MHF metric is the proportion between the sum of all Mh(Ci)
and the sum of Md(Ci) over all classes (TC =̂ total classes) (see Equation 4.8).

MHF =

∑T C
i=1 Mh(Ci)∑T C
i=1 Md(Ci)

(4.8)

AHF is calculated similarly to the MHF metric, except that attributes (instance variables
- see Section 2.2.2) are considered instead of methods. Equation 4.9 shows the formula
for the AHF metric calculation, where Ah(Ci) and Ad(Ci) are calculated analogously to
Mh(Ci) and Md(Ci).

AHF =

∑T C
i=1 Ah(Ci)∑T C
i=1 Ad(Ci)

(4.9)

When the results of AHF and MHF are evaluated, it should be ensured that the value
does not fall below a recommended lower limit.

Inheritance Related MOOD metrics related to the object-oriented concept of inheri-
tance (see Section 2.2.2) are the MIF and AIF metric. Before presenting the formula for
calculating MIF and AIF, the basic class metrics required are briefly explained. Md(Ci)
presents the number of methods defined in a specific class i, Mn(Ci) is the number of
newly added methods in a specific class i (non-overwritten methods), Mn(Ci) is the
number of overwritten methods in a specific class i and DC(Ci) defines the number of
descendants of a specific class i.

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Software Complexity Metrics

The Total number of Methods Inherited (TMi) is defined by Equation 4.10 and the
Total number of Methods Available (TMa) can be calculated using the formula shown in
Equation 4.11.

TMi =
T C∑

k=1

[[Md(Ck) − Mo(Ck)] ∗ DC(Ck) − Mo(Ck)] (4.10)

TMa =
T C∑

k=1

[[Mn(Ck) ∗ [1 + DC(Ck)]] (4.11)

MIF is then defined as the division of TMi and TMa (see Equation 4.12).

MIF =
TMi

TMa

(4.12)

AIF can be calculated in a similar way, but only attributes are considered instead of
methods.

AIF =
TAi

TAa

(4.13)

When the results are evaluated, it is checked whether the MIF or AIF value is within a
recommended interval. A specific recommendation could look like the following example:
“Keep the Method Inheritance Factor between 0.25 and 0.37” [AC94, p. 7].

Coupling and Clustering Related As with the C&K Method Metrics, there is also
a metric in the MOOD metric set that describes the coupling (see Paragraph 4.2.4) of
classes.

This metric (COF) can be calculated using the formula shown in Equation 4.14, where
is_client is a function for two classes Ci and Cj that either returns 1, if Ci contains at
least one reference to a method or attribute of the class Cj , or 0 otherwise. This value
should be kept below a recommended upper limit.

COF =

∑T C
i=1[

∑T C
j=1 is_client(Ci, Cj)]

TC2 − TC
(4.14)

Coupling and inheritance between classes form “a set of disjoined graphs where nodes
represent classes and edges represent the relations” [AC94, p. 7] between them. Each
graph in the set is called a cluster that can be reused. The coupling factor is then defined
by the proportion between the total number of class clusters (TCC) and the total number
of classes (TC) (see Equation 4.15). Unlike the COF, this metric should be kept above a
recommended lower limit.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Complexity

CLF =
TCC

TC
(4.15)

Polymorphism Related The last one of the explained MOOD metrics, the Polymor-
phism Factor, relates to the concept of polymorphism (see Section 2.2.2). This metric is
defined as the division of “the total number of possible different polymorphic situations”
[AC94, p. 6] and the “maximum number of possible different polymorphic situations”
[AC94, p. 6] in the whole system (see Equation 4.16). As with the first two metrics, this
metric should also be within a recommended interval.

PF =

∑T C
i=1[

∑DC(Ci)
j=1 Mo(Cj)]

∑T C
i=1[Md(Ci) ∗ DC(Ci)]

(4.16)

4.3 Summary

This chapter introduced software metrics for measuring the complexity of software systems.
Over the years, many different complexity metrics have been introduced. For example,
in the year 1990, the number of metrics already exceeded 200 [Zus91]. In this chapter,
five commonly used complexity metrics were selected and explained in greater detail.

The first and trivial complexity metric is the Lines Of Code metric. This metric counts
the number of source code lines. However, there are different definitions of what is
counted and what is excluded from the count (see Section 4.2.1). The second metric
explained is called Cyclomatic Complexity and is based on the number of branches (nodes
and edges) of the control-flow graph of a program (see Section 4.2.2). Following the
Cyclomatic Complexity, the Halstead Complexity Measures, a set of statically calculable
complexity metrics, are explained (see Section 4.2.3). This chapter ends with two different
metric suits for object-oriented programming systems, the C&K Method (see Section
4.2.4) and the Metrics for Object Oriented Design (MOOD) (see Section 4.2.5). Both
metric suites measure metrics related to object-oriented design.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Evaluation

This work’s main contribution is to provide an extensive overview of the practical
impact of a monadic programming style in a Java-based application software on software
complexity. In particular, command and query methods of the data access layer are
rewritten to a monadic version of the same method. The rewriting of these methods leads
to further rewritings in the project. The analysis itself is carried out on an open-source
Android application. The used Android application is explained in detail in a following
section (see Section 5.1).

This chapter also defines a set of rules for the rewriting process. The rules determine
what is allowed during rewriting and determine the conditions under which method
signatures change (see Section 5.5).

In order to minimize the number of programming errors, a code review was conducted
by a project independent software engineer and software tests were run to check whether
the results of the tests remained unchanged to the time before the rewriting. Details
about the verification can be found in Section 5.7.

The detailed description of the quantitative evaluation results is then presented in the
following chapter (see Chapter 6).

5.1 Evaluation Project

Requirements for the selection of the project are that the application software is written
in the object-oriented programming language Java, that a data access layer must exist
and that no monadic structures have been used in this data access layer yet.

Due to the author’s in-depth experience with software engineering for the Android
platform, the search for an appropriate project focused on state-of-the-art application
software for the Android operating system. At first, the search turned out to be

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

difficult because Android developers often use reactive libraries like RxJava to ease
the development process. However, the provided data structures from RxJava can be
considered as monadic. Therefore, all Android applications which were using RxJava in
the data access layer could not be used for the practical part of this thesis. The search
was then extended to Android applications, which have been under development for a
longer time.

The open-source Android application OpenKeychain1 met all of these requirements and
was therefore selected. The following description text originates from the official website:
“Modern encryption is based on digital “keys”. OpenKeychain stores and manages your
keys, and those of the people you communicate with, on your Android smartphone. It
also helps you find others’ keys online, and exchange keys. But its most frequent use is
in using those keys to encrypt and decrypt messages.” [Schnd].

The source code was cloned from the corresponding GitHub page with the Git HEAD
pointing to the commit with the short SHA-1 checksum 61892a657 in the master branch.

At this point, the java package of the main module OpenKeychain consisted of 56394
NCLOC (measured with MetricsReloaded; see Section 5.2.3) and all changes that were
made relate to this state.

5.2 Relevant Tools

5.2.1 Git

The project was cloned from the GitHub website to a local computer using Git2 with
version 2.21.0 and the changes to the source code were then applied in a separate branch.

5.2.2 Integrated Development Environment (IDE)

Android Studio 4.0 with the build version #AI-193.6911.18.40.6514223 was used as an
IDE. After opening the cloned project in the IDE, the project was then set up according
to the README.md file in the root directory of the project. Android Studio is based on
the IDE IntelliJ IDEA from the company JetBrains.

5.2.3 MetricsReloaded

This work used the IntelliJ IDEA plugin MetricsReloaded (version 1.9) to measure
the complexity metrics used in this work. The choice for this tool is based on public
availability of the source code3, the high number of downloads (127165 downloads on
August 7, 2020 [Jetnd]) and that it was also used for other academic publications (e.g.
[TBMP18]). Furthermore, this tool is able to measure all the required metrics.

1https://www.openkeychain.org/
2https://git-scm.com/
3https://github.com/BasLeijdekkers/MetricsReloaded/

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.openkeychain.org/
https://git-scm.com/
https://github.com/BasLeijdekkers/MetricsReloaded/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Identifying Query and Command Methods

5.2.4 Vavr

The software library Vavr4 “is a functional library for Java 8+ that provides persistent
data types and functional control structures” [DW20]. During the rewriting process, the
monadic container types Option and Try were used from the library. The version 0.10.3
was used and integrated via Gradle5.

5.2.5 JaCoCo

JaCoCo6 is a well-known and free tool for measuring code coverage of Java programs.
Good personal experience with this tool and its widespread use were reasons for using
this tool as part of this work. The tool was integrated into the project with version 0.8.5.

5.2.6 palantir-java-format

To ensure a uniform code format style when measuring the NCLOC metric, the source
code was reformatted before each of the measurements (before and after rewriting) of
the NCLOC metric. In particular, the open-source code formatter palantir-java-format7

was used.

5.3 Identifying Query and Command Methods

Based on the author’s experience, a monadic programming style in query and command
methods of the data access layer can positively impact the quality of the source code.
Therefore, this work analyzes the impact of a monadic programming style of query and
command methods in the data access layer on software complexity. To get the best
possible and meaningful results, and to stay within the scope of this work, the starting
point for the rewriting process is chosen depending on how often a class is used in other
classes. Based on the count of dependent classes, the class KeyRepository of the package
org.sufficientlysecure.keychain.daos was selected as a starting point for the evaluation.
According to the MetricsReloaded plugin (see Section 5.2.3), the class has 58 dependents
and thus the majority of all classes in this package. This class was then rewritten in
compliance with the rules defined in Section 5.5.

Reasons why only a specific part and not the entire source code is rewritten from scratch,
include that otherwise, the results would no longer derive from the monadic programming
style of query and command methods from the data access layer. However, based on the
results of this work, a rewrite of further parts and the whole project would be desirable
for future work.

4https://www.vavr.io/
5https://gradle.org/
6https://www.eclemma.org/jacoco/
7https://github.com/palantir/palantir-java-format

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.vavr.io/
https://gradle.org/
https://www.eclemma.org/jacoco/
https://github.com/palantir/palantir-java-format

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

5.4 Complexity Measurement

In Chapter 4, different methods for measuring software complexity were presented. In
particular, five different metrics or metric sets were explained, which are considered as
well known in the field of software engineering. Two of the five metrics were developed
specifically for object-oriented programming languages, namely the C&K metrics method
(see Section 4.2.4) and the MOOD metrics (see Section 4.2.5).

The quantitative evaluation of this work uses the NCLOC metric (see Section 4.2.1),
Cyclomatic Complexity (see Section 4.2.2) and Halstead Complexity Measures (see Section
4.2.3). However, out of all the Halstead Complexity Measures, only the Halstead Difficulty
(see Section 4.2.3) is measured since this metric directly relates to the complexity of a
program (e.g. the difficulty of understanding a program).

The reason for excluding the object-oriented related complexity metrics is that rewriting
does not impact any factors related to object-oriented aspects. Only method signatures
and the usage of specific methods are affected by the rewriting process.

All three metrics were measured at the method level, but only the Cyclomatic Complexity
and the Halstead Difficulty were additionally evaluated at the method level. The NCLOC
metric is evaluated over the sum of all results measured at the method level. One reason
for this is, for example, that an increase of the NCLOC metric does not necessarily
indicate a deterioration in complexity.

5.5 Rewrite Rules

When source code is written, the resulting software design and quality of the source code
depends, for instance, on the author’s previous experience and knowledge. Moreover, the
experience of the author of this work has shown that problems can usually be solved in
many different ways, where some may be considered unacceptable by static code checkers
and/or code reviewers.

The idea for the set of rules for the rewriting process came up at an early stage of this
work while the author made his first attempts at rewriting the source code. During this
attempts, it was not always clear how to use the monadic methods and how to proceed in
different situations. Furthermore, software complexity must not be influenced by factors
other than the monadic programming style. Guidance and instructions were required on
how to proceed consistently in those situations.

Antony Tang, who wrote the paper Software Designers, Are You Biased?, also claims
that “there are enough examples to demonstrate that biases do exist and they may be
more common than we think” [Tan11, p. 7]. In order to make the quantitative work as
replicable as possible and to minimize the own bias for the rewriting part, an extensive set
of rules is defined. These rules determine how to proceed in certain situations, restrict the
freedom of choice during the rewriting process and therefore reduce the bias and improve

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Rewrite Rules

the reproducibility of the results. The rules also ensure that the software complexity is
mainly influenced by the monadic programming style.

5.5.1 Source methods

Before the actual rewriting can start, query and command methods in the data access
layer must be selected. Those methods are classified and in this context referred to as
source methods, because they provide the basis for the rewriting of the source code.

For the selection, only non-abstract query and command methods with arbitrary visibility
modifiers in the data access layer are considered. The actual change to a monadic version
of the method depends on the method’s signature. Listing 5.1, 5.2 and 5.3 define the three
relevant method types. In those listings, T stands for an arbitrary type where instances
of this type never hold the value null. The question mark indicates that instances of type
T are allowed to be null.

Listing 5.1: Source method type 1

T? m(. .) {
// omit ted

}

Listing 5.2: Source method type 2

T m(. .) throws E {
// omit ted

}

Listing 5.3: Source method type 3

T? m(. .) throws E {
// omit ted

}

Under these conditions, Listing 5.1 represents a method that takes an arbitrary amount of
parameters and returns an object of type T, which can be null under certain circumstances.
Methods that match this type get rewritten to methods that return the type Option<T>.
The monadic type Option is provided by the Vavr library (see Section 5.2.4) and
corresponds to the Maybe monad (see Section 3.3.3). After changing the return type,
at each exit point of method, the returned value is wrapped in an instance of the class
Option. If null gets returned, null gets exchanged with Option.none(), which represents
the Nothing case (see Section 3.3.3). Non-null values can be brought into the Option
context by passing the value to the static method some. If it is not certain whether
a method at an exit point returns null or the value to be returned is null, the static
method of from the class Option should be used. For the practical part of this work, the
analysis of whether a method returns a nullable value or not is done manually. However,
this task can also be supported by static analysis tools.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Methods classified as the second source method type (see Listing 5.2) are methods that
take an arbitrary amount of parameters and return an object of type T where instances are
never equal to null. Furthermore, methods of this type also throw one or more exceptions
E, which are subtypes of the Java class Throwable. These methods are rewritten as
follows: First, the return type T is changed to the type Try<T>, which is also provided
by the Vavr library (see Section 5.2.4) and can be equated with the Exception monad
(see Section 3.3.2). In case the method has the return type void, Try<Void> is used
as the new return type. Second, the throws and the associated exceptions are removed
from the method signature. Third, the exit points of the methods have to be adjusted
accordingly. The Try class also provides the static method of, however, this method
takes a lambda expression as an argument. Code that either returns a value or throws
one or multiple exceptions can be wrapped inside this lambda expression. The possibly
thrown exceptions or the returned value are then automatically and correctly wrapped
inside the Try datatype. Suppose an exception is explicitly thrown inside the method.
In that case, it can be put into Try by passing the exception object to the the static
method failure instead of throwing it using the throw statement. Successfully computed
values can be wrapped by using the static method success. All three techniques are valid
approaches to adapt the method body to the new method signature.

The third type (see Listing 5.3) is a mixture of type one and type two, whereby the
method either returns a nullable value or throws one or multiple exceptions. To handle
both cases, the absence of a value and the case of an exception, both cases are represented
in the new return type Try<Option<T>>. For keeping a consistent style, the Try type
is always used as the outer type.

Other methods that cannot be associated with any of the explained method types are
not rewritten to source method in the initial phase. In addition, list types are not dealt
with specifically (e.g. in using the List monad).

5.5.2 Service methods

The rewriting of source methods produces, in most cases, errors in methods that use
those rewritten methods. Common errors are, for example, that the return value of a
rewritten method is stored in a variable that has the wrong type or that a try-catch
block is used, although no exception is thrown anymore. However, cases in which the
new method return type is Try<Void> have to be treated specially since there may not
be any errors after the rewriting from void to Try<Void> (e.g. the thrown exception is
forwarded in methods where the rewritten method is used).

A method that uses at least one modified method is, in this context, referred to as a
service method. In order to get an idea of the impact of monadic methods in the data
access layer on the rest of the code, the method body must be adjusted accordingly.
Furthermore, the method signatures of service methods are also rewritten under certain
circumstances:

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Rewrite Rules

Signature Rewrites

A service method with a rewritten signature is in this context referred to as an intermediate
method. On the other hand, service methods with unchanged signatures are referred
to as sink methods. Rewritten methods can therefore be classified as either source,
intermediate or sink method. The classification service method defines an umbrella term
for intermediate and sink methods. Furthermore, it is possible that source methods may
get changed to intermediate methods during the rewriting process (e.g. source methods
using other rewritten methods).

In the following, the rules that indicate under which circumstances the method signatures
are rewritten, as well as other rules regarding the rewrite process, will be presented:

null Dependence If the service method can be classified as type one (see Listing 5.1)
and the possible returned null value directly depends on the result of one of the rewritten
methods used, the return type of the signature of the service method is also changed to
return Option<T>.

Exception Dependence If the service method can be classified as type two (see
Listing 5.2) and the type of the thrown exception equals the type of exception that was
thrown by one of the rewritten methods used, or the exception thrown directly depends
on the result of one of the rewritten methods used, the return type of the signature of
the service method is also changed to return Try<T> and the dependent exception gets
removed from the method signature. If there was no dependence on one of the rewritten
methods, the impact on other service methods would no longer originate from the initially
changed query and command methods of the data access layer.

Exception and null Dependence A combination of the two cases mentioned (see
null Dependence and Exception Dependence) is also a valid case which results in a method
signature rewrite of the service method. The new return type is Try<Option<T>>.

Dependence Limitation If one of the above cases (see Exception Dependence, null
Dependence or Exception and null Dependence) applies to a service method, but the
service method is overwritten, the method signature and the related base method is only
changed if the declaration of the method is contained in the project and the method
is overwritten exactly once in the project. Without this rule, it might be possible that
the impact on other service methods does not result from the originally changed source
methods.

Body Rewrites

Whenever possible, the bind operator (see Section 3.2) should be used as often as possible
in service methods. The flatMap method defined for the Try and Option type can be
considered equivalent to bind.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

However, the use of bind in Java is restricted in specific situations. For example, “a
lambda expression can only access local variables and parameters of the enclosing block
that are final or effectively final” [Orand, p. 243]. As a result, flatMap can only be
used if no local variables and parameters that are not final or not effectively final are
used between the rewritten method and a second monadic expression. Furthermore,
statements like break or continue can also not be used in lambda expressions. Refactoring
or restructuring the code can help to overcome these limitations in certain situations.
However, refactoring and code restructurings could falsify the results because it could
not be clear whether improvements or deterioration in complexity result from the
code restructuring, refactoring or the originally rewritten source methods. Hence, the
traceability of the results is not ensured.

The following rules are intended to restrict freedom of action while rewriting, reduce bias
and make results traceable. Furthermore, the set of rules can be viewed as a guideline
for how to proceed in certain situations.

Refactoring or Restructuring Refactoring and restructuring the source code is not
permitted. Furthermore, the declaration of additional Java classes or methods and
transmission of code to other Java classes or methods is also prohibited. The reason for
the existence of those rules is that refactoring and restructuring can result in changes in
complexity that are not related to the starting point of this study. Also, if new methods
are created, no comparison values from a previous version of the method exist.

The behavior of the existing source code must always be reproduced directly. If it is not
possible to use a monadic programming style due to limitations, the monadic structure
must then be checked manually for success or failure and the corresponding (unpacked)
value must get used the same as before.

Additional Data Access Object Method Calls In case other query or command
methods from the data access layer are used on the same nesting level as one of the
rewritten methods and the methods are either of type one (see Listing 5.1), type two (see
Listing 5.2) or type three (see Listing 5.3), then those methods get rewritten to source or
intermediate methods aswell, using the same rules as presented in this section.

Service Method Returning Try If a service method is rewritten to return the type
Try (because of Exception Dependence or Exception and null Dependence) and the
method still throws other exceptions, then all other exceptions get wrapped into a Try
object in the method body as well. Also, the throws statement gets removed from the
method signature. The reason why non-dependent exceptions are also wrapped is that
returning Try and throwing exceptions is considered redundant.

Catch Blocks Without Executable Code When a try-catch is used to catch ex-
ceptions from a method in Java, the try block must always have a corresponding catch
block, even if no code is executed in the catch block. This does not apply to the monadic

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.6. Rewrite Approach

version of those methods. Therefore, catch blocks do not have to be reconstructed in the
monadic version, even if the catch block contains comments.

No null Check If a method of type one (see Listing 5.1) is called in the original
version of a service method and the returned value is not checked for containing null,
then the method getOrElse from the Option class, which either unpacks the wrapped
value or returns the passed default value, must be used with the parameter null in the
monadic version. flatMap or a check for a successful computation must not be used as
this would change the original behavior of the method.

All Exceptions Caught If one of the source or service methods used is either of type
two or three (see Listing 5.2) or 5.3) and in the corresponding (closest) try-catch block of
the original service method all thrown exceptions are caught and no finally block exists,
then all other thrown exceptions can be wrapped in a Try object (by using Try.of) as
well and the try-catch can be removed. However, if non-final or non-effectively final
variables are used in the exception throwing line or block, wrapping is not allowed.

Non-Final Relaxation If flatMap cannot be used because of non-final and non-
effectively final variables and all non-final variable assignments are made only before the
first use of a rewritten method, then a final or effectively final template variable, which
holds a copy of the original variable, can be created and used in lambda expressions.

Helper Methods of Monadic Types It is allowed to use helper methods that
are provided by the monadic structures Option and Try. These helpers include, for
instance, methods for filtering and unpacking stored values or methods for executing
code, depending on the state of the monadic structure. The methods for unpacking
wrapped values also offer parameters that can be used to define what should happen if
the monadic structure has an error state. Furthermore, converter methods for converting
the type Option to Try and vice versa exist and may be used.

5.6 Rewrite Approach

The following step-by-step guide describes the entire rewriting process:

1. Decide in which data access object class which query or command methods should
be rewritten in a monadic version of the same method

2. Rewrite the selected methods accordingly to the above-defined rules for source
methods (see Section 5.5.1)

3. Successively rewrite service methods in a monadic way and thus fix errors in service
methods. This step must also be implemented in compliance with the rules (see
Section 5.5.2)

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

4. If software tests exist, they must also be adjusted accordingly

5.7 Verification

5.7.1 Software Tests

The used evaluation project consists of 217 software tests, where one test is intentionally
skipped. Before the start of the practical part of this work, the 216 tests were run
to obtain the result of the test suite at the initial stage of the study. At this point,
all 216 run tests passed. During the rewrite, the tests were executed regularly to find
programming mistakes fast. After rewriting, all 216 tests still passed. However, while
rewriting the project, five mistakes were found by using the software tests.

Additionally, the tool JaCoCo was used to get an approximate estimate of the code
coverage. The overall coverage of the project after the rewrite was 24%. However, most
of the project’s untested classes were related to the user interface, which is usually
not covered by unit tests. Most of the classes containing business logic have a test
coverage of around 70%. Table 5.1 provides a detailed breakdown of code coverage for
all classes that contain changed methods. Each classpath in the table is relative to the
path src/main/java/org/sufficientlysecure/keychain of the main module.

Table 5.1: Code coverage for changed classes

Class Coverage [%]

daos.KeyRepository 60
daos.KeyWritableRepository 74
operations.BackupOperation 76
operations.BaseOperation 82
operations.CertifyOperation 62
operations.ChangeUnlockOperation 0
operations.EditKeyOperation 0
operations.PromoteKeyOperation 81
operations.RevokeOperation 0
operations.UploadOperation 0
pgp.PgpDecryptVerifyOperation 75
pgp.PgpSignatureChecker 83
pgp.PgpSignEncryptOperation 72
remote.ui.RequestKeyPermissionPresenter 0
remote.OpenPgpService 0
remote.SshAuthenticationService 0
service.PassphraseCacheService 10
ssh.AuthenticationOperation 49
ui.adapter.ImportKeysAdapter 0
ui.keyview.KeyFragmentViewModel 0
ui.keyview.UnifiedKeyInfoViewModel 0

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.7. Verification

Class Coverage [%]

ui.keyview.ViewKeyActivity 0
ui.keyview.ViewKeyFragment 0
ui.transfer.presenter.TransferPresenter 0
ui.token.PublicKeyRetriever 0
ui.BackupRestoreFragment 0
ui.CertifyFingerprintFragment 0
ui.CertifyKeyFragment 0
ui.CreateKeyFinalFragment 0
ui.DecryptFragment 0
ui.DeleteKeyDialogActivity 0
ui.PassphraseDialogActivity 0
ui.QrCodeViewActivity 0
ui.SecurityTokenOperationActivity 0
ui.ViewKeyAdvActivity.ViewKeyAdvViewModel 0
ui.ViewKeyAdvShareFragment 0
ui.ViewKeyAdvSubkeysFragment 0
ui.ViewKeyAdvUserIdsFragment 0
util.ShareKeyHelper 0

5.7.2 Code Review

On July 9, 2020, a code review for the code that was changed as part of this work was
conducted. The review was performed by a project independent software engineer with
more than four years of practical experience in a related field.

Before the start of the code review, a computer showing the code changes made was
prepared in a quiet environment, a brief introduction to the topic was given and the
defined rule set for the rewriting process was explained. Following the introduction, the
review started at 5:55 PM CET.

Four minutes after the start, the reviewer found an implementation mistake in the method
KeyRepository.getCanonicalizedSecretKeyRing. After a short discussion, the problem was
fixed and reviewed again. After correcting the problem, the review was continued. At
6:13 CET the reviewer pointed out an else block without executable code. The block
was deleted after the notice. At 6:35 PM CET, the reviewer found a rewritten method
signature in the Java interface PassphraseCacheInterface, which was still throwing an
exception. This finding led to the deletion of the throws statement and the corresponding
exception. The deletion had no impact on the rest of the source code. At 7:18 PM CET
the review ended.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Results

The previous chapter (see Chapter 5) explained the relevant information about the
practical part of this work and the basic process of how and under what conditions
the results of this work were generated. This chapter, in turn, presents and discusses
the obtained results. First, the overall results are viewed from a general perspective.
Following the general perspective, the results are summarized in logical groups and
analyzed in detail. All displayed complexity results are based on the calculations of the
MetricsReloaded tool (see Section 5.2.3) and classpaths in tables are all relative to the
path src/main/java/org/sufficientlysecure/keychain of the main module.

6.1 General Results

Performing the rewrite of the methods in accordance with the established set of rules
(see Section 5.5) led to a change of a total of 39 Java classes and 88 methods. Table A.1
in the appendix visualizes the type (source, intermediate or sink; see Section 5.5), the
measured Cyclomatic Complexity (see Section 4.2.2) and Halstead Difficulty (see Section
4.2.3) for all of the changed methods before and after the rewriting into a monadic
programming style. In all of the following result tables, the values of the individual
results of the Halstead Difficulty and the arithmetic mean results have been rounded
automatically to two decimal places. Furthermore, method names were replaced by IDs
due to their irrelevance. A mapping from method IDs to the corresponding method
names can be found in Table A.2. Also, the metric Cyclomatic Complexity is abbreviated
as CC and the metric Halstead Difficulty as HD. Columns with the heading Diff (short
for Difference) show the change in complexity.

Based on the 13 originally changed source methods, eight source, 16 intermediate and 64
sink methods resulted from the rewriting. Looking at the arithmetic mean of the change
in complexity in all changed methods, it can be seen that the rewriting of the source
code resulted in an improvement of the Cyclomatic Complexity and a deterioration of the

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results

Halstead Difficulty. On closer inspection, the Cyclomatic Complexity changed from 7, 36
to 7, 32 (−0, 54%) and the Halstead Difficulty changed from 27, 53 to 29, 80 (+8, 25%).
These results shows that there is a disconnect between the two complexity metrics.

The analysis of the NCLOC metric showed that the number of NCLOC for all methods
that were changed during the rewrite process increased from a total of 3249 to 3361
NCLOC (+3, 45%). Although an increase of 112 NCLOC can be recognized, this is
considered negligible.

6.2 Detailed Analysis

After analyzing the results from a higher perspective, the results were divided into logical
groups and analyzed in more detail. The categorization is based on the state change of
the result of the complexity metric, whereby the following three state changes exist:

• Metric unchanged - Complexity unchanged - Displayed as =

• Metric improvement - Complexity decreased - Displayed as ⇑

• Metric deterioration - Complexity Increased - Displayed as ⇓

After only considering the Cyclomatic Complexity and the Halstead Difficulty at method
level, nine different clusters could be derived. The clusters with the corresponding state
changes are shown in Table 6.1. In the rightmost column, the table also presents how
many methods are assigned to a specific cluster. In the following subsections, each of the
clusters is analyzed individually. The name of the subsection indicates which cluster is
being addressed and how the state has changed by displaying the above described state
change symbols in parentheses. The first state change symbol in the parentheses relates
to the Cyclomatic Complexity and the second to the Halstead Difficulty.

6.2.1 Cluster 1 (= / =)

Cluster 1 contains all methods in which neither the Cyclomatic Complexity nor the
Halstead Difficulty has changed. A total of ten methods (11, 36%) are assigned to this
cluster.

Of these ten methods, five are classified as source methods. Since this work deals with the
impact of the monadic style, these methods are not considered in more detail. However,
all these source methods have the monadic return type Try in common. The Cyclomatic
Complexity remains unchanged because no additional path is added by lifting a value into
the context of the Try datatype. By removing the throws statement from the method
signature and by introducing a new operator to the method (e.g. Try.of), the Halstead
Difficulty also remained unchanged.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Detailed Analysis

Table 6.1: Clustering of rewritten methods

Cluster # Cyclomatic Complexity Halstead Difficulty Count

1 = = 10
2 ⇓ ⇓ 10
3 ⇑ ⇑ 7
4 ⇑ = 1
5 ⇓ = 0
6 = ⇑ 1
7 = ⇓ 54
8 ⇑ ⇓ 5
9 ⇓ ⇑ 0

88

“=” indicates an unchanged result; “⇑” indicates an improvement, “⇓” indicates a
deterioration

One method is classified as an intermediate method in which neither the Cyclomatic
Complexity nor the Halstead Difficulty has changed. The intermediate method SshAuthen-
ticationService.getPublicKey (m45) uses two rewritten methods, whereby no explicit null
check or try-catch block exists since both of the methods used return the type Try<T>
and the method itself was forwarding the previously thrown exception. Although the
used methods can be sequentially executed by using flatMap and the sequential execution
can be returned directly (e.g. intermediate method), no improvement was achieved in
either of the two metrics.

The remaining four methods are classified as sink methods. In one of those methods, one
of the rewritten methods was used in an anonymous class created inside the sink method.
For this reason, the method is not considered further. In the remaining three methods,
either only the generic parameter in the return type or the type of a local variable has
changed. Again, no change was found in any of the metrics.

6.2.2 Cluster 2 (⇓ / ⇓)

The second cluster also consists of 10 methods (11, 36%) containing 9 sink and 1 inter-
mediate method. Table 6.2 shows an exclusive view of those methods and Figure 6.1
visualizes the results of this cluster. Overall, the Cyclomatic Complexity changed from
20, 90 to 22, 10 (+5, 74%) and the Halstead Complexity from 70, 26 to 78, 50 (+11, 73%)
in this cluster. Both metrics indicate an increase in complexity.

In the method BackupOperation.writePublicKeyToStream (m18), the Cyclomatic Com-
plexity increased from 3 to 4 and the Halstead Difficulty increased from 14, 25 to 22. The
increase can be traced back to the additional isSuccess check in the not removed try-catch
block, the duplicated error case and the additionally used (duplicated) method calls.

The method writeSecretKeyToStream (m19) of the class BackupOperation, CertifyOpera-

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results

tion.execute (m21) and PgpSignEncryptOperation.executeInternal (m31) have a similar
behavior as the previously described method BackupOperation.writePublicKeyToStream.

In handleEncryptedPacket (m28) of the class PgpDecryptVerifyOperation and setData
(m50) of the class ImportKeysAdapter, a sequential execution by using flatMap was not
possible. This led to explicit checks for successful calculations, which then resulted in
an increase of the Cyclomatic Complexity and the Halstead Difficulty. Reasons for not
using flatMap were the usage of the continue keyword and that the monadic methods
were used on different blocks of nesting.

The try-catch block in the method OpenPgpService.encryptAndSignImpl (m37) was
removed in compliance with the established rules. However, manual success checks also
increased the complexity here for both metrics.

In SshAuthenticationService.authenticate (m40), the complexity also increased because
of explicit isSuccess checks due to variable assignments between monadic methods.

Due to an anonymous class declaration, as already mentioned in cluster 1 (see Sec-
tion 6.2.1), the method checkPassphraseAndFinishCaching (m73) in the inner class
PassphraseDialogFragment of the class PassphraseDialogActivity was also excluded from
a detailed analysis.

ShareKeyHelper.getSshKeyContent (m85), the last and only method with type intermedi-
ate in this cluster, also deteriorates in complexity. Here, using a monadic programming
style was not possible because of additionally thrown exceptions. Theoretically, an
improvement of the complexity metrics could be achieved if conditions for a monadic
style existed.

Table 6.2: Cluster 2

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m18 3 4 1 14.25 22.00 7.75 Sink
m19 4 5 1 16.81 24.77 7.96 Sink
m21 27 28 1 95.78 103.71 7.94 Sink
m28 40 41 1 157.01 169.72 12.71 Sink
m31 84 85 1 227.74 234.64 6.90 Sink
m37 16 17 1 57.00 65.14 8.14 Sink
m40 16 18 2 56.65 63.49 6.84 Sink
m50 7 8 1 29.61 37.58 7.97 Sink
m73 10 12 2 39.75 49.78 10.03 Sink
m85 2 3 1 8.00 14.17 6.17 Intermediate
Avg 20.90 22.10 1.20 70.26 78.50 8.24

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Detailed Analysis

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Avg

m18

m19

m21

m28

m31

m37

m40

m50

m73

m85

Cyclomatic Complexity

M
et
h
od

Id
CC Before
CC After

(a) Cyclomatic Complexity difference visualization

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

Avg

m18

m19

m21

m28

m31

m37

m40

m50

m73

m85

Halstead Difficulty

M
et
h
od

Id

HD Before
HD After

(b) Halstead Difficulty difference visualization

Figure 6.1: Cluster 2 visualization

6.2.3 Cluster 3 (⇑ / ⇑)

This cluster’s results are considered to be one of the most important of this study since
the Cyclomatic Complexity and the Halstead Difficulty improved for seven methods in
this cluster. Table 6.3 shows only the results of these methods, while Figure 6.2 visualizes
them in a bar plot. The Cyclomatic Complexity decreased from 3, 71 to 2, 57 (−30, 73%)
while the Halstead Difficulty decreased from 17, 24 to 15, 26 (−11, 48%).

In the two intermediate methods getCanonicalizedPublicKeyRing (m1) and getCanonical-

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results

izedSecretKeyRing (m2) of the class KeyRepository, an explicit null check was removed
by using monadic methods. Furthermore, by using the bind operation and convenience
methods of the monadic structures, a single sequential execution was generated, which is
returned directly. Even though additional convenience methods are used, an improvement
for both metrics could be achieved.

The impact on the method RevokeOperation.execute (m25) is similar. Here, too, a
try-catch block was removed and a single chained term was created, using methods from
the monadic structure (in this case flatMap, toTry and getOrElse), and returned directly.

Also, the entire bodies of the methods SshAuthenticationService.getX509PublicKey (m43)
and RequestKeyPermissionPresenter.setRequestedMasterKeyId (m34) were converted to
a single sequential version and a try-catch block was resolved as well. However, this
was only possible because all thrown exceptions were allowed to be wrapped into a Try
object.

The method DecryptFragment.loadSignerKeyData (m67) is classified as a sink method.
However, the usage of rewritten methods takes place in a lambda expression. In this
lambda expression, an explicit null check was resolved and two monadic methods were
concatenated using the flatMap method. Also, like above, the whole sequential execution
is now directly returned.

In the last (sink) method of this cluster, a try-catch block was resolved and the fold
method was used to receive a value depending on the state of the monad. The result of
the convenience method call is now directly returned.

For most of the methods in this cluster, the Cyclomatic Complexity only decreased by 1.
However, a decrease of 1 implies that an entire independent path could be removed (see
Section 4.2.2).

Table 6.3: Cluster 3

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m1 2 1 -1 9.00 7.50 −1.50 Intermediate
m2 4 2 -2 15.00 11.25 −3.75 Intermediate
m25 6 5 -1 39.60 37.54 −2.06 Sink
m34 3 2 -1 14.00 13.00 −1.00 Intermediate
m43 2 1 -1 12.57 10.29 −2.29 Intermediate
m56 4 3 -1 6.05 5.50 −0.55 Sink
m67 5 4 -1 24.43 21.71 −2.71 Sink
Avg 3.71 2.57 −1.14 17.24 15.26 −1.98

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Detailed Analysis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Avg

m1

m2

m25

m43

m34

m67

m56

Cyclomatic Complexity

M
et
h
od

Id

CC Before
CC After

(a) Cyclomatic Complexity difference visualization

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5

Avg

m1

m2

m25

m43

m34

m67

m56

Halstead Difficulty

M
et
h
od

Id

HD Before
HD After

(b) Halstead Difficulty difference visualization

Figure 6.2: Cluster 3 visualization

6.2.4 Cluster 4 (⇑ / =)

In exactly one method (BaseOperation.getCachedPassphrase - m20), an improvement
of the Cyclomatic Complexity was achieved whereby the Halstead Difficulty stayed
unchanged. The improvement of the Cyclomatic Complexity can be attributed to the
use of the monadic structures. Since this method has been classified as an intermediate
method and several exit points exist, all exit points must be treated accordingly. This
treatment has balanced the complexity result of the Halstead Difficulty. Although the
result of this cluster consists of only one entry, this cluster is visualized in Figure 6.3.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results

0 1 2 3

m20

Cyclomatic Complexity

M
et

h
o
d

Id

CC Before
CC After

Figure 6.3: Cluster 4 visualization

6.2.5 Cluster 5 (⇓ / =)

There exist no cases where an increasing (worse) Cyclomatic Complexity left the Halstead
Difficulty unchanged. This behavior can be attributed to the fact that an increasing
Cyclomatic Complexity implies, that additional paths were added to the code. Additional
paths introduce additional operators and/or operands to the method, hence the Halstead
Difficulty changes as well.

6.2.6 Cluster 6 (= / ⇑)

For exactly one method, the Cyclomatic Complexity remained unchanged, while the Hal-
stead Difficulty improved. This result of the ViewKeyAdvShareFragment.onViewCreated
(m80) method is due to a change from an explicit null check (e.g. from == null) to the
method call isEmpty(). In addition, the get method is called once to extract the value
from the monad context. The single result is visualized in Figure 6.4.

0 2 4 6 8 10 12 14 16

m80

Halstead Difficulty

M
et

h
o
d

Id

HD Before
HD After

Figure 6.4: Cluster 6 visualization

6.2.7 Cluster 7 (= / ⇓)

With 54 of 88 methods (61, 36%), cluster 7 is the largest of all. The methods in this cluster
show an unchanged Cyclomatic Complexity and an increased Halstead Difficulty. Overall,
the Halstead Difficulty of this cluster changed from 25, 80 to 27, 97 (+8, 41%). Due to
a large number of methods, the behavior of each individual method is not explained in
detail. For most methods, however, the pattern described in the following applies.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Detailed Analysis

There are reasons why no sequential executions or lambda expression usages were possible.
For example, the usage of non-final and non-effectively final variables, the usage of the
continue keyword or the unavailability of other terms for sequential execution. In these
cases, monadic structures are solely checked for success or failure. If the calculation is
successful, the wrapped value is unwrapped and used as before. In the event of an error,
the associated error code is executed.

Consider the code examples of an ordinary try-catch block (see Listing 6.1) and the
corresponding monadic version (see Listing 6.2). When calculating the Cyclomatic
Complexity and Halstead Difficulty for both methods, it can be seen that the Cyclomatic
Complexity does not change from the value 2, but the Halstead Difficulty doubles from 4 to
8. Creating the same example with an explicit null check and change the code to use the
monadic structure Option, the Halstead Difficulty changes from 4 to 6. In both examples,
the Cyclomatic Complexity does not change while the Halstead Difficulty increases. Those
code examples illustrate the underlying reason for the increasing Halstead Difficulty in
most of the methods in this cluster.

However, six rewritten methods of the class KeyRepository do not match this pattern.
Three of them are source methods, where the increase of the Halstead Difficulty can be
attributed to the lifting of values into the monadic types. In the other three methods, a
sequential execution was created and also returned directly. However, the reason why no
improvement of any of the metrics could be achieved is that no explicit null check or
try-catch block was resolved. The same behavior also applies to methods SshAuthentica-
tionService.getDescription (m46) and PassphraseCacheService.getCachedPassphraseImpl
(m47).

Listing 6.1: Ordinary try-catch example

void ordinaryTryCatch () {
try {

int i = getValue () ;
System . out . p r i n t l n (" Value : ␣ " + i) ;

} catch (Exception e) {
e . pr intStackTrace () ;

}
}

Listing 6.2: Monadic try-catch example

void monadicTryCatch () {
Try<Integer> i = getValueMonadic () ;
i f (i . i s Su c c e s s ()) {

System . out . p r i n t l n (" Value : ␣ " + i . get ()) ;
} else {

i . getCause () . pr intStackTrace () ;
}

}

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results

The results of this cluster are presented in Table 6.4 and visualized in Figure 6.5.

Table 6.4: Cluster 7

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m3 1 1 0 4.00 4.67 0.67 Source
m4 1 1 0 2.50 3.00 0.50 Source
m8 1 1 0 4.00 5.00 1.00 Intermediate
m9 1 1 0 3.50 4.00 0.50 Intermediate
m10 4 4 0 13.64 14.32 0.68 Intermediate
m11 2 2 0 6.00 6.50 0.50 Source
m15 21 21 0 66.17 74.12 7.95 Sink
m16 19 19 0 63.48 66.45 2.97 Sink
m17 5 5 0 30.81 36.00 5.19 Sink
m22 7 7 0 29.81 31.56 1.74 Sink
m23 15 15 0 57.04 60.48 3.44 Sink
m24 8 8 0 36.88 37.41 0.53 Sink
m26 6 6 0 26.63 28.29 1.66 Sink
m29 5 5 0 19.46 24.92 5.46 Sink
m30 5 5 0 19.46 24.92 5.46 Sink
m32 6 6 0 23.68 25.41 1.74 Sink
m33 3 3 0 7.50 8.40 0.90 Sink
m35 6 6 0 13.81 17.00 3.19 Intermediate
m36 13 13 0 62.76 65.98 3.22 Sink
m38 10 10 0 36.09 39.94 3.84 Sink
m39 5 5 0 30.47 31.00 0.53 Sink
m41 3 3 0 11.79 14.67 2.88 Sink
m44 2 2 0 6.29 6.86 0.57 Intermediate
m46 1 1 0 6.00 7.50 1.50 Intermediate
m47 11 11 0 17.00 18.00 1.00 Intermediate
m48 18 18 0 67.85 70.83 2.98 Sink
m49 26 26 0 85.61 91.23 5.62 Sink
m51 3 3 0 8.00 9.17 1.17 Sink
m52 3 3 0 8.00 9.17 1.17 Sink
m53 3 3 0 9.75 11.00 1.25 Sink
m54 3 3 0 8.00 9.17 1.17 Sink
m57 22 22 0 98.22 101.14 2.92 Sink
m59 2 2 0 4.00 5.25 1.25 Sink
m60 2 2 0 7.70 14.00 6.30 Sink
m61 8 8 0 24.48 28.00 3.52 Sink
m63 2 2 0 5.63 6.67 1.04 Sink
m64 6 6 0 24.04 24.92 0.88 Sink
m65 5 5 0 32.80 34.55 1.75 Sink

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Detailed Analysis

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m66 2 2 0 8.57 9.33 0.76 Sink
m68 9 9 0 32.03 34.17 2.14 Sink
m69 8 8 0 27.11 28.30 1.20 Sink
m70 5 5 0 31.33 32.37 1.04 Sink
m71 6 6 0 20.25 23.20 2.95 Sink
m72 20 20 0 99.62 107.05 7.42 Sink
m74 2 2 0 9.44 10.13 0.68 Sink
m75 17 17 0 79.83 83.68 3.85 Sink
m77 3 3 0 10.80 12.10 1.30 Sink
m78 3 3 0 10.80 12.10 1.30 Sink
m79 7 7 0 29.00 29.17 0.17 Sink
m81 2 2 0 7.70 9.00 1.30 Sink
m82 1 1 0 1.00 1.50 0.50 Sink
m83 2 2 0 4.00 5.25 1.25 Sink
m86 3 3 0 20.93 22.40 1.48 Sink
m88 5 5 0 18.00 19.00 1.00 Sink
Avg 6.65 6.65 0.00 25.80 27.97 2.17

6.2.8 Cluster 8 (⇑ / ⇓)

All five methods with an improved Cyclomatic Complexity and a deterioration of the
Halstead Difficulty have a resolution of a try-catch block in common. However, no
sequential executions with other monadic methods were possible. Furthermore, other
convenience methods of the monadic structures were used in all five methods (onSuccess,
onFailure, fold, recover, flatMapTry). The increase of the Halstead Difficulty can be
explained by the use of additional convenience methods (e.g. increase in count of operators
and operands). The average Cyclomatic Complexity of this cluster changed from 4, 4 to 3
(−31, 82%) and Halstead Difficulty from 12, 81 to 15, 71 (+22, 64%). Table 6.5 shows a
cutout of all of the results for this cluster, while Figure 6.6 displays the results of this
cluster in a bar plot.

Table 6.5: Cluster 8

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m14 4 3 -1 12.57 13.33 0.76 Sink
m27 5 4 -1 20.30 25.38 5.07 Intermediate
m42 6 3 -3 9.15 12.31 3.15 Sink
m84 2 1 -1 4.00 5.50 1.50 Intermediate
m87 5 4 -1 18.00 22.05 4.05 Sink
Avg 4.40 3.00 −1.40 12.81 15.71 2.90

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results

6.2.9 Cluster 9 (⇓ / ⇑)

Cluster 5 (see Section 6.2.5) already showed that there exist no cases where the Halstead
Difficulty stayed unchanged with an increased Cyclomatic Complexity. Cluster 9 shows
that an increase of the Cyclomatic Complexity with a decrease of the Halstead Difficulty
was not found in any method. This could also be attributed to the fact that an increasing
of the Cyclomatic Complexity implies that additional paths were added to the source
code, which further implies that additional keywords, operators and/or operands were
added as well. Adding additional operands or operators negatively impacts the Halstead
Difficulty (see Section 4.2.3).

6.3 Discussion

This chapter dealt intensively with the results of this thesis. First, the results were
described on a general level (see Section 6.1). It was shown that the rewriting of parts of
the source code led to a change of 88 methods. Overall, the Cyclomatic Complexity was
improved by 0, 54%. The Halstead Difficulty has deteriorated by 8, 25% and, in addition,
the NCLOC metric has increased by 112 NCLOC.

In the second part of this chapter, the results were divided into logical groups and
analyzed in detail (see Section 6.2). Certain patterns could be derived from these groups.
For example, cluster 3 showed that it is possible to improve the complexity for both
metrics, the Cyclomatic Complexity and the Halstead Difficulty, by resolving explicit null
checks and try-catch blocks and by creating and directly returning sequential executions.

On the other hand, cluster 7 showed that the same behavior, without resolving an explicit
null check or try-catch block, can lead to a constant Cyclomatic Complexity and a worse
(higher) Halstead Difficulty. Also, cluster 1 consists of one method where the same
constellation resulted in no change in neither of the two metrics.

From cluster 2, it could be derived that if explicit null checks cannot be resolved and a
monadic style also cannot be used, both metrics (Cyclomatic Complexity and Halstead
Difficulty) deteriorate. Furthermore, the results showed that a deterioration of the
Cyclomatic Complexity has always resulted in a worsening of the Halstead Difficulty.

Last but not least, it can be deduced that an improved Halstead Difficulty led in most
cases (all but one) to an improvement of the Cyclomatic Complexity.

Now, to officially answer the research question by answering the subquestions:

Can the software complexity be reduced by using monadic query and com-
mand methods? Yes, as shown in this chapter, it is possible to reduce the software
complexity under certain circumstances. If these circumstances are not met, the com-
plexity may remain the same or even deteriorate.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Discussion

How do the three different results of the complexity measurement relate to
each other? Based on the detailed analysis of this study (see Section 6.2), there is no
general answer to this question. There exist cases where both metrics, the Cyclomatic
Complexity and the Halstead Metric, positively or negatively correlate. However, also
cases exist where one metric showed an improvement while the other metric showed
a deterioration or one metric remained unchanged while the other metric changed. In
the case where both metrics have improved, on average, the Cyclomatic Complexity
has decreased (improved) by 1.14 (30, 73%) and the Halstead Difficulty has decreased
(improved) by 1.98 (11, 48%). The result of the NCLOC metric was negligibly small and
was therefore excluded from the analysis.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Results

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

Avg

m3

m8

m9

m4

m10

m11

m15

m16

m17

m22

m23

m24

m26

m29

m30

m32

m38

m39

m36

m41

m46

m44

m35

m33

m47

m48

m49

m63

m64

m65

m68

m66

m70

m69

m51

m54

m52

m53

m57

m59

m71

m72

m74

m75

m61

m60

m79

m77

m78

m81

m82

m83

m86

m88

Halstead Difficulty

M
et

h
o
d

Id
HD Before
HD After

Figure 6.5: Cluster 7 visualization

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Discussion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Avg

m14

m27

m42

m84

m87

Cyclomatic Complexity

M
et
h
od

Id

CC Before
CC After

(a) Cyclomatic Complexity difference visualization

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5 21 22.5 24 25.5 27

Avg

m14

m27

m42

m84

m87

Halstead Difficulty

M
et
h
od

Id

HD Before
HD After

(b) Halstead Difficulty difference visualization

Figure 6.6: Cluster 8 visualization

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Conclusion & Future Work

This thesis presented the impact of a monadic programming style in the data access
layer on the software complexity of an Android application software, programmed in
the mainstream object-oriented programming language Java. Before the results were
presented, a detailed overview of the theoretical knowledge required was given. This
overview presented the two programming paradigms object-oriented and functional
programming in detail (see Chapter 2), explained the theoretical knowledge about
monads by using practical examples (see Chapter 3) and also showed different methods
for measuring software complexity (see Chapter 4).

Following the theoretical part of this thesis, the evaluation-related details were addressed
in Chapter 5. This chapter covered information on the evaluation project and the tools
used to support the practical part. Moreover, an extensive set of rules for the rewriting
process was presented in order to make the rewriting process reproducible and transparent.
After parts of the source code had been rewritten in compliance with the rules presented
in Chapter 5, the results obtained were summarized and analyzed in Chapter 6.

The results showed that it is indeed possible to improve the complexity of the source code.
Seven out of 88 rewritten methods showed an improved complexity using the complexity
metrics Cyclomatic Complexity and Halstead Difficulty. However, ten methods show the
exact opposite, namely a deterioration of both metrics. The result of the NCLOC metric
was negligibly small.

To summarize the conducted work, the evaluation of the selected Android application
software project in compliance with the established rules showed that it is possible to
significantly improve the complexity under certain circumstances. However, if these
circumstances do not apply, the monadic programming style can also harm the software
complexity.

For future research, it would be interesting to repeat this study for further projects to
determine whether the results can be used to infer the general from the specific.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion & Future Work

In addition, based on the developed set of rules, it would be desirable to develop a
computer program for predicting expected complexity changes for a potential rewrite
of the data access layer to a monadic style. A prediction program can help project
stakeholders with the decision on whether it is worth to rewrite a large program to a
monadic version or not.

Furthermore, it would be interesting to extend the initial rewriting process to additional
parts of the source code and then compare the gained results with the results of this
work.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Additional Results

Due to their length and in order not to disturb the flow of reading, the following tables
have been moved to the appendix. Table A.1 contains and presents the evaluation results
of all changed methods and in Table A.2, the mapping of the method IDs used to the
corresponding method names is shown.

Table A.1: All rewritten methods

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m1 2 1 -1 9.00 7.50 −1.50 Intermediate
m2 4 2 -2 15.00 11.25 −3.75 Intermediate
m3 1 1 0 4.00 4.67 0.67 Source
m4 1 1 0 2.50 3.00 0.50 Source
m5 1 1 0 3.00 3.00 0.00 Source
m6 1 1 0 5.33 5.33 0.00 Source
m7 1 1 0 6.67 6.67 0.00 Source
m8 1 1 0 4.00 5.00 1.00 Intermediate
m9 1 1 0 3.50 4.00 0.50 Intermediate
m10 4 4 0 13.64 14.32 0.68 Intermediate
m11 2 2 0 6.00 6.50 0.50 Source
m12 1 1 0 4.67 4.67 0.00 Source
m13 1 1 0 4.67 4.67 0.00 Source
m14 4 3 -1 12.57 13.33 0.76 Sink
m15 21 21 0 66.17 74.12 7.95 Sink
m16 19 19 0 63.48 66.45 2.97 Sink
m17 5 5 0 30.81 36.00 5.19 Sink
m18 3 4 1 14.25 22.00 7.75 Sink
m19 4 5 1 16.81 24.77 7.96 Sink

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Additional Results

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m20 3 2 -1 11.00 11.00 0.00 Intermediate
m21 27 28 1 95.78 103.71 7.94 Sink
m22 7 7 0 29.81 31.56 1.74 Sink
m23 15 15 0 57.04 60.48 3.44 Sink
m24 8 8 0 36.88 37.41 0.53 Sink
m25 6 5 -1 39.60 37.54 −2.06 Sink
m26 6 6 0 26.63 28.29 1.66 Sink
m27 5 4 -1 20.30 25.38 5.07 Intermediate
m28 40 41 1 157.01 169.72 12.71 Sink
m29 5 5 0 19.46 24.92 5.46 Sink
m30 5 5 0 19.46 24.92 5.46 Sink
m31 84 85 1 227.74 234.64 6.90 Sink
m32 6 6 0 23.68 25.41 1.74 Sink
m33 3 3 0 7.50 8.40 0.90 Sink
m34 3 2 -1 14.00 13.00 −1.00 Intermediate
m35 6 6 0 13.81 17.00 3.19 Intermediate
m36 13 13 0 62.76 65.98 3.22 Sink
m37 16 17 1 57.00 65.14 8.14 Sink
m38 10 10 0 36.09 39.94 3.84 Sink
m39 5 5 0 30.47 31.00 0.53 Sink
m40 16 18 2 56.65 63.49 6.84 Sink
m41 3 3 0 11.79 14.67 2.88 Sink
m42 6 3 -3 9.15 12.31 3.15 Sink
m43 2 1 -1 12.57 10.29 −2.29 Intermediate
m44 2 2 0 6.29 6.86 0.57 Intermediate
m45 1 1 0 7.50 7.50 0.00 Intermediate
m46 1 1 0 6.00 7.50 1.50 Intermediate
m47 11 11 0 17.00 18.00 1.00 Intermediate
m48 18 18 0 67.85 70.83 2.98 Sink
m49 26 26 0 85.61 91.23 5.62 Sink
m50 7 8 1 29.61 37.58 7.97 Sink
m51 3 3 0 8.00 9.17 1.17 Sink
m52 3 3 0 8.00 9.17 1.17 Sink
m53 3 3 0 9.75 11.00 1.25 Sink
m54 3 3 0 8.00 9.17 1.17 Sink
m55 3 3 0 8.36 8.36 0.00 Sink
m56 4 3 -1 6.05 5.50 −0.55 Sink
m57 22 22 0 98.22 101.14 2.92 Sink
m58 1 1 0 25.50 25.50 0.00 Sink
m59 2 2 0 4.00 5.25 1.25 Sink
m60 2 2 0 7.70 14.00 6.30 Sink

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Method
Id

CC
Before

CC
After

CC
Diff

HD
Before

HD
After

HD
Diff

Type

m61 8 8 0 24.48 28.00 3.52 Sink
m62 14 14 0 43.75 43.75 0.00 Sink
m63 2 2 0 5.63 6.67 1.04 Sink
m64 6 6 0 24.04 24.92 0.88 Sink
m65 5 5 0 32.80 34.55 1.75 Sink
m66 2 2 0 8.57 9.33 0.76 Sink
m67 5 4 -1 24.43 21.71 −2.71 Sink
m68 9 9 0 32.03 34.17 2.14 Sink
m69 8 8 0 27.11 28.30 1.20 Sink
m70 5 5 0 31.33 32.37 1.04 Sink
m71 6 6 0 20.25 23.20 2.95 Sink
m72 20 20 0 99.62 107.05 7.42 Sink
m73 10 12 2 39.75 49.78 10.03 Sink
m74 2 2 0 9.44 10.13 0.68 Sink
m75 17 17 0 79.83 83.68 3.85 Sink
m76 3 3 0 7.00 7.00 0.00 Sink
m77 3 3 0 10.80 12.10 1.30 Sink
m78 3 3 0 10.80 12.10 1.30 Sink
m79 7 7 0 29.00 29.17 0.17 Sink
m80 2 2 0 14.64 14.18 −0.45 Sink
m81 2 2 0 7.70 9.00 1.30 Sink
m82 1 1 0 1.00 1.50 0.50 Sink
m83 2 2 0 4.00 5.25 1.25 Sink
m84 2 1 -1 4.00 5.50 1.50 Intermediate
m85 2 3 1 8.00 14.17 6.17 Intermediate
m86 3 3 0 20.93 22.40 1.48 Sink
m87 5 4 -1 18.00 22.05 4.05 Sink
m88 5 5 0 18.00 19.00 1.00 Sink
Avg 7.36 7.32 −0.04 27.53 29.80 2.27

Table A.2: Method Id - Name Mapping

Method
Id

Method Name

m1 daos.KeyRepository.getCanonicalizedPublicKeyRing
m2 daos.KeyRepository.getCanonicalizedSecretKeyRing
m3 daos.KeyRepository.getMasterKeyIdBySubkeyId
m4 daos.KeyRepository.getUnifiedKeyInfo
m5 daos.KeyRepository.getSecretKeyType
m6 daos.KeyRepository.getFingerprintByKeyId
m7 daos.KeyRepository.getKeyRingAsArmoredData

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Additional Results

Method
Id

Method Name

m8 daos.KeyRepository.getPublicKeyRingAsArmoredString
m9 daos.KeyRepository.getSecretKeyRingAsArmoredData
m10 daos.KeyRepository.loadPublicKeyRingData
m11 daos.KeyRepository.loadSecretKeyRingData
m12 daos.KeyRepository.getSecretSignId
m13 daos.KeyRepository.getEffectiveAuthenticationKeyId
m14 daos.KeyWritableRepository.getTrustedMasterKeys
m15 daos.KeyWritableRepository.savePublicKeyRing
m16 daos.KeyWritableRepository.saveSecretKeyRing
m17 daos.KeyWritableRepository.updateTrustDb
m18 operations.BackupOperation.writePublicKeyToStream
m19 operations.BackupOperation.writeSecretKeyToStream
m20 operations.BaseOperation.getCachedPassphrase
m21 operations.CertifyOperation.execute
m22 operations.ChangeUnlockOperation.execute
m23 operations.EditKeyOperation.execute
m24 operations.PromoteKeyOperation.execute
m25 operations.RevokeOperation.execute
m26 operations.UploadOperation.execute
m27 operations.UploadOperation.getPublicKeyringFromInput
m28 pgp.PgpDecryptVerifyOperation.handleEncryptedPacket
m29 pgp.PgpSignatureChecker.findAvailableSignature
m30 pgp.PgpSignatureChecker.findAvailableSignature
m31 pgp.PgpSignEncryptOperation.executeInternal
m32 pgp.PgpSignEncryptOperation.processEncryptionMasterKeyId
m33 remote.ui.RequestKeyPermissionPresenter.setupFromIntentData
m34 remote.ui.RequestKeyPermissionPresenter.setRequestedMasterKeyId
m35 remote.ui.RequestKeyPermissionPresenter.findSecretKeyRingOrPublicFallback
m36 remote.OpenPgpService.signImpl
m37 remote.OpenPgpService.encryptAndSignImpl
m38 remote.OpenPgpService.getKeyImpl
m39 remote.OpenPgpService.getSignKeyIdImpl
m40 remote.SshAuthenticationService.authenticate
m41 remote.SshAuthenticationService.getAuthenticationKey
m42 remote.SshAuthenticationService.getAuthenticationPublicKey
m43 remote.SshAuthenticationService.getX509PublicKey
m44 remote.SshAuthenticationService.getSSHPublicKey
m45 remote.SshAuthenticationService.getPublicKey
m46 remote.SshAuthenticationService.getDescription
m47 service.PassphraseCacheService.getCachedPassphraseImpl

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Method
Id

Method Name

m48 service.PassphraseCacheService.onStartCommand
m49 ssh.AuthenticationOperation.executeInternal
m50 ui.adapter.ImportKeysAdapter.setData
m51 ui.keyview.KeyFragmentViewModel.getIdentityInfo
m52 ui.keyview.KeyFragmentViewModel.getSubkeyStatus
m53 ui.keyview.KeyFragmentViewModel.getSystemContactInfo
m54 ui.keyview.KeyFragmentViewModel.getKeyserverStatus
m55 ui.keyview.UnifiedKeyInfoViewModel.getUnifiedKeyInfoLiveData
m56 ui.keyview.ViewKeyActivity.keyHasPassphrase
m57 ui.keyview.ViewKeyActivity.onLoadUnifiedKeyInfo
m58 ui.keyview.ViewKeyFragment.onActivityCreated
m59 ui.keyview.ViewKeyFragment.onLoadUnifiedKeyInfo
m60 ui.transfer.presenter.TransferPresenter.prepareAndSendKey
m61 ui.token.PublicKeyRetriever.retrieveLocal
m62 ui.BackupRestoreFragment.backupAllKeys
m63 ui.CertifyFingerprintFragment.onLoadUnifiedKeyInfo
m64 ui.CertifyKeyFragment.onActivityCreated
m65 ui.CreateKeyFinalFragment.moveToCard
m66 ui.DecryptFragment.showKey
m67 ui.DecryptFragment.loadSignerKeyData
m68 ui.DecryptFragment.onLoadSignerKeyData
m69 ui.DeleteKeyDialogActivity.onCreate
m70 ui.DeleteKeyDialogActivity.DeleteKeyDialogFragment.onCreateDialog
m71 ui.PassphraseDialogActivity.onCreate
m72 ui.PassphraseDialogActivity.PassphraseDialogFragment.onCreateDialog

m73
ui.PassphraseDialogActivity.PassphraseDialogFragment.
checkPassphraseAndFinishCaching

m74 ui.QrCodeViewActivity.onLoadUnifiedKeyInfo
m75 ui.SecurityTokenOperationActivity.doSecurityTokenInBackground
m76 ui.ViewKeyAdvActivity.ViewKeyAdvViewModel.getUnifiedKeyInfoLiveData
m77 ui.ViewKeyAdvActivity.ViewKeyAdvViewModel.getSubkeyLiveData
m78 ui.ViewKeyAdvActivity.ViewKeyAdvViewModel.getUserIdLiveData
m79 ui.ViewKeyAdvActivity.onLoadUnifiedKeyInfo
m80 ui.ViewKeyAdvShareFragment.onViewCreated
m81 ui.ViewKeyAdvShareFragment.onLoadUnifiedKeyInfo
m82 ui.ViewKeyAdvSubkeysFragment.onLoadUnifiedKeyId
m83 ui.ViewKeyAdvUserIdsFragment.onLoadUnifiedKeyInfo
m84 util.ShareKeyHelper.getKeyContent
m85 util.ShareKeyHelper.getSshKeyContent
m86 util.ShareKeyHelper.shareKeyIntent

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Additional Results

Method
Id

Method Name

m87 util.ShareKeyHelper.shareKey
m88 util.ShareKeyHelper.shareSshKey

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

4.1 Control-flow graphs . 39

6.1 Cluster 2 visualization . 63
6.2 Cluster 3 visualization . 65
6.3 Cluster 4 visualization . 66
6.4 Cluster 6 visualization . 66
6.5 Cluster 7 visualization . 72
6.6 Cluster 8 visualization . 73

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

5.1 Code coverage for changed classes . 56

6.1 Clustering of rewritten methods . 61
6.2 Cluster 2 . 62
6.3 Cluster 3 . 64
6.4 Cluster 7 . 68
6.5 Cluster 8 . 69

A.1 All rewritten methods . 77
A.2 Method Id - Name Mapping . 79

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Code

2.1 Imperative countOcc . 8
2.2 Declarative countOcc . 8
2.3 A class written in Java . 10
2.4 Instantiation of the Name class . 11
2.5 Subtype of the Name class . 12
2.6 Dynamic Dispatch . 13
2.7 α-conversion example . 15
2.8 β-conversion example . 15
2.9 η-conversion example . 16
2.10 Recursion example . 17
3.1 Nullary type constructor . 20
3.2 Left identity law example . 21
3.3 Right identity law example . 21
3.4 Associativity law example . 21
3.5 Identity monad implementation . 22
3.6 Reader monad declaration using transformer 23
3.7 Identity monad use case . 23
3.8 Exception monad implementation . 24
3.9 Safe head function using the Exception monad 25
3.10 Parse JSON use case . 25
3.11 Parse JSON use case with do notation 25
3.12 Maybe monad implementation . 26
3.13 Safe head function using the Maybe monad 27
3.14 Parse JSON use case with do notation 27
3.15 List monad implementation . 28
3.16 List monad usage . 29
3.17 [a] monad usage . 29
3.18 State monad implementation . 30
3.19 State monad example . 31
3.20 Reader monad implementation . 32
4.1 Example for the NCLOC metric . 36
4.2 max implementation 1 . 38
4.3 max implementation 2 . 38

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1 Source method type 1 . 51
5.2 Source method type 2 . 51
5.3 Source method type 3 . 51
6.1 Ordinary try-catch example . 67
6.2 Monadic try-catch example . 67

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Abr10] A. Abran. Halstead’s Metrics: Analysis of Their Designs, pages 145–159. 2010.

[AC94] Fernando Brito Abreu and Rogério Carapuça. Object-oriented software engi-
neering: Measuring and controlling the development process. In Proceedings
of the 4th international conference on software quality, volume 186, pages 1–8,
1994.

[AYK19] Mauricio Aniche, Joseph Yoder, and Fabio Kon. Current challenges in practical
object-oriented software design. Proceedings - 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results,
ICSE-NIER 2019, pages 113–116, 2019.

[BM14] S Bhatia and J Malhotra. A survey on impact of lines of code on software
complexity. In 2014 International Conference on Advances in Engineering
Technology Research (ICAETR - 2014), pages 1–4, August 2014.

[CDS86] S D Conte, H E Dunsmore, and V Y Shen. Software Engineering Metrics and
Models. Benjamin-Cummings Publishing Co., Inc., USA, 1986.

[CK94] S R Chidamber and C F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994.

[CMSR17] Sharon Christa, V Madhusudhan, V Suma, and Jawahar J Rao. Software
Maintenance: From the Perspective of Effort and Cost Requirement. In
Suresh Chandra Satapathy, Vikrant Bhateja, and Amit Joshi, editors, Proceed-
ings of the International Conference on Data Engineering and Communication
Technology, pages 759–768, Singapore, 2017. Springer Singapore.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys (CSUR), 17(4):471–523, 1985.

[DW20] Daniel Dietrich and Robert Winkler. Vavr user guide. https://www.vavr.
io/vavr-docs/, May 2020. (Accessed on 2020/07/21).

[GM10] Maurizio Gabbrielli and Simone Martini. Programming Languages: Principles
and Paradigms. Springer Publishing Company, Incorporated, 1st edition, 2010.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.vavr.io/vavr-docs/
https://www.vavr.io/vavr-docs/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[GP01] Andy Gill and Ross Paterson. Control.monad.trans.reader. https:

//hackage.haskell.org/package/transformers-0.5.6.2/docs/

Control-Monad-Trans-Reader.html, 2001. (Accessed on 2020/04/25).

[Hal77] Maurice H Halstead. Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc., USA, 1977.

[Has20] HaskellWiki contributors. Exception - haskellwiki. https://wiki.haskell.
org/Exception, January 2020. (Accessed on 2020/04/25).

[Hin09] K Hinsen. The Promises of Functional Programming. Computing in Science
Engineering, 11(4):86–90, July 2009.

[HMKD82] Harrison, Magel, Kluczny, and DeKock. Applying software complexity metrics
to program maintenance. Computer, 15(9):65–79, 1982.

[HPF99] Paul Hudak, John Peterson, and Joseph Fasel. A Gentle Introduction to Haskell
98. Functional Programming, 1999.

[Hud89] Paul Hudak. Conception, Evolution, and Application of Functional Program-
ming Languages. ACM Comput. Surv., 21(3):359–411, September 1989.

[Hug89] J. Hughes. Why functional programming matters. Computer Journal, 32(2):98–
107, 1989.

[IEE90] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE
Std 610.12-1990, pages 1–84, December 1990.

[IEE93] IEEE. IEEE Standard for Software Productivity Metrics. IEEE Std 1045-1992,
pages 0_1–, 1993.

[IEE98] IEEE. IEEE Standard for a Software Quality Metrics Methodology. IEEE Std
1061-1998, pages i–, December 1998.

[Jetnd] JetBrains. MetricsReloaded - Plugins | JetBrains. https://plugins.

jetbrains.com/plugin/93-metricsreloaded, n.d. (Accessed on
2020/08/07).

[Jon95] Mark P Jones. Functional Programming with Overloading and Higher-Order
Polymorphism. In Advanced Functional Programming, First International
Spring School on Advanced Functional Programming Techniques-Tutorial Text,
pages 97–136, Berlin, Heidelberg, 1995. Springer-Verlag.

[KF19] Shriram Krishnamurthi and Kathi Fisler. Programming Paradigms and Beyond.
The Cambridge Handbook of Computing Education Research, pages 377–413,
2019.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Reader.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Reader.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Reader.html
https://wiki.haskell.org/Exception
https://wiki.haskell.org/Exception
https://plugins.jetbrains.com/plugin/93-metricsreloaded
https://plugins.jetbrains.com/plugin/93-metricsreloaded

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[KY17] A. Khanfor and Y. Yang. An overview of practical impacts of functional
programming. In 2017 24th Asia-Pacific Software Engineering Conference
Workshops (APSECW), pages 50–54, 2017.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A Behavioral Notion of Subtyp-
ing. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(6):1811–1841, November 1994.

[McC76] T J McCabe. A Complexity Measure. IEEE Transactions on Software Engi-
neering, SE-2(4):308–320, December 1976.

[Mey88] B Meyer. Object-oriented software construction. Prentice-Hall international
series in computer science. Prentice-Hall, 1988.

[Nag19] Gergely Nagy. Comparing software complexity of monadic error handling and
using exceptions. 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics, MIPRO 2019 -
Proceedings, pages 1575–1580, 2019.

[Nar09] Ph Narbel. Functional programming at work in object-oriented programming.
Journal of Object Technology, 8(6):181–209, 2009.

[Nob09] James Noble. The Myths of Object-Orientation. In Sophia Drossopoulou,
editor, ECOOP 2009 – Object-Oriented Programming, pages 619–629, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[Orand] Oracle and/or its affiliates. Lambda expressions. https://docs.oracle.
com/javase/tutorial/java/javaOO/lambdaexpressions.html,
n.d. (Accessed on 2020/07/14).

[Pet18] Tomas Petricek. What we talk about when we talk about monads The Art ,
Science , and Engineering of Programming. The Art, Science, and Engineering
of Programming, 2(3):1–27, 2018.

[Pey07] Simon Peyton Jones. A History of Haskell: being lazy with class. In The Third
ACM SIGPLAN History of Programming Languages Conference (HOPL-III),
June 2007.

[Pre20] Oxford University Press. paradigm, n. https://www.oed.com/view/

Entry/137329, March 2020. (Accessed on 2020/04/01).

[PSG12] Victor Pankratius, Felix Schmidt, and Gilda Garreton. Combining functional
and imperative programming for multicore software: An empirical study eval-
uating Scala and Java. Proceedings - International Conference on Software
Engineering, pages 123–133, 2012.

[Ren82] Tim Rentsch. Object Oriented Programming. ACM SIGPLAN Notices, 17(9):51–
57, 1982.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://www.oed.com/view/Entry/137329
https://www.oed.com/view/Entry/137329

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Rot86] Gian-Carlo Rota. Toposes, triples and theories. Advances in Mathematics,
61(2):184, 1986.

[Schnd] Dr.-Ing. Dominik Schürmann. Openkeychain. https://www.

openkeychain.org/, n.d. (Accessed on 2020/07/21).

[SM17] Biswajit Saha and Debaprasad Mukherjee. Analysis of Applications of Ob-
ject Orientation to Software Engineering, Data Warehousing and Teaching
Methodologies. International Journal of Computer Sciences and Engineering,
5(9):244–248, 2017.

[Tan11] Antony Tang. Software designers, are you biased? In Proceedings of the
6th International Workshop on SHAring and Reusing Architectural Knowledge,
SHARK ’11, page 1–8, New York, NY, USA, 2011. Association for Computing
Machinery.

[TBMP18] Damian A. Tamburri, Marcello M. Bersani, Raffaela Mirandola, and Giorgio
Pea. Devops service observability by-design: Experimenting with model-view-
controller. In Kyriakos Kritikos, Pierluigi Plebani, and Flavio de Paoli, editors,
Service-Oriented and Cloud Computing, pages 49–64, Cham, 2018. Springer
International Publishing.

[The01a] The University of Glasgow. Data.either. https://hackage.haskell.org/
package/base-4.12.0.0/docs/Data-Either.html, 2001. (Accessed
on 2020/04/27).

[The01b] The University of Glasgow. Data.maybe. http://hackage.haskell.org/
package/base-4.12.0.0/docs/Data-Maybe.html, 2001. (Accessed on
2020/04/28).

[The01c] The University of Glasgow. Prelude. https://hackage.haskell.org/
package/base-4.12.0.0/docs/Prelude.html, 2001. (Accessed on
2020/05/01).

[The01d] The University of Glasgow. System.random. https://hackage.haskell.
org/package/random-1.1/docs/System-Random.html, 2001. (Ac-
cessed on 2020/05/02).

[The09] The University of Glasgow. Ghc.types. https://hackage.haskell.org/
package/ghc-prim-0.5.3/docs/src/GHC.Types.html, 2009. (Ac-
cessed on 2020/04/29).

[TMM18] Timothy A.V. Teatro, J. Mikael Eklund, and Ruth Milman. Maybe and Either
Monads in Plain C++ 17. Canadian Conference on Electrical and Computer
Engineering, 2018-May:1–4, 2018.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.openkeychain.org/
https://www.openkeychain.org/
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Maybe.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Maybe.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html
https://hackage.haskell.org/package/random-1.1/docs/System-Random.html
https://hackage.haskell.org/package/random-1.1/docs/System-Random.html
https://hackage.haskell.org/package/ghc-prim-0.5.3/docs/src/GHC.Types.html
https://hackage.haskell.org/package/ghc-prim-0.5.3/docs/src/GHC.Types.html

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[TSZ09] Honglei Tu, Wei Sun, and Yanan Zhang. The research on software metrics and
software complexity metrics. IFCSTA 2009 Proceedings - 2009 International
Forum on Computer Science-Technology and Applications, 1:131–136, 2009.

[Tur13] D A Turner. Some History of Functional Programming Languages. In Hans-
Wolfgang Loidl and Ricardo Peña, editors, Trends in Functional Programming,
pages 1–20, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Wad90] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP ’90, page 61–78, New
York, NY, USA, 1990. Association for Computing Machinery.

[Wad93] Philip Wadler. Monads for functional programming. In Manfred Broy, editor,
Program Design Calculi, pages 233–264, Berlin, Heidelberg, 1993. Springer
Berlin Heidelberg.

[Weg90] Peter Wegner. Concepts and paradigms of object-oriented programming. SIG-
PLAN OOPS Mess., 1(1):7–87, 1990.

[YC85] S S Yau and J S Collofello. Design Stability Measures for Software Maintenance.
IEEE Transactions on Software Engineering, SE-11(9):849–856, 1985.

[Zus91] Horst Zuse. Software Complexity. De Gruyter, Berlin, Boston, 1991.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Aim of the Work
	State of the Art
	Methodological Approach
	Structure of the Work

	Programming Paradigms
	Introduction
	Object-oriented Programming
	Functional Programming

	Monads
	Background
	Definition
	Types of Monads

	Software Complexity
	Introduction
	Software Complexity Metrics
	Summary

	Evaluation
	Evaluation Project
	Relevant Tools
	Identifying Query and Command Methods
	Complexity Measurement
	Rewrite Rules
	Rewrite Approach
	Verification

	Results
	General Results
	Detailed Analysis
	Discussion

	Conclusion & Future Work
	Additional Results
	List of Figures
	List of Tables
	List of Code
	Bibliography

