Determination of the derivative of the tangent stiffness matrix with respect to the load parameter

Xin Jia^{1,*} and Herbert A. Mang¹

In order to solve the so-called consistently linearized eigenproblem in the frame of the Finite Element Method (FEM), the derivative of the tangent stiffness matrix $\tilde{\mathbf{K}}_T$ with respect to the load parameter λ needs to be calculated. In this work, three schemes for calculation of $\dot{\mathbf{K}}_T$ are presented. The first scheme is based on an analytical expression for the first derivative of the element tangent stiffness matrix $\tilde{\mathbf{K}}_T^e$ with respect to λ for the special case of a co-rotational beam element. The second one is a finite difference approach for computation of $\dot{\mathbf{K}}_T := d\tilde{\mathbf{K}}_T/d\lambda$. The third one is also a finite difference approach. However, it is based on a directional derivative of $\ddot{\mathbf{K}}_T$. An elastic beam, subjected to a compressive axial force and a small transverse uniform load, is chosen as a numerical example. The effectiveness and the accuracy of the three schemes are compared. The third scheme is found to be not only *very practical* but also *more effective* than the two competing schemes.

Copyright line will be provided by the publisher

1 Introduction

The so-called consistently linearized eigenproblem (CLE), originally proposed in [1], plays a pivotal role in a new concept of categorization of buckling of structures by means of spherical geometry [2]. Its mathematical formulation reads as

$$[\tilde{\mathbf{K}}_T + (\lambda_1^* - \lambda)\dot{\tilde{\mathbf{K}}}_T] \cdot \mathbf{v}_1^* = \mathbf{0}$$
(1)

where $\tilde{\mathbf{K}}_T$ denotes the tangent stiffness matrix of a structure, in the frame of the Finite Element Method (FEM), evaluated along the primary path;

$$\dot{\tilde{\mathbf{K}}}_T := \frac{d\tilde{\mathbf{K}}_T}{d\lambda},\tag{2}$$

where λ stands for a dimensionless load factor, and $(\lambda_1^* - \lambda, \mathbf{v}_1^*)$ is the first eigenpair. To solve the CLE, $\dot{\mathbf{K}}_T$ needs to be calculated. The effectiveness of the calculation depends on the analysis method. In this work, three schemes for calculation of $\dot{\mathbf{K}}_T$ are presented. An elastic beam, subjected to an axial force and a small transverse uniform load, serves as the numerical basis for a comparison of the potential of these schemes.

2 Analytical expression for \hat{K}_T , considering co-rotational beam elements

Concerning the first scheme, an analytical expression for the first derivative of the element tangent stiffness matrix $\tilde{\mathbf{K}}_T^e$ with respect to λ , denoted as $\dot{\tilde{\mathbf{K}}}_T^e$, is derived for the special case of a co-rotational beam element [3]. It is obtained as

$$\dot{\tilde{\mathbf{K}}}_{T}^{e} = \dot{\mathbf{X}}^{T} \bar{\mathbf{K}}_{T}^{e} \mathbf{X} + \mathbf{X}^{T} \dot{\tilde{\mathbf{K}}}_{T}^{e} \mathbf{X} + \mathbf{X}^{T} \bar{\mathbf{K}}_{T}^{e} \dot{\mathbf{X}} + \frac{(\dot{\mathbf{z}} \mathbf{z}^{T} + \mathbf{z} \dot{\mathbf{z}}^{T}) \hat{l} - \mathbf{z} \mathbf{z}^{T} \dot{\hat{l}}}{\hat{l}^{2}} \bar{N} + \frac{\mathbf{z} \mathbf{z}^{T}}{\hat{l}} \dot{\bar{N}}$$

$$+ \frac{(\dot{\mathbf{r}} \mathbf{z}^{T} + \dot{\mathbf{r}} \dot{\mathbf{z}}^{T} + \dot{\mathbf{z}} \dot{\mathbf{r}}^{T} + \dot{\mathbf{z}} \dot{\mathbf{r}}^{T}) \hat{l}^{2} - 2(\mathbf{r} \mathbf{z}^{T} + \mathbf{z} \mathbf{r}^{T}) \hat{l} \dot{\hat{l}}}{\hat{l}^{4}} (\bar{M}_{1} + \bar{M}_{2}) + \frac{\mathbf{r} \mathbf{z}^{T} + \mathbf{z} \mathbf{r}^{T}}{\hat{l}^{2}} (\dot{\bar{M}}_{1} + \dot{\bar{M}}_{2})$$
(3)

where \mathbf{X} is a matrix required for transformations from local to global coordinates; \hat{l} denotes the length of the deformed beam; \mathbf{r},\mathbf{z} are vectors that represent abbreviations of lengthy expressions; $\bar{\mathbf{K}}_T^e$ is referred to the local coordinate system; \bar{N} , \bar{M}_1 , \bar{M}_2 denote the components of the force vector in the local coordinate system. \mathbf{X} , \hat{l} , \mathbf{r},\mathbf{z} are purely geometrical relationships. The expressions for $\bar{\mathbf{K}}_T^e$, \bar{N} , \bar{M}_1 , \bar{M}_2 depend on the chosen finite element. Herein, the axial displacement u is assumed to be linear, and the deflection w is taken as cubic. The element is based on the Euler-Bernoulli theory. After determination of $\hat{\mathbf{K}}_T^e$, the element matrices are assembled to the global matrix $\hat{\mathbf{K}}_T$.

¹ Institute for Mechanics of Materials and Structures, Vienna University of Technology, Vienna, Austria.

^{*} Corresponding author: Email xin.jia@tuwien.ac.at, phone +43 1 58801 20253, fax +43 1 58801 20299,

3 Numerical approximations of \hat{K}_T

The second scheme is based on a one-sided two-point finite difference approach for computation of $\hat{\mathbf{K}}_T$ according to Eq.(2). It reads as

$$\dot{\tilde{\mathbf{K}}}_T \approx \frac{\tilde{\mathbf{K}}_T(\lambda + \epsilon) - \tilde{\mathbf{K}}_T(\lambda)}{\epsilon} \tag{4}$$

where ϵ describes a small increment of λ . The third scheme is also based on a one-sided two-point finite difference approach. However, the finite difference expression for $\dot{\mathbf{K}}_T$ is obtained from a directional derivative, defined as

$$\dot{\tilde{\mathbf{K}}}_T := \tilde{\mathbf{K}}_{T,\mathbf{u}} \cdot \dot{\mathbf{q}} = \frac{d\tilde{\mathbf{K}}_T(\mathbf{q} + \epsilon \dot{\mathbf{q}})}{d\epsilon} \bigg|_{\epsilon=0}, \tag{5}$$

where $\mathbf{q} := \mathbf{q}(\lambda)$ is the vector of nodal displacements in the frame of the FEM. The finite difference approximation of the directional derivative is given as

$$\dot{\tilde{\mathbf{K}}}_T \approx \frac{\tilde{\mathbf{K}}_T(\mathbf{q} + \epsilon \dot{\mathbf{q}}) - \tilde{\mathbf{K}}_T(\mathbf{q})}{\epsilon} \tag{6}$$

where $\epsilon \dot{\mathbf{q}}$ denotes a small change of the displacement vector.

4 Numerical verification

The three schemes are coded in FEMv2, which is a nonlinear finite element program, developed by the first author. The beam (see Fig. 1a) is discretized by 100 2-node elements. $\dot{\mathbf{K}}_T$ is calculated by means of the three aforementioned schemes. The computer times required by the three schemes have been compared. Fig. 1b indicates that scheme 3 is faster than scheme 2. The reason for this is the Newton-Raphson iteration, needed in scheme 2 to obtain $\mathbf{K}_T(\lambda+\epsilon)$ (see Eq.(4)), but not in scheme 3. Although scheme 3 is slower than scheme 1, it represents an element-independent approach, and, hence, is more practical. Fig. 1c shows that the results obtained by scheme 3 are more accurate than those obtained by scheme 2. This is the consequence of evaluating \mathbf{K}_T at $\mathbf{q} + \epsilon \dot{\mathbf{q}}$ (see Eq. (6)) which is "closer" to \mathbf{q} than $\mathbf{q}(\lambda+\epsilon)$, for which \mathbf{K}_T is evaluated in scheme 2. Hence, it can be concluded that scheme 3 is not only $very\ practical$ but also $more\ effective$ for calculation of $\dot{\mathbf{K}}_T$ in the frame of the FEM than the two competing schemes.

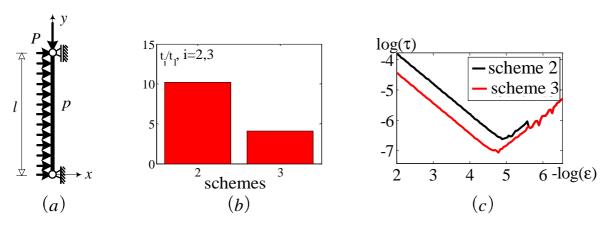


Fig. 1 Numerical example: (a) configuration of the beam subjected to an axial compressive force and a small transverse uniform load, (b) relative computer time of schemes 2 and 3, (c) accurracy of results obtained by means of schemes 2 and 3

References

- [1] P. Helnwein, Zur initialen Abschätzbarkeit von Stabilitätsgrenzen auf nichtlinearen Last-Verschiebungspfaden elastischer Strukturen mittels der Methode der Finiten Elemente [in German; On ab initio assessability of stability limits on nonlinear load-displacement paths of elastic structures by means of the finite element method], Ph. D. thesis, Vienna University of Technology, Vienna, Austria, 1997.
- [2] H. A. Mang, X. Jia and G. Höfinger, Finite element analysis of buckling of structures at special prebuckling states, Journal of Theoretical and Applied Mechanics, **50(3)**, p. 785-796(2012).
- [3] J. M. Battini, Co-rotational beam elements in instability problems, Ph. D. thesis, Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden, 2002.