
Formal Methods in Computer-Aided Design 2020

Effective System Level Liveness Verification
Alexander Fedotov∗ , Jeroen J.A. Keiren∗ , Julien Schmaltz†

∗Eindhoven University of Technology
Eindhoven, The Netherlands
{a.fedotov, j.j.a.keiren}@tue.nl

†ICT Group
Eindhoven, The Netherlands

julien.schmaltz@ict.nl

Abstract—The language xMAS has been designed by Intel with
the purpose of modelling and verification of hardware. Recently,
the language was extended with finite state machines to make it
more expressive [19]. Furthermore, it was shown how to prove
liveness of such extended xMAS networks [19]. Unfortunately,
we demonstrate that the proof technique is unsound. We provide
an alternative approach which we have carefully proven to be
correct. Moreover, we show that our approach scales very well,
which makes it possible to prove liveness properties at the system
level. In particular, we show that using our approach, it is possible
to verify a power control architecture composed of 1299 state
machines representing 50 power domains where each domain
contains 5 master and 5 slave devices. Proving liveness of this
system takes less than 10 minutes.

Index Terms—Formal verification, liveness, communication
networks, finite state machines

I. INTRODUCTION

Formal verification has been successfully introduced in
many design flows of hardware and software systems. More
and more often, the sign-off decision for hardware blocks is
taken solely on the results of formal proofs, the so-called
formal sign-off. However, scaling formal verification to the
system level remains a challenge.

Originally proposed by researchers at Intel, the xMAS
language [7] and associated techniques for invariant genera-
tion [6], property checking [6], and deadlock hunting [12, 16]1

have been developed to address this challenge. These tech-
niques are very efficient and were extended to performance
validation [15], asynchronous circuits [4], progress verifica-
tion [8], generalized to language families [17], and directly
related to the Register Transfer Level [11, 13, 14].

Regarding liveness analysis, the key contribution of Got-
manov et al. [12] is to encode the existence of a deadlock state
as a satisfiability problem. This technique is sound and can
prove the absence of deadlock states. It is incomplete because
a satisfiable solution does not necessarily represent a reachable
state of the xMAS network. Checking reachability of potential
xMAS deadlock states is efficient [20].

Verbeek et al. introduced state machines into xMAS to-
gether with extensions of liveness analysis techniques [19].

1Note that in the literature related to liveness verification of xMAS
networks, it is common to call states with non-live channels deadlock states.
We adhere to this terminology, although it is different from the conventional
notion of deadlock.

Their extension enables the modeling and analysis of complex
cooperating state machines under the constraints imposed
by micro-architectural choices. They demonstrated the veri-
fication of large systems consisting of nodes running cache
coherence protocols and communicating via a Network-on-
Chip. Inspired by Gotmanov et al., Verbeek et al. encode
liveness verification of xMAS extended with (finite) state
machines to satisfiability. As we will show in this paper, their
method is unsound.

We present a counter-example that is composed of a network
with a deadlock that is not found by the technique of Verbeek
et al. [19]. Subsequently, we propose an alternative encoding
of liveness into a satisfiability problem. We carefully prove that
if an xMAS network has a path to a state with a deadlock,
there exists a satisfying assignment to the satisfiability problem
we generate, i.e., our encoding is sound. Finally, we introduce
two sets of benchmarks including a simplified power control
architecture inspired by industrial case-studies.

The benchmarks and our implementation are publicly avail-
able [2]. A network with 1299 state machines can be proven
live in less than 10 minutes.

We introduce xMAS, liveness of channels and idle and block
equations in Section II. In Section III we introduce xMAS
finite state machines, and show why the approach from [19]
is unsound. Our approach using idle and block equations is
described in Section IV. Our implementation is evaluated in
Section V. We conclude in Section VI.

II. PRELIMINARIES

A. xMAS syntax

xMAS [7] is a graphical language aimed at modeling and
verifying communication fabrics. An xMAS network com-
prises a set of primitives connected by typed channels. The
progress of messages between primitives is controlled by a
simple handshake protocol. Each channel consists of three
signals, one for data and two boolean control signals, irdy
and trdy. Consider the transfer of data from primitive A
to primitive B via channel x. When primitive A is ready to
transfer datum d through channel x, it sets x.data to d, and
x.irdy to true, indicating the initiator is ready to transfer
data. Whenever B is ready to accept data, it sets x.trdy to
true, indicating the target is ready to receive. The data transfer
happens if and only if x.irdy ∧ x.trdy, i.e., the initiator is

This article is licensed under a Creative
Commons Attribution 4.0 International License

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_7

https://fmcad.org/FMCAD20
https://orcid.org/0000-0002-6199-9052
https://orcid.org/0000-0002-5772-9527
julien.schmaltz@ict.nl
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_7

ready to send and the target is ready to receive. The core
xMAS primitives are shown in Figure 1.

Figure 1: Core xMAS primitives

We provide detailed descriptions of the source, sink and
queue primitives as they are used directly in this paper. For
details of the other primitives the reader is referred to [7].

A source non-deterministically injects data into the network
infinitely often. This is modelled using the unconstrained
primary input oracle. Once a source decides to transfer datum
d, it will keep trying until the transfer succeeds. This is
modelled using the standard synchronous operator pre that
returns the value of its argument in the previous clock cycle,
and false in the very first cycle. Formally, the source is
described as follows:

o.irdy := oracle ∨ pre(o.irdy ∧ ¬o.trdy)
o.data := d.

A sink consumes data from the network infinitely often:

i.trdy := oracle ∨ pre(i.trdy ∧ ¬i.irdy).

A queue is a FIFO buffer with k places. A queue is ready
to write data to the output when it is not empty. The data the
queue is ready to write is the head of the queue. A queue is
ready to accept data when it is not full. Formally,

o.irdy := ¬is empty, o.data := head,

i.trdy := ¬is full,

where i and o are the input and output channels of the queue
respectively.

Example 1. Consider the simple xMAS network depicted in
Figure 2. We use this network as a running example. The
network consists of a source, a queue, and a sink. The source
produces tokens t. The source controls the x.irdy and x.data
signals of its output channel x. The queue controls the x.trdy
signal of channel x, and y.irdy and y.data of its output

x

1
y

Figure 2: xMAS example

channel y. The sink controls the y.trdy signal of channel y.
The signals are defined as follows.

x.irdy := oraclesrc ∨ pre(x.irdy ∧ ¬x.trdy)
x.data := t

x.trdy := ¬is full

y.irdy := ¬is empty

y.data := head

y.trdy := oraclesnk ∨ pre(y.trdy ∧ ¬y.irdy).

The semantics of an xMAS network consists of a combi-
natorial and a sequential phase. In the first, all data, irdy
and trdy signals are updated. In the second all components
with state update their state. The global state of an xMAS
network is the product of the local states of all components.
We write ~s X−→ ~s′ for the transition between global states ~s
and ~s′, where X is a set of (channel,data) pairs representing
the simultaneous data transfers in the current clock cycle.

B. Liveness of channels

Liveness of channels is defined using linear temporal logic
(LTL). LTL and its semantics are considered standard, and we
refer to text books such as [3] for the details. To interpret LTL
on xMAS networks, we first define paths and maximal paths
in such networks. In the rest of this paper, we implicitly fix an
xMAS network N = (P,G), where P is the set of primitives,
and G is the set of channels. Given a channel x ∈ G, by C(x)
we denote the set of all possible values of x.data. By C we
denote the set of all data of N , that is C =

⋃
x∈G C(x).

Definition 1. A path is a possibly infinite sequence of global
states π = ~s0, ~s1, ~s2, . . . such that for all j > 0, ~sj−1

X−→ ~sj
for some X . The set of paths starting in a state ~s is denoted
using Paths(~s), and for xMAS network N we write Paths(N)
to denote Paths(~s0), where ~s0 is the initial state of the network
N . For finite paths π = ~s0, . . . , ~sn we define last(π) = ~sn. A
path π is called maximal if and only if it is infinite, or it is
finite and last(π) has no outgoing transitions.

A channel is live whenever, always when its initiator is
ready to transfer data, the transfer will eventually be success-
ful.

Definition 2 ([12]2). Channel x ∈ G is live for d ∈ C(x) iff

N |= G((x.irdy ∧ x.data = d)

=⇒ F(x.irdy ∧ x.trdy ∧ x.data = d)).

We henceforth make the (standard) assumption that channels
are (forward) persistent. This means that whenever the initiator
is ready to send d along x, it will remain ready to do so
until the transfer is successful. Formally, the network satisfies
G((x.irdy ∧ x.data = d ∧ ¬x.trdy) =⇒ X(x.irdy ∧
x.data = d)). Under this assumption, channel x is live if and
only if it is live for all d ∈ C(x).

2Gotmanov et al. [12] use property G(x.irdy =⇒ F x.trdy), which
does not guarantee that the transfer eventually succeeds if persistency is not
assumed.

8

We recall the notions idle and block from [12]. A channel
is idle for d if eventually the initiator will never send message
d along that channel, and it is blocked if eventually the target
will never be able to receive a message along that channel.

Definition 3 ([12]). Let x ∈ G and d ∈ C(x). We define

idle(x(d)) := FG(¬x.irdy ∨ x.data 6= d)

block(x) := FG¬x.trdy

A local deadlock is defined as a dead channel, where a
channel is dead for value d if and only if it is not live for
d. This means there exists a path in the xMAS network to a
state that satisfies ¬idle(x(d)) ∧ block(x). In other words,
a channel is dead whenever its initiator is ready to transfer
datum d and its target will never be ready to accept the data.

Definition 4. Let N be an xMAS network, with x a forward
persistent channel in N , and d ∈ C(x). We define

live(x(d)) := idle(x(d)) ∨ ¬block(x)
dead(x(d)) := ¬live(x(d))

live(x) :=
∧

d∈C(x)

live(x(d))

dead(x) :=
∨

d∈C(x)

dead(x(d))

Persistency now allows us to simplify the definition of
liveness using the following theorem adapted from [12].

Theorem 1. For all channels x ∈ G and d ∈ C(x), let

live(x(d)) := idle(x(d)) ∨ ¬block(x)
dead(x(d)) := ¬live(x(d)).

Then, for all persistent channels x ∈ G and d ∈ C(x),
1) x is live for d iff N |= live(x(d)), and
2) x is dead for d iff ∃π ∈ Paths(N).π |= dead(x(d)).

Note that the formula for live channels is evaluated over
the network (i.e., over all paths), and the formula for dead
channels is evaluated over a path due to the LTL semantics.

In Definition 3, we only defined block(x). We can refine
this definition by introducing block(x(d)) as follows.

block(x(d)) := FG(¬x.trdy ∨ x.data 6= d)

It is easy to see that block(x) implies block(x(d)) for any
d ∈ C(x). The following then follows immediately.

Lemma 1. For all persistent channels x ∈ G, d ∈ C(x),
and all paths π ∈ Paths(N), π |= dead(x(d)) implies π |=∧
e∈C(x) block(x(e)).

C. Idle and block equations

The main contribution of Gotmanov et al. [12] is to express
deadlock conditions for each primitive using equations over
boolean variables. If these idle and block equations are sat-
isfiable, a (possible) deadlock has been detected; otherwise,
the network is guaranteed to be deadlock free. The method

is sound but incomplete: if the equations are satisfiable,
the assignment to the boolean variables may constitute an
unreachable deadlock state. This is alleviated to some extent
by using invariants to approximate the reachable states.

The boolean variables express the conditions under which a
primitive will eventually never try to output value d, denoted
using variable idledx, or eventually never try to read from
channel x, denoted using variable blockx. The encoding
essentially approximates the LTL specifications of idle and
block defined before. In particular, if there exists a path π in
the xMAS network such that π |= dead(x(d)), then there is
a satisfying assignment to the variables in the idle and block
equations in which idledx is false, and blockx is true.

Example 2. Recall the network from Example 1. Sources are
never idle, and sinks are never blocked. The input channel of
the queue, x, is blocked when the queue is full and its output
channel y is blocked. The output channel of the queue is idle
when the queue is empty and its incoming channel x is idle.
This results in the following equations.

idlex ≡ ⊥ blockx ≡ full ∧ blocky

idley ≡ empty ∧ idlex blocky ≡ ⊥
deadx ≡ ¬idlex ∨ blockx deady ≡ ¬idley ∨ blocky

We can conclude that neither x nor y is dead.

III. LIFE AND DEATH OF STATE MACHINES IN XMAS
A. xMAS finite state machines

Verbeek et al. describe an extension of xMAS with finite
state machines for the integrated verification of, for instance,
cache coherence protocols together with their underlying
communication fabric [18, 19]. The xMAS automata allow
for the symbolic description of the channels and data read
and written along transitions. However, every transition reads
and writes (at most) one channel. In this paper we require
explicit definition of every datum read/written on a transition
to simplify the presentation. The results could equally be
expressed using symbolic notation as in [18, 19]. However,
since the number of channels and the data transferred are
typically assumed to be finite, they can be expanded in the
FSM, and this change does not alter the expressive power.

Definition 5. A finite state machine (FSM) is a tuple
(S, s0, I, O, T), where S is a finite set of states; s0 ∈ S is
an initial state; I is a finite set of input channels; O is a finite
set of output channels; and T ⊆ S × (I ×C)× (O×C)× S
is the total transition relation.

Since T is total, every state has at least one outgoing
transition. We use names s, s′, s1, . . . for states. We write
s

x(d)/y(e)−−−−−−→ s′ for (s, (x, d), (y, e), s′) ∈ T . We sometimes
write ?x(d) and !y(e) to stress d is read from channel x, and
e is written to y. For state s ∈ S, in(s) and out(s) denote the
sets of incoming and outgoing transitions of s, respectively.
Likewise, for channels x ∈ (I ∪ O), and data d ∈ C(x),
read(x, d) and write(x, d) represent the sets of transitions
reading d from x and writing d to x, respectively.

9

Note that the requirement that every transition reads from
and writes to exactly one channel is not fundamental. Tran-
sitions t = s

!y(e)−−−→ s′ that do not read from an input
channel can be modeled by introducing a new channel xt
that is connected to a source and the FSM, and be replaced
by s

?xt/!y(e)−−−−−−→ s′. Transitions that do not write to an output
channel and transitions that do not read or write any channel
can be modeled in a similar way.

In an FSM, exactly one state is current at a time, this state
is denoted cur(s). A transition s

x(d)/y(e)−−−−−−→ s′ is enabled if
and only if s is the current state, the input channel x is ready
to send d, and the output channel y is ready to receive. Note
that whether the input and output channels are ready depends
on the environment of the FSM.

Definition 6. Given FSM (S, s0, I, O, T), transition

s
x(d)/y(e)−−−−−−→s′ ∈ T is enabled, denoted enabled(s

x(d)/y(e)−−−−−−→ s′)
iff cur(s) ∧ x.irdy ∧ x.data = d ∧ y.trdy.

In any state, there can be multiple enabled transitions. To
resolve this non-determinism, a scheduler sel is introduced
that, at every clock cycle, selects an enabled transition. If
transition t is selected, this is denoted sel = t.

The FSM needs to indicate to its environment whether it is
ready to send along an outgoing channel, or to read along an
incoming channel. This is defined in terms of irdy, trdy and
data as follows.

Definition 7. Given FSM (S, s0, I, O, T), for x ∈ I, y ∈ O:

x.trdy := ∃s x(d)/y(e)−−−−−−→s′ ∈ T.sel = s
x(d)/y(e)−−−−−−→s′

y.irdy := ∃s x(d)/y(e)−−−−−−→ s′ ∈ T.sel = s
x(d)/y(e)−−−−−−→ s′

y.data :=

{
e if ∃s x(d)/y(e)−−−−−−→ s′ ∈ T.sel = s

x(d)/y(e)−−−−−−→ s′

⊥ otherwise

Since the scheduler non-deterministically chooses between
enabled transitions, and irdy is only set for the output channel
of a selected transition, whenever irdy is set for an output
channel of an FSM, the target of that channel is ready to
receive, i.e., trdy is set. Non-determinism of the scheduler
could lead to an enabled transition being ignored for an infinite
amount of time. However, we assume scheduler sel to be fair,
i.e., if state s is visited infinitely often with s

x(d)/y(e)−−−−−−→ s′

enabled, then s
x(d)/y(e)−−−−−−→ s′ will be selected infinitely often.

We therefore only verify liveness of the xMAS network along
fair paths. Such paths are defined as follows.

Definition 8. Given a path π, we say that π is fair if and only
if for all FSM primitives M = (SM , sm0 , I

M , OM , TM) and
local transitions t ∈ TM , we have π |= (GFenabled(t)) =⇒
(GFsel = t)

B. Idle and block equations by Verbeek et al.

Verbeek et al. define a SAT encoding using idle and
block equations for xMAS automata as follows. Given M =

(S, s0, I, O, T), for s
x(d)/y(e)−−−−−−→ s′ ∈ T , x ∈ I , y ∈ O,

d ∈ C(x), e ∈ C(y), they define the following.

dead
s

x(d)/y(e)−−−−−−→s′
≡ idledx ∨ blocky

deads ≡ curs ∧
∧

t∈out(s)

deadt

deadM ≡
∨
s∈S

deads

blockdx ≡ deadM ∨ (read(x, d) = ∅)
idleey ≡ deadM ∨ (write(y, e) = ∅)

Here, curs are boolean variables, aimed at reflecting the
current state of the FSM.

Intuitively, Verbeek et al. propose to encode that input
(output) channels of an FSM are blocked (idle) as follows.
An input channel x is blocked for d if either the FSM has
no transition which reads d from x or the FSM is dead.
Likewise, an output channel y is idle for e if either the FSM
has no transition which writes e to y or the FSM is dead. With
the notion of dead FSM, Verbeek et al. intend to encode the
existence of a state (a dead state, using the terminology of the
authors), which can eventually be reached, and at the same
time cannot be left anymore, since all outgoing transitions are
dead. In such a situation, the FSM can neither read from its
inputs nor write to its outputs.

C. Life and death of state machines: a counter-example

Unfortunately, there are xMAS networks with FSMs that
are deadlock free according to these idle and block equations
that do contain a deadlock. This is illustrated by the following
example.

Example 3. Consider the state machine, depicted in Figure 3.
It has two input channels x and y, connected to sources, and
two output channels o and z, connected to sinks. All channels
only transfer datum d. Initially, in s0, the FSM can either read
d from channel x and produce d on channel o, and stay in s0,
or it can read d from y once and produce d on z, and go to
s1. In s1, the FSM never reads from y nor writes to o, and
only reads from x, writes to z, and stays in s1.

According to the definition by Verbeek et al., the FSM is
not dead: channels o and z are not blocked, and since channel
x is not idle, neither of the self-loops is dead. Consequently,
neither s0 nor s1 is dead, and the FSM is not dead. However,
once s1 is reached, messages waiting on channel y will never
be read, so y should be blocked.

y

x

z

o

s0 s1

?x/!o

?y/!z

?x/!z

Figure 3: Counterexample to method by Verbeek et al.

10

The example shows that, although channel y is dead for d,
since blockdy is false, this is not detected using the idle and
block equations. The encoding from [19] is therefore unsound.

Generally, the issue lies in the definition of deadM . Even
when none of the input channels are idle, and no output
channel is blocked, a state machine can block an input channel.
This happens, e.g., when source states of transitions reading
from a particular channel are reached only finitely many times.
Output channels can become idle for similar reasons.

IV. IDLE AND BLOCK EQUATIONS FOR XMAS FSMS

We propose alternative idle and block equations for FSMs in
the spirit of [12]. An input channel x of an FSM is dead, when
eventually all transitions reading x become disabled. There
are two possible causes for this. First, the source state of the
transition can eventually never be reached anymore. Second,
whenever the source state of the transition is current, the
environment disables the transition since the output channel
is blocked. We capture this intuition by saying that states that
are eventually never reached again are idle, and transitions that
are eventually never enabled are dead.

Definition 9 (Idle states and dead transitions). Consider FSM
(S, s0, I, O, T). For s ∈ S and t ∈ T we define the following.

idle(s) := FG¬cur(s)

dead(t) := FG¬enabled(t)

Formally, transitions eventually never become enabled along
a path if and only if either the source state or the input channel
of the transition is idle, or the output channel is blocked.

Lemma 2. Let M = (S, s0, I, O, T) be an FSM in N . For

all t = s
x(d)/y(e)−−−−−−→ s′ ∈ T , global states ~s, and paths π ∈

Paths(~s),

π |= FG¬enabled(t) iff π |= idle(s)∨idle(x(d))∨block(y).

Proof sketch (for the full proof see [10]). Fix an arbitrary
transition t = s

x(d)/y(e)−−−−−−→ s′, global state ~s, and path
π ∈ Paths(~s). We prove both directions separately.
⇒ Assume that π |= FG¬enabled(t). Towards a contradic-

tion, suppose π 6|= idle(s) ∨ idle(x(d)) ∨ block(y(e)).
We know that ¬idle(s) ≡ GFcur(s), ¬idle(x(d)) ≡
GF(x.irdy ∧ x.data = d), ¬block(y) ≡ GFy.trdy.
From this, using the semantics of LTL formulas we derive
that π |= GFenabled(t), which is a contradiction.

⇐ Suppose π |= idle(s)∨ idle(x(d))∨block(y). We split
the three cases and use Definitions 3, 6, and 8 to show
that π |= FG¬enabled(t) in each of these cases.

Due to the way the semantics of FSMs resolve non-
determinism, output channels of an FSM are never dead.

Lemma 3. Given FSM (S, s0, I, O, T) in N , for all global
states ~s and for channels y ∈ O and e ∈ C(y), we have for
all paths π ∈ Paths(~s), π 6|= dead(y(e)).

We now specify the idle and block equations for FSMs used
in a SAT encoding. The equations refer to variables idle of

incoming channels and block of outgoing channels that are
defined in other components.

Definition 10 (Idle and block equations for FSMs). Consider
an FSM M = (S, s0, I, O, T). For s ∈ S, x ∈ I , y ∈ O,

d ∈ C(x), e ∈ C(y), and s
x(d)/y(e)−−−−−−→ s′ ∈ T we define the

following equations.

deads
x(d)/y(e)−−−−−−→s′ ≡ idles ∨ idledx ∨ blocky

idles ≡ ¬curs ∧
∧

t∈in(s)

deadt

blockdx ≡
∧

t∈read(x,d)

deadt

blockx ≡
∧

d∈C(x)

blockdx

idleey ≡
∧

t∈write(y,e)

deadt

idley ≡
∧

e∈C(y)

idleey

SAT(M) consists of the conjunction of all the idle and block
equations for all states, transitions and channels in FSM M .
Similarly we write SAT(N) for network N , which is the
conjunction of all formulas for all the primitives of N , where
for non-FSM components, the encoding from [12] is used.

We additionally use the invariants from [19] to reduce the
number of false deadlocks. For example,

∑
s∈S curs = 1

dictates that the FSM is always in exactly one state.
The intuition behind the encoding is as follows. If a state is

not current, and eventually none of its incoming transitions can
ever become enabled, the state is effectively unreachable, thus
the state is idle. In turn, a transition is dead if it ultimately
never becomes enabled. This is the case if either its source
state or its incoming channel is idle, or its outgoing channel
is blocked. An input channel is blocked for a given datum if
no transition will read that datum from the channel. Likewise
an output channel is idle for a datum if that datum is never
written to it. An output channel is idle if it is idle for all
values, meaning that no value will ever be written to it. An
input channel is blocked if it is blocked for all values. This
follows from Lemma 1: a dead channel is blocked for all data.

We say assignment σ is consistent with path π and a set
of components if for all input channels x, output channels y
and data e of these components, σ(blockx) = > iff π |=
block(x) and σ(idleey) = > iff π |= idle(y(e)).

We finally prove our idle and block equations are sound: if
there is a channel that is dead for a particular value, then there
is a satisfying assignment to the boolean equations showing
this. We only consider input channels of FSMs, since output
channels of FSMs cannot be dead as shown in Lemma 3.

Recall that a maximal path can either be finite or infinite,
and in an infinite path in an xMAS network, the FSM can
be stuck in a state locally. We construct assignments for each
of these cases, and prove that each of the assignments is a
satisfying assignment. We first construct assignment σs for

11

the case where a (fair) maximal path in a network containing
the FSM is such that the FSM is stuck locally in state s.

Definition 11. Let M = (S, s0, I, O, T) be an FSM that
appears in an xMAS network N , π ∈ Paths(M) and s ∈ S.
Assignment σs is defined as follows, where we write v := w
if σs assigns w to v. For states s′ ∈ S, transitions t ∈ T ,
channels x ∈ I , y ∈ O, and d ∈ C(x), e ∈ C(y), let:

curs′ := s = s′ idles′ := s 6= s′ deadt := >
blockdx := > blockx := > blocky := >
idledy := > idley := > idledx := ⊥

and σs is consistent with π for all components other than M .

Whenever the FSM is stuck locally, σs gives a satisfying
assignment for the encoding to SAT.

Lemma 4. Let M = (S, s0, I, O, T) be an FSM that appears
in an xMAS network N and s ∈ S. If π ∈ Paths(N) is a fair
maximal path such that either
• π is finite and last(π) |= cur(s), or
• π |= FG

(
cur(s) ∧

∧
t∈out(s) ¬enabled(t)

)
then σs is a satisfying assignment for SAT(N).

The proof of this lemma and Lemma 5 are omitted due to
space restrictions. Details can be found in [10].

For a fair maximal path π on which the FSM is not stuck
locally, we construct a satisfying assignment σπ based on π.

Definition 12. Let M = (S, s0, I, O, T) be an FSM that ap-
pears in an xMAS network N and π ∈ Paths(N). Assignment
σπ is defined as follows. For states s′ ∈ S, transitions t ∈ T ,
channels x ∈ I , y ∈ O, and d ∈ C(x), e ∈ C(y), let:

curs′ := s = s′

idles′ := ∀0 ≤ k ≤ n.π[i+ k] |= ¬cur(s′)

deadt := ∀0 ≤ k ≤ n.π[i+ k] |= ¬enabled(t)

blockdx := ∀t ∈ read(x, d).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

blockx := ∀d ∈ C(x).∀t ∈ read(x, d).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

idledy := ∀t ∈ write(y, e).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

idley := ∀e ∈ C(y).∀t ∈ write(y, e).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

and σπ is consistent with π for all components other than M .

Whenever the FSM is not stuck locally, σπ gives a satisfying
assignment for the encoding to SAT.

Lemma 5. Let M = (S, s0, I, O, T) be an FSM that ap-
pears in an xMAS network N . If π ∈ Paths(N) is an
infinite fair maximal paths such that for all s ∈ S, π |=
GF
(

cur(s) =⇒
∨
t∈out(s) enabled(t)

)
, the assignment σπ

is a satisfying assignment for SAT(N).

We finally prove soundness of our encoding, assuming that
idle and block equations for non-FSM components are sound.

Theorem 2. Let M = (S, s0, I, O, T) be an FSM in xMAS
network N . For all channels x ∈ I and data d ∈ C(x), if
there exists a fair maximal path π ∈ Paths(N) such that π |=
dead(x(d)), then SAT(N) ∧ ¬idledx ∧ blockx is satisfiable.

Proof. Fix arbitrary channel x ∈ I , and datum d ∈ C(x),
and let π ∈ Paths(N) be a fair maximal path such that π |=
dead(x(d)). We distinguish three cases:
• π is finite. Let last(π) |= cur(s) for some s ∈ S.

According to Lemma 4, σs is a satisfying assignment for
SAT(N). Note that blockx = > and since σs is consis-
tent with π for non-FSM components, idledx = ⊥. So σs
is a satisfying assignment for SAT(N)∧¬idledx∧blockx.

• π is infinite and π |= FG(cur(s)∧
∧
t∈out(s) ¬enabled(t))

for some s ∈ S. Let s be such. According to Lemma 4,
σs is consistent with SAT(N). Using similar reasoning
as in the previous case, we can conclude that σs is a
satisfying assignment for SAT(N) ∧ ¬idledx ∧ blockx.

• π is infinite and for all s ∈ S, we have π 6|= FG(cur(s)∧∧
t∈out(s) ¬enabled(t)), i.e., π |= GF(cur(s) =⇒∨
t∈out(s) enabled(t)).

According to Lemma 5, σπ is consistent with SAT(N).
Note that since π |= dead(x(d)), π |= block(x(e)) for
all e ∈ C(x), according to Lemma 1. Consider arbitrary
e ∈ C(x), we show that the assignment satisfies blockex.
From this and the definition it immediately follows that
it satisfies blockx.
Let i be the index that signals the start of the loop of the
lasso on π. Since π |= block(x(e)), π |= FG(¬x.trdy∨
x.data 6= e). By definition of enabled , this implies π |=
FG(¬enabled(t)) for all t ∈ read(x, e). Hence, for all
0 ≤ k ≤ n, π[i+k] |= ¬enabled(t) for all t ∈ read(x, e).
By definition of σπ , we then have blockex = >. Since
this holds for all e, by definition also blockx = >, and
σπ is a satisfying assignment for SAT(N) ∧ ¬idledx ∧
blockx.

We illustrate our approach using an example.

Example 4. Recall the FSM from Example 3. The environ-
ment guarantees idlex = idley = blocko = blockz = ⊥.
The idle and block equations are as follows.

idles0 ≡ ¬curs0 ∧ deads0
x/o−−→s1

idles1 ≡ ¬curs1 ∧ deads0
y/z−−→s1 ∧ deads1

x/z−−→s1

dead
s0

x/o−−→s1
≡ idles0 ∨ idlex ∨ blocko

dead
s0

y/z−−→s1
≡ idles0 ∨ idley ∨ blockz

dead
s1

x/z−−→s1
≡ idles1 ∨ idlex ∨ blockz

blockx ≡ deads0
x/o−−→s1 ∧ deads1

x/z−−→s1

blocky ≡ deads0
y/z−−→s1

idleo ≡ deads0
x/o−−→s1

idlez ≡ deads1
x/z−−→s1

12

We correctly detect that y is dead. This is witnessed by the
following satisfying assignment for these equations, that also
satisfies blocky = >, and thus ¬idley ∧ blocky .

curs0 := ⊥ curs1 := >
idles0 := > idles1 := ⊥

deads0
x/o−−→s1 := > deads0

y/z−−→s1 := >
deads1

x/z−−→s1 := ⊥
blockx := ⊥ blocky := >
idleo := > idlez := ⊥

V. EXPERIMENTS

We have implemented the idle and block equations de-
scribed in Section IV. Given an xMAS model as input, our tool
automatically generates a SAT problem that incorporates the
idle and block equations [2]. The SAT problem is solved using
Z3 [9] to verify liveness. Our tool can also generate an SMV
model that encodes the xMAS network and its behaviour. This
model uses idle and block equations as invariants. Reachability
of a state in which a channel of the given xMAS model is
checked using the NUXMV model-checker [5].

A. Experimental setup

We evaluate our implementation using two sets of models:
one inspired by “go/no go” testing, the other inspired by power
domains architectures. All models also have a version in which
deadlocks have been introduced. A detailed description of the
models can be found in [1].

Go/no go models are balanced binary trees of go/no go
blocks. Each block has two binary inputs and one binary
output, and consists of a pair of interconnected FSMs. The
output of the block is ok if the data consumed from both
input channels are ok , and it is nok otherwise.

Models of n levels of go/no go blocks (each block consists
of two FSMs) are constructed by composing 2n − 1 go/no go
blocks as a balanced binary tree. The output channels of two
adjacent blocks on one level are used as input channels of a
block on the next level in the tree.

Go/no go models with deadlocks are obtained by modifying
one FSM in a go/no go block whose inputs are not connected
to another block as follows. We add a new state with a self-
loop reading ok from the first input channel i. We add a
transition that reads nok from i from the initial state of the
FSM to this new state. The new state is reachable, channel i
is blocked for nok , and all output channels are idle.

Power domains are used to improve power efficiency of
systems on chip. A power control architecture turns power
domains on and off depending on the needs of an application.
We model a dynamic power management policy that is an
abstraction of industrial practice.

Our models consist of a number of power domains, each
of which has a domain power controller. If the model has
multiple power domains it also has a top power controller.
Every power domain contains a number of device-controller
pairs. In Figure 4a, we depict a device controller, which turns

on its device (depicted in Figure 4b) if the device indicates
activity (generated by the FSM depicted in Figure 4c). If a
device shows no activity, its device controller requests to turn
off the device, and the device can non-deterministically accept
the request or decline it. A domain power controller powers
on the domain when one of the devices in the domain shows
activity. It powers off the domain when all device controllers
in the power domain indicate their devices are turned off. The
top power controller powers on if one of the domain power
controllers indicates it needs power. It powers off if all domain
power controllers indicate that all devices are turned off.

To obtain power domain models with a deadlock, one of the
device controller FSMs is changed such that in its off state it
expects to read act(0), and in its on state, it expects to read
act(1), which leads to synchronisation issues and deadlocks.

All experiments were executed on a MacBook Pro 2015,
2,7GHz Intel Core i5, 16Gb RAM, running MacOS Catalina
10.15.4. For SAT solving, we use the Z3 solver, version 4.8.0
64-bit [9]. For reachability checks, we use NUXMV, version
2.0.0 64-bit [5]. Instructions to reproduce the experiments and
the script used to obtain our results are available at [1].

B. Results

Model #FSMs Live SAT Reachability
Res. Time (s) Res. Time (s)

gonogo 1 2 3 3 0.1 3 0.2
gonogo 1 dl 2 7 7 0.1 7 0.3
gonogo 2 6 3 3 0.1 3 0.5
gonogo 2 dl 6 7 7 0.1 7 2.4
gonogo 3 14 3 3 0.3 3 1.5
gonogo 3 dl 14 7 7 0.3 7 5.9
gonogo 4 30 3 3 0.6 3 5.5
gonogo 4 dl 30 7 7 0.6 7 18.0
gonogo 5 62 3 3 2.0 3 21.2
gonogo 5 dl 62 7 7 1.9 7 54.9
gonogo 6 126 3 3 7.9 3 92.7
gonogo 6 dl 126 7 7 6.7 7 221.7
power1 5 25 3 3 0.4 3 1.6
power1 5 dl 25 7 7 0.2 7 2.1
power10 5 259 3 3 14.0 3 120.0
power10 5 dl 259 7 7 10.1 7 104.2
power20 5 519 3 3 57.5 3 564.8
power20 5 dl 519 7 7 50.3 7 451.1
power30 5 779 3 3 352.5 3 1597.4
power30 5 dl 779 7 7 262.9 7 1107.3
power40 5 1039 3 3 410.2 3 n/a
power40 5 dl 1039 7 7 245.6 7 n/a
power50 5 1299 3 3 542.2 3 n/a
power50 5 dl 1299 7 7 481.1 7 n/a

Table I: Experimental results

The times required for the experiments are reported in
Table I. The Model column indicates the model that is
evaluated. For go/no go models, the number in the name
signifies the number of blocks. For power domain models,
the first and second number in the name denote the number of
power domains and device-controller pairs in every domain,
respectively. #FSMs reports the number of FSMs in the model.
In the Live column, 3 indicates that the model is deadlock
free, 7 indicates it is not. For each instance, we list the result

13

off to on

onto off

denied

?act(1)/!req(1)

!state(1)

?act(0)/!req(0)

?d
en

y(
1) ?act(1)

?deny(0)/!state(0)

(a) Controller.

off

onto off

?req(1)

?req(0)

!deny(1)

!deny(0)

(b) Device.

low

high

?i/!act(1)?i/!act(0)

(c) Activity generator.

Figure 4: Some of the power domain FSMs

0 20 40 60 80 100 120
100

101

102

103

Number of FSMs

Ti
m

e
(1
0−

1
se

co
nd

s)

“Go/no go”

SAT(dlf)
Reach. (dlf)

SAT(dl)
Reach. (dl)

0 200 400 600 800 1,000 1,200
100

101

102

103

104

Number of FSMs

Ti
m

e
(1
0−

1
se

co
nd

s)

Power domain

SAT(dlf)
Reach. (dlf)

SAT(dl)
Reach. (dl)

Figure 5: Number of FSMs vs time for all experiments.

reported by the tool (Res.), where 3 and 7 represent absence
and presence of deadlocks, respectively. Running time for each
instance is reported in seconds.

For both sets of models, SAT and reachability correctly
report absence and existence of deadlocks in all models. The
largest go/no go models contain 126 FSMs. Liveness of the
largest deadlock free go/no go model is proven using SAT in 7
seconds. Reachability analysis takes 1 minute 32 seconds for
the same go/no go model. For the largest go/no go model with
a deadlock, a deadlock is reported using SAT in 6 seconds.
Using reachability it can be proven that a deadlock state is
reachable in 3 minutes 41 seconds. As for the power domain
experimental set, the largest models (both with and without
deadlock) contain 1299 FSMs. For the largest model without
a deadlock, SAT proves liveness in 9 minutes and 2 seconds.
Analysis of the largest power domain model with a deadlock
takes 8 minutes and 1 second using SAT. Reachability analysis
for the power domain models with numbers of power domains

larger than 30 was not possible in our case. This was caused
by NUXMV exceeding the maximum allowed stack on MacOS.

C. Discussion
The results show that using our technique we can prove

liveness of large xMAS models with FSMs. We plot the
performance results on both sets of models in Figure 5. Note
that we use the log-scale for the y-axis. In addition, we use
deciseconds instead of seconds in order to avoid values less
than 1 for the y-axis. The results show that both methods scale
exponentially in the number of FSMs. However, using SAT
for liveness verification significantly outperforms reachability
for xMAS extended with FSMs. This is in line with our
expectations, and aligns with results for standard xMAS [12].

Although we do not encounter false deadlocks in our
experiments, the fact that our method is incomplete implies
that finding false deadlocks using SAT is possible. If SAT
reports a deadlock, it is not known if the deadlock is reachable
or not. In that case, reachability analysis is necessary.

14

VI. CONCLUSIONS

We demonstrated that the approach to verify liveness of
xMAS networks with FSMs proposed by Verbeek et al. [19] is
unsound. We proposed new idle and block equations for xMAS
networks containing FSMs, and proved their soundness. Our
experimental evaluation shows that deadlock detection using
satisfiability outperforms reachability analysis using symbolic
model checking in NUXMV. In case deadlocks are found,
the latter can, however, verify their reachability reasonably
efficiently. Although our method is incomplete, this was not
observed during the experiments.

As future work, we plan to investigate ways to make the
method complete. In particular, an alternative encoding to SAT
based on bounded model checking, could make the method
complete provided an appropriate bound can be derived.
Additionally, the FSMs presented in this paper always read
from and write to exactly one channel. This restriction could
be relaxed to read and write multiple channels on a single
transition to enable more compact modeling of some FSMs.

REFERENCES

[1] Description of go/no go and power domain models
(MaDL github wiki). https://github.com/MaDL-DVT/
madl-dvt/wiki/FMCAD20-Experiments.

[2] MaDL design and verification tools. https://github.com/
MaDL-DVT/madl-dvt.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking.
The MIT Press, 2008.

[4] F. Burns, D. Sokolov, and A. Yakovlev. GALS synthesis
and verification for xMAS models. In DATE 2015, pages
1419–1424. EDA Consortium, 2015.

[5] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mari-
otti, A. Micheli, S. Mover, M. Roveri, and S. Tonetta. The
nuXmv symbolic model checker. In CAV 2014, pages
334–342, 2014.

[6] S. Chatterjee and M. Kishinevsky. Automatic generation
of inductive invariants from high-level microarchitectural
models of communication fabrics. In CAV 2010, pages
321–338. Springer, Berlin, Heidelberg, 2010.

[7] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras. xMAS:
Quick formal modeling of communication fabrics to
enable verification. IEEE Design Test of Computers,
29(3):80–88, 2012.

[8] S. Das, C. Karfa, and S. Biswas. xMAS based accurate
modeling and progress verification of NoCs. In VLSI
Design and Test, pages 792–804. Springer, Singapore,
2017.

[9] L. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In C. R. Ramakrishnan and J. Rehof, editors, TACAS
2008, LNCS, pages 337–340, Berlin, Heidelberg, 2008.
Springer.

[10] A. Fedotov, J. J. A. Keiren, and J. Schmaltz. Sound
idle and block equations for finite state machines in
xMAS. Computer science reports. Technische Universiteit
Eindhoven, 11 2019.

[11] A. Fedotov and J. Schmaltz. Automatic generation
of hardware checkers from formal micro-architectural
specifications. In DATE 2018, pages 1568–1573, 2018.

[12] A. Gotmanov, S. Chatterjee, and M. Kishinevsky. Ver-
ifying deadlock-freedom of communication fabrics. In
VMCAI 2011, pages 214–231. Springer, Berlin, Heidel-
berg, 2011.

[13] S. J. C. Joosten and J. Schmaltz. Generation of inductive
invariants from register transfer level designs of com-
munication fabrics. In Proc. MEMOCODE 2013, pages
57–64, 2013.

[14] S. J. C. Joosten and J. Schmaltz. Automatic extraction
of micro-architectural models of communication fabrics
from register transfer level designs. In Proc. DATE 2015,
pages 1413–1418, 2015.

[15] Z. Lu and X. Zhao. xMAS-based QoS analysis method-
ology. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(2):364–377, 2018.

[16] F. Verbeek and J. Schmaltz. Hunting deadlocks efficiently
in microarchitectural models of communication fabrics.
In Proc. FMCAD 2011, pages 223–231, 2011.

[17] F. Verbeek and J. Schmaltz. Automatic generation of
deadlock detection algorithms for a family of microarchi-
tecture description languages of communication fabrics.
In Proc. HLDVT 2012, pages 25–32. IEEE, 2012.

[18] F. Verbeek, P. M. Yaghini, A. Eghbal, and
N. Bagherzadeh. ADVOCAT: Automated deadlock
verification for on-chip cache coherence and
interconnects. In DATE 2016, pages 1640–1645,
2016.

[19] F. Verbeek, P. M. Yaghini, A. Eghbal, and
N. Bagherzadeh. Deadlock verification of cache
coherence protocols and communication fabrics. IEEE
Transactions on Computers, 66(2):272–284, 2017.

[20] S. Wouda, S. J. C. Joosten, and J. Schmaltz. Process
algebra semantics & reachability analysis for micro-
architectural models of communication fabrics. In Proc.
MEMOCODE 2015, pages 198–207. IEEE, 2015.

15

https://github.com/MaDL-DVT/madl-dvt/wiki/FMCAD20-Experiments
https://github.com/MaDL-DVT/madl-dvt/wiki/FMCAD20-Experiments
https://github.com/MaDL-DVT/madl-dvt
https://github.com/MaDL-DVT/madl-dvt

	Introduction
	Preliminaries
	xMAS syntax
	Liveness of channels
	Idle and block equations

	Life and death of state machines in xMAS
	xMAS finite state machines
	Idle and block equations by Verbeek et al.
	Life and death of state machines: a counter-example

	Idle and block equations for xMAS FSMs
	Experiments
	Experimental setup
	Results
	Discussion

	Conclusions

