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Abstract—Program verification is a resource-hungry task. This
paper looks at the problem of parallelizing SMT-based automated
program verification, specifically bounded model-checking, so
that it can be distributed and executed on a cluster of machines.
We present an algorithm that dynamically unfolds the call graph
of the program and frequently splits it to create sub-tasks that can
be solved in parallel. The algorithm is adaptive, controlling the
splitting rate according to available resources, and also leverages
information from the SMT solver to split where most complexity
lies in the search. We implemented our algorithm by modifying
CORRAL, the verifier used by Microsoft’s Static Driver Verifier
(SDV), and evaluate it on a series of hard SDV benchmarks.

I. INTRODUCTION

Program verification has a long history of over five decades
and it has been consistently challenged over this entire du-
ration by the continued increase in the size and complexity
of software. As the efficiency of techniques and solvers has
increased, so has the amount of software that is written. For
this reason, scalability remains central to the applicability of
program verification in practice.

This paper studies the problem of automated program veri-
fication. In particular, we consider Bounded Model Checking
(BMC) [1]: the problem of reasoning over the entire space
of program inputs but only over a subset of program paths,
typically up to a bound on the number of loop iterations
and recursive calls. BMC side-steps the need for (expensive
and undecidable) inductive invariant generation and instead
directly harnesses the power of SAT/SMT solvers in a de-
cidable fragment of logic. BMC techniques are popular; they
are implemented in most program verification tools today [2,
Table 5].

Our goal is to scale BMC by parallelizing the verification

task and distributing it across multiple machines to make use
of larger compute and memory resources. The presence of
several public cloud providers has made it easy to set up and
manage a cluster of machines. While this distributed platform
is available to us, there is a shortage of verification tools that
can exploit it.
Parallelizing BMC. BMC works by generating logical encod-
ings, often called verification conditions or VCs, for a subset
of program paths that are then fed to an SMT solver to look
for potential assertion violations in the program. We aim to
retain the same architecture, where we continue to use the
SMT solver as a black-box, but generate multiple different
VCs in parallel to search over disjoint sets of program paths.
This allows us to directly consume future improvements in
SMT solvers, retaining one of the key advantages of BMC.

d https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_11

Our technique works by splitting the set of program paths
into disjoint subsets that are then searched independently in
parallel. The splitting is done by simply picking a control
node and considering (a) the set of paths that go through the
node, and (b) the set of paths that do not. Splitting can happen
multiple times. The decisions of what node to split and when
to split are both taken dynamically by our technique. We refer
to the BMC problem restricted to a set of splitting decisions
(i.e., nodes that must be taken, and nodes that must be avoided)
as a verification partition.

Verification starts by creating multiple processes, each of
which have access to the input program and are connected
over the network. One process is designated as the server
while the rest are called clients. The search starts sequentially
on one of the clients that applies standard BMC on the input
program. At some point in time, which is controlled by the
splitting rate, the client chooses a splitting node, thus creating
two partitions. The client continues verification on one of the
partitions, and sends the other partition to the server. The
server is only responsible for coordination; it does not do
verification itself. It accumulates the partitions (represented
as a set of splitting decisions) coming in from the clients
and farms them off to idle clients for verification. Clients can
split multiple times. This continues until a client reports a
counterexample (in which case, it must be a counterexample
in the original program) or the server runs out of partitions
and all clients become idle (in which case, the BMC problem
is concluded as safe).

The splitting rate is adjusted according to the current
number of idle client: it is reduced when all clients are busy,
and then increased as more clients becomes available.

Splitting has some challenges that we illustrate using the
following snippet of code.
procedure main () {

var x := 0;

if (...) { call foo(); x := 1; }
if (...) { call bar(); }
if (...) { call baz(); }

assert(x == || expr);

}

Suppose that the assertion at the end of main is the one that
we wish to verify (or find a counterexample) and all uses
of variable x are shown in the snippet. The main procedure
calls multiple other procedures, each of which can manipulate
global variables of the program (not shown). In this case, if we
split on the call to foo, then one partition (the one that must
take foo) becomes trivial: it is easy to see that the assertion
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holds in that partition, irrespective of what happens in the
rest of the program. We refer to this as a trivial split. Each
split incurs an overhead when a partition is shipped to another
client where the verification context for that partition must
be set up from scratch. Trivial splits are troublesome because
they accumulate this overhead without any real benefits in
trimming down the search. Unfortunately, it is hard to avoid
trivial splits altogether because it can involve custom (solver
specific) reasoning (e.g., the fact that variable x is not modified
outside of main). Our technique instead aims to reduce the
overhead with splitting when possible. The server prioritizes
sending a partition back to the client that generated it. Each
client uses the incremental solving APIs of SMT solvers to
remember backtracking points of previous splits that it had
produced. This allows a client to get setup for one of its
previous partitions much faster, thus reducing overhead.

Next, consider splitting on the call to bar. In this case, both
of the generated partitions must still reason about baz because
taking or avoiding bar has no implications on the call to baz.
If bar turns out to be simple, while most of the complexity
lies inside baz, then both partitions will end up doing the
same work and diminish the benefits of parallelization. In this
case, we rely on extracting information from the solver (via
an unsat core) to make informed splitting choices and avoid
duplicating work across partitions.

Implementation. We have implemented our technique in a

tool called HYDRA!. The sequential BMC technique used

by HYDRA is stratified inlining (SI) [3]. SI incrementally
builds the VC of a program by lazily inlining procedure calls.

HYDRA keeps track of the expanding VC, and frequently splits

it by picking a splitting node that has already been inlined in

the VC.

We evaluated HYDRA on Windows Device Driver bench-
marks obtained using the Static Driver Verifier [4], [5]. These
benchmarks extensively exercise the various features of C
such as heaps, pointers, arrays, bit-vector operations, etc. [6]
and collective require more than 11 CPU days to verify in a
sequential setting.

The contributions of this paper are as follows:

« We propose a distributed design to enable solving large
verification problems on a cluster of machines (Sec-
tion IV-A and Section IV-B);

We design a proof-guided splitting strategy that enables

a lazy, semantic division of the verification task (Sec-

tion III-B and Section IV-C);

« We implemented our design in a tool called HYDRA
that achieves a 20x speedup on 32 clients, solving 30%
additional benchmarks on which the sequential version
timed out (Section V).

The rest of the paper is organized as follows. Section II
covers background on VC generation and the stratified inlining
algorithm. Section III discusses on how the search is decom-
posed for parallel exploration while Section IV presents the

'HYDRA is available in the hydra branch of https://github.com/boogie-org/
corral.git.

43

procedure main () {

int x, y, z; bool c; procedure foo(int x, int z) {
LO: goto L1, L2; bool d;
Ll1: assume c; L5: goto L6, L7;
call foo(x,z); L6: assume d;
goto L3; assume z == X + 1|
L2: assume !c; goto L38;
call bar(x,z); L7: assume !d;
goto L3; assume z == X — [;
L3: call baz(y); goto L38;
goto L4; L8: return;
L4: assume z != 0 }
return;
} procedure bar(int x, int z) {
procedure baz(int y) { L9: assume z == x + 5;

L10: assume y ==
return;

return;

Fig. 1: An Example of a Passified Program

design of HYDRA. Section V presents an evaluation of HYDRA
and Section VI discusses related work.

II. BACKGROUND

We describe our techniques on a class of passified impera-
tive programs. Such a program can have multiple procedures.
Each procedure has a set of labelled basic blocks, where each
block contains a list of statements followed by a goto or a
return. A statement can only be an assume or a procedure
call. A procedure can have any number of formal input
arguments and local variables. Local variables are assumed
to be non-deterministically initialized, i.e., their initial value
is unconstrained. An assume statement takes an arbitrary
expression over the variables in scope. An example program
is shown in Figure 1. A goto statement takes multiple block
labels and non-deterministically jumps to one of them.

Passified programs do not have global variables, return
parameters of procedures, or assignments. These restrictions
are without loss of generality because programs with these
features can be easily converted to a passified program [7];
such conversion is readily available in tools like BOOGIE [8].
We also leave the expression syntax unspecified: we only
require that expressions can be directly encoded in SMT.
Our implementation uses linear arithmetic, fixed-size bit-
vectors, uninterpreted functions, and extensional arrays. This
combination is sufficient to support C programs [6], [9].

We aim to solve the following safety verification problem:
given a passified program P, is the end of main reachable,
i.e., is there an execution of main that reaches its return
statement? This question is answered YES (or UNSAFE) by
producing such an execution and the answer is NO (or SAFE)
if there is no such execution. Furthermore, we only consider
a bounded version of problem where P cannot have loops
or recursion. (In other words, loops and recursive calls must
be unrolled up to a fixed depth.) This problem is decidable
with NEXPTIME complexity [7]. We next outline VC gener-
ation for single-procedure (Section II-A) and multi-procedure
(Section II-B) programs.
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A. VC generation for a single procedure

Let p(%) be a procedure that takes a sequence of arguments
Z. Further, assume that p does not include procedure calls. In
that case, we construct a formula V' C(p)(Z) such that p has
a terminating execution starting from arguments ¢ if and only
if VC(p)(¢) is satisfiable.

The VC is constructed as follows. For each block labelled
I, let b; be a fresh Boolean variable and ¢; be a unique
integer constant. Let succ(l) be the set of successor blocks of [
(mentioned in the goto statement at the end of block [, if any).
Further, let e; be a conjunction of all assumed expressions in
the block. Let ¢; be (b = ¢;) if the block [ ends in a return
statement, otherwise let it be:

b = (61 A\ \/ (bs A (is == f(Zl))))

s€succ(l)

(D

where f is an uninterpreted function Z — Z called the control-
flow function.

The variables b; are collectively referred to as control
variables. Intuitively, b; is true when control reaches the
beginning of block [/ during the procedure’s execution. The
constraint ¢; means that if the control reaches block [, then
it must satisfy the assumed constraints on the block (e;) and
pick at least one successor block to jump to. The function f
records the chosen successor for each block.

Let [, be the label of the first block of p (where procedure
execution begins). Let blocks(p) be the set of block labels
in p. Then, VC(p) is bi, N Nicpipers(p) 1~ If the VC is
satisfiable, then one can read-off the counterexample trace
from a satisfying assignment by looking at the model for f.
As an example, the VC of procedure foo of Figure 1 is given
in Figure 2.

The arguments of a procedure are its interface variables
and we make these explicit in the VC. For instance, we will
write VC(foo)(z, z) to make it explicit that « and z are the
interface variables (free variables) and the rest of the variables
are implicitly existentially quantified.

B. Stratified Inlining

Inlining all procedure calls can result in an exponential
blowup in program size. For that reason, the stratified inlining
(SI) algorithm [3] constructs the VC of a program in a lazy
fashion. For ease in description, assume that each block can
have at most one procedure call. For a procedure p, let pVC(p),
called the partial VC, be the VC of the procedure constructed
as described in the previous section where each procedure call
is replaced with an “assume frue” statement.

Given that programs can only have assume statements, the
partial VC of a procedure represents an over-approximation of
the procedure’s behaviors, one where it optimistically assumes
that each callee simply returns. Similarly, for a procedure p,
if we replace each call with an “assume false” statement,
then we get an under-approximation of p. The VC of this
under-approximation can be obtained by setting the control
variables b; to false for each block [ with an “assume false”
statement. For instance, pVC(main) is an over-approximation
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VC(foo): brs
A brs = (bLe A f(8) ==6)V (br7 A f(5) ==T)
AN bre = dAz==x+1Abrs A f(6) ==38
AN bry = ~dAz==z—1Abrs A f(7) ==38
A brs = true
pVC(main) : bro
A bpo = (br1 A f(0) == 1) V (br2 A f(0) == 2)
N b1 = C/\bL3/\f(1) ==3
A br = ‘\C/\bLg/\f(Q) ==3
AN brs = bra A f(3) ==
AN bpy = z#0

Fig. 2: VCs of procedures foo and main from Figure 1

of main (shown in Figure 2), whereas the following is an
under-approximation: pV C(main) A =br1 A =bra A —brs.

A static callsite is defined as the pair (/,p) that represents
the (unique) call of procedure p in block [. For instance,
main of Figure 1 has three callsites: (L1, foo), (L2,bar),
(L3,baz). A dynamic callsite is a stack of static callsites that
represents the runtime stack during a program’s execution. We
assume that main is always present at the bottom of the stack
for any dynamic callsite. For instance, [main, (L1, foo)]
represents the call stack where main executed to reach L1
and then called foo.

For a procedure p, let callsites(p) be the set of static callsites
in p. Given a static callsite s, and dynamic callsite ¢, let s :: ¢
be the dynamic callsite where s is pushed on the top of the
stack c. SI can require to inline the same procedure multiple
times. Suppose that a procedure p calls p’ twice, once in
block /; and once in block l;. Dynamic callsites will help
distinguish between the two instances of p’: the first will have
(I1,p") on top of the stack and the latter will have (I3, p’) on
top of the stack.

We must take care to avoid variable name clashes between
different VCs as we inline procedures. For a dynamic callsite
¢ and procedure p that is at the top of ¢, let pVC(p,c) be
the partial VC of p (as described earlier in the section),
however for the construction of the partial VC, we use globally
fresh control variables (variables b; of Equation 1), globally
fresh block identifiers (constants ¢; of Equation 1) as well as
globally fresh instances for the local variables. In pVC(p, ¢),
the argument c is only used for bookkeeping purposes: let
control-variable(l, c) refer to the control variable used for
block [ when constructing pVC(p,c). If ¢ is (I,p) == ¢,
then let control-variable(c) be control-variable(l',c’). Simi-
larly, if p’ is called from procedure p in block I’, then let
interface-variables((I',p’) :: ¢) be the set of interface variables
(actuals) for the call to procedure p’ in block I’ in pVC(p, c).

The SI algorithm is shown in Algorithm 1. The algorithm
requires an SMT solver with the usual interface. We use
the Push API to set a backtracking point and a Pop API
that backtracks by removing all asserted constraints until a
matching Push call. Further, we assume that a counterexample



Algorithm 1: The Stratified Inlining algorithm.

Algorithm 3: INLINE(c, S)

Input: A Program P with starting procedure main
Input: An SMT solver S
Output: SAFE, or UNSAFE(T)

1 C + {[main,s]| s € callsites(main)}

2 S.Assert(pVC(main, [main]))

3 while true do

4 outcome < SISTEP(P, C,S)

5 if outcome == SAFE V outcome == UNSAFE(T) then
6 | return outcome
7 else
8 let NODECISION(_, _, C") = outcome
C+

Algorithm 2: SISTEP(P, C, S)

Input: A dynamic callsite ¢, An SMT solver S
Output: A set of open callsites C’
1 let (I,p)::c' =c
2 S.Assert(control-variable(c) =
pVC(p, c)(interface-variables(c)))
3 C'+ C'U{s:c|s € callsites(p)}

4 return C’
SISTEP | Action Open Callsites Inlined Callsites
Step-0 Assert pVC(main) [main, (L1,fo0)], [main]

[main, (L2,bar)],
[main, (L3,baz)]

Step-1 Underapprox check: UNSAT
Overapprox check: SAT
Assert pVC(foo) [main, (L2,bar)] [main, (L1,fo0)]
Assert pVC(baz) [main, (L3,baz)]
Step-3 Underapprox check: SAT [main, (L2,bar)]

Return UNSAFE

Input: A Program P, a set of callsites C
Input: An SMT solver S
Output: SAFE, UNSAFE(7), NODECISION(uc, I, C)
// Under-approximate check
S.Push()
forall c € C do
| S.Assert(—control-variable(c))

if S.Check() == SAT then

| return UNSAFE(S.Model())
else

| uc < S.UnsatCore()

9 S.Pop()

10 // Over-approximate check

11 if S.Check() == UNSAT then
12 | return SAFE

T S

e N n

13 else

14 7 < S.Model()

15 I <+ C N callsites(T)

16 C'+0

17 forall c € I do

18 | C' + INLINE(c)

19 C«+ (C-nuc

20 return NODECISION(uc, I, C)

trace can be extracted from a model returned by the solver.

The algorithm works by iteratively refining over-
approximations of the program (in hope of getting an
early SAFE verdict) and under-approximations of the program
(in hope of getting an early UNSAFE verdict). Both these
approximations are refined by inlining procedures.

Line 1 initializes a set C' of open dynamic callsites. This
set represents procedure calls that have not been inlined yet.
The partial VC of main is asserted on the solver in Line 2.

SI, then, iteratively calls the SISTEP routine (Algorithm 2)
that returns one of three possible answers: conclusive verdicts
SAFE or UNSAFE, or an inconclusive verdict NODECISION.

The SISTEP routine is shown in Algorithm 2. It does an
under-approximate check (Line 5) by assuming that calls at
each of the open callsites cannot return (Line 4). If it finds
a counterexample trace, SI returns UNSAFE, along with the
model that can be used to construct the trace. This trace is
guaranteed to only go through inlined procedure calls because

TABLE I: Execution of SI on the program of Fig. 1

all the open ones were blocked. Ignore the call to gather the
unsat core shown on Line 8 for now; we use this information
in the next section.

Next, SISTEP does an over-approximate check (Line 11).
If this is UNSAT, then SI returns SAFE. If the check was
satisfiable, then we construct the counterexample trace from
the model provided by the solver (Line 14). This trace is
guaranteed to go through at least one open call site (because
the under-approximate check was UNSAT). The SI algorithm
proceeds to inline the procedures called at each of the open
callsites that the trace goes through. Such callsites are recorded
in variable I (Line 15); these get returned for bookkeep-
ing purposes (used in the next section). Callsites in I are
inlined by asserting the partial VC of the callee, as shown
in Line 2 in Algorithm 3. Read the asserted constraint as
follows: if the control variable of the calling block is set
to true then the VC of the procedure must be satisfied. The
use of interface-variables ensures that formals are substituted
with actuals for the procedure call. New callsites that are
created as a result of the inlining are recorded in C’ and then
eventually added back to C' (Line 19). Finally, SISTEP returns
NODECISION back to SI with the set of callsites that it inlined,
and the process repeats. An example illustrating the execution
of SI is shown in Table I.

Define a call tree to be a (prefix-closed) set of dynamic
callsites that represents all dynamic callsites that have been
inlined by the SI algorithm at any point in time. We call this
set as a tree because it can be represented as an unfolding of
the program’s call graph.

III. SPLITTING THE SEARCH

HYDRA employs a decomposition-based strategy to achieve
parallelism. During the course of execution of the SI algo-
rithm, HYDRA splits the current verification task by picking
a dynamic callsite ¢ that has already been inlined by SI. This
generates two partitions: one that requires executions to pass
through c (referred to as the must-reach partition), and the
other that requires executions to avoid c (referred to as the



must-avoid partition). This strategy provides for an exhaustive
and path-disjoint partitioning of the search space.

Formally, a partition is a pair (T, D) where T is a call tree
(i.e., set of inlined callsites) and D is a set of decisions (either
must-avoid(c) or must-reach(c) for ¢ € T). As a notation
shorthand, for a partition p = (T, D) and callsite ¢, let p + ¢
be the partition (7°'U {c}, D). Similarly, for a decision d, let
p-+d be the partition (T, DU{d}). Further, let calltree(p) = T
and decisions(p) = D. One can also see the above strategy
as dividing the proof obligation (correctness theorem) on the
complete program into a set of lemmas corresponding to each
of the partitions.

This section addresses two primary concerns: (a) how to
enforce splitting decisions during search? (Section III-A), and
(b) how to choose a callsite for splitting? (Section III-B).

A. Encoding splitting decisions in SI as constraints

The constraint for must-avoid(c) is relatively straightfor-
ward. It is simply —control-variable(c). Asserting this con-
straint any time after SI has inlined ¢ will ensure that control
cannot go through c, thus SI will avoid c¢ altogether.

We next describe the encoding of the must-reach constraint
by first looking at the single-procedure case. For a procedure
p, we introduce must-reach control variables r;, one for each
basic block [ of p. Intuitively, setting r; to true should mean
that control must go through block . Recall from Section II
that the VC of a procedure uses %; as a unique integer constant
for block [ and f as the control-flow function. We define
must-reach(p) as the following constraint:

N =\ (A fG) ==in))

l€blocks(p) néepred(l)

2

This constraint enforces that if a block [ must be reached,
then one of its predecessors must be reached. The use of the
control-flow function ties this constraint with the procedure’s
VC. For any block [, asserting r; A must-reach(p), in addition
to the VC of p will enforce the constraint that control must
pass through block [. The proof is straightforward and we omit
it from this paper.

For multi-procedure programs, we construct the must-reach
constraint inductively. Let must-reach(p, c) be the constraint
must-reach(p), but where the block identifiers {i;} are
the same as the ones used in pVC(p,c). We construct
must-reach(c) inductively over the length of c. If ¢ = [main],
then must-reach(c) is true. Otherwise, if ¢ = (I,p) :: ¢, then
must-reach(c) is r; A must-reach(p, ¢') A must-reach(c’).

B. Choosing a splitting candidate

Given an unsatisfiable formula ®, expressed as a conjunc-
tion set of clauses {¢;}, a minimal unsatisfiable core (min-
unsatcore) is a subset of clauses ¥ C & whose conjunction is
still unsatisfiable and every proper subset of W is satisfiable.

Consider the under-approximate check made by SI (Line 5
of Algorithm 2) where it blocks open-callsites and attempts to
find a counterexample in the currently inlined portion of the
program. This check is a conjunction of constraints, passed
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:':foo1 '.':foozj,? '.':baz1:,'- bar1 bar2:,‘- :':bar3:} '.':qux1:}

Fig. 3: Proof-guided splitting

via S.Assert, of two forms. First is the (partial) VCs of
inlined callsites (Line 2 of Algorithm 3) and second is the
blocked open callsites (Line 4 of Algorithm 2). If the check is
unsatisfiable, then we extract its min-unsatcore and represent
it as a set of callsites uc (that may be inlined or may be
open). The set uc represents the current proof of safety of the
program. Inlined callsites that are not part of uc are deemed
search-irrelevant because whether they were inlined or not is
immaterial to conclude safety of the program (at this point
in the search). Formally, those callsites could have been left
open (i.e., over-approximated) and the check would still be
unsatisfiable. Therefore, the solver is likely to spend its energy
searching and expanding the uc portion of the calltree as the
search proceeds further. Consequently, we restrict splitting to
a callsite chosen from uc so that we split where the search
complexity lies.

Consider the inlining tree shown in Figure 3, where the
open callsites appear as dotted circles and the inlined ones
are shown as solid circles; the shaded nodes are the callsites
that appear on the min-unsatcore (uc). In this case, both baz
and bazl are ruled out for falling outside uc. If we pick
some other callsite to split, say qux, then the must-reach(qux)
partition of that split is likely to search in the subtree rooted
at qux, whereas the must-avoid(qux) partition will search
the uc portion excluding the subtree rooted at qux. We use
a simple heuristic that roughly balances these partitions. Let
the current inlined calltree be T and let subtree(T,c) be
the subtree rooted at c. We choose the splitting callsite as
the one that has maximum number of relevant callsites in its
subtree (excluding main because that would be a trivial split).
Formally, the splitting callsite is:

argmax{|subtree(T,c) Nuc|}

ceuc
In our example, we will pick bar for splitting.

We note that this choice of balancing the partitions is just
a heuristic. In general, there may be dependencies between
callsites. For instance, blocking one callsite can block others
or make others be must-reach because of control-flow depen-
dencies in the program. Our heuristic does not capture these
dependencies. Furthermore, in our implementation, we do not
insist on obtaining a minimal unsat core in order to reduce the
time spent in computing it. Solvers generally provide a best-
effort unsat core minimization (e.g., the core.minimize
option in Z3).



Algorithm 4: Client-side verification algorithm

Algorithm 5: VERIFY(P, p, S)

Input: A Program P
Input: An SMT solver S
1 while rrue do
2 p < SendSync(GET_PARTITION)
3 outcome < VERIFY(P, p, S)
4 SendAsync(OUTCOME, outcome)

IV. HYDRA DESIGN AND IMPLEMENTATION

HYDRA employs a client-server distributed architecture with
a single server and multiple clients. The server (Section I'V-B)
is responsible for coordination while verification happens on
the clients (Section IV-A). A client can decide to split its
current search, at which point it sends one partition to the
server while it continues on the other partition. If a client
finishes its current search with a SAFE verdict, it contacts the
server to borrow a new partition and starts solving it.

A. Client Design

All clients implement Algorithm 4. We use SendSync as a
message-response interaction with the server. SendAsync is
the asynchronous version where a message is sent to the server
but a response is not expected. A client repeatedly requests the
server for a partition (Line 2), solves it (Line 3) and sends the
result back to the server on completion. Each client uses its
own dedicated SMT solver (S) for verification.

VERIFY (Algorithm 5) maintains a stack of decisions
dstack and a set of open callsites C'. It starts off by preparing
the input partition (Lines 3 to 7): it inlines the calltree of p
and asserts all its splitting decisions. The client then enters a
verification loop (Line 8) that repeatedly uses SISTEP (Line 9)
to expand its search. If a counterexample is found (Line 10),
the client returns an UNSAFE verdict back to the server.
If SISTEP returns NODECISION, it implies that some more
procedures were inlined but the search remained inconclusive;
in this case, we perform the necessary bookkeeping on the set
of currently open callsites (C’), new procedures inlined (1),
and the minunsatcore from the unsat query (uc’).

If SISTEP returned SAFE, then the search on the current
partition has finished and the client must pick another partition
to solve. This is done by returning the SAFE verdict (Line 22).
The check on Line 15 is an optimization that we describe later
in this section.

After checking the outcome of SISTEP, the client decides
if it is time to split its search. This is referred to abstractly as
“TimeToSplit” on Line 23: the exact time is communicated by
the server to client (see Section IV-C). For splitting, the client
picks a callsite ¢ in accordance with our proof-guided splitting
heuristic (from Section III-B) using the stored unsatcore uc.
We note that the correctness of our technique does not rely
on when a split happens or what splitting callsite is chosen.
Therefore, these decisions can be guided by heuristics and
tuned to optimized performance.

After splitting, the client continues along the partition with
the MUSTAVOID(c) decision (let’s call this partition p;). The
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Input: A Program P, A partition p of P, A solver S
Output: SAFE, or UNSAFE(T)
1 S.reset(), dstack « [], C + 0 uc<+ 0
2 /| Setup input partition
3 forall ¢ € calltree(p) do
| €'« INLINE(c), C + (C = {c})uC’
forall d € decisions(p) do
if d == MUSTAVOID(c) then S.Assert(must-avoid(c))
if d == MUSTREACH(c) then S.Assert(must-reach(c))

while frue do

outcome < SISTEP(P, C, S)

if outcome == UNSAFE(7) then
L return outcome

else if outcome == NODECISION(uc’, I, C") then
| ucud, C«Cp=p+1I

else
if SendSync(POP)==YES then
repeat
let d(c) :: ds = dstack
S.Pop(), dstack « ds, p < p — d(c)
until d == MUSTAVOID
S.Push(), S.Assert(must-reach(c)),
dstack <— MUSTREACH(c) :: dstack,
p < p+ MUSTREACH(c)

else
L return outcome

21
22

23
24
25
26
27

if TimeToSplit then

¢ < choose(calltree(p), uc)

S.Push()

S.Assert(must-avoid(c))

SendAsync(SEND_PARTITION,
p + MUSTREACH(c))

dstack <— MUSTAVOID(c) :: dstack,
p < p+ MUSTAVOID(c)
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other partition (p2) is sent to the server (Line 27). Note further
that on Line 25, the client creates a backtracking point that
is just before the decision on c is asserted. This backtracking
point is exploited in Lines 15 to 20. When the client finishes
search on pq, it pings the server to know if py has already
been solved by a different client or not. If not, it simply
backtracks the solver state and asserts the flipped decision
MUSTREACH(c) to immediately get set up for search on ps.
This way, the client avoids the expensive setup of initializing
a new partition. Because splitting can happen multiple times,
the loop on Line 19 is necessary to follow along the recorded
stack of decisions.

B. Server Design

We assume that each client has an associated unique iden-
tifier. Each message coming from a client is automatically
tagged with the client’s identifier. The server maintains two
data structures. The first is an array () of double-ended queues.
The queue Q[id] stores all partitions produced by client 4d.
The second is a queue wt of clients that are currently idle.

The server processes incoming messages as follows. On re-
ceiving the message (SEND_PARTITION, p) from client id, it



On <SEND_PARTITION>
Do PushLeft
On <POP>

Do PopLeft

\ On <GET_PARTITION>

| Do PopRignt From Largest

Fig. 4: Maintaining the double-ended queues

does a push-1left to insert p into Q[id]. (The manipulation
of @ is depicted in Figure 4.) This ensures that later partitions
(which have a larger number of decisions and a larger call
tree) from a particular client id appear on the left of Q[id].

On receiving message (GET_PARTITION) from client id,
the server needs to reply with a partition because id has just
become idle. If all queues Q[i] are empty, then id is inserted
into wt and the client is kept waiting for a reply. Otherwise,
the server picks the longest queue Q[i], does a pop-right
and replies to the client. This strategy attempts to avoid skew
in queue sizes. Further, the rightmost partition is the smallest
in that queue, which minimizes the setup time for that partition
for the client that will get it. As more partitions are reported
to the server (via a SEND_PARTITION), the server loops
through wt, replying to as many idle clients as possible with
partitions popped-right from the currently longest queue.

The message (POP) from client id implies that the client
wishes to backtrack to its previously reported partition. Be-
cause reported partitions are pushed-left, and other clients
(on GET_PARTITION) steal from the right, the previously
reported partition from client ¢d is exactly the leftmost one in
Q[id), if any. Thus, the server replies YES back to the client
if Q[id] is non-empty, followed by a pop-left. Otherwise,
the server replies NO.

The server additionally listens to OUTCOME messages. If
any client reports UNSAFE, all clients are terminated and the
UnSafe verdict is returned to the user. The server returns
SAFE verdict to the user when all queues in ) are empty and
all clients are idle (i.e., wt consists of all clients).

Our design of the work-queue (), as an array of sorted
(by size) work-queues, is in contrast with using a centralized
queue that is standard in classical work-stealing algorithms.
It is useful for avoiding skew in queue sizes, distributing
smaller partitions first, and enabling the client-backtracking
optimization.

C. Adaptive rate of splitting

While a low splitting rate inhibits parallelism, a high rate
increases the partition-initialization overhead on the clients.
HYDRA uses a dynamic split-rate determined by the number of
idle clients and the number of partitions available at the server.
Each client maintains a split time interval § (in seconds) and
splits the search (“TimeToSplit” of Algorithm 5), if § seconds
have elapsed since the last split. The value of § starts as a
constant é. and is updated by the server as follows:

.

In the first case, a client’s splitting is slowed down in
proportion to its queue size (divided by the number of idle

Qli].count
wt.count

K x 6,

x 0. if wt.count # 0

otherwise.

3)
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clients). The second case applies when there are no idle clients.
Increasing § by a factor of K reduces the rate of splitting
drastically. We use §. = 0.5s and K = 20 in our experiments.

V. EXPERIMENTAL RESULTS

We evaluated HYDRA on SDV benchmarks [10]. SDV is
used by Windows driver developers to statically check various
rules on correct usage of kernel APIs in a driver. SDV comes
packaged with a set of rules” that typically establish that kernel
APIs are called in the correct temporal sequence; for instance,
that a lock must be released before it can be acquired again.

The SDV benchmarks are obtained from a run of SDV on
set of real-world device drivers that exercise all features of
the C language: loops and recursion (up to a bounded depth),
pointers, arrays, heap, bit-vector operations, etc. Each instance
in the benchmark suite is a device driver paired with one of
the SDV rules, i.e., it checks for the correct usage of the
rule in the driver. SDV compiles the drivers, instruments the
property and produces a program in Boogie [8]. The process of
compilation to Boogie has been described in detail in previous
work [6]. Each Boogie program has a well-defined entry point
that is annotated with the tag { :entrypoint} and multiple
assertions. The verification objective is to find an execution
that starts at the entry procedure and ends with an assertion
failure. Note that although these benchmarks are all compiled
from C, HYDRA itself is source-language agnostic and can
accept Boogie programs obtained from any source language.

We compared the performance of HYDRA against
CORRAL [3] that implements the sequential Stratified Inlining
algorithm. CORRAL forms a good baseline because it has been
optimized heavily for SDV over the years [6].

We only selected hard benchmarks (where CORRAL took
at least 200 seconds to solve or timed out). We ran HYDRA
with 32 clients. Timeout was set to 1 hour. We conducted
our experiments with the server running on one machine (16
core, 64 GB RAM) and the 32 clients running on another
machine (72-core with Intel Xeon Platinum 8168 CPU and 144
GB RAM), communicating via HTTP calls. As clients never
communicate amongst themselves, this setup is equivalent to
running clients on different machines.

Both CORRAL and HYDRA use Z3 [11] as the underlying
SMT solver. While we used the default setting of a fixed
random seed for Z3, we verified that the results reported here
do not depend on the random seed. In fact, the behavior of
the SI algorithm, which underlies both CORRAL and HYDRA,
is not impacted by the choice of the random seed in any
statistically significant way.

A. HYDRA versus CORRAL

Instances Solved. There were a total of 333 programs. HYDRA
solved 99 instances (30%) on which CORRAL timed out
(34 of these were SAFE and the rest 65 were UNSAFE).
Conversely, CORRAL solved 12 (4%) instances on which
HYDRA timed out. We did not investigate these cases in detail;

Zhttps://docs.microsoft.com/en-us/windows- hardware/drivers/devtest/
static-driver-verifier
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Fig. 5: Comparison of HYDRA against CORRAL on SDV benchmarks

in a practical scenario one can simply dedicate a single client
to run CORRAL and get the best of both tools. Overall, HYDRA
solved 183 (55%) instances while CORRAL solved only 96
(29%) instances. Interestingly, there were 138 instances (41%)
that were unsolved by both HYDRA and CORRAL indicating
the need for further improvements.

Verification Time. In terms of running time, HYDRA was
significantly faster than CORRAL in most (84%) cases: Fig-
ure S5a shows the scatter plot of running times. Figure 5b is
a histogram of the speedup of HYDRA over CORRAL. For
example, there were 8 instances where HYDRA was more than
50x faster than CORRAL. A small fraction of instances had
slowdowns as well, but the worst among these was 0.2x, i.e.,
CORRAL was 5x faster than HYDRA. Over all instances, the
mean speedup is 20.4x and median speedup is 9.7x. Speedup
excludes cases in which one of the tools timed out.
Scalability. Figure 5c is a cactus plot illustrating the scalability
of HYDRA with the number of clients. CORRAL is able to
solve only 58 instances within 1000 seconds. Running HYDRA
with only a single client results in worse performance than
CORRAL (solves only 46 instances within 1000 seconds).
However, the performance improves significantly with the
number of clients (solves 166 instances with 32 clients within
1000 seconds).

B. Effectiveness of proof-guided splitting

Empirical Analysis. We define dissimilarity 1n(i, j) of a client
1 with respect to client j as 1 — ‘Lrgﬁlj ‘, where L;, £; denote
the set of callsites that ¢ and j have i}llined, respectively, when
HYDRA finishes. A high value of 7(4, j) implies that the clients
did a different search. Note, however, that 7(7, j) will never
be 1 because certain callsites (like main) will always need to
be inlined by each client.

Across all benchmarks and all client pairs, the average dis-

similarity value was 0.55. This indicates sufficient difference
among the inlined calltrees across clients.
Statistical Analysis. We implemented a randomized splitting
algorithm that (1) decides to split/not-to-split at each inlining
step uniformly at random, (2) if it has decided to split, it selects
the splitting call-site uniformly at random.
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We ran this randomized splitting algorithm 5 times for
each program and compared the minimum verification time
of these 5 runs for each instance against that of HYDRA.
Using the Wilcoxon Sign Rank test, we found that HYDRA
is statistically better than the randomized splitting algorithm
with a p-value of 0.0012, indicating that the performance of
the splitting heuristic is not accidental.

C. Server optimizations

We measured the performance impact of the server-side
queue implementation on HYDRA. We compared our double-
ended queues () from Section IV-B against a classical work-
stealing queue implementation. Our implementation allowed
HYDRA to complete on 40% more cases where using the
classical version made HYDRA time out. Further, HYDRA’s
performance was 8.5 times faster when both implementations
terminated with a verdict.

In terms of controlling the splitting rate, both the perfor-
mance (p-value of 5.27 x 107°) and the number of splits (p-
value of 5.43 x 10733) were found to be statistically better
with split-rate feedback.

VI. RELATED WORK

Farallelizing SAT/SMT solvers. 1In contrast to parallelizing
verification tasks, parallelizing SAT/SMT solvers has attracted
wider attention. There have been two popular, incompara-
ble [12], approaches to parallelizing satisfiability problems:
portfolio-based techniques [13], [14], [15] and divide and con-
quer techniques (decomposition [16], [17] or partitioning [18],
[19], [20], [21]). Portfolio-based strategies either run multiple
different algorithms or multiple instances of a randomized
algorithm. They tend to work well in the presence of heavy-
tailed distribution of problem hardness.

Divide and conquer strategies are most similar to our work.
They either use static partitioning, based on the structure of
the problem [22], or dynamic partitioning [19] based on run-
time heuristics. However, unlike partitioning on individual
variables at the logical-level, we split at the program-level
based on its call graph. In our setting, the VC of a program
can be exponential in the size of the program. This makes it
hard to directly use parallelized solvers; we must split even



before the entire VC is generated. Furthermore, parallelized
solvers are still not as mainstream as sequential solvers. Using
solvers as a black-box allows us to directly leverage continued
improvements in solver technology

Parallelizing program verification. Saturn [23] is one of the
earlier attempts at parallelizing program verification. Saturn
performs a bottom-up analysis on the call graph, generat-
ing summaries of procedures in parallel. While the intra-
procedural analysis of Saturn is precise, it only retains ab-
stractions of function summaries, thus cannot produce precise
refutations of assertions like BMC.

There have been attempts at parallelizing a top-down
abstraction-based verifier [24] as well as the property-directed
reachability (PDR) algorithm [25], [26], [22], [13] and k-
induction [27], [28]. These all rely on the discovery of induc-
tive invariants for proof generation, a fundamentally different
problem than BMC. It would be interesting future work to
study the relative speedups obtained for parallelization in these
respective domains.

Closer to BMC, parallelization has been proposed by a
partitioning of the control-flow graph [29]. This approach
does static partitioning (based on program slicing) and does
not consider procedures at all (hence, must rely on inlining
all procedures). Further, it has only been evaluated on a
single benchmark program. Our technique, on the other hand,
performs dynamic partitioning, supports procedures and has
been much more extensively evaluated.

In a recent work, Inverso et al. [30] propose a parallelization
technique for the verification of concurrent programs by parti-
tioning the verification task such that each partition considers
a subset of the interleavings of the input program. Next, it
uses sequentialization to generate a sequential program for
each partition and then verifies the sequential program. The
partitioning is static and done up-front. This work is comple-
mentary to HYDRA: it addresses the complexity arising from
many interleavings, whereas HYDRA addresses complexity
arising from many (sequential) procedures calling each other.
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